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of the Largest Mean
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Abstract

We consider the sequential es timation of the largest mean of k populations
when the observations are normally distributed with a common unknown variance

and the goal is to control the mean square error (MSE) at a prespecified level;

this is a generalization of problems considered by Blumenthal (1976) and Carroll

(1977). By eliminating from the experiment populations which the data indicate

are not associated with the largest mean, it is shown that, compared to ex ist ing
procedures , significant savings in sample size can be obtained . Weak convergence

results are obtained for the stopping times and the estimate of the largest mean

as consequences of more general results ; these are used to compute t h t~’ asymptot ic

MSE .
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1. Introduction

Let 01’•’ ’0k 
be the unknown means of k normal populations with common

unknown variance a
2
, and let 1ln’• “~ KI~ 

be the sample means for n observations

taken from the k populations. Define the ordered population and sample means

by 
~[1] 

< < 0
[k] 

and 
~[l]n ~ 

‘ ‘  .~.
X
[k]n 

Blumenthal (1973, 1976)

constructed sequential procedures for estimating the largest mean 0[k] 
with a

prespecified bound r on the mean square error (MSE). His procedures were mildly

data sensitive in that they depend on estimates t~. = 
-

~~~ - X . of
in [k]n [i]n

= 0
[kl 

- 0 [i]’ 
and he obtained some partial asymptotic results. Carroll

(1978a) extended the asymptoti c results when ~
2 is known.

The purpose of this paper is twofold. In Section 2 we consider weak conver-

gence results which greatly extend the asymptotic theory for Blumenthal ’s

stopping time N8 
and generalize the results of Carroll (l978a). We define and

study the weak convergence of a stopping time process {Nr} that includes N B 
as

a special finite-dimensional ease. We then define a new random change of time

process for sample means that is based on {Nr
} and consider its weak convergence .

We finally study the limit distribution and MSE for the maximum sample mean upon

stopping.

The second purpose of this paper is based upon our belief that NB can be

made more data sensitive and efficient by the simple expedient of grafting onto

it the ability to eliminate populations (early in the experiment) which are

obviously not associated with and hence give no information about In

Sections ~ and 4 we define the elimination procedure, study its asymptotic behav-

ior and g iv~ some Monte-Carlo results which show that the savings (over NB) in

sample si ’~e can he considerable.
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To fix notation, define H1 1 and let ~~~~~~~~~~~~~~~~~~~~~~~~~~ be the

MSE due to estimating 6[kJ by o~ ~ [k]n ’ In order to control MSE at a level r,

when is known the following procedures have been proposed: take observa-

tions from each population, where either (Blumenthal (1973))

(1.1) N~ = N~ (k) = inf{n:nr > a
2
Hk(n in/a,...,n~Lik l n /a)},

or (Blumenthal (1976))

( 1 .2) N~ = N~ (k) = inf{m: fi(m) < m}, where

iI(m) = inf{t: rt > G H k(t im ’~~

Although an analogue of (1.2) (for the case ~
2 unknown) is possible and requires

t~
._ sane basic techniques as used here, for notational reasons we prefer to

consider (1.1) and take N8 observations from each popula tion , where

(1.3) N
B 

= N
B
(k) = inf{n > ar~~: nr > 

°k ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Here a = a(r) > 0 are a set of small bounded constants with finite positive limit

a
0 

and with ar~~ an integer, while 0nk is the usual pooled sample variance with

k(n-l) degrees of freedom.

We make the following

Assumptions. The i.i.d. observations X 1,X~2,... from the jth population have

finite fourth moment . The functions Uk are continuous and satisfy

0 
~ 
H~ ~ .. . ,Xk j ) < H

max 
< ~ Further, for every k and p,

u r n  11k 1~ 
.,xk l ) = lI

k...p
(xp+1~~

...
~
xk 1 )x1,...,x

p
,a
~

F inally, for every k and u , the Lebesgue measure of the set

{(x1,.. .,xk l ). Hk(xl,. .,X k I
) = u}

is zero.
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If the observations are normally distributed, the assumptions hold for

