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Convergence Results for Sequential Estimation

of the Largest Mean

by

Raymond J. Carroll*

University of North Carolina at Chapel Hill

Abstract

We consider the sequential estimation of the largest mean of k populations
when the observations are normally distributed with a common unknown variance
and the goal is to control the mean square error (MSE) at a prespecified level;
this is a generalization of problems considered by Blumenthal (1976) and Carroll
(1977). By eliminating from the experiment populations which the data indicate
are not associated with the largest mean, it is shown that, compared to existing
procedures, significant savings in sample size can be obtained. Weak convergence
results are obtained for the stopping times and the estimate of the largest mean
as consequences of more general results; these are used to compute the asymptotic
MSE.

Key Words and Phrases: Sequential Estimation, Elimination, Largest Normal Mean,
Weak Convergence, Random Time Change, Ranking and

Selection
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1. Introduction
Let 61,...,6k be the unknown means of k normal populations with common

unknown variance 02, and let xln""’iin be the sample means for n observations
taken from the k populations. Define the ordered population and sample means
By 9y € ivs 800 gl X < ... <X, . Blumenthal (1973, 1976
YOy 2 2% A e = 0 2 X kgn : )
constructed sequential procedures for estimating the largest mean G[k] with a
prespecified bound r on the mean square error (MSE). His procedures were mildly
data sensitive in that they depend on estimates Ain = x[k]n - X[i]n of
A. =6 i g
i (k] [i]

>
(1978a) extended the asymptotic results when o is known.

and he obtained some partial asymptotic results. Carroll

The purpose of this paper is twofold. 1In Section 2 we consider weak conver-
gence results which greatly extend the asymptotic theory for Blumenthal's

stopping time N, and generalize the results of Carroll (1978a). We define and

B
study the weak convergence of a stopping time process {Nr} that includes Np as

a special finite-dimensional case. We then define anew random change of time
process for sample means that is based on {Nr} and consider its weak convergence.
We finally study the limit distribution and MSE for the maximum sample mean upon
stopping.

The second purpose of this paper is based upon our belief that Np can be
made more data sensitive and efficient by the simple expedient of grafting onto
it the ability to eliminate populations (early in the experiment) which are
obviously not associated with and hence give no information about e[k]‘ In
Sections 2 and 4 we define the elimination procedure, study its asymptotic behav-

ior and give some Monte-Carlo results which show that the savings (over NB) in

sample size can be considerable.

B lhane




it

L
To fix notation, define H 1 and let (oz/n)Hk(nzAl/o,,..,n Ak_l/o) be the

1 =
MSE due to estimating e[k] by 6; = Y&k]n' In order to control MSE at a level r,
when 02 is known the following procedures have been proposed: take N§ observa-

tions from each population, where either (Blumenthal (1973))

(1.1) NE = Nj (k)

M 2
B inf{n:nr 20 Hk(n Ain/U,"':n Ak_l’n/O)}:

or (Blumenthal (1976))

12} N* = Na(k)

B inf{m: Ai(m) < m}, where

PRSI o D Sagi el
n(m) = inf{t: rt >0 Hk(t Aim""’t Ak-l,m)}'

Although an analogue of (1.2) (for the case o unknown) is possible and requires
ti.. same basic techniques as used here, for notational reasons we prefer to

consider (1.1) and take Na observations from each population, where
(1.3) N = N (k) = inf{n > ar ': nr > o2, H (n7, / £ /a..)
e Iy B o e 28r i nr 2> ony M (N"Ayp/Opys - oMy g, 0/ Opi) -

Here a = a(r) > 0 are a set of small bounded constants with finite positive limit
a, and with ar-1 an integer, while cik is the usual pooled sample variance with
k(n-1) degrees of freedom.

We make the following

Assumptions. The i.i.d. observations le,ij,... from the jth population have
finite fourth moment. The functions Hk are continuous and satisfy

0 < Hmin < Hk(xl,.. < @, Further, for every k and p,

"xk-l) i-“max
lim "k(xl""’xk-l) = Hk-p(xp+l""’xk-l)

Finally, for every k and u, the Lebesgue measure of the set

{(xl,...,xk_l): Hk(xl,...,xk_l) = u}

is zero.




