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INTRODUCTION

j Department of Defense (DOD ) software production and

maintenance is a large , poorly understood , and inefficient

process. Recently Frost and Sullivan (Th. Military Software

Market , 1977) estimated th. yearly cost for  sof tware  w i t h i n

DOD to be as larg. as $9 billion. Di Roze (1977) has also

estimated that 115 major defense systems depend on software

for their success. In an effort to find near—term solutions

to softwar. related problems , the DOD has beg un to support

research into the software production process. A formal 5

year R&D plan (Carison & DeRoze , 1977) related to the

management and control of computer resources was recently

written in response to DOD Directive 5000.29. This plan

requested research lead ing to the identification and

v a l i d a t i o n  of me t r i c s  for  so f tware  q u a l i t y .

Interest continues to grow in the use of quantitative

m e t r i c s  which  assess the c o m p l e x i t y  of software. Such

metrics are assumed to be valuable aids in determining the

quality of software. Boehm , Brown , and Lipow (1976) and

McCall , Richards , and Walters (1977) have proposed

combinations of such metrics which assess numerous factors

tha t collectively constitute this nebulous ‘software

quality ’. Such factors include reliability, portability,

maintainability, and myriad other xxx—abi ].ities.1
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There are  numerous p ot e n t i a l  uses for  measures  which

assess these various quality factors. First , they can be

used as feedback to programmers during development ,

indicating potential problems with code they have developed

(Elshoff, 1978). Use of metrics in this way would require

guideline s for altering code so as to bring different

metric values within acceptable limits.

A second use for metrics is in guiding software testing .

McCabe (1976) proposed the cyclornatic number as a means of

assessing the computational complexity of the software

testing problem . Other metrics which index the quality or

complexity of software may help identify modules or

subroutines which are likely to be the most error—prone .

Another use for software metrics is their use in

estimating maintenance requirements. If one or more metrics

can be enpirically related to the difficulty programmers H
experience in working with software , then more accurate

estimates can be made of the manpower that will be necessary

during maintenance . Empirical valid ity studies will be

necessary before employ ing metrics for any of the three uses

described here . Such research should be conducted with

professional programmers.

The experimental investigations described in this report

comprised a. research program seeking to provide valuable

.- -——~ —-. -- --— - -~- - ----— - -—•--—-•---- ..--- - - —— •-•-  --—5—--.- - - • — - -- - - - -- . 5 -  _ _5_— _- — - 
-, -- -.
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informat ion about the psychological and human resource

aspects of computer programm ing . The challenge undertaken in

this research was to quantify the psychological complexity

of software.  It is important to distinguish cl~ a-~1y between

the psychological and computational complexity of software.

Computational complexity refers to characteristics of

L algorithm s or programs which make their proof of correctfless

difficult , lengthy, or impossible. For example , as the

number of distinct paths throug h a prog ram increases , the

computational complexity also increases. Psycholog ical

complexity refers to those characteristics of software which

— 1. make human understand ing of software more difficult. No

direct linear relationship between computational and

psychological complexity is expected . A prog ram with many

control paths may not be psychologically complex . Any

regularity to the branching process within a prog ram may be

used by a programmer to simplify understand ing of the

program.

Haistead (1977) has recently developed a theory

concerned with the psychological, aspects of computer

programm ing . His theory provides objective estimates of the

effort and time required to generate a program , the effort

required to understand a prog ram , and the number of bugs in a

particular program (Fitzsimmons & Love , 1978). Some

predictions of the theory are counterint uitive and contradict

results of previous psychological research. The theory has

3 
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attracted attention because independen t tests of hypotheses

derived from it have proven amazingly accurate .

Althoug h predictions of programmer behavior have been

particularly impressive , much of the research testing

Halstead ’s theory has been performed without sufficient

experimental or statistical controls. Further , much of the

data were based upon imprecise estimating techniques.

Nevertheless , the available evidence has been sufficient to

justify a rigorous evaluation of the theory.

Rather than conduct a research program designed

specifically to test Halstead ’s theory of software science, a

research strategy was chosen which would generate suggestions

for improving programmer efficiency regardless of the success

of any particular theory. This research focused on four

phases of the software life—cycle: understanding ,

modi f i c a tion , debugging , and construction. Since different

cogni tive processes are assumed to pred ominate in each phase ,

no s ingle  experiment or set of experiments on a par t i cu l a r

phase were believed to provide a sufficient basis for making

broad recommendations for improving programmer efficiency.

E~ach expe r iment in this research program was designed to test

important variables assumed to affect a particular phase of

software development. Professional programmers were used in

these experiments to provide the greatest possible external

validi ty for the results (Campbell & Stanley, 1966). In

I 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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add i t ion , the the....y of software science and other related

me trics were evaluated with these data .

I. The results of this program of research are described in

- two separate sections , each considering a primary focus of
- 

the program : software complexity metrics and modern cod ing

practices. A prel iminary section will describe the

methodology employed in the three experiments comprising this

program .

—~~~~~~~~~~ — —-— -— — — — ~~~~- __5-~~~~
_•

~~~~~~~~~~~~~~~~~
_ __ __ _ _ _ • _ _  —~~~~ - —- — —~~~~~~~———— -~~- --• ---•— - - 



- -----—-—---—----- 

:=:~
-T.:= ~~T~ — ---~-- - - —

