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INTRODUCTION

Department of Defense (DOD) software production and
maintenance is a large, poorly understood, and inefficient
process, Recently Frost and Sullivan (The Military Software
Market, 1977) estimated the yearly cost for software within
DOD to be as large as $9 billion. De Roze (1977) has also
estimated that 115 major defense systems depend on software
for their success. In an effort to find near-term solutions
to software related problems, the DOD has begun to support
research into the software production process. A formal 5
year R&D plan (Carlson & DeRoze, 1977) related to the
management and control of computer resources was recently
written in response to DOD Directive 5000.29. This plan
requested research leading to the identification and

validation of metrics for software quality.

Interest continues to grow in the use of quantitative
metrics which assess the complexity of software. Such
metrics are assumed to be valuable aids in determining the
quality of software. Boehm, Brown, and Lipow (1976) and
McCall, Richards, and Walters (1977) have proposed
combinations of such metrics which assess numerous factors
that collectively constitute this nebulous "software
quality®, Such factors include reliability, portability,

maintainability, and myriad other xxx-abilities,




There are numerous potential uses for measures which
assess these various quality factors. First, they can be
used as feedback to programmers during development,
indicating potential problems with code they have developed
(Elshoff, 1978). Use of metrics in this way would require
guidelines for altering code so as to bring different

metric values within acceptable limits.

A second use for metrics is in guiding software testing.
McCabe (1976) proposed the cyclomatic number as a means of
assessing the computational complexity of the software
testing problem. Other metrics which index the quality or
complexity of software may help identify modules or

subroutines which are likely to be the most error-prone.

Another use for software metrics is their use in
estimating maintenance requirements. If one or more metrics
can be empirically related to the difficulty programmers
experience in working with software, then more accurate
estimates can be made of the manpower that will be necessary
during maintenance. Empirical validity studies will be
necessary before employing metrics for any of the three uses
described here. Such research should be conducted with

professional programmers.

The experimental investigations described in this report

comprised a.research program seeking to provide valuable

-
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information about the psychological and human resource
aspects of computer programming. The challenge undertaken in

this research was to quantify the psychological complexity

s WEN N W

of software., It is important to distinguish clearly between

the psychological and computational complexity of software.

Computational complexity refers to characteristics of .

algorithme or programs which make their proof of correctuess

difficult, lengthy, or impossible. For example, as the

number of distinct paths through a program increases, the

computational complexity also increases. Psychological

complexity refers to those characteristics of software which
make human understanding of software more difficult. No
direct linear relationship between computational and
psychological complexity is expected. A program with many
control paths may no£ be psychologically complex. Any

E regqularity to the branching process within a program may be

used by a programmer to simplify understanding of the

program.

Halstead (1977) has recently developed a theory
concerned with the psychological aspects of computer
programming. His theory provides objective estimates of the ?
effort and time required to generate a program, the effort
required to understand a program, and the number of bugs in a

particular program (Fitzsimmons & Love, 1978). Some

predictions of the theory are counterintuitive and contradict

results of previous psychological research. The theory has

3 !
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attracted attention because independent tests of hypotheses

derived from it have proven amazingly accurate.

Although predictions of programmer behavior have been
particularly impressive, much of the research testing
Halstead's theory has been performed without sufficient
experimental or statistical controls. Further, much of the
data were based upon imprecise estimating techniques.
Nevertheless, the available evidence has been sufficient to

justify a rigorous evaluation of the theory.

Rather than conduct a research program designed
specifically to test Halstead's theory of software science, a
research strategy was chosen which would generate suggestions
for improving programmer efficiency regardless of the success
of any particular theory. This research focused on four
phases of the software life-cycle: understanding,
modification, debugging, and construction. Since different
cognitive processes are assumed to predominate in each phase,
no single experiment or set of experiments on a particular
phase were believed to provide a sufficient basis for making
broad recommendations for improving programmer efficiency.
Each experiment in this research program was designed to test
important variables assumed to affect a particular phase of
software development. Professional programmers were used in
these experiments to provide the greatest possible external

validity for the results (Campbell & Stanley, 1966). 1In
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addition, the thec:y of software science and other related

metrics were evaluated with these data.

The results of this program of research are described in
two separate sections, each considering a primary focus of
the program: software complexity metrics and modern coding
practices. A preliminary section will describe the

methodology employed in the three experiments comprising this

program.




METHODOLOGY

Qverview

The research conducted to evaluate software complexity
metrics and modern coding practices consisted of three
experiments designed around program comprehension,
modification and debugging. These experiments employed

within subjects, multifactor designs.

Participants

Each of the first two experiments involved 36
programmers from several General Electric locations.
Participants in Experiment I had a working knowledge of
Fortran and averaged 6.8 years of professional programming
experience (SD = 5.8). In Experiment II, the participants
had a working knowledge of Fortran, averaged 5.9 years of
professional programming experience (SD = 4.0), and had not
participated in the previous experiment. The 54 participants
in Experiment III (30 civilians and 24 from the military)
averaged 6.6 years of programming experience in Fortran,
ranging from 1/2 year to 25 years (SD = 6.1). The majority

of participants possessed an engineering background.




; Procedures

‘ Introductory exercise., In all experiments, a packet of
E materials was prepared for each participant with written
instructions on the experimental tasks. As a preliminary
exercise, all participants were presented with a short

Fortran program and a brief description of its purpose. 1In

Experiment I, they studied this program for 14 minutes and

were then given 15 minutes to reconstruct a functional
equivalent from memory. In Experiment II, participants were

allowed unlimited time to complete a specified modification.