If the observations are normally distributed, the assumptions hold for

the MSE function H,. We take 0 < kao < H

- 2 . : . il
K Hmax’ and it will simplify computa

min
tions without affecting results if we take H .x=1- With k=2, define An=x[2]n-x[1]n’

-8 and without loss of generality take 61 5_62 and 02 = 1.

12] (1]

2. Weak Convergence Results for Np

In this section we prove a number of weak convergence results for a stopping
time process that includes Np as a special (finite dimensional) case. All results
are given for k=2 but are easy to generalize to k>3. To outline important
special cases of the results, in Lemma 1 we give the limit distribution of rNB,
in Lemma 2 we discuss a random change of time for sample means, and in Lemma 3
we establish the limit distribution of the maximum sample mean upon stopping. We

B

assume throughout this section that A ~ r~ for some 0 < B < = and Az/r < ng

(0 f_no < o), Let W be Brownian motion with mean zero and variance 2t at time t,

and define
* '1/2
W*(s,ng) = s * [W(s) + sng]
Letting [-] denote the greatest integer function, define a stochastic process
'
Gr(s) = [s/r] A[s/r]/c[s/r]
The proofs of all results are delayed to the end of the section.

Proposition 1. Let 0 < bl < b2 < o and "=>'" denote weak convergence. On the

space D(b,,b,] (Billingsley (1968)),

G, ~> W (,n,) (B> 1)

. Bw %< ')




In studying the stopping time NB’ we have found a more general approach to
be as convenient and to yield much stronger results. Consider processes for

0 <t <1 given by

2

4,7 =L %
Nr(t) = inf{m > ar ": mr(t+l) >0 Hz(m Am/vm)}

Q(t) = inf{s > a: s(t+l) 2 Hy(W*(s,ng))}

Note that Nr(G) =N Both Nr and Q are monotone non-increasing in t and are

B
easily verified tc be members of D[0,1]. Lemma 1 is comparable in spirit to work

of Gut (1975).

Lemma 1. (Weak convergence of the stopping time process). For g < i,
p
rNB = rNr(O) > 1. For B >,

(2.1) rNr =>Q on Df0,1]
Define G; by
(2.2) G;(u) =z PriQ(t) > u} = Pr{(HZ(W‘(s,HO)) - s(t+1)) > 0 for all a < 5 < u}

Since 2a < “min and H is bounded, it is easy to show that l—G; is a proper distri-

bution function. Of more interest is the following result.

Corollary 1. (Distribution of Blumenthal's stopping time). In Lemma 1 for

l’r"rhH uj - ha(u) Pr{Q(0) > u}.

Theanext result will be useful in discussing the limit distribution of the
larger sample mean vhen sampling is stopped, but it is quite general and may be
of some interest in its own right for the following reasons. Typical results in

the theory of weak convergence with random indices (Durrett and Resnick (1976)




have a nice review) start with processes {Vr} in D[0,») and a sequence of integer-
valued random variables Mr and consider the process Vr(ter) on D[0,»), where

er has a limit distribution. In other words, Vr is perturbed by a '"random time
change' proportional to rM . In the next result, we allow the random time

change er to be itself a stochastic process. Define m = [t/r] and for j=1,2 let

Vij)(t) = rb {i

te~—m3

f (in - ej) + (t/r - m)(ij+l = @.YF -

The processes VEJ) are elements of C[0,») with weak limits

Lemma 2. (Weak convergence for random change of time processes). Define processes
(j) o yiil
{2.3) wr (s,t) = Vr (err(t))
on Dz{[O,m) x [0,1]} (Bickel and Wichura (1971)). Then for 8 > % ,
(1) L(2) 413 . 1) @)
(wr % wr 5 rhr) =] I AR o ) (RS
where w(j)(s,t) = V(j)(sQ(t))