the MSE function Hk. We take 0 < ka
0 

< H in < Umax , and it will simplify computa-

tions without affecting results if we take 11
max=~ 

With k=2, define

- 0
[2]  

- 

~[l] 
and without loss of general ity take 0

1 .~. O~~ and ~
2 

=

2. Weak Convergence Results for NB

In this section we prove a number of weak convergence results for a stopping

time process that includes NB as a special (finite dimensional) case. All results

are given for k=2 but are easy to generalize to k>3. To outline important

special cases of the results, in Lemma 1 we give the limit distribution of rNB,

in Lemma 2 we discuss a random change of time for sample means , and in Lemma 3

we establ ish the l imit distribution of the maximum sample mean upon stopping. We

assume throughout this section that ~ “.~ r~ for some 0 < ~ ~ and ~
2/r +

(0 < r1
0 

< 
~

) .  Let W be Brownian motion with mean zero and variance 2t at time t,

and define

W*(s ,fl0
) = s’

~ lW(s) + sn0 l

Letting [.] denote the greatest integer function , def ine a stochastic process

G (s) = [s/ r] ½ 
~ [s/rJ ~~~[s/ r]

The proofs of all results are delayed to the end of the section .

Proposition 1 . Let 0 < b
1 

b
2 

< ~‘ and >“ denote weak convergence . On the

space i)(b1,b21 (Billingsley (1968)),

Cr ~> W*(. ,r10) ~ > )

‘
4)
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In studying the stopping time N
B , 

we have found a more general approach to

be as conven ient and to yield much stronger results. Consider processes for

0 < t ~ 1 given by

Nr(t) = inf{m > ar 1: mr(t+l) >~~
2 
H
2

(rn 2 
A / ~~

) }

Q(t) = inf{s > a: s(t+l) > H
2(W*(s ,n0

))  I

Note that Nr (O) = N
B . Both Nr and Q are monotone non-increasing in t and arc-

easily verified to be members of D[0,l). Lemma 1 is comparable in spirit to work

of Gut (1975).

Lemma 1. (Weak convergence of the stopping time process). For < ~~~

TNB = rN (O) ~~
- 1 . For ~ > ½.

(2.1) rN - ‘> Q on B~0,1~

Define G~ by

(2.2) G~(u) Pr{Q (t) u} = Pr{ f1l~~~.*(s ,fl0)) - s(t~ 1)) > 0 for all ~ ~ ul

Since 2a H j
n and H is bounded , it is easy I t show that 1 - ’~ is a proper distri-

bution function . Of more interest is the follvt ’-ing result.

Corollary 1. (Disti ibution I KLum c~’ithal’ s -~topp ing t ime) . in Lemma 1 for

-.

= I~r Q (0 )  ii.

f he.next r- ’~ i l ?  w i l l  ~~. u s e f u l  in  t l i scu - ~s ing the l i m i t  di~ tr ihut ion t I  the

I a rge r ~~~~ I e me~ ~t III Ii Ii fly i S S t  oppeti hut it is quit e genera l and may he

of some int (-~ t t  in ~ts own ri ht f u r  tf,u fol low ing reasons . I’ypical results in

the theory of weak convergenct~ w i t h  random indices (IX~rrett and Resnic k (1976)
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have a nice review) start with processes {V
r
} in D [0,cx) and a sequence of integer-

valued random var iables Mr and consider the process Vr (trMr) on D [0,co) , where

rM has a limit distribution. In other words , V r is perturbed by a “random time

change” proportional to rMr. In the next result , we allow the random time

change rMr to be itself a stochastic process. Define m = [t/r} and for j=1 ,2 let

= r~
2 {~~ (X

~~ 
- e~) + (t/r - m) (X

jm+ i 
- O~) }

The processes are elements of C[0 ,~x) with weak limits V~~~.

Lemma 2. (Weak conver gence for random change of time processes) . Define processes

(2.3) W~~
1 (s ,t) = V

~
3
~~

(srNr(t))

on D
2

{ [0 ,w) x [O ,1] }  (Bickel and Wichura (1971)). Then for i3 > ½

(W 1~~~, W~
2
~ rNr) ~~> ~~~~~ ~~~~ Q)

where ~~~~~~~~ =

The last Lemma will be shown useful when we discuss the specific proposal

for eliminating the inferior population early in the experiment . It is a simple

Corollary of Lemma 2 which delineates the asymptotic behavior of the larger sample

mean when the number of observations are approximately NB.

Lemma 3. (Limit distribution of the larger sample mean). Let M
1~~ 

and be

the number of observations and the sample mean after ~~~ observations on the jth

population , where

I > M~~~/N8 = M
~~~

/Nr (0) 
~ 

1 ( j  = 1,2)

Let ~~ max{4~~, ~42)~ Then, for ~ > ‘
~~,
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r 1 u  
~~ 

> Q(OY’ niax{VW (Q(0)) - n,~, v~
2
~(Q(o))}.

