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SUMMARY

Sufficient conditions are obtained which provide that a lifetime
density has a bathtub shaped failure rate. Analogous conditions handle
increasing, decreasing, and upside-down bathtub shaped failure rates.
Application of these results to exponential families of densities is
particularly straightforward and effective. Examples are furnished
which introduce new bathtub models and illustrate the use of the general
results for existing models. Examples involving mixtures are considered.

Maximum likelihood estimation for one of the bathtub models is described.

1. INTRODUCTION

The probability distribution of the time-to-failure of an item can
be characterized by the failure rate, r(t) = f£(t)/R(t), where f(t) denotes
the density function and R(t) the reliability, or probability of failure
after time t. The failure rate has a probabilistic interpretation:
r(t)dt represents the probability that an item of age t will fail in
the interval (t, t + dt). ®

Many parametric lifetime models, such as the gamma, Weibull, and
truncated normal distributions, have monotone failure rate. If r(t)
increases monotonically over time, the distribution is said to have
increasing failure rate (IFR). If r(t) decreases monotonically, we
have decreasing failure rate (DFR). The IFR property is characteristic
of devices which consistently deteriorate with age, whereas the DFR
property is characteristic of devices which consistently improve with
age. Many physical phenomena exhibit failure rates which are non-

monotonic. A common description, which is appropriate for modeling




human lifetimes, shows three phases: an initial phase where the failure
rate decreases, followed by a middle phase where the failure rate is
essentially constant, concluded by a final phase where the failure rate
increases. For humans, the first (infant mortality) phase shows deaths
due to hereditary defects, whose impact dimishes with time. The middle
(chance failure) phase shows deaths due typically to sudden jolts, such
as accidents. The final (wear-out) phase shows death resulting from

the natural accumulation of negative effects. Such failure rates are
usually termed bathtub (BT) shaped. The logical counterpart to BT
failure rate is the three phase situation where the failure rate initially
increases, then becomes essentially constant, and ultimately decreases.
This failure rate function, which we will term upside-down bathtub (UBT)
shaped, can be found in accelerated life testing, where the items tested

are subjected :o abnormally high stress levels. The lognormal and inverse

Gaussian lifetime models, as we shall show, have UBT shaped failure rates.
For the sake of brevity in this paper, we shall frequently say that the
failure time model, distribution, or f is BT, IFR, UBT, or DFR, when
we mean more precisely that the associated failure rate function is BT
E shaped, increasing, etc.

Although bathtub shaped lifetime models are of great practical
value, few have been suggested in the literature. See Lieberman (1969).
One reason for this scarcity undoubtedly has been the difficulty in
: ascertaining whether a given r(t) is bathtub shaped. So motivated, we

obtain in Section 2 a general result which furnishes sufficient con-

—

ditions that a distribution has a BT shaped failure rate function. Dual

T

results handle the UBT, IFR, and DFR situations. For lifetime distribu-

tions of the exponential family type, or mixtures of the same, these
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conditions have a simple, easy to test form. This ease of application
is demonstrated in Section 3, where new BT lifetime models are proposed.
In Section 4, statistical inference is considered for the new models.

The applicability of the general results to mixtures is useful.
In certain situations, it is reasonable to assume that a proportion p
of items in a population come from one distribution (say IFR, characterized
by wear-cut failures), and the remaining proportion, q = 1-p, of items
come from another distribution (say DFR, characterized by catastrophic
failures). An example with electron tubes is considered by Kao (1959).
We see in Section 3 that for certain gamma mixtures the combined popula-
tion has a BT shaped failure rate function.

We shall assume throughout this paper that the failure time dis-
tribution has support (0,M), i.e., [t:f(t) > 0} = (0O,M). The constant
M may be, and indeed in most applications will be, =, Because of further
assumptions placed on the density function in Section 2, the failure rate
function r(t) will be continucus and twice differentiable for all
t € (0,M). With exception of the exponential distribution, where
r'(t) = 0 for all t > 0, resulting failure rate functions will exhibit
properties of strict monotonicity. For brevity, we denote by (I) the
strict IFR situation, "r'(t) > 0 for all ¢t € (0O,M)," and denote by (D)
the strict DFR situation, "r'(t) < 0 for all t€ (O,M)." Similarly,
we denote by (B) the special BT situation, '"for some t* € (0,M), r'(t) <0
for all t€ (0,t*), r'(t*) = 0, and r'(t) > 0 for all ¢t€ (t* M)."
Finally, we denote by (U) the special UBT situation, "for some t*€ (0,M),
r'(t) >0 for all t€(0,t*), r'(t*) = 0, and r'(t) < 0 for all

L€ (e*,M)."




2. GENERAL RESULTS

In this section we shall obtain general results which supply
sufficient conditions to characterize a given failure time distribution
as being either BT, IFR, UBT, or DFR. We assume throughout that the
failure time distribution is absolutely continuous with support (0,M),
where the constant M may be ®», We assume the demsity f(t) is com-
tinous and twice differentiable on (O,M).* We define g(t) as the

reciprocal of the failure rate,
g(t) = 1/r(t) = R(t)/£(t). (2.1)

It follows that g(t) is positive valued, continuous, and twice differen-

tiable on (0,M). In fact, we have

g'(t) = g(e)N(t) - 1, (2.2)
where T|(t) is defined by

nee) = - £'(e)/£(t). (2.3)

THEOREM. Suppose g'(t) can be expressed as
M
g'(t) = s (y)[N(E) - N(y)ldy, (2.4)
t
for some function st(y) which is positive valued for all t and y in

(0,M).
(a) If M'(t) >0 for all t€ (0,M), then (I).
(b) If M'(t) < O for all t€ (0O,M), then (D).
%A1l differentiation mentioned and performed in this section will refer to

partial differentiation with respect to the time argument t; i.e., all para-
meter values are held fixed. Such derivatives will be denoted by ' and ".

