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Abstract

A conditiona l lower bound on the minimand of an integer program is

a number which would be a valid lower bound if the constraint set were

amended by certain inequalities , also called conditional. If such a

conditiona l lower bound exceeds some known upper bound , then every

solution better than the one corresponding to the upper bound violates at

least one of the conditiona l inequalities . This yields a valid disjunction ,

which can be used to partition the feasible set, or to derive a family of

valid cutting planes. In the case of a set covering problem , these cutting

planes are themselves of the set covering type . The family of valid

inequalities derived from conditiona l bounds subsumes as a special case

the Bellmore-Ratliff inequalities generated via involutory bases , but is

richer than the latter class and contains considerably stronger members ,

where strength is measured by the number of positive coefficients. We

discuss the properties of the family of cuts from conditior~ l bounds, and

give a procedure for generating strong members of the family. Finally, we

outline a d ata of algorithm based on these cuts. Our approach was

implemented and extensively tested in a computational stud y whose results

are reported in a companion paper (21. The algorithm that emerged from the

testing seems capabl, of solving considerably larger s.t covering problems

than •arli.r methods.
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CUTTING PLANES FROM CONDITIONAL BOUNDS :

A NEW ~.PPROACH TO SET COVERI NG

by

Egon Balas

4. 1. Introduction

We consider the set covering problem

(SC) mm [cx Ax 
~ 
e, X

j  
= 0 or 1, j £ N~

where A = (a
13
) is mxn , e £ Rm , e = (1 , . . .  , l ) ,  c € Rn, and a~ . £ (0,11,

i c M = [i , . . .  ,m }, 3 € N = Ci , . . .  ,n3. We will denote by a 1 and a
3 

the

i-th row and j-th column of A , respectively. Withou t loss of generality,

we assume that c . > 0, Vj c N. Using established terminology, we call a

vector x satisfying the constraints of (SC) a cover, and the set of indices

3 such that = 1, the support of the cover. A cover is called prime if

no proper subset of its support defines a cover.

This problem, and its equality-constrained counterpart , the set

partitioning problem , are useful mathematical models for a great variety

of scheduling and other important real world problems, like crew scheduling ,

truck delivery, tanker routing, information retrieval, fault detection,

stock cutting, offshore drilling platform location, etc., and a literature

of considerable size exists on solution methods for these models (see [91

for a survey of set covering and set partitioning ; (71 for a computationa l

study and comparison of several solution techniques ; and [41 for a more

recent survey of set partitioning , which also contains a bibliography of

- 
-
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applications of both models).

In thi s paper we propose a new approach to set covering, based on

the idea of conditiona l bounds . In section 2 we introduce this concept

for arbitrary mixed integer programs , and show how it can be used to

derive valid disjunctions . The latter in turn can be used either to

partition the feasible set in the framework of a branch and bound

approach , or to derive a family of valid cutting planes. In case

of a set covering problem , the cutting planes derived from conditional

bounds are themselves of the set covering type . These cuts are discussed

in section 3, where the Bellmore-Ratliff inequalities generated from

involutory bases are shown to be a special case of the larger family of

inequalities defined in this paper. In section 4 we examine some basic

properties of our cutting planes . The family of cuts from conditional

bounds is rather large, and in section 5 we discuss a procedure for

generating “strong” members of the family. Section 6 outlines a class of

algorithms based on the cutting planes introduced in this paper, and using

heuristics as well as subgradient optimization rather than the simplex

method. Several versions of this approach were implemented and tested

computationally in a joint study of Andrew Ho and the author, that is

sumsarized in a companion paper [2]. The algorithm that emerged from

this testing seems capable of solving larger problems in less time and

more reliably than earlier methods .

The approach discussed here was first circulated under (1].

2. Disjunctions from Conditional Bounds

The centra l idea of our approach is to derive valid inequaliti es for

the set cover ing problem front conditional bounds . Since this Concept is

va lid and useful for arbitrary mixed integer programs , we will introduce

it in this more general context.

L~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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In solving pure or mixed integer programs by branch and bound , if

the feasible set is tightly constrained , it is sometimes possible to derive

disjunctions stronger than the usual dichotomy on a single variable. On the

other hand , the feasible set of any integer program becomes more or less tightly

cou~trained after the discovery of a “good” solution (in particular , of an

optimal solution), provided that one restricts it to those solutions better

than the current best. Such a “tightly constrai ned” state of the feasible set

can often be expressed in the form of an inequality mc < 1T with i~r > 0 and

i~ > 0, as will be discussed later on. The smaller rr relative to the other
0 0

coefficients T~~ , the tighter the inequality. Whenever such an inequality

is at hand, the following result can be used to generate a valid disjunction.

Here we denote disjunction by the symbol ~i , and the meaning of
k
V A  = A  v A , v . . . v A.Ki=l i I

is that at least one of the conditions A 1 ,... ,A,~ must hold.

