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SUMMARY

Sufficient conditions are obtained which provide that a lifetime

density has a bathtub shaped failure rate. Analogous conditions handle

increasing, decreasing, and upside-down bathtub shaped failure rates.

Application of these results to exponential families of densities is

particularly straightforward and effective. Examples are furnished

which introduce new bathtub models and illustrate the use of the general

results for existing models. Examples involving mixtures are considered.

Maximum likelihood estimation for one of the bathtub models is described.

I-

1. INTRODUCTION

The probability distribution of the time-to-failure of an item can

be characterized by the failure rate, r(t) = f(t)IR(t), where f(t) denotes

the density function and R(t) the reliability, or probability of failure

after time t. The failure rate has a probabilistic interpretation:

r(t)dt represents the probability that an item of age t will fail in

• the interval (t , t + dt) .

Many parametric lifetime models, such as the ganmia, Weibull, and

truncated normal distributions, have monotone failure rate. If r(t)

increases monotonically aver time , the distribution is said to have

increasing failure rate (IPR). If r(t) decreases monotonically, we

have decreasing failure rate (DFR). The IFR property is characteristic

of devices which consistently deteriorate with age, whereas the DFR

property is characteristic of devices which consistently improve with

age. Many physical phenomena exhibit failure rates which are non-

monotonic. A comon description, which is appropriate for modeling

_ _ _  _ _ _ _ _ _ _ _  ~~~
-: 

~~~~~~~~~~~~~~~~~~~~~~~~ —,--- .-- - - - - - .- -. - - , : .
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human lifetimes, shows three phases: an initial phase where the failure

rate decreases, followed by a middle phase where the failure rate is

essentially constant, concluded by a final phase where the failure rate

increases. For humans, the first (infant mortality) phase shows deaths

due to hereditary defects , whose impact dimishes with time. The middle

(chance failure) phase shows deaths due typically to sudden jolts, such

as accidents. The final (wear-out) phase shows death resulting from

the natural accumulation of negative effects. Such failure rates are

usually termed bathtub (BT) shaped. The logical counterpart to BT

failure rate is the three phase situation where the failure rate initially

increases, then becomes essentially constant, and ultimately decreases.

This failure rate function , which we will term upside-down bath tub (UBT)

shaped, can be found in accelerated life testing, where the items tested

are subjected ~o abnormally high stress levels. The lognorma l and inverse

Gaussian lifetime models , as we shall show , have UBT shaped failure rates .

For the sake of brevity in this paper , we shall f requently say that the

failure time model, distribution, or f is BT, IFR, UBT, or DFR, when

we mean more precisely that the associated failure rate function is BT

shaped, increasing, etc.

Although bathtub shaped lifetime models are of great practical

value, few have been suggested in the literature. See Lieberman (1969).

One reason for this scatcity undoubtedly has been the difficulty in

ascertaining whether a given r(t) is bathtub shaped. So motivated , we

obtain in Section 2 a general result which furnishes sufficient con-

ditions that a distribution has a BT shaped failure rate function. Dual

results handle the UBT, mR. and DFR situations. For lifetime distribu-

tions of the exponential family type , or mixtures of the same , these

I L

~

--

--~
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conditions have a simple, easy to test form. This ease of application

is demonstrated in Section 3, where new BT lifetime models are proposed.

In Section 4, statistical inference is considered for the new models.

The applicability of the general results to mixtures is useful.

In certain situations, it is reasonable to assume that a proportion p

.4 of items in a population come from one distribution (say IFR, characterized

by wear-out failures), and the remaining proportion , q = 1- p , of items

come from another distribution (say DFR, characterized by catastrophic

failures). An example with electron tubes is considered by Kao (1959).

We see in Section 3 that for certain gamma mixtures the combined popula-

tion has a BT shaped failure rate function.

We shall assume throughout this paper that the failure time dis-

tribution has support (O M), i.e., ( t : f (t )  > 0) = (O,M). The constant

M may be , and indeed in most applications will be, ~~~. Because of further

assumptions placed on the density function in Section 2, the failure rate

function r(t) will be continuous and twice differentiable f or all

t E (0,M). With exception of the exponential distribution, where

r ’( t )  — 0 for all t > 0, resulting failure rate functions will exhibit

properties of strict monotonicity. For brevity, we denote by (I) the

strict IFR situation, “r ’( t )  > 0 for all tE (O ,M),” and denote by (D)

the strict DFR situation , “r’(t) < 0 for all tE(O ,M).” Similarly,

we denotl by (B) the special BT situation, “for some t*E(O,M), r’(t) <0

for all tE (0,t*), rl(t*) 0, and r’(t) > 0 for all tE (t*,M).~

Finally, we denote by (U) the spec ial UBT situation , “for some t*E (0,M) ,

r’(t) > 0 for all tE(O,t*), rI(t*) — 0, and r’(t) < 0 for all

tE (t*,M).~
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2. GENERAL RESULTS

In this section we shall obtain general results which supply

sufficient conditions to characterize a given failure time distribution

as being either BT, IFR, UBT, or DFR. We assume throughout that the

failure t ime distribution is absolutely cont inuous with support (O ,M),

where the constant M may be ~~ . We assume the density f (t )  is con-

*tinous and twice differentiable on (0,M). We define g(t) as the

reciprocal of the failure rate,

g(t) )./ r ( t )  = R(t)/f(t). (2.1)

It follows that g(t) is positive valued , continuous, and twice differen-

tiable on (0,M). In fact, we have

g’(t) — g(t)7~(t) 
- 1, (2.2)

where T~(t) is defined by

T1(t) — - f ’ ( t ) / f (t ) .  (2.3)

THEOREM. Suppose g ’(t )  can be expressed as

g’ ( t )  — 
~~~~~~~~~~~ 