R - —




(c) Suppose there exists t0€ (0,M) such that
N'(t) < 0 for all t€ (O,to), T]'(to) =0,
(2.5)
and M'(t) > 0 for all t¢€ (tO,M).

(1) If there exists yoé (0,M) such that g'(y0)=0, then (B).

(ii) If there does not exist yOE (0,M) such that g'(y0)=0, then (I).

(d) Suppose there exists t0€ (0,M) such that
N'(t) > 0 for all t¢€ (O,to), T}'(to) = 0,
(2.6)
and N'(t) < 0 for all t€ (tO,M).

(1) If there exists y0€ (0,M) such that g'(y0)=0, then (U).

(ii) If there does not exist y0€ (0,M) such that g'(y0)=0, then (D).

PROOF. (a) The assumption that T'(t) > O for all t€ (O,M) implies, from
(2.4), that g'(t) < 0 for all t € (0,M), which, from (2.1), implies (I).

(b) Here it follows that g'(t) > O for all t €(0,M), which
implies (D).

(¢,i) Claim g"(yo) < 0. Since g'(yo) = 0, it follows from dif-
ferentiation of (2.2) that g"(yo) = g(yO)T]' (yo). Therefore g"(yo) <0e
" (yo) <0e® Yo < tpe Suppose Yo > toe From (2.4) it is apparent that
g'(t) < 0 for all tG[CO,M). Therefore g'(yo) <0, whiéh is a contra-
diction, Hence Yo < to and g"(yo) < 0. 1I* is clear that there is only

one root in (0,M) to g'(y) = 0, namely y=Yps and g attains a maximum

at this point. This implies (B), with t* = Yo*




(c,ii) Here either g'(t)> 0 for all t €(0,M) or g'(t) < 0 for all
t €(0,M). From (2.4) we have that g'(t) < 0 for all tE[to,M). Therefore
g'(t) < 0 for all t €(0,M), and (I) holds.

(d) The proof is analogous to that of (c) and will be omitted.

The Theorem is readily applicable to exponential families of

densities. Suppose f can be expressed as
£(t) = c®) explZ" @ U (), O<t<M (2.7)
~ =g )i ’

where for each i, Ui(t) is twice differentiable on (0,M). Then from

(2.3),

k

N(e) = -5 0, Uj(t), and T'(e)=-I:_ 0 UYCE). (2.8)

The condition (2.4) of the theorem always holds in this situation. For, consider

g(t)=jm:1[f(y)/f(t)]dy =:‘:[f(w+ t)/£(t)]dw =Jf‘:exp{~zl;=l Qi[Ui(w+ t)-Ui(t)]}dw.

Therefore g'(t) =J: exp{Z'li(:l ei[Ui(w + t)-Ui(t)]}zlj;l Gi[Ui(wt)-Ui(c)]dw

- MexplE_ 0,10, ) Uy ()1} 0CE) < Ty ey,

k
and (2.4) holds, with st(y)=exp{21=191[ui(y) -Ui(t)]}> 0. We have

established the following result.

COROLLARY 1. Suppose f has the exponential family form (2.7). Then
the assertions (a) through (d) of the Theorem hold, where T' is given

by (2.8).




It should be noted that the form (2.7) is quite general. Typically
the vector g = (91,...,ek) is a vector of parameters. In using Corollary 1,
a density of the ostensibly more general form f(t)=C(e)h(t)exp[Z:_leiUi(t)}

*
should be written as f(t)=C(9*)exp[2ki= GIUI (t)}, where k* = k+l,

1
*
o* = (815+++28,51), and UI(t) = U (t), i=1,...,k, with Uy, (£)=1og h(t).

~

The Theorem is applicable also to certain exponential fauily mixtures.

Suppose f can be expressed as

£(t) = pE£;(E) + q £,(0), (2.9)
where 0<p<1, q = 1-p, and

£5(6) = ¢ (@exp(E}_j0, U, (t)}, O<e<m, (2.10)

with each Ui(t) being twice differentiable on (0,M). We note that
) = £'(e)/£(t) = - [fi(t)+cfé(t)]/[f1(t)+c Ez(t)], where c¢ is
k
defined by c¢ = gq/p. Since fl(t)+-cf2(t)==cCz(g)exp{2i=1912Ui(t)}g(t),

where §(t) is defined by

E(t) =1+ [Cl(g)/cCz(g)]exp{il;:l(eil -Siz)Ui(t)}, (2.11)
it follows that T(t)=- [E'(t)/E(t) + Z:=1912Ui(t)]. For computational

purposes it is useful to note that

k (] k e '
ne) = - {E;_,0,,Ui(t) + [Z;_,(8,,-0, )0 (£)1/8(t)}. (2.12)

We establish the applicability of the Theorem by showing that the condition

rM
(2.4) always holds here. Since g(t)s.)o [E(w+t)/f(t)]dw, we have

M
g'(t)=d0 [£(wtt)/£(t)] " dw. But f(wt)/£(t) =
(£, (whe)+e £, (whe) 1/ (£ (E)4e fz(t)]=[g(wt)/g(t)]exp{ﬁl;leiz [U, (w+6)-u, (£) 1.

Therefore [f(w+t:)/f(t:)]'=exp(2l;=1912[Ui(WC)‘Ui(t)]]{g'(W‘t)/g(t)

k

- BT () () 1S (whe) 6(0) Ty o,

[Ui(“+t)'Ui(t)]}- Consequently,
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M

g' ()= exp(Z{_ 0., [U, (1)U (I} EG)/EEIE" (1/E@I-E' (E)/E(E)

t J
k oM

+ T ~912[UQ(Y)'Ui(t)]}dy = s (M N(E)-N(y)Idy, where

i=1 ¢

s, (=exp(Zk_ 10, (U, (1)U, (OI}EE)/S(®)] >0 forall t and y in

(0,M). We therefore have the following result.