Theorem 1. Let T~cR , TT CR÷ , N = (l ,...,nl, and Q~ 
CN , i

1 - 
~~ ~ 

n. There exists v€R~ such tha t

(I) t v~ ~~~ , 3eNi I i e Q~
and

p
(2)

i=l

if and only if every integer xaR~ that satisfies mc 
~ 

also satisfies

the disjunction

p
(3) V (x 1 0, j cQ1) .

i—I

~~~~~ Let C - (g
13
) be the pXn matrix defined by

3eQ1(4) g
1 

— i—I , . . .  ,p ,3 0 j cN\Q1
and let a — (I,.. ,l) have p components. Front (I)  and (2), C contains as a

submatrix the identity matrix of order p, whose columns are 3(i), i l ,.. . ‘p.

- 
~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ 

-
~~~ ~~~~~~~~~
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From Farkas’ Theorem of the Alternative (nonhomogeneous version , see

Duffin (81 ), one and only one of the following two systems has a solution

(here T denotes transpose):

mc - rr ev~~~r~

I Cx > e II (G
TV <

System II is the same as (1) , (2), and v€R~. Thus there exists v~R~

satisfyin g (1) and (2) if and only if system I has no solution, i.e., if and

onl y if every x€R such tha t mc 
~ ~~ violates at leas t one inequality of

Cx ~ e. But an integer x€R violates the i-th inequality of Cx 
~ 

e,

i.e., the inequality

~ x 2 1 ,
jc Q1 

-~

if and only if it satisfies x
3
=O , j t Q1: hence it violates at least one

inequality of Cx > e if and only if it sat isf ies  the disjunction (3) iI

Example I. The inequal i ty

9x
1
+8x

2
+8x

3
+7x

4
+7x

5
+6x

6
+6x

7
+5x

8
+5x

9
+5x

10
+4x11+4x 2

+3x
13
+3x

4
+3x +2x +2x < 10,

together with the condition x 0, x
3 

integer , V 3, implies the disjunction

(x
3 

— 0 , 3 — 1 ,2 ,3 ,4 ,5 ,6 ,7) ‘ (x
3 

— 0 , 3 1, 8 , 9 , 10, 11, 12 , 13 , 14) V

v (x
3 

— 0 , 3 2 , 3,8 ,9 , 10, 15 , 16 , 17).

Indeed , se t t ing v1 
a 6 , v2 - 3 and v

3 
— 2 , we have 6 + 3 + 2 > 10,

i.e., (2) holds; and defining the sets Q1, i — 1, 2 , 3 , to be those used

in the above disjunction , condition (1) is satisfied . This can easily be

seen from Table 1, whose rows are the incidence vectors of the sets

_________________________ - ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ - - — - -.--~~~- —— ~ z~~~-—
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while the numbers on top are the and those to the right are the v~ . The

columns of the table correspond to the inequalities (1), which for the

9 8 8 7 7 6 6 5 5 5 4 4 3 3 3 2 2

1 1 1 1 1 1 1  6

1 1 1 1 1 1 1 1 3

1. 1 1 1 1 1 1 1 2

Table 1.

vector v (6, 3, 2) are 6 + 3 ~ 9 , 6 + 2 < 8,... , 2 < 2, all satisfied .

Remark 1.1 Theorem 1. remains true if mc < i~ is replaced by mc
H ~~~~~0

and (2) is rep laced by

p
(2’ )  Z v ~~�T r .

• i=l 0

Proof. If the indicated changes are made in systems I and II, the

Theorem of the Altenative still holds.~)

One way of obtaining a “tight” inequality mc < rr~ (o r mc -
~~ ~~~~ in

order to derive from it a conveniently strong disjunction, is as follows.

ConSider the mixed integer program

(P) mix (cx lAx�b, x>O, x. integer , jeN1 ~ N),

let z~ be a known upper bound on the value of (P) , and let the vectors

u and s satisfy

(5) u � 0 , s = c - uA �0.

Then multiplying Ax 
~ 

b by -u and adding the resulting inequality,

-uAx � -ub, to cx < Z U, yields the inequality sx < z~ - ub , sa tisf ied by

every feasible solution x to (P) such that cx < z
~~
. Using this, and setting,

for iai , ...  ,p, V
i

5
3( j ) 

for some j(i)cN, Tag and rr
0
az

~~
_ub , then app lying the

- ~~~~~-“— — - — -  -•--~~-.—----- —
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“only if” par t of Theorem 1, as modified by Remark 1.1, we obtain the following .

Corollary 1.2. Let z~ be an upper bound on the value of (P), and let u , s

satisfy (5). If there exists S~~1, S Cj(l),.. .,j(p)), 1~p<~N1~ , such that

(6) Zs � z -ub ,
j€S j U

then for any collection ~~~~ sets C N 1, i = 1, . . . ,  p , such that

(7) ~ s < s , jeN ,
i
~
jeQi 

3(i) 3

every feasible solution x to (P) for which cx — z~ , satisfies the disjunction

—‘1 (3) 
i~ l

(Xj 
= 0, j€Q1

) .

Not e tha t if p=l , i .e . , (3) has a single term, then (3) converts to

the condition X
j 

= O~ jeQ1. Somewha t more generall y, we have

Remark 1.3. Let ZU, u and s be as in Corollary 1.2, and define

Q0 
= ~jeN1~

s
3 

2 z~ 
- ub).

Then every feasible solution x to (P) such that cx < satisfies x
3 

0, jeQ .

Corollary 1.2 has an interpretation (and alternative proof) in terms

of conditional bounds, which yields some insight and is appealing to

intuition. Consider the pair of dual linear programs

(L) mm Ccx kx ~ b , x 
~ 

0)

and

(D) may [ub luA < c, u 
~ 
0),

associated with (P).

Clearl y , for any u feasi b le to (D) , ub is a lower bound on the value

-- I
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ________ - - ~~~~~~~~~~~  _____
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of (L), hence of (P). Now suppose the constraint set of (P) (and (L)) is

ame nded by the system Gx > e defined by (4) . Then CL) and (D) become

(LG) mm [cx lAx ~ 
b, Cx 

~ 
e, x 01

and

(DG) max [ub + ve~uA + vC < c , u ~ 0 , v ~

respect ive ly ,  a nd ub + ye is a lower bound on the value of (LG), hence

of 
~~~~ 

the problem obtained from (P) by adding to its const ra in ts  Cx ~ e.

