AD-A	072 244	MIDW FURTI	EST RES HER RAT 63 Y L	EARCH I IONAL A LUKE,	NST KA PPROXIM W G FAI	NSAS CI ATIONS R	TY MO FOR THE	INCOM	PLETE G	AMMA FUR -2638(00	F/G 12 NCTIE	/1 TC(U)	
	AD AD A072244			and the second s	A CONTRACTOR OF A CONTRACTOR O								
	A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR A CONT				Americania Maria	and a second sec	NATIONIA SUCCESSION PROVIDENTS SUCCESSION SUCCESSION SUCCESSION	translovanski 	Land and a second secon				
	STATE OF	a a a a b b b	6 6		R R R L	h h h h h				ta a a ta a a			5.
- TOTAL CARACTER	Anna annar Anna annar Anna annar Anna anna Anna anna Anna anna Anna anna	inin een	Antonio Antonio Antonio Antonio Antonio Antonio Antonio Antonio Antonio Antonio Antonio Antonio Antonio	RAMMA ANNUM RAMMA ANNUM RAMMA ANNUM RAMMA ANNUM RAMMA RAMMA RAMMA RAMMA	3000 THE	- Andrewski - Statistics - Stat	Janat sonar June apper June apper June apper June apper	tuo ima	STREET.		inter seen	inter exter istan exter istan exter istan exter	LUD D T
		1000T	ANDEL ARES	BRODI AREAL	renen	Anna anna	REAL REAL	PION		3000 0000 3000 0000 3000 0000 3000 0000			
	Recording sectors			A. A. Mark	A Bula H	184						ليتقلقهم	1 statistics
	n alasta si ana alasta si ana ana ana ana ana ana ana ana ana an			a de la companya de l	1 Binahi ling			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		END DATE FILMED 9 79 DDC			
													./

COLUMBIA UNIVERSITY HUDSON LABORATORIES CONTRACT Nonr-266(24)

FURTHER RATIONAL APPROXIMATIONS FOR THE INCOMPLETE GAMMA FUNCTION

TECHNICAL REPORT July 31, 1963

Contract No. Nonr-2638(00)(X)

M.R.I. Project No. 2229-P

DOC FILE COPY

AD A 072244

For

Applied Mathematics Laboratory David W. Taylor Model Basin Washington, D.C.

DISTRIBUTION STATEMENT A Approved for public release Distribution Unlimited

79 08 03 119 78 03 07 095

MIDWEST RESEARCH INSTITUTE

1. REPORT NUMBER	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM		
. ner onr nomber	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER		
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED		
FURTHER RATIONAL APPROXIMATIONS	FOR THE	Technical Report		
INCOMPLETE GAMMA FUNCTION		6. PERFORMING ORG. REPORT NUMBER		
Luke, Yudell L. and		NOnr-2638(00)(X)		
Fair, Wyman G.				
9. PERFORMING ORGANIZATION NAME AND ADDRES	5	10. PROGRAM ELEMENT, PROJECT, TASK		
MIDWEST RESEARCH INSTITUTE		2220 D		
		2229-1		
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE		
Office of Naval Research, Code	220			
Arlington, VA 22217		NUMBER OF FAGES		
14. MONITORING AGENCY NAME & ADDRESS(II different	nt from Controlling Office)	15. SECURITY CLASS. (of this report)		
		UNCLASSIFIED		
		154. DECLASSIFICATION/DOWNGRADING SCHEDULE		
16. DISTRIBUTION STATEMENT (of this Report)		L		
18. SUPPLEMENTARY NOTES				
18. SUPPLEMENTARY NOTES				
18. SUPPLEMENTARY NOTES				
18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary a	nd identify by block number			
18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary a	nd identify by block number)			
18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary a	nd identify by block number)			
18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde il necessary a	nd identify by block number)			
18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary a 10. ABSTRACT (Continue on coverse side if necessary a	nd identify by block number) d identify by block number			
18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde il necessary a 10. ABSTRACT (Continue on reverse elde il necessary an	nd identify by block number) nd identify by block number)			
18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary a 10. ABSTRACT (Continue on reverse side if necessary an	nd identify by block number) nd identify by block number)			
18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde il necessary a 10. ABSTRACT (Continue on reverse elde il necessary an	nd identify by block number) nd identify by block number)			
18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary a 10. ABSTRACT (Continue on reverse side if necessary an	nd identify by block number) nd identify by block number)			
18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary a 20. ABSTRACT (Continue on reverse side if necessary an	nd identify by block number) nd identify by block number)			
18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary a 10. ABSTRACT (Continue on reverse side if necessary an	nd identify by block number) ad identify by block number)			
18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde il necessary a 10. ABSTRACT (Continue on reverse elde il necessary an 10. ABSTRACT (Continue on reverse elde il ne 10. ABSTRACT (C	nd identify by block number) nd identify by block number) LETE	UNCLASSIFIED		
18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary a E0. ABSTRACT (Continue on reverse side if necessary an D FORM 1473 EDITION OF 1 NOV 65 IS OBSOI S/N 0102-014-6601	nd identify by block number) nd identify by block number) LETE SECURITY CLA	UNCLASSIFIED BRIFICATION OF THIS PAGE (Then Dete Ento		
 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary a 20. ABSTRACT (Continue on reverse side if necessary and the second state of the	nd identify by block number) nd identify by block number) LETE SECURITY CLA	UNCLASSIFIED SBIFICATION OF THIS PAGE (Then Data Ente		

COLUMBIA UNIVERSITY HUDSON LABORATORIES MIDWEST RESEARCH INSTIT GONTRACT Nonr-266(84) FURTHER BATIONAL APPROXIMATIONS FOR THE INCOMPLETE GAMMA FUNCTION . D'Technical rept by 10 Yudell L. Luke Wyman G. Fair TECHNICAL REPORT 31 Julos 263 Contract No. Nonr-2638(00)(X) M.R.I. Project No. 2929-P For Applied Mathematics Laboratory David W. Taylor Model Basin Washington, D.C. 239350 79 08 03 119 .

PREFACE

This report covers research initiated by the Applied Mathematics Laboratory, David Taylor Model Basin, Washington 7, D.C. The research work upon which this report is based was accomplished at Midwest Research Institute under Contract Nonr-2638(00)(X).

The authors acknowledge with thanks the assistance of Messrs. Jet Wimp and Dean Lawrence, Mrs. Wanda Chinnery, Miss Rosemary Moran and Mrs. Anna Keene for the development of the numerical results.

Y.L.L. and W.F.

Approved for:

MIDWEST RESEARCH INSTITUTE

Sfferry

Sheldon L. Levy, Director Mathematics and Physics Division

August 5, 1963

Acces	sion For
NTIS	GRAAI V
DOG J	AB
Un on the	ounced
Jana	rication
67	
	ibution/
tvel	lability Codes
and the second s	Avail and/or
Dist	special
۸	
A	
H	

- ii -

TABLE OF CONTENTS

Page No.

Introduction						
I. The Incomplete Gamma Function 1						
II. Rational Approximations to $\gamma(ze^{i\pi}, v)$						
III. Error Function and Related Integrals						
IV. The Exponential Function						
V. Rational Approximations for $E(z) = z^{-1} \int_{0}^{z} t^{-1} (1-e^{-t}) dt$ 12						
References						
Appendix A - Coefficients for Rational Approximations to the						
Circular Functions						
Appendix B - Coefficients of Rational Approximations to E(z) and Related Integrals						
Appendix C - FORTRAN Program for Computing Rational Approximations						
Appendix D - FORTRAN Program for Computation of the Exponential and Circular Functions						
Appendix E - FORTRAN Program for Computing Rational Approximations to E(z)						

- iii -

A State A

1

e ...

INTRODUCTION

In a previous report [1] we studied rational approximations to the incomplete gamma function. These were based on the asymptotic expansion of the latter function. In the present study, a similar analysis is done for the same function based on one of its ascending series representations. The work is related to the developments in [2] and [3], but there are numerous improvements and some new features.

I. THE INCOMPLETE GAMMA FUNCTION

We consider

$$\gamma(z,v) = \int_{0}^{z} t^{v-1} e^{-t} dt , R(v) > 0 , \qquad (1.1)$$

$$\Gamma(z,v) = \Gamma(v) - \gamma(z,v) \qquad (1.2)$$

where

$$\Gamma(z,v) = \int_{z}^{\infty e^{i\omega}} t^{v-1}e^{-t}dt , z = x^{+}iy , x , y \text{ and } \omega \text{ are real },$$
$$|\omega| < \pi/2 , R(v) > 0 ; |\omega| = \pi/2 , 0 < R(v) < 1 . \quad (1.3)$$

In (1.3) the path of integration lies in the z plane cut along the negative real axis and is the ray $\eta \exp(i\omega)$, $\eta \rightarrow \infty$ except for an initial finite path. If $z \neq 0$, $|\omega| < \pi/2$, the integral in (1.3) exists without the restriction on ν .

The connection of these functions to the confluent hypergeometric functions is given by

- 1 -

$$\gamma(z,v) = v^{-1}z^{\nu}e^{-z}\phi(1,1+v;z) = v^{-1}z^{\nu}\phi(v,1+v;-z) , \qquad (1.4)$$

$$\Phi(a,c;z) = {}_{1}F_{1}(a;c;z)$$
, (1.5)

$$\Gamma(z,v) = z^{v} e^{-z} \psi(1, 1+v; z) = e^{-z} \psi(1-v, 1-v; z) , \qquad (1.6)$$

$$\psi(\mathbf{a},\mathbf{c};\mathbf{z}) = \frac{\Gamma(\mathbf{l}-\mathbf{c})}{\Gamma(\mathbf{a}-\mathbf{c}+\mathbf{l})} \, \tilde{\psi}(\mathbf{a},\mathbf{c};\mathbf{z}) + \frac{\Gamma(\mathbf{c}-\mathbf{l})}{\Gamma(\mathbf{a})} \, \mathbf{z}^{\mathbf{l}-\mathbf{c}} \tilde{\psi}(\mathbf{a}-\mathbf{c}+\mathbf{l},\mathbf{2}-\mathbf{c};\mathbf{z}) \quad . \quad (1.7)$$

The statement (1.4) is

$$\gamma(z,v) = z^{v}e^{-z} \sum_{k=0}^{\infty} \frac{z^{k}}{(v)_{k+1}} = z^{v} \sum_{k=0}^{\infty} \frac{(-)^{k}z^{k}}{k!(v+k)} . \qquad (1.8)$$

In the above formulas, standard generalized hypergeometric notation is used. Thus

$$p^{F_{q}} \begin{pmatrix} a_{1}, a_{2}, \dots, a_{p} \\ b_{1}, b_{2}, \dots, b_{q} \end{pmatrix} = p^{F_{q}} (a_{1}, a_{2}, \dots, a_{p}; b_{1}, b_{2}, \dots, b_{q}; z)$$

$$= \sum_{k=0}^{\infty} \frac{\prod_{i=1}^{p} (a_{i})_{k} z^{k}}{\prod_{i=1}^{q} (b_{i})_{k} k!}, \quad (a)_{k} = \frac{\Gamma(a+k)}{\Gamma(a)} \quad . \quad (1.9)$$

For further discussion of the hypergeometric functions, confluent hypergeometric functions and the incomplete gamma function, see [4, Chs. 2,4,6], [5, Ch. 9], [6], [7], and [8].

- 2 -

The addition

II. RATIONAL APPROXIMATIONS TO $\gamma(ze^{i\pi}, v)$

In [2] we proved that

$$vz^{-v}e^{-z-i\pi v}\gamma(ze^{i\pi},v) = V_n(z,v) + R_n(z,v) ,$$

$$V_n(z,v) = \frac{A_n(z,v)}{B_n(z,v)} , R_n(z,v) = \frac{P_n(z,v)}{B_n(z,v)} , \qquad (2.1)$$

where

$$A_{n}(z,v) = \sum_{k=0}^{n} \frac{(-n)_{k}(n+v+1)_{k}}{(v+1)_{k}k!} z^{n} {}_{3}F_{1}\left(\begin{array}{c} -n+k, n+v+1+k, 1\\ 1+k \end{array}\right) - 1/z , \quad (2.2)$$

and $B_n(z,v)$ is the k = 0 term in (2.2). In this event, the ${}_3F_1$ becomes a ${}_2F_0$. Thus

$$B_{n}(z,v) = z^{n} 2F_{0}(-n,n+v+1;-1/z) = (n+1+v)_{n} 1F_{1}(-n,-2n-v;z) . \quad (2.3)$$

Also,

- Transfer and a

$$P_{n}(z,v) = \frac{(-)^{n+1}e^{-z}}{z^{\nu}(v+1)_{n}} \int_{0}^{z} (z-t)^{n}t^{n+\nu}e^{t}dt$$
$$= \frac{(-)^{n+1}n!e^{-z}z^{2n+1}}{(v+1)_{2n+1}} \mathbf{1}^{F_{1}(n+\nu+1;2n+\nu+2;z)} , \qquad (2.4)$$

$$R_{n}(z,v) = \frac{(-)^{n+1}n!\Gamma(v+1)\Gamma(n+v+1)z^{2n+1}F_{1}(n+1;2n+v+2;-z)}{\Gamma(2n+v+1)\Gamma(2n+v+2)F_{1}(-n;-2n-v;z)} \quad . \quad (2.5)$$

- 3 -

a strange to a strange

Both $A_n(z,v)$ and $B_n(z,v)$ satisfy the same recurrence equation

$$\frac{(n+\nu+1)}{(2n+\nu+1)(2n+\nu+2)} A_{n+1}(z,\nu) = \left[1 + \frac{\nu z}{(2n+\nu)(2n+\nu+2)}\right] A_n(z,\nu) + \frac{n z^2}{(2n+\nu)(2n+\nu+1)} A_{n-1}(z,\nu) \quad . \quad (2.6)$$

We list some other useful relations:

$$(2n+\nu)DB_n(z,\nu) - nB_n(z,\nu) + nB_{n-1}(z,\nu) = 0$$
, (2.7)

$$(2n+v)DA_{n}(z,v)+(n+v)A_{n}(z,v)+nzA_{n-1}(z,v)+z^{-1}v(2n+v)[A_{n}(z,v)-B_{n}(z,v)]=0, (2.8)$$

and

$$\left[zD^{2}-(z+2n+v)D+n\right]B_{n}(z,v) = 0, D = \frac{d}{dz} . \qquad (2.9)$$

We now develop a useful estimate of the remainder $\,R^{}_{\rm n}(z,\upsilon)$. Consider

$$y = e^{-z/2} \Gamma_1(a,c;z)$$
, $zy'' + cy' + (K-z/4)y = 0$, $K = c/2 - a$. (2.10)

Assume

$$y = \sum_{k=0}^{\infty} \frac{a_k(z)}{u^k}$$
, $a_0(z) = 1$, $u = \frac{1}{2}(c-1)$. (2.11)

Then the aks can be generated by the expression

a stand to stand

$$a_{k+1}(z) = -\frac{1}{2}z a_{k}'(z) + \frac{1}{2}\int_{0}^{z} (t/4-K)a_{k}(t)dt$$
 (2.12)

Thus, for example,

$$a_1(z) = z^2/16 - Kz/2$$
, $a_2(z) = z^4/512 - Kz^3/32 + z^2(2K^2-1)/16 + Kz/4$, and

$$a_{3}(z) = \frac{z^{6}}{24576} - \frac{Kz^{5}}{1024} + \frac{z^{4}(4K^{2}-3)}{512} - \frac{K(4K^{2}-13)z^{3}}{192} - \frac{z^{2}(3K^{2}-1)}{16} - \frac{Kz}{8} .$$
 (2.13)

Clearly the series (2.11) is absolutely convergent for all z as it can be found by multiplication of the series ${}_1F_1(a;c;z)$ by the series for $e^{-z/2}$. However, if z is fixed, c is large and K << c, then (2.11) is a useful representation of y for large c. The expressions (2.6)-(2.8) can also be deduced from some general results of Olver, see the discussion in [8, p. 76].