In Experiment III, participants were instructed to find a bug

in the program.

The introductory program was intended to provide a
commmon basis for comparing the skills of participants and to
diminish learning effects prior to the experimental tasks.
This latter point is important, since a pilot study
(Sheppard & Love, 1977) indicated that learning may occur

during such tasks.

Experimental tasks. Following the initial exercise in

each experiment, participants were presented in turn with
three separate programs comprising their experimental tasks.
In Experiment I, they were allowed 25 minutes to study each
program, during which they were permitted to make notes or

draw flowcharts. .t the end of the study period, the




original program and all scrap paper were collected. Each
participant was then given 20 minutes to reconstruct a

functional equivalent of the program from memory.

In Experiment II, a separate modification was indicated
for each of the three programs and was described on a sheet
accompanying the program listing. Participants were allowed
to work at their own pace, taking as much time as needed to

implement the modification.

On each task in Experiment III, participants were
presented with input files, a listing of the Fortran program
with the embedded bug, a correct output, and the erroneous
output produced by the program. All differences between the
correct and erroneous outputs were circled on the erroneous
output. Also included were explanatory descriptions of any
subroutines or functions not presented in the listing but
referenced by the program. Participants were allowed to work
at their own pace, signalling the experimenter when they
believed they had identified and corrected the bug. The
experimenter verified all corrections, and in the case of a
mistake, the participants was instructed to try again until
the task was successfully completed. The maximum time
participants were allowed to work on a particular program was
45 minutes for the preliminary task and 60 minutes for each

experimental task. Time was measured to the nearest minute.




Independent Variables

Program class. Three general classes of programs were

used in Experiment I: engineering statistical, and non-
numerical. Three programs were chosen for each class from
among many solicited from programmers at several locations.
These nine programs varied from 36 to 57 statements and were
considered representative of programs participants might
actually encounter. All experimental programs were compiled
and executed using appropriate test data. Experiment II used
three of the nine programs from Experiment I. In Experiment
III, three programs were selected which had not been

employed in the previous studies.

Complexity of control flow. Three control flow

versions, performing identical tasks, were defined for each
program. The naturally structured and graph-structured
versions were implemented in Fortran IV, while a third
version used Fortran 77 (Brainerd, 1978), which includes the

IF-THEN-ELSE, DO- WHILE, and DO-UNTIL constructs.

The Fortran 77 version of each program was implemented
in a precisely structured manner. All flow proceeded from
top to bottom, and only three basic control constructs were
allowed: the linear sequence, scructured selection, and

structured jiteration.

ey




The graph-structured version of each program was

implemented in Fortran IV from the Fortran 77 version,
replacing the special constructs but producing code for which
the control flow graphs of the two versions were identical.
All nested relationships could be reduced through structured
decomposition to a linear sequence of unit complexity. A
full discussion of reducibility is presented by McCabe
(1976) .

Structured constructs were awkward to implement in
Fortran IV (Tenny, 1974). In order to test a more naturally
structured flow, limited deviations were allowed in a third
version of each program. These deviations included such
practices as branching into or out of a loop or decision, and

multiple returns.

Variable name mnemonicity. In Experiment I, three levels

of mnemonicity for variable names were manipulated

independently of program structure. Several non-participants

were shown the programs and asked to assign names to the
variables. The names chosen most frequently were used in the
most mnemonic condition. The medium mnemonic level consisted
of less frequently chosen names. In the least mnemonic
condition, names consisted of one or two alphanumeric

characters.

10




Comments. Three levels of commenting were manipulated
in Experiment II: global, in-line, and none. Global
comments appeared at the front of a program and provided both
an overview of its function and a definition of the primary
variables. 1In-line comments were interspersed throughout

the program and described the specific functions of small

sections of code.

Modifications. Three types of modifications were

selected for each program in Experiment II as typical changes
a pregrammer might be expected to implement. The level of
difficulty for seven of the nine modifications increased with
the number of new lines that had to be inserted to achieve a
correct implementation, and the hardest modifications for

each program required the most additional lines.

Type of Bug. In Experiment III three types of semantic
bugs were chosen from a classification developed by Hecht,
Sturm, and Trattner (1978): computational, logical, and data
errors. Bugs in each category were defined for each of the
three programs in order to maximize the similarity of bugs
from a single category across programs. Computational bugs

involved a sign change in an arithmetic expression. Logic

bugs were implemented by using the wrong logical operator in

an IF condition. Data bugs involved wrong index values for

variables.
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Each bug in this experiment was purposely designed to
affect only a limited area of code. That is, each
calculation containing a bug occurred near the corresponding
WRITE and FORMAT statements. In no case did a bug produce g
errors in routines other than the one in which it was i

embedded, and each bug appeared in only one line of code. ;

Length. The inclusion of additional subroutines to the :
programs employed in Experiment III made it possible to ;
present each program in three different lengths. The shorter
programs had 25-75 statements, medium programs contained
100-150 statements, and the longer programs contained

approximately 175-225 statements.

Program listings included a two or three line
explanation of any routine or function that was called by a
program but not presented in the experimental materials.
Participants were told to assume that missing routines worked
correctly. All of the input and output files were presented
regardless of the length of the program. That is, for the
shorter version, some of the input was read in and some of
the output was produced by subroutines which were not

presented.