Now if a vector v can be found that together with G sa t isf ies  the constraints

of (DG) and ub 
+ ye > z~ , then, since cx ~~ 

ub + ye, every feasible solution

to (LG), hence to ~~~~ 
satisfies cx 

~ 
z~ . It follows that every feasible

so lution x to (P) such tha t cx < z
~
, must violate the constraint set Gx e,

hence (as x~ is integer-constrained for jcN 1
) must satisfy the disjunction (3).

If we set v~ = 5
j ( i ) ’ i=l , . .  . ,p, with s defined as in (5), then the above

co ndi t ions on v ar e a pa ra ph rase of (6 ) ,  ( 7 ) ,  and we obtain Corollary 1.2.

The inequalit ies Gx ~ 
e are not part of the problem (E’), and the sole

pu rpose of introducing them is to conclude tha t iL they w~ e to hold , that

would imply a lower bound at least equal to the upper bound z.~, hence any

so lution x better than the one that produced z.,~, must viol ate a t  least one

of them. We therefore call these inequalities , as well as the lower bound

obtained f rom them , conditiona l.

In a broader context , the ides of deriving a valid (“ unconditional”)

constraint from one or several conditiona l constraints may have many

other applications . One of them appears in a recent paper by Kov~cs and

Dienes (101 , where a properly chosen inequality is used to derive a bound

L L ~. ~~~~~~~~~~~~~~~~ -~~-~~~~~~~~~~~
--= 

• ~ i~~~ - - - 

- ~~~ • - - - _____  .



— — ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —

-8-

from the fact that either the inequality or its complement must be satisfied

by any feasible solution.

From Corollary 1 ~~, a valid disjunction (3) can be derived for the

problem (P) if an upper bound is known , a feasible solution u to the

dual linea r program (D) is at hand , and a subset S of N 1 can be f ound for

which (6) holds . This latter conditio-~ is usua l l y  easy to sa tisf y, and

we will have more to say about this later on. Given such a set S, however ,

every collection of subsets of N1 that satisfies (7) gives rise to a

valid disjunction (3), and the question arises of choosing one that yields

a disjunction as “strong ” as possible , i.e., one with p as small  as

possible , and the sets Q1, i=l ,... ,p, as large as possible. Next we

state a simple heuristic that generates a disjunction (3) with that

objective in mind .

1. Choose a minimal subset S C N such tha t

~ s4 ~ 
- ue,

jeS -‘

and order S [j(l),. . . ,j(p)) according to decreasing values of
2. Set Q1 

= [jCNIs
3 

> ~~~~~~ and define recursively

= ~i€N~ s~ > 5j(j) 
+ 

~~~~~~~~~~~~ 

i=2 ,. .

where g.~. = 1 if 
~~~k’ 

and = 0 if 
~~~~

The sets Q~. i=l ,.. .,p, then define a valid disjunction (3).

A disjunction (3) can be used either for branching , or for genera ting

cuts. If used for branching , this disjunction can be strengthened

so as to define a pard.tiort of the feasible set; namely , (3) can be

replaced by

p
(3’)  V (X

j 
= 0, J€Q~ ; Z x 2 1, k a 1,..., i - 1).

L_. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- —
~~~~~~~~~~~~

- 
- - -~~~~~~~~-- — 
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Note that , by construction of the sets Q~. ~ ~ 
5
~ (L) ~ 

0 for jeQ .,

i = 1,..., p, and thus on all branches except the one corresponding to i = I,

the lower bound ub given by the dua l solution associated with the reduced

cost vector s, can be strengthened immediately after branching, by associating

with each inequality

E x. > l
H

4 the positive multiplier X . (k)~ 
In other words , on the i-th branch (i > 1)

the lower bound ub can be replaced right after branching by ub + S J ( 1 ) + . . . +S
( 1 ).

The above described branching rule, while often considerably stronger

than the traditional one , can occas ionally be a lot weaker. Therefore , the

best way of using it is to judiciously combine it wi th other branching rules ,

according to criteria tha t make sure it is only used at such nodes of the

search tree where it can be e~cpecced to perform relatively well. It is in

this fashion that disjunctions of the type (3) are being successfully used

for branching in our set covering algorithm that also uses them to generate

cutting planes (see the compa nion paper [21) , and in a res tricted

Lagrsngean al gorithm for the traveling salesman problem [7).

Next we turn to the other use of disjunctions of type (3), namely

for genera ting cutting planes . In the case of the set covering problem ,

these cutting planes turn out to be of the same type as the original

constraints .

3. The Cutting Planes

From now on , we address ourselves to the se t covering problem

(SC) m m  CcxlAx 
~ 

e, x
3 

= 0 or 1, 3cN }

-
s — - --— - - -

~~~ - — ~~~~~~ - -- — —- -- _ _ _ _ _ _  

- -~~~~~~~— - ---j -- ~~~~— --- ----- ~~ -- -  —‘
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introduced in section 1. (Here A is m X n). We will denote

N . = ~jcN~a .. = i), j
~M.