Proof of Proposition 1: The process G
r(S) can be written as

(2.4) C (S) = [s/rJ~ ~~2[s/rJ 
- X

l [s/rj 
- 82 

+ 01) + {s/r]
2

The denominator of (2.4) converges almost surely to a = 1 while the numerator

converges weakly to W*(., ne), completing the proof. LI

Proof of Lemma 1: We first prove (2.1) by verifying tightness and the coriver—

gence of the finite dimensional distributions . Note first that

(2.5) Pr{rNr(tj) > u. (i =

= Pr{mr(t1+l) < a~ H
2 (m

½t~ / o )  for all a < air < u~ (i = I.... ,p)}

= Pr{~s/r1r(t1
+l) < G~~1~~ 

U2
(G~(s)) tor all a < s ~~~~~~ (i =

the last equation using the facts that ar~~ is an integer and 2a < H . p .

Rewrite (2.5) as

(2.6) Pr{rN
r(tj) > u. (i = 1,.. .,p)}

= Pr( inf (a
~s,r~ 

U
2(G (s)) - [s/r1r(t~+l))  > 0 (i = l ,...,p)

a<s<u .
~~~~~~ 1

From Proposition 1, the continuous mapping theorem (since inf is continuous in

this context) and Theorem 2.1 of Billingsley (1968), (2.6) shows that as r -
~ 0,

u r n  inf PrfrN (t.) > u. (i = l,...,p)}

> Pr{Q(t.) > u~ (i = l,...,p)}

thus verifying the convergence of the finite dimensional distributions. To prove

tightness , we appeal to Theorem 15.2 of Billingsley (1968). The first condition

of his Theorem is satisfied in our case because the process rNr is non-increasing
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and rN (O) has been shown to have a limit distribution . To check the second

condition of Billingsley ’s Theorem 15.2 , we must show (in his notation) that for

all c > 0,

L.

(2 .7) u r n  lim Pr{w ’N (S/ 2) > = 0

:o  r—*-0 r r

Now , since rN and Q are non-increasing,

(2 .8) lim Pr{w’N (~/2) 
> c}

r-*O r

< u r n  Pr{rNr(ió) 
- rNr((i+l)S) > c for some i = 0 , 1, . . . ,~ 1/ 5I }

r-~O

< Pr{Q(i5) - Q ((i+1)5) > c for some i = 0,l ,...~ l/o]}

< Pr~w~(46) > c/4}

the next to last inequality following by the weak convergence of the finite dimen-

sional distribut ions, while the last follows because Q is non-increasing . Then (2.7)

follows from (2.8) because Q is an e~ement of D[0,l]

The rest of Lemma 1 (~~
. < ‘j) follows in a similar but easier fashion . LI

Proof of Corollary 1: By Lemma 1 , we need only show that is continuous .

Letting 1 (A) be the indicator of the event A ,

u r n  IIQ (0) > u + € } =  I~Q( 0) > u}
c

u rn I{Q (O) u + c } =  IfQ(O) > u} + I{I1
2

(W * (u ,fl0
) )  — u =

C tO

Now , by assumption , Pr{112
(W*(u ,ri0)) = u} = 0, so that G~ is continuous. [1

In order to prove Lemm a 2, we need the following supplementary results. For

intervals T1, T, of the real line , w e def ine D2{T
1
xT

2
} to be the space of func-

tions x(s,t) (SET 1. t~T2) which ire continuous from above with limits from

below (Bickel and Wichura (1971)).
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!~~
position 2. Let a,b be arbitrary positive numbers and define D0(O ,a) to be

the set of functions ~ in D [O ,a] which are nonincreasing and satisfy

o ~~t) < b for 0 < t < a. Let [V~} be elements of C[O ,co), 
~~n

1 be elements of

D
0[0,a] and suppose there exists an element (V,~ 0) in C[O,~ } 

x D
0

(O ,a] satisfying

(V
a. ~~~ 

~~> (V ,~ 0)

Define random elements {v*}, V~ of D
2

{[O ,co) x [O ,a ] }  by V~ (s,t) = V ( s

Then on D2 { [ O ,~x~) x [O ,a]} ,

v* _ .__=> v*n

Proof: Define V~
1
~ (s ,t) = V(s ,t), V~~~ (s ,t) = V(s ,t), so that {v~~~}, ~~~~~ are

elements of C
2

[O ,co],. Denote by A the space C
2{[0,

OD) x [O ,aJ } x D0[O ,a] 
and

define a function h: A ~ D2[~ O ,cu) x [O ,b} J  by

h(x ,v) (s ,t) x(s,v(t ) )

This is shown to be a measurable mapping following Bil l ings ley (1968, page 232).

Since V* = h(V U), 4~ ) and