Experimental design. In order to control for individual

differences in performance, a within subjects, 34 factorial

design was employed in each experiment (Kirk, 1968). In

12
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Experiment I, three types of control flow were defined for
each of nine programs, and each of these 27 versions was
presented in three levels of variable mnemonicity, for a
total of 81 programs. In Experiment II, three levels of
control flow were defined for each of the three programs.
Each of these nine versions was presented in three levels of
commenting. Modifications at three levels of difficulty were
developed for each program, generating a total of 81
experimental conditions. In Experiment III, three types of
control flow were defined for each of three programs, and
each of these nine versions was presented in three lengths
with three different bugs, for a total of 81 different

experimental conditions (Table 1).

The first 27 participants in each experiment exhausted
the 81 separate programs, and the final 9 participants in the
first two experiments repeated 27 of the previous
experimental tasks. Two complete replications of the design
in Experiment III were afforded by the 54 participants.
Programmers at each location were randomly assigned to
experimental conditions, but in such a way that over the
course of their three experimental programs, every
participant had experienced each level of each independent
variable, That is, they had worked with a program from each
class, with each type of structure, with each type of
commenting, etc. The order of presentation of the three

programs to each participant was random. The order of

13
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presentation of conditions was not counterbalanced in the
first two experiments. However, this problem was corrected
in Experiment III to assure that each level of each
independent variable appeared as the first, second, or third

task an equal number of times.

Dependent Variables

Experiment I, Current literature (Love, 1977;

Shneiderman, 1977) suggests that the most sensitive measure
of whether programmers understand a program is their ability
to learn its structure and reproduce a functionally
equivalent program without notes. Thus, the percent of
statements correctly recalled became the dependent variable
in Experiment I. The criterion for scoring the
reconstructed programs was the functional correctness of
each separately reconstructed statement. Variable names and
statement numbers which differed from those in the original
program were counted as correct when used consistently.
Control structures could be different from the original
program so long as the groups of statements performed the

same functions.

Three judges scored each of the 108 reconstructed
programs independently. Interjudge correlations of .96, .96,
and .94 were obtained across the three sets of scores. The

average of the judges' scores on each program (mean percent

15
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of statements correctly reconstructed) was used as the

performance measure in Experiment I.

Experiment II. The dependent variables in Experiment II

were the accuracy of the implemented modification and the
time taken by the participant to perform the task. The
individual steps necessary for correct implementation of each
modification had been delineated in advance and assigned
equal weights. That is, prototypes of each version of a
program with each modification correctly implemented were
established as the criteria against which participants' work
would be compared. An accuracy score reflecting the percent
of steps correctly implemented in each modification was
computed by comparing each participant's changes with the
criteria. All of the implemented modifications were scored
by the same grader. The time to implement a modification was
measured to the nearest minute by an electronic timer. Thus
the performance measures were the percent of changes
correctly implemented to a program and the number of minutes

required to complete them.

Experiment III. The dependent variable in Experiment

III was the number of minutes necessary for the participant

to locate and correct the bug.

16




Individual Differences Measures

Scores on the preliminary task in each experiment were
used as a measure of programming ability related to the
experimental tasks. Participants reported their type of
programming experience and the number of years they had been
programming professionally in the first two experiments. The
information requested in Experiment III included specific
type of experience, number of years programming
professionally in Fortran, number of statements in the
longest Fortran and non-Fortran programs written, the first
programming language learned, and number of languages
learned. In addition, various programming concepts that
appeared relevant to the experimental programs were listed,

and participants were asked to mark those with which they

were familiar.
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é SOFTWARE COMPLEXITY METRICS

Halstead's Software Science

Halstead (1977) developed a theory which provides
objective estimates of the effort and time required to
generate a program, the effort required to understand a

program, and the number of bugs in a particular program

(Fitzsimmons & Love, 1978). 1In 1972, Halstead first
published his theory of software physics (renamed software
science) stating that algorithms have measurable

I characteristics analogous to physical laws. According to

&
]
&
5
-
i
%

Halstead, the amount of effort required to generate a program

P

can be calculated from simple counts of the actual code. The

e a—

calculations are based on four quantities from which Halstead

derives the number of mental comparisons required to generate

a program; namely, the number of distinct operators and

B Tt

operands and the total frequency of operators and operands.

Preliminary tests of the theory reported very high
correlations (some greater than .90) between Halstead's
metrics and such dependent measures as the number of bugs in

a program (Cornell & Halstead, 1976; Funami & Halstead,

WIITONT_i - T T T GTORE S CEP P

1975), programming time (Gordon & Halstead, 1976), and the

quality of programs (Bulut & Halstead, 1974; Elshoff,

1976; Gordon, 1977, Halstead, 1973). Fitzsimmons and Love

18




(1978), Funami and Halstead (1975), and Akiyama (1971) found
that Halstead's effort metric was a much better predictor of
the number of errors in a program than either the number of

program steps or the sum of the decisions and calls.

Volume. Halstead presents a measure of program size
which is different from the number of statements in the code.
His measure of program volume is also independent of the
character set of the language in which the algorithm is
implemented. Halstead defines his measure of program volume

as:
V= (N + N)) log, (n) +ny)
where,
o= number of unique operators,
= number of unique operands,
N1 = total frequency of operators,
NZ = total frequency of operands.