Apply (2.10)-(2.13) to the confluent functions in (2.5). Then, with the aid of the duplication formula for gamma functions, we get

$$R_{n}(z,v) = \frac{(-)^{n+1}n!\pi\Gamma(v+1)\Gamma(n+v+1)z^{2n+1}e^{-z}\sum_{k=0}^{\infty}\frac{a_{k}(z)}{u^{k}}}{2^{4n+2v}(2n+v+1)\left[\Gamma\left(n+\frac{v+1}{2}\right)\Gamma\left(n+\frac{v}{2}+1\right)\right]^{2}\sum_{k=0}^{\infty}\frac{(-)^{k}a_{k}(z)}{u^{k}}}, \quad (2.14)$$
or
$$R_{n}(z,v) = \frac{(-)^{n+1}\pi n!\Gamma(v+1)\Gamma(n+v+1)z^{2n+1}e^{-z}}{2^{4n+2v}(2n+v+1)\left[\Gamma\left(n+\frac{v+1}{2}\right)\Gamma\left(n+\frac{v}{2}+1\right)\right]^{2}}e^{\frac{2a_{1}(z)}{u}}$$

$$\times \{1 + 0(1/n^3)\}$$
, (2.15)

where $u = n + \frac{1}{2}(v+1)$, K = -v/2 and the a_k 's are given by (2.12). It follows that for z and v fixed,

$$\lim_{n \to \infty} R_n(z,v) = 0 \quad . \tag{2.16}$$

a series teals

Since $\Gamma(n+a)/\Gamma(n+b) = n^{a-b}[1+O(1/n)]$, it is convenient to write

$$R_{n}(z,v) = \frac{(-)^{n+1} \pi \Gamma(v+1) z^{2n+1} e^{-z}}{2^{4n+2v+1} n^{v} (n!)^{2}} \left\{ 1 + O(1/n) \right\} . \qquad (2.17)$$

Concerning the use of (2.1), it is important to know the nature of $z_{n,i}^{(v)}$, i = 1,2,...,n, the zeros of $B_n(z,v)$. It is clear from (2.9) that the zeros are simple. If v = 0, $B_n(z, v)$ is essentially the modified Bessel function of half-odd order (see (4.2)). In this instance the zeros can be deduced from the work of Olver 9. See also Grosswald [12]. The zeros lie in the left half plane and are always complex except when n is odd in which case there is a single real root. If $z_n^{(v)}$ is the magnitude of the smallest root(s) of $B_n(z,v)$, then from the work of Olver [9] $z_n^{(0)} \sim 1.32548n$. Here $2(t_0^2-1)^{\frac{1}{2}} = 1.32548$ where to is the real zero of t = coth t. Thomson [10] and Kublanovskaia and Smirnova [11] have tabulated $\frac{1}{2}z_{1,0}$, the former for n = l(1)9 to 4d, and the latter for n = l(1)21 to 5d. Salzer [13] has tabulated z(-1) for n = l(1)16 to 15d. We have prepared some tables of z(v) for v = -3/2, 1/2, 1. For all the v values mentioned above, the roots lie in the left half plane. If n is odd, there is a single real root, otherwise the roots are complex. On the basis of the data, we conjecture that $z_n^{(\nu)} \sim 1.32548n + \nu + 1 - 1/\pi$. An alternative conjecture is that $z_{2n}^{(v)} \sim \frac{1}{2}\pi^{\frac{1}{2}}(3n+v+1)$, $z_{2n+1}^{(v)} \sim 3/2 n\pi^{\frac{1}{2}} + v + 2$. Thus as n increases, the magnitude of the smallest zero(s) of $B_n(z,v)$ increases linearly with n . We see from (2.17) that to achieve high accuracy, n must be considerably larger than z, and so the value of $z_n^{(v)}$ is not critical.

Another rational approximation for $\gamma(ze^{i\pi}, v)$ is

 $vz^{-v}e^{-z-iv\pi}\gamma(ze^{i\pi},v) = S_n(z,v) + T_n(z,v)$,

- 6 -

10 And Alexandre

$$S_{n}(z,v) = \frac{C_{n}(z,v)}{D_{n}(z,v)}, \quad T_{n}(z,v) = \frac{Q_{n}(z,v)}{D_{n}(z,v)}, \quad (2.18)$$

where

$$C_{n}(z,v) = -\frac{v}{z} \sum_{k=0}^{n-1} \frac{(-n)_{k+1}(n+v)_{k+1}}{(v)_{k+1}(k+1)!} z^{n} {}_{3}F_{1}\left(\begin{array}{c} -n+1+k, n+v+1+k, 1\\ k+2 \end{array} \middle| -\frac{1}{z}\right) , \quad (2.19)$$

and $D_n(z,v)$ is z^n times the ${}_{3}F_1$ in (2.19) with k+l set equal to zero. Thus $D_n(z,v)$ is $B_n(z,v)$ if in the latter we replace v by v-1. Also

$$Q_{n}(z,v) = \frac{(-)^{n}vz^{-v}e^{-z}}{(v)_{n}} \int_{0}^{z} (z-t)^{n}t^{n+v-1}e^{t}dt$$
$$= \frac{(-)^{n}n!e^{-z}z^{2n}}{(v+1)_{2n}} {}_{1}F_{1}(n+v;2n+v+1;z) \quad .$$
(2.20)

Both $C_n(z,v)$ and $D_n(z,v)$ satisfy (2.6) if v is replaced by v-1. Also, $D_n(z,v)$ satisfies (2.7) and (2.9) with v replaced by v-1. The relation analogous to (2.8) reads

$$(2n+\nu-1)DC_{n}(z,\nu) + (n+\nu-1)C_{n}(z,\nu) + nzC_{n-1}(z,\nu) + z^{-1}\nu(2n+\nu-1)[C_{n}(z,\nu)-D_{n}(z,\nu)] = 0 .$$
(2.21)

After the manner of deriving (2.15) and (2.17) we have

$$T_{n}(z,v) = \frac{(-)^{n} \pi ! \Gamma(v+1) \Gamma(n+v) z^{2n} e^{-z} e^{2a} \frac{1}{2}(z)/u^{*}}{2^{4n+2v-2} (2n+v) \left[\Gamma\left(n+\frac{v}{2}\right) \Gamma\left(n+\frac{v+1}{2}\right) \right]^{2}} \left\{ 1+0(1/n^{3}) \right\}$$
$$= \frac{(-)^{n} \pi \Gamma(v+1) z^{2n} e^{-z} e^{2a} \frac{1}{2}(z)/u^{*}}{2^{4n+2v-1} n^{\nu-1} (n!)^{2}} \left\{ 1+0(1/n) \right\} , \qquad (2.22)$$

where $u^* = n^+ v/2$, $a_1^*(z) = z(z+4v-4)/16$, whence for z and v fixed, lim $T_n(z,v) = 0$.

If z and v are positive and fixed, then for a given n, it is clear that $R_n(z,v)$ and $T_n(z,v)$ are of opposite sign. This leads to the inequalities

$$\frac{C_{n}(z,v)}{D_{n}(z,v)} \geq vz^{-v}e^{-z}\int_{0}^{z}t^{v-1}e^{t}dt \geq \frac{A_{n}(z,v)}{B_{n}(z,v)}, \qquad (2.23)$$

where > or < sign is chosen according as n is odd or even, respectively. For example,

$$\frac{(v+1)(v+2)-z}{(v+1)(v+2)+z} < vz^{-v}e^{-z} \int_0^z t^{v-1}e^t dt < \frac{v+1}{v+1+z} , z > 0 , v > 0 , \quad (2.24)$$

$$\frac{2-z}{2+z} < e^{-z} < \frac{1}{z+1} , z > 0 , \qquad (2.25)$$

$$\frac{15-4z^2}{15+6z^2} < z^{-1}e^{-z^2} \int_0^z e^{t^2} dt < \frac{3}{2z^{2}+3}, z > 0 \quad . \tag{2.26}$$

In the last three equations, equality prevails if $z \rightarrow 0$.

At this juncture, we present a summary of the material in the remaining sections of the report. If $v = \frac{1}{2}$, (2.1) yields approximations for the error function and related integrals which is the subject of Section III. Approximations for the exponential function and the circular functions which come from (2.1) when v = 0 are discussed in Section IV. Tables of the polynominals in the approximations of the functions discussed in Sections III and IV, and related data, are found in Appendix A. If v = 0, (1.3) is the exponential integral and in [1], we developed rational approximations for this function based on its asymptotic representation. Though $\Gamma(z, 0)$ is defined by (1.3), clearly y(z,0) is not. However, we can give an ascending series representation for a function closely related to $\Gamma(z,0)$. We show in Section V how rational approximations to this related function may be derived, and tables of the polynomials in these approximations and related data are given in Appendix B. FORTRAN codes for computing rational approximations to the incomplete gamma function and its special cases are presented in Appendices C, D and E.

- 8 -

III. ERROR FUNCTION AND RELATED INTEGRALS

We list below formulae useful for the approximation of the error functions and the Fresnel integrals. These are based on (2.1) for $v = \frac{1}{2}$. It is clear from (2.1) and (2.18) that $V_n(z, \frac{1}{2})$ and $R_n(z, \frac{1}{2})$ can be replaced by $S_n(z, \frac{1}{2})$ and $T_n(z, \frac{1}{2})$, respectively.

$$\gamma(z,\frac{1}{2}) = \int_{0}^{z} t^{-\frac{1}{2}} e^{-t} dt = 2z^{\frac{1}{2}} e^{-z} \left\{ V_{n}(ze^{-i\pi},\frac{1}{2}) + R_{n}(ze^{-i\pi},\frac{1}{2}) \right\} . \quad (3.1)$$

$$\operatorname{Erf}(z) = \frac{1}{2}\gamma(z^{2}, \frac{1}{2}) = \int_{0}^{z} e^{-t^{2}} dt = (\pi/4)^{\frac{1}{2}} - \operatorname{Erfc}(z) , \qquad (3.2)$$

$$\operatorname{Erfc}(z) = \int_{z}^{\infty} e^{-t^{2}} dt , \qquad (3.3)$$

$$\operatorname{Erf}(z) = \int_{0}^{z} e^{-t^{2}} dt = z e^{-z^{2}} \left\{ V_{n}(z^{2} e^{-i\pi}, \frac{1}{2}) + R_{n}(z^{2} e^{-i\pi}, \frac{1}{2}) \right\} , \quad (3.4)$$

$$Erfi(z) = \int_{0}^{z} e^{t^{2}} dt = -iErf(iz)$$
, (3.5)

$$\gamma(ze^{\frac{13\pi}{2}},\frac{1}{2}) = e^{\frac{13\pi}{4}} \int_{0}^{z} t^{-\frac{1}{2}} e^{it} dt = 2z^{\frac{1}{2}} e^{iz+i3\pi/4} \left\{ V_{n}(ze^{2},\frac{1}{2}) + R_{n}(ze^{2},\frac{1}{2}) \right\}, \quad (3.6)$$

$$C(z) + iS(z) = (2\pi)^{-\frac{1}{2}} \int_{0}^{z} t^{-\frac{1}{2}} e^{it} dt$$
 (3.7)

The exact coefficients of polynomials simply related to $A_n(z, \frac{1}{2})$, $B_n(z, \frac{1}{2})$, $C_n(z, \frac{1}{2})$ and $D_n(z, \frac{1}{2})$ are given in Appendix A for n = O(1)10. For n = 2(1)10, we also record values of $R_n^*(z, \frac{1}{2}) = |2z^2e^2R_n(z, \frac{1}{2})|$, see (2.15), for $z = re^{1\theta}$, r = 1(1)10, $\theta = 0$, $\pi/2$, π . Error tables for other values of v and for $T_n(z, v)$ are easily derived from the latter table. See the discussion in Appendix A. See Appendix C for FORTRAN codes.

- 9 -

To illustrate the utility of (2.15), we present the numerics below. The tables give $e^{-i\pi/2}\gamma(ze^{i\pi}, \frac{1}{2})$, its rational approximation (2.1), the exact error, and the approximate error according to (2.15). The data are developed for $z = 2e^{i\theta}$, n = 4.

$$\int_{0}^{z} t^{-\frac{1}{2}} e^{t} dt$$

Exact

0

$$2z^{\frac{1}{2}}e^{z}V_{n}(z,\frac{1}{2})$$

06.68768556.6877002 $\pi/2$ 3.3756999 x 10⁻¹ + 2.3328174i3.3756168 x 10⁻¹ + 2.3328241i π 1.0324115 x 10⁻⁸ + 1.6918067i1.0317960 x 10⁻⁸ + 1.6917947i

IV. THE EXPONENTIAL FUNCTION

If
$$v \rightarrow 0$$
, (2.1) becomes

$$e^{-z} = \frac{G_n(-z)}{G_n(z)} + R_n(z,0)$$
, (4.1)

$$G_n(z) = z_2^n F_0(-n, n+1; -\frac{1}{2}) = (2/\pi)^{\frac{1}{2}} z_n^n K_{n+\frac{1}{2}}(z/2) ,$$
 (4.2)

$$R_{n}(z,0) = \frac{(-)^{n+1} \prod_{n+\frac{1}{2}} (z/2)}{e^{z} K_{n+\frac{1}{2}}(z/2)} = \frac{2(-)^{n+1} (z/4)^{2n+1} e^{-z+z^{2}/(8n+4)}}{n [(\frac{1}{2})_{n}]^{2}} \left\{ 1 + O(1/n^{3}) \right\}$$

$$= \frac{(-)^{n+1} \pi z^{2n+1} e^{-z}}{2^{4n+1} (n!)^2} \left\{ 1 + O(1/n) \right\} .$$
 (4.3)

- 10 -

Here $I_n(z)$ and $K_n(z)$ are the familiar notations for the modified Bessel functions.

