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FLAME - A SLOW-FLOW COM 110t4 MODEL

I. Introduction

This paper describes FLAME, a detailed, two-dimensional, time-dependent numerical

model of slow flow combustion systems. The model has been built around the solution of

self-consistent hydrodynamics equations in the 5slow flow 0 approximation and includes the basic

transport processes of molecular diffusion and thermal conductivity. Other physical mechan-

isms, such as detailed chemical reaction schemes, turbulence models and heterogeneous

phenomena etc.: can be included on a modular basis. This facilitates modifying geometries and

modelling various processes peculiar to specific systems. In addition, as new models for tur-

bulence and chemical kinetics become av*ilable, they can be added in a relatively straightfor-

ward manner.

The basic geometry of the FLAME model is cylindrically symmetric (r — z)’. Other

geometries are possible, but for many problems of interest, namely gas jets, diffusion flames,

fire spread, and turbulent mixing studies, this would appear to be the best geometry . The

numerical model is fully two-dimensional in order to treat quantitatively processes such as
.‘.

buoyancy, convection, shear flow and turbulence, which cannot be treated sensibly in a one-

dimensional calculation. A fully three-dimensional calculation using the same techniques is

possible but would be significantly more expensive. An important aspect of our approach has

been to improve the resolution of sharp gradients via Flux-Corrected Transport. Nevertheless,

the basic model is Eulerian and hence resolution of gradients is necessarily limited.

The set of equations modelled in FLAME is
Msmncsipt submitted May 23, 1979.
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JONES AND BORIS

k ._ PV .V ~~~_ PD (1)di

~~~ -~~D + V x  V~~v V V  (2)di p p

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (3)

~~
+ e D_ _ V P V + V . K V T +

~~~L
+ZhiPiVhI (4)

where s = — p V  + — + p4i — total energy2

and

pa , pa
~~Pa V~~~~~ V PiV i + j1chem. (5)

This is a very general formulation. The approximations and assumptions which we use in solv-

ing these equations will be discussed in Section III. The symbols are

p — total mass density (gm/cm3)

n — total (particle) density (#1cm3)

p — mass density of the ith species (gm/cm 3)

a — particle density of the ith species (#1cm3)

V — bulk fluid velocity (cmlsec) -

— V x V - vorticity (sec~ )

D — V . V - divergence of the velocity (sec~ )

g — gravity (-980 cm/sac2) - negative gravity points downward

— - ratio of specific heats of the fluid

K - 
— thermal conductivity coefficient (erg/cm-sec-°K)

— enthalpy of the Ith species of the fluid (ergs/molecule)

• V’, — diffusion velocity of the Ith species (cm/sac)

— viscosity coefficient (gm/cm/sec) 
- - -

P — pressure (dynes/cm 2) 

2
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V — volume of the container (cm3)

Daj binary diffusion coefficient for species 0i0 through species “j ” (cm2/sec)

— diffusion source term for the ith species (cm~~)

As thi s is a two-dimensional calculation, both the (r) and (z) components of V and V’ are car-

• n ed. In addition , we require two more equations to close this set. We have used

P — n k T  (6)

for the relation between pressure, density and temperature, and

S, 
~ 

“
i
” (V~ — V1) (7)

~ 
nD,~

to relate the diffusion velocities to the other physical parameters. The quantities S, and D,, are

defined and discussed in detail in Appendix I. The quantities IS,~ are forcing terms for molecu-

lar diffusion which include density, pressure, and temperature gradients as well as differential
body forces on the various species.

This 2D model has a rather general initialization and diagnostics capability in order to con-

• sider a variety of problems. The numerical model is designed to operate efficiently on a vector

computer , thus demonstrating the value of vector computation even in complex problems such

as reactive flow .

This paper discusses some of the details of the model, that is the actual form of Eqs. (1-7)

used, the simplifying assumptions made, and their justifications. In Section II areas of

potential application and the corresponding numerical difficulties which they present are dis-
‘t . .

cussed. Section III describes the numerical model in greater detail. The grid system, spatial

differentiation , timestepping, diffusive transport , and chemical kinetics algorithms are discussed.

Section (IV) discusses calculations which have been performed to benchmark the model in

several difficult but well understood situations. These tests include comparisons with a one- •

3
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JONES AND BORIS

dimensional, fully compressible Lagrangian code and , for simple cases, comparison with a one-

point analytic calculation. Agreement is quite good, and we have been able to define the limits

of accuracy of the approximations and numerical algorithms which are used.

II. Problems to be Solved

There are several types of cylindrically symmetric problems to which this model can be

applied. One example is a laminar gas jet , such as a bunsen burner or a flat plate burner , where

the fuel and oxidizer may mix either prior to or after entering the combustion chamber. In

either case there is no reason to expect macroscopic asymmetry in the azimuthal direction.