Level. Halstead's theory also generates a measure of

program level which indicates the power of a language. As

19
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the program level approaches 1, the statement of the problem
or its solution becomes more succinct. As the program level
approaches @, the statement of a problem or its solution
becomes increasingly bulky, requiring many operators and
operands. A higher level language is assumed to have more
powerful operators available; thus fewer operators need

to be used to implement a particular algorithm. Halstead's

estimate of program level is computed as:

'2 = 2n,/n,N
. AL

Effort. Halstead theorized that the effort required to
generate a program would be a ratio of the program's volume
to its level. He proposed this measure as representing the
number of mental discriminations a programmer would need to
make in developing the program. Halstead's effort metric
(E) was computed precisely from a program (Ottenstein, 1976)
which was modified to accept as input the source code from
the program studied. The computational formula was:

i e T il s
2n

E =
7

McCabe's Complexity Metric

McCabe (1976) defined complexity in relation to the

decision structure of a program. He attempted to assess

complexity as it affects the testability and reliability of a

20




module. McCabe's complexity metric, v(G), is the classical
graph-theory cyclomatic number indicating the number of
regions in a graph, or in the current usage, the number of
linearly independent control paths comprising a program. The

computational formula is:

v(G) = # edges - # nodes + 2(connected components).

Simply stated, McCabe's v(G) counts the number of basic

control path segments through a computer program. These are
the segments which, when combined, will generate every
possible path through the program. McCabe presents two
simpler methods of calculating the metric. McCabe's v(G) can
be computed as either the number of predicate nodes plus 1,

or as the number of regions in a planar graph of the control

flow.

The simplest possible program would have v(G) = 1.

Sequences do not add to the complexity. IF-THEN-ELSE, DO-
WHILE, or DO-UNTIL constructs each increase the complexity by
l. It is assumed that regardless of the number of times a

DO loop is executed there are really only two control paths:
the straight path through the DO and the return to the top.
Clearly, a DO executed 25 times is not 25 times more complex

than a DO executed once.

21
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5 Results E
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Significant intercorrelations were observed among the
complexity metrics in all experiments. In Experiment I the
Halstead and McCabe metrics were strongly related, while

their correlations with lines of code were moderate (Table

2). In Experiment II all three measures were strongly
intercorrelated. In Experiment III, with longer programs,
the relationship between Halstead's E and the other measures

was only moderate.

Correlations with Performance

Experiment I. Since different levels of variable

mnemonicity and type of commenting neither affected
performance nor caused any change in the value of the
complexity metrics for a particular program, some of the data
reported in the sections on performance predictions were
aggregated over the three levels of mnemonicity in Experiment
I and the three types of commenting in Experiment II. Thus,
when analyses are reported for 27 data points, each datum

represents the average of at least three performance scores.

The correlations between percent of statements
correctly recalled and complexity metrics were all negative,
indicating that fewer lines were correctly recalled as the

level of complexity represented by these three measures

22




Table 2. Intercorrelations for Software Complexity
Measures
Correlations
Metric E v(G)
Experiment 1 (n = 27)
McCabe's v (G) L84R%R
Length +4 TR0 G4 RRN
Experiment 2
Unmodified (n = 9)
McCabe's v(G) +BGNe
Length s STRRA JIQRRn
Modified (n = 27)
McCabe's v(G) 88 RRR
Length < JENNR 8oRuR
Experiment 3 (n = 27)
McCabe's Vv(G) « TORRR
Length « JONAN «JUNSR

Note: Halstead E values are reported
of mental discriminations.

*p € .05
"% € 01
48y € 001

in thousands




increased. Length and McCabe's v(G) were moderately related

to performance, while little relationship was found for

Halstead's E (Table 3).

Investigation of a scatterplot of Halstead's E with
performance indicated that there were three extreme scores
which were obtained from three participants who consistently
outscored others on both the pretest and the experimental
task. With the three data points of the exceptional group
removed, the correlations for all three complexity metrics
improved. Further, there were considerable differences in
difficulty among the programs studied. As a heuristic device
to determine whether the complexity metrics were more
predictive of performance within programs than across them, a
transformation was applied separately to the data for each
program. Although Halstead's E was unrelated to performance
in the raw data, a strong correlation was observed after
corrections were made for differences among programs and
participants. Such an improvement was not observed in the

results for v(G) or length.

Experiment II. The complexity metrics were generally

more strongly correlated with time to completion than with
the accuracy of the implementation, especially on the
modified programs. Both metrics and length were moderately

related to both criteria on modified programs (Table 4).




Table 3. Correlations of Complexity Metrics With Percent
of Statements Correctlv Recalled in Experiment 1

Correlations

Criterion E v(G) Length
Unaggregated

data (n = 108) 19 - L LLL B & L L
Aggregated

data (n = 27) .13 -, 35% -, SN
Exceptional group

removed (n = 24) .36* -.55%% - 61*%n
Transformed scores

(n = 27) 30 -.24 -, 358¢%
Exceptional group

removed and

transformed scores :

(n = 24) JT50ee . 21 -, G50%n

L]
®
*

. - .
oo
(=N ol 7]

®
R
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Table 4. Correlations of Complexity Metrics With
Accuracy and Time in Experiment 2

i
BL
|
l

Correlations
Criterion E v(G) Length
Unaggregated (n = 108)
Accuracy
Unmodified .12 -.o1® T L
Modified -, 17% -, 21% -.20%
Time to completion
Unmodified 16% «15 13
Modified bk - SRR s SQRNS
Aggregated (n = 27)
Accuracy
Unmodified = vl % L
Modified -.29 - 30" - SN
Time to completion
Unmodified 9 «Bd .20
Modified L .38¢% +A4GN0
N ERT
aenp < .001




Experiment III. All three metrics predicted performance

equally well at the subroutine level. At the program level,
however, E was the best predictor, accounting for more than
twice the variance in performance than program length (56%
versus 27%, respectively). The variance accounted for by

v(G) fell between these values (42%). A stepwise multiple

regression analysis indicated that length and v(G) added no

increments to the prediction afforded by E (Table 5).