It is of interest to show how (4.1) can be used to compute the exponential and circular functions in an efficient manner. Let

$$G_n(z) = M_n(z^2) + zN_n(z^2)$$
 (4.4)

where $M_n(z^2)$ and $N_n(z^2)$ are even polynomials in z . Clearly

$$e_n^{-z} = \frac{G_n(-z)}{G_n(z)} = \frac{M_n(z^2) - zN_n(z^2)}{M_n(z^2) + zN_n(z^2)} , \qquad (4.5)$$

and one readily verifies that $\,G_n(z)$, $M_n(z^2)\,$ and $\,N_n(z^2)\,$ all satisfy the recurrence formula

$$G_{n+1}(z) = 2(2n+1)G_n(z) + z^2G_{n-1}(z)$$
 (4.6)

Let the approximation to the circular functions be denoted by

$$e_n^{-iz} = \cos_n z - i \sin_n z \quad . \tag{4.7}$$

Then

$$\cos_{n} z = \frac{U_{n}(z^{2})}{W_{n}(z^{2})}, \quad \sin_{n} z = \frac{zV_{n}(z^{2})}{W_{n}(z^{2})},$$

$$U_{n}(z^{2}) = \left[M_{n}(-z^{2})\right]^{2} - z^{2}\left[N_{n}(-z^{2})\right]^{2}, \quad V_{n}(z^{2}) = 2M_{n}(-z^{2})N_{n}(-z^{2}),$$

$$W_{n}(z^{2}) = \left[M_{n}(-z^{2})\right]^{2} + z^{2}\left[N_{n}(-z^{2})\right]^{2}.$$
(4.8)

A CALLER AND

It can be shown that * $U_n(z^2)$, $V_n(z^2)$ and $W_n(z^2)$ all satisfy the recurrence formula

$$(2n-1)U_{n+1}(z^{2}) = \left[-z^{2}+4(4n^{2}-1)\right] \left[(2n+1)U_{n}(z^{2})-z^{2}(2n-1)U_{n-1}(z^{2})\right] + z^{6}(2n+1)U_{n-2}(z^{2}) \qquad (4.9)$$

The exact coefficients of the polynomials $G_n(z)$, $U_n(z^2)$, $V_n(z^2)$ and $W_n(z^2)$ are given in Appendix A for n = l(1)l0. See also the introduction to Table A.III in Appendix A for the evaluation of $R_n(z,0)$. Appendix D gives FORTRAN codes for the computation of e_n^{-2} , $\cos_n z$, $\sin_n z$ and $\tan_n z$ for z real only. We conclude this section with an example to indicate the effectiveness of (4.1)-(4.3).

If n = 4 and z = 1, (4.5) gives the value $e_4^{-1} = 0.36787$ 94561. The error is -1.5×10^{-8} whereas the last of (4.3) gives the value -1.6×10^{-8} . For n = 4 and z = i, (4.5) yields $e_4^{-1} = 0.54030$ 23380 + 0.8414709642i. The true error is $-3.2 \times 10^{-8} - i2.1 \times 10^{-8}$ as compared with the estimated error from the last of (4.3), $-3.4 \times 10^{-8} - i2.2 \times 10^{-8}$.

V. RATIONAL APPROXIMATIONS FOR $E(z) = z^{-1} \int_{0}^{z} t^{-1}(1-e^{-t}) dt$

In this section we develop some rational approximations for E(z). It is of interest to first list some functions related to E(z). We have

$$E(z) = z^{-1} \int_{0}^{z} t^{-1} (1 - e^{-t}) dt = z^{-1} [-Ei(-z) + \gamma + \ln z] , -Ei(-z) = \Gamma(z, 0) , (5.1)$$

where γ is Euler's constant.

* We are indebted to Mr. Jet Wimp for proof of this statement and other helpful suggestions.

$$\frac{1}{2} \Big[E(ze^{i\pi/2}) + E(ze^{-i\pi/2}) \Big] = z^{-1} Si(z) = z^{-1} \int_{0}^{z} t^{-1} sin t dt$$

$$= z^{-1} \Big[\pi/2 + si(z) \Big] , si(z) = \int_{\infty}^{z} t^{-1} sin t dt , \quad (5.2)$$

$$2i \Big[E(ze^{i\pi/2}) - E(ze^{-i\pi/2}) \Big] = 4z^{-2} H(z) = 4z^{-2} \int_{0}^{z} t^{-1} (1 - \cos t) dt$$

$$= 4z^{-2} \Big[Ci(z) - \gamma - \ln z \Big] , Ci(z) = \int_{\infty}^{z} t^{-1} cos t dt . \quad (5.3)$$

Approximations for E(z) can be derived on the basis of the results given in Section II. Clearly from (1.1) and (2.1),

$$zE(z) = \lim_{v \to 0} \int_{0}^{z} t^{v-1} (1-e^{-t}) dt = \lim_{v \to 0} \left[\frac{z^{v}}{v} - \gamma(z,v) \right]$$

$$= \frac{\lambda}{\partial v} \left\{ z^{v} - e^{-z} z^{v} \left[V_{n}(ze^{-i\pi},v) + R_{n}(ze^{-i\pi},v) \right] \right\}_{v=0}$$

$$= \frac{-e^{-z}}{\left[B_{n}(ze^{-i\pi},0) \right]^{2}} \left\{ B_{n}(ze^{-i\pi},0) \frac{\partial A_{n}(ze^{-i\pi},0)}{\partial v} - A_{n}(ze^{-i\pi},0) \frac{\partial B_{n}(ze^{-i\pi},0)}{\partial v} \right\}$$

$$- e^{-z} \frac{\partial R_{n}(ze^{-i\pi},0)}{\partial v} \quad . \quad (5.4)$$

This approach is not satisfactory since the numerator and denominator polynomials of the rational approximation are now each of degree 2n.

It calls for remark that the rational approximations given in Section II are of the Pade type. Let

$$E(z) = \sum_{k=0}^{3} a_k z^k$$
 (5.5)

- 13 -

be approximated by

$$E_{p,q}(z) = \frac{f_p(z)}{g_q(z)}$$
, (5.6)

where $f_p(z)$ and $g_q(z)$ are polynomials in z of degree p and q, respectively. If

$$g_{q}(z)E(z) - f_{n}(z) = z^{p+q+1}h(z), h(0) \neq 0$$
, (5.7)

then (5.6) is the Padé approximant of E(z). Thus (2.1) is of the type (5.6) where p = q = n, and (2.18) is also of the same type with q = p+1 = n. The approximation (5.6) is called the main diagonal Padé approximation if p = q = n.

The numerator and denominator polynomials in the Pade approximants to transcendental functions are known in closed form, as for the functions in Section II, only in very few cases. However, the Pade approximant to a Taylor series expansion can always be found by solving systems of linear equations. Thus, if

$$f(z) = \sum_{k=0}^{p} f_{k} z^{k}$$
, $g(z) = \sum_{k=0}^{q} g_{k} z^{k}$, (5.8)

then

$$\sum_{j=0}^{r} a_{j}g_{r-j} = 0 , r = p+1, p+2, \dots, p+q ,$$

$$f_{k} = \sum_{j=0}^{k} a_{j}g_{k-j} , k = 0, 1, \dots p ,$$

$$h(z) = \sum_{k=0}^{\infty} h_{k}z^{k} , h_{k} = \sum_{j=0}^{p+q+1+k} a_{j}g_{p+q+1+k-j} .$$
(5.9)

The coefficients f_k , g_k and h_k must be determined anew for each choice of p and q.

U TANA

As remarked previously, it is inconvenient to use (5.4) as a rational approximation for E(z). To circumvent this difficulty, we have computed the coefficients of the main diagonal Padé approximants of the functions E(z) for n = O(1)10 and $z^{-1}Si(z)$ and $4z^{-2}H(z)$ for n = O(2)10. These are tabulated in Appendix B.

We also include tables of the absolute values of the errors incurred by using the Pade approximation of E(z) for n = 2(1)10, r = 1(1)10, and $\theta = 0, \pi/2, \pi$, where $z = re^{1\theta}$, and the Pade approximants of Si(z) and H(z) for z real, z = 1(1)10 and for n = 4(2)10. These tables may be used as a guide in selecting the order of approximation necessary to obtain a desired accuracy. For example, if six decimal accuracy is desired for E(z)for $z = 2\overline{2}e^{1\pi/4}$, i.e., $|error| < 0.5 \times 10^{-6}$, interpolation of Table B.II indicates that a third order approximation should be sufficient. The third order approximation gives 0.76507 22371 - 0.15899 838671 and the true value is 0.76507 22539 - 0.15899 862561. Thus $|error| < 2.41 \times 10^{-7}$.

Now

$$E(iz) = z^{-1}Si(z) - iz^{-1}H(z) . \qquad (5.10)$$

Select n. It is readily deduced from the error tables that the Pade' values for E(iz) are better than the values deduced from (5.10) by using the Pade' approximants for S(z) and H(z) for z real. Thus, if both Si(z) and H(z) are needed, it is better to use the Pade for E(iz). However, if only H(z), say, is needed, it is more economical to use the Pade for H(z).

An examination of the zeros of the denominators of the Pade approximations of E(z), Si(z) and H(z) indicates that the magnitudes of the smallest zeros of the denominator increase linearly with n. Since n must be significantly larger than the argument to attain good accuracy, the location of these zeros is not important.

As noted above, the Pade approximants for E(z) are not known in closed form, and it is necessary to solve systems of linear equations for each selection of p and q (see (5.8)). We now give another rational approximation of E(z) which is of the form (5.8) with p = q = n. In over-all accuracy, it is somewhat inferior to the corresponding Pade approximant, see Tables B.II and B.VIII. However, it has the desirable advantage that the numerator and denominator polynomials can be computed by recurrence formulas. Following [14], it can be shown that

- 15 -

$$E(z) = {}_{2}F_{2}\left(\frac{1,1}{2,2} \middle| -z\right) = \varphi_{n}(z)/f_{n}(z) + \varepsilon_{n}(z) , \ \varepsilon_{n}(z) = F_{n}(z)/f_{n}(z) , \ (5.11)$$

$$\varphi_{n}(z) = \sum_{r=0}^{m} \frac{(-)^{r} {\binom{n}{r}} (n+1)_{r}}{(2)_{r}} 4^{F_{2}} \binom{-n+r, n+1+r, 1, 2+r}{1+r, 1+r} |-1/z|, \quad (5.12)$$

and $f_n(z)$ is the ${}_4F_2$ in (5.12) with r = 0 whence it becomes a ${}_3F_1$, see (5.13). The nature of $F_n(z)$ will not be discussed here in detail. Suffice it to remark, it will be shown elsewhere that for z fixed lim $F_n(z) = 0$.

Now

$$f_{n}(z) = {}_{3}F_{1} \begin{pmatrix} -n, n+1, 2 \\ 1 \end{pmatrix} |-1/z \end{pmatrix}$$
$$= \frac{(n+1)(2n)!}{n!z^{n}} {}_{2}F_{2} \begin{pmatrix} -n, -n \\ -2n, -n-1 \end{pmatrix} |z \rangle , \qquad (5.13)$$

where it is to be understood that in the ${}_2F_2$ only the first (n+1) terms of the series are retained. Thus

$$f_{n}(z) = \frac{(n+1)(2n)!}{n!z^{n}} \exp\left\{\frac{nz}{2(n+1)}\right\} \left\{1 - \frac{z^{2}(n^{2}+2n-2)}{8(n+1)^{2}(2n-1)} + O(z^{3}/n^{3})\right\} (5.14)$$

and so for z fixed,

 $\lim_{n \to \infty} \epsilon_n(z) = 0 , \qquad (5.15)$

whence the rational approximants converge. It will also be demonstrated elsewhere that both $\varphi_n(z)$ and $f_n(z)$ satisfy the recurrence formula

- 16 -

$$f_n(z) = (B_1 z + A_1) f_{n-1}(z) + (B_2 z + A_2) f_{n-2}(z) + A_3 f_{n-3}(z)$$

$$A_1 = -A_3 = \frac{(n-2)(2n-1)}{n(2n-3)}, A_2 = 1$$

$$B_1 = \frac{2(2n-1)(n+1)}{n}$$
, and $B_2 = \frac{-2(2n-1)(n-3)}{n}$. (5.16)

To illustrate the power of (5.14), take $z = \frac{1}{2}$ and n = 4. The true value (from (5.12)) is 1101 and the value using (5.14) is 1098.5.

From the preceding development and the last remark, it is obvious that all that is needed for a useful expression for the error $|\epsilon_n(z)|$ is an approximation of $F_n(z)$ (see (5.11)) for large n. This is not available at the present time. If z is real and positive, we can show that

$$\left|\epsilon_{n}(z)\right| \leq \left|\frac{5(2z)^{\frac{1}{2}}}{f_{n}(z)}\right|$$
 (5.17)

This bound, however, is very conservative.

The coefficients of the polynomials $\varphi_n(z)$ and $f_n(z)$ are given in Appendix B for n = O(1)10. Also presented are values of $|\epsilon_n(z)|$ for n = 3(1)10 and for $z = re^{i\theta}$ where r = 1(1)10, $\theta = 0, \pi/2, \pi$.

The approximation (5.11) has the same properties as the Padé approximation in that the magnitude of the smallest zeros of the denominator polynomials increase linearly with n, the order of approximation. Again since the order of approximation must be significantly larger than the argument, the location of zeros of the denominator polynomials is not critical.

A Statistical And

REFERENCES

- Luke, Y.L., "Rational Approximations for the Incomplete Gamma Function," Summary Report, 31 July 1961-31 July 1962, Contract No. Nonr-2638(00)(X), MRI Project No. 2229-P.
- Luke, Y.L., "The Pade Table and the τ-Method," Journal of Mathematics and Physics, 37, 110-127, July 1958.
- Luke, Y.L., "Economization of Integrals of Transcendental Functions," Technical Report, March 15, 1961 (revised June 1, 1962), Contract No. Nonr-2638(00)(X), MRI Project No. 2229-P.
- 4. Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F.G., <u>Higher</u> <u>Transcendental Functions</u>, McGraw-Hill, Vol. I, 1953.
- 5. Erdelyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F.G., <u>Higher</u> Transcendental Functions, McGraw-Hill, Vol. II, 1953.
- Buchholz, H., <u>Die Konfluente Hypergeometrische Funktion</u>, Springer-Verlag, 1953.
- Tricomi, F.G., <u>Funzioni Ipergeometrische Confluenti</u>, Edizioni Cremonese, 1954.
- 8. Slater, L.J., <u>Confluent Hypergeometric Functions</u>, Cambridge University Press, 1960.
- 9. Olver, F.W.J., "The Asymptotic Expansion of Bessel Functions of Large Order," Philos. Trans. Roy. Soc. London, 247, 328-368 (1954).
- Thomson, W.E., "Networks with Maximally-Flat Delay," Wireless Engineer 29, 256-263, 309 (1952).
- Kublanovskaia, V.N. and F.N. Smirnova, "Zeros of Hankel Functions and Some Related Functions," Trudy Steklov Math. Inst. AN USSR, 186-192 (1959). English translation by Morris D. Friedman, Air Force Cambridge Research Laboratories TN-60-1128, 1960, Cambridge, Mass.
- Grosswald, E., "On Some Algebraic Properties of Bessel Polynomials," Trans. Amer. Math. Soc., <u>71</u>, 197-210 (1951).
- Salzer, H.E., "Additional Formulas and Tables for Orthogonal Polynomials Originating from Inversion Integrals," Jour. Math. Phys. <u>40</u>, 72-86(1961).

 Luke, Y.L., "On Economic Representations of Transcendental Functions," Jour. Math. Phys. <u>38</u>, 279-294 (1960).

1 A Barriston

APPENDIX A

COEFFICIENTS FOR RATIONAL APPROXIMATIONS TO THE ERROR FUNCTION, EXPONENTIAL FUNCTION AND CIRCULAR FUNCTIONS

We first show how the exact coefficients in the approximations (2.1) and (2.18) can be generated when v is rational. Suppose v = p/q, $q \neq 0$ and p,q are co-prime integers.