~~~~~ 
~~~ 

~~> ~~(1) 
~~

the continuous mapping theorem completes the proof once we show that h is contin-

uous at elements of A. Let (x , q )  + (x , q )  ~ A. Then there exists functions A

mapping [0,a] into [O ,a] such that for every c > 0,

sup{jx (s,t) - x(s,t) j :  0 < s < c, 0 < t < a} 0

sup{rnax [I~~~(A~ (t)) - q(t)~ , Ptn
(t) - tI]: 0<  t <a} o

These two facts imply that for every c
0 

> 0,
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su p { x ( s . ~n n
(t )f l  - x(s ,q(t)) J 0 s < c~. 0 < t < al -+ 0

Since c0 0 is arbitrary, following Lindvall (1973) and Whitt (1970) , this

shows that h is continuous at (x ,~ ) and completes the proof. H

Prqposition 3. On C[0 ,c=) x C[0 ,co) x D [O ,l], if ~ > ½

(2.9) ~~~~~ ~~~~~ rNr) => ~v
U), ~~~~~ Q)

Proof: By Lemma 1, each of the elements of (2.9) are individually and hence

jointly tight, so it suff ices to prove convergence of the f inite dimensiona l

distributions . We show this only for a special case, noting that

(2.10) Pr{VU)(t 1
) > u1, V~

2
~ (t2) > u~, rNr (t 3) > u~~}

PrjV~
1
~ (t1) > u1, v~

2
~(t 2) > u2, inf (G

~~~/ r]
H

2
(G (S) )  - [s/r]r(t 3+l))>0}.a<s<u

3

We assume with no loss of generality that 0 < t1, t2, u3 < 1. Since fourth moments

are f init y, for any u

(2 .11)  sup~r 2 
~~~ - O~ : 1 m ~ ur

1} ~ 0.

This shows that the second tern in the definition of is negli gible , so that

(since Cr 
is a continuous function of the first terms in ~~~~~ on C [O ,l]xC [O ,l}xD [a ,1],

(V~’~~, ~~~~~ C )  ~~> (V~’~~, V~
2
~ W*(.,fl0

) )

Thus , as r ~ 0, the continuous mapping theorem and Theorem 2.1 of Billingsley

(1968) show that

u rn inf Pr(V~
1
~~(t1

) > u1, V
(2)(t

2
) > I! ,, rN (t

3
) > u3

}

-‘ PrfV~
1
~ (t

1
) 0F V~

2
~ (t ,) > u ) ,  Q(t3

) ~ u3 
}

wh ich proves convergence of the finite dimensional distribut ions and completes

the proof. LI
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Proof of Lemma 2: The boundedness of H2 
means that with probability one there

ex is t  pos i t ive  numbers a1, a2 such that

a1 
< inf{ Q(t) : 0 < t < 11 < sup{Q (t): 0 < t < II < a2

Define a process Mr
(t) by

rM (t) = rN r(t) 
I{a

1 
< rN

r(t) 
< a

2
)

+ a2 
I {rN ( t) > a

2
} + a

1 
I {rN

r
(t) < a~~}

and define Z~~~ (s ,t) = V
~
3
~~

(srM
r

(t) ) .  By an extension of Proposition 2 and by

Proposition 3 ,

~~~~~ Z~
2
~ rN

r) 
=> ~~~~~~ W~

2
~ Q)

Now , since Nr 
is non-increasing,

Pr{Mr (t) 
~ 

N (t)}  < Pr{Nr (0) > a
2

} + Pr{N (1) < a1} + 0

so that - ~~~ ~ 0. An application of the continuous mapping theorem and

Theorem 4 .4  of Billingsley completes the proof . U

Proof of Lemma 3. Calculations and (2.11) show that

(2.12) r
12 (0 * - 0 )r 2 m

M~~’ M
- - . .. . 