(~~( t )  - T~(y)]dy , (2.4)
t

for some function 
~~~~~~ 

which is positive valued f or all t and y in

(0,M).

(a) If 1)’(t) > 0 for all t E (0 ,M) , then (I).

(b) I f T~’(t) < 0 for all tE (0,M), then (0).

*All differentiation mentioned and performed in this section will refer to
partial differentiation with respect to the time argument t; i.e., all para-
meter values are held fixed. Such derivatives will be denoted by ‘ and “.
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(c) Suppose there exists to E (O,M) such that

~ ‘( t)  < 0 for all tE (O,t0), ~~‘( t
0

) = 0,
(2.5)

and TI’(t) > 0 for all tE (t 0 ,M).

(1) If there exists y0 E ( O ,M) such that  g ’(y 0) = O , then (B).

(ii) If there does not exist y0E(O,M) such that g’(y0)=O, then (I).

(d) Suppose there exists t0 E (0 ,M) such that

~ ‘ ( t )  > 0  fo r all t E ( O , t0) ,  T~’(t0) 
= 0 ,

(2.6 )
and lr(t) < 0  for all t E ( t 0,M).

(i) If there exists y0E (0,
M) such that g’ (y0) = 0, then (U).

(ii)  If there does not exis t y0E ( O ,M) such that g ’(y 0)=O , then (0).

PROOF. (a) The assumption that ~ ‘ ( t )  > 0  for all t E ( O ,M) implies , from

(2.4),  that g ’(t )  < 0 fo r all  t E (0 ,M ) ,  wh ich , from (2.1), implies ( I ) .

(b) Here it follows that g ’( t )  > 0 for all t E ( 0 ,M) ,  which

implies (0).

(c,i) Claim g”(y0) < 0. Since g ’(y 0) = 0 , it fol lows from dif-

ferentiat’ on of (2.2) that g”(y0) = g(y 0)11’ (y0) .  Therefore g”(y 0) < 0

< 0 ~ y0 < t0. Suppose y0 > t 0 . From (2.4) it is apparent that

g’(t) < 0 for all tE (t0,M). Therefore g’(y0) < 0, which is a contra-

diction. Hence < tL~ 
and g”(y0) < 0. I’ is clear that there is only

one root in (0,M) to g’(y) a 0, namely y= y0, and g attains a maximum

at this point. This implies (B), with t~’ = y0•

~

-- ~~~~~~~~~
- - - - - - - - -

~~~~
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(c , ii) Here either g ’ ( t )>  0 for all t E(0 ,M) or g ’ ( t )  < 0 for  all

tE(O ,M). From (2.4) we have that g’(t) < 0 for all tE[t0, M) .  Therefore

g ’(t) < 0 for all t E(0 ,M), and (I) holds .

(d) The proof is analogous to that of (c) and wil l  be omitted .

The T heorem is readily app licable to exponential families of

densities . Suppose f can be expressed as

f(t) = C(9) ~~~~~~~~~~~~~~~~ 0< t < M, (2.7)

where for each i , U~~( t)  is twice differentiable on (O,M). Then from

(2 .3) ,

T1(t) = -E
~~i

ejui(t), and Tr (t)= -E~~1 e~ u~ (t). (2.8)

The condition (2.4) of the theorem always holds in this situation. For, consider

g(t)=i M(f(y),f(t)]dy 
M
[f(w+t)/f(t)]dw . Mexp~~:

k e f u  (w+t)-U 4(t))}dw.

~0 ~o L~~
— 1 ~. i

Therefore g l ( t ) = J M exp 1ej [U j (w + t ) _ U ~ ( t )J } X~~~1ej fU~ (w+t )_ U ~ (t)]dw

• 
=~

M exp~~
k

e [U (y) -U~ (t)]}[Ti(t) -1~(y)1dy ,

and (2.4) holds , with s~~(y) a exp[E~ 18~ [U~ (y) _ U ~ (t ) ]}> 0. We have

established the following result.

COROLLARY 1. Suppose f has the exponential family form (2. 7).  Then

the assertions (a) through (d) of the Theorem hold , where fl’ is given

by (2.8).

--- .

~~

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _
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It should be noted that the form (2 .7)  is quite general. Typ ically

the vector 9 = (el,...,ek) is a vector of parameters. In using Corollary 1,

a density of the ostensibly more general form f(t)=C(9)h(t)expfE ’
~~18.U~ (t))

should be written as f(t)=C(e*)expCE~~~19~
t1~ ( t )) ,  where k* = k+l,

9* = 

~~1’• • •, 9k ’1~~’ 
and U~~( t)  = U~(t), i=l,...,k, with U~+i

(t)=log h(t).

The Theorem is applicable also to certain exponential fa~ily mixtures.

Suppose f can be expressed as

f(t) = p f1(t) + qf 2(t), (2.9)

where 0 < p < 1, q = l-p, and

f.(t) = C.(9)exp(.E’~~19~ .U~ (t)]., 0<t<M , (2.10)

with each U..(t) being twice differentiable on (0,M). We note that

11(t) = f’(t)/f(t) = - [f ~(t)+cf~ (t)]/[f1(t)+ cf
2
(t)], where c is

defined by c = q/p. Since f1(t)+ cf
2(t)=cC2(9)exp[E~~1

9~2
U
1(t))~~(t)

where ~(t) is defined by

~~(t)  = 1 + [C 1(8)/c C 2 (9)]exp[E~~ 1(9. 1 — e .2)u~(t)) (2.11)

it follows that 11(t)=- [~~‘ ( t )/ ~~( t)  + 
~~~i

9j2U1(t)]. For computational

purposes it is useful to note that

11(t) = - + ~~~~~~~~~~~~~~~~~~~~~~~~~~ (2.12)

We establish the applicability of the Theorem by shoving that the condition

(2.4) always holds here. Since g(t)= (f(w+t)/f(t)]dw , we have

g ’( t ) = ( f(s~~t ) / f ( t ) J ’ dw . But f (~~ t ) / f (t)  =

[f
1

(w+t)+c f
2(~+t)]/(f1(t)+c fZ(t)]=(~ (w t)/

~~
(t)]exp[

~~~ l
9i2 [Uj(w÷t)_U i(t)]) .

Therefore ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (w+t)/~~(t)

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ l~ 

(U~(w+t)-U~(t)1). Consequently,

_ _ _ _  ~~~~~~~~~~~~~~~~ . ~~~~~~~~ ~~
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+ 2k 8 (U ’ (y ) -U ’ ( t )J ) d y = s (y)(fl(t)-’fl(y)Jdy, where
i=1 i2 i i

s
t
(y)=exp(E i

8i 2 i (y)_U i(t)])t~~
(y)/

~~
(t)] > 0 for all t and ~ in

(0,M). We therefore have the following result.

COROLLARY 2. Suppose f has the mixture of exponential families form

described by (2.9) and (2.10). Then the assertions (a) through (d) of

the Theorem hold , were 1~’ can be obtained from (2.12) and (2.11).