Let

$$A_{n}^{*}(z,v) = q^{2n} \frac{\Gamma(v+n+1)}{\Gamma(v+1)} A_{n}(z,v) = \sum_{k=0}^{n} a_{n,k} z^{k} ,$$

$$B_{n}^{*}(z,v) = q^{2n} \frac{\Gamma(v+n+1)}{\Gamma(v+1)} B_{n}(z,v) = \sum_{k=0}^{n} b_{n,k} z^{k} ,$$
(A.1)

where $A_n(z,v)$ and $B_n(z,v)$ are defined in (2.2) and (2.3), respectively. Note that

$$\frac{A_{n}^{*}(z,v)}{B_{n}^{*}(z,v)} = \frac{A_{n}(z,v)}{B_{n}(z,v)} , \qquad (A.2)$$

and the transformation (A.1) insures that the coefficients $a_{n,k}$ and $b_{n,k}$ are integers if p and q are co-prime integers. If v = 0, set p = 0 and q = 1. From (2.6) it is seen that

$$\Lambda_{n+1} = \frac{(2nq+p+q)}{(2nq+p)} \left[(2nq+p)(2nq+p+2q)+pqz \right] \Lambda_n + \frac{q^3nz^2(2nq+p+2q)(nq+p)}{(2nq+p)} \Lambda_{n-1} ,$$

$$\Lambda_n = \Lambda_n^*(z,v) \text{ or } B_n^*(z,v) , \qquad (A.3)$$

- 19 -

appropriate second.

and

にいい。した

$$A_{0}^{*}(z,v) = 1, A_{1}^{*}(z,v) = (p+q)(p+2q) - q^{2}z ,$$

$$B_{0}^{*}(z,v) = 1, B_{1}^{*}(z,v) = (p+q)(p+2q) + q(p+q)z .$$
(A.4)

Using (A.3) and (A.1), we get the recurrence formula

$$\lambda_{n+1,k} = (2nq+p+q)(2nq+p+2q)\lambda_{n,k} + \frac{pq(2nq+p+q)}{(2nq+p)}\lambda_{n,k-1} + \frac{q^3n(2nq+p+2q)(nq+p)}{(2nq+p)}\lambda_{n-1,k-2} ,$$

$$\lambda_{n,k} = a_{n,k} \text{ or } b_{n,k} ; k = 0,1,2,...,n$$
and $\lambda_{n,k} = 0 \text{ if } k < 0 \text{ or } k > n .$

$$(A.5)$$

The initial values are

$$a_{0,0} = 1 ,$$

$$a_{1,0} = (p+q)(p+2q) , a_{1,1} = -q^2 ,$$

$$b_{0,0} = 1 ,$$

$$b_{1,0} = (p+q)(p+2q) , b_{1,1} = q(p+q) .$$

$$(A.6)$$

Using a similar argument we find the following relations.

- 20 -

.5)

$$C_{n}^{*}(z,v) = \frac{q^{2n}\Gamma(v+n+1)}{\Gamma(v+1)} C_{n}(z,v) = \sum_{k=0}^{n} c_{n,k}z^{k} ,$$

$$D_{n}^{*}(z,v) = \frac{q^{2n}\Gamma(v+n+1)}{\Gamma(v+1)} D_{n}(z,v) = \sum_{k=0}^{n} d_{n,k}z^{k} ,$$
(A.7)

where $C_n(z,v)$ and $D_n(z,v)$ are defined in (2.19).

$$\Omega_{n+1} = \frac{(2nq+p)}{(2nq+p-q)} \left[(2nq+p-q)(2nq+p+q) + q(p-q)z \right] \Omega_{n} + \frac{q^3nz^2(2nq+p+q)(p+nq-q)}{(2nq+p-q)} \Omega_{n-1} ,$$

$$\Omega_{n} = C_{n}^{*}(z,v) \text{ or } D_{n}^{*}(z,v) ,$$
(A.8)

$$C_{0}^{*}(z,v) = 0, \quad C_{1}^{*}(z,v) = (p+q),$$

$$D_{0}^{*}(z,v) = 1/p, \quad D_{1}^{*}(z,v) = (p+q) + qz,$$
(A.9)

$$Y_{n+1,k} = (2nq+p)(2nq+p+q)Y_{n,k} + \frac{q(p-q)(2nq+p)}{(2nq+p-q)}Y_{n,k-1} + \frac{q^{3}n(2nq+p+q)(p+nq-q)}{(2nq+p-q)}Y_{n-1,k-2},$$

$$Y_{n,k} = c_{n,k} \text{ or } d_{n,k} ; k = 0,1,...,n$$
and $Y_{n,k} = 0$ if $k < 0$ or $k > n$, (A.10)

- 21 -

a state in

$$c_{0,0} = 0$$
 ,
 $c_{1,1} = 0$, $c_{1,0} = (p+q)$,
 $d_{0,0} = 1/p$,
 $d_{1,0} = (p+q)$, $d_{1,1} = q$.
(A.11)

Tables A.I and A.II give the coefficients of the polynomials in the rational approximations to the error function, see (2.1), (2.18), (3.2) and (3.3). Table A.III gives the error associated with the approximation (2.1) for $v = \frac{1}{2}$. The introduction to Table A.III shows how the table may be used to get $R_n(z,v)$ for other values of v and $T_n(z,v)$. Table A.IV gives coefficients of the polynomials in the rational approximation to the exponential function, see (4.1). Tables A.V, A.VI and A.VII list the coefficients of $U_n(z^2)$, $W_n(z^2)$ and $V_n(z^2)$, respectively, see (4.7) and (4.8). These coefficients are pertinent to the evaluation of the circular functions.

Most of the tables in the Appendices were typed by the IBM 1620 computer directly on stencils, while the balance of the report was done on an ordinary typewriter. The typewriters have different type sizes. The computer has no lower case characters, etc., and so a slight variance in notation N is introduced. For example, in Table A.I,AN*($Z_{1/2}$) corresponds to $A_n(z, \frac{1}{2})$, etc. Also in Table A.V,JN(Z**2) corresponds to $U_n(z^2)$, etc.

TABLE A.I

TABLES OF THE COEFFICIENTS OF THE POLYNOMIALS $A_n^*(z, \frac{1}{2})$ AND $B_n^*(z, \frac{1}{2})$

Note: For the definition of $A_n^*(z, \frac{1}{2})$ and $B_n^*(z, \frac{1}{2})$, see (2.1) and (A.1). The sequence of numbers given is for the highest power to the lowest power, respectively.

1

- ¼ 15

32 -210 945

4

e.g.,
$$A_3^*(z, \frac{1}{2}) = -128z^3 + 1932z^2 - 9240z + 45045$$

AN*(Z, 1/2) BN*(Z, 1/2)

N = 00

N = 01

N = 02

	Contract.	02
N	=	115
••		~,

-128	280
1932	3780
1240	20790
5045	45045

1

6 15

60 420 945

	TABLE A.I (Continued)	
<u>.</u>	AN*(Z,1/2)	BN*(7,1/2)
N = 04	2048	5040
	-43560 5 40540 - 22 52250 114 86475	1 10880 10 81080 54 05400 114 86475
N = 05		
-	-8192 2 81424 - 38 91888 453 33288 1745 94420 9166 20705	22176 7 20720 108 10800 918 91800 4364 86050 9166 20705
N = 06		
-3 17	65536 -28 85792 699 73904 -7914 94704 39625 13560 27946 51890 56856 35125	1 92192 86 48640 1837 83600 23279 25600 1 83324 14100 8 43291 04860 17 56856 35125
N = 07		
-9 102 3 -361 4 1965 1	-2 62144 161 40480 4353 52320 31454 22000 17867 80800 39962 73300 +1044 94000 16931 86125	8 23680 490 08960 13967 55360 2 44432 18800 28 10970 16200 210 82276 21500 948 70242 96750 1965 16931 86125

Contraction of the lot

a strained by

TABLE A.I (Concluded)

AN*(Z,1/2)

BN*(2,1/2)

N = 08

	83	88608			280	05120
	-6277	25952			21283	89120
2	51360	15040		7	82183	00160
-53	38931	08320		179	90209	03680
1038	33795	78000		2810	97016	20000
- 9618	68096	04600		30358	47774	96000
1 06381	16578	08900	2	20098	96368	46000
-3 65521	49326	19250	9	74723	98203	18000
20 10368	21294	05875	20	10368	21294	05875

N = 09

		-335	54432			1182	43840
		32467	92960		1	11740	42880
	-14	34070	38720		51	40059	72480
	473	05494	72.000		1499	18408	64000
	- 8681	49968	40000		30358	47774	96000
1	61017	72510	82400	4	40197	92736	92000
-14	07934	64071	26000	45	48711	91614	84000
154	872.81	04783	86000	321	65891	40704	94000
- 521	20657	372.53	37500	1407	25774	90584	11250
2892	69648	41756	23125	2892	69648	41756	23125
	1 -14 154 - 521 2892	-14 473 - 8681 1 61017 -14 07934 154 87281 -521 20657 2892 69648	-335 32467 -14 34070 473 05494 -8681 49968 1 61017 72510 -14 07934 64071 154 87281 04783 -521 20657 37253 2892 69648 41756	-335 54432 32467 92960 -14 34070 38720 473 05494 72000 -8681 49968 40000 1 61017 72510 82400 -14 07934 64071 26000 154 87281 04783 86000 -521 20657 37253 37500 2892 69648 41756 23125	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

N = 10

		2684	35456				9932	48256
	-3	05076	71040			11	42235	49400
	182	46049	11200			642	50746	50000
	- 6185	20520	21760			23130	26876	16000
1	82600	62172	352.00			58693	05698	25600
-30	32474	61076	56000		109	16908	59875	61600
544	83460	50675	52800		1501	07493	23289	72000
- 4560	40860	39327	81600		15010	74932	32897	20000
49985	79524	65547	67600	1	04137	07343	03224	32500
-1 65462	23889	48456	42750	4	51260	65153	13972	07500
9 25084	33563	93642	75375	9	25084	33563	93642	75375

a space berge

TABLE A.II

TABLES OF THE COEFFICIENTS OF THE POLYNOMIALS $C_n^*(z, \frac{1}{2})$ AND $D_n^*(z, \frac{1}{2})$

Note: For the definition of $C_n^*(z,\frac{1}{2})$ and $D_n^*(z,\frac{1}{2})$, see (2.18) and (A.7). The sequence of numbers given is for the highest power to the lowest power, respectively.

e.g., $C_3^*(z, \frac{1}{2}) = 84z^2 - 420z + 3465$

0

03

0 _10 105

N = 00

N = 01

N = 02

N = 03

0		
84		
-420		
3465		

12 60 105

1

23

12/30

in the second

TABLE A.II (Continued)

	<u>CN*(Z,1/2)</u>	DN*(Z,1/2)
N = 04	0 _744 23100 _90090 6 75675	560 10080 83160 3 60360 6 75675
N = 05	0 5104 -82368 17 29728 -61 26120 436 48605	2016 55440 7 20720 54 05400 229 72950 436 48605
N = 06	0 -25376 15 53552 -171 53136 3026 30328 -10184 67450 70274 25405	14784 5 76576 108 10800 1225 22400 8729 72100 36664 82820 70274 25405
N = 07	0 1 58528 -53 60576 2061 87696 -19288 52640 3 07868 16060 -10 03917 91500 67 76445 92625	54912 28 82880 735 13440 11639 62800 1 22216 09400 8 43291 04860 35 13712 70250 67 76445 92625

and the second

11. C. B. B. C.

- 27 -

A State of the second

	TABLE	A.II (Concluded)	
	CN*(Z, 1/2)	D	N*(Z,1/2)
N = 08	0 - 33 70624 3395 37600 -73102 91040 22 56425 02800 -192 17857 23000 2873 21307 27300 -9170 79015 35250 60920 24887 69875	11 112 758 3144 6092	16 47360 1120 20480 37246 80960 7 82183 00160 2 43880 64800 4 38806 48000 9 61943 74000 2 70909 78000 0 24887 69875
N = 09 3 -11 78	0 198 88896 -11584 58880 7 01345 14560 -122 38237 44000 3311 97300 72000 -26551 62101 59200 75059 32634 57000 91329 31137 22000 18098 60588 00625	55 112 1517 1 4673 9 7472 40 20730 78 1809	62 23360 5320 97280 2 23480 85760 9 96736 34560 4 38806 48000 9 23887 48000 2 64245 64000 3 98203 18000 6 42588 11750 3 60588 00625
N = 10 10 -81 1117 -3471 22563	0 -1105 68960 1 65206 97600 -58 55525 91360 2759 72254 27200 -42544 70268 04800 54145 93612 32800 01039 31733 09600 46689 40671 23600 23578 10107 47750 03257 65698 60375	20238 20238 3 52158 45 4871 428 8785 2814 51549 11570 7859 22563 0325	472 97536 49662 41280 70029 86240 67662 80000 98516 64000 34189 53600 91614 84000 20939 92000 81168 22500 67024 92500 65698 60375

- 28 -

1 CALL AND

TABLE A.III

TABLES OF THE ERROR FOR THE ERROR FUNCTION

Here we give the values of $R_n^*(z, \frac{1}{2}) = |2z^{\frac{1}{2}}e^z R_n(z, \frac{1}{2})|$, see (2.15), for n = 2(1)10, r = 1(1)10 and $\theta = 0$, $\pi/2$, π where $z = re^{i\theta}$.

It is pertinent to point out that $R_n^*(z,v)$, see (2.15), and $T_n^*(z,v) = |v^{-1}z^{ve^{Z}}T_n(z,v)|$, see (2.22), can both be obtained from $R_n^*(z,\frac{1}{2})$ since

$$R_{n}(z,v) = 2^{2-v}\Gamma(v+1)n^{\frac{1}{2}-v}\pi^{-\frac{1}{2}}R_{n}(z,\frac{1}{2})\left\{1+O(1/n)\right\}$$

and

$$T_{n}(z,v) = -2^{4-2v}\Gamma(v+1)n^{3/2-v}z^{-1}\pi^{-\frac{1}{2}R}n(z,\frac{1}{2})\left\{1+O(1/n)\right\}.$$

Hence, the tables given here essentially include the values of $R_n^*(z,v)$ and $T_n^*(z,v)$ for admissible v fixed, but otherwise arbitrary and the values of n, r and θ mentioned above.