The last Lemma will be shown useful when we discuss the specific proposal
for eliminating the inferior population early in the experiment. It is a simple
Corollary of Lemma 2 which delineates the asymptotic behavior of the larger sample

mean when the number of observations are approximately NB'

Lemma 3. (Limit distribution of the larger sample mean). Let MiJ) and Y&J) be
the number of observations and the sample mean after Mij) observations on the jth

population, where

1> Mg = @ 21 G- 1,2

Let 0; = max{ial), iﬁz)}. Then, for g > 4




e 0y > ) maxtv @) - g, v @1

Proof of Proposition 1: The process Gr(s) can be written as

(2.4)  G.(s) = |[[s/x]* (Yé[s/r] - Yl[s/r] - 8, + 8;) * [s/r]? A]/O[Sk]

The denominator of (2.4) converges almost surely to ¢ = 1 while the numerator

converges weakly to W*(., no), completing the proof. [

Proof of Lemma 1: We first prove (2.1) by verifying tightness and the conver-

gence of the finite dimensional distributions. Note first that

(2.5) Pr{rNr(ti) > uy (= 1,....0)}
= Pr{mr(ti+l) < Gi Hz(m%Am/om) for all a < mr <uy (= 1..ss.P) )
= Pr{[s/r]r(ti+1) < G%S/r] Hz(Gr(s)) tor all a <s i.“i e A SR

the last equation using the facts that ar_1 is an integer and 2a < Hmin'

Rewrite (2.5) as

(2.6) Pr{tNr(ti) > u, o=t ol

= pr{ inf (O%s/r] Hy(G_(s)) - [s/r]r(t;+1)) >0 (i

a<s<u.
b

1L e

From Proposition 1, the continuous mapping theorem (since inf is continuous in

this context) and Theorem 2.1 of Billingsley (1968), (2.6) shows that as r » 0,

lim inf Pr{rNr(ti) > uy {fi=1,....p)}

i Pr{Q(ti) > Ui (i 1,---,P)} >

thus verifying the convergence of the finite dimensional distributions. To prove
tightness, we appeal to Theorem 15.2 of Billingsley (1968). The first condition

of his Theorem is satisfied in our case because the process rN . is non-increasing




and rNr(O) has been shown to have a limit distribution. To check the second
condition of Billingsley's Theorem 15.2, we must show (in his notation) that for
all g > 0,
(2.7} 1im lim Pri{w'. (8/2) > €} =0

§+0 10 N, 3
Now, since rNr and Q are non-increasing,

(2.8) lim Pr{w'N €5/2) = &}
>0 ™ o

< lim Pr{rNr(iS) = rNr((i+1)6) > g for some i =0,1,...,[1/6]}
>0

Pr{Q(is) - Q((i+1)8) > € for some i = 0,1,...[1/68]}

LA

| A

pr{wé(ms) > g/4} ,

the next to last inequality following by the weak convergence of the finite dimen-
sional distributions, while the last follows because Q is non-increasing. Then (2.7)
follows from (2.8) because Q is an eiement of D[0,1].

The test of Lemma 1 (B < ') follows in a similar but easier fashion. 0

Proof of Corollary 1: By Lemma 1, we need only show that G{ is continuous.

Letting I(A) be the indicator of the event A,

lim 1{Q(0) > u + e}= 1{Q(0) > u}

£40
lim 1{Q(0) > u + €}= 1{Q(0) > u} + I{Hz(w*(u,no)) =4 = 4]
10
Now, by assumption, Pr{Hz(W*(u,nO)) = wl = 0, so that GI is continuous. 0

In order to prove Lemma 2, we need the following supplementary results. For
intervals T,, T, of the real line, we define DZ{TIXTZ} to be the space of func-
tions x(s,t) (seTl, trTz) which are continuous from above with limits from

below (Bickel and Wichura (1971)).