However, species densities and temperatures very dramatically both above the ignition point

and radially outwards from the jet center, even in steady state. The two problems differ

significantly in the initial conditions required and the way in which the geometric boundary con-

ditions are applied. One is a diffusion flame and the other a premixed flame. In the case of the

prernixed system, the processes of interest will be the jet and flame speed and the detailed

chemical kinetics. For the diffusion flame , however, the physics is made more complicated by

the fact that a finite time is required for the oxidizer to mix with the fuel. Computational

models which are to be applied to these typical practical situations invariably require a non-

uniform grid to resolve the combustion regions finely while limiting the overall number of grid

points at which computations must be made. The problem here is one of widely disparate physi-

cally important space scales.

• 
• Buoyancy is a major effect in most diffusion flames and even in premixed systems it can

be responsible for much of the flame dynamics. The computational problem introduced here is

• • one of widely disparate fluid dynamic timescales. The slow flow algorithm used for the tern-

poral integration of the fluid dynamic equations is a way to filter sound waves out of the equa-
• i • 3. • ~.• tions so that timesteps much longer than the Courant step St Sx/C3 can be taken without ~~~~•~• 

‘
~

• • 4
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numerical instability. The standard approach of formulating an implicit pressure equation

requires at least formal substitution of one equation , in finite difference form , into another and

usually some form of additional numerical smoothing. The resulting algorithms do not resolve

steep gradients well during convection. Flux-Corrected Transport (FCT) is a far superior con-

vection algorithm but is intri nsically nonlinear and hence does not lend itself to implicit formu-

lations. Therefore the slow flow algorithm , which is asymptotic rather than implicit in concept ,

allows the unlimited u~e of FCT to convect steep species and temperature gradients. By filter-

ing out the fast sound waves, the physically important buoyancy and molecular diffusion times-

cales can be integrated inexpensively using only a few timesteps rather than hundreds of

thousands. •
~~~ 

. - .  •

Another class of important problems concerns turbulent ;nixing with reactions. Large-

scale, quasi-stationary eddy structures are observed in most shear flow situations and these

• structures clearly play a vital role in the turbulent mixing process. While the full details of fully

developed turbulent flow is beyond numerical simulation , these eddy structures , which are

often two-dimensional, can be simulated accurately. Therefore FLAME is designed to allow

calculation of these structures with and without self-consistent energy release from the chemical

kinetics. The importance of convective acceleration in this kind of problem necessitates carry-

• ing the slow flow expansion to first order in the perturbed pressures, but this is relatively easy

to do. The goal is to have a fluid dynamics model which can resolve these structures realisti-

- 
- 

-~~ cally as a basis for testing macroscopic turbulence closure models.

• -~ 
• Another area of applicaton for FLAME is the phenomenological modelling of fire spread

~
. • • in enclosed spaces. For this class of problem , the extreme care taken to provide an accurate

J fluid algorithm with good timestep properties is almost overkill. Nevertheless, since FLAME is

• 
. 

designed for detailed modelling, the extra accuracy and reliability of the fluid dynamics should
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pay dividends as a basis for phenomenological and empirical modelling as well. To this end,

methods for representing inflow-outflow conditions and interior structures and obstacles are

being studied. Before such a model becomes complete , however , extensive additional numeri-

cal work will have to be undertaken to build a multidimensional radiation transport model capa-

ble of dealing equally accurately with volumes which are optically thick as well as optically thin.

III. Numerical Model

There are th ree aspects to the integration of the equations which describe the System: 1)

spatial integration and differentiation; 2) time-stepping and integration of the energy (pressure)

equation using the assumption of asymptotic relaxation , i .e. “slow-flow ”; 3) physical transport

and chemical kinetics.

111.1. Grid System — Spatial Integration and Differentiat ion

The cylindrical finite difference grid used in the numerical model is shown in Fig. ( 1) .

Spatial integration and differentiation is performed on this staggered grid. The representation of

the fl uid dynamics is inherently Eulerian , alth ough rezoning and variable grid spacing are

allowed at each time step. This allows computation of quantities such as V . V to fall automati-

cally on the grid points where they must be used. For example , for the continuity equation ,

— —p V V, whereas p is defined on the grid , V must be defined at interstitial points in

• order for V~V to appear on the same grid as p. In solving for V, the reverse calculation of the

• velocity from and 4, and ~~~ , the stream function and velocity potential , is similarly straightfor-

ward if ~ and 4 are defined at the proper places. When mass flux , that is momentum , is a

necessary quantity such as in calculating the diffusion velocities , th e only quantities which then

• 
need to be averaged are the mass densities at the half-cell positions. Thus this staggered grid

structure insures that effectively second order accuracy is maintained in spatial integration at

• 6
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least for e uniform or slowly varying grid spacing. The grid and numerical model in general can

be appli ed to Cartesian and spherical as well as cylindrical coordinates. The model is set up to

make the change relatively easy, but the g~ometricaI constants used in spatial differentiation as

well as the axis boundary condition (NR — I) would have to be changed.

• The quantities defined at grid points are D, ~ p. (pj , T, p and 4). The stream function

• 4, and velocity V are carried at the interstitial points shown in Fig. (I ) .  The grid is staggered in

this manner to 1) facilitate calculation of V from 4) and 4, (and the reverse of course), 2) to

make the model conservative without resorting to exotic boundary conditions and , 3) to sim-

p1 ify th e implementation of boundary conditions. In order to insure conservation of mass, for

exa mple, in a closed system , the flux of mass across a boundary must be zero. Thus we choose

— 0 and 4, — 0 at the outside cylindrical wall , as is shown in Fig. (1).

The self-consistent nature of this grid can best be seen by use of an example. Consider

the V . V term in Eq. ( 1) as a source term in the Poisson equation

• V24 ) — V V (8)

The term V .%T becomes

• V . (1 ,j ’ + I) — V ( i ’ ,j ’ ) R (1’ + 1) VR (I ’ + l.j ’) — R ( i )  
~

R (
~

’.J ’)
v v —  -

• + (9a)
Z (j  + 1) — Z (i)  [R 2( i ’  + 1) —

i ’ — l t o NR
j ’ — l t o iVZ

The term V 2 4) becomes (fo r equal spacing in R and Z)

V2 4) — 
•~~~~i — 24), , + 4) ,•,_ ~ + 

4),+ i • ,  R (i ’ + 1) — 24), , R ( i )  + 4 _ i • ,  R (“) (9b)[ (Z ( j  + I) — Z(j — l))/2J 2 • 1R2(i + 1) — R 2(i ’)1/ 2

also at (i . J) on the main grid. Thus Eq. (8) has the left hand and right hand sides of the equa-

tion specified at the same physical place. A similar relationship exists for V and ,~ (or V x V

:

1

_ _ _  