<u>r</u> ⁶	<u>o</u>	π/2	Ξ
<u>n = 2</u>			
1	0.896 (-3)	0.747 (-3)	0.747 (-3)
2	0.509 (-1)	0.295 (-1)	0.354 (-1)
3	0.651 (0.219	0.377
4	0.477 (1)	0.774	0.230 (1)
5	0.268 (2)	0.175 (1)	0.108 (2)
6	0.132 (3)	0.290 (1)	0.443 (2)
7	0.609 (3)	0.375 (1)	0.171 (3)
8	0.275 (4)	0.395 (1)	0.642 (3)
9	0.125 (5)	0.349 (1)	0.243 (4)
10	0.578 (5)	0.262 (1)	0.938 (4)

LISTING A
TABLE A.III (Continued)

0

r	<u>0</u>	<u>π/2</u>	Ξ
<u>n = 3</u>			
1	0.521 (- 5)	0.456 (- 5)	0.456 (- 5)
2	0.111 (- 2)	0.746 (- 3)	0.853 (- 3)
3	0.294(-1)	0.132 (- 1)	0.197 (- 1)
4	0.344	0.905 (-1)	0.202
5	0.264 (1)	0.358	0.136 (1)
6	0.160 (2)	0.973	0.719 (1)
7	0.838 (2)	0.200 (1)	0.330 (2)
8	0.402(3)	0.331(1)	0.138 (3)
9	0.185(4)	0.454(1)	0.552(3)
10	0.813 (4)	0.551 (1)	0.214 (4)
<u>n = 4</u>			
1	0.178 (- 7)	0.160 (- 7)	0.160 (- 7)
2	0.147 (- 4)	0.107 (- 4)	0.119 (- 4)
3	0.833 (- 3)	0.443 (- 3)	0.608 (- 3)
4	0.162 (- 1)	0.567 (- 2)	0.107 (- 1)
5	0.181	0.373 (- 1)	0.108
6	0.144 (1)	0.158	0.765
7	0.923 (1)	0.484	0.442 (1)
8	0.513 (2)	0.116 (1)	0.221 (2)
9	0.259 (3)	0.227 (1)	0.100 (3)
10	0.123 (4)	0.375 (1)	0.428 (3)
<u>n = 5</u>			
1	0.401 (-10)	0.368 (-10)	0.368 (-10)
2	0.130 (- 6)	0.998 (- 7)	0.109 (- 6)
3	0.160 (- 4)	0.949 (- 5)	0.123 (- 4)
4	0.532 (- 3)	0.223 (- 3)	0.375 (- 3)
5	0.879 (- 2)	0.238 (- 2)	0.569 (- 2)
6	0.949(-1)	0.153 (- 1)	0.563 (- 1)
7	0.774	0.678 (- 1)	0.421
8	0.520 (1)	0.227	0.259 (1)
9	0.305 (2)	0.609	0.139 (2)
10	0.161 (3)	0.135 (1)	0.677 (2)

a state of the

TABLE A.III (Continued)

<u>r</u>	2	π/2	Ξ
<u>n = 6</u>			
1	0.639 (-13)	0.593 (-13)	0.593 (-13)
2	0.812 (- 9)	0.650 (- 9)	0.700 (- 9)
3	0.220 (- 6)	0.141 (- 6)	0.176 (- 6)
4	0.127 (- 4)	0.603 (- 5)	0.941 (- 5)
5	0.316 (- 3)	0.104 (- 3)	0.218 (- 3)
6	0.470 (- 2)	0.993 (- 3)	0.302 (- 2)
7	0.498 (- 1)	0.625 (- 2)	0.296 (- 1)
8	0.414	0.287 (- 1)	0.229
9	0.288 (1)	0.103	0.148 (1)
10	0.176 (2)	0.300	0.841 (1)
<u>n = 7</u>			
1	0.757 (-16)	0.710 (-16)	0.710 (-16)
2	0.380 (-11)	0.313 (-11)	0.334 (-11)
3	0.228 (- 8)	0.155 (- 8)	0.188 (- 8)
4	0.228 (- 6)	0.120 (- 6)	0.176 (- 6)
5	0.866 (- 5)	0.329 (- 5)	0.627 (- 5)
6	0.180 (- 3)	0.465 (- 4)	0.122 (- 3)
7	0.250 (- 2)	0.411(-3)	0.159 (- 2)
8	0.261 (- 1)	0.256 (- 2)	0.156 (- 1)
9	0.220	0.121 (- 1)	0.123
10	0.158 (1)	0.455 (- 1)	0.829
<u>n = 8</u>			
1	0.693 (-19)	0.655 (-19)	0.655 (-19)
2	0.138 (-13)	0.116 (-13)	0.123 (-13)
3	0.184 (-10)	0.131 (-10)	0.155 (-10)
4	0.322 (- 8)	0.182 (- 8)	0.256 (- 8)
5	0.187 (-6)	0.793 (- 7)	0.140 (- 6)
6	0.547 (- 5)	0.165 (- 5)	0.388 (- 5)
7	0.101 (- 3)	0.203 (- 4)	0.674 (- 4)
8	0.133 (- 2)	0.170 (- 3)	0.840 (- 3)
9	0.138 (- 1)	0.104 (- 2)	0.817 (- 2)
10	0.117	0.503 (- 2)	0.659 (- 1)

and and

- 31 -

a special

$\frac{r}{r}$	<u>o</u>	<u>π/2</u>	Ξ
<u>n = 9</u>			
1	0.505 (-22)	0.480 (-22)	0.480 (-22)
2	0.400 (-16)	0.343 (-16)	0.361 (-16)
3	0.119 (-12)	0.872 (-13)	0.102 (-12)
4	0.364 (-10)	0.218 (-10)	0.296 (-10)
5	0.325 (- 8)	0.151 (- 8)	0.251 (- 8)
6	0.134 (- 6)	0.458 (~ 7)	0.987 (- 7)
7	0.329 (- 5)	0.783 (~ 6)	0.230 (- 5)
8	0.553 (- 4)	0.873 (- 5)	0.367 (- 4)
9	0.701 (- 3)	0.698 (- 4)	0.442 (- 3)
10	0.716 (- 2)	0.427 (- 3)	0.429 (- 2)
<u>n = 10</u>			
1	0.300 (-25)	0.286 (-25)	0.286 (-25)
2	0.943 (-19)	0.820 (-19)	0.860 (-19)
3	0.625 (-15)	0.473 (-15)	0.544 (-15)
4	0.337 (-12)	0.217 (-12)	0.280 (-12)
5	0.464 (-10)	0.231 (-10)	0.368 (-10)
6	0.272 (- 8)	0.102 (- 8)	0.206 (- 8)
7	0.891 (- 7)	0.242 (- 7)	0.643 (- 7)
8	0.192 (- 5)	0.359 (- 6)	0.132 (- 5)
9	0.301 (- 4)	0.371 (- 5)	0.198 (- 4)
10	0.370 (- 3)	0.287 (- 4)	0.232 (- 3)

TABLE A.III (Concluded)

1 and

TABLE A.IV

TABLE OF THE COEFFICIENTS OF THE POLYNOMIAL $G_n(z)$

Note: For the definition of $G_n(z)$, see (4.1). The sequence of numbers given is for the highest power to the lowest power, respectively.

e.g., $G_4(z) = z^4 + 20z^3 + 180z^2 + 840z + 1680$

1

1

1 12

1 60

1 180 1680 2

6

12 120

20 840

GN(Z)

N = 00

N = 01

N = 02

N = 03

N = Ol;

- 33 -

TABLE A.IV (Continued)

GN(Z)

N = 05

1	30
420	3360
15120	30240

N = 06

	1				
	840				
	75600				
6	65280				

N = 07

1	56
1512	25200
2 77200	19 05840
86 48640	172 97280

42 10080 3 32640

N = 08

	1		72
	2520		55440
8	31600	86	48640
605	40480	2594	59200
5189	18400		
5189	18400		

N = 09

	1	90			
	3960	1	10880		
21	62160	302	70240		
3027	02400	20756	73600		
88216	12800	1 76432	25600		

TABLE A.IV (Concluded)

GN(7.)

N = 10

		1			110
		5940		2	05920
	50	45040		908	10720
	12108	09600	1	17621	50400
7	93945	15200	33	52212	86400
67	04425	72800			

TABLE A.V

TABLE OF THE COEFFICIENTS OF THE POLYNOMIAL $U_n(z^2)$

Note: For the definition of $U_n(z^2)$, see (4.8). The sequence of numbers given is for the lowest power to the highest power, respectively.

e.g., $U_3(z) = -z^6 + 264z^4 - 6480z^2 + 14400$

UN(Z**2)

 $\dot{N} = 00$

.10000 00000 00000 00000 +01

N = 01

.40000 00000 00000 +01 -.10000 00000 00000 +01

N = 02

14400	00000	00000	00000	+03	- 60000 00000 00000 00000 +(02
10000	00000	00000	00000	+01		

N = 03

. 14400	00000	00000	00000	+05	64800 00000 00000 00000 +(04
. 26400	00000	00000	00000	+03	10000 00000 00000 00000 +0	01

N = 04

. 28224	00000	00000	00000	+07 +05	13104 76000	00000 00000	00000 00000	00000	+07 +03	
.10000	00000	00000	00000	+01						

TABLE A.V (Continued)

UN(7**2)

the second se

A COLORED

N	= 05									
	.91445 .25804 .17400	76000 80000 00000	00000 00000 00000	00000 00000 00000	+09 +08 +04	43182 40824 10000	72000 00000 00000	00000 00000 00000	00000 00000 00000	+09 +06 +01
N	= 06									
	.44259 .13539 .17035 .10000	74784 05280 20000 00000	00000 00000 00000 00000	00000 00000 00000 00000	+12 +11 +07 +01	21123 25788 34440	97056 67200 00000	00000 00000 00000	00000 00000 00000	+12 +09 +04
N	= 07 .29919 .96499 .17141 .61600	58953 66233 24160 00000	98400 60000 00000 00000	00000 00000 00000 00000	+15 +13 +10 +04	14384 20552 56629 10000	41804 09587 44000 00000	80000 20000 00000 00000	00000 00000 00000 00000	+15 +12 +07 +01
N	= 08									
	. 26927 . 90161 . 19940 . 15996 . 10000	63058 53232 43744 96000 00000	58560 48640 00000 00000 00000	00000 00000 00000 00000 00000	+18 +16 +13 +08 +01	13015 20687 86313 10224	02144 40850 42720 00000	98304 17600 00000 00000	00000 00000 00000 00000	+18 +15 +10 +05
N	= 09									
	.31128 .10717 .27586 .35472 .16020	34095 19697 13803 72960 00000	72495 31706 54560 00000 00000	36000 88000 00000 00000 00000	+21 +20 +16 +11 +05	15106 25935 14176 39964 10000	40075 10574 33176 32000 00000	86652 05440 96000 00000 00000	16000 00000 00000 00000 00000	+21 +18 +14 +08 +01

TABLE A.V (Concluded)

UN(7.**2)

N = 10

and the second s

44040	32434	22683	29984	+24	-, 21883	22369	29464	23808	+24
. 15812	89202	64694	57920	+2.3	39825	96563	64810	24000	+21
45494	37982	88179	20000	+19	- 26326	17302	51520	00000	+17
. 79982	79569	28000	00000	+14	12473	80592	00000	00000	+12
.90676	08000	00000	00000	+08	23980	00000	00000	00000	+05
. 10000	00000	00000	00000	+01					

and the second

TABLE A.VI

TABLES OF THE COEFFICIENTS OF THE POLYNOMIAL $W_n(z^2)$

Note: For the definition of $W_n(z^2)$, see (4.8). The sequence of numbers given is for the lowest power to the highest power, respectively.

e.g., $W_3(z^2) = z^6 + 24z^4 + 720z^2 + 14400$

WN(Z**2)

N = 00

. 10000 00000 00000 00000 +01

N = 01

.40000 00000 00000 +01 . 10000 00000 00000 +01

N = 02

14400	00000	00000	00000	+03	.12000 00000 00000 00000 -	+02
10000	00000	00000	00000	+01		

N = 03

.14400 00000 00000 00000 +05 24000 00000 00000 00000 +02 .10000 00000 00000 00000 +01

N = 04

. 28224	00000	00000	00000	+07	. 10080	00000	00000	00000	+06
21600	00000	00000	00000	+04	. 40000	00000	00000	00000	+02
10000	00000	00000	00000	+01					

TABLE A.VI (Continued)

WN(Z**2)

N	= 05									
	91445 40320 60000	76000 00000 00000	00000 00000 00000	00000 00000 00000	+09 +06 +02	. 25401 . 50400 . 10000	60000 00000 00000	00000 00000 00000	00000 00000 00000	+08 +04 +01
N	= 06									
	.44259 .12700 .10080 .10000	74784 80000 00000 00000	00000 00000 00000 00000	00000 00000 00000 00000	+12 +09 +05 +01	.10059 .12096 .84000	03360 00000 00000	00000 00000 00000	00000 00000 00000	+11 +07 +02
N	= 07									
	. 29919 . 60354 . 30240 . 11200	58953 20160 00000 00000	98400 00000 00000 00000	00000 00000 00000 00000	+15 +11 +07 +03	.57537 .46569 .18144 .10000	67219 60000 00000 00000	20000 00000 00000 00000	00000 00000 00000 00000	+13 +09 +05 +01
N	= 08									
	. 26927 . 40276 . 13970 . 30240 . 10000	63058 37053 88000 00000 00000	58560 44000 00000 00000 00000	00000 00000 00000 00000 00000	+18 +14 +10 +05 +01	.44879 .26153 .66528 .14400	38430 48736 00000 00000	\$7600 00000 00000 00000	00000 00000 00000 00000	+16 +12 +07 +03
N	= 09									
	.31128 .35903 .91537 .13305 .18000	34095 50744 20576 60000 00000	72495 78080 00000 00000 00000	36000 00000 00000 00000 00000	+21 +17 +12 +08 +03	.45776 .20138 .36324 .47520 .10000	97199 18526 28800 00000 00000	59552 72000 00000 00000 00000	00000 00000 00000 00000 00000	+19 +15 +10 +05 +01

A MARK

TABLE A.VI (Concluded)

WN(Z**2)

N = 10

Station and

The Party of the second second and the second se

44040	32434	22683	29984	+24	, 59143	84781	87741	18400	+22
41199	27479	63596	80000	+20	, 20345	32088	70912	00000	+18
.80552	74106	88000	00000	+15	, 27461	16172	80000	00000	+13
.84756	67200	00000	00000	+10	. 24710	40000	00000	00000	+08
. 71280	00000	00000	00000	+05	. 22000	00000	00000	00000	+03
, 10000	00000	00000	00000	+01					

a second a second

TABLE A.VII

TABLES OF THE COEFFICIENTS OF THE POLYNOMIAL $V_n(z^2)$

Note: For the definition of $V_n(z^2)$, see (4.8). The sequence of numbers given is for the lowest power to the highest power, respectively.

e.g., $V_3(z^2) = 24z^4 - 1680z^2 + 14400$

VN(Z**?)

N = 00

.00000 00000 00000 00000 00

N = 01 .40000 00000 00000 00000 01

N = 02

.14400 00000 00000 0000 03 -.12000 00000 00000 02

N = 03

. 14400 00000 00000 00000 +05 . 24000 00000 00000 00000 +02

N = 04

28224	00000	00000	00000	+07	36960	00000	00000	00000	+06
.88800	00000	00000	00000	+04	40000	00000	00000	00000	+0?

1 29 Martin

TABLE A.VII (Continued)

N = 05			
.91445 76000 .37900 80000 .60000 00000	00000 00000 +09 00000 00000 +07 00000 00000 +02	12700 80000 31920 00000	00000 00000 +09 00000 00000 +05
N = 06			
.44259 74784 .21388 14720 .90720 00000	00000 00000 +12 00000 00000 +10 00000 00000 +05	63707 21280 23950 08000 84000 00000	00000 00000 +11 00000 00000 +08 00000 00000 +02
N = 07			
29919 58953 15946 92126 11124 28800 11200 00000	98400 00000 +15 72000 00000 +13 00000 00000 +09 00000 00000 +03	44112 21534 21009 54240 21974 40000	72000 00000 +14 00000 00000 +11 00000 00000 +06
N = 08			
.26927 63058 .15362 55847 .14503 37011 .47376 00000	58560 00000 +18 52640 00000 +16 20000 00000 +12 00000 00000 +06	40391 44587 22479 54508 41646 52800 14400 00000	87840 00000 +17 80000 00000 +14 00000 00000 +09 00000 00000 +03
N = 09			
.31128 34095 .18669 82387 .21608 80001 .13278 98880 .18000 00000	72495 36000 +21 28601 60000 +19 28000 00000 +15 00000 00000 +10 00000 00000 +03	47302 87106 29397 64065 77785 86816 93456 00000	24870 40000 +20 63840 00000 +17 00000 00000 +12 00000 00000 +06

and the second sec

.