Proposition 2. Let a,b be arbitrary positive numbers and define DO(O,a] to be
the set of functions ¢ in D[0,a] which are nonincreasing and satisfy
0 < ¢(t) <b for 0 <t <a. Let {Vn} be elements of C[0,), {¢n} be elements of

DO[O,a] and suppose there exists an element (V,QO) in C[0,] x DO(O,a] satisfying

Define random elements {V;}, V* of Dz{[O,w) x [0,a]} by V;(s,t) = Vn(s ®n(t)).

Then on 02{[0,m) x [0,a]},
Vdv—=os VX,
n

Proof: Define Vil)(s:t) =V (s,t), v (s,t) = v(s,t), so that {Vil)}, v are
elements of CZ[O,m]. Denote by A the space CZ{[O,«D x [0,a]} x DO[O,a] and

define a function h: A ~ DZ{[O,W) x [0,b]} by
h(x,v) (s,t) = x(s,v(t))

This is shown to be a measurable mapping following Billingsley (1968, page 232).

since v* = h(v{) . ¢ ) and
n n n
1) (1)
(vn s (bn) = (v » ¢0) )

the continuous mapping theorem completes the proof once we show that h is contin-
uous at elements of A. Let (xn, ¢n) + (x,0) ¢ A. Then there exists functions An

mapping [0,a] into [0,a] such that for every c > 0,

sup{lxn(s,t) - x(s,t)]|: O S8 sep0st<al+0

sup{max[[¢n(xn(t)) - ¢(t) ], IAn(t) - %lJ:t 0t <al >0,

These two facts imply that for every o > 0,




sup{]xn(s, ¢n(An(t))) - x(s,9(t))] 0 <s < <o @<t <al»9,

Since o > 0 is arbitrary, following Lindvall (1973) and Whitt (1970), this

shows that h is continuous at (x,¢) and completes the proof. (]

Proposition 3. On C[0,») x C[0,»x) x D[0,1], if B > %,

(2.9) o, v, my - o, v, g

Proof: By Lemma 1, each of the elements of (2.9) are individually and hence
jointly tight, so it suffices to prove convergence of the finite dimensional

distributions. We show this only for a special case, noting that

(2.10) Pr{Vil)(tl) X Viz)(tz) > uy, N (t) > ug)
= v ey > up, Viz)(tz) >uy, it (o%s/r]HZ(Gr(s)) - [s/T]r(t4+1))50}.
S5,

We assume with no loss of generality that 0 f-tl’ tz, Uz < 1. Since fourth moments

are finity, for any u

1.
2 sup{r? [X. :
(2.11) pir™ (X, - 8,

(j)

> is negligible, so that

This shows that the second term in the definition of V

(since G. is a continuous function of the first terms in ViJ)), on Cl0,1]xC[0,L]xD[a,1],
(1 () e (1) (2) g,
(Vr » Nn s Gr) B KF, N WY ,no))

Thus, as r » 0, the continuous mapping theorem and Theorem 2.1 of Billingsley

(1968) show that

lim inf Pr{Vil)(tl) >y, V(")(tz) > Uy rNr(tS) > u3}

>erv ey o, vV 5wy, ey > ug),

which proves convergence of the finite dimensional distributions and completes

the proof. 0




10

Proof of Lemma 2: The boundedness of H, means that with probability one there

exist positive numbers a;, a, such that

a, < inf{Q(t): 0 <t <1} < sup{Q(t): 0 <t <1} < a, .

1
Define a process Mr(t) by

M (t) = N (t) I{a; < N (t) < a)}

+ a, I{rNr(t) > 32} +a; I{rNr(t) <al ,
and define ZiJ)(s,t) = ViJ)(err(t)). By an extension of Proposition 2 and by

Proposition 3,

2)

(1) - L2] e (52 o
(Z ZT ) rNT) = (w ’ W 3 Q)