Consider the i-th term of a disjunction (3), i.e., x . = 0,

Clearl y , every cover x that satisfies the i-th term of (3), also satisfies

H the inequalities

~ x . > l , h5M

~~~h i

and hence , for any choice of indices h ( i ) 5 M , i 1 ,. . . ,p, every cover that

sa tisf ies (3) , also satisfies the disjunction

p

i 1  je N,~~1~ \Q~ ~

which is easily seen to imply (for integer x) the inequality Ex
3 ~ 

1. with

the summation taken over the union of the sets N
h(j)

’
~
Qi
~ 

i=l ,...,p.

Combining this reasoning with Corollary 1.2 yields the following .

Theorem 2. Let be an upper bound on the value of (SC), and let

u , s satisfy (5). If there exists a set of column indices S = ij (l),... ,j(p)),

0 ~ S ~ N, such that

(8) -u e ,
j€S 

6

then for any set of p row indices h ( i ) e M , i=l ,... ,p, and any collec tion of

p subsets Q
1
Q~, i=l ,.. . ,p, sa ti s fying

(7) Z s (i) ~ 
jeN ,

iHeQ~ 
-~

every cover x such that cx < satisfies the inequality

(9) E x . 
~ 

1,
jeW 3

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— 

_ ___  ~~~~~~~~~~~~~ ~~~ ~~~~~
--

~ 
- --

~~~~~~~ ~~~~~~~~
- ~~~~~
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where

p
(10) W = U (N h( .) \Qj).

i=l

Remark 2.1 The family of cuts (9) remains the same if the condition

in Theorem 2 is replaced by 
~j~~ h( i) ’  ~~~~~~ ‘p.

Proof. From (10), the change does not affect the set W which defines

inequali ty (9) H 1

The inequali t ies (9) are valid cutting planes in the sense of being

sa tisfied by every cover better than a given one. Further , they are of the

set covering type . Since these properties are the same as those of the

Bellmore-Ratliff cuts [5) obtained by the use of invo lutory baces , we nex t

exami ne the rela tionship between the latter and our inequalities from

conditional bounds. First , we show that the Beilmore-Ratliff inequalities

are a subclass of the class of inequalities (9). Then we show by wa y of

example tha t the subclass in question is a proper one .

Theorem 3. The Bellmore-Ratliff inequalities [5] are a subclass of

the class defined in Theorem 2.

Proof. Let ~ be a prime cover, B an involutory basis associated

with ~~. and c
3 

- c3a3 
the j-th reduced cost, where c8 is the m-vector

whose i-th component is c
J(i)~ 

if the basic variable associated with row I

is (the structura l variable) Xj(j)~ and 0 if the basic variable associated

with row I is slack. (When B is an involutory basis , the reduced costs

are known to be of thts form). Let the columns of B be indexed by I , and

denote F = [j eNlc
j
-c
8
a
3
.(0). The Bellmore-Ratliff cut associated with i~ and

B i s then

(11) t x  21.
jcF

~~~~ - -~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~ _ _ _ _ _ _  ___________
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To obtain this cut via our procedure , set S = 1~’N, S = ~j(l),.. . ,j(pfl,

i.e., let S be the index set of the basic structural variables , and set u = 0,

s = c. Then u and s satisfy (5), and S satisfies (8) (with equal i ty)  for

Next let h ( i)  be the row indey associated with  basic variable

and set = Nh(j) ~
F, i=l , . .  . ,p. It is easy to see that these sets Q~

sa t i s fy  ( 7) .  Subs t i tu t ing  for Q1 in (10) then yields

p
W = U Nb, ~flF.

i=l

On the other hand , from the definition of F it follows that j5F implies

ieNh(j) 
for some ie[l,. . . ,p), hence

F 
~ 

L\ U N
h(i))

and therefore W = F. Thus (11) is a special case of (9)il

Note that the cutting planes derived by Bowman and Starr (61 via a

vector partial ordering are a specia l case of the Belimore-Ratliff

inequalities, hence they can also be obtained by our procedure.

Next we illustrate by an example the fact that the Beilmore-Ratliff

inequalities are a proper subclass of the class of inequalities (9), and

in some cases those inequalities (9) that cannot be derived by the Bellmore-

— Ratliff procedure are considerably stronger than the ones that can.

Example 2. Consider the set covering problem whose costs c
3 
and

coeff ic ient  mat r ix  A are shown in Table 2.

The 0-I vector ~ whose support is [2 , 3,5 , 12 , 13, 17) is a cover ,

sa t i s fy ing with equal i ty  all  the inequalities except for I and 8 , which

are oversatisfied. The Beilmore-Ratliff procedure generates cuts from the

involutory bases that can be associated with ~~~, and it can obtain one cut from

every such basis. The variables x3, x4 
and 4

5 
can be basic only in rows

L. - . ~~~~~~~~~~~~~
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1 2 3 4 5 6 7 8 9 10 ii 12 13 14 15 16 17 18 19 20

3 1 1 3 1 2 2 3 3 3 3 3 3 4 4 4 5 6 8 9~

1 1 1 1 1  1

2 1 I 1 1 1 1  1

3 1 1 1 l
4 1 1 1

5 1 1 1 1 1

6 1 1 1 1 1

7 1 1 1 1 1
8 1 1  1

9 1 1 1 1  1

10 1 1 1 1

Il I l 1 1 1

Table 2.

3, 4 and 6 respectively. Since rows 1. and 8 are slack, x12 
and x

13 
can be

basic only in rows 11 and 10 respectively. Fi nally,  x17 can be basic in

any of the 4 rows 2 , 5, 7, 9; and accordingly there are 4 involutory bases

that can be associated with i. We will denote them by B2, B~ , B.~ and B9,

according as x17 is basic in row 2 , 5, 7 or 9 respectively. The basis B
2

(after row permutations) is shown in Table 3. All variables whose index

exceeds 20 are slacks .