~~~
-
~~~—--—--~-.- - - - • --—— - -•-- ---- - — -

I

METHODO LOGY

I
Overview

The research conducted to evaluate software complexity

metrics and modern codinq practices consisted of three

experiments designed around program comprehension ,

modification and debugging . These experiments employed

within subjects , mul tifacto r designs.

Participants

Each of the first two experiments involved 36

proqrammers from several General Electric locations.

Participants in Experiment I had a working knowledge of

For tran and averaged 6.8 years of professional proqrammin g

experienc e (SD = 5.8). In Experiment II, the participants

had a working knowledge of Fortran , averaged 5.9 years of

professional programm ing experience (SD = 4.0) , and had not

par ticipa ted in the previous experiment. The 54 participants

in Experiment III (30 civilians and 24 from the military)

averaged 6.6 years of programming experience in Fortran ,

ranging from 1/2 year to 25 years (SD = 6.1). The majority

of participants possessed an engineering backg round .

6
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Procedures

In troductory exercise. In all experiments , a pac ket of

materials was prepared for each participant with written

instructions on the experimental tasks. As a preliminary

exercise , all participants were presented with a short

For tran program and a brief description of its purpose. In

Experiment I, they stud ied this program for 10 minutes and

were then given 15 minutes to reconstruct a functional

equivalent from memory. In Experiment II , par tic ipan ts were

allowed unl imited time to complete a specified modification.

In Exper imen t I I I , par t icipan ts were ins truc ted to f i n d a bug

in the program.

The in trod uc tory program was in tend ed to pr ovide a

commmon basis  for  comparing the ski l ls  of par tic ipan ts and to

diminish learning effects prior to the experimental tasks .

Th is la tter poin t is impo r tan t , since a pi lo t stud y

(Sheppard & Love , 1977) indicated that learning may occur

during such tasks.

Experimental tasks. Following the initial exercise in

each exper imen t , par ti cipan ts were presen ted In turn wi th

three separate programs comprising their experimental tasks .

In Experim ent I, they were allowed 25 minutes to study each

pr ogram , during which they were permitted to make notes or

draw flowcharts. ~~~~~ the end of the stud y period , the

I-
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orig inal program and all scrap paper were collected . Each

participant was then given 20 minutes to reconstruc t a

functional equivalent of the prog ram from memory.

In Experiment II, a separate modification was indicated

for each of the three prog rams and was described on a sheet

accompany ing the program listing . Participants were allowed

to work at their own pace , taking as much time as needed to

implement the modification.

On each task in Experiment III , participants were

• presen ted wi th inpu t f i l e s , a lis ting of the Forttan program

with the embedded bug , a correct output , and the erroneous

output produced by the program . All differences between the

correc t and erroneous outputs were circled on the erroneous

output . Also included were explanatory descriptions of any

subroutines or func tions not presented in the listing but

• referenced by the program . Participants were allowed to work

at their own pace , signalling the experimenter when they

believed they had identified and corrected the bug . The

experimen ter verified all corrections , and in the case of a

mistake , the participants was instructed to try again until

the task was successfully completed . The maximum time

par ticipants were allowed to work on a particular program was

45 minutes for the preliminary task and 60 minutes for each

experimental task. Time was measured to the nearest minute .

j  8



Ind ependent Variables

Program class. Three general classes of programs were

used in Experiment I: engineering , statistical , and non—

numerical. Three programs were chosen for each class from

among many solicited from programmers at several locations .

These nine programs varied from 36 to 57 statements and were

considered represen tative of programs participants might

actually encounter. All experimental programs were compiled

and executed using appropriate test data . Experiment II used

three of the nine programs from Experiment I. In Experiment

III , three programs were selected which ~~~ no t been

employed in the previous studies.

Complexity of control flow. Three control flow

versions , performing identical tasks, were defined for each

program . The naturally structured and graph—structured

versions were implemented in Fortran IV , while a third

version used Fortran 77 (Brainerd , 1978), which includes the

IF—THEN—ELS E, DO— WHILE, and DO—UNTIL constructs.

The Fortran 77 version of each prog ram was implemented

in a precisely structured manner. All flow proceed ed from

top to bottom , and only three basic control constructs were

allowed : the linear sequence , sLructured selection, and

structured iteration.

9 
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The graph—structured version of each program was

implemented in Fo r t r an  IV f rom the For t r an  77 ve rs ion ,

replacing the special constructs but prod uc ing code for which

the control  flow graphs of the two versions were identical.

r All nested re la t ionsh ips  could be red uced through structured

decomposition to a linear sequence of unit complexity. A

full discussion of reducibility is presented by McCabe

(1976)

Structured constructs were awkward to implement in

Fortran IV (Tenny, 1974). In order to test a more naturally

structured flow , limited deviations were allowed in a third

version of each program . These deviations includ ed such

1. practices as branching into or out of a loop or decision , and

multiple returns .

Variable name mnemonicity . In Experiment I, three levels

of mnemonicity for variable names were manipula ted

independently of prog ram structure. Several non—particip ants

were shown the programs and asked to assign names to the

variables. The names chosen most frequently were used in the

most mnemonic condition. The med i um mnemonic level consisted

of less frequently chosen names. In the least mnemonic

condition , names consisted of one or two alphanumeric

characters.

10 

~~
—--

~~~~~~~~~~~~~
-
~~~~~

-5 — - -- - - - —- -
~~~

-- -
~~~~~

--— - -
~~~~~~~~~~~~~~~~ 

- - - -——-
~~~~~~~~~~~

-- - - - - -  -



-~~ -,- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - - - -— — -—- -
~~~~~~:~~~

-
~~

-—-‘-- -_ .— - --— --.—— - - - - -- -—- 5— --- •— —---—----—----—--—----— -—•- - —5.,

Comments. Three levels of commenting were manipulate d

in Exper imen t  11: global , i n — l i n e , and none. Global

comments appeared at the front of a prog ram and provided both

an overview of its function and a definition of the primary

var iab les .  I n — l i n e  comments were interspersed th roughou t

the program and described the spec i f ic  func t ions  of small

sections of code.

Modifications. Three types of modifications were

selected for each prog ram in Experiment II as typical changes

a programmer might be expected to implement. The level of

difficul ty for seven of the nine modifications increased with

the number of new lines that had to be inser ted to achieve a

correc t implementation , and the hardest modifications for

each program required the most additional lines.

Type of Bug. In Experimen t III three types of semantic

bugs were chosen from a classification developed by Hecht ,

Sturm , and Tra ttner (1978): computational , logical , and data

errors. Bug s in each category were defined for each of the

three programs in order to maximize the similarity of bugs

from a single category across programs. Computational bug s

involved a sign change in an arithmetic expression. Logic

bugs were implemented by us in - the wrong logical operator in

an IF cond i tion. Data bugs involved wrong index values for

variabl es.

11
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Each bug in this experiment was purposely designed to

affect only a limited area of code. Tha t is, each

calculation containing a bug occurred near the corresponding

WRITE and FORMA T statements. In no case did a bug produce

er rors  in rout ines  other  than the one in which it was

embedded , and each bug appeared in only one line of code.

Length. The inclusion of additional subroutines to the

programs employed in Experiment III made it possible to

present each program in three different lengths. The shorter

programs had 25—75 statements , medium programs contained

100—150 statements , and the longer programs contained

approximately 175—225 statements.

Program l i s t i n g s  included a two or three line

explanat ion  of any routine or function that was called by a

program but not presented in the experimental materials.

Participants were told to assume that missing routines worked

correc t ly .  All  of the input  and ou tput  files were presented

regardless of the length of the program . That is, for the

shorter version , some of the input was read in and some of

the output was produced by subroutines which were not

presented .

Experimental design. In order to control for individual

differences in performance , a within subjects, 3 4 fac to r i a l

j design was employed in each experiment (Kirk , 1968). In

12
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Experiment I, three types of control flow were defined for

each of nine programs , arid each of these 27 versions was

presented in three levels of variable mnemonic ity, for a

total of 81 programs. In Experiment II, three levels of

control  f low were def inod  for each of the three  programs .

Each of these nine  vers ions  was presented in three levels of

commenting . M o d i f i c a t i o n s  at  three levels of d i f f i c u l t y  were

developed for each program , generating a total of 81

experimental conditions. In Experiment III , three types of

control flow were defined for each of three programs , and

each of these n ine  vers ions  was presented in three lengths

w ith th r ee different bugs, for a total of 81 different

experimental conditions (Table 1)

The first 27 participants in each experimen t exhausted

the 81 separate programs , and the final 9 participants in the

first two experiments repeated 27 of the previous

experimental tasks. Two complete replications ~f the design

in Experiment III were affo rded by the 54 participants.