~~~ 
I _ _
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and V x V x ~
) but with values for ~ on a different staggered grid than that used for 4).

Thus the four velocity variables 4)~ ~~~ , 
V,~ and Vz must be on different grids in order to be

self-consistent and conservative without i ~j orting to artificial boundary conditions and/or excess

averaging.

Equations (2) and (3), the curl and divergence of velocity respectively, require the calcu-

lation of velocity itself as a source term. In addition , velocity is a useful diagnostic tool and is

used for other calculations as well. For simple theories, or low order approximations, the vorti-

city and divergence alone could be used. Such is not the case for our model and hence we

need to be able to calculate the velocity from V XV and V . V. This is easiiy done by defining

a stream function ~ and velocity potential 4) by

V — V 4 ) + V x 4 , .

• This then leads to two equations for 4) and ~~~.

V24 ) — V V — D  (lOa)

• and

VxVx 4 c — VXV ~~~. 
(lOb)

These are elliptic equations of the general form
a2 a2 a a

-
• A -~-~- + B- - ~-1+C “ + D - ~- - + E - ~— + G 4 , — F  (I i )

ax a, axoy a,
with either Neumann or Dirichlet boundary conditions, both of which arise. Part of our origi-

nal choice for the staggered grid was based on being able to set these boundary conditions

easily Thus Eq (10) can be cast in the form

V2 4) b
i
C. (12a)

• and

V x V x 4 . — F 2 (12b)

which are elliptic equations of the general form of Eq. (ii) .  The substitution method of

Madala2 solves these equations more quickly than the usual relaxation methods and with more 
•

8

~
L;

~
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accuracy than iterative schemes. Most important , however, is that it allows the coefficients A,

B, C, D, E and F to be functions of both position and time which allows for stretched grids and

simple rezoning.

111.2. Time Stepping and the Asymptotic Approximation

We have incorporated time-splitting in order to make the model flexible and to simplify

adding modules to describe specific physical effects. Except for the driving program , which

invokes the hyd rodynamics , molecular diffusion and thermal conductivity, the various modules

which incorporate the physical processes are exercised separately and interact as source terms at

• • 
each ti me step. This splitting is a standard technique but the inherent assumptions must always

be tested when implementing a new numerical model.

In FLAME all time-stepping is done explicitly in a time-centered fashion. Doing the cal-

culation explicitly allows more flexibility in the model development. Time-centering ensures

reversibility in the physics. By reversing the sign of the time step, 5:, we can make the reversi-

ble physics run backwards. This is a real property in non-dissipative physical systems which

ought to be mirrored as closely as possible in a numerical model. When diffusion is included ,

such reversibility ceases to be strictly valid of course.

Altho ugh explicit methods have time step limitations to avoid instability, our asymptotic

• pressu re relaxation i algorithm is an exception to this general rule. To illustrate this point , we

note that Equations (1), (2), and (5) are solved as is. However , Equations (3) and (4) are

combi ned to form the following equation

ai i
:~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

(13)

+ (y—l )  
IV 

. KV T — V . (V p VV) + ~~II ,p ,V

_ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I

~~ •
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where

a~~ _ i t  , ~~a€
= 

~ 
j  dV(~~ 

— ‘J cheni (14)

and finally

Pnew Po~(j + ~ <~~~~~~~>aI (15)

Such a formulation embodies the assumption that waves travelling at the sound speed do not

• influence the overall hydrodynamics motion. This is the reason for the name NSlow.Flowu .

This formulation excludes shock waves from the set of problems which we can consider.