2 3 5 12 13 17 25 27 29 21 28

3 1 
I

4 1 
I

6 l I
Ii 1 I
10 1 I
2 II

5 i l
_ I

-l

9 1 ’ -l

1 1 1 ’ —1

8 I I  I —l

Ta b le 3.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~
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The 4 cutting planes that can be obtained b y the Beilmore -Rat liff

procedure , depending on which basis is used , are

+ + + + + + x
18 

+ > I • f rom B~,

+ xo + x9 + x
10 + x11 

+ x19 ~~ 1 , from B
5

x6
+ x

7
+ x

10
+ x

15
+ x

19~~~x20 ‘l , from B
7

x6 + x8 + x10 + x14 + x18 
+ x20 2 1 , from B9.

On the other hand , using the conditiona l bound approach , we construct

(by inspection or a heur is t ic)  the dua l vector u a (0,1.1 ,1,1,1,2,0,1,2,2)

which , together with the associated reduced cost vector

a = (2 , 0 ,0 ,2 ,0 ,0 , 0 , 1, 1,0 , 1, 1, 1, 1, 1,0 ,0 , 2 ,0 , 1),

satisfies the condition (5).

The cover x whose support is (2 ,3 ,5 ,12 ,13 ,171 yIel ds ~ = ci a 14;

and the dua l vector u yields the lower bound ue a 12.

Since z.~ - ue = 2, Q0 
• (j5N~ s~ 2 2) = (1,4,18), and thus (Remark 1.3)

every cover better than i satisfies x1 x4 x18 
a 0. Hence we replace N

by N\( l ,4 , 18) . Further , to apply Corol lary 1.4 , we pick the column indices

j(1) = 12 , j(2) 13; for which (8) holds , since 
~12 + 

~13 
a ~ - ue.

Next we pick the row indices h(l) a 8, h(2) 5, and choose the sets Q1 
a (12 ,13), ‘

(9 , llj,  to ob ta in  N
h ( l )  ~~ 

(6 , 193 and Nh(2) Q2 
a 
~l0,l6,l9}, hence

W a (6 , 10, 16 , 19). In choosing the sets Q~ we make sure tha t (7) is satisf ied ,

and apart from that try to make each successive Nh(j)\Qj add to W as few

new elements as possible. We have thus obtained the cut

+ x
10 

+ x
16 + x

19 ~ 
I

which has only 4 positive coefficients , whereas each of the involutory

basis cuts has at least 6.

_ - ------ -- - -~~~ 
- -
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The above inequality cuts off L This is due to the way we chose the

column indices j(i) and the row indices h(i), i l ,. . . ,p, as will be shown

in the next section. If we do not care about cutting off a specified

cover , we can obtain inequalities which are “stronger” in the sense of

having fewer positive coefficients. Thus, for instance, if we choose

j(i) = 13, j ( 2 ) 9, and h(l) = 8, h(2) 5 , we can generate the cut

+ x~9 ~ 
I

(by setting Q1 
a (12,13), Q2 

a (9 , 11)) ; and for j(1) = 13, j(2) a 14,

h(l) a 8, h(2) a 4, we obtain the cut

x3 + x
19

2 1

(by choosing Q1 
a (12 , 13) and Q2 [14,20)).

4. Some Properties of Cute from Conditiona l Bounds

The family of cuts defined by Theorem 2 is vast , and one is interested

of course in cotuputationally cheap procedures for generating “strong” members

of this class. In this section we investigate some properties of the cuts

(9) tha t will be hel p ful toward tha t goal.

The first practical question that arises is whether condition (8) can

always be met , and how. Since a depends on u , it should not be surprising

tha t one answer to this question comes in terms of additional conditions on u.

Theorem 4. Let the vectors ~ and i~ satisfy (5), and 1e~ i be a cover

with support S(i). If

a 0,

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :L~~~~~~~~~
;::i:

~~~~~~~~~~~~
-
~~~ 
IIIT_~1T JJ~
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then (8) holds for  s a S(i).

Proof. Consider the pair of dual linear programs .

(L
1
) mm (cxlAx 2 e, x~ ~ 1, jcS (~ ), X

j 2 
0, J eN\S (i) )

and

(D
1
) max Cue + Z s ua ~4. s a c , jaN; u 

~ 
0, $ 2 03

jcS(i)~~ ~ ~ -~

Clearly, is a feasible solution to (L
1
), and (~,i) is a feasible

solution to (D
1
). Further, i and (~ ,i) satisf y the complementary slackness

conditions T(AT-e) and (x~
_l)s

~ 0, jeS(i), X
j

S
j 

a 0, jeN\S(Y); hence they

are optima l solutions to (L1) and (D
1) respectively. Therefore

~e +  t S a c i

J S(i) ~

which together with z ~ ci proves the sta tement.Il

For any cover x , denote

T(x) a Ci€M la ix = I).

Then as an inmiediate conseqience of Theorem 4, we have

Remark 4.1. Let ~ be a cover, and let (U,i) satisfy (5). If ~ also

satisfies

a 0 , V ii}~~T( x)

then (8) holds for S S(i) .