Programmers at each location were randomly assigned to

experimental conditions , but in such a way tha t over the

course of their three experimental programs , every

participant had experienced each level of each independent

variable. That is , they had worked with a program from each

class , wi th each type of structure , wi th each type of

commen ting , etc. The order of presen tation of the three

programs to each participant was random . The order of

13 

_ _ _ _ _ _ _ _ _



—5- ~~~~--5-- --- ---5w — ~~~ -- -~~~~~~~-~~~~~~ --~~~ - -- -•-—- -___,-~~~~~~~ - _- 5-,- -—----- ~- — - — — — --5— --5- -- - 5----- - - .~~~~ - - - —

‘I
I

,
~~ 0S.  00 —r.~.
0 )0 0  1 —  il~100 t~ o.c

.—~~~ I.. I-i 4J
bO~~~~ 0)

0) 0) O~~~~ ~~~~00 I
0l~~ 1.’ 0 0) ~I.. )~ I-’

o
5 .  ,‘•~ p’~ 

pe~

0)
— U’a
.~~ In ~~ In
CO ~ o c

.— 0 O~~~~ 0
I. .., ._ — 4.1 ..I
CO ~.In 4.’ COI v 1 ’- ’ ~ U 4.1

- - . — —  C O O  0 ) .~~ U
,~~~_ 

~. $~ 14  0)
0)o.~c C ~~ U • ~ I-i 5

— 0 0 0

~ux LJ~~~~~~~~ U I-.

4) ,.1 I’) p’~ ~4•~ ~.

10— In

.2)
00

4)
.— ~~~~~~ In

Z 0)
0

0.l.. 4 ) 1 0  — 4 . ’  ~~~‘0 ) 0 )  14.’
• .

~~~0. U
IM~~~~~ • — ~~~ I 4-’

I-sU.) . 2 ) 0 )  CO 0 ~ CO U
$M 0 ~ 4)

~~~~~~ 00 1..
• ~La~~~ 0 c 0 ) 0  1.

0
• o . Ux ~~~~. U

0)
—

(0

4-’
.J tn

•~~~4)
4 ) —

4).~~0.15
4) .—
0.,-
4 ) 1 5

- I.
14

- - 5  _ _ _ _ _



__ -- -w _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

- - 5 - —- _ 
-
~~~~~~~~~~~ 

-
~~~

presentation of conditions was not counterbalanced in the

first two experiments. However , this problem was corrected

in Experiment III to assure that each level of each

independent variable appeared as the first , second , or third

task an equal number of times .

Dependent Variables

Experiment I. Current literature (Love, 1977;

Shneiderman , 1977) suggests tha t the most sensitive measure

of whether  programmers  unders tand a prog r am is their ability

to learn its structure and reproduce a functionally

equ iva len t  program w i t h o u t  notes. Thus , the percent of

statements correctly recalled became the dependent variable

in Experiment I. The criterion for scoring the

reconstructed programs was the functional correctness of - •

each separa te ly  recons t ruc ted  s ta tement .  V a r i a b l e  names and

s ta tement  numbers  which differed from those in the o r i g i n a l

program were counted as correct when used c o n s i s t e n t l y .

Cont ro l  s t r u c t u r e s  could be different from the original

program so long as the groups of statements perfo rmed the

same func tions .

Three judges scored each of the 108 reconstructed

prog rams independently. Interjudg e correlations of .96 , .96,

and .94 were ob~tained across the three sets of scores. The

average of the judges ’ scores on each program (mean percent

i s

I
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I
of s ta tements  co r rec t ly  recons t ruc ted)  was used as the

performance measure in Experiment I.

J Exper iment  II .  The dependent va r i ab l e s  in Experiment II

were the accuracy of the implemented modification and the

t ime taken by the participant to perform the task. The

indivi dual steps necessary for correc t implementation of each

modification had been delineated ~n advance and assigned

equal weights. That is, prototypes of each version of a

prog ram wi th each modification correctly implemented were

established as the criteria against which participants ’ wor k

would be compared . An accuracy score reflecting the percent

of steps correctly Implemented in each modification was

computed by comparing each participant ’s changes with the

criteria. All of the implemented modifications were scored

by the same grader. The time to implement a modification was

measured to the nearest minute by an electronic timer. Thus

the performance measures were the percent of changes

correctl y implemented to a program and the number of minutes

• required to complete them .

Experimen t III. The dependent variable in Experiment

III was the number of minutes necessary for the participant

to locate and correct the bug .

16 
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Individual Differences Measures

Scores on the preliminary task in each experiment were

used as a measure of programm ing ability related to the • 

S

experimental tasks. Participants reported their type of

programm ing experience and the number of years they had been

programming professionally in the first two experiments . The

i n f o r m a t i o n  requested in Experiment III includ ed specific

type of experience , number of years prog ramm ing

professionally in Fortran , number of statements In the

longest Fortran and non— Fortran programs written , the f i r s t

programm ing language learned , and number of languages

learned . In addition , various programm ing concepts tha t

appeared relevan t to the experimental programs were listed ,

and participants were asked to mark those with which they

were familiar.

.1

I
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SOFTWARE COMPLEXITY METRICS

I
Halstead ’s Software Science

Halstead (1977) developed a theory which provides

objective estimates of the effort and time required to

generate a prog ram , the effort required to understand a

prog r am , and the number of bug s in a particular program

(Fitzsirnmons & Love , 1978). In 1972, Halstead first

published his theory of software physics (renamed software

science) stating that algorithms have measurable

characterist~~’s analogous to physical laws. Accord ing to

H als tead , the amount of effort required to generate a program

can be calculated from simple counts of the actual code. The

calculations are based on four quantities from which Halstead

derives the number of mental comparisons required to generate - -

a program ; namely, the number  of d i s t inc t opera tors and

operands and the total frequency of operators and operands.

P r e l i m i n a r ~’ tests of the theory reported very high

correla tions (some greater than .90) between Haistead ’s

me trics and such dependent measures as the number of bug s in

a program (Cornell & Halstead , 1976; Funam i & Halstead ,

1975) , programm ing ti-m e (Gordon & Haistead , 1976) , and th.?

q u a l i ty of p rograms  (Bulu t & Ha ls tead , 1974; E l s h o f f ,

1976; Gordon , 1977, Halstead , 1973). Fitzsimmons and Love

18
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(1979) , Funam i an d Hals tead (1975 ) , and Ak iyama (1971) found

tha t Haistead ’s ef f o r t me tr ic  was a much be tter pred ic tor o f

the number of errors in a program than either the number of

program steps or the sum of the decisions and calls.

Volum e. Halstead presents a measure of program size

which is differen t from the number of statements in the code.