COROLIARY 2. Suppose f has the mixture of exponential families form
described by (2.9) and (2.10). Then the assertions (a) through (d) of

the Theorem hold, were 7' can be obtained from (2.12) and (2.11).

In concluding this section, we present an approach which can speed
implementation of the Theorem and Corollaries in situations (c) or (d),
where (2.5) or (2.6) hold, respectively. Suppose (2.5) holds. The
crucial issue is whether (i) or not (ii) a number yc)E (0,M) exists
satisfying g'(yo) = 0. From the proof of (c), it is clear that either
g(t) has a single extremum in (0,M), namely a maximum (case (i), (B)),
or g(t) is strictly monotone decreasing (case (ii), (I)). The crucial
issue can therefore be stated in the typically more tractable form of
whether (i) g 1is increasing initially (i.e., in a neighborhood of 0) or

(ii) g 1is decreasing initially. To appreciate the usefulness of this

representation, consider the behavior of g near 0. Suppose limtlog(t)
exists and equals 0. (This is equivalent to lim:lof(t) = ®,) Then since
g(t) >0 for all t€ (0,M), we conclude that g must be increasing
initially, (i) holds, and f is BT. Similarly, liuclof(t) = 0, or
limttog(t) = o, implies (ii) holds, and f is IFR. If f£(t) does not

tend to 0 or =, it is then expedient to consider the behavior of




> Gm

g(t)N(t) near 0. Suppose o = 1imt£0g(t)ﬂ(t) exists, possibly equal to

+®

neighborhood of 0, so that (i) holds, and £
hand, 5 < 1 implies (ii) holds, and f
rivatives of g near

is initially increasing or decreasing.

or

-, From (2.2), we note that § > 1

0 may be investigated to determine whether g

is BT.

is IFR.

implies g'(t) > 0 in

On the other

If 6=1, higher de-

The situation of (2.6) is

analogous to that of (2.5), with the issue being whether g 1is de-

creasing initially (case (i), (U)) or increasing intially (case (ii),

(®)).

The following summarizes our modified approach.

LEMMA.

or 2.

(a)

(b)

Suppose €
1y "If
11y If
(iii) 1If
(X)) LE
Suppose §
CL) L e
(i1) 1I1f
(1i1) 1If
(iv) If

Suppose (2.5)

or (2.6) holds in the Theorem or in Corollary 1

lim

0

0

1imt

>1

<1

<1

> 1

ti0

and (2.5)
and (2.5)
and (2.6)

and (2.6)

108 (©)T(E)

and (2.5)
and (2.5)
and (2.6)

and (2.6)

holds, then (B).
holds, then (I).
holds, then (U).

holds, then (D).

exists, possibly

holds, then

(B).
I).
).

holds, then (D).

holds, then

holds, then

f(t) exists, possibly equal to 0 or =,

equal to +« or

a

: e




e
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3. EXAMPLES

In this section examples are given which illustrate the applica-
bility of Corollaries 1 and 2., 1In the process new BT models are

introduced.

EXAMPLE 1. A generalization of the gamma and truncated normal densities.

Consider the exponential family of densities of the form
£(t) = C(a,B,Y)exp{~at -Bt2+ vy log t}, 0<t<ao,

where the natural parameter space is the union of {(ar,ﬁ,y):-°=<0{<m 5

g >0, vy> -1} and {(o,B,Y):@ > 0, p=0, y > -1}. The special case B=0
gives the class of gamma densities, which includes the subclass of ex-
ponential densities (y=0). The special case B > 0, y=0 gives the class
of truncated normal densities. To apply Corollary 1, note that k=3, M=,

(91:92:93) = («,B,Y), and (Ul(t),Uz(t),U3(t)) = (-t, -tz, log t). There-

fore T(t) = - Z:i3=leiU.’:.(t) = a+ 28-y/t, and TN'(t) = 2g+y/t2.

Case 1. g > 0. (a) if y > 0, then M'(t) > 0 for all t > 0, so that by

Corollary 1(a), (I) holds. (b) On the other hand, if vy < 0, then (2.5)

1/2

holds with t, (-vy/28) "". since 1ithOf(t) = @, by Lemma (a,i) we

have that (B) holds.

Case 2. B = 0. (Gamma density.) Here T'(t) = Y/tz. tay If v >0,
then by Corollary l(a), (I) holds. (b) If y<O0, then by Corollary 1(b),
(D) holds. (c) If y = O (exponential demsity), then r(t) = £(t)/R(t) =a,
a constant. These of course are well-known facts. See Barlow and

Proschan (1975).




p+
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EXAMPLE 2. A generalization of the beta density.

Consider the exponential family of densities of the form
f(t) = C(a,B)exp{a log(t/M) + g log(l-t/M)}, < &< M,

where the natural parameter space is {(a,B):a > -1, g > -1}. 1In fact,
C(a,B) = M-]T(Ot-#- )r'(+1)/T(¢+B+2). The case M=l is the usual beta
density. The case a=f=0 1is the uniform density over (0,M).
Corollary 1 is applicable here, with k=2, (91,92) = (a,B), and

(Ul(t:), Uz(t)) = (log(t/M), log(l-t/M)). Consequently,

N(e) = B/ (M-t) - a/t, and T'(t) = [Bt2+aM-t)2]/e>(M-e) 2.