The pressure can still vary overall , but now only on the timescale of the chemical energy

release. This is the time-stepping approach used in the solution of the energy equation. For

Eqn. (1) , (2) and (5) which are solved explicitly, we use flux-corrected transport 3 5 . The FCT

method is both relatively non-diffusive , and very fast. The worst problem which arises using

this method is the non-linear clipping phenomenon, which will be discussed in detail in the

next section under results. Generally clipping occurs when there is a sharp peak in the mass

density (p) or vorticity (0. The anti-diffusive flux terms (which allow very steep gradients to

propagate conservatively) tend to flatten such peaks. As will be seen, this introduces little error

even in the worst case, e.g., a Heaviside function of density or vorticity perturbation , and the

error is virtually non-existent when small gradients are present.

The numerical timestep to which we are limited is the shortest of those required to

integrate (stably) molecular diffusion , thermal conductivity and fluid flow. Chemistry computa-

tion is allowed to subcycle itself , so this will not limit the overall timestep unless so much

energy is released that it affects the fluid flow and diffusion timestep limits. Typical time con-

stants for molecular diffusion can be found from the diffusion equation cast into the form

(16)
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with
10 17 T3/ 4

(17)
n

Thus, for example, for temperatures in the range of 500- l 000°K and a grid spacing of 0.25 cm,

the diffusion limit timesteps will be about 0.1-0.01 seconds. These limits vary with time and

must, of course, be checked at each timestep.

The equations are integrated using a time centered scheme. The order of the integrations

is as follows:

1) Estimate values for P. p. (p, ), 1, D, T. j , at 4) at th e new time.

• 2) Find source terms for Eqn. (1, 2, 5 and 10) based on time centered values

(:~ + 1/2 at) .

3) Integrate Eq. (1, 2, 5 and 10) from (t ,,) to (t ,, + ~ i) using the source terms

defi ned at the time centered position. This is a fluid flow calculation only.

4) Repea t steps (2) and (3) until convergence is reached.

5) Integrate the kinetics portion of Eqn. (5, 6, 13, 14 and 15) using the Asymptotic

Chemical Kinetics Scheme of Young and Boris.6 The subcycling done at this

• point effectively integrates the equation of state , and the energy release is accu-

mulated as a source term for step (I) .

• The following illustration shows where each of these time-step points is, in relation to steps (1-5)

to
1) — • •

~~~~~. estimate values at (,~ + ~ i)

to to +~~~ t
1’ 2) > x ( —. find sources at (t~ + ~:/2)

~1’ 
11

; . ~~~~~~~~~~r f ~~~~~~~~~~~~~~~- r
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~~, + l/2,~t

3) X 
~ ‘ 

integrate from (t ,,) to 0,, + ~:)

4) repeat steps (2 and 3)

1) t0 +~~ t
5) > •  integrate chemical kinetics

Since each step of the integration is of a: least second order accuracy, the overall scheme will

• also be second under accurate. In addition , using the time centered source terms in steps (2

and 3) insures reversibility, at least for non-diffusive physical systems, once the iterative

scheme has converged.

111.3. Physical Transport and Chemical Kinetics -

There are two pieces of physics built into the model which are crucial to model any

combustion problem accurately. Molecular diffusion and thermal conductivity have been built

into the basic model. Both are essentially source terms in Eq. (13). At present , we use the

conceptually simple results of Sears1 for Kr, namely

~~~~~~~~~~~~~~~~~~~ 
(18)

where A is the average molecular mass of the gas and T,, — 293°K. For molecular diffusion ,

we calculate the actual diffusion velocities for each species from the fully coupled diffusion

equations. The method is discussed in detail in Appendix j .

The chemistry portion of our model is a general five-species model. Such a configuration

was chosen so that we could model such systems as CO-02 and 03—02 in detail , or H 2—02 and

and CH4—02 using global schemes. Appendix I! shows a simple model scheme and also the

one used for C0—02 burn. When chemical kinetics is present , Eq. (5) must be solved for crea-

tion and consumption of individual species. As was done for the other physical effects , energy
; I,

release or absorption is a source term in the energy equation , Eq. (13).
I~~~

.
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• As in our choice of grid and hydrodynamic algorithms , we must strike a balance between

physical complexity and model flexibility. More species can be added , of course , but having

five species allows a large number of important calculations to be performed without detracting

from the main purpose of FLAME which is to perform accurate multidimensional calculations.

With five species we can model the C0-02 and the 03—02 systems in detail. The H 2—0 2 sys-

tern and more Complex hydrocarbon systems such as methane and benzene can be modelled

using global schemes. F~r the simple, detailed models we can even add diluents to test for

flammability and flame extinction. For the global models of reactive systems the emphasis

shifts to studying detailed fluid dynamic effects. The flow of trace species in nitrogen pressuri-

zation experiments can be followed and more realistic reaction schemes than A + B — C can

be used for turbu lent mixing calculations and calibration of turbulence closure models.

IV. Tests of the Model

In order to be able to trust the predictive capability of the model , as a minimum we must

insure that it behaves properly in cases where we know the answer. The two aspects to check-

i ng this predictiv e capability involve benchmarking it against well documented and thoroughly

tested numerical models and also against experiments for which we can reasonably expect good

agreement and which have becn well diagnosed.