His measure of program volume is also independent of the

charac ter se t of the language in which  the a lgo r i thm is

implemented. Halstead defines his measure of program volum e

as:

V = (N 1 
+ N ,) log2 (n~ 

+

where ,

number  of un ique opera to rs ,

number of unique operands ,

N1 = total f requency of opera to rs ,

N2 = total frequency of operands.

Level. Halstead’ s theory also genera tes a measur e of

prog ram level which ind icates the powe r of a language. As

ii 19 
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the pr og r am level approach es 1 , the statement of the problem

• or i ts solution becomes more succinct. As the program level

appr oaches 0, the statement of a problem or its solution

becomes increas ingly  bul ky, requ iring many operators and

operands. A higher level language is assumed to have more

power fu l  opera tors a v a i l a ble; thus  few er opera tors  need

to be used to implement a particular algorithm . Halstead ’s

estima te of prog ram level is computed as:

A
L = 2n2/ri1N2.

Effo rt. Haistead theorized that the effort required to

gen era te a program woul d be a r at io of the pro g ram ’s volume

to its level. He proposed this measure as representing the

number of mental discriminations a programmer would need to

make in developing the program . Haistead ’s effort metric

(E) was computed precisely from a program (Ottenstein , 1976)

whi ch was modi f i e d to accept as inpu t the sour ce code f r o m

the prog ram studied . The computational formula was:

• E = ~1 N2 (N1 + N2) log2 (i~~ +

2~2

S

McCabe ’s Complexity Metric

McCabe (1976) defined complexity in relation to the

decision structure of a program. He attempted to assess

complexity as it affects the testability and reliability of a

20 
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module. McCabe’s complexity metric , v(G), is the classical

graph— theory cyclomatic number indicating the number of

regions  in a graph , or in the current usage, the number of

linearly independent control paths comprising a program . The

compu ta tiona l  fo rmula  is:

v(G) = # edges — # nodes + 2(connected components) .

Simply stated , McCabe ’s v(G) counts the number - of basic

control path segments throug h a computer program . These are

the segmen ts which , when combined , w ill gener ate every

possible path through the program . McCabe presents two

simpler me thods of calculating the metric . McCabe ’s v (G) can

be compu ted as ei ther the number  of pred ica te nodes plus 1,

or as the number of regions in a planar graph of the control

flow .

The simplest possible program would have v(G) = 1.

Sequences do not add to the complexi ty. IF—THEN—ELS E, DO—

WHILE , or DO—UNTIL constructs each increase the complexity by

1. It is assum ed that regardless of the number of times a

DO loop is executed there are really only two control paths:

the straight path throug h the DO and the return to the top.

C l e a r l y ,  a DO executed 25 times is not 25 times more complex

than a DO executed once.

21 
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Resul ts

Significant intercorrelations were observed among the

complexi ty metrics in all experiments. In Experiment I the

Halstead and McCabe metrics were strongly related , while

their correlations wi th lines of code were moderate (Table

2) . In Expe r iment II all three measures were strongly

in tercorrelated . In Experiment III, wi th longer programs ,

the relationship between Haistead’ s E an d the o ther measures

was only modera te.

Co r r e l a t ions w ith P e r f o r m a n c e

Experim ent I. Sirtce different levels of variable

mnemonicity and type of commenting neithe r affected

perfo rmance nor caused any change in the value of the

complexi ty metr i c s  for  a par ti c u l a r  pr ogram , some of the data

r eported in the sections on performance predictions were

aggregated over the three levels of mnemonicity in Experiment

I and the three types of commenting in Experiment II. Thus ,

when ana lyses  a re  repor ted  fo r  27 da ta  p o i n t s , each d a t u m

represents the average of at least three per formance scores.

The c o r r e l a t i o n s  between pe rcen t  of s t a t e m e n t s

correc tly recalled and complexity metrics were all negative ,

in dicating tha t fewer lines were correctly recalled as the

level  of compl exi ty represen ted by these thr ee measur es

• 1 22



Table 2. Intercorrelations for Software Complexity
Measures

Correlations

Metric E v(G)

Experiment I (n 27 1

McCabe ’s v(G )

Length 47** .64*** 
- ‘

Exper iment 2

Unmod if ied (n

McCabe ’s v(G) .85**

Length 97***

Modif ied (n = 27 )

McCabe ’s v (G)

Length .92***

Experiment 3 (n = 27 )

McCabe ’s v (G)

Length .56***

Note: Haistead E values are reported in thousands
of mental discriminations .

*2 <  .05
< .01

*** 2 < .001

23
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increased. Length and McCabe ’s v(G) were moderately related

to per formance , while little relationship was found for

Haistead ’s E (Table 3).

I
— Investigation of a scatterplot of Halstead ’s E with

I perfo rmance indicated that there were three extreme scores

I which were obtained from three participants who consistently

outscored others on both the pretest and the experimental

task. With the three data points of the exceptional group

removed , the correlations for all three complexity metrics

improved . Further , there were considerable differences in

diff iculty among the programs studied . As a heuristic device

to determine whether the complexity metrics were more

pred ic t ive of pe r fo rmance wi th i n programs than across them , a

transfo rmation was applied separately to the data for each

- prog ram . Altho ugh Halstead ’s E was unrelated to per formance

in the raw da ta , a strong correlation was observed after

correc tions were made for differences among programs and

par ticipants. Such an improvement was not observed in the

results for v(G) or length.

I Expe r iment It . The complexity metrics were ~enera1ly

more strongly correlated with time to completion than with

I the accuracy of the implementation , especially on the

modified programs. Both metrics and length were moderately

I related to both criteria on modified programs (Table 4).

I
I :4

--

• ——— - —-— - — —- - -— — —-5-- -~~~ — -- - 5 -5 -5-— -5-  —~~-- - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-_________________________________________________



-— -- -5 — —-5— — — —-5-
~~~~
. 

~~~~~~~~~~~

-

Table 3. Correlations of Complexity Metrics With Percent
of Statements Correctly Recalled in ExDeriment 1

Correlat ions

Criter ion E v(G) Length

Unaggregated
data (n • 108) ~.19* 34*** 47***

Aggreg ated
data (n — 27) - .13 - p 35* - . 53**

Excep tional group
removed (n — 24)  - .36* .. 55** ~.61***

Transformed scores
(n — 27)  - .10 - .24 - .38*

Excep tional group
removed and
transformed scores
(n — ‘4) 7 3***  ~.�l _ .65***

*2 < 05
~ .01
< .001

-I
I
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Table 4. Correlations of Complexity Metrics With
Accuracy and Time in Experiment 2

_________________________________________________________________________________________

Correlat ions
Cr iterion E v( G ) Length

Unaggregated fn - 108)

Accur acy

Unmodif ied - .12 ..21 * - .