Case 1. «o<0, g>0. Define the quadratic h(t) by h(t) = Bt2+a(M-t)2
= (a+ 5)(:2- 2Mo:t+orM2. Note that h(0) = aM2< 0 and h(M) = pM2> 0.
(a) If o+g = 0, then h(t) = - aM(2t-M), so that (2.5) holds with

ty = M/2. (b) If a+p>0, then since h has its minimum at

t = Ma/(@+B)< 0, h 1is strictly increasing in (0,M), and crosses O
somewhere in (O,M). Therefore (2.5) holds. (c) If o+8<0, then
since h has its maximum at t = Ma/(a+B)> M, h is strictly
increasing in (0O,M), and crosses 0O somewhere in (0O,M). Therefore
(2.5) holds. We conclude that (2.5) holds for any (a,B) satisfying
a<0, p>0. Since also lim_, f(t) = =, we deduce from Lemma (a,i)

ti0
that (B) holds.

——

Case 2. a>0, B<0. An argument analogous to that of Case 1 shows that

(U) holds here.

Case 3. a>0, >0 or «o>0, >0, From Corollary l(a) it is

apparent that (I) holds.
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Case 4. a<0, B<0 or a<0, p<0. From Corollary 1(b) it is apparent

that (D) holds.

Case 5. a=0, p=0. Here r(t) = £(t)/R(t) = 1/(M-t), so that (I)

holds.

EXAMPLE 3. The lognormal density.

The lognormal density,
-1 ¥ 2
f(t) = (/2not) exp{-E[(logt -p)/el®}, 0<t<®, ~o<u<®, 0>0,

may be written as f(t) = C(«,p)exp{- a(log t)2+p log t}, where
a= 1/2a2>0 and B=u/crz- 1, ~e<p<=, Corollary 1 applies with
M==, k=2, (8),0,)= (@,8), and (U,(£),U,(t))= (-(logt)?, logt). Thus

N'(t) = (2a+ g - 2o log t)/tz, and (2.6) holds with t_ =exp{l+p/2a}. Since

0

11 f(t)=0, by Lemma (a,iii) we have that (U) holds. Although this

M40
result is well-known (see Mann, Schafer, and Singpurwalla (1974)), our

approach is notably swift.

EXAMPLE 4. The inverse Gaussian density.

The inverse Gaussian density,
3. 1/2 2. 2
f£(t) = (\/2nmt”)  exp{- M (t-p)“/2u"t], 0<t<®, u>0, A\>0,

has the exponential family form f(t)=C(p,,)\)e.xp[-(X/Zuz)t-()\/Z)t-l-(3/2)log £l
which is amenable to Corollary 1 for the case M=o, k=3, (81,92,63) =
(l/2p.2,)\/2, -3/2), and (Ul(t),Uz(t),U3(t)) = (-t, -t-l,log t). Therefore

M (e) = (A - 3t/2)/¢>, so that (2.6) holds with ty=2\/3. Since lim_ £(t)=0,
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by Lemma (a,iii), we have that (U) holds, a fact demonstrated with

greater computational effort by Chhikara and Folks (1977).

EXAMPLE 5. A cubic exponential family.
Perhaps the most straightforward way to have (2.5) or (2.6) hold
is to make T' linear. This is accomplished in the exponential family

case by the class of densities,
2 3
£(t) = C(@,B,Y)exp{-at - gt - ye”}, t >0,

where the natural parameter space is the union of {(a,B,Y): -*<a<=,
~e<B<®=, y>0}, {(a,B,Y): -®<a<w, >0, y=0}, and {(a,B,y):a>0,
B=0, y=0}. 1In applying Corollary 1, we note that M=, k=3,
(9+8,:8,) = (2,B,Y), and (U} (£),0,(£),U5(€)) = (-t,-t>,-t>). Therefore

() = o+ 28t + 3ye2, and 7'(t)= 26 + 6vt.
Case 1. >0, yv>0 or B>0, y>0. Here by Corollary 1l(a), (I) holds.

Case 2. B=vy=0. As noted in Example 1, for this, the exponential density,

we have constant failure rate equal to a.

Case 3. B<0. Then (2.5) holds with ty= -g/3y. Since limcwf(t) =
C(ayB,Y) # 0,0, we cannot apply Lemma (a). We therefore consider

6= limuog(t:)n(t) = a/C(a,B,Y). (a) Suppose < 0. Then §<0<1, and
by Lemma (b,ii) we have that (I) holds. (b) Suppose a>0. Then
6=or::exp{-ort - 3t2- yt3}dt, and from Lemma (b,i) and (b,ii) we conclude
that (B) holds if 6<1, and (I) holds if 6> 1. Further insight is gained

o
by expressing 6 as 6= ‘oexp{-y+ kyz-py3}dy5h()\,p), where )\--a/or2>0
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and p= v/a3>0. Therefore (3/3A)h(A,p) = .oyzexp{-y+ kyz - py3} >0, so

that h(A,p) is strictly increasing with A\ for fixed p. Since

lmy h(h,9) = expl-y - oy lay < exp(-y)dy = 1, and lim, _ h(h,0) =,

we conclude from continuity that, holding p fixed, for sufficiently small
A we have §<1 (I), and for sufficiently large A we have 6>1 (B).
Similarly, it is seen that h(A,p) 1s strictly decreasing with p for
fixed A, and that, holding )\ fixed, we have 6§<1 (I) for sufficiently
large p and §>1 (B) for sufficiently small p. The case &6=1 is
solvable. Here limuog'(t)- 0. However, differentiation of (2.2) gives
limuos"(c)a23/C(a,p,y)<0. Thus g 1is initially decreasing, and

(1) holds.

EXAMPLE 6. Gamma mixtures with common scale parameter.
Consider the mixture of densities, f(t)=p fl(t) +q fz(t), 0<p<l,

q=1-p, where £ , j=1,2, is gamma distributed with shape parameter Yy

J

and scale parameter «, i.e.,

5 Vel
)th e at. t>0, a>0, yj>0.

b

J 3

For integer valued Yy,, f, is the density of the time until the occurence

:
of the Yj'th event of a Poisson process with parameter «. If an item fails

upon the accumulation of precisely ¥y

J

then fj is the appropriate density function for the item's lifetime. If

a population consists of a mixture having proportion p of items failing

Poisson (a) occurrences (say shocks),

upon Y, Poisson (@) shocks and proportion q=1-p of items failing upon

Yp Poisson (a) shocks, then f is the appropriate density. We generalize
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here to all pesitive, not necessarily integer valued ¥y We further

j.
assume without loss of generality that y1>y2.