Thus , if an upper bound and vectors u , $ satisf ying (5) are at ha nd ,

but condition (8) does not hold , it can be made to hold by successively

sett ing to 0 components u~ of u such that icl(\T(E . At worst all such

It

~~
— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ . - ••
~~~~~~~~~~~~~~~~~~~~~~~~~~

—
~
--- T h.  ____________ - ::: ~~~
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components may have to be set to 0; then (8) will hold.

Bef ore turning to other characteristics of the cuts (9) , we now

state a basic property of the set covering problem. Let the set covering

polytope P be the convex hull of all integer n-vectors satisf ying Ax 2 e,

x > 0 , i.e.,

P = cony (xeR
L1
IAX 

~ 
e, x 

~ 
0, xj integer , jaN).

We then have the following

Theorem 5. The inequality 
-

(12) Z x 21

where i€M , defines a facet of P if and only if there exists no k€N such

tha t N
k 

C Ni, Nk ~ N1.

Proof. The “only i f”  part  is obvious . To prove the “i f”  pa rt , we

assume there is no keM such that Nk 
C Ni. Nk ~ 

N1, and we exhibit n linearly

independent integer n-vectors that satisfy Ax e, x � 0 and for which (1)

holds with equality.

Let tN1I a p, and assume w.l.o. g. that N1 is the set of the f i r s t  i’

indices in N. Let y a (I,... ,l), ycR~
’
~~, and let ci and be the unit

vector in R~ and R
n_p 

respectively, whose i-tb compoomnt is I .  Now consider

the p n-vectors (ci, y), i=I ,. . . ,p, and the n-p n-vectors (e1, y+f1
) ,

iap+I,... ,n. Since there is no keN such that Nk
Q
~j, 

Nk
#Ni, each of these

nonnegative integer vectors satisfies Ax 
~ 

e; and since each one of them

has a single 1 among its fir s t p components , they all satisf y ( 12 )  with

equality. Further , the nxn matrix whose rows are these vectors is

X (

I ‘
~P )

E I + ‘tn-p n-p

II



-
~~~~ 
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where for k = p and k a n - p, 1k is the identity of order k, while ~k 
is

the kx (n - p) matrix whose entries are all equal to 1; and E i s  the ( n  - p )x p

matrix whose firs t column consists of l’ s, and whose remaining columns

consist of 0’s. Now define the mat r ix

I ~‘-Y -YZ a  ( P p p )
-E I

n-p

Using the fact that EY = Y , it is easy to see that XZ = I , i.e.,p n-p n

z a and hence X is nonsingular. This proves that the n vectors

introduced a bove are linearly mndependent. II

In a cut-generating procedure it is important to make sure that no cut

is repeated . Next we give a necessary and sufficient condition for a cut

to be “new.” Let (SC) stand for the set covering problem amended with all

the cutting planes generated up to some point , and let

(9) E x  21
j iw i

be the next cut generated . We then say that the inequality (9) is new,

if there is no ieM such that N 1 ~

Remark 5.1. The inequality (9) is new if and only if N W  is the

support of a cover for (SC).

Proof. The cut (9) is new if and only if ~~~~~ Vi cM; hence if and

onl y if N~’\W#ø~ V15M. But this condition holds if and only if N W is the

support of some cover.II

Whit, the condition of Remark 5.1 is straightforwa rd , it is easier to

embed in a cut gsn .rating procedure when pa raphrased as follows.

Remark 5 .j.a. Th. inequality (9) is new if and only if it Cuts off

(is violated by) some cover of (SC ) .

___________ - - 
- - - - 

. -- - ______
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The next Theorem gives conditions on the column indices j(i) and

row indices h(i) used in generating inequality (9), to guarantee tha t the

inequality obtained cuts off a specified cover. We will denote

M. = [icMk~~ 
= i) , jaN .

Theorem 6. Let z~ , u, v, S and Q1,i=1 ,.. . ,p, be as in Theorem 2,

and let j(i)eQ1, 1=1 ,... ,p. If ~ is a cover such that S C 5(i) and

(13) h(i)eTCi)1lNj(i)~ 
i=l ,. . . , p ,

then the inequality (9) Cuts off (is violated by) i.

Proof. Assume S C S(i) and (13) holds . From h(i)eN.(j) we have

i— I ,... ,p; and since j (i)€ ScS(i) implies X
j (i)

= 1, while

h(i)€T(i) implies IS(i)flNh(i) I = 1, i 1 ,... ,p, i t fol lows tha t

S(i) flN
h(i) 

= (j(i)), 1=1 ,... ,p.

Further, since j(i)eQ~ , i=l ,. . . ,p, we have

S(i)fl(Nh( i)\Qi) a 0. 1=1 ,. . .

and hence S(x)I~W 
a 0, i.e., the inequality (9) cuts off i.~

Remark 6.1. Every inequality (9) for which the conditions of Theorem 6

are satisfied , defines a facet of

p* = cony (xcR E
~lAx >e , E x~>l , X

j 
integer, iaN).