Modified ~.17* - .21* - .20*

Time to comple t ion

Unmodified .16* .15 .13

Modif ied  .28** .24** .30***

Aggregated (n - 2 7 )

Accurac y

Unmodified - .21 ~.36* ~.28*

Modified - .29 - .36* 34*

Time to completion

Unmodif ied  . 2 5  .2 3  . 2 0

Modified 44** .38* .46**

*2 < .05
~ .01
~ .001
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Experiment III. All three metrics predicted performance

equally well at the subroutine level . At the program level ,

however , E was the best predictor, accoun ting for  more than

twice the variance in performance than program length (56%

versus 27%, respectively) . The variance accounted for by

v(G) fell between these values (42%). A stepwise multipl e

regression analysis indicated tha t length and v(G) added no

increments to the prediction affo rded by E (Table 5).

The scatterplot of performance with Halstead ’s E

suggested the existence of a curvilinear trend in the data .

The si gnificance of this trend was tested using the second

degree polynomial  regression approach suggested by Cohen

and Cohen (1975) and Kerlinger and Pedhazur (1973) for

investigating curvilinear relationships . A multiple

correla tion coefficient of .84 indicated that the curvilinear

trend accounted for an additional 15% (p < .001) of the

variance beyond that accounted for by a linear relationship.

The prediction equation generated from these data was:

minutes to find bug = 9 .837  + .00239E — .00000000079E2

However , wi th very few data points in the right tail of this

distribution for Halstead ’s E, it is difficult to extrapolate

to the exact shape of the curvilinear trend . No curvilinear

trend was detected with either the lines of code or McCabe ’s

v(G).

I.
27 1
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I Table 5. Correlations of Complexity Metrics With

Performance Time in Experiment 3

Corre lations

Criterion E v(G) Length
5-—

Unaggregated (n - 162)

Subroutine .25*** .2 4*** .25***

Program .28*** .25*** .2 0**

Aggregated (n 27)

Subroutine .66*** 63*** 67***

Program •75*** 65*** .S 2**

. 5  **2 < 0 l
I.. *** 2 < .001

1.

S’s  
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Moderato r Effects

In order  to d e t e r m i n e  the e f f e c t s  of possible

moderators , correlations between perfo rmance measures and

software complexity metrics were computed under different

types of control  f low and comment ing , and at d i f f e r e n t  levels

of programmer experience. In Experiment I, Halstead ’s E and

McCabe ’s v(U) correlated significantl y with performance only

on unstructured prog rams (Table 6) . While a similar pattern

of c o r r e l a t i o n s  emerged in Expe r iment  tI between Halstead ’s E

and time to complete the modification , differences among

these correlations were not significant. The moderating

effects did not appear to result from restrictions of range

on the variable involved . That is , means and variances for

complexity metrics were identical across types of control

flow , and althoug h mean performance scores differed across

types o f con trol f l o w , no s ign i f i cant  d i f f e r e n ces wer e

observed in variance. This moderating effect could not be

tested in Experiment III, since unstructured programs were

not employed .

Significant moderating effects were also found for types

of commen ting . All but one of the significant correlations

between complexity metrics and modification accuracy and time

occurred when no comments were Included in the code.

Differences in correlations between in—line and no comment

- S 
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Tab le 6. Correlations Between Performance Measures and
Comp lexity Metrics Under Different Types of
Contro l Plow

Correlations
Cr iter ion and
type of control flow E v(G) Length

Experiment 1 (n - 36)

% recalled

Unstructured - . 45~~~ - . 55***  - . 68~~~
Naturally structured .07 - .08 - .20

Struc tured - .01 - .11 - .

Experiment 2 (n — 36)

Time to completion

Unstructured ~33* .24 •3 7*

NaturaLy structured .28* .20 • 34*

Structur ed .08 .21 .12

*2 <  .05
** 2 < .01

*** 2 < .001

_ 1
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Table 7. CorrelaLi~ns Between Performance Measures andI Conrnlexitv Metrics Under Different Tvoes of
Commenting in Exper iment 2 - -

I Correlations

Criterion and
• type of comments E v (G) Length

- 

Accuracy (n 36)

None - 34* - ~ 35* - 37*

Global - .18 - .31* - .23

In- line .03 .04 .03

Time (n — 3c,)

None 4** 44** ~~~~~
- 

Global  .21 .1S .18

In-iine .16 .11 .16

*2. < .05
< .0 1

***2 ~.001

31
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conditions either achieved or bordered on significance in all

cases (Table 7)

Finally, rela tionships between complexity metrics and

performanc e measures were moderated by the participants ’

years  of professional programm ing experience. The dividing

point between three or fewer years and more than three years

experience was arbitrary and represented a compromise between

minimizing the years of experience In the less experienced

category and having a sufficien t number of participants for a

correlational analysis. The complexity metrics were more

strong ly related to performance among less experienced

programm ers in all three experiments (Table 8)

Discussion

The three expe r imen ts com pr i sing th i s  study produced

empirical evidence that software complexity metrics were

related to the difficulty programm ers experienced in

understand ing and modifying software. The correlations

observed in the first two experiments , however , were not as

high as those reported by Halstead (1977) in other

ver ifications of this theory. Whi le many of the correlations

reported here will no t. seem large to readers of the

engineering or physical science litera ture , their magnitudes

I
I

.5 
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Table 8. Correla tions Between Performance Measures and

J Complexity Metrics Among Programmers Differing
in Experience

Correla t ions

Criterion and
level of experience E v(G) Length

Experimen t 1

% recalled

< 3  years (n 42) _ •35* _ •47*** ~~~~~~~

> 3 years (n = 60) - .03  - .18 - . 31~~

Experimen t 2

Time to comple tion

< 3 years (n = 32)  55*** .52*** .56 ***

> 3 years (n = 75) .20* .15 .2 2 *

~~2eriment 3

< 3 years (n — 75)  .38*** . 29*** .18

> 3  years (n = 87) . 2 0 *  .2 1* . 2 2 *

Note: Two participants in Experiment 1 did not
repor t the i r  years  of exper ience

*2 <  .05
** 2. < .01

~ .001
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broader rang e of program sizes. Second , individual

differences among programmers exerted significant effects on

the results obtained . In order to control for these

differences , the number of participants in the experiments

would need to be increased . When the data from Experiment I

were transformed in an attempt to control for differences

among prog rams and p rog r a m mers , a correla tion of — .73 (p <

. ?Ol) was obtained between the performance criterion and

Halstead’ s E. However , the question is not whether theories

can be validated with mystical transformations of data , but

whether the results of these heuristic transfo rmations can be

replicated in an experiment designed to overcome the

l imitations of previous research.

In Experiment III some of the limitations of the

previous experiments were corrected and the results not only

replicated those of previous experiments , but also

demonstrated that far stronger results could be obtained when

their limitations were overcome. The curvilinear

relationship observed in this experiment between Haistead’ s

and performance could not have been observed if only short

pr ograms had been used in the experimental tasks. The

Halstead ’s E and length values at the subr3utine level

L 

suggest tha t both are capturing program volume in modular

sized programs (approximately 50 lines of cod e or less) .

With larger programs the information measured appears to

differ; that is , Haistead measures something in addition to ,

34 
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are  t y p i c a l  of s i g n i f i c a n t  r e su l t s  repor ted  in human

factors research.