We are motivated to look for possible BT mixtures by considering
the following representation of r(t). Suppose y2<1 and Y1>1, f.8,s

f. is IFR and f

1 is DFR. We have

2

r(£) = [p £, (6) +q £5(6))/[PR (£) +q Ry (£)] = h, (£)r; (£) +hy(E)T,(E),

where R‘1 is the reliability and tj

hz(t)x 1-h1(t), and h(c)=R2(t)/R1(t), with c=q/p. Thus r(t) is a

the failure rate for fj, hl(t)= [l+c h(t)]-l,

weighted average of the component failure rates, where the weights vary

with t. In fact, it is easily shown that h(t) is strictly decreasing,
ranging from 1 at t=0 to O at t=«, Thus the weight function hl(t)
increases from p to 1, whereas hz(t) decreased from q to 0. Since
limuorz(t)--, but limuorl(t)- 0, r(t) has an initial DFR character.

Since limt_‘ar (t) =a and limt..ah1(t)= 1, r(t) has an ultimate IFR

J
character. We shall show by Corollary 2 that indeed f 1is BT for this
situation.

- Y
To use Corollary 2, we write f.1 as fj(t)-‘ a j/T(Yj)‘exp{-at-f-(Yj-l)log 4

t>0, which gives M=®, k=2, (911.912.921,822) = (a,a,\'l-l,yz-l), and

(U, (£),U,()) = (-t,log t). From (2.11), we obtain §(t)=1+bt®, where
aZy; - v,>0 and b= (a"/c)[(y,)/T(v,)>0. From (2.12), ve obtain
n(e) = a-c/t+a/t(1+bt‘), where eiyl-l. Consequently,

n'(t) = [t2(1+b t‘)2]-1[6b2t2'+ [2e-a(a+l)]b 24 c-a]. In investigating

7' via Corollary 2 it suffices to consider the behavior of the quadratic

h(w)§w2+[2¢-a(a+1)]w+¢-n, where v-w(t)-‘-bt..
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Case 1. \(15 1. Here €¢<0. If e=0, then h(w) = -a(a+l)w-a<0 for all
w>0., If ¢<0, then since h(0) = ¢-a<0 and h'(w)<O0 for all w>0,

we have h(w)<0 for all w>0., Therefore T'(t)<0 for all t>0, which

implies by Corollary 2(b) that (D) holds. This fact is consistent with
H the general result (see Barlow and Proschan (1975)) that mixtures of DFR

distributions are DFR.

Case 2. y1>1, Y,<1l. Here h(0) = Y2-1<0, which implies that for some

2
w0> 0, we have h(w)< 0 for all w<w0, h(wo)- 0, and h(w)>0 for all

vy 1/a
w>w0. Therefore (2.5) holds with co= (wo b) . Since limt‘of(t)- ®

L it follows from Lemma (a,i) that (B) holds. To summarize, if one density

is strictly IFR and the other is strictly DFR, then the mixture is BT.

Case 3. \(1> L Y™ 1. Here f, is the exponential density, h(0)=0, and

2
E, h'(0)=a(l-a). If a<1l, then h'(0)>0, so that h(w)>0 for all w>0,
I1f a=1, then h'(0)=0. However, h'"(w)=2¢ implies that h(w)>0 for all
w>0, Therefore, if a<1l, we have T'(t)>0 for all t>0, so that by

Corollary 2(a), (I) holds. On the other hand, if a>1, then h'(0)<0,

which implies that (2.5) holds. Since limuof(t)sqom‘ 0, =, we cannot
i use Lemma (a). However, since 6=1/q>1, Lemma (b,i) shows that (B) holds.
To summarize, if fl is strictly IFR and f2 is exponential, then the mixture

is IFR if Y1$2 and BT if v1>2.

Case 4. y1>1, y2> 1. Here both densities are strictly IFR, and h(0) >0.
Since h'(w) = 2ew+ 2¢ - a(a+l) is an increasing function of w, it follows
that if h'(0) >0, then h(w)>0 for all w>O0. Now h'(0)>0 4if and

only if d >a(a-1)/2, where d=e¢-a. If a<l, this inequality is

— e o —
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satisfied for all d. Suppose a>1 and d<a(a-1)/2, so that
h'(0)< 0. Therefore h(w)>0 for all w>0 if and only if h(w)=0
has no real roots. But no real roots exist if and only if
[2«-:-a(a+1)]2 - 4e(e-a)<0, i.e., (a-1)2< 4d. Therefore, by Corollary
2(a), we have that (I) holds for the following cases: a<l; a>1,
d>a(a-1)/2; and a>1, (a-1)2/4<d<a(a-1)/2. For the case a>1,

d= (a-1)2/a, we have for w,= 2a/(a+l) that h(w)>0 for all positive

0
w;‘wo, with h(w,)=0. It follows that for t,= (wo/b)]'/‘, we have
N'(t)>0 for all positive t# to» with 'ﬂ'(co)=0. From (2.4) it then
follows that (I) holds. For the remaining case a>1, d< (a-1)2/4, it is
apparent that 7' is initially positive, then negative, and ultimately

positive. The results of Section 2 are therefore not applicable. However,

we may rule out f as BT or DFR, since limuof(t)- 0, which implies

g(t) is initially decreasing. Further, since 17 is ultimately increasing,
we deduce from (2.4) that g 1is ultimately decreasing. This rules out
UBT. A reasonable conjecture seems to be that f 1is IFR in this case

as well.

