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SIMILARiTIES AND DIFFERENCES BETWEEN ELECTRON AND
PROTON TRANSFERS AT ELECTRODES AND IN SOLUTION.
THEORY OF A HYDROGEN OVERVOLTAGE REACTION. ~t

R. A. Marcus
Arthur Amos Noyes Laboratory of Chemical Physics,

California Institute of Technology,
Pasadena, CalifornIa 91125

\/ Abstract

~~Depending on the Initial energies, a proton transfer may
proceed either via a saddle-point in a potential energy sur-
face or by crossing from the reactants’ to the products’
valley before the saddle-point is reached. In the second
path the analogy to weak- overlap electron transfers is
pointed out. The present study is intended to unify pre-
viously divergent viewpoints, by showing how they are
special cases of a more general picture. Expressions are
obtained for the reaction rate in terms of the properties of
the potential energy surface and of other properties of the
system, using a hydrogen overvoltage reaction as an
example.
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Introduction

In a proton transfer, for example in the hydrogen overvoltage
reaction (1) at an electrode M,

H3O~ + M(e) — H20 + H-M (1)
some dynamical effects result from the lightness of the H-particle,
and several questions arise: Can a conventional transition state
theory be used to calculate the reaction rate, with a transition state
near some saddle-point region of the potential energy surface? Does
the proton transfer occur so quickly that, as in weak-overlap elec-
tron transfers, a “nonequilibrium” solvent dielectric polarization
arises?

Several authors’5  assume a conventional transition state for
reaction (1) and also an equilibrium solvent dielectric polarization .
others6 assume, instead, concepts analogous to those used in a
weak- overlap electron transfer reaction, with its associated non-
equilibrium polarization. Recently a unified treatment was out-
lined, 

‘
~ and a quantitative description is given in the present paper.

.

Potential Energy Surface and Reaction Paths
We first consider the potential energy surface for reaction (1)

as a function of two of the coordinates, the H20-H and the H-M dis-
tances, using the usual8 mass-weighted skewed axis coordinates
(Fig. 1). There are also the bending motions of the O-H-M, the
stretching motions of the other 0-H stretches, and the coordinates of
the solvent environment. The actual potential energy is a function of
all of these coordinates. Path a in Fig. 1 is a path through the
saddle-point, and path ~ is a path at any fixed 0- M distance.

In the highly exothermic case, caused by a very favorable
overpotential, a schematic diagram ci the surface can resemble that
in Fig. 2. Paths a and ~ are again drawn.

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~



RH O M
FIg. 1. Potential energy contour plot (schematic) for the

three center reaction H20-H-M at a fixed value of
the other coordinates and at a given metal-solution potential difference, for the case where the
reaction Is almost thermoneutral (symmetric). The
rotated axes are scaled H20-HM and H-M distances
(between Qand the center of mass of HM and between
H and M) . ~ The configurations along the dashed line
form the conventional transition state, and X denotes
the saddle-point on the potential energy surface.
Reaction paths a and ~ are described in the text.

R

RH O M
Pig. 2. Legend as in PIg. 1, but the reaction is now highly

exothermic. The dashed line denotes the conven-
tional transition state, passing through the saddle-
point ci the potential energy surface.
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One task will be to decide whether the system ever reaches
the saddle-point region as In path a In PIg. 1 or 2, or whether, either
because the 0-H vibrational energy is sufficiently high or because
tunneling of the H from the 0 to the M may be large, the system
moves from the reactants’ valley to the products’ valley before the
saddle-point region is reached, as in path fi In FIg. 1 and as in the
a-path at a large O-M distance in FIg. 2.

Paths a and ~ can be competitive, conceivably one (a) pre-
vailing in very exothermic or very endothermic conditions and the
other (8) prevailIng under more nearly thermoneutral conditions. A
prescription for estimating the relative importance of the two paths
is described In the present paper. Path ~ is assumed in Ref. 6 (but
with a surface constructed from Intersecting parabolas) and, in
effect , path a Is used In the usual transition state theory.

Energetics for Paths a and $
We shall be interested in introducing a relatively simple for-

malism which allows for these different reaction paths. To illustrate
the approach, we use, for simplicity, a potential surface which
treats changes in the 0-H- M potential energy due to changes in 0-H
and H-M distances by a bond energy-bond order (BEBO) method, ~~, ~~~

and which treats the remaining motions largely (though not neces-
sarily entfrely) In terms of their dielectric polarization behavior. In
an approximation to BEBO, quite adequate where tested, the BEBO
surface could be described by the expression12

Ve = n2AV° + AV’ [n1fn  n1 + n2In n2J/tn 2 , (2)
where n1 and n2 are the bond orders of the H20- H and H- M bonds,
respectively. At any point along the minimum potential energy path
it Is assumed’1’ 12 that the stun n1 + n3 remains constant, namely
unity. In FIg. 3we have jolned by a~~-path any pafr of pojnts P and
P’ lying on the minimum potential energy path, but In the reactants’
and products’ valleys, respectively. Eq. (2) can be replaced by a
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more elaborate expression without changing the treatment below.