A CARLEN

TABLE A.VII (Concluded)

$$N = 10$$

44949 32	2434 22683	29984	+24	69001	15578	85698	04800	+23
28012 49	5506 33915	18720	+22	46561	72008	73144	32000	+20
37541 77	7850 14272	00000	+18	-, 15728	18837	99040	00000	+16
34464 8	3040 00000	00000	+13	- 37378	59840	00000	00000	+10
17186 40	00000 00000	00000	+07	- 22000	00000	00000	00000	+03

1 de marga

APPENDIX B

COEFFICIENTS OF RATIONAL APPROXIMATIONS TO E(z) AND RELATED INTEGRALS

Table B.I gives the coefficients of the polynomials of the main diagonal Pade' approximants of E(z), see (5.1). Displayed in Table B.II is the absolute value of the errors associated with the approximations listed in B.I. Similar coefficients for the main diagonal Pade' approximants to $z^{-1}Si(z)$, see (5.2), are given for n even in Table B.III. Table B.IV gives the error associated with the approximations listed in B.III. Table B.V lists the coefficients of the polynomials of the main diagonal Pade' approximants to $4z^{-2}H(z)$, see (5.3), for even n. Table B.VI lists the errors associated with the approximations (5.11) to E(z), and the corresponding error tables, respectively.

. ORI MOR

TABLE B.I

COEFFICIENTS OF PADE APPROXIMATION TO E(z)

Note: For the definition of E(z) and its Pade approximants, see Section V. The coefficients are given for n = l(1)l0. The expression attached to the numbers on the right indicates the power of 10 by which the number is multiplied.

e.g., $E_2(z) = \frac{1+0.086z+0.04555...z^2}{1+0.336Z+0.0333...z^2}$

NUMERATOR

DENOMINATOR

N = 01

, 10000	00000	00000	00000	+01	. 10000	00000	00000	00000	+01
• . 27777	77777	77777	77778	-01	. 22222	22222	7.2227.	2227.2	+00

M = 02

N = 03

. 10000	00000	00000	00000	+01	. 10000	00000	00000	00000	+01
14987	35259 16740	04789 069 88	47405 81376	-01	.50803	30004	34216 78843	23969	-01

N = 04

10000	00000	00000	00000	+01	. 10000	00000	00000	00000	+01
15183	03075	00550	75001	+00	40183	03075	00550	75001	+00
22174	10124	06340	46892	-01	67076	12256	02161	78840	-01
71679	28213	71348	66118	-03	55785	84155	83924	05926	-02
10529	22995	44767	84505	-04	, 19778	97186	99680	64309	-03
									~ ~

COLUMBIA UNIVERSITY HUDSON LABORATORIES CONTRACT Nonr-266(84)

TABLE B.I (Continued)

NUMERATOR

DENOMINATOR

N	= 05									
	. 1000	0 00000	00000	00000	+01	. 10000 0000	0 00000	00000	+01	
	. 1620	4 16009	62342	70975	+00	.41204 1600	9 62342	70575	+00	
	. 12.74	7 83272	48448	67889	-02	73128 4067	0 01829	36777	-02	
	. 1365	7 80145	04733 45193	48711	-04	.98510 2116	4 96373	19535	-03	

N = 06

, 10000	00000	00000	00000	+01	. 10000	00000	00000	00000	+01
. 17964	76037	82301	29344	+00	. 42964	76037	82301	29344	+00
. 30906	39014	59549	31654	-01	.82762	73553	59746	99458	-01
. 19643	87594	46735	53361	-02	. 92024	26823	88873	61206	-02
, 11565	07429	94841	78517	-03	.62715	69030	34069	87432	-03
. 19803	30657	69150	50495	-05	. 25037	59209	97727	45364	-04
. 12947	26971	80815	10906	-07	.46180	79516	66610	03704	-06

N = 07

	. 10000	00000	00000	00000	+01	. 10000	00000	00000	00000	+01
	. 18480	11227	26475	81023	+00	. 43480	11227	26475	81023	+00
	. 33261	21378	35356	622.15	-01	.86405	93890	95990	59216	-01
	. 23552	22731	54871	7642.3	-02	. 10217	75619	63664	92989	-01
	. 16377	94153	15153	96938	-03	. 78040	02200	52063	61676	-03
	. 43980	12290	60812	99224	-05	. 38719	75252	89419	77095	-04
	. 11014	77035	81094	26833	-06	. 11633	17088	02093	24466	-05
-	12839	85657	45606	74048	-09	. 16457	10741	45580	73556	-07

TABLE B.I (Concluded)

NUMERATOR

DENOMINATOR

N = 08

. 10000	00000	00000	00000	+01	. 10000	00000	00000	00000	+01
. 19513	36973	48381	21416	+00	. 44513	36973	48381	21416	+00
. 36028	72.455	48033	66895	-01	.91756	59333	63431	14880	-01
28530	4142.3	63713	82221	-02	, 11479	20657	17017	38378	-01
.21463	38297	93936	23562	-03	. 95698	96347	45946	53974	-03
.77757	972.35	47219	15163	-05	. 54679	34064	85047	10025	-04
. 25482	33856	33725	45105	-06	. 21015	17140	91386	35547	-05
. 27089	12491	61763	77927	-08	. 49960	40804	95845	41259	-07
.97825	79525	95621	99712	-11	. 56629	36991	72465	57055	-09

N = 09

	, 10000	00000	00000	00000	+01	, 10000	00000	00000	00000	+01
	. 19823	84189	19627	19265	+00	44823	84189	19627	19265	+00
	. 37482	24827	32.679	61682	-01	93986	29744	76192	04289	-01
	. 31215	542.61	10534	67154	-02	, 12132	66090	52530	81529	-01
	. 25168	68581	42141	13445	-03	10658	74645	55601	67575	-02
	. 10438	66937	29114	632.87	-04	.66311	99549	82139	94997	-04
	.41779	89027	92798	76366	-06	, 29328	17107	87334	24422	-05
	. 72.282	10040	34696	942.33	-08	.89307	30009	59419	32977	-07
	, 11156	38762	07900	302.89	-09	. 17075	36697	26887	18576	-08
_	78469	72732	66716	49614	-13	15708	67540	09828	56485	-10

N = 10

. 10000	00000	00000	00000	+01	. 10000	00000	00000	00000	+01
. 20502	08456	77917	06628	+00	. 45502	08456	77917	06628	+00
. 39390	75193	16296	55245	-01	.97590	40779	55533	66258	-01
. 34858	23655	29237	91179	-02	. 13021	15639	98519	94778	-01
. 29317	75506	14266	48946	-03	. 11999	11137	74704	76100	-02
. 13754	73570	29922	39386	-04	.80015	09559	21661	45984	-04
, 60964	46174	77455	80030	-06	. 39222	83073	88575	92254	-05
. 14447	18655	00891	74805	-07	. 14003	62118	96032	45150	-06
. 30430	04327	31332	24684	-09	. 34984	41348	05290	45646	-08
. 22059	38908	74765	26250	-11	. 55465	89453	73869	45817	-10
. 49848	28058	16872	88340	-14	. 42591	33901	24021	43020	-12

TABLE B.II

ERROR OF PADE APPROXIMATIONS TO E(z)

Let $E_n(z)$ be the nth order main diagonal Pade approximation to E(z), see B.I, and define $\epsilon_n(z) = |E(z) - E_n(z)|$. The tables give $\epsilon_n(z)$ for n = 2(1)10, r = 1(1)10 and $\theta = 0$, $\pi/2$, π where $z = rei\theta$. The expression in parentheses to the right of each number indicates the power of 10 by which the number is multiplied.

r	<u>0</u>	π/2	Ξ	Π (Relative Error)
<u>n = 2</u>				
1	0.782 (- 5)	0.107 (- 4)	0.320 (- 4)	0.243 (- 4)
2	0.137(-3)	0.418(-3)	0.232 (- 2)	0.126 (- 2)
3	0.599(-5)	0.267(-2)	0.435 (- 1)	0.157 (- 1)
4	0.292(-2)	0.843(-2)	0.435	0.105
6	0.473(-2)	0.202(-1)	0.102(1)	0.373
7	0.686(-2)	0.542(-1)	0.247(2)	0.915
8	0.922 (- 2)	0.713(-1)	0.533 (2)	0.974
9	0.117 (- 1)	0.845 (- 1)	0.114 (3)	0.991
10	0.143 (- 1)	0.825	0.248 (3)	0.996
<u>n = 3</u>				
1	0.217 (- 7)	0.443 (- 7)	0.101 (- 6)	0.776 (- 7)
2	0.139 (- 5)	0.523 (- 5)	0.302 (- 4)	0.164 (- 4)
3	0.125 (- 4)	0.780 (- 4)	0.128 (- 2)	0.465 (- 3)
4	0.510 (- 4)	0.482 (- 3)	0.252 (- 1)	0.571 (- 2)
5	0.138 (- 3)	0.179 (- 2)	0.345	0.454(-1)
6	0.291 (- 3)	0.474 (- 2)	0.454 (1)	0.326
7	0.519 (- 3)	0.985 (- 2)	0.233 (3)	0.863
8	0.823 (- 3)	0.170 (- 1)	0.703 (2)	0.128 (1)
9	0.120 (- 2)	0.255 (- 1)	0.123 (3)	0.107 (1)
10	0.164 (- 2)	0.340 (- 1)	0.254 (3)	0.102 (1)

TABLE B.II (Continued)

<u>r</u> \	<u>o</u>	<u>π/2</u>	Ξ	Π (Relative Error)
<u>n = 4</u>				
l	0.593 (-10)	0.128 (- 9)	0.302 (- 9)	0.229 (- 9)
2	0.144 (- 7)	0.610 (- 7)	0.375 (- 6)	0.204 (- 6)
3	0.273 (- 6)	0.209 (- 5)	0.366 (- 4)	0.133 (- 4)
4	0.186 (- 5)	0.236 (- 4)	0.130 (- 2)	0.294 (- 3)
5	0.738 (- 5)	0.141 (- 3)	0.271 (- 1)	0.366 (- 2)
6	0.209 (- 4)	0.558 (- 3)	0.401	0.288 (- 1)
7	0.474 (- 4)	0.162 (- 2)	0.428 (1)	0.159
8	0.920 (- 4)	0.375 (- 2)	0.273 (2)	0.499
9	0.159(-3)	0.720 (- 2)	0.945(2)	0.822
10	0.251 (- 5)	0.119 (- 1)	0.237 (3)	0.952
<u>n = 5</u>				
1	0.837 (-13)	0.187 (-12)	0.451 (-12)	0.342 (-12)
2	0.781 (-10)	0.362 (- 9)	0,227 (- 8)	0.123 (- 8)
3	0.319 (- 8)	0.284 (- 7)	0.502 (- 6)	0.182 (- 6)
4	0.368 (- 7)	0.588 (- 6)	0.316 (- 4)	0.715 (- 5)
5	0.206 (- 6)	0.574 (- 5)	0.102 (- 2)	0.134(-3)
6	0.834 (- 6)	0.342 (- 4)	0.217 (- 1)	0.156 (- 2)
7	0.243 (- 5)	0.143 (- 3)	0.355	0.131(-1)
8	0.579 (- 5)	0.457 (- 3)	0.513 (1)	0.937 (- 1)
9	0.119(-4)	0.117(-2)	0.104(3)	0.904
10	0.218 (- 4)	0.250 (- 2)	0.442 (3)	0.178 (1)
<u>n = 6</u>				
1	0.117 (-15)	0.268 (-15)	0.658 (-15)	0.499 (-15)
2	0.423 (-12)	0.209 (-11)	0.135 (-10)	0.733 (-11)
3	0.376 (-10)	0.373 (- 9)	0.677 (- 8)	0.246 (- 6)
4	0.746 (- 9)	0.139 (- 7)	0.763 (- 6)	0.173 (- 6)
5	0.658 (- 8)	0.217 (- 6)	0.384 (- 4)	0.505 (- 5)
6	0.352 (- 7)	0.192 (- 5)	0.118 (- 2)	0.847 (- 4)
7	0.134 (- 6)	0.113 (- 4)	0.258 (- 1)	0.956 (- 3)
8	0.399 (- 6)	0.489 (- 4)	0.445	0.813 (- 2)
9	0.993 (- 6)	0.165 (- 3)	0.620 (1)	0.539 (- 1)
10	0.215 (- 5)	0.455 (- 3)	0.627 (2)	0.252

TABLE B.II (Continued)

<u>r</u>	<u>o</u>	<u>π/2</u>	Ξ	π (Relative Error)
<u>n = 7</u>				
1	0.900 (-19)	0.233 (-18)	0.580 (-18)	0.440 (-18)
2	0.140 (-14)	0.722 (-14)	0.472 (-13)	0.256 (-13)
3	0.272 (-12)	0.294 (-11)	0.536 (-10)	0.195 (-10)
4	0.932 (-11)	0.198 (- 9)	0.107 (- 7)	0.242 (- 8)
5	0.125 (- 9)	0.493 (- 8)	0.840 (- 6)	0.110 (- 6)
6	0.925 (- 9)	0.644 (- 7)	0.367 (- 4)	0.263 (- 4)
7	0.462 (- 8)	0.534 (- 6)	0.108 (- 2)	0.400 (- 3)
8	0.173 (- 7)	0.314 (- 5)	0.241 (- 1)	0.440 (- 3)
9	0.524 (- 7)	0.141(-4)	0.436	0.379 (- 2)
10	0.134 (- 6)	0.336	0.686 (1)	0.276 (- 1)
<u>n = 8</u>				
1	0.370 (-20)	0.100(-19)	0.100 (-19)	0.759 (-20)
2	0.459 (-17)	0.246 (-16)	0.164 (-15)	0.890 (-16)
3	0.197 (-14)	0.227 (-13)	0.421 (-12)	0.153 (-12)
4	0.118 (-12)	0.275 (-11)	0.150 (- 9)	0.340 (-10)
5	0.239 (-11)	0.108 (- 9)	0.184 (- 7)	0.242 (- 8)
6	0.249 (-10)	0.207 (- 8)	0.115 (- 5)	0.825 (- 7)
7	0.165 (- 9)	0.238 (- 7)	0.461(-4)	0.171 (- 5)
8	0.784 (- 9)	0.187 (- 6)	0.133 (- 2)	0.243 (- 4)
9	0.291 (- 8)	0.109 (- 5)	0.301 (- 1)	0.262 (- 3)
10	0.895 (- 8)	0.500 (- 5)	0.565	0.227 (- 2)
<u>n = 9</u>				
1	0.367 (-20)	0.100 (-19)	0.100 (-19)	0.758 (-20)
2	0.500 (-20)	0.500 (-19)	0.377 (-18)	0.205 (-18)
3	0.950 (-17)	0.117 (-15)	0.217 (-14)	0.788 (-15)
4	0.998 (-15)	0.254 (-13)	0.138 (-11)	0.312 (-12)
5	0.311 (-13)	0.106 (-10)	0.263 (- 9)	0.346 (-10)
6	0.456 (-12)	0.442 (-10)	0.236 (- 7)	0.169 (- 8)
7	0.400 (-11)	0.707 (- 9)	0.127 (- 5)	0.470 (- 7)
8	0.242 (-10)	0.743 (- 8)	0.474 (- 4)	0.866 (- 6)
9	0.111 (- 9)	0.564 (- 7)	0.134 (- 2)	0.117 (- 4)
10	0.408 (- 9)	0.329 (- 6)	0.306 (- 1)	0.123 (- 3)

and the second second

TABLE B.II (Concluded)