T b
Now, since Nr is non-increasing,

Pr{Mr(t) # Nr(t)} j_Pr{Nr(O) > az} + Pr{Nr(l) < al} -0,

so that ZiJ) - WEJ) g 0. An application of the continuous mapping theorem and

Theorem 4.4 of Billingsley completes the proof. U

Proof of Lemma 3. Calculations and (2.11) show that

€2.12) r'u(o* -8.)
r 2
g N R
= v max{ (zm{1) " 21 (X, - 0 + (6, - 8,0, GMH™H } (x,, - 6,))
is 1al

max{(rMEl))-l vﬁl)(rmil)) . r’i(e1 - 0,), (rMiz))-l vﬁz)(rMiz))} + 0, (1)

i

(D K R e
= max {(—— ) (rNg) L vﬁl) (4 TN~ T, (—%%—J(rNB)—l vﬁz)( N} e 0, ()
B B B B

By Lemma 2, the processes VﬁJ) (erB) are elements of C[0,1] which are tight with

weak limits, so that since MI(_J)/NB g 1,




11
5 M L) PORAE
v.? (—W N - v (aNg) S0,
This means by Lemma 2 that the elements of the last equation in (2.11) are
jointly weakly convergent, so that an application of the continuous mapping
theorem completes the proof. O

3. Eliminating Populations

The difficulty with the stopping time NB is that it is only mildly data
sensitive in that it estimates Biseeesdy 1 but continues to sample from popula-
tions which the data indicate are not associated with the largest population mean,
i.e., it fails to eliminate inferior populations. A basic method for correcting
this deficiency is to use the technology due to Robbins (1970) and Swanepoel
and Geertsema (1976). Suppose then an initial sample of size m is taken.

Define t(a) m-l(l + bz/(m—l))m, and let b = b(a) satisfy the equation

1 - Fm_l(b) + bf —l(b) = o/ (k-1), where Fm-l(fm-l) is the distribution (density)
function of a t-distribution with m-1 degrees of freedom. Define

1. W e
h(t(a),n) = {(t(a)n)l/n - 1}? and let s (1,J,n) (n- 1) Z (X, -X, +X, )2.

Jp 1p Jjnoin
We say that the ith population is eliminated at stage Mi 1f 1t has not been

eliminated at any stage n < Mi and if, when populations jl,...,jp also have not

been climinated before stage M., we have for some j « {jl,...,jp} that

Assuming Ak-l >0, 0j = O[k] and an initial sample size m, the previously cited

works show that
(3.2) Pr{Mj > M.1 for all i # j} > 1 - a.

In other words, the probability is at most o of climinating the population with

the largest mean. We believe the choice m=5 initial observations will work quite




12
well. The stopping times we consider are then defined formally as follows:
choose o (see below) and take an initial sample of size max(S,ar—l) from each
population.

Definition. Reorder the populations so that Mp <My < oo SM, the ordering in

case of ties being by sample means. If NB(k) < M,, take NB(k) observations from

1,
each population. Otherwise, completely eliminate the first population from
further study and continue as if there were k-1 populations in the experiment
(this includes changing the values of Hk to Hk-l and Ok to Onk-1° but the value

of t(a) in (3.1) remains unchanged). Then, if NB(k-l) < M,, take NB(k-l) obser-

2!

vations from each population; otherwise eliminate the second population. Continue

in this manner until stopping, denoting the number of observations on each popu-

lation by (N1 :-NZ € o f-Nk)

Note that Blumenthal's NB

a = 0. We again consider only the case k=2 and define M = min(MI,Mz). Recall

N, with total sample size T = Np+ oot Ny -

NB(k) is obtained as a special case by choosing

that A ~ r . The next result shows how letting a - 0 as r > 0 influences M.

The proof is at the end of the section.

2B8.-1
Lemma 4. (size of M) Choose a - 0 as r > 0 so that b2 =2 log t(a) =1 0
(0 < By < ). Then, as r + 0,
B ay if 8<8
.
> 1 if B = BO
gm if B>BO
Lemma 4 is rather confusing at first sight. Note that A = |62 - Oll ~ rB, SO

the smaller the value of B the farther apart the means are and the quicker one
should eliminate. This means that for smaller B, rM should be small, as Lemma 4

shows. The constant Bo (a monotone increasing function of a) merely serves as a




~—w
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cut off point; for small o and hence small Bo, it becomes harder to eliminate

because we are insisting on more protection (see (3.2)).