In concluding this section, we present an approach which can speed

implementation of the Theorem and Corollaries in situations (c) or (d),

where (2.5) or (2.6) hold , respectively. Suppose (2.5) holds. The

crucial issue is whether (i) or not (ii) a number y 0 E (0 ,M) exists

satisfying g ’(y 0) = 0. From the proof of (c ),  it is clear that either

g(t) has a single extremum in (O ,M), namely a maximum (case (i), (B)),

or g(t) is strictly monotone decreasing (case (ii), (I)). The crucial

issue can therefore be stated in the typically more tractable form of

whether (i) g is increasing initially (i.e., in a neighborhood of 0) or

(ii) g is decreasing initially. To appreciate the usefulness of this

representation , consider the behavior of g near 0. Suppose limt~0
g(t)

exists and equals 0. (This is equivalent to 1im
~~0

f(t) = 
~~
.) Then since

g( t )  > 0 for all t E (0,M), we conclude that g must be increasing

initially, (i) holds , and f is BT. Similarly ,  lii. 
~~~~~~ 

= 0 , or

lim~~~ g ( t )  = ~~, implies (ii) holds, and f is IFR. If f ( t )  does not

tend to 0 or ~~, it is then expedient to consider the behavior of

_ _  _ _ _ _ _ _ _ _ _  —--- - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ 
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g ( t)~~( t )  near 0. Suppose 5 = lim~~ 0g (t ) I ~( t )  exists , possibly equal to

+~~ or -
~~~~~~. From (2 .2 ) ,  we note that 5 > 1  imp lies g ’ ( t )  > 0  in a

neighborhood of 0 , so that (i) holds , and f is BT. On the other

hand , 5 < 1 implies (ii) holds , and f is IFR. If 5=1, higher de-

rivatives of g near 0 may be investigated to determine whether g

is initially increasing or decreasing . The situation of (2.6) is

analogous to that of (2.5), with the issue being whether g is de-

creasing initially (case ( i ) ,  (U))  or increasing int ia llv  (case (ii) ,

(D) ) .  The fol lowing summarizes our modified approach .

LEMMA. Suppose (2.5) or (2.6)  holds in the Theorem or in Corollary 2.

or 2.

(a) Suppose 5 = lim
~ ,0f(t) exists , possib ly equal to 0 or ~~~.

(i) If € = and (2.5) holds , then (B).

(ii) If c = 0 and (2.5) holds , then (I ) .

(iii) If e = 0 and (2 .6 )  holds , then (U).

(iv ) If c = and (2.6)  holds , then (D) .

(b) Suppose S = lim
~~ øg ( t ) f l ( t )  exists , possibly equal to +~~ or -

~~~~

(i) If S > 1 and (2.5) holds , then (B).

(ii) If S < 1 and (2.5) holds, then (I).

(iii) If S < 1 and (2.6) holds , then (U).

(iv) If S > 1 and (2.6) holds , then (D).

L~



~~.—_— - 
- - - -_- _

~~
_ _ _ _

~
_

- -- -

10

3. EXAMPLES

In this section examples are given which illustrate the applica-

bility of Corollaries 1 and 2. In the process new BT models are

introduced.

EXAMPLE 1. A generalization of the gamma and truncated normal densities.

Consider the exponential family of densities of the form

f(t) = C(~ ,~ ,y)exp~-~~t -~~t
2
+ ‘~1og t), 0< t < ~~ ,

where the natural parameter ~,pace is the union of 
:_
~~<c~<c~

0, ~ > -1) and ((~~~~~):c~ > 0, ~=O, ~y > -1). The special case

gives the class of ga ia densities , which includes the subclass of ex-

ponential densities (y=O). The special case ~ > 0, ~y=0 gives the class

of truncated normal densities. To apply Corollary 1, note that k=3, M=~~,

= (cr,p,y ), and (U1(t),U2(t),u3
(t)) = (—t, -t

2
, log t). There-

fore ~(t )  = - 

~~~ 1
8
~
U
~
(t) = 

~ 
+ 2~~- y/t , and T~’(t) = 2p+’1’/t

2.

Case 1. ~ > 0. (a) if y 
~ 
0, then ~‘(t) > 0 for all t > 0, so that by

Corollary 1(a), (I) holds . (b) On the other hand , if ‘
~ 
< 0, then (2.5)

holds with t 0 = (
~ ‘i/2~)~~

’
~ . Since lim

~~0
f(t) = ~~ , by Lenina (a,i) we

have that (B) holds.

Case 2. ~ = 0. (Gamma density.) Here 11’ (t) = y/t2. (a) If ‘~ > 0,

then by Corollary 1(a), (I) holds. (b) If y<0, then by Corollary 1(b),

(0) holds . (c) If y = 0 (exponential density), then r(t) =

a constant. These of course are well-known facts. See Barlow and

Proschan (1975).

_ _ _  .
‘ 

~~~~~~~ : _ _ _
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EXAI~~LE 2. A generalization of the beta density .

Consider the exponential family of densi ties of the form

f (t )  = C(~ ,p)exp[~ log(t/M) + p log(l-t/M)}, 0 < t < M ,

where the natural parameter space is f(c~,p ) : c ~ > -1, p > -1). In fact ,

= M
1
F(cw+l)r(p+1)/F (~~+p+2). The case M=l is the usual beta

density. The case c~= p = 0  is the uniform density over (O,M).

Corollary 1 is applicable here, with k=2, 
~~~~~~ 

= (~ ,p ) ,  and

(131(t), U2(t)) 
= (log(t/M) , log(l—t/M)). Consequently,

11(t) = p/(M—t) — 
~/t , and T~’(t )  = [ p t

2
+~~(M—t)

2]/t2(M—t)2.

Case 1. c~<0, p> O. Define the quadratic h(t) by h (t)=pt2-i-~~(M-t)
2

= (~ -4-p)t2 - 2Mot÷~~M
2
. Note that h(O) = or M 2

< 0 and h(N)= pM
2
> 0.