RH OE-H

RH Q~~
Fig. 3. Legend as In FIgs. 1 and 2. The curve denotes the

minimum potential energy path, which proceeds along
the reactants’ valley, over a saddle-point, and along
the products’ valley. The saddle-point may be situ-
ated as In FIg. 1 or as In FIg. 2 or, In the case of a
very endothern~tc reaction , in the products’ valley.
Points P and 7 are corresponding pairs points which
lie at the intersection of a $-path with the minimum
potential energy path.

The difference of bond orders ci the H-M bond at any pair of
points P and P’ In FIg. 3 will be denoted by An ,

A n = n2(P’) - n2(P) . (3)

Along each PP’ path the potential energy in Figs. 1-3 is given by
Eq. (2) (wlth n1 + n 2 = lat the pointsPand P’) and , along PP’, by
Eq. (2) using bond length-bond order relations.

The interaction ci the solvent with the 1120-H ’- M subsystem
along the various paths is also to be Included , and , for brevity and
simplicity, we shall do so classically . (Various high frequ ency
modes , treated structurally , could also be Included and treated
quantum mechanically . ) We consider a particular value ci the
orientation- vibration polarizatio n of the remain ing coordinates Pj~)
at each point r of the solvent medium.

S



An expression for the free energy of solvatlon of the
reactants Gr 

~ for any given P (r) fu~tction ~~l3SOi

= -(1 - 
D;~~Lf D

r. Dr dr - f  ~~~
. D~ ~~ + 2 ~c f  P• P dr (4)

where
PEP/D , c = ~~

i_ - j_ . (5)
~u op

D0~ and are the optical and static dielectric constants, and Dr is
is the electric field directly due to the charges. G 01 varies as the
point P moves along the minimum potential energy curve in FIg. 3
since l)~ varIes with position along that line. The first term in (4) is
the solvation term when there is no orientation-vibration polarization

the second term Is a dipolar interaction of P
~ 

with the charges
in a medium of dielectric constant and the last term Is the
orientation- vibration polarization energy stored up In the polarized
dielectric; it vanishes when l)~ equals as does P~.

When the system In Fig. 3 is at the point P’ the solvatton free
energy is that of the products G~0~ for the H20-H-M configuration Pp

.
For the same it is given by the same expression as (4) but with r
subscripts replaced by p’s.

In the vicinity of P in Fig. 3 we let the system have a local
H20-H- M protonic vibrational state of energy E~, a solvation free
energy Gr 

1’ and an electronic energy Vr. The free energy of the
system near P, C (P), is then given by

r r ~r

Includes the electrode potential term since the D In (4) includes
fields due to charges on the electrode and In the ion atmosphere
(double layer).

Energetics Alone a -~~~~~ Path (Proton Jump)
When the system proceeds along a path ~ in FIgs. 1-3, from
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• point P to point Pp (FIg. 3), it does so by a pro tonic motion so rapid
that P~ is constant along the PP’ path. With energy conserved during
a protonic jump from the P to Pp valley, and with the entropy associ-
ated with the orientation-vibration polarization 

~u also unchanged
during the tra nsition at fixed P~, we have

Gr(p) = G~(P’) . (7)

Thus far , the polarization P~ In Eqs. (4)-(7) Is arbitrary. As
In electron transfer reactions we choose it so that is a minimum
for a system at the point P, subject to the constraint imposed by (7) .
Thereby , one finds

OC r = o = - f (Dr - 4ir c P)~ ~~~~~~ 
(8)

OGr 
- = 0 f  (D’ - D1’) OP d

Multiplying the second equation by a Lagrange multiplier m, adding
and setting the coefficient of 6P ~ equal to zero , as the most general
solution of (8) and (9) , one finds at each point r in the medium that

4 ,rc P ID0 = (1 + m) Dr 
- m D~ , (10)..,u p .

~~ .5’

where Dr and D~ denote the electric fields for systems at P and at
P’ in Fig. 3, dIrectly due to the charges . The similarity of the pro-
cedure embodied in Eqs . (4) , (8)-(10) to that used 14 for the transfer
of another light particle , the electr on , may be noted.

Introduction ci this into (4) and Into the corresponding
expression for G~01 yields (ii) and (14) :

G 01 = G 01 (eq) + 1n
2X (11)

where the first term is the equilibrium solvation for a system at
point P,

G 01(eq) = -(1 - D ’) f  Dr . Dr dr/8w (12~

_ _ _ _ _ _ _ _ _  
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and zn3) is the fluctuation term due to Pa’s being different from
its equilibrium value In C 01(eq) . A is given by (13).

= f (DP - D r) .  ( P _ D r) d ~.,8flC . (13)

The difference of charge distribution on the right hand side of (13) is
expected to be roughly proportional to the An In Eq. (3), and so to
depend on the point P. Similarly, the solvation for a system at point
P’inFIg. 3 is

~~ol = C~01(eq) + (m + 1)2A . (14)

The value of m is determined from (7) , (11), and (14) :

-(2zn +1)A = G~01(eq) - G 01(eq) + E~ - E~s + V~ - V~ (15)

when the system near point P in a given vibrational state v of
energy E~, is transformed by the proton jump into a system near Pp
in a proton vibrational state v’ of energy E~,.