j aw

Proof. Follows from Remark 5.1 and Theorem 5.~

Theorems 2 and 6 provide rules for generating a sequence of valid

cutting planes that are all distinct, and furthermore , are all facets of

L — ~~~~~- - - - — - -~~~ — 
_ _

~
_J~~ -‘

~~~~~~~~~~~~~~~~~~~~~~~~~~~ -— -  — ----- --- 
~~~~~~~— --—-~~—--- ~~—~‘—~~~~~~ - — -.---

~~~~
- -- - —  
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the current polytope ~*• This la tter proper ty , however , does not impl y

tha t all inequalities generated this way are equally strong. Sir.~.s all the

inequalities in question have coefficients equal to 0 or I and a right

hand side equa l to 1, we will use the number of coefficients equa l to I as

a measure of their streng th ( the fewer the l’ s, the stronger the inequality) .

Note that some facets of the set covering polytope may be much weaker than

others, according to this criterion. Thus, for instance, all 5 inequalities

represented by the rows of the matrix A in Table 4 define facets of the

set covering polytope corresponding to A , yet inequality 4, with only

two l’s, is much stronger than inequality 5, which has ten l’s.

I l  1 1 1 1
1 1  1 1 1

A = l  1 1 1 1

1 1
1 1 1 1 1 1 1 1 1 1

Table 4.

Thus , although they all define facets of the current polytope P~,

the cutting planes obtainable via the rules of Theorem 6 are not all

equally desirable . The next section discusses a procedure for generating

conveniently strong members of the family.

5. Generating Cuts

The strength of an inequality (9), i.e., the size of the set W ,

depends on the integer p and the size of the sets Nh(i)\Qi, i = 1,... ‘p.

of Theorem 6. To have p conveniently small , the procedure chooses the set

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~
— - 

-~~~~~ 
____  

- — - ------ -
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S = (j(i),. . . ,j(p)), corresponding to the p larges t reduced cos ts s .,

jaS(i), where p is the smallest integer for which (8) is satisfied . Each

row index h(i), i = 1,... ,p, is of course chosen from T(i)flM.(1)~ as

prescribed by Theorem 6. Further , in order to have W as small as possible ,

the sequence of row indices h ( i)  is chosen so as to make as small as

possible at each step k€[l,.. . ,p3 the set W
k

W
k l, where W0 

= 0 and

W
k 

= U ( N h ( i) \Q
i
) , k = ~~

Since for any S satisfying (8), ~~ I implies (Remark 1.3) that

the variable x
1 

such that S = [j) can be permanently set to 0, we assume

this has alread y been done for all such singleton sets , and hence

IS I  
> 2 for all S satisfying (8).

Let M and N be the row and column index sets of the current problem

(SC), let ~ be a prime cover for (SC), and denote , as before ,

S(x) CjeNli ,=l), T(x)= (ieMla
ii=1).

Further , let u and s satisfy (5), and assume (8) holds for S = S~A (jcS (~)ls . o).

Cut-Generating Procedure

Step 0. Initialize W = 0, S = S~ , zL
=ue, i I and go to 1.

Step 1. Define

5
j(i) ~~~~~ 

3
j~ = ( J cN t s j�sj ( i ) ) .

Choose h(i) such that

~
N
h(I)

\QUJ I = mm lNh\QUW I
hcT (

~
)flN

j(i)

L -
~~~~~~~~~~~

-
~~~~~~~~~~~~~~~ _ ~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~.
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(breaking ties arbitrarily) , and se t

W — W U (N~ (~ ) \Q) . Z
L 

Z
L 

+ S
. ( i ) .

If 7L ~ 
ZU, go to step 2. Otherwise , let

— { S~ - ~~~~~~~ 
~~~~ h(i)

5j otherwise ,

S - S\(j(i)),

set i — i+l, and go to 1.

Step 2. Add to the constraint set of 1SC) the inequality

E x . > 1.
-
‘ l€W

J _

tn at most ~~~ iterations , this procedure generates an inequality (9)

satisfied by every cover x such that cx < and violated by ~~. Indeed ,
+

S (initialized as S ) is diminished at every iceration by one elemen t ,

hence there are at most Is4.I iterations . Fur ther , since (8) holds for

S = S~ , a f t e r p 
~ Is~i iterations , (8) holds for the current set S (i.e.

2 z
n

) ,  and we go to Step 2 to generate a cut (9). For the sets

= 

~~~~~ 
i l , . . . ,p, i(i)aQ~. and (7) is sa t is f ied  (b y the defi nit ion

of Q and s. at every iteration). Finally, the choice of h(i) guarantees

(13). Thus all requirements of Theorem 6 are met.

A coup le of minor improveme nts are at  hand . Choosing the la rgest s .

• to define j(i) at every iteration has the purpose of minimizing the size

of the set S in (8). But at the last iteration choosing the largest s
1

may no t be indica ted , if a smaller S
j 
suffices to satisfy (8). Thus a

L 1 z~~~~:., — i~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 

-

~~~~~~~~

--

~~~~==~~~~~~~

-

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
-

~~~~~~~~~~
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be t t e r  rule fo r  choosing j(i) in Step I is to set

v = mm £max s . , mm ~~~~~~ > z - z }
i L . ~ . - J  j — U  Lj e S  Je S

and then choose as j ( i )  one of the indices j € S  for  which = v~ .

Furthermore , whenever this index is not unique , i . e . ,  ¶ J j  > 1 , where

J = (jeS~ s~ 2 vi), the choice of j ( i )  and h ( i)  can o f t en  be improved b y

firs t setting Q (j € N ~ s . � v.), next choosing h(i) so as to minimize

~
Nh\QUW~ 

over all hcT(~ ) f l M~ . where

M = U
~1ja J

and then choosing the unique index 
~

i)=Jf lNh ( . )  as j ( i ) .

Example 3. Consider the set covering problem of examp le 2 (Table 2 ) ,

wi th  c4 
= 3 replaced by c4 

= 1. Then the cover ~ whose support  is

S(~) = t2,4,l3,20) gives z~ = c~ 14, and T(~~) M’ ( l ) .  The vector u of

example 2 yields the same reduced costs s . as in that example, except for 34.

which now is 0. The lower bound ue is 12 , and since s . > 14 - 12 = 2 for

i = 1, 18 , we set x
1 

= x18 = 0 , and replace N by N~ (l,18}. Condi t ion  (8)

holds for S = S~ (13, 2 0 ), since s
13 + 

~2O 2 2.

Step 0. W @, S ~l3 ,2O), Z L 
= ue 12.