(a) If ~+ p  = 0, then h(t) = -~~M (2t-M), so that (2.5) holds with

= M/2. (b) If ~÷p> 0, then since h has its minimum at

t = M~ /(~~÷B)< 0, h is strictly increasing in (O,M), and crosses 0

somewhere in (0,M). Therefore (2.5) holds. (c) If ~+p< O , then

since h has its maximum at t = M~ /(a+p)> M, h is strictly

increasing in (O,M ) ,  and crosses 0 somewhere in (O,M). Therefore

(2.5) holds. We conclude that (2.5) holds for any ~~~ satisfying

c~<0, 3>0. Since also 1im
~~o

f(t) — ~, we deduce from Leimna (a,i)

that (B) holds.

Case 2. c~> O , p<O. An argument analogous to that of Case 1 shows that

(U) holds here.

Case 3. 0> 0, p> 0 or 0>0, p�O. From corollary 1(a) it is

apparent that (I) holds.

___________ ______ _____ —4
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Case 4. 0< 0 , p < 0  or 0< 0 , p < O .  From Corollary 1(b ) it is apparent

that (D) holds.

Case 5. 0=0 , p= 0. Here r(t) = f(t)/R(t) = l/(M-t), so that (I)

holds.

EXAMPLE 3. The lognormal density.

The lognormal density ,

f ( t ) = (J t ) exp~ -~~f ( 1ogt - ~~)/~~J
2

3, O < t < ~~, - a < ~~<~~, ~ > 0 ,

may be written as f(t) = C(0,p)exp~-0 (logt)
2+plog t), where

~~~= 1/2~7~ >O and ~~=~~/cr 2 _ 1, ~~~~~~~~~~~ Corollary 1 applies with

M=~~, k=2, ~~l’~ 2~~
= (~ ,p ) ,  and (U1(t),U2

(t))= (-(logt)2, log t). Thus

~‘(t)= (2a+p-2o log t)/t
2
, and (2.6) holds with t0= exp (l+p/20). Since

lim
t~0

f(t)=0, by Lemma (a,iii) we have that (U) holds. Although this

result is well known (see Mann, Schafer, and Singpurwalla (1974)), our

approach is notably swift.

EXAMP LE 4. The inverse Gaussian density.

The inverse Gaussian density,

3 1/2 2 2f(t) (X/2rr t ) exp (-X (t-~) /2p t), O<t<~~, ~>0, X>0,

has the exponential family form f(t)— C(~.,X)e.xp (-(X/2~
2)t-(X/2)t 

1
-(3/2)log t),

which is amenable to Corollary I for the case M=~~, k=3 , 
~~1’°2’°3~ 

—

(X/2~
2
,X/2, - 3/2), and (U1(t),U2(t),U3(t)) 

= (-t , -t 
1
, log t ) .  Therefore

11’ ( t ) —  ( X -  3t /2 ) / t 3 , so that (2.6) holds with t0= 2X/3. Since lim
~ 0f(t)=O ,

-

- ~~~
-

~~~~~~~~~~~~~~~~
- - ---- - 

~~~~~~~~~~~~
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by Lemma (a ,iii), we have that (U) holds , a fact demonstrated with

greater computational effort by Chhikara and Folks (1977).

EXAMPLE 5. A cubic exponential family.

Perhaps the most straightforward way to have (2.5) or (2.6) hold

is to make 11’ linear. This is accomplished in the exponential family

case by the class of densities ,

f(t) = C(0,~ ,’j)exp(-0t — pt
2 

- yt3~ , t > 0,

where the natural parameter space is the union of ((0,p,’l): _ a<c r<~~,

- c~ < p < c c ,~~~>0) , C( ~ , y ) : - ~~~< c r < o ~, p> 0 , ~‘=O), and [(0 ,~~,y ) : 0> 0 ,

p =0 , y=O) . In applying Corollary 1, we note that M=~~, k=3,

~~~~~~~~~~ 
(o ,

~
,y), and (U

1(t),U2(t),U3(t))= 
(-t ,-t 2 ,-t3). Therefore

11(t)=0+ 2pt+3~t
2
, and f l ’ ( t ) =  2p+6yt .

Case 1. P�0, ‘i>0 or p>0 , y�0. Here by Corollary 1(a), (I) holds.

• Case 2. 3— ~~
=0. As no ted in Example 1, for this, the exponential density,

we have constant failure rate equal to 0.

Case 3. p<O. Then (2.5) holds with t
0=~~P/3v. Since lim

~~0
f(t) =

~ 0,~ , we cannot apply Lema (a). We therefore consider

6alim
~~~