= 
•r’s• max{(rM~

l) )~~
l
~~~ (X 1. - O

i
) + - 

~~2~~
’ 

(rM~
2
~)~~~~~ 

~~2i 
- 0

2
) )

= max{(rM 
) )~~ V~~~~~(rM~~~~~) + r 2(01 - 0

2
) ,  (rM~

2
~)

1 
V~
2
~ (rM~

2
~ )}  + o (l)

( 1) (1) (2) (2)

= max f( L ) (rN BY
1 $1) 

~_L. rN )-r1A , (
Mr ) (rN )

~~~ V
(2)
(
Mr rN ) }  + 0 ( 1)

B 
r B r B

By Lemma 2, the processes ~~~ (srNB) are elements of 
C[0,1] which are tight with

weak limits , so tha t since M
~
J
~

/N B ~ 1,
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y(.1)( 
~~

__ rN~) - V~~~
(rNB) ~ 0

This means by Lemma 2 that the element s of the last equation in (2.11) are

— 
jo intly weakly convergent , so that an application of the cont inuous mapp ing

theorem completes the proof . U

3. Eliminating Populations

The difficulty with the stopping time NB is that it is only mildly data

sensitive in that it estimates ti1,,..,t~ ~ 
but continues to sample from popula-

tions which the data indicate are not associated with the largest population mean ,

i.e., it fails to eliminate inferior populations . A basic method for correcting

this deficiency is to use the technology due to Robbins (1970) and Swanepoel

and Geertsema (1976) . Suppose then an initial sample of size m is taken .

Define t (ct) = m~~ (1 + b2
/ (m_ l)) ai, and let b = b(ct) satisfy the equation

1 - Fm u (b) + bf
m 1

(b) = ct/ (k-i) , where Fm i (f
m i

) is the distribution (density)

function of a t—distribution with rn-i degrees of freedom . Define

h( t (a) ,n) = {(t (a)fl) lmm 
- lY~ and let s2(i,j,n) = (n-lY 1 

~~~~~~~~~~~~~~~~~~~~~
We say that the ith population is eliminated at stage M~ if it has not been

eliminated at any stage n < M
~ 

and if, when popula tions j1, . . ., j~ also have not

been eliminated before stage M ., we have for some j  c {j 1,.. .,j } that

(3.1) XiM - X iM~ 
> h(t(c*), M~)S(i ,j,M~)

Assuming 
~~~~~~~~ 

> 0, 0~ = 0
[k} 

and an initial sample size m , the previously cited

works show that

(3 .2) PrIM . > M. for all I 
~ j }  > I - a.

In other words , the probability is at most a of eliminating the population w i th

the largest mean . We believe the choice m=5 initial observations wil l work quite
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well. The stopping times we consider are then defined formally as follows :

choose a (see below) and take an initial sample of s i z e  max(5,ar~~) from each

populat ion .

Definition. Reorder the populations so that M1 
< M2 

< . . .  < M,~, the ordering in

case of ties being by sample means . If NB
(k) < M1, take NB (k) observ ations from

ea ch popu la tion. Otherw ise , completely eliminate the first population from

further study and continue as if there were k-i populations in the experiment

(this includes changing the values of Hk to Hk l  and 0nk to 0nk-l’ but the value

of t(a) in (3.1) remains unchanged). Then, if NB
(k_l) < M2, take N B(k_l) obser-

vations from each population ; otherwise eliminate the second population . Continue

in this manner until stopping, denoting the number of observations on each popu-

lation by (N
1 

< N
2 

< . . .  < N
k
) = N, with total sample size T = N

1 
+ . . .  + N

k
.

Note that Blumenthal ’s NB = N
B

(k) is obtained as a spec ial case by choos ing

a = 0. We aga in consider onl y the case k=2 and define M = min(M11 M2). Recall

that i~ r . The nex t resul t shows how letting a -~~ 0 as r -‘. 0 influe nces M.

The proof is at the end of the section .