<u>r</u>	<u>o</u>	<u>π/2</u>	Ξ	π (Relative Error)
1	0.367 (-20)	0.100 (-19)	0.100 (-19)	0.759 (-20)
2	0.551 (-20)	0.141 (-19)	0.200 (-20)	0.109 (-20)
3	0.145 (-18)	0.578 (-18)	0.111 (-16)	0.403 (-17)
4	0.850 (-17)	0.231 (-15)	0.126 (-13)	0.285 (-14)
5	0.407 (-15)	0.227 (-13)	0.375 (-11)	0.493 (-12)
6	0.845 (-14)	0.923 (-12)	0.485 (- 9)	0.341 (-10)
7	0.989 (-13)	0.203 (-10)	0.354 (- 7)	0.131 (- 8)
8	0.766 (-12)	0.284 (- 9)	0.172 (- 5)	0.314 (- 7)
9	0.434 (-11)	0.277 (-8)	0.610 (- 4)	0.530 (- 6)
10	0.193 (-10)	0.204 (- 7)	0.170 (- 2)	0.683 (- 5)

1 starter

TABLE B.III

COEFFICIENTS OF PADE APPROXIMATIONS TO z-lSi(z)

Note: For the definition of Si(z) and its Padé approximants, see Section V. The coefficients are given for n = 2(2)10. The expression attached to the numbers on the right indicates the power of 10 by which the numbers are multiplied.

e.g.,
$$z^{-1}Si_2(z) = \frac{1 - 0.02555...z^2}{1 + 0.03z^2}$$

NUMERATOR

DENOMINATOR

N = 02

and the second second second

10000	00000	00000	00000	+01	, 10000	00000	00000	00000	+01
- 25555	55555	55555	55556	-01	. 30000	00000	00000	00000	-01

N = 04

10000 00000 00000 00000	+01	10000	00000	00000	00000	+01
- 30427 89735 63441 27723	-01	25127	65819	92114	27833	-01
51431 13199 43054 89416	-03	24362	56643	43689	77376	-03

N = 06

. 10000 000	00 00000 00000 88 83526 52167	+01	10000	00000	00000	00000	+01
.74030 236 - 44148 310	30 09289 15834 37 35430 42004	-03	18254 80396	56222 58468	98339 07101	34660 69744	-03

N = 08

10000	00000	00000	00000	+01	10000	00000	00000	00000	+01
. 10000	00000	00000	00000	TUI	. 10000	00000	00000	00000	TUI
39097	46/0/	4//44	00193	-01	. 16458	08848	07811	55363	-01
88244	03534	29201	16961	-03	. 13011	19356	94820	91197	-03
- 75392	62090	91062	85582	-05	.60370	25148	69333	23738	-06
. 24448	762.00	37211	27450	-07	. 14412	35225	57797	97185	-08

a state to

TABLE B.III (Concluded)

N	-	10
14	-	10

, 10000	00000	00000	00000	+01	. 10000	00000	00000	00000	+01
- 41604	56609	13051	18594	-01	.13950	98946	42504	36962	-01
.98695	05591	58116	83815	-03	.95338	86272	75855	58234	-04
99826	03983	42126	42.340	-05	. 40702	15961	74597	46660	-06
. 48154	24911	89950	63472	-07	,11122	28953	69313	70588	-08
89943	23724	44804	92329	-10	. 16036	02483	25839	25315	-11

Since to 1

TABLE B.IV

ERROR OF PADE APPROXIMATION TO z-lSi(z)

Let $z^{-1}Si_n(z)$ be the nth order main diagonal (see B.III) Pade' approximant to $z^{-1}Si(z)$ and define $\epsilon_n(z) = |z^{-1}Si(z)-z^{-1}Si_n(z)|$. The tables give $\epsilon_n(z)$ for n = 2(2)10 and z = 1(1)10, z real. The expression in parentheses to the right of each number indicates the power of 10 by which the number is multiplied.

$\frac{n}{2}$	2	4	<u>6</u>	<u>8</u>	<u>10</u>
1	0.210 (-4)	0.142 (-8)	0.251 (-13)	0.170 (-18)	0.100 (-20)
2	0.112 (-2)	0.127 (-5)	0.369 (- 9)	0.392 (-13)	0.186 (-17)
3	0.990 (-2)	0.590 (-4)	0.898 (- 7)	0.498 (-10)	0.122 (-13)
4	0.401 (-1)	0.775 (-3)	0.392 (- 5)	0.714 (- 8)	0.570 (-11)
5	0.104	0.496 (-2)	0.647 (- 4)	0.302 (- 6)	0.616 (- 9)
6	0.234	0.198 (-1)	0.565 (- 3)	0.579 (- 5)	0.254 (- 7)
7	0.310	0.563 (-1)	0.313 (- 2)	0.630 (- 4)	0.539 (- 6)
8	0.415	0.125	0.123 (- 1)	0.449 (- 3)	0.692 (- 5)
9	0.497	0.227	0.370 (- 1)	0.229 (- 2)	0.599 (- 4)
10	0.555	0.335	0.896 (-1)	0.889 (- 2)	0.376 (- 3)

A State of the state of the

TABLE B.V

COEFFICIENTS OF PADE APPROXIMATIONS TO 4z-2H(z)

Note: For the definition of H(z) and its Pade approximants, see Section V. The coefficients are given for n = 2(2)10. The expression attached to the numbers on the right indicates the power of 10 by which the numbers are multiplied.

e.g.,
$$4z^{-2}H_2(z) = \frac{1 - 0.019444...z^2}{1 + 0.0222...z^2}$$

NUMERATOR

DENOMINATOR

N = 02

.10000	00000	00000	00000	+01	,10000 00000 00000 00000 +0)1
19444	44444	44444	44444	-01	. 22222 22222 22222 22222 -0	11

N = 04

.10000	00000	00000	00000	+01	. 10000	00000	00000	00000	+01
- 21441	94756	55430	71161	-01	, 20224	71910	11235	95506	-01
. 23504	84513	40586	17205	-03	. 15181	91546	28143	392.19	-03

N = 06

. 10000	00000	00000	00000	+01	. 10000	00000	00000	00000	+01
- 24662	60143	38362	60391	-01	. 17004	06523	28304	06275	-01
. 34682	10542	75433	98340	-03	. 12939	78463	84108	31895	-03
-, 15875	89095	57136	15182	-05	. 46027	66426	80130	08786	-06

N = 08

, 10000	00000	00000	00000	+01	, 10000	00000	00000	00000	+01
27191	18247	38415	96633	-01	14475	48419	28250	70034	-01
. 42197	89824	50745	02333	-03	. 99198	23122	58636	82145	-04
- 27389	37015	822.04	22581	-05	. 39189	01649	14937	85289	-06
. 70221	55017	22417	74512	-08	, 77891	33652	63414	35304	-09

a strand and the

TABLE B.V (Concluded)

NUMERATOR

DENOMINATOR

N = 10

San and the second state of the second

and the second s

.10000 00000	00000 00000	+01	, 10000	00000	00000	00000	+01
29128 03421	36361 44413	-01	, 12538	63245	30305	22254	-01
.47973 22804	11881 21947	-03	. 76240	37336	22270	54117	-04
36817 31277	22802 06720	-05	, 28627	47330	74607	14153	-06
. 14091 69854	52941 91735	-07	.67825	76089	43662	46538	-05
- 21678 54057	76489 52502	-10	.83325	19383	71648	11691	-12

and the second

TABLE B.VI

ERROR OF PADE APPROXIMATION TO 4z-2H(z)

Let $4z^{-2}H_n(z)$ be the nth order main diagonal (see B.V) Pade approximant to $4z^{-2}H(z)$ and define $\epsilon_n(z) = |4z^{-2}||H(z)-H_n(z)|$. The tables give $\epsilon_n(z)$ for n = 2(2)10 and z = 1(1)10. The expression in parentheses to the right of each number indicates the power of 10 by which the number is multiplied.

<u>z\</u>	2	4	<u>6</u>	<u>8</u>	<u>10</u>
1	0.584 (-5)	0.336 (-9)	0.433 (-14)	1.000 (-20)	1.000 (-20)
2	0.443 (-3)	0.308 (-6)	0.646 (-10)	0.535 (-14)	0.210 (-18)
3	0.414 (-2)	0.148 (-4)	0.161 (- 7)	0.691 (-11)	0.138 (-14)
4	0.179 (-1)	0.205 (-3)	0.728 (- 6)	0.102 (- 8)	0.657 (-12)
5	0.599 (-1)	0.140 (-2)	0.126 (- 4)	0.443 (- 7)	0.721 (-10)
6	0.104	0.597 (-2)	0.116 (- 3)	0.881 (- 6)	0.308 (- 8)
7	0.177	0.184 (-1)	0.680 (- 3)	0.100 (- 4)	0.675 (- 7)
8	0.341	0.441 (-1)	0.286 (- 2)	0.751 (- 4)	0.900 (- 6)
9	0.339	0.873 (-1)	0.920 (- 2)	0.404 (- 3)	0.812 (- 5)
10	0.410	0.149	0.240 (- 1)	0.167 (- 2)	0.535 (- 4)

The second second

1 and

TABLE B.VII

COEFFICIENTS OF RATIONAL APPROXIMATIONS TO E(z)

Here we present coefficients of the numerator and denominator polynomials of the rational approximation to E(z) defined in (5.11). We give coefficients for n = O(1)IO. The sequence of numbers given is for the lowest power to the highest power, respectively. The expression to the right of each number is the power of 10 by which it is multiplied.

e.g.,
$$E_2(z) = \frac{3z + 36}{z^2 + 12z + 36}$$

NUMERATOR

DENOMINATOR

N = 00

	. 10000	00000	00000	00000	01	. 10000	00000	00000	00000	01	
1	= 01										
	. 40000	00000	00000	00000	10	. 40000	00000	00000	00000	01	

N = 02

. 36000 00000 00000 00000	02	.36000 00000 00000 00000	02
.30000 00000 00000 00000	01	. 12000 00000 00000 00000	02
.00000 00000 00000 00000	00	.10000 00000 00000 00000	01

N = 03

. 48000 00000 0	00000 00000	03 .	48000	00000	00000	00000	03
60000 00000 0	00000 00000	02 .	18000	00000	00000	00000	03
56666 66666 6	66666 66667	01 .	24000	00000	00000	00000	02
. 00000 00000 0	00000 00000	00 .	10000	00000	00000	00000	01

and the second

TABLE B.VII (Continued)

NUMERATOR

DENOMINATOR

N	= 04									
	.84000 12600 .16666 .41666 .00000	00000 00000 66666 66666 00000	00000 00000 66666 66666 00000	00000 00000 66667 66667 00000	+04 +04 +03 +01 -99	.84000 .33600 .54000 .40000 .10000	00000 00000 00000 00000 00000	00000 00000 00000 00000 00000	00000 00000 00000 00000 00000	+04 +04 +03 +02 +01
N	= 05									
	. 18144 . 30240 . 46200 . 21000 . 65666 . 00000	00000 00000 00000 00000 66666 00000	00000 00000 00000 66666 00000	00000 00000 00000 00000 66667 00000	+06 +05 +04 +03 +01 -99	18144 75600 13440 12600 60000 10000	00000 00000 00000 00000 00000 00000	00000 00000 00000 00000 00000 00000	00000 00000 00000 00000 00000 00000	+06 +05 +05 +04 +02 +01
N	= 06									
	46569 83160 13776 81900 41160 49000	60000 00000 00000 00000 00000 00000	00000 00000 00000 00000 00000 00000	00000 00000 00000 00000 00000 00000	+07 +06 +06 +04 +03 +01 -99	. 46569 . 19958 . 37800 . 40320 . 25200 . 84000	60000 40000 00000 00000 00000 00000	00000 00000 00000 00000 00000 00000	00000 00000 00000 00000 00000 00000	+07 +07 +06 +05 +04 +02

N = 07

. 13837	82400	00000	00000	+09	. 13837	82400	00000	00000	+09
. 25945	92000	00000	00000	+08	. 60540	48000	00000	00000	+08
.45276	00000	00000	00000	+07	. 11975	04000	00000	00000	+08
. 31416	00000	00000	00000	+06	, 13860	00000	00000	00000	+07
. 19580	40000	00000	00000	+05	. 10080	00000	00000	00000	+06
. 46480	00000	00000	00000	+03	. 45360	00000	00000	00000	+04
.71857	14285	71428	57143	+01	.11200	00000	00000	00000	+03
.00000	00000	00000	00000	-99	, 10000	00000	00000	00000	+01

a strain a

TABLE B.VII (Concluded)

NUMERATOR

DENOMINATOR

N = 08

. 46702 . 90810 . 16432 . 12612 . 89073 . 29106 . 78274 . 54357	65600 72000 41600 60000 60000 00000 28571 14285	00000 00000 00000 00000 00000 42857 71428	00000 00000 00000 00000 00000 14286 57143	+10 +09 +09 +08 +06 +05 +03 +01	. 46702 20756 . 42378 . 51891 . 41580 . 22176 . 75600 . 14400	65600 73600 33600 84000 00000 00000 00000 00000	00000 00000 00000 00000 00000 00000 0000	00000 00000 00000 00000 00000 00000 0000	+10 +10 +09 +08 +07 +06 +04 +04
. 54357	14285 00000	71428	57143	+01 -99	. 14400 . 10000	00000	00000	00000	+03+01

N = 09

Charles and a beauty

. 17643	22560	00000	00000	+12	17643	22560	00000	00000	+12
. 35286	45120	00000	00000	+11	79394	51520	00000	00000	+11
.65585	52000	00000	00000	+10	16605	38880	00000	00000	+11
. 54054	00000	00000	00000	+09	21189	16800	00000	00000	+10
41441	40000	00000	00000	+08	18162	14400	00000	00000	+09
16336	32000	00000	00000	+07	10810	80000	00000	00000	+08
. 57052	28571	42857	142.86	+05	44352	00000	00000	00000	+06
83442	85714	28571	42857	+03	11880	00000	00000	00000	+05
.76579	36507	93650	79365	+01	18000	00000	00000	00000	+03
.00000	00000	00000	00000	-99	10000	00000	00000	00000	+01

N = 10

73748	68300	80000	00000	+13	. 73748	68300	80000	00000	+13
. 15084	95788	80000	00000	+13	. 33522	12864	00000	00000	+13
. 28621	2.3264	00000	00000	+12	. 71455	06368	00000	00000	+12
. 2.4872	04720	00000	00000	+11	. 94097	20320	00000	00000	+11
20211	87168	00000	00000	+10	.84756	672.00	00000	00000	+10
90210	12.000	00000	00000	+08	. 54486	43200	00000	00000	+09
. 36810	65142	85714	28571	+07	. 25225	20000	00000	00000	+08
. 76668	42.857	14285	71429	+05	.82368	00000	00000	00000	+06
12887	46031	74603	17460	+04	, 17820	00000	00000	00000	+05
. 5857	36507	93650	79365	+01	. 22000	00000	00000	00000	+03
. 00000	00000	00000	00000	-99	. 10000	00000	00000	00000	+01

A start to

TABLE B.VIII

ERROR OF RATIONAL APPROXIMATION TO E(z)

Let $E_n(z)$ be the nth order rational approximation to E(z) as defined in (5.11) and Table B.VII. Set $\epsilon_n(z) = |E(z)-E_n(z)|$. The tables give $\epsilon_n(z)$ for n = 3(1)10, r = 1(1)10 and $\theta = 0, \pi/2, \pi$ where $z = re^{i\theta}$. The expression in parentheses to the right of each number indicates the power of 10 by which the number is multiplied.