Rate Express ion for the $- Path

We denote by i~~~~i (E~) the prthabllity of a reactive v — V1

pr otonic trans ition, when the initial translational energy along the
line of centers in FIgs. 1-3 is E~ and the initial protonic vibrational

• energy is E~,. The transition state expression for the reaction rate
is given by rs

_ (EO +E0)/kT
kra te = D,, f o 0

IC~yys(E~)e  V dE~f/Q .~, kT (16)
t
_

where
, r

kT -~~G501+m A~,kT (2,gkT) 1
r e 

h’ ~~~ j5i,js ‘

= z e  
01 + m ’ )/kT 

. (17) k
I
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F A ~~oi istheIncre:ntin uili~ri::lvauon fr~~ene;ongoing
from ~ to P. In (17) the translational partition function for the three
translational degrees of freedom of the reactant, and that for a delo-
calized reactant on the surface were introduced. (Corrections for
localized adsorption can be added but are omitted In (16)-(17) for
brevity.) Q~~, 

is the protonic vibrational partition function for the
reactant in FIgs. 1-3, and Z is the collision frequency (kTI2,r j.t) 1/2
for collisions with unit area of the electrode.

The calculation of ,c~~, proceeds as follows: One first locates
the point P of deepest 0-M penetration, namely where the transla-

- • 
tional energy along the 0- M direction vanishes, I. e., where, In the

• reactants’ valley we have, in this $-path mechanism,

E~ + E~ = E + AV~ (18)

E~ and refer to the protonic vibrational energy and the incre-
ment in potential energy (from the H3O~ moving from .o) at point P
in FIg. 3. In calculating E~ the vibrational quantum number v is
taken as constant (v) within the reactants’ valley (adiabatic treatment
for the H-vibration in the valley). E~ differs from E only because of
changes in cross-sectional profile (e. g., in vibration frequency)
during motion along that valley of the potential energy surface.

If the value of E~ at P is sufficiently large to overcome any
Ye barrier from reactants to products along the a-path at that P,
the corresponding K~~~i is set equal to unity. Otherwise, a tunneling
calculation for is used. Recently, a useful calculation which
Includes tunneling along a a-path and, where necessary, Initially
along an 0-M coordinate was given in Ref. 10 and could be used for
the present purpose.

The barrier along this a-path is modified somewhat by the
presence of the G501 term for the cited P

~
. Thus, changes In Ve +

G501 along this a-path serve as the effective barrier to proton motion

_  _  
~~• -~-. 

~- --~~~~



along that path (Appendix) .

Thus far, the electrode- solution potential difference ~ has
not been specifically introduced. It is implicitly present in each
C501 terms. By evaluating these terms one obtains p. As in elec-
tron transfer theory,’6 a “standard potential” ~~ for reaction (1) in
the prevailing medium can also be introduced by setting the free
energy of activation terms AGr and AC~ equal at that ço. One can
then express the rate of the forward reaction in terms of the dif-
ference q,-~~

0.

Decision as to Paths a and $
if for any point P for any given E and E~ in Eq. (16) the

point P is closer to the origin than the saddle-point, then path a
will dominate rather than path $ for that ~~~ E~) pair. If point ~‘,
In the case of Fig. 1, Is quite close to the saddle-point, the An
defined by (3) becomes very small and so the term DT-D~ arising
from a difference in charge distributions at P and P’ also becomes
small, and so does, thereby, the A in Eq. (13). Thus, with this

• approximate vanishing of the m2x in (17) one has again retrieved
the usual transition state theory result. On the other hand, when the
barrier along a a-path can more easily be overcome, either by
excess vibrational energy in E~ or by a sufficiently large value of

one obtains a a-path mechanism rather than one proceeding
• via the saddle-point in the potential energy surface.

The above remarks also serve to point out the similarities
and differences between proton transfers and weak-overlap electron
transfers. The weak-overlap electron transfer proceeds via the
counterpart of a j 9-path, and has the rn2) terms of the previous
section. The proton transfer can proceed via an a-path, wherein• the rn2) Is absent, or via a $-path, depending on the Initial con-
ditions. The remarks made earlier on the hydrogen overvoltage
reaction are also Intended to apply to other (e. g. , homogeneous

5
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proton transfers.

Appendix: Variation in D Along a ~~~
- P~~h

1) varies along a $-path, since the electronic structure of the
system varies along that path. D(r) is equal to (cf Eq. (5. 4) of Ref.
13)

D(r) -v f  ~ ‘(r )! 2 Z
~ 

e1 fl dr .  + C (Al)• r 
~ ~~~~~~~~~~~~

where ~ is the electronic wavefunction for any nuclear configuration,
and is a function of the coordinates of all electrons j of the
reactants, and the sum Is over all i, I. e., over all electronic and
nuclear charges e1 in positions r 1. Thus, this D (r) can be calcu-
lated from an electronic structure calculation. The C in (Al) is the
contribution to D arising from the other charges on the electrode
and from the ion atmosphere (including double layer).
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