Lemma 5. (Comparison of sample sizes). For general k, let Tb = kNB be the
B

total sample size of the Blumenthal procedure. Let Ai Rt Ly oonsk=i}

and let p be the number of B, < B), i.e., p is the number of populations whose

0,

means are far from 6 relative to a. Then, if TE is the total sample size

(k]

taken b)’ the elimination procedure,
Tg/Ty + 1 - (1-a,)p/k
E/'B i e

where a, is defined immediately following (1.3).

Lemma 5 shows that considerable savings in sample size are possible. In
the next section we show that this is accomplished without a corresponding

increase in MSE.

Proof of Lemma 4. First consider B < ). Since

2 2 2 28,/ 8
™ = (A"M/2 log t(a))(2r log t(a))/A” ~ (A"M/2 log t(a))T , it suffices

to prove that AZM/log t(a) > 2. Recalling that 61 < 0, and defining

2
T = YZn - Yln - A, equation (3.2) shows that with probability approaching one,
M=M, so that with probability approaching one,
(3.3) TM + A > h(t(a),M) S(1,2,M)
Ty * 8 < h(t(a),M) S(1,2,M)

Using the facts that g < ' and M 2_ar-1, the law of the iterated logarithm shows
that TM/A B 0, TM-I/A g 0. Dividing through by A in (3.3) and noting that

Sz(l,z,n) » 2 almost surely, a few manipulations show that

(3.4) (log t(a) + log M)/AZM R i .
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Now, since M > ar'l, A2M_3 MY for some small positive Yy, so that (3.4) becomes

P
(log t(a))/AZM + %. Next we consider the case B Z.H . In (3.3), divide through

1

by r ¢

=€

l/-
, where ¢ > 0 is sufficiently small. Since A/r* + 0, some manipula-

tions yield

{10g t(a) + 1eg M} 2 % 0 .

Since Mr ~2€ 3_MY for some y > 0, this gives
s P
(3.5) Mrl=%€/10g t(a) > » .
. 2¢€ 1-2¢ i
Since rM = r log t(a)(r M/log t(a)), we can choose € > 0 sufficiently

P
small so that rzE log t(oa) - @ and hence by (3.5), rM > «, which completes the

proof.

4. Mean Square Error

In this section we consider the MSE r'l E(eﬁ -0 . both asymptotically and

2)
in a Monte-Carlo study for small sample sizes. Suppose that upon stopping,
Ni observations have been taken from the ith population (i = 1,2). Recall that

- i * x -1
from previous considerations, we are taking 61 < 62, Ni > ar ~, and o=l.

Blumenthal and Cohen (1968) indicate that even for N,, there are many ways of

B’

estimating 0 but that 9; = max (X Yén) is a reasonably effective choice.

[2)’ n’

Our stopping time employs an elimination feature, so we must take into account

i) ioC o S

the possibility that an eliminated population has a sample mean (upon stopping)
larger than any other sample mean (upon stopping). The estimate we choose then

ﬁ = max(XlNl, XZNZ).

mean over all populations which have not been eliminated, but we havc been unable

is given by An alternative estimator is the maximum sample

to verify the un 11 integrability needed in the proofs to follow. The cases

8 ~ rB(B < %) and A ~ rB(B.z 5) are different and are treated separately.
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Lemma 6. (Asymptotics of Oﬁ when elimination may occur). Consider the condi-

tions of Lemma 4 with 0 < ﬁo <!, 0 <B <’ ., Then the limit distribution of

2

_‘, -
r (O; - 0.) is the standard normal and r 1 E(e®* - 8.)" *~ 1.
! 2 N =

Lemma 6 says that for k=2 if the population means are sufficiently sepa-
rated, even if elimination does not occur, our general procedure has precisely

the same asymptotic behavior (in 0&) as does NB. The next result shows this

B

to be true when the means are not separated, i.e., 62 - 81 =A~7, B> L.