The scatterplot of performance with Halstead's E
suggested the existence of a curvilinear trend in the data.
The significance of this trend was tested using the second
degree polynomial regression approach suggested by Cohen
and Cohen (1975) and Kerlinger and Pedhazur (1973) for
investigating curvilinear relationships. A multiple
correlation coefficient of .84 indicated that the curvilinear
trend accounted for an additional 15% (p < .001) of the
variance beyond that accounted for by a linear relationship.
The prediction equation generated from these data was:

minutes to find bug = 9.837 + .@0239E - .00000000079E

However, with very few data points in the right tail of this
distribution for Halstead's E, it is difficult to extrapolate
to the exact shape of the curvilinear trend. No curvilinear
trend was detected with either the lines of code or McCabe's

v(G).
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Table 5. Correlations of Complexity Metrics With
Performance Time in Experiment 3

Correlations
Criterion E v(G) Length
Unaggregated (n = 162)
L Subroutine «eSRRRT . SRARR J5ReE

Program L28%0%  _aogRAR Qe
Aggregated (n = 27)

Subroutine GONR » SN en G TRER

Program M Y L L Ll

*&p £ .01
arap < ,001




Moderator Effects

G— Wy R e

In order to determine the effects of possible
moderators, correlations between performance measures and

. software complexity metrics were computed under different

types of control flow and commenting, and at different levels
of programmer experience. In Experiment I, Halstead's E and

McCabe's v(G) correlated significantly with performance only

on unstructured programs (Table 6). While a similar pattern
of correlations emerged in Experiment II between Halstead's E
and time to complete the modification, differences among
these correlations were not significant. The moderating
effects did not appear to result from restrictions of range
on the variable involved. That is, means and variances for
complexity metrics were identical across types of control
flow, and although mean performance scores differed across
types of control flow, no significant differences were
observed in variance. This moderating effect could not be
tested in Experiment III, since unstructured programs were

not employed.

Significant moderating effects were also found for types
of commenting. All but one of the significant correlations
between complexity metrics and modification accuracy and time
occurred when no comments were included in the code.

Differences in correlations between in-line and no comment




Table 6. Correlations Between Performance Measures and
Complexity Metrics Under Different Types of
Control Flow

Correlations
Criterion and
type of control flow E v(G) Length
Experiment 1 (n = 36)
$ recalled
Unstructured . 45808 . SRRk . Ghnen
Naturally structured .07 -.08 - .20
Structured -.01 -.11 -, §l00e
Experiment 2 (n = 36)
Time to completion
Unstructured « 384 .24 370
Naturally structured «.28% «20 L34
Structured .08 «21 «12
00
ftey < .001




Table 7. Correlations Between Performance Measures and
Complexity Metrics Under Different Tvoes of
Commenting in Experiment 2

fews e BEE R

Correlations
Criterion and
type of comments E v(G) Length
Accuracy (n = 36)
i ; None -.34% L S -.37¢%
Global -.18 =, 31N -.23
In-line .03 .04 03
Time (n = 36)
i None ATRR gamm SoRRn
Global o 7§ .18 .18
In-iine 16 «11 .16
o8 300
*arp <.001

&
L
§
§
i
13
4
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conditions either achieved or bordered on significance in all

cases (Table 7).

3

Finally, relationships between complexity metrics and s
performance measures were moderated by the participants’
years of professional programming experience. The dividing :

point between three or fewer years and more than three years F

experience was arbitrary and represented a compromise between

minimizing the years of experience in the less experienced
category and having a sufficient number of participants for a
correlational analysis. The complexity metrics were more
strongly related to performance among less experienced

programmers in all three experiments (Table 8).

Discussion

The three experiments comprising this study produced
empirical evidence that software complexity metrics were
related to the difficulty programmers experienced in
understanding and modifying software. The correlations
observed in the first two experiments, however, were not as
high as those reported by Halstead (1977) in other

verifications of this theory. While many of the correlations

reported here will not seem large to readers of the

engineering or physical science literature, their magnitudes




Table 8. Correlations Between Performance Measures and
Complexity Metrics Among Programmers Differing
in Experience

Correlations

Criterion and
level of experience E v(G) Length
Experiment 1
% recalled
€ 3 years (n = 42) -.35% aq R TRER. . . ERYER
>3 years (n = 60) -.03 -.18 =~
Experiment 2
Time to completion
€ 3 years (n = 32) . DAARS A BENRE DGR
> 3 years (n = 75) .20% +15 L22¢%

Experiment 3

< 3 years (n 75) .38k%% L29%%% .18

> 3 years (n 87) .20% J21® L22%

Note: Two participants in Experiment 1 did not
report their years of experience

*

p < .05
xxp < .01
e < .00
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broader range of program sizes. Second, individual

differences among programmers exerted significant effects on

the results obtained. 1In order to control for these |
differences, the number of participants in the experiments 3
would need to be increased. When the data from Experiment I
were transformed in an attempt to control for differences
among programs and programmers, a correlation of -.73 (g <
.?291) was obtained between the performance criterion and

Halstead's E. However, the question is not whether theories

can be validated with mystical transformations of data, but
whether the results of these heuristic transformations can be
replicated in an experiment designed to overcome the !

limitations of previous research. I

In Experiment III some of the limitations of the
previous experiments were corrected and the results not only
replicated those of previous experiments, but also
demonstrated that far stronger results could be obtained when
their limitations were overcome. The curvilinear
relationship observed in this experiment between Halstead's E
and performance could not have been observed if only short
programs had been used in the experimental tasks. The
Halstead's E and length values at the subroutine level
suggest that both are capturing program volume in modular
sized programs (approximately 5@ lines of code or less).