We report here on the former set of tests, namely comparison with other models and cal-

culations. In each case, where possible, we have compared this model with a one-dimensional

fully implicit Lagrangian code and also a simple Nanalytic u model. The tests we applied were

both passive, that is no reactions occurred , and active and hence included reactions. The

former tests check the internal consistency of the hydrodynamics whereas the latter check the

validity of the coupling of chemistry to the hyd rodynamics. In both sets of tests, we used the

Heaviside temperature perturbation ’ shown in Fig. (2) and given by

13
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p, —~~~p, r~~~ R
‘3 — 

~ > R. R0 — 2.67cm.

The firs t set of tests were passive, that is no reactions were present. This would be the

situation if only one species were present, or if the two initial species were oxygen and nitro-

gen. All combinations of molecular diffusion and conductivity were tried. Figure (3) shows

the comparison between FLAME (.) and the Lagrangian one dimensional model (0) after

three seconds with both mass diffusion and thermal conductivity included. By plotting the tem-

perature as a function of radius in these figures the 2D data are collapsed into a simple 1D plot .

The spread or scatter of the various FLAME temperature values near a given radius gives a

good measure of the numerical truncation error because this scatter arises from performing a

spherical calculation on a cylindrical r-z mesh. As can be seen, the agreement between the two

is quite good even for relatively long times. Also, there is very little asymmetry in the 2D cal-

culation. Near the peak, however, there is some clipping due to the use of the FCT routines on

the rather coarse grid used for these tests (20x20). To assure ourselves that indeed the two

codes would agree qualitatively we did one test on a (40x40) grid , shown in Fig. (4). Since we

see errors of less than 5% in both cases the general problem of convective transport will be well

handled, even on the rather coarse grid. When we turn to the problem of turbulence, however ,

we will need the resolution at particular grid points and then we can either use fine gridding, or

• variable grid spacing to obtain high resolution at the necessary points. The latter technique,

called variable rezoning, is presently being worked on.

, .~~~~~
“ One necessary test was a check of molecular diffusion when only one species was present,

that is

‘3 N i’ 3 4,

or when equal pins of two species are present , which have the same mass, and are in all other

aspects identical . In such a situation, there should be no net diffusion. This is the same as say-

:1 14
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ing that there is no diffusion of the total mass density due to molecular diffusion. This was

verified for both the one and two-dimensional models and is attributable to the manner in

which we calculate the diffusion velocities.

These tests have validated the internal consistency of the hydrodynamic pans of the

model. Next we tested the basic assumption of time-step splitting. The first check was of the

chemistry in a configuration where hydrodynamics could not play a pert. Such is the case when

uniform ignition is used, namely,

P PA + Pa. PA Pa
and

P Po —

for all radii. For these conditions there will be no transport . All three models (including the

one point analytic model) agreed to within one degree Celsius, which is adequate. For asymp-

totic calculations of the sort in which we are interested , which last for tens of seconds, shorten-