EXAMPLE 7. General gamma mixtures.

We now generalize the mixture of Example 6 to the case of unequal

scale parameters, i.e., for j=1,2,

- -1 -, t
b

e I, £>0, @,>0, v,>0.

ro Y
fj(t)=La /I"(Yj) 5 [

3

The analysis for this situation is more complicated, and we restrict

consideration to the case 0< y2< 1< Y1<". which is BT in the a, =«

1 "2
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context., We use the same definitions and assignments given in Example 6,

-y Y

¥ 1 Vg
except now 911 s 912-02, and bs\al /c o /r(yz)/r(y1)>o. Further,
we define k-—’-az-al. Then 'n(t)=a'1-e/t+ (at+At)/t(1+b e)‘tta) , so that

-1
N (e) = [efClim)2]  [e(liw)2=(athe) w-a(liv)], vhere w=w(t)=be tt®,

Use of Corollary 2 involves investigation of h(t) = e(1+w)2-(a+kt)2w~a(1+w).

Case 1. A<0., Here w(0)=w(®)=0, and h(0)=h(=)=¢e-a<0. Now 1

ultimately decreasing rules out IFR and BT, and lim_ f(t)=« rules out

ti0
IFR and UBT. DFR remains a possibility. In fact, h(t)<O0 for all t>0
would imply (D) from Corollary 2(b). However, investigation of h at

extrema shows that h(t*)= [l+w(t*)]{c[l4+w(t*)]-a}, where t*=-a/\. Thus

for suitable choices of (a,b,e), h(t*)>0 and Corollary 2 does not apply.

Case 2, A>0, Here w(0)=0 and w(®)=®, so that h(0)<0 and h(=)>0.
It is convenient to express h(t) as h(t)=as(m), where m=At/a. Then

s(m) = d(1+z)2 - a(ml)zz -z-1, where d=e¢/a, (0<d<1l), z=2z(m)= u-eamma,
and pib(a/k)‘. Since s(0)<0 and s(»)>0, there exists at least one

positive root to s(m)= 0, Suppose m, is such a root., 1In order to show

0
that (2.5) holds, it suffices to show that s'(mo) > 0., For any m,
s'(m)=a[(m+l)/m] [2d(1+2)z-2mz - a(ml)zz-z] . Since s(m:)) =0, we have
2d202- 2¢l(mo+1)2 z5+ 2:0+2- 2d-lodzo (where zoiz(mo)), so that

s' (my) = a[(m0+1)/m0][zo[a(§0+l)2-2d-2m0+1]+2(1-d)]. Consider the
quadratic v(m) = a(u»-l)2 - 2d - 2m+1, (a) Suppose a>1l. Then

v(0) = a-2d+1>2(1-d) >0, and v(m) is strictly increasing for positive m.
Therefore v(mo)>0, which implies l'(mo)>0, and (2.5) holds. From

Lemma (a,i) we conclude that (B) holds. (b) Now suppose a<l., 1In

this situation, unlike the a>1 case, the number of positive roots to
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" s(m)=0 may exceed 1, This is because v'(0)=2(a-1)<0 allows for a
root m satisfying s'(mo)<0. As an example, consider a=3/16, ¢=3/32,
* p=2 exp(-3/16). Then s(1)=0 but s'(l)=-9/16. In fact in this
example, s(m)=0 has 3 positive roots so that 7' is initially negative,
then positive, then negative, and finally positive. We may summarize the
case a<1l by stating that (B) holds if there is precisely one positive
root to s(m)=0, If the number of such roots exceeds 1, our general
results are not applicable, although it is easy to see that IFR, DFR, and
UBT are ruled out. A seemingly reasonable conjecture is that f is BT
here also.
2 We conclude this example by considering the special case %™ 1

(exponential density), with a>1 and A>0. Recall from Example 6

T

that for A=0, £ is BT if a>1 and IFR if a=1. We shall discover

that in the present case, £ 1is BT if a>1 and either IFR or BT if

a=1. Note that for 'y2= 1, we have d=1, Therefore s(0)=0 and

s(®) ==, The existence of a positive root to s(m)=0 1is not assured.

If one exists, say m=m,, the argument given above for a>1 still

applies to show that v(mo)>0 and v'(mo)>0, and thus that (2.5) holds.

On the other hand, if no positive root exists, we conclude that h(t)>0

for all t>0, so that (I) holds. To show existence of a positive root, it
v suffices to show s 1is initially decreasing. Since z'=2z'(m)=a[(m+l)/m]z,

we may express s'(m) as s'(m)=2z'y, where y= y(m)= 142z - 2m - a(\m-l)2 .

 Therefore s'(0)=a(l-a) Limmw(z/m) =0, since limm‘o(z/m) =y 1if a=1,

and =0 1if a>1l. Consider therefore s'"(0). We have s'"(m)=2z'y'+ 2"y,
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with 2"=2"(m) = a[a+2a/m+-(a-1)/m2]z. (a) Suppose a=1. Then z'(0)=yu,
y'(0) = 2u-4, 2"(0)=2u, and {(0)=0, so that s"(0)=2u(L-2)<0 only

if w<2. It can be shown that s™(0)=12 for p=2. We conclude that
for a=1, s 1is initially decreasing only if pn<2. (b) Suppose

a>1. Then z'(0)=0, {'(0)=-2(atl), z"(0) = a(a-1) limmw(z/mz), and
¥(0) = 1-a. Since limmw(z/mz)=°= if 1<a<2, =y 1if a=2, and