2
Lemma 4. (size of M) Choose a + 0 as r -‘- 0 so that b = 2 log t(a) = r

(0 < 13
0 
‘ ‘i). Then, as r -* 0,

rM~~~a0 if 1 3 <
p
~~1 if

if

Lemma 4 is rather confusing at first sight. Note that ~ = 10 2 - 0
i~ 

r , SO

the smaller the value of 13 the farther apart the means are and the quicker one

should eliminate. This means that for smaller 13, rM should be small , as Lemma 4

shows. The constant 
~~ 

(a monotone increasing function of a) merely serves as a
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cut off point ; for small a and hence small 13
~
, it becomes harder to eliminate

because we are insisting on more protection (see (3.2)).

Lemma 5. (Comparison of sample sizes). For general k, let T
b 

= kN
B 

be the
13.

total sample si ze of the Blumen thal procedure. Let r ~ (i = l ,...,k-l)

and let p be the number of < 13w , i.e., p is the number of popul ations whose

means are far from 0
[kJ 

rela tive to a. Then , if TE is the total sample size

taken by the elimination procedure,

TE/T B 1 - (1-a 0)p/k

where a0 
is defined immediately following (1.3).

Lemma 5 shows that considerable savings in sample size are poss ible .  In

the next section we show that this is accomplished without a corresponding

increase in IISE.

Proof of Lemma 4. First consider 13 < ½. Since

2 2 213o/13
rM = (A 2M/2 log t(a))(2r log t(a))/E~ (ti M/2 log t(c&))r , it suffices

to prove that A 2M/log t (a) 2. Recal l ing that 01 < 
~2 

and def in ing

T - 

~ln 
- ~ equation (3.2) shows that with probability approaching one,

M~M2 so that with probability approaching one,

(3.3) TM + 
~ 

> h(t(a),M) S( 1 ,2,M)

TM 1  
+ < h ( t (a) ,M) S( 1,2,M)

Using the facts that 13 < !2 and M > ar~~, the law of the iterated logarithm shows

that TM/S 0, TM l /l
~ 

0. Dividing through by i~ in (3 .3) and noting that

S2(l ,2,n ) 2 almost surely, a few manipulations show that

(3 .4) (log t (cs) + log M) / A 2M ~ ½
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Now , since M ~ ar~~, A
2M > M~

’ for some small  positive y, so that (3.4) becomes
- ‘p

(log t (a))/ ~~M -‘ ½. Nex t we cons ider the case 13 > ½ . Tn (3 .3) , divide through