Step I. v
1 

= mm ~~~~~ = 1, J = ~l3 , 2 0 ) ,  Q (8,9,11,12 ,13 ,14,15,20),

= M
13UM20 

= ~~~~~~ To choose hO.), we minimize 
~
Nh\QI over

hc.T(~)flM~ i’f\(1,3,5), a nd f ind tha t  the minimum is 1, a t ta ined for  k = 4 , 8 , 9.

We arbitrarily choose h(I) = 4, and set W = N4\Q = [3), ZL = 12 + 1 13.

The S
1 

remain unchanged excep t for  I = 14,20, the new values for the latter

— ~ -~~-~ ._ - — _— 
- 

~~~~~~—--- — - .— .~~~L_~~~~~~~~~~~~~~~ =: -=-=-
• 

~~~~~
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being s14 
= s20 

= 0. ~1e set S (13’s,  i 2 , and go to

Step 1. v~ = tnin (1, 1) = 1, J = rl3), Q = (8 , 9 , 1l , l2 , l3 , l5~~,

M13 
= [1 ,8,10). To choose h(2), we minimize 

~
N
h 

Q~ 
ove r

heT(~)flM~ = (8,10), and f ind h (2 )  = 8 . We set W (3)U(N
8~

Q)

= 13 + 1 = 14 , and since Z
L — 

z , we go to

Step 2. We add to (SC) the inequality

x + x  2 1 .

6.  A Class of Algori thms

The cu t t i ng  planes discussed in this paper can best be used in a

framework tha t takes maximum advantage of their properties. To obtain

a cu t t i ng  plane from conditional bounds , one needs a feas ible  solut ion

(u,s) to the dual of the linea r program associated with (SC). Such a solu-

tion also provides a lower bound ue on the value of (SC). On the other

hand , the easiest way to make sure that the cuts tha t one generates are

all distinct , is to have each inequality cu t off  some cover sa tisf ying

all the previously produced inequalities . Thus to obtain a sequence of

di stinct cu t t ing  planes , one also needs a sequence of covers . Each cover x

in turn , p rovides an upper bound cx on the value of (SC). ‘ 
-

The best approach then seems one that  a l te rna tes  between (~ ) gene ra t ing

a cover x for the current problem , and (~) generating a dual solution (u,s)

and using it to derive an Inequality that cuts off x. In such a procedure,

the value of (SC) is bounded from above by the sequence of covers obtained

under (a) : and bounded from below by the sequence of dual solutions produced

- - —

- 

~~~~~~~~~~~~~~~~~ --- —— -~~--~~~ 
_•-~~~~

- 
~~~~~~
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under (s). The rate of convergence of the algorithm is the rate at

which the gap z - between the two bounds decreases.

Since every inequality generated in the procedure Cuts off at least

one new cover , and since the number of distinc t covers is finite , the

procedure outlined above is finite , irrespective of the methods used to

generate the sequence of covers x and dua l solutions (u,s). Its

efficiency on the other hand depends crucially on the efficiency of those

methods.

Several versions of the approac i outlined above were implemented and

thoroughly tested in a computationa l study sussnarized in the companion

paper [21 . The algorithm tha t emerged as a result of the testing uses

several different heuristics intermittently to generate prime covers , and

produces dual solutions (u,s) both by heuristics and by subgradient

optimization. When the decrease in the gap z - ZL 
slows down, the

algorithm branches , using either a disjunction of the type discussed in

this paper , or a dichotomy derived from other considerations , according

to some measure of comparative strength. The algorithm is particularly well

sui ted for low density problems, and its performance on set covering problems

taken from the literature compares favorably with earlier methods.

Randomly generated test problems with up to 200 constraints and 2000

var iables have been successively run .

For details of the algorithm and results of the computational tests

the reader is referred to [21 . 

.. - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~~~~~~~~~~~~~
=-
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A conditiona l lower bound on the minimand of an integer program is a number
which would be a valid lower bound if the constraint set were amended by
certain inequalities , also called conditional. If such a conditiona l lower
bound exceeds some known upper bound , then every solution better than the one
corresponding to the upper bound violates at least one of the conditiona l
inequalities . This yields a valid disjunction , which can be used to partition 4
the feasible set , or to derive a family of valid cutting planes . In the case .~~~~~~~ ~~~~~~~~ f

— —

~D ~~~~~~~~~~~~ 
1473 COI~ ION 3F 1 W0V 4S ,$ OSIOi.L T E  Unclassified (over )

1,1 s l O 2 OI4 ~ 550 $ 
~~c~ at v  CLAUIPICAT’ON 0? 1~ ss .&cs ~~~~~ ~~ ~~~~~~~~~~~ /

- - • _ _ _  

C ~ / 
_ _ _ _ _ _ _-

- - - T II~~~~~



— _ . —-— r~~~~~~~._ - --— --— -

-~~ ~~ J I . ~~~~ ’Y C L A S I S F I C A f l O M  OF fh’S ~~I G(gW% . Os.. 5.u... ~)

of a set covering prob lem , these cutting planes are themselves of the set
covering type . The family of valid inequalities derived from conditiona l
bounds subsume s as a specia l case the Bellmore-Ratliff inequalities generated
via involutory bases, but is richer than the latter class and conta4ns
considerably stronger members, where strength is measured bv~the number of
positive coefficients.~ We discuss the properties of the family of cuts from
conditional bounds , an~~give a procedure for generating strong members of the
family. Fi na l ly , we ou~j ine a c las s of algorithm based on these Cuts. Our
approach was implemented ~çd extensively tested in a computationa l atudv whose
results are reported in a cempanion paper [2] . The algorithm that emerged

• from the testing seems capable of solving considerably la rg er set covering
problems than earlier methods .
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