With larger programs the information measured appears to

differ; that is, Halstead measures something in addition to,

I




are typical of significant results reported in human

factors research.

In the first two experiments lines of code proved to be
a better predictor of programmer performance than either of
the complexity metrics studied. These results were
disappointing, since the complexity metrics were believed to
capture constructs much more closely associated with factors
which affect the psychological complexity of software than
lines of code. That is, counts of operators, operands, and
elementary segments of the control flow should be more
closely related to the difficulty programmers experience in

working with software.

Stronger relationships in the first two experiments may
have been obscured by variation in performance scores related
to differences among participants and programs which were
enhanced by the economical multifactor designs employed in
these experiments. There were several limitations in the
experimental procedures employed in obtaining the data which
may have diluted the results we observed. First, all of the
programs studied were short (35-55 lines of code). The
limited range of metric values calculated on programs of this
length may not have been sufficient for an adequate test of
the predictive worth of the metrics. Studies reporting

higher correlations for Halstead's E usually involved a
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but inclusive of, that which is measured by length.

Many small-sized programs can be grasped by the typical
programmer as a cognitive gestalt. The psychological
complexity of such programs is adequately represented by the
volume of the prcgram as indexed by the number of lines.

When the code grows beyond a subroutine or module, its
complexity to the programmers is better assessed by measuring
constructs other than the number of lines of code. This may
result partly because programmmers may represent the program
to themselves in ways which are more accurately captured by
counts of operators, operands, and control paths. Thus, as
the size of a program increases, Halstead's E seems to become

a better measure of its psychological complexity.

One possible explanation for the superior predictive
ability of Halstead's E is that the relation between program
size and performance is curvilinear and the logarithmic
transformation within the Halstead measure captures this
relationship while lines of code does not. However, there
was no support in these data for a curvilinear relationship
between lines of code and performance. On the other hand, a
curvilinear relationship did exist between Halstead's E and
performance. This curve suggests that as Halstead's E grows
larger, a program becomes more psychologically complex, but
the increments in difficulty grow smaller and smaller. In

the debugging task there seemed to be an amount of time that




was typically required to locate a bug within a subroutine

once the correct subroutine had been identified
(approximately 16 minutes). Added to this base was the time
required to identify the proper subroutine. The
curvilinearity of the relationship between time to find the
bug and Halstead's E appeared to result from the time

required to isolate the problem subroutine.

A distinguishing characteristic of psychological
complexity is the interaction between program characteristics
and individual differences, such as programming experience.
Chrysler (1978) demonstrated the value of experiential
variables in predicting the time to complete a programming
task. In these experiments the complexity metrics were more
highly related to the performance of less experienced
programmers. Thus, the complexity metrics may not represent
the most important constructs for predicting the performance
of experienced programmers. These programmers probably
conceptualize programs at a level other than that of
operators, operands, and basic control paths. Programmers
may have fit the program into a schema they recognized from
previous experience, just as chess players learn to visualize
the gameboard differently with experience. Results did not
indicate, however, that more experienced programmers
performed the tasks more efficiently. Since the ratio

comparing good to poor programmer performance i{s often as

great as 28 to 1 (Sackman, Erickson, & Grant, 1968), the
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selection, training, and placement of programmers can have a

significant impact on project costs and product quality.

Software complexity metrics appear to be capable of
satisfying the uses described in the introduction. That is,
they can be used in providing feedback to programmers about f
the complexity of the code they have developed and to ‘
managers about the resources that will be necessary to test ;
or maintain particular sections of code. Further evaluative
research needs to assess the validity of these uses in

on-going software projects.

Y R N

Halstead's Software Science has provided some important

initial directions for investigating psychological
complexity. Subsequent work by McCabe (1976) and others has
also proven relevant to this purpose. Yet, assessing the
psychological complexity of software requires more than a
simple count of operators, operands, and basic control paths.

If the ability of complexity metrics to predict programmer

performance is to be improved, the metrics used to predict |
programmer performance must be related by psychological
principles to the memory, information processing, and problem f
solving capacities of programmers. In identifying a set of
psychological principles relevant to programming tasks, it
) will be important to determine methods for quantifying
factors in the code which represent information concerning

the program. This approach might not only generate improved [
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metrics for assessing psychological complexity, but might
also identify programming practices which could lead to

simplified, more easily maintained software.




—

MODERN CODING PRACTICES

Structured coding techniques, mnemonic variable names,
and commenting are among the modern coding practices which
supposedly increase a programmer's efficiency in working with
code. Dijkstra (1972) contended that program construction

should proceed in a top-down, structured fashion. By

limiting the control structures allowed, he assumed that
structured programs would be easier to understand, debug, and
modify than unstructured ones because the simplified control
flow would make the functions performed by the program easier
to trace. Weissman (1974) demonstrated that well-structured
programs were easier to understand, and Lucas and Kaplan
(1974) found that structured programs took less time to
modify. Love (1977) observed that simplified control flow
made programs more understandable to graduate students, but

not to beginning student programmers.