by r 2
~~ , where c > 0 is suff icient ly sma l l .  Sin ce t~/ r

2
~~~ * 0, some man i pula-

tions yield

{log t(ct) + log M}/Mr
l
~
2C 

~ o

Since Mr’ 2c > for some y > 0, this gives

(3.5) Mr~~
26/ log t (a)

Since rM = r2C log t (a) (r~~2C M/log t(ci)), we can choose £ > 0 suff icient ly

small so that r2~ log t(cv) ~ and he~ice by (3.5), rM ~~, wh ich completes the

proof .

4. Mean Square Error

In this section we consider the MSE r 1 
E(0~ - 02)

2 
both asymptotically and

in a Monte-Carlo study for small sample sizes . Suppose that upon stopping,

\ .  observation s have been taken from the ith population (i = 1 ,2). Recal l that

from previous considerations, we are tak ing 01 < 02, N. > ar ’, and a=l.

Blumenthal and Cohen (1968) indicate that even for NB, there are many ways of

estimating 0
[2]~ 

but that 0~ = max(X
1n, X2n) is a reasonably effec tive cho ice .

Our stopping time employs an elirninatio,n feature , so we must tak e into account

the possibility that an eliminated population has a sample mean (upon stopp ing)

larger than any other sample mean (upon stopping). The estimate we choose then

is given by ~ = max(
~ lN X

2~ 
). An alternative estimator is the maximum sample

1 2
mean over al l populations which have not been eliminated , but we have been unable

to verify the un ‘i integrability needed in the proofs to follow . The cases

A -~ r13( 13 ½) and A r 13(13 > ½) are different and are treated separately.
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Lemma 6. (Asyinptotics of O~ when elimination may occur). Consider the condi-

tions of Lemma 4 with 0 < ‘ ½, 0 < 13 ½ . Then the limit distribution of

r~~ (
~~ - 0

2
) is the standard normal and r 1 E( 0~ - 0

2)
2 

1.

Lemma 6 says that for k=2 if the population means are sufficiently sepa-

t- ated , even if elimination does not occur , our general procedure has prec isely

the sane asymptotic behavior (in 0~ ) as does N B. The next result shows this

to be true when th~ means are not separa ted , i.e., 62 - = A — r , 13 > ½.

~ute in this case hat Lemma 4 says that elimination will probability not happen .

Lemma 7. (Asymptotics of 0~ when el imina tion is unl ikely to occur) .  Consider

the conditions of Lemma 4 with 13 > ~~~ Let ~ be the limit distribution in the

conclusion to Lemma 3. Then r~~ (0~ - 0
2
) > ~, exists, and

r 1 E( 0~ - 0
2)
2 E~

2

The same results hold if NB is used without elimination .

The results of Lemma 6 and Lemma 7 are rather unusual , in that they say

that for k=2 the simple elimination idea employed here can save the user in

term s of sam ple s ize with no (asymptotic) change in MSE. In order to see how

th is works with small samples , we ran a Monte-Carlo experiment with 500 simula-

tions. The complete results are reported in Carroll (1978b), but here we con-

• sider u = .01 , r = .10, .01 and A = 2.00, 1.00 and .20. An initial sample of

size m=S was chosen as suggested in Section 3. The results are giveit below ,

with 1E’1B being the ratio of sample size needed for the elimination procedure

relative to Blumenthal ’s procedure .
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A=2.00 A=1 ,00 A= .20

T~ /T r = .10 1.00 1.00 1.00
B r = .01 .82 .64 1.00

MSE for elimination r = .10 .86 .89 .72
r = .01 .93 .90 .63

MSE for Bl umen thal r = .10 .86 .89 .73
r = .01 .93 .77 .63

Apparently, both procedures achieve their goal of controlling MSE. The elimina-

tion stopping t ime can lead -to substantial savings in sample size while achievin g

its bound on MSE. The Bl umen thal procedure appears to have sl ightly lower MSE

overall , but this is achieved at the cost of increased sample size.

Proof of Lemma 6. By Lemmas 1 and 4, rN. coflvergeS in probability to a constant

(either a
0 or I depending on 13

~~
13
~

• Thus , by Anscombe (1952, Theorem 1) the

vec to r

( 4 . 1 )  (r 2(
~ lN 

- 0k), r
2(

~~2N 
-

converges in distribution to a normal random vector. This gives

Pr{
~ 2N 

> } -* 1 since r ( 0
2 

- 0
~~~ 

+ ~~~. Hence
2 1

Pr ( r 2 (9* - 0) < z} = Pr{r~~ (
~ - 0

2
) ~ z} + 0(1)

2

so that r 2 (Q~ 
- 0) has the required limit distribution . By Bickel and Yahav

(1968), to complete the proof it suffices to show that for some r
0 

- 0,

(4.2) sup I’rlr 1 (O~ - 02) - . m } 
~
-

rn-i O<r<r
0

Since N. . ar~~ (1 = 1 ,2), our definition of 0~ shows tha t
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- 

~~ 
> m}

Pr {~ X
1 

- O i 
> (mr) 2 for some n > ar~~~ }

+ Pri 
~2n 

- 0
2~ 

> (mr) 2 for some n > ar 1
}

< c
0 

m
2 (for some c

0 
> 0)

this last following by the maximal inequality for reverse martingales (Doob

(1953)). This ~erifies (4.2). LI

Proof of Lemma 7. Under o’ir conditions , Ni/N B 
+ 1 Ci = 1,2) .  Thus , by Lemma 3,

r~~ (0~ 
- 0

2
) => ~~. The rest of the proof now follows from Bickel and Yahav

(1968) and (4.2) .

5. The Case of More Than Two Populations

The results of the previous sections can be generalized for k > 3 by basic
13.

notational changes. Lemma 5 already discusses the case A. -. r 
1
, with

0 < 13. < ½ for i = l,...,p and > ½ for i = p+l ,...,k-l. Lemma 6 does not

change if p = k-l , so that all populations but one may be eliminated. Lemmas

1-3 and 7 can handle the mixture situation p < k - 1 with some simple changes

in definition . If one makes the further reasonable assumption that

= H
k p

(x +l$...~
xk l ) when x1 = ... = x = ~~, then , as in Section

4, it is possible to show that NB and the elim ination procedure lead to the same

asymptotic MSE.
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