<u>r\</u>	<u>0</u>	<u>π/2</u>	<u>11</u>	π (Relative Error)
<u>n =</u>	3			
1 2 3 4 5 6 7 8 9	0.593 (-5) 0.272 (-4) 0.134 (-4) 0.870 (-4) 0.286 (-3) 0.566 (-3) 0.895 (-3) 0.125 (-2) 0.160 (-2) 0.193 (-2)	0.177 (-4) 0.291 (-3) 0.148 (-2) 0.444 (-2) 0.975 (-2) 0.172 (-1) 0.259 (-1) 0.345 (-1) 0.413 (-1)	0.487 (-4) 0.219 (-2) 0.317 (-1) 0.284 0.175 (1) 0.719 (1) 0.206 (2) 0.490 (2) 0.110 (3) 0.243 (3)	0.369 (-4) 0.119 (-2) 0.115 (-1) 0.643 (-1) 0.230 0.517 0.762 0.896 0.957 0.976
<u>n =</u>	4			
1 2 3 4 5 6 7 8 9 10	0.188 (-6) 0.407 (-5) 0.226 (-4) 0.716 (-4) 0.166 (-3) 0.315 (-3) 0.524 (-3) 0.524 (-3) 0.787 (-3) 0.110 (-2) 0.145 (-2)	0.287 (-6) 0.543 (-5) 0.155 (-4) 0.198 (-3) 0.102 (-2) 0.317 (-2) 0.724 (-2) 0.133 (-1) 0.209 (-1) 0.288 (-1)	$\begin{array}{c} 0.754 \ (-6) \\ 0.703 \ (-4) \\ 0.180 \ (-2) \\ 0.276 \ (-1) \\ 0.326 \\ 0.374 \ (1) \\ 0.274 \ (3) \\ 0.773 \ (2) \\ 0.126 \ (3) \\ 0.256 \ (3) \end{array}$	0.571 (-6) 0.382 (-4) 0.655 (-3) 0.624 (-2) 0.429 (-1) 0.269 0.101 (2) 0.141 (1) 0.110 (1) 0.103 (1)

TABLE B.VIII (Continued)

<u>r</u> ^V	<u>0</u>	π/2	π	π (Relative Error)
<u>n = </u>	<u>5</u> 0			
1	0.376 (-8)	0.632 (-8)	0.125 (-7)	0.947 (-8)
2	0.140 (-6)	0.379 (-6)	0.188 (-5)	0.102 (-5)
3	0.918 (-6)	0.449 (-5)	0.674 (-4)	0.245 (-4)
4	0.290 (-5)	0.306 (-4)	0.148 (-2)	0.335 (-3)
5	0.598 (-5)	0.145 (-3)	0.242 (-1)	0.318 (-2)
6	0.916 (-5)	0.504 (-3)	0.314	0.226 (-1)
7	0.107 (-4)	0.136 (-2)	0.318 (1)	0.118
8	0.860 (-5)	0.298 (-2)	0.216 (2)	0.395
9	0.117 (-5)	0.553 (-2)	0.848 (2)	0.737
10	0.129 (-4)	0.895 (-2)	0.228 (3)	0.916
<u>n =</u>	<u>6</u>			
1	0.760 (-10)	0.125 (-9)	0.225 (-9)	0.170 (-9)
2	0.602 (-8)	0.154 (-7)	0.559 (-7)	0.304 (-7)
3	0.665 (-7)	0.233 (-6)	0.233 (-5)	0.847 (-6)
4	0.337 (-6)	0.184 (-5)	0.603 (-4)	0.136 (-4)
5	0.113 (-5)	0.883 (-5)	0.129 (-2)	0.170 (-3)
6	0.295 (-5)	0.290 (-4)	0.229 (-1)	0.165 (-2)
7	0.649 (-5)	0.936 (-4)	0.343	0.127 (-1)
8	0.126 (-4)	0.288 (-3)	0.465 (1)	0.850
9	0.221 (-4)	0.778 (-3)	0.825 (2)	0.717
10	0.360 (-4)	0.178 (-2)	0.508 (3)	0.204
<u>n =</u>	7			
1	0.144 (-11)	0.236 (-11)	0.407 (-11)	0.308 (-11)
2	0.229 (- 9)	0.579 (- 9)	0.185 (- 8)	0.101 (- 8)
3	0.370 (- 8)	0.137 (- 7)	0.936 (-7)	0.340 (- 7)
4	0.236 (- 7)	0.113 (- 6)	0.240 (- 5)	0.543 (- 6)
5	0.905 (- 7)	0.526 (- 6)	0.551 (- 4)	0.725 (- 5)
6	0.251 (- 6)	0.142 (- 5)	0.120 (- 2)	0.863 (- 4)
7	0.558 (- 6)	0.627 (- 5)	0.229 (- 1)	0.848 (- 3)
8	0.105 (- 5)	0.341 (- 4)	0.367	0.671 (- 2)
9	0.172 (- 5)	0.130 (- 3)	0.493 (1)	0.429 (- 1)
10	0.255 (- 5)	0.380 (- 3)	0.506 (2)	0.203

a faith and

TABLE B.VIII (Concluded)

r	<u>0</u>	<u>π/2</u>	Ξ	π (Relative Error)
<u>n =</u>	8			
1 2 3 4 5 6 7 8	0.259 (-13) 0.825 (-11) 0.201 (- 9) 0.173 (- 8) 0.853 (- 8) 0.297 (- 7) 0.820 (- 7) 0.192 (- 6)	0.420 (-13) 0.208 (-10) 0.759 (-9) 0.939 (-8) 0.648 (-7) 0.327 (-6) 0.142 (-5) 0.555 (-5)	$\begin{array}{c} 0.712 \ (-13) \\ 0.626 \ (-10) \\ 0.431 \ (-8) \\ 0.116 \ (-6) \\ 0.237 \ (-5) \\ 0.528 \ (-4) \\ 0.120 \ (-2) \\ 0.242 \ (-1) \end{array}$	$\begin{array}{c} 0.539 \ (-13) \\ 0.340 \ (-10) \\ 0.157 \ (-8) \\ 0.262 \ (-7) \\ 0.312 \ (-6) \\ 0.380 \ (-5) \\ 0.444 \ (-4) \\ 0.442 \ (-2) \end{array}$
9 10	0.399 (- 6) 0.754 (- 6)	0.189(-4) 0.558(-4)	0.418 0.638 (1)	0.363 (- 2) 0.256 (- 1)
<u>n =</u>	9			
1 2 3 4 5 6 7 8 9 10	0.439 (-15) 0.280 (-12) 0.102 (-10) 0.117 (- 9) 0.710 (- 9) 0.290 (- 8) 0.904 (- 8) 0.231 (- 7) 0.509 (- 7) 0.995 (- 7)	0.709 (-15) 0.708 (-12) 0.391 (-10) 0.655 (- 9) 0.571 (- 8) 0.330 (- 7) 0.142 (- 6) 0.142 (- 6) 0.124 (- 5) 0.283 (- 5)	$\begin{array}{c} 0.119 \ (-14) \\ 0.206 \ (-11) \\ 0.205 \ (-9) \\ 0.657 \ (-8) \\ 0.127 \ (-6) \\ 0.235 \ (-5) \\ 0.535 \ (-4) \\ 0.126 \ (-2) \\ 0.266 \ (-1) \\ 0.484 \end{array}$	0.902 (-15) 0.112 (-11) 0.745 (-10) 0.149 (-8) 0.167 (-7) 0.169 (-6) 0.198 (-5) 0.230 (-4) 0.231 (-3) 0.194 (-2)
<u>n =</u>	10			
1 2 3 4 5 6 7 8 9 10	0.658 (-17) 0.898 (-14) 0.492 (-12) 0.747 (-11) 0.566 (-10) 0.267 (- 9) 0.101 (- 8) 0.296 (- 8) 0.742 (- 8) 0.164 (- 7)	0.114 (-16) 0.227 (-13) 0.189 (-11) 0.425 (-10) 0.463 (- 9) 0.315 (- 8) 0.151 (- 7) 0.546 (- 7) 0.154 (- 6) 0.426 (- 6)	$\begin{array}{c} 0.188 \ (-16) \\ 0.646 \ (-13) \\ 0.952 \ (-11) \\ 0.392 \ (-9) \\ 0.831 \ (-8) \\ 0.133 \ (-6) \\ 0.241 \ (-5) \\ 0.569 \ (-4) \\ 0.139 \ (-2) \\ 0.256 \ (-1) \end{array}$	0.142 (-16) 0.351 (-13) 0.346 (-11) 0.887 (-10) 0.109 (- 8) 0.956 (- 8) 0.893 (- 7) 0.104 (- 5) 0.121 (- 4) 0.103 (- 3)

1. 2. 91 2. 9

APPENDIX C

FORTRAN PROGRAM FOR COMPUTING RATIONAL APPROXIMATIONS

Here we describe a FORTRAN program which computes the rational approximations (2.1) and (2.18) for the incomplete gamma function and its special cases. The selection of input data determines the function to be approximated. We also include a description of input data, operating procedures, output, and a listing of the FORTRAN program.

The input data are read in the order r, θ , A, B, NCODE, IOPT, LOPT, and $\begin{cases} n \\ or \\ Error \end{cases}$.

The value IOPT determines which value in the braces $\left\{ \begin{array}{c} or \\ Error \end{array} \right\}$ should be read. If the nth approximant is desired, IOPT = 7 is entered and the corresponding value in braces, n, is entered. IOPT \neq 7 instructs the computer to iterate until an integer m is found such that $|v^{-1} z^{v}e^{z} ||V_{m}(z,v) - V_{m-1}(z,v)| < \text{Error}$, and therefore Error should accompany this choice of IOPT. Selection of LOPT offers the choice of computing either $V_{n}(z,v)$ or $S_{n}(z,v)$ (see (2.1) and (2.18)). If LOPT = 9, the rational approximate is $V_{n}(z,v)$ and if LOPT \neq 9, the approximate is $S_{n}(z,v)$.

For $z = re^{i\theta}$ (ε in degrees) and v = A+iB, the following table indicates the values of v and NCODE to select to compute the approximations to the designated functions. A listing of the FORTRAN program concludes this Appendix.
$\frac{\text{Output}}{\text{Re}\left[V_n^*(z, v)\right], \text{Im}\left[V_n^*(z, v)\right]}$	Re[E [*] f(z)], Im[E [*] f(z)] Re[E [*] fc(z)], Im[E [*] fc(z)]	Re $\left[a(z)\right]$, Im $\left[a(z)\right]$ Re $\left[a^{*}(z)\right]$, Im $\left[a^{*}(z)\right]$	Re $\left[\mathbb{C}^{*}(z) \right]$, Im $\left[\mathbb{C}^{*}(z) \right]$	Re [f*(z)], Im [f*(z)]	$Re[c^{*}(z)]$, $Im[c^{*}(z)]$	$Re[S^{*}(z)]$, $Im[S^{*}(z)]$
Expressions Computed $V_n^*(z, v) = v^{-1}z^v e^{+z} V_n(z, v)$	$E^{*}_{rf}(z) = ze^{-z^{2}}v_{n}(z^{2}e^{-i\pi}, \frac{1}{2})$ and $E^{*}_{rfc}(z) = \frac{1}{2\pi^{2}} - E^{*}_{rf}(z)$	$a(z) = ze^{-z^2/2}v_n(z^2e^{-i\pi/2}, \frac{1}{2})$ and $a^*(z) = (\pi/2)^{\frac{1}{2}} - a(z)$	$J_{1}^{*} = 2z^{\frac{1}{2}}e^{iz}V_{n}(\frac{1}{2},iz),$	$J_{2}^{*} = 2z^{\frac{1}{2}}e^{-iz}v_{n}(\frac{1}{2},-iz)$	$C^{*}(z) = \frac{1}{2}(J_{1}^{*}+J_{2}^{*})$,	$\lambda^{*}(z) = \frac{1}{21} (J_{1}^{*} - J_{2}^{*})$
$\int_{0}^{z} t^{v-l} e^{t} dt = v^{-l} z^{v} e^{z} \left\{ V_{n}(z, v) + R_{n}(z, v) \right\},$	$\int_{0}^{z} e^{-t^{2}} dt = z e^{-z^{2}} \left\{ V_{n} \left(z^{2} e^{-i\pi}, \frac{1}{2} \right) + R_{n} \left(z^{2} e^{-i\pi}, \frac{1}{2} \right) \right\}$	$\int_{0}^{z} e^{-t^{2}/2} dt = z e^{-z^{2}/2} \left\{ v_{n}(z^{2} e^{-i\pi/2}, \frac{1}{2}) + R_{n}(z^{2} e^{-i\pi/2}, \frac{1}{2}) \right\}$	$C(z) = \int_{0}^{z} t^{-\frac{1}{2}} \cos t dt = \frac{1}{2} (J_{1} + J_{2})$	$A(z) = \int_0^z t^{-\frac{1}{2}} \sin t dt = \frac{1}{2!} (J_1 - J_2)$	$C(z) = \int_{z}^{\infty} t^{-\frac{1}{2}} \cos t dt = (\pi/2)^{\frac{1}{2}} - \mathcal{C}(z),$	and $S(z) = \int_{z}^{\infty} t^{-\frac{1}{2}} \sin t dt = (\pi/2)^{\frac{1}{2}} - \chi(z)$
ді д	0	0	0			
41 A 1	0.5	0.5	0.5			
NCODE	Q	1 10	4			

- 66 -

	Output			$\operatorname{Re}\left[\mathfrak{J}^{*}(z)\right]$, $\operatorname{Im}\left[\mathfrak{J}^{*}(z)\right]$	Re $\left[\mathfrak{L}^{*}(z) \right]$, Im $\left[\mathfrak{L}^{*}(z) \right]$	$\operatorname{Re}\left[F^{*}(z)\right]$, $\operatorname{Im}\left[F^{*}(z)\right]$	$Re\left[L^{*}(z)\right] , Im\left[L^{*}(z)\right]$	Ŧ		
	Expressions Computed	$c^{*}(z) = (\pi/2)^{\frac{1}{2}} - e^{*}(z)$	$S^{*}(z) = (\pi/2)^{\frac{1}{2}} - \mathcal{X}^{*}(z)$	$K_{1}^{*} = ze^{iz^{2}} v_{n}(ze^{i\pi/2}, \frac{1}{2})$	$K_2^* = 2e^{-iz^2}v_n(ze^{-i\pi/2}, \frac{1}{2})$,	$\tilde{u}^{*}(z) = \frac{1}{2}(k_{1}^{*}+k_{2}^{*})$	$\mathcal{L}^{*}(z) = \frac{1}{2i} (k_{1}^{*} - k_{2}^{*})$,	$F^{*}(z) = \frac{1}{2}(\pi/2)^{\frac{1}{2}} - 3^{*}(z)$, and	$L^{*}(z) = \frac{1}{2}(\pi/2)^{\frac{1}{2}} - L^{*}(z)$	
	where	$J_{l} = 2z^{\frac{1}{2}}e^{iz} \left\{ V_{n}(ze^{i\pi/2}, \frac{1}{2}) + R_{n}(ze^{i\pi/2}, \frac{1}{2}) \right\}$ and	$J_{2} = 2z^{\frac{1}{2}}e^{-iz} \left\{ V_{n}(ze^{-i\pi/2}, \frac{1}{2}) + R_{n}(ze^{-i\pi/2}, \frac{1}{2}) \right\}$	$\mathbf{u}(z) = \int_0^z \cos t^2 dt = \frac{1}{2} (K_1 + K_2) ,$	$f(z) = \int_0^z \sin t^2 dt = \frac{1}{2i} (K_1 - K_2)$	$F(z) = \int_{z}^{\infty} \cos t^{2} dt = \frac{1}{2} (\pi/2)^{\frac{1}{2}} - 3(z)$	and $