Mnemonic variable names provide a form of documentation
commonly believed to simplify the cognitive task of
understanding or modifying a program. In experiments using
short Fortran programs, Shneiderman (1976) found that
meaningful variable names produced superior comprehension and

debugging performance when compared to one or two letter

variable names. Newsted (1979), however, cautioned that a |

poor selection of mnemonic names may interfere with
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comprehension: "One programmer's mnemonic is another's

gobbledygook" (p.21),

The inclusion of comments is another type of
documentation purported to simplify modification tasks,
although there is some contention over how they should be
implemented. Global comments preceding a program indicate
what objectives are accomplished, while in-line comments
delineate how and where the objectives are fulfilled. Some
authors encouraged the use of in-line comments to simplify
the process of making changes to programs (Wilkes, Wheeler, &
Gill, 1951; Poole, 1973). Others (Musa, 1976; Shneiderman,
1977) found that global comments improved student
programmer's ability to comprehend and modify programs, but
that in-line comments seemed distracting. In a Fortran
modification task with student programmers, Yasukawa (1974)
found that a group given global comments performed better
than a group given in~line comments. However, Newsted (1974)
observed that comments might actually interfere with attempts
to understand short Fortran programs of less than 30 lines.
Still other computer scientists recommend both global and in-
line comments, suggesting that there is never too much

documentation.

11
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Results

Experiment I. In Experiment I, 50% of the statements

were correctly recalled across all programs and expefimental

conditions. Performance differed significantly among the

program classes. These differences accounted for 8% of the

variance in performance in addition to that accounted for by
individual differences among participants,
Engineering programs were the most difficult (41% of the

statements correctly recalled), followed by statistical

(52%), and non-numeric (57%) programs. When the specific

program was taken into account, another one-fifth of the

variance in performance was explained. However, this result

was not strictly a function of differences among programs, :

because variance related to specific programs was confounded

with variance related to participants. That is, each

T e e

participant saw only three of the nine programs.

The complexity of the control flow significantly

affected performance. As expected, the least structured

level was the most difficult to reconstruct. <Contrary to the

N e

tenets of structured programming, however, the most

structured level did not produce the best performance. A

o

greater percent of statements were recalled from naturally

structured (56%) than from structured programs (52%),
although this difference was not significant. A post hoc 5}

analysis showed the means for naturally structured and

42 ’
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unstructured programs (56% versus 42%) to be significantly

different.

Assigning different levels of mnemonicity to variable
names had no significant effect on performance. Also,
per formance was not affected by the order in which programs
were presented to participants, suggesting that any learning
process which might have affected the results occurred during

the pretest rather than during the three experiment tasks.

Experiment II. Across all experimental conditions, an

average of 62% of the requirements for each modification was
accurately implemented (EB = 31%). The average time to
complete the modifications was 17.9 minutes (§P = 11.4),
ranging from 2 to 59 minutes with a positive skew. Score and

time were uncorrelated.

Only a small percentage of the variance in accuracy
scores were related to the factors studied here. However,

there were substantial differences in the degree to which

3 performance on each of the three programs could be
predicted. Performance on two of the programs was
significantly predicted. Half of the variance was accounted
for in the separate results for each program, and 35% was
accounted for in the combined results of both programs.
However, the results for the third program were not

significant.
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Order of presentation significantly affected accuracy
scores. Participants made more complete modifications in
less time with each succeeding experimental task. However,
the two programs on which performance proved most predictable
were more frequently presented second or third. Thus, random
assignment of presentation orders failed to counterbalance
the number of times each condition appeared in each position

order.

The difficulty of the modification affected accuracy
scores on only the two most predictable programs.
Performance on those programs was poorer on modifications
which required more lines of code to be inserted. The
complexity of the control flow also affected accuracy scores
on the two programs for which accuracy was most predictable.
Modifications to the structured programs were more accurate
than those made to unstructured programs. Accuracy scores
did not differ among programs, nor among the type of

documentation included in the program.

Over one quarter of the variance in the time required
to complete the modifications across all three programs
could be accounted for by variables studied here. Time to
complete the modifications was more easily predicted than
accuracy scores across all three programs and on the program

where accuracy was poorly predicted. Results for time

4
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generally were similar to those observed for accuracy. The
specific program and type of documentation were unrelated to
the criterion. Significant effects were observed for
difficulty of the modification and order of presentation,
although again, the interpretation of the effect for this
latter variable is confounded. Control flow complexity was

not significantly related to time, although it was modestly

related to accuracy.

Further inspection verified that the number of
additional statements required in the code to complete a
modification accurately was related to the time required to
insert them., Fitting a curvilinear function to these data
using least squares procedures resulted in a curvilinear
correlation of .83 and a standard error of estimate of 2.5

minutes. No such relationship was found for accuracy.

Experiment III. The average time to locate bugs across

all experimental conditions was 20.1 minutes (SD = 16.2).

All but six of the 162 experimental tasks comprising this
experiment were completed successfully during the allotted 640
minutes. These six conditions were not associated with any
particular factor. Despite the use of a preliminary task to
familiarize the participants with the experiment, a
significant order effect occurred (p < .04), indicating that

learning took place during the first of the three

experimental tasks.
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Differences in solution time for the three programs were

T ———— "

significant. Finding the bug in the accounting program
required an average of 15.1 minutes, 20.0 minutes in the
program that sorted questionnaire data, and 25.8 minutes in

the grade-scoring program. Increasing the length of the

programs had a modest effect on the time to locate and
correct the error. The average time for the short programs
was 16 minutes, while the medium and long programs required a

mean of 21 and 23 minutes, respectively. §

Averages for the three error categories were not
significantly different from one another. However, a very
large interaction occurred between type of bug and program.
This interaction accounted f: the largest percent of
variance (26%) of any of the experimental relationships
studied. No significant differenceé in performance resulted

from the three types of control flow.