g(t)fl(t) a 
~/C(o~~ ,y). (a) Suppose c~<O . Then 8< 0<1, and

by Lemma (b,ii) we have that (I) holds. (b) Suppose cx>0. Then

oa0
0

eXp C - o t -p t - y t33dt , and from Leuma (b,i) and (b,ii) we conclude

that (B) holds if 6<1 , and (I) holds if 6>1. Further insight is gained

2 3  2by expressing S as 6- exp (-y+Xy -py )dyzh(X ,p), where X—-~/ci > 0

- ~~~~~~~~~~~~~~~~~~~~~~~~~ - :i ~~x . ~~_2~~~~~~~~~~—.--
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and p = y / 0 3
> 0 . Therefore (~/~X)h (X,p)a ,

0
y2exp {_y+Xy

2 _ py 3)->O , so

that h(X,p) is str ict ly increasing with X for  fixed p. S ince

lim
>~0

h(X ,p)= exp [-y-py 3)dy < exp(-y)dy a 1, and lim.~~~~h~~~, p ) = ~~ ,

we conclude f rom continuity that, holding p fixed , for suff ic ient ly small

X we have 5< 1 (1), and for sufficiently large X we have 6>1 (B).

Similarly,  it is seen that h(~., p)  is st r ict ly dec reasing with p for

fixed X , and tha t, holding X fixed, we have 6< 1 (I) for sufficiently

large p and 6>1 (B) for sufficiently small p. The case 6 = 1  is

solvable. Here lim
~~0

8’ ( t )  — 0. However , d i f f e ren t i a t ion  of (2.2)  gives

lizn~~~g I(t)a2p/C(0,p,~T)<O . Thus g is initially decreasing, and

(I) holds.

EXAMPLE 6. Gan~ a mixtures with cotmnon scale parameter .

Consider the mixture of densities , f(t)= p f1(t)+q f2(t), O < p < l ,

q= l-p, where ~~ j 1 2 , is gamma distributed with shape parameter

and scale parameter ~, i.e.,

v -. y -l -
• £ ( t ) —  0 ~/r(’~ ) t e , t > 0 , 0 > 0 , ‘~~> 0 .j L

For integer valued v~, f~ is the density of the t ime unti l the occuance

of the Y~
_th event of a Poisson process with parameter 0. If an item fails

upon the accumulation of precisely Poisson (
~

) occurrences (say shocks),

then f~ is the appropriate density function for the item’s lifetime. If

a population consists of a mixture having proportion p of items failing

upon 
~~ 

Poisson (o) shocks and proportion q— i-p of items failing upon

Poisson (
~) shocks , then f is the appropriate density. We generalize 

- _
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here to all positive, not necessarily integer valued We fur ther

assume without loss of generality that

We are motivated to look for possible BT mixtures by considering

the following representation of r(t). Suppose .y
2
<l and ~~~~~ i.e.,

f1 is IFR and f2 
is DFR. We have

r(t)-(pf 1
( t ) + q f

2
(t)J/[pR

1
( t ) + q R

2
(t)J=h 1

(t)r
1
(t)+h

2
(t)r

2
(t),

where R~ is the reliability and r~ the failure rate for f ., h1(t)= [1+ch(t)J~~~,

h2(t)— 
1—h 1(t), and h(t)=R2(t)/R1(t), with c=q/p. Thus r(t) is a

weighted average of the component failure rates , where the weights vary

with t .  In fact , it is easily shown that h(t) is strictly decreasing ,

ranging from 1 at t— 0 to 0 at t = ~~ . Thus the weight function h 1(t)

increases from p to 1, whereas h
2
(t) decreased from q to 0. Since

but lim
~~ø

r1
(t)aO , r(t) has an initial DFR character.

Since 1im
~ ~r~ (t) ~~ and 1im

~ _ ,hi (t)= 1, r(t) has an ultimate IFR

character. We shall show by Corollary 2 that indeed f is BT for th is

situation.

To use Corollary 2, we write £~ as

t>0 , which gives M— ~~, k’.2, 
~~~~~~~~~~~~~~~~ 

(0,0,
~ l

_l ,
~ 2

_1), and

(U 1(t),U2(t))— (-t ,logt). From (2.11), we obtain ~ (t) . .  l +b ~~
a , where

and ba (or a/c)r(v2
)/F(v i)>0. From (2.12), we obtain

0- c/t+a/t(1+b t
a
), where cE~~ -l. Consequent ly,

2 a 2 ’ 2 2
— It (1+b t ) I (cb t ~~+ [2e-a(a+l)]b t5+ s-al . In investigating

~
‘ via Corollary 2 it suffices to cons ider the behavior of the quadratic

h(w)~~ew
2
+ [2e - a(a+l)J w + e - a , where w—w (t)~~bt

5
.

_ _ _ _ _  _ _ _ _ _ _  _ _ _ _ _ _ _ _ _
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Case 1. y1 <l . Here 
5(0. If €aO, then h(w) — -a(a+l)w-a<0 for all

w>0. If e<0, then since h(0) = e-a<0 and h’(w)<O for all w>O ,

we have h(w)<0 for all w>0. Therefore ~‘(t)<0 for all t>O , which

implies by Corollary 2(b) that (0) holds. This fact is consistent with

the general result (see Barlow and Proschan (1975)) that mixtures of DFR

distributions are DFR.

Case 2. 
~11

>1
~ 

V2
<l . Here h(0) = *12

1<0 , which implies that for some

w0>0, we have h (w)<O f or all v<w 0, h(w0)=0, and h(w)>0 for all

w>w0. Therefore (2.5) holds with t0 — (w 0/~;)~~
’a . Since lim

~~0
f(t) a

it follows from Lenina (a,i) that (B) holds. To summarize, if one density

is strictly IFR and the other is strictly DFR , then the mixture is BT.

Case 3. *11
>1 , *12= 1. Here f

2 
is the exponential density , h(0) = 0, and

h’(O).a(l-a). If a<l , then h’(O)>O, so that h(w)>0 for all w>0.

If a=l, then h’ (0) = 0. However, h”(w) = 2€ implies that h(w) >0 for all

w> 0. Therefore, if a < l , we have ~‘(t)>0 for all t>0 , so that by

Corollary 2(a), (I) holds. On the other hand , if a>l , then h’(O)<O,

which implies that (2.5) holds. Since iim~ 10f(t)=qo i~0~ ~, we cannot

use Lemma (a). However, since 6= 1/q>l , Lemma (b,i) shows that (B) holds.

To summarize, if f1 is strictly IPR and f 2 is exponential, then the mixture

is IFR if Vl~~
2 and BT if *11>2 .

Case 4. *1]> l~ *12
>]. Here both densities are strictly IFR, and h(0)>0.

Since h’ (w) a 2ew + 2€ - a(a+1) is an increasing function of w , it follows

that if h’(O)�O , then h(w)>0 for all w>0. Now h’ (O)�O if and

only if d ?a(a-1)/2, where die-a. If a (1 , this inequality is

~~~— 
- 

— -  
~~~~~~~~~~~~~~~~~~~~~ -
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satisfied for all d. Suppose a>l and d<a(a-1)/2, so that

h’(O)<O. Therefore h(w)>0 for all w>0 if and only if h(v)— 0

has no real roots. But no real roots exist if and only if

(2c-a(a+l)]
2 - 4e (c-a)<O , i.e., (a-l)

2
<4d. Therefore, by Corollary

2( a) , we have that (I) holds for the following cases : a<l ; a>],

d�a(a-I)/2; and a>l , (a-l)2/4<d<a(a-l)/2. For the case a>l ,

d= (a-l)
2/4, we have for w0= 2a/(a+l) that h(w)>0 for all positive

with h(w )=0. It follows that for t = (w /b)~~
’a, we have

11’(t)>O for all positive t~~~t0, with ~“(t0)=O . From (2.4) it then

follows that (I) holds. For the remaining case a>l , d< (a-l)
2
/4, it is

apparent that 11’ is initially positive, then negative, and ultimately

positive. The results of Section 2 are therefore not applicable. However,

we may rule out f as BT or DFR, since lim
~~o

f(t)
~
.0, which implies

g(t) is initially decreasing. Further, since 11 is ultimately increasing,

we deduce from (2.4) that g is ultimately decreasing. This rules out

UBT. A reasonable conjecture seems to be that f is LFR in this case

as well.