Note in this case "hat Lemma 4 says that elimination will probability not happen.

Lemma 7. (Asymptotics of Oﬁ when elimination is unlikely to occur). Consider

the conditions of Lemma 4 with § > ';. Let £ be the limit distribution in the

.
conclusion to Lemma 3. Then r 1(6& - 62) => g, Egz exists, and
-1 < 2 2
r © E(6) - 6,)" ~ EE” .

The same results hold if NB is used without elimination.

The results of Lemma 6 and Lemma 7 are rather unusual, in that they say
that for k=2 the simple elimination idea employed here can save the user in
terms of sample size with no (asymptotic) change in MSE. In order to see how
this works with small samples, we ran a Monte-Carlo experiment with 500 simula-
tions. The complete results are reported in Carroll (1978b), but here we con-
sider @ = .01, r = .10, .01 and A = 2.00, 1.00 and .20. An initial sample of
size m=5 was chosen as suggested in Section 3. The results are given below,
with TE/'I'B being the ratio of sample size needed for the climination procedurc

relative to Blumenthal's procedure.

-



16

A=2,00 A=1,00 A=,20

T/T, r = 10 1.00 1.00 1.00

r= .01 .82 .64 1.00

r'! MSE for elimination y = .10 .86 .89 72
r = .01 .93 .90 .63

r'1 MSE for Blumenthal ? &.10 .86 .89 .73
T .93 17 .63

Apparently, both procedures achieve their goal of controlling MSE. The elimina-
tion stopping time can lead to substantial savings in sample size while achieving
its bound on MSE. The Blumenthal procedure appears to have slightly lower MSE

overall, but this is achieved at the cost of increased sample size.

Proof of Lemma 6. By Lemmas 1 and 4, rNiconverges in probability to a constant

(either a, or 1 depending on BO,B). Thus, by Anscombe (1952, Theorem 1) the
vector
wlg o

converges in distribution to a normal random vector. This gives

» ax g g -y
Pr{X2N2 z-xlNl} » 1 since r (62 - 81) + o, Hence

Prir’? (6 - 0) <z} = Prir ® (X - 0,) <z} + o(1) ,

1N2

% X
so that r * (Oi - 0) has the required limit distribution. By Bickel and Yahav

(1968), to complete the proof it suffices to show that for some ry 0,

(4.2) Z sup Prir-l(oﬁ - 02)2 > m} < o
m=1 O<r<r
0
Since N, > ar (i = 1,2), our definition of 0% shows that
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Y oas >,
Prir (ON - 02) m}
o L -1
:»Pr{|X]n - 01| > (mr) * for some n > ar '}
s L -1
+ Pr{{X, - 6,| > (mr) " for some n > ar "}
T (for some c. > 0)
-0 0 3
this last following by the maximal inequality for reverse martingales (Doob
(1953)). This verifies (4.2). O

Proof of Lemma 7. Under our conditions, Ni/NB +1 (i =1,2). Thus, by Lemma 3,

., !
r ° (OQ - 02) => f. The rest of the proof now follows from Bickel and Yahav
i

(1968) and (4.2).

5. The Case of More Than Two Populations

The results of the previous sections can be generalized for k > 3 by basic
B.

notational changes. Lemma 5 already discusses the case Ai o T 1, with

LS  fori=1,...,p and B; > % for i = p+l,...,k-1. Lemma 6 does not
change if p = k-1, so that all populations but one may be eliminated. Lemmas

1-3 and 7 can handle the mixture situation p < k - 1 with some simple changes

in definition. If one makes the further reasonable assumption that
Hk(xl""’xk-l) = Hk-p(xp+1""’xk—1) when Xp = .. = xp = o, then, as in Section

4, it is possible to show that Np and the elimination procedure lead to the same

asymptotic MSE.
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