=0 if a>2, we have that s"(0)=-2<0 if 1<a<2, s"(0)=-2u<C

if a=2, and §"(0)=0 if a>2. By taking higher derivatives it can

be shown that for a>n-1, s(i)(0)=0 for i<n-1l, and s(n)(0)= (l-a)z(n)(O),
with 2% (0) = a(a-1)-« - (a-nt1) limmw(z/mn). Consequently, for all a>1,
we have s 1initially decreasing. In all instances where s initially
decreases (implying (2.5) holds), we need to consider the Lemma. Since

Y, = 1, we have limtlof(t)=<1dz, and Lemma (a) does not apply. However,
for a>1, limuo'ﬂ(t)=ot1+ X=o:2, so that &=1/q>1, and Lemma (b,i)
concludes (B). For a=1 with u<2, lmclon(t)=a1+ k-b=a2-b.
Therefore 6=1/q- p(al/q az)z, which may be less than or greater than 1,
depending on (p,al,az). The following summarizes our results in the
exponential case ('Y2=1), where A>0 and a>1l. If a>1l, or if a=1,
w<2, and 1/q-p(a1/qa2)2>1, then (B) holds. If a=1 and u>2,

or if a=1, u<2, and 1/q-p(011/q a2)2<1 , then (I) holds. Since the
case A=0 implies p=o, these results are consistent with the A=0

counterparts in Example 6.

EXAMPLE 8. Weibull mixtures.
In Example 6, we showed that the mixture is BT for a strictly IFR

gamma density and a strictly DFR gamma density with the same scale parameter.
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Here we show that the corresponding mixture based on Weibull densities

is not BT. This disputes a contention of Kao (1959).

k; Consider the mixture £(t)=pf,(t)+q fz(t), where
Bj'l Bj
fj(t) = apj(at) exp(-(at) “3, t>0, >0, 3j>0.
8.-1
The failure rates have the concise form rj(t)= aBj(at) J .« Now

r(t) =hy (£)r; (£) +h,(t)r,(t), where h, (t)= [l4+ch(t)]™L andB ;
, hy(t)= 1-h (t), with c=q/p and h(t)=Ry(t)/R, (t) = exp{ (at) '-(at) 2}.
By assuming 0< Bz< 1< Bl<°°, we have fl IFR and f2 DFR. But then

lim , r(t)=* and lim _ r(t)=0. Therefore f cannot be BT. In fact,

F~ it is seen that r(t) initially decreases, thenincreases, and then ulti-

1 mately decreases for the given mixture. We may generalize to unequal
scale parameters, al¥ az. Again llmt‘or(t)=° and limt_‘mr(t)= 0,
which rules out BT. The same conclusion holds when f2 is Weibull with

a positive valued location parameter. Therefore Kao's contention that

such Weibull mixtures are BT is incorrect.

4. STATISTICAL INFERENCE

The models in Examples 1 through 5 have the exponential family of
densities form. As a result, statistical inference is simplified by a
reduction to sufficient statistics, and optimum hypothesis tests and
confidence region procedures can be obtained. See Lehmann(1959). We
consider in this section certain point estimation techniques, particularly

for the model of Example 1.

|
|
|
|
|
|
|
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THE GENERALIZED GAMMA-TRUNCATED NORMAL DENSITY OF EXAMPLE 1. |

The parametrization given in Section 3 obscures the role of « in the
B>0 situation. Since lal is a scale parameter unless «o=0, it seems
natural to break the overall model into the following four classes,
which effectively delineate these roles of «. 1l:(¢>0, >0, y>-1).
2: (<0, >0, y>=-1). 3:(¢=0, >0, y>-1). 4:(a¢>0, p=0, y>-1).
For convenience in estimation, we re-parametrize slightly.

Class 1: f(t) = [ap/r(e,p)]exp{-at-G(O{t)z}tp-l, a>0, 8>0, p>0.

n

r'(8,p) is defined by I'(8,p)= EOGxP{-y-eyz}yp'ldy_

Class 2: £(c) = [oP/A\(8,0)]exp{ot - 0(ct)*}c*F, >0, 850, p>0.
n®
/\(8,p) is defined by /\(8,p) = Oexp{y-eyz}yp'ldy.

e 2, p-1
H(p) is defined by H(p) = " exp{-y“}ly" Tdy.

-attp-l,

Class 4: f(t)-= [ap/r‘(P)]e a>0, p>0.

Note that in Classes 1, 2, and 3, f 1is BT if p<1, IFR if
p>1, and truncated normal if p=1. Class 4 is the class of gamma
densities, where f is DFR if p<1l, IFR if p>1, and exponential
1if =l

Maximum likelihood estimation of the parameters is tractable for
this model. 1In practice, the statistician would form a collection of
possible lifetime models by choosing some or all of the four classes.
Typical choices might be Classes {1,2,3,4}, or {1,2}, or (1,43}, or {2,41,

or {1,2}. For each class included, the MLE of the corresponding parameters

PR AP PSR Pt Mmoo
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would be computed, as well as the value of the likelihood at this point.
The MLE of («,B,Y) would then be the value of («,B,Y) corresponding to

the MLE of the parameters in the class with the largest maximum likelihood.
For example, suppose we wish to estimate (,B,Y), assuming the collection
of possible lifetime densities is the set of Classes {1,4}. Maximum
likelibood estimation for the individual classes yields the MLEs, say

(al,el,pl) for Class 1 and (« ) for Class 4. If the likelihood

4Py
evaluated for Class 1 at (al’el’pl) exceeds the likelihood evaluated for
Class 4 at (ah,pa), then the MLE of («,B,Y) is (al’el.a%’pl-l)' If the
likelihood (4) at (QQ’pA) exceeds the likelihood (1) at (al,el,pl),
then the MLE of («,B,Y) is (QA’O’pA_l)'

We present now the individual MLEs for the four classes. Assume a
random sample of failure times is taken, with observed values tl,...,tn.