ing the timestep to the chemistry time scale (as was necessary in the previous calculation) is

~~~~~~~~ not a satisfactory solution. Instead , we chose to subcycle the chemical kinetics and couple this

to the hydrodynamics by accumulating the source terms for all subcycles and u pdating the equa-

tion of state at each subcycle. An independent equation for the temperature based on energy

release could have been solved, but we have found stability problems in this approach. The

technique of subcycling allows us to use a hydrodynamics timestep of one to two orders of mag-

• nitude larger than that required for the chemical kinetics.

The validity of this approach is demonstrated by the calculation which is shown in Fig

(5). In (Sa) the bubble radius is plotted and in (Sb) the peak temperature is shown, both as a

2 • . function of time. In both cases, the points (0) represent the (2D) calculations, and the points

• 
. 

(e) represent the equivalent (1D) calculation. As can be seen, the peak temperatures, ignition

15
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• times, and bubble radius agree satisfactorily. For these computations, only chemistry and the

fluid flow are allowed to play a part . Both molecular diffusion and thermal conductivity are

absent.

To complete this series of tests, which checks the symmetry of the two-dimensional

model as well as comparing it with a well documented one-dimensional model and a single

“analytic” one point model, we ran a test with molecular diffusion , ther mal conductivity, chem-

istry and hydrodynamics, all interacting. Figure (6) shows a plot of the temperature profile for

FLAME (.) and the Lagrangian one-dimensional model (0) , in this configuration. As can be

seen , diffe rences between the three models are quite small. Temperature has been used as a

diagnostic for two reasons: first , it is sensitive to errors in both the hydrodynamics and chemi-

cal kinetics; second, it is a straightforward physical quantity and is easily visualized and meas-

ured. Asymmetries which appear can then be discussed in terms of too great (or too small) a

flow or too much energy release. If the two dimensional hydrodynamics were done incorrectly,

it would most likely show up as an asymmetry, and if either the hydrodynamics or the chemis-

try were incorrect , a difference between the temperature profiles of the two models would be

apparent.

• V. C.neluslons

As can be seen, the FLAME implementation of the reactive flow model in two dimen-

sions agrees well with both one point analytic calculatons as well as with a well tested one

dimensional model. Furthermore , it is conservative both for mass and energy . The early prob-

lems to be modeled should be those for which well diagnosed experiments exist. Eventually,

however, one will want to attempt predictions for systems which are in the design phase or for

which experimental data are difficult or impossible to obtain.

16
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The potential applications of this model are numerous and expand still further when cer-

tain modifications and extensions of the model are contemplated . Using the code in its current

form , a number of gas jet and burner problems are being considered which will contribute to

the interpretation of chemical kinetics investigations ongoing in a number of laboratories. In

these cases rather detailed kinetics packages will have to be incorporated but laminar diffusion

and premixed flames will be used so that turbulence will not cloud the reaction kinetics issues.

The basic FLAME code will be equally useful in treating heterogeneous combustion and tur-

bulent mixing because the basic hydrodynamics is about as accurate and non-diffusive as is pos-

sible in an Eulerian representation. By simplifying the chemistry and concentrating on the flow

complications , extensive turbulent fields can be simulated with and without subgrid turbulence

closure models. In special cases FLAME can be used to evaluate, via simu lation , the probabil-

ity density functions which are often invoked itt turbulence modelling, but are not known accu-

rately.

- 
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• Appeadix l

Multi-species diffusion velocities can be related to those due to binary diffusion by consid-

ering the general diffusion equation9

V(n~/n) — Z IMhI ;h/ J (V’ 1 — V’1) + (.
~

- — .
~;-J -

~
+ .2~ ;~ ~

-;i— (f~— f ~~+ 

~ I~~’i t—~ 
— 
~ ~ (1.1)

where N is the number of species, ~~ is the reduced mass, Ii represents the body force on the

i th species and v ,~ is the binary viscosity coefficient. If we use the usual definition for the

binary diffusion coefficient , namely

() (1.2)
• flP,,I.L,1

then Eq. (1.1) becomes

V(n1/n) Ni 
~~ 

( n;
~~ 

I(Vh j 
— V’ ,) + — .f~j  

..!j~
+~~ E -~4’ (f

~— f ~) + E  ‘

~~~~ 
(_ ~i_ ~ _ -!iJ 2f (1.3)

We can cast this into an implicit form by defining as a source term , all those elements of

Eq. (1.3) which are not explicitly velocity dependent, namely

S V(n~/n) — ia— — ~ . e  _
~~~ 

( f l;fli J  f Dr 
— 

D
TJ .!i

• ~
. 

. — .f ~4i — (1.4)

_ _  
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The third source term in Eq. (1.4) is diffusion due to thermal gradients. It is included because

there are situations in which it can be important , especially when there are heavy and light

species mixing, e.g., hydrogen and oxygen. With this definition for source terms, Eq. (1.3) can

be written in the form

•‘~ nfl-S, Ni ,~~~~ (V’1 — V’,). (1.5)
~~ 

n

Since E S1 — 0 and on the right hand side of Eq. (1.5) there are only N — 1 independent terms,

Eq. (1.5) is singular. Therefore , we require one more equation to close this set. For this, we -

use the physical condition

p, V’, 0, (1.6)

which implies that the total mass continuity equation has no net diffusion term.

In order to make this a more tractable problem , we assume that the diffusion velocities

separate into directions associated with the veCtor gradients. Then the equations to be solved

become two dimensional matrix equations (in species), rather than a full-blown tensor equa-

tion. Thus we have

5 Ni ± “ ~~~ ( V ’~ 
— V~) . (1.7)

i�l n II

with the mutual term dropped explicitly. This term allows us to define a diffusion coefficient

• for each species relative to the rest of the fluid , in the spirit of the binary diffusion coefficient.

.~~~~
, -

•
‘;• 

Define

f l — n
• 

. D,., E ‘ (1.8)
I:. nA/ D ,A-

4b

as an average diffusion coefficient. It has the following properties:

20
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1. In the case of two species, it reduces to the binary diffusion coefficient.

2. It has the same symmetry properties as the reduced mass ~~~~

3. It will be the same for two species which behave identically.

• 4. Reduces to zero for a single species.

5. Allows us to make a perturbation expansion for the diffusion velocities in terms of

the diffusion coefficient and the source term , S~.

Defining a pertuibation series for V~ we have

• V~- — V/’ + 8 V1 + 8(8 V,) + (1.9)

and substituting into Eq. (1.8) yields

N 
~~~~~~s — ~~ ‘ (E V1 — V1 + ( 8 V, — 6 V ,J -s- [66 V1 — 6 8 V, I + . . . ) . (1.10)

A judicious choice for V,”

p— p ,  n2 D,~1 S, (1.11)
P ( f l — f li) ~~s

will allow us to make the corresponding expansion for

S, — SP + 6S, +

By substitution we find

~J~~~~~~1 f l Dj~ 8S,, (I. 12a)
i ( n — n 1)n1

66 V Ni — 

— 

“ DIN 885, (I.12b)
p ( N — n ,) n,

etc. where

85, — 

~ 
(.f~- L,~ + ~ ( ~ 8~ )) Sk — 

~~ 
A ,~ Sk (l.13a)