In the f i r s t two exper imen ts l ines of code prove d to be

a better pred ic tor of pr ogramm er pe r fo rmanc e than e i ther of

the complexity metrics stud ied. These results were

disappointing , since the complexity metrics were bel~ eved to

capture constructs much more closely associated with factors

which  a f f e c t the psychological  complexi ty o f so f tware than

lines of code. That is, coun ts of opera tors , operand s, and

elementary segments of the control flow should be more

closely related to the difficulty programmers experience in

working with software.

Stronger relationships in the first two experiments may

have been obscured by variation in performance scores related

to differences among participants and programs which were

enhance d by the economic al mul ti fac tor des igns  em ployed in

these experiments. There were several limitations in the

exper imental procedures employed in obtaining the data which

may have diluted the results we observed . First , all of the

programs stud ied were short (35—55 lines of code) . The

l im it ed ran ge of me tr ic va lues  ca lcu la ted on p r ograms  of thi s

l eng th may not have been s u f f i c i e n t fo r  an adequa te test of

the predictive worth of the metrics. Studies reporting

h ig her  cor r ela tio ns for  Ha i s tead ’ s E u s u a l l y  i nv olve d a

35
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but inclusive of , that w h i c h  is measur ed by length.

Many small—sized programs can be grasped by the typical

programmer as a cogni tive gestalt. The psychological

complexity of such programs is adequately represented by the —
volum e of the prcgram as indexed by the number of lines.

When the code grows beyond a subroutine or module , its

complexity to the programmers is better assessed by measuring

constructs other than the number of lines of code. This may

result partly because programmmers may represent the program

to themselves  in ways w h i c h  a re  mor e accura tely cap tured by

coun ts of opera tors , operan ds, and control paths. Thus , as

the size of a program increases , Halstead’ s E seems to become

a better measure of its psychological complexity.

One possible explanation for the superior predictive

ab il it y of Hals tea d ’s E is tha t the relation between program

size and performance is curvilinear and the log irithm ic

transformation within the Halstead measure captures this

relationship while lines of code does not. However , there

was no support In these data for a curvilinear relationship

between lines of code and performance. On the other hand , -~

curv i l i n ear r ela t ion s h i p  di d ex i st between H a l s tea d ’ s E and

per formance. This curve suggests tha t as Halstead ’s E grows

larger , a program becomes more psychologically complex , but

the inc r emen ts i n d i f f i c u l ty g r ow sma l l e r  an d sm~ 1ler. In

the debugg i ng task there seemed to be an amoun t of time tha t 
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was typically required to locate a bug within a s u b r o u t in e

once the correct subroutine had been identified

(approximately 16 minutes) . Added to this base was the time

required to identify the proper subroutine . The

curvilinear ity of the relationship between time to find the

bug and Haistead ’s E appeared to result from the time

required to isolate the problem subroutine.

A distinguishing characteristic of psychological

complexity is the ir5teraction between program characte ristics

and individual differences , such as programm i ng experience .

Chrysler (1978) demonstrated the value of experiential

variables in predicting the time to complete a programm i ng

task. In these experiments the complexity metrics were more

highly related to the performance of less experienced

programmers. Thus , the complexity metrics may not represent

the most important constructs for predicting the performance

of experienced programmers. Thes e p r o g r a m m e r s  p r o b a b l y

conceptualize programs at a level other than tha t of

operators , operands , and basic control paths. Programmers

may have fit the program into a schema they recogni-~ed from

previous experience , just as chess players l e a r n  to v i s u a l i ~~

the gameboard differentl y with experience. Results did not

indicate , however , that more experienced programmers

performed the tasks more efficiently. ~tnce the ratio

comparin g good to poor prog r ammer p e rtc~rm~inci’ is ~-~f t e n  a~

great as 28 to 1 (Sackman , E r i c k s o n , & Grant , t ’~~8) , the
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selection , training , and placement of programmers can have a

significant impact on project costs and product quality.

Software complexity metrics appear to be capable of

satisfying the uses described in the introd uction. That is,

they can be used in providing feedback to programmers about

the complexity of the code they have developed and to

managers  abou t the resources tha t w i l l  be necessary to tes t

or maintain particular sections of code. Further evaluative

research needs to assess the validity of these uses in

on—going software projects .

Halstead’s Software Science has provided some important

ini t ial d irec t ions for  inves tiga t ing psychological

complexity. Subsequent work by McCabe (1976) and others has

also proven relevant to this purpose. Yet , assessing the

psychological complexity of software requires more than a

simple coun t of operators , operands , and basic con trol paths .

If  the ab i l i ty of complex it y me tr ics to pred ic t prog rammer

per f o rmanc e is to be improved , the metrics used to predict

programmer performance must be related by psycholog ical

princ i ples to the memory, information processing , an d pro blem

solving capacities of programmers. In identifying a set of

psychol ogical pr i nciples relevant to programm ing tasks , it

w i l l  be i m p o r t a n t  to determine method s for quantifying

factors in the code which represent info rmation concerning

the program . This approach might not only generate improved
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metrics for assessing psychological complexity, but might

I also identify programm ing practices which could lead to

simplified , more easily maintained software.
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I
MODERN CODING PRACTICES H

I
Structured cod ing techniques , mnemonic variable names ,

and commenting are among the modern cod ing practices which

supposedly increase a programmer ’s efficiency in working with

code. Dijkstra (1972) contended that program construction

should proceed in a top—down , structured fashion. By

limi ting the control structures allowed , he assumed tha t

structured programs would be easier to understand , debug , and

modify than unstructured ones because the simplified control

flow would ma ke the functions performed by the prog ram easier

to trace. Weissman (1974) demonstrated that well—structured

programs were easier to understand , and Lucas and Kaplan

(1974) found tha t structured programs took less time to

modify. Love (1977) observed that simplified control flow

made programs more understandable to graduate students , but

not to beginning student programmers.

Mnemonic variable names provi de a form of documentation

commonly believed to simplify the cognitive task of

understand ing or modifying a program . In experiments using

shor t Fortran prog rams , Shne iderm an  (1976 ) found tha t

meaningful variable names produced superior comprehension and

debugg ing performance when compared to one or two letter

variabl e names. Newsted (1979) , however , cautioned that a

poor selection of mnemonic names may interfere wi th

40

.5 - --5 - — ~~~~~~~~~~~~~~~ 5-- --- — -  ~~~~~~~~~ - - - - - —~~~- -~~~~~~~~~~ -— — - _ -



- - - - -  —-5—- 5- 5 - -  -~

comprehension : “One programmer ’s mnemonic is another ’s

gobbledygook” (p.21)~

The inclusion of comments is another type of

documentation purported to simplify modification tasks,

although there is some contention over how they should be

implemented . Global comments preced ing a program indicate

what objectives are accomplished , while in—line comments

delineate how and where the objectives are fulfilled . Some

authors encouraged the use of in—line comments to simplify

the process of making changes to programs (Wilkes , Wheeler , &

GIll , 1951; Poole , 1973). Others (Musa , 1976; Shneiderman ,

1977) found tha t global comments improved student

programmer ’s ability to comprehend and modify programs , but

that in—line comments seemed distracting . In a Fortran

modification task with student programmers , Yasukawa (1974)

found tha t a g roup  g iven  global commen ts pe r fo rme d better

than a group given in—line comments. However , Newsted (1974)

observed tha t comments might actually interfere with attempts

to understand short Fortran programs of less than 30 lines.