Computation of MLEs is simplified by the exponential family form. 1In

general, if
£(t) = c(g)h(t)exp{zl;leiui(c)}, 0<t<M, (4.1)

then it is easily seen that any solution to the set of equations,
(3/30)logL=0, i=1,...,k, (where the likslihood LEH?=1f(tj)),

is a solution to the set of equations,
E U (T) = s;(t), . PR N (4.2)

where T denotes the time-to-failure random variable, and

| .
(Sl(i),...,sk(g)) is the sufficient statistic given by S (t) == Zj=1Ui(tj).

| —_—
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Class 1. Here (Sl(s),SZ(E),S3(£)) =(;1]: th,-}{ 2>:t§,t—11 T log tj) , and

(E U (T),E Up(T),E Ug(T)) =(E T, E %, E log T). Now

ET= ::[T(e,p+1)/aI‘(9,p)][otp+1/F(e,p+l)]exp[-at—e(at)z}tpdt=l“(e,p+1)/orI'(e,p)..
Similarly, ET2= I'(G,p+2)/or21"(6,p). In a like manner, E log T= y(8,p)-loga,

where §(8,9) = [1(8,0)] ™", exp{-y-oy?}y"Mlog y ay= (3/2p)108 T (8,0).

We may solve the system (4.2) to obtain the MLE (cxl,el,pl). A computational
version of the system is the set of equations S§/82= 1"2(91,91+1)/F(61,pl)T(Bl,p1+2]
Sy~ log S;= q;(el,pl) - log[I‘(el,pl+1)/I"(el,pl)], and o = F(el,p1+l)/sll'(91,p1).

The first two equations may be solved simultaneously (by computer) to

yield (el,pl). The third equation then provides orl.

Class 2. Here the Si(E) and Ui(T) are identical to those in Class 1. It

is easily seen that ET= /\(9,p+l)/0/\(9,p),ET2= /\(9,p+2)/0‘2/\(9,p), and

- - 48 -1 2 -1
Elog T=((8,p)-logc, where ((8,p)= [/\(8,p)] 3 exp{y-8y“}y* logy dy
= (a/ap)log/\(e,p). The resultant computational version of the system

(4.2) which yields the MLE (0'2,9 ) is the set of equations

Py

1 . ) |
Class 3. Here (51(5)’52(5)) —(; b tj’ = L log tj), and (EUI(T),E Uz(T))
= (ETZ,E log T). Then E‘I.'2=l-{(p+2)/K2 H(p), and ElogT=W(p)-log A, where

a0

W(p)E[H(p)]-lJ Oexp{-yz}yp-llogydy = (3/23p)logH(p). A computational version

of (4.2) yielding the MLE (A

) is the set of equations § -}- log S

3°P 372

= W(py) -% log [H(p,+2/H(P4)], and x§=n(p3+2)/szﬂ(p3).

2

i il it e
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Class 4. Here (S;(£),S,(t)) =(rl1 th':‘ll L log t,), and (EU,(T),E Uy(T))
= (ET,ElogT). Since ET=p/&, and ElogT= y(p)-logw, where

¥(p) = (3/3p)logT(p), we obtain the well-known result that the MLE
(04,94) is determined by S3-logsl==w(p4)-log pa, and @, = 94/51.

Large sample confidence regions for the parameters of each
individual class can be obtained from asymptotic normal theory. Let
é denote the MLE of 2, based on a random sample of size n taken
from (4.1). Under suitable regularity conditions (see Zacks (1971)),
the limiting distribution of fi(é-g) is k-~dimensional multivariate
normal with mean vector g and covariance matrix L-l(g), where
z(g)ij= -E(Bz/aeiaej)log f., It is straightforward to show that for

Class 1,

FJ; 20 I(8,p+2) 2 I(e,p+2)

+ 28 £ 1
2L 2 Te,0) a  T(e,p) o
2
_ |2 [r(e,pt+2 C(8,p+4) _[T(8,0+2 r'(e,p+2)r 3
MRS e e T(8,p) [_1%5%7) —I(‘@%)_Z._“e’p)'*(e’p"z).l
1 £(8,0¢2) T : .
-2 T@.p0) LY@sP)=4(8,p+2) a—zlogI‘(e,o)
ap

(4.3)

For Class 2, I(c,8,p) is identical to (4.3) if we substitute o for -

and the function /\ for [. For Class 3y

T S S O e S




26

2 H(p+2) . s
)\2 H(p) A
2
z 2= log H(p)
A -
cP 4
As is well=known, for Class 4,
. R
az o'
I(a,p) = .
1 32
i — log I'(p)
o 2
op
R -

THE OTHER EXAMPLES. We consider briefly questions of inference for

Examples 2 through 7 from Section 3.

In Example 2, if T denotes the time-to-failure random variable,
then T/M has the usual two parameter beta density over (0,1). Assuming
M to be known, we may employ standard inference procedures for («,B).
See Johnson and Kotz (1970). Available procedures likewise handle the
lognormal (see Mann, Schafer, and Singpurwalla (1974)) and inverse
Gaussian densities (see Chhikara and Folks (1977)).

For the cubic exponential family case of Example 5, we see from
(4.2) that the MLE of («a,B,Yy) is the method of moments estimator.

Computation would require the use of a computer, due to the complicated

nature of C(&,B,Y).

Msicet huas —_—
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For Examples 6 and 7, the lack of non-trivial sufficient statistics

makes the method of maximum likelihood forbidding. Method of moments

estimators are, however, computable. The i-th moment, By of £ 13

i
R CTRE Y where = I"(Yj+i)/orj1"(yj) is the i-th moment of

L on s
n Zj=1 tj 2

“'ji
{ fj, j=1,2. The system of equationms, Wy = i=1l,...,k, yields
the desired estimates. In Example 6, we use k=4 to estimate (or,Yl,yz,p),
and in Example 7, we use k=5 for (al,az,yl,yz,p). Solution, of course,

requires use of a computer.
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