EXAMPLE 7. General gamma mixtures .

We now generalize the mixture of Examp le 6 to the case of unequal

scale parameters , i.e., for j— 1 ,2,

r V ~~1~~~~~0 t
f~~(t )a 0~ ~/r(~~)~t ~ e , t>0, v~>O , V~>O.

The analysis for this situation is more complicated , and we restrict

consideration to the case O< V 2< l < * 11
<~~, which is BT in the

-

~ 

- —-  
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~ 

- -  
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context. We use the same definitions and assignments given in Example 6,
( V~ V2~except now 911 0

1, ~l2~~°2’ and b — 0 1 /c02 ~,r(v2)/r(y1)>o. Further,

we define XE 0
2
-0

1
. Then 11(t)a01

_e/t÷ (a÷Xt)/t(l÷b eXt t
a
) , so that

11’(t)= (t (l+w) I (€ (l+w) -(a+Xt) w—a(l+w)J, where w=w(t)abe tta.

Use of Corollary 2 involves investigation of h(t) e(l-4-w)2-(a+Xt)
2w-a(l-f-w).

Case 1. X<O. Here w (0)aw (~)=O , and h(0)=h(c~)=e~a<0. Now 11
ultimately decreasing rules out IFR and BT, and 1im

~~ 0f ( t ) =
~~ 

rules out

IFR and UBT. DFR remains a possibility. In fact, h(t)< 0 for all t>0

would imply (D) from Corollary 2(b). However, investigation of ii at

extrema shows that h(t*)= (1.+w(t*)]1 c(l+w(t*)]_a), where t*n _a/X. Thus

for suitable choices of (a,b ,c), h(t*)>0 and Corollary 2 does not apply.

Case 2. X>0. Here w(0)=0 and w(~)-~~, so that h(0)<0 and h(~)>0.

It is convenient to express h(t) as h(t)=as(m), where m~~Xt/a. Then

s(m)=d(l+z)2 - a(m4-1)
2
z-z-1 , where d~~s/a, (O< d< l ) , z= z(m)5~~e~

u
~m
a
,

and .. ab(a/X)
a
. Since s(0)<O and s(~)>O, there exists at least one

positive root to s(m) = 0. Suppose m0 
is such a root. In order to show

that (2.5) holds , it suffices to show that s’(m0) > 0. For any m ,

s’(m)aa((m4-l)/mJ(2d(1+z)z-~mz-a(m4-l)
2z-z]. Since S (1fl

~
)=0 , we have

2dz0
2
— 2a(m0

+l) 2 z0-4- 25
0
+2- 2d-44z

0 
(where z0~~z(m0)), so that

a’ (m0) - a((in0+l)/m0](z0(a(m0+1)
2-2d - ~~~+lJ + 2(1-d)). Consider the

quadratic v(m)~~a(m+l) 2 -2d-2m+l . (a) Suppose a�l. Then

v(0) — a-2d+l�2(1-d)>0, and v(m) is strictly increasing for positive m.

Therefore v(m0)>0, which implies s’(m0)>O, and (2.5) holds. From

Lemma (a,i) we conclude that (B) holds . (b) Now suppose a < l .  In

this situation, unlike the a> 1 case, the number of positive roots to

- - - - - ——--- ---- --- — -- - -~~~~- ~~~~~~~~~~~~~~ --
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• s(in)=O may exceed 1. This is because v’(O)= Z(a-l)<O allows for a

root in0 satisfying s’(m0)<0. As an example, consider a=3/l6 , s= 3/32,

~j.=2 exp(-3/16). Then s(l)=0 but s’(l)=-9/16 . In fact in this

examp le, s(m)=0 has 3 positive roots so that ~~‘ is initially negative,

then positive, then negative, and finally positive. We may summarize the

case a<l by stating that (B) holds if there is precisely one positive

root to s(m)=0. If the number of such roots exceeds 1, our general

results are not applicable, although it is easy to see that IFR, DFR, and

UBT are ruled out . A seemingly reasonable conjecture is that f is BT

here also.

We conclude this example by considering the special case 1

(exponential density),  with a�1 and X > O .  Recall from Example 6

that for X= 0, f is BT if a> 1 and IFR if a— 1. We shall discover

that in the present case , f is BT if a> l  and either IFR or BT if

a= 1. Note that for *12
= 1, we have d= 1. Therefore s(0) = 0 and

s(~)=~~. The existence of a positive root to s(m)=O is not assured.

If one exists , say m =m 0, the argument given above for a�l still

applies to show that v(m0) > 0  and v’(m0)>O, and thus that (2.5) holds.

On the other hand , if no positive root exists, we conclude that h(t)>0

for all t>0, so that (I) holds. To show existence of a positive root, it

suffices to show s is initially decreasing. Since z’ = z’(m)= a((mi-l)/in]z,

we may express s’(m) as s ’ ( m) = z ’~~, where ~ = p(m)s l+2z - 2in-a(nH-l) 2

Therefore a ’ (0) = a(i-a) u r n  ~0(z/rn) 
aQ , since 1im

40
(z/m) —~~. if a= 1,

and — 0 if a>l . Consider therefore s”(O). We have s”(m )az’$’+z”$,

4  

--- -  —- —-~~~~~~~~~~~ - --
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with z” = z”(m) = a(a+Za/m + (a-1)/m 2]z. (a) Suppose a= 1. Then z’ (0) =

~‘(O)=2 p-4, z”(O)=2p , and $(0)=O , so that s”(O)=2p(~-2)<0 only

if p.<2. It can be shown that s”’(0)= 12 for ~~~2. We conclude that

for a= 1, s is initially decreasing only if p<2 . (b) Suppose

a>l. Then z’(O)= 0, $‘(O) -2(a-4-1), z”(0)~ a(a-1) lim~~0(z/ m2), and

4r(0)= 1-a. Since lim~~0(z/ m2)=~~ if 1 < a< 2 , ~ if a= 2, and

= 0  if a>2, we have that s” (O)=-~~<O if l<a<2 , s”(0)= -2~ < (

if a=2 , and s”(O)=O if a>2. By taking higher derivatives it can

be shown that for a>n- l, 5(i)(Ø)=0 for i<n-1 , and 5
(f l )

(0) (l-a)z~~~(0),

with z~
’
~~(0)= a(a-l)...(a-n+l) 1im~~0(z/tn

°). Consequently, for all a>],

we have s initially decreasing. In all instances where a initially

decreases (implying (2.5) holds), we need to cons ider the Lemma . Since

*12= 1 , 
we have lim~~0f(t)= qo2, and Lemma (a) does not app ly. However ,

for a>- l, lim
~~0

l1(t)=0i+X= 02, so that S= 1/q>l , and Lemma (b,i)

concludes (B). For a= 1 with ~< 2, lim
~~0

Ti(t) = 0
1+ X-b ~2

b.