Discussion

Control flow complexity was significantly related to
programmer performance in two of the experiments. In
Experiment II structured code tended to produce more accurate
modifications than unstructured code. In Experiment I,
however, naturally structured code was more easily

comprehended than unstructured code. It was not clear from

10




the results of these two experiments whether rigidly
structured code or code structured with a more natural
control flow for Fortran can be maintained more efficiently.
However, both structured control flows proved superior to

unstructured code in at least one of the experiments.

In order to determine the most effective method for
structuring a program, Experiment III compared naturally and
graph-structured Fortran 1V to Fortran 77. No significant
differences were evident among these three types of top-down
control flow. This finding agreed with previous results
where differences were found between top-down and convoluted
control flow, but not between types of top-down control
flow. The minor deviations from strictly structured code
allowed in the naturally structured version of Experiment III
did not adversely affect performance. Summarizing the
combined results of the three experiments, it would appear
that the overall top-down quality of the control flow is
important to performance, but careful attention to strict
structuring does not appear to improve programmer performance
significantly. Further, since no difference was found
between the graph-structured and Fortran 77 program versions,
it would appear that the new constructs provide little
additional aid in a debugging task beyond that provided by a

forward flow.

The mnemonic value of variable names did not affect
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l performance. However, many participants seemed to prefer

y mnemonic names, since they used their own, more meaningful
names when rewriting the least mnemonic versions of the
programs. For the medium and most mnemonic versions, they
tended to use the original names supplied. Thus, the
contribution of mnemonic variable names is supported by

anecdotal rather than statistical evidence. |

It was expected that the inclusion of either global or

in-line comments would significantly improve performance on a

modification task. No such improvement was observed.
Nevertheless, this counterintuitive result concurs with the
non-significant effect for mnemonic variable names in t
Experiment I. Lack of effects for documentation aids in both
experiments may have occurred for several reasons. First,

in Experiment I where levels of variable mnemonicity were
manipulated, global comments were provided with all programs.
In Experiment II where types of comments were manipulated,
mnemonic variable names were provided in all programs. Thus,
the existence of one type of documentation may have reduced
the additional information available from the documentation
aid being experimentally manipulated, reducing its impact on

performance.

A second possibility is that documentation aids do not
contribute significantly to performance for programs of the

modular size (approximately 50 lines) employed here. 1In
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large systems with many modules and thousands of lines of
code, documentation may have more impact on performance
because of the increased amount of information to be
processed. Thus, program size may moderate the relationship

between documentation and performance.

Performance effects due to differences among programs in
Experiment I are not easily explained from these results.
The significant effect due to class of program may have been
a function of some familiarity factor specific to the samples

of programs and programmers studied.

In Experiment III a large percent of the variance in
performance was accounted for by a program-by-error
interaction. It appears that some quality of the algorithm
in which the bug is embedded influences a programmer's
ability to locate it. This result has implications for the
usefulness of various schemes for categorizing software
bugs. The implied value of these taxonomies is to identify
properties of bugs which suggest how they are created or how
difficult they are to detect. Simple' taxonomies based on
syntactic relationships will probably not prove sufficient
for this purpose. The results of this experiment suggest
that the detectability of a bug depends on the context of the
algorithm surrounding it. This contextual effect may
determine the optimal strategy for finding the bug, and it is

this search strategy that needs to be understood if debugging
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performance is to be improved.

In the last section of the post-session questionnaire,

the participants were asked to describe their searching
strategies for locating the bugs. Typically, one of two
approaches was described. In the first strategy the

programmer tried to understand the whole program from

beginning to end before searching for the section with the
bug. In the second strategy the programmer used appropriate
clues in the output to go directly to the section containing
the bug. The latter appeared to be a much quicker strategy
for debugging, but there were insufficient data for a
meaningful statistical analysis. In order to improve the
debugging performance of programmers it will be important not
only to identify effective search strategies, but also to
identify conditions under which they will be differentially

effective,

Different search strategies emphasize the importance of
individual differences among programmers. As measured by a
pre-test, these differences accounted for significant
variance in performance in the first two, but not in the
third, experiments. The effect of individual differences
might have been even greater if the sample had been expanded
beyond the programmers studied. It was also possible to
predict the performance of an individual programmer from job

history data. Several important factors seemed to be the
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number of languages a programmer had used and familiarity
with certain programming concepts. Thus, the important
factor in work history seemed to be the breadth rather than
the length of experience. These predictions from job history
were more valid for programmers who had three or fewer years
of experience in Fortran. Future work is needed to refine
experiential questionnaires for use in personnel functions
such as selection, assessment for training needs, and

placement.

In summary, several factors influencing the
understandability and modifiability of computer programs were
identified. Yet, results for the modern programming
practices studied here were probably conservative due to the
small size of the programs studied. The cognitive load
placed on programmers attempting to understand or modify
approximately 50-line programs did not require the degree of
cognitive assistance provided cumulatively by structured
coding, mnemonic variable names, and comments. While the
information provided by these practices were not necessarily
redundant, the task could be mastered with less information
than was presented. However, in a large system composed of
many modules, the cognitive burden of implementing
modifications may be so great that each of these programming
practices may contribute significantly to efficiency. Thus,
future research needs to assess the independent benefits of

these practices in substantially larger programs.
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