.4~
. 86S, Ni 

~~ ‘41k A~, S, etc. (I. 13b)

Combining terms yields, given the above definition for A,

21
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n — p  n2 DN —

V’, — —  ‘ _ _ _ _ _ _  ( 1 + A + A A + . . . . ) S  (1.14)
p (n —

where the vector .~ is now over species. The problem we ~~ left with is the convergence of

this series. The convergence criterion is that

EA ,k Sk < 5, (1.15)
i A

which is necessary if Eq. (1.10) is to converge term by term . This can be shown to be true by

substituting the above definition for A into the converge criterion (1. 15) .  Then we have

.v N N

Z E A & Si Ni
~~~~S& E A ,k

—I k—I  k — I  — I

Ni~~~~~~~ Sk E I f -
~
- 8 ,k + ~ (1 _ 8 1k)I

N n N n —  I) N
Z

r- A c, ,- r-k AN
Ni 

I ‘I
k — I  P A—I P ‘J~ 11k ’ ,�k “IA

N
— Z S~ E 0. (1.16)

k—I

Thus the series (1.10) should converge . The above only insures conditional convergence rather

than absolute convergences. However , we have found that in all practical calculations the series

(1.10) converges to within 1% after two iterations.

Numerically, however , there may be a problem with differences of large numbers produc-

ing round-off errors. Addition of a constant { Cl to each row of matrix A does not change the

value of 8 ~~~ , since by application of Eq. (1.16) , the transformation
I,.

A A A ,~ — C, (1.17)

leaves 8 V,, 88 V1 etc., unchanged. Since the choice of (Cl is arbitrary , we chose it so that the

• mean value of each row of A vanishes,

1’ . N
C, —~~~~ZA ,, (1.18)

k I—I

• • 

• and thus the “difference-in-large-numbers” problem is solved prior to finding the 6 Vs etc.
:4~ ~~~~~

. 
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We have implemented the above diffusion model in a subrountine called DFLUX , which

has been optimized for a vector computer. In the two dimensional model, we find the diffusion

• fluxes for all species for each layer in the radial direction. Thus the natural vector length will

be NR x NSP in length where NR represents the number of grid points in a horizonal layer

and NSP is the number of species. Figure (7) shows the time required to calculate the (n , V,’)

for each of these layers for a 10 x 10, 20 x 20, 40 x 40 and finally an 80 x 80 grid, with five

species at each grid point. As can be seen, the computation time required for each grid

increases much more slowly than the number of grid points. A more dramatic demonstration

of this is shown in Figure (8) where the time required for each grid point is plotted as a func-

tion of the layer size, -with the total grid being held constant at 400 points. The times are nor-

malized to the time required -for- a single point (+) and for a vector of length ten (.). The two

curves approach, asymptotically, the speed limitation of the computer hardware.

For more than about ten grid points this method is faster than calculation of the usual

diffusion source term V . (D V p) usually used as a source term in the momentum equation,

and in addition is a more satisfactory approach.

~~~~~~~~ 
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Appendix II

Both the model chemistry and the carbon monoxide schemes are five species models. We

have used the model chemistry for testing, however, since we know its time history on a

theoretical basis.

For the model chemistry, species four and five are used simply as diluent. This allows a

more satisfactory treatment of the scheme A + B — C due to momentum and energy conser-

vation considerations, but is solved just as quickly. All rates are in a simplified Arrhenius form

— C, exp (— E,/ T) .

The values for the coefficient C, and E are given in Table (1).

• Table 1

Species C E
1 4.8 x I0~~ 6.0 x 10’

2 5.0 x IO~~ 6.0 x ~~

3 9.6 x I0~ 7.0 x IO~

4 1.0 x iO~~ 7.0 x io~
5 0.0 7.O x IO3

The scheme is

0 (11.1)
di dr

(11.2)
di di di

and

R,n3 + RE nJ A — R1 . . — R2 . n2 . a. (11.3)

This scheme thus allows for both two and three body interactions.

24
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This carbon monoxide scheme is somewhat more complex. We solve the following set of

equations which also correspond to the source terms in Eq. (5).

.
~j 1CO1 — —C 2ACOJ 101 [MI C31(C0I(021 (11.4) -

+C 2RICO 2J [M1 +C JR[C02][OJ

.
~~(O2I — + C 11(0)21M 1 — C3,1C0110 21 (11.5) -

— C 1~ 1O2J[MI + C,~1CO2J 10)

froi — — 2C 411012(MI — C 21EC0 1[0I [MI + C 311C01(021 (11.6)

+ 2C IR (0 211M1 + C2R(C021 (MJ — CJR [C0 21 (O1

— + C 2 ,.[C0) [01 [MI + C,1[COI 1021 (11.7)

— C 2~ECO 2I [M1 — C,R[C021[O1.