Still other computer scientists recommend both global and in-

line comments , suggesting that there is never too much

documen tation.

41 .1
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Results

Experiment I. In Experiment I, 50% of the statements

were correctly recalled across all programs and experimental

conditions. Perfo rmance differed significantly among the

program classes. These differences accounted for 8% of the

variance in performance in addition to tha t accounted for by

Individual differences amcing participants .

EngIneering programs were the most difficult (41% of the

statements correctly recalled) , followed by statistical

(52%) , and non—numeric (57%) programs . When the specific

program was taken in to account, anothe r one—fifth of the

varIance in performance was explained . However , this result

f was not strictly a function of differences among prog rams ,

because variance related to specific programs was confounded

wi th variance related to participants. That is , each

par ticipant saw only three of the nine programs .

The complexi ty of the control flow significantly

affec ted performance. As expected , the least structured

level was the most difficul t to reconstruct. Contrary to the

tenets of structured programm ing , however , the most

structured level did not produce the best performance. A

grea ter percent of statements were recalled from naturall y

structured (56%) than f rom struc tured p rograms  (52%) ,

al though this difference was not significant. A post hoc

analysis showed the means for naturall y structured and

42
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unstructured programs (56% versus 42%) to be significantly

different.

Assigning different levels of mnemo nicity to variable

names had no significant effec t on performance. Also ,

performance was not affected by the order in wh ich prog rams

were presented to participants , suggesting tha t any learning

process which migh t have affected the results occurred during

the pretest rather tha--i during the three experiment tasks.

Experiment II. Ac ross all experimental conditions , an

averag e of 62% of the requirements for each modification was

accurately implemented (SD 31%) . The average time to

complete the modifications was 17.9 minutes (SD = 11.4)

rang ing from 2 to 59 minutes with a positive skew . Score and

time were uncorrelated .

Onl y a small percentag e of the variance in accuracy

scores were related to the factors stud ied here. However ,

there were substantial differences in the degree to which

performance on each of the three programs could be

pr edicted . Performanc e on two of the programs was

significantly predicted . Half of the variance was accounted

fo r  in the separa te resul ts fo r  each pro g ram , an d 35 % was

accounted for in the combined results of both programs .

However , the results for the third program were not

significant.
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Order of presentation significantly affected accuracy

scores. Participants mad e more complete modifications in

I less t ime w i t h  each succeed i ng e x p e r i m e n t a l  task .  However ,

the two programs on which  pe r fo rmance  proved most p r ed i c t ab l e

I were more f r equen t l y  presented second or third . Thus , random

I 
ass ignment  of presentation orders failed to counterbalance

the number of times each condition appeared in each position

I order.

The difficulty of the modification affected accuracy

- scores on only the two most predictable programs .

Performance on those programs was poorer on modifications

j which  r equ i r ed  more l i nes  of code to be inserted . The

-_  
complexity of the control flow also affected accuracy scores

on the two programs for which accuracy was most predictable.

- Modifications to the structured programs were more accurate

than those made to unstructured programs . Accuracy scores

did not differ among programs , nor among the type of

documen tation included in the program .

I Over one quarter of the variance in the time required

to complete the modifications across all three programs

could be accounted for by variables stud ied here. Time to

complete the modifications was more easily predicted than

-1 accuracy scores across all three programs and on the program

1 where accuracy was poorly predicted . Results for time

1
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generally were similar to those observed for accuracy. The

spec ific program and type of doc’:~~~~tation were unrelated to

the criterion. Significant effects were observed for

difficulty of the m o d i f ica t ion and o r d e r  of presen ta t ion ,

al though a g a i n , the interpretation of the effect for this

latter variable is confounded . Control flow complexity was

no t si gn i f i c a n tly re la ted to time , althoug h it was modestl y

related to accuracy .

Further inspection verified that the number of

additional statements required in the code to complete a

modification accurately was related to the time required to

i n s e r t  them . F i t t i n g  a c u r v i l i n e a r  func tion to these d a t a

us ing  leas t  squares procedures resulted in a curvilinear

correlation of .83 and a standard error of estimate of 2.5

minutes. No such relationship was found for accuracy .

Experim ent III. The average time to locate bug s across

all experimental conditions was 20.1 minutes (SD 16.2).

All but six of the 162 expe r imental tasks comprising this

experiment were completed successfully during the allotted 60

m inutes. These six conditions were not associated with any

par ticular factor. Despite the use of a prel iminary task to

familiar ize the participants with the experiment , a

significant order effec t occurred (p < .04), in dicating that

learning took place during the first of the three

experimental tasks.