Therefore 6= l/q - p(o1
/qo

2)
2
, which may be less than or greater than 1,

depending on (p,01,02). The following summarizes our results in the

exponential case (*12 = 1), where X > 0  and a�1. If a> 1 , or if a=  1,

~<2, and l/q-p(o1
/q cr2)

2
>l , then (B) holds. If a=l and 22,

or if a=l , ~.<2, and l/q-p (o
1
/qo

2)
2<l , then (I) holds . Since the

case X = O  implies ~~~~ these results are consistent with the X a O

counterparts in Example 6.

EXAMPLE 8. Weibull mixtures.

In Example 6, we showed that the mixture is BT for a strictly IFR

gamma density and a strictly DFR gamma density with the same scale parameter.

L 
- -
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Here we show that the corresponding mixture based on Weibull densities

is not BT. This disputes a contention of Kao (1959).

Consider the mixture f(t)=pf 1(t)+qf2
(t), where

p
f~ (t) = op. (ot) ~ expf- (ot) 

~
) ,  t>0, o>0, p. >O.

p .-].
The failure rates have the concise form r.(t)= o~~.(ot) ~ . Now

r(t)=h1(t)r1(t)+h2(t)r2(t), where h1(t)= [1+ch(t)]~~ and
p2h

2
(t)= l-h1(t), with c=q/p and h(t) R2(t)/R1(t)= exp((~t) -(ot) ~.

By assuming 0<~~2< 1<p 1<~~, we have f1 IFR and f2 DFR. But then

lim~~0r(t)=~~ and lime r(t)=O. Therefore f cannot be BT. In fact,

it is seen that r(t) initially decreases, then increases , and then ulti-

mately decreases for the given mixture. We may generalize to unequal

scale parameters, 01~~
02~ 

Again lim
~~ü

r(t)=m and 1th
~~~~

r (t)=0,

which rules out BT. The same conclusion holds when f
2 
is Weibull with

a positive valued location parameter. Therefore Kao’s contention that

such Weibull mixtures are BT is incorrect.

4. STATISTICAL INFERENCE

The models in Examples 1 through 5 have the exponential family of

densities form. As a result, statistical inference is simplified by a

reduction to sufficient statistics, and optimum hypothesis tests and

confidence region procedures can be obtained. See Lehmann(1959). We

consider in this section certain point estimation techniques, particularly

for the model of Example 1.

~~~~~~~~~~~ - 
- - - —f---- 
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THE GENERALIZED GAMMA-TRUNCATED NORMAL DENSITY OF EXAMPLE 1.

The parametrization given in Section 3 obscures the role of o in the

~>O situation. Since Ioi is a scale parameter unless o=0 , it seems

natural to break the overall model into the following four classes,

which effectively delineate thene roles of o. l:(o>O, p> 0, *1>-l).

2:(~ <O , p> 0, V>- l). 3:(o=O , p> O , *1>-].). 4 :(~ >0, p= O , ‘y >- l).

For convenience in estimation, we re-parametrize slightly.

Class 1: f(t) = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ o>0, 8>0, ç,>0.

F(e,p) is defined by F(8,p)=’exp (-y-8y
2
)y~~

1
dy.

Class 2: f(t)= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ c>O , e>O , p> O.
A(8,p) is defined by A(e,p)= ‘

~
‘ex p (y_ ey 2

~ y ldy.

Class 3: f(t) [X~/H(p)]expC-(Xt)
2
3t~~

’, X>O , p>O.

H(p) is defined by H(p)= ~~exp[_y
2
~y~~

1dy.

Class 4: f(t) [OP/r (p)le Ott
P_ l

, o>0, p>0.

Note that in Classes 1, 2, and 3, £ is BT if p< 1, IFR if

p� l , and truncated normal if p= 1. Class 4 is the class of ganana

densities, where f is DFR if p <l , IFR if p>l , and exponential

if p = l .

Maximum likelihood estimation of the parameters is tractable for

this model. In practice, the statistician would form a collection of

possible lifetime models by choosing some or all of the four classes.

Typical choices might be Classes (1,2,3,41, or (1,2), or (1,4), or (2,4),

or £l ,2) .  For each class included , the MLE of the corresponding parameters

.4

~~~~~~

- 

- -~~ .--~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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would be computed , as well as the value of the 1ik’~lihood at this point.

The MLE of (o,p,v) would then be the value of (o ,p ,* 1) corresponding to

the MLE of the parameters in the class with the largest maximum likelihood .

For examp le , suppose we wish to estimate (o,~~,*1), assuming the collection

of possible lifetime densities is the set of Classes (1,4). Maximum

likelibDod estimation for the individual classes yields the MLEs, say

(o 1,81 ,p
1
) for Class 1 and (o

4
,p
4
) for Class 4. If the likelihood

evaluated for Class 1 at (o
1
.9,,p

1
) exceeds the likelihood evaluated for

Clas s 4 at (0
4~~4)~ 

then the MLE of (o,~3,*1) is (~ 1,91~~~,p
1 -1). If the

likelihood (4) at (o
4

,p
4
) exceeds the likelihood (1) at (o

ii8i,~~i
) ,

then the MLE of (o,p,*1) is (o,,O ,p
4
-l).

We present now the individual MLEs for t~i e four classes . Assume a

random sample of failure times is taken , with observed values

Computation of MLEs is ~.mplified by the exponential family form. In

general, if

f ( t ) = C(9)h(t)exp(E~~1~~U.(t)), 0<t<M , (4.1)

then it is easily seen that any solution to the set of equations,

(~ /~9~)1ogL=O , i=l,...,k, (where the lik~lihood LatI~
’
1f(t .

) ) ,

is a solu tion to the set of equations ,

H U~ (T) = s~(t), i=l ,...,k, (4.2)

where T denotes the time-to-failure random variable , and

(s l(t),...,sk
(t)) is the sufficient statistic given by S~ (t)=! ~

‘
~~1U~(t~).

~

. 
_ _ _ _ _ _  _ _ _ _  _ _ _ _
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Class 1. Here (5 1(t),s2(t),s3(t)) 
=(. i  ~~~~~ Et

2
,~ ~ log t . ) ,  and

(H U1(T),E U2(T),E U3(T)) =(E T, H T
2, E log T) . Now

ET= (F(8,p 1)/~F(e,p))1~~
4/F($,p+l)]exp(-0t-8(0t)2)t~dt=F(8,p+l)/0F (8,p).

Similarly, ET
2
= r(e,p+2)/o2r(e,p). In a like manner, E logT= ~(8,p)-logo ,

where ~(8,p)n [F(9,p ) ]  1
0
exp (-y-ey2)y~~~1og y dy (~/~ p)log r (e,p).

We may solve the system (4.2) to obtain the MLE (o1,81,p1
). A computational

version of the system is the set of equations S~/S.,.rr
2(&1,p1+l)/F(91,p 1)r(81,p1+2

S
3 

— log 
~~~~