We then have the following correspondence with the (n ,) ,

• fl I Ni [CO1
n2 — [02)
n, — ( OJ
n4 — [C021

and n 5 — a diluent whose total density is fixed , that is 0. These equations correspond

to the following reactions

Forward (f) Reverse (r)

(1) 0 + 0 + M - ’ 02 +M 02 + M — ” O + O + M

(2) C 0 + 0 + M — ” C0 2 + M  C02 + M — C O + O + M
- 

• (3) CO + 02 — CO2 + 0 Co2 + 0 CO + 02 .
•~1 -~

The general form of the rate coeffic ients is
‘It ... 

~~~~~

C — C.Tae~~
lr

and the coefficients are given in Table ~1 
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- Table II
Reaction C~ (f) 

- a (1) E(f) Cd(r ) a(r) E(r)
1 5.2 x 10” 0 —900 3.0 x 10~ —1 59350

-
~ 2 1.4 x 10-32 0 900 2.6 x I0~~ —0.87 64910

3 4.2 x 10— 12 0 24000 2.8 x 10—Il 0 26500

I

-

~~~~r 
‘i”

f - .
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Fig. I. Schematic diagram of the grid system used in the Iwo-dimensional flame model. The figure
shows a staggered grid and indicates where each variable is defined.
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T ~ 3.00 SECONDS

- INmAL TEMPERATuRE pR0FILE

I -

I —

UI

Ii 
_ _ _ _ _ _ _ _ _ _ _

I I I I I I I I
0.0 RADIUS (CM) 

~. 0.0
Fig. 2. The initial temperature distribution used in the calibra-
tion calculations or the two.dimensional model. The tempera-
ture is plotted as a function or radius.

T = 3.00 SECONDS

000

MASS DIFFUSION & ThERMAL CONDUCTIVITY

0—I D

~~ 0 0

H

£ 
-

I I I I I I I I I I I I I I I — 
-

0.0 RADIUS (CM) ~~ 0.0

Fig. 3. Scatter plot of temperature verus radius when both
molecular diffusion and thermal conductivity are included . The
scatter arises from doing a spherically symmetric calculation on a
cylindrical grid. The initial condition for this calculation is
shown in Fig. (2). A scatter plot of this type reveals any grid in-

‘ ~- 
-
. duced asymmetries in the 20 numerical model. In addition, this

• representation is a convenient vehicle for comparison with the
ID model.• 28
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ace -

- MASS DIFFUSION AND THERMAL CONDUCTIVITY
— 2D

- • — I D

— 40’I4~ GRIO
:: 

~~~ 
T - 3.00 &CONDS

.,

• 3

- I’

- 

- .

I l l  I I l i l l I l I l  I I
o S

RADIUS tau t

Fig. 4. Scatter plot of temp erature versus radius for the same prob-
lem as shown in Fig. (2) and (3). This calculation is performed with
a grid spacing, in both r and Z. which is one half the previous valu e
(twice as well resolved ).
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5.0
O=2D
•~~I0

~~~4.0 -

a .0 •0 •

: 3 .0 -

o.o80

I I
0.00 0.01 0.02 0.03

o =SD
• —ID

1 -

2000 -

Q.0~~ .0
S
0

*UI
I- 

~~~~~ -

O, O•0

C I
0 0.01 0.02 0.03

TIMI~~(CON0$)

Fig. 5. Plot oC peak temperature and bubble ra-
dius when chemistry Is included and there is no
mass diffus ion nor therm al conductivity. The m i .
hal tempera ture profi le is shown in Fig. (2) .
Since diffusion and conduct ivity are absent , Utc
initial bubble will eap.nd as the interior burns
but w ill finally reach an equilibrium value with

- -
~ the region citterior to the bubble unburned.

~ ;~
. Heating of the caterior region is due only to

compression.
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a

5000

• -Z D FLAME

I - a — I D AOINC ~ -A --

51U)
61<10%

£

~~~~~ 

~~~~~~~~~~~

I 1 1 1 1 1 1 1  I I I 1 1 1 1 1 1  I I 1 1 1 1 1 1

10~ 10~ 
10—2 10— ’

ioo t reagt

Fig. 6. Central temperature as a function of time. The initial conditions for this calcula-
tion are similar to those shown in Fig. (2) except ~~~ — 0.2 cm and R0 — 0.067 cm. In
the previous calculation. Fig. (5). the exterior region did not burn. This calculation ,
however, includes react ions, cond uctivity and diffusion. Thus a flame front propagates
from the interior to the outside wall. This front is coincident with the location of the
maximum fluid diver gence.
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4.C
CALCULATION OF THE DIFFUSION FLUX
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Fig. 7. Computation time required to calcul ate the
diffusion velocities for all species at all grid points (with

• • the number of grid points shown along each curve). As
can be seen, the computation time increases more slowly
than the number of grid points as vector overhead di-
minishes in importance.
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Fig. 8. A plot of the total time required to calculate the diffusion vel ocities for five
species on a grid of four hundred points. The tim e is expressed as a percentage of
t he time required to do this calculation with a vector of length one (I) and a vector
of length ten (10).
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