45

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~

. ..

~~~~~~~~~ 
- - .—

~~~



— 5 
-~~~~—-- - - — ---— 5-- .rf. .~- 5-

- . .
~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —.5—- 

—--
~~~~~~~~

-—--
~
—-- -

~~~: 
-

~~~~~~

I
I
I 

Differences in solution time for the three programs were

significant. Finding the bug in the accounting prog ram

I required an averag e of 15.1 minutes , 20.0 minutes in the

I program that sorted questionnaire data , and 25.0 minutes in

the grade—scoring program . Increasing the length of the

I programs had a modest e f f e c t on the t ime  to loca te  and

cor rec t the e r r o r .  The averag e t ime  f o r  the  shor t programs

I was 16 m i n u tes , while the  med i um and long programs required a

mean of 21 and 23 m inu tes , respectively.

Averages for the three error categories were not

significantly different from one another. However , a v ery

I large interaction occurred between type of bug and program .

This interaction accounted f the largest percent of

var iance (26%) of any of the experimental relationships

- 
st ud i ed . No significan t differences in performance resulted

fr om the three type s of control flow.

D i s c u s s i o n

I C o n t r o l  f l o w  c o m p l e x i t y  was si g n i f i c a n t l y  r e l a t e d  to

programmer perf armance in two of  the experiments. In

I Experiment II structured cod e tended to produce m ore accurate

I modifications than unstructured code. In Experiment I ,

however , naturally structured coic was more easily

I comprehended than unstructured code. It was not clear from

I
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the  r e s u l t s  of these  two e x p e r i m e n t s  w h e t h e r  r i g idl y

s t r u c t u r e d  cod e or  code s t r u c t u r e d  w i t h  a more  n a t u r a l

control flow for Fortran can be maintained more efficiently.

However , both structured control flows proved superior to

unstructured code in at least one of the experiments.

I-,

In order to determine the most effective method for

s t r u c t u r i n g  a p r o g r a m , E x p e r i m e n t  III compared  n a t u r a l l y  and

graph—structured Fortran IV to F o r t r a n  77 . No s i g n i f i c a n t

differences were evident among these three types of top—down

control flow. This finding agreed with previous results 
F

where differences were found between top—down and convoluted

con t rol f l ow , but not between types of top—down control

flow. The minor deviations from strictly structured cod e

all owed in the naturall y structured version of Experiment III

did not adversely affect performance. Summari :ing the

combined results of the three experiments , it would appear

that the overall top—down quality of the control flow is

important to performance , but careful attenti on to Strict

structuring does not appear to improve programmer performance

significantly. Further , since no dif ference was found

between the graph—structured and Fortran 7~ program versions ,

i t  would appear that the new constructs provide little

additional aid in a debugg i ng task beyond that provided by a

forward flow .

The mnemonic value of variable names did not ~~fect

4 :



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~ - . - -  -

I

performance. Howev er , many par t i c ipan ts seemed to pref er

mn emon ic names , since they used th e i r  own , mor e mea n i n g f u l

names when rewriting the least mnemonic versions of the

programs. For the med i um and mos t mn emonic  vers ions , ~hey

tend ed to use the ori ginal names suppl ied. Thus , the

c o n t r i b u t i o n  of mnemonic variable names is supported by

an ecdo ta l  r a t h e r  than  s t a t i s t i c a l  ev idence .

I t was expec ted tha t the inclus i on of ei ther g l obal or

i n — l i n e  comments  would si g n i f i c a n t l y improve  p e r f o r m a n c e  on a

modification task. No such improvement was observed .

Nevertheless , this counterintuitive resul t concurs with the

non—significant effect for mnemonic variable names in

E x p e r i m e n t  I. Lack of effects for documentation aids in both

experiments may have occurred for several reasons. First ,

in E x p e r i m e n t  I where  levels  of v a r i a b l e  mnem on i c i ty were

m a n i p u l a t e d , g loba l  comments were provided with all prog rams .

In E x p e r i m e n t  IL  where  type s of commen ts were  m a n i pula ted ,

mnemonic variabl e names were provided in a l l  p r o g r a m s . Th us ,

the ex i s tence of one type of documen ta ti on may have re d uced

the additional information available from the documentation

a id be in g ex pe r imen ta l l y  man ipula ted , red uc ing it s impac t on

performance.

A second possibility is tha t documentation aids do not

c o n t r i b u t e  s i g n i f i c a n t l y  to p e r f o r m a n c e  fo r  p r o g r a m s  of the

mod u l a r  si ze (app rox ima tel y 50 lines) employed here. In

48 
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large systems with many modul es and thousand s of lines of

code , documentation may have more impact on performance

because of the increased amount of information to be

processed . Thus , program size may m o d e r a t e  the  r e l a t i o n s h i p

between d o c u m e n t a t i o n  and performance.

P e r f o r m a n c e  e f f e c t s  due to d i f f e r e n c e s  among p r o g r a m s  I n

Experiment t a r e  not  e a s i l y e x p l a i n e d  f r o m  these  r e s u l t s .

The significant effec t due to class of program may have been

a function of some familiarity factor specific to the samples

of p r o g r a m s  and p r o g r a m m e r s  s tud i ed .

In Experiment I I I  a l a r g e  p e r c e n t  of  the  v a r i a n c e  in

performance was accounted for by a program—by—error

Interaction. It appears that some quality of the algorithm L

in which the bug is embedded influences a progr ammer ’ s

ability to locate it. This result has impli ca tions for the

usefulness of various schemes for categorizing softwart~

bugs. The implied value of these taxonomies Is t o  Identi fy

p r o p e r t i e s  of bug s w h i c h  sugges t  how t h e y  ar e  -r ~~a te d  or  ho w

d i f f i c u l t  t h e y  ar e  to d e t e c t .  S i m p l e  t a x o n o m i e s  based on

s y n t a c t i c  r e l a t i o n s h i p s  w i l l  p r o b a b l y  not prove su t ficie n t

f o r  t h i s  p u r p o s e .  The r e s u l t s  of  t h i s  e x p e r i m e n t  s u gg e st

that the detectabili ty of i bug depend s on t h e  c o nt e x t  o f  t he

al gorithm surround i ng it. This contextual effect may

W ’termine the optimal strateg y for find i ng the bug , and it is

this search strateg y that need s t be understood i t  debuqq ing —

-I
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I
performance is to be improved .

I
In the last section of the post—session questionnaire ,

the participants were asked to describe their searching

strategies for locating the bugs. Typicall y,  one of two

approaches was described . In the first strateg y the

programmer tried to understand the whole program from

beginning to end before searching for the section with the

bug . In the second strateg y the programmer used appropriate

clues in the output to go directly to the section containing

the bug . The latter appeared to be a much quicker strategy

f o r debugging , but there were insufficient data for a

meaningful statistical analysis. In order to improve the

debugg ing performance of programmers it will be important not

onl y to identify effective search strategies , but also to

iden t i f y  cond i t ions under  w h i c h  they w i ll be di f f e r e n t i a l l y

eff ective .

Differen t search strategies emphasize the Importance of

individual differences among programmers. As measured by a

pre-test , these d i f f er ences accoun ted f o r  s ig n i f i c a n t

variance in performanc e in the first two , but not in the

third , experimen ts. The effect of Individual differences

might have been even greater if the sample had been expanded

beyond the programmers stud ied. It was also possible to

predict the perfo rmance of an indi iidual programmer from job

h i s t o r y  d a t a .  Seve ra l  important factors seemed to be the

so
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num ber o f l an g ua ges a pr og ramm er ha d used an d fam i l i a r it y

with certain programm i ng concepts. Thus , the important

factor in work history seemed to be the breadth rather than

the length of experience. These predictions from job history

wer e more valid for programmers who had three or fewer years

of experience in Fortran. Future work Is needed to refine

experiential questionnaires for use in personnel functions

such as selec t ion , assessment for training needs , and

plac ement.

In  s u m m a r y ,  s eve ra l  f a c t o r s  i n f l u e n c i ng the

understandability and modifiability of computer programs were

identified . Yet , results for the modern programm i ng

practices stud ied here were probabl y conservative due to the

small size of the programs stud i ed . The cognitive load

placed on programmers attempting to understand or modify

approximately 50—line programs did not require the degree of

cognitive assistance provided cumulatively by structured

cod ing , mnemon ic  v a r i a ble n ames , and comments. While the

information provided by these practices were not necessarily

redundant , the task could be mastered with less information

than was presented . However , in a large system composed of

many modules , the cognitive burden of implementing

modifications may be so great that each of these progr amm i ng

practices may contribute significantly to efficiency. Thus ,

future research need s to assess the independent benefits of

these practices in substantially larger protjrams .

ii 
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