= ~~81,p 1
) — log[r(91,p 1-+-l)fr(81,p 1)J, 

and 01 = r(e 1,p 1÷1)/s 1r(e 1,p 1).

The f i rs t  two equations may be solved simultaneously (by computer) to

y ield (81,p 1) .  The thi rd equation then provides o~ .

Class 2. He re the S~~(t )  and U~~(T) are identical to those in Class 1. It

is easily seen that E T = /~-(8,p+l)/ci\(9, p ) , ET2=A (8,p+2)/~
2f\(e,p), and

E logT= ~(8,~~)-log~~, where (9 , p ) E  [~~~(9 , p ) ] ~~~~~~expfy -e y
2)y~~~

1log y dy

= (~ J~~ )logf\(8,~~). The resultant  computational version of the system

(4.2) which yields the MLE (~ 2, e2 ,p 2 ) is the set of equations

s~/s 2=A2 
~~~~~~~~~~~~~~~~~~ 

(82,p2+2),S3-log S1=~(82,p 2)-l
og[/\(92 ,p 2+l~’A(e2,p2

and 
~2 

= t’(92,p2+l)/S1A(82,p 2).

Class 3. Here (s 1( t) , s 2 ( t ) )  =(
~ ~ t~~, ~ ~ log t .) , and ( E u 1(T) , E u 2 (T))

= (ET2,E IogT). Then ET
2
=H(p+2)/X

2 H ( p ) ,  and E 1ogT=~J(p)-log X, where

W(p)a(H(p)] exp (_y2)y~~
’1ogydy = (~ /~ p)1ogH(p). A computational version

of (4.2) yielding the ML~ (X3,p3) is the set of equations S3~~~ log S2
= W(p

3
) -~~ log (H(p 3+2~H(p3)1, and X~~= H ( p3+2)/S 2H(p 3).

_ _ _ _ _ _ _  

-liii -
- ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ‘~~ — 
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Class 4. Here (s 1(t),S2(t)) ~~ 
Et .,~ ~ log t~)~ and (Eu 1

(T) , Eu
2(T))

= (ET ,E log T) . Since ET =pf O , and E l o g T =  ~(p)- log o, where

= (~/~p)logF(p), we obtain the well-known result that the MLE

(o4 ,p4) is determined by S3-log S1 = ~(p4)-log p4, and 04= ~~/S 1.

‘ Large sample confidence regions for the parameters of each

individual class can be obtained from asymptotic norma l theory. Let

e denote the MLE of 9 , based on a random sample of size ii taken

f rom (4.1) . Under suitable regularity conditions (see Zacks (1971)),

the limiting di stribution of /~i(9-e) is k-dimensional multivariate

normal with mean vector 0 and covariance matrix 1
1
(e), where

N 
~~~)ij 

= - E(~
2
/a9~a9~)log f. It is straightforward to show that for

Class 1,

~~ ÷ 28 r(e,p÷2) 2 F(9,p+2)
2 2 r(e,p) o F(e ,p )  -

I(a e )- 2 r(e,p÷2) F(8,p÷4) rr(e, p+2)12 F(9,p÷2)r
— 

0 I~(e,~) F(e,p) [ F(9 ,p )J  F(e ,p )

- I r(e~~~2) $(6,p)-~ (8,p+Z) log F(9,p)

(4.3)

For Class 2 , I(o ,8,p)  is identical to (4.3) if we substitute ~ for o,

and the function A for F. For Class 3,

— 
_ _
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2~~~1 
H(p+2)

x2 ~2 H(p) X

I(X,p) =

1 
2

-~~ -~jlog H (p)

As is well—known, for Class 4,

20
— I(o,p) =

1
-

~~~ 
log F(~)

THE OTHER EXAMPLES . We consider briefly questions of inference for

Examples 2 through 7 from Section 3.

In Example 2, if T denotes the time-to-failure random variable,

then TI M has the usual two parameter beta density over (0 ,1). Assuming

M to be known, we may employ standard inference procedures for (o ,p).
See Johnson and Kotz (1970). Available procedures likewise handle the

lognormal (see Mann, Schafer, and Sthgpurwalla (1974)) and inverse

Gaussian densities (see Chhikara and Folks (1977)).

For the cubic exponential family case of Example 5, we see from

(4.2) that the MLE of (0,p,*1) is the method of moments estimator.

Computation would require the use of a computer, due to the complicated

nature of C(0,~ ,*1). 

- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,~~~~~~ ___________
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For Examples 6 and 7, the lack of non-trivial sufficient statistics

makes the method of maximum likelihood forbidding . Method of moments

estimators are , however , computable. The i-th moment, p..~, of f is

= 
~~~ 

+ ~~~~ 
where = F( v~+i)/a~r(*1~) is the i-th moment of

j — l ,2. The system of equations , 
~~ 

= ! , i=l,...,k, yields

the desired estimates. In Example 6, we use k=4 to estimate

and in Example 7, we use k=5 for (01,02, ’11,V2,p). Solution , of course,

requires use of a computer.

I i 
-

~ 

-

~~~~~

--

~~~~

-

~~~~~~

----  -.-

~~~~~~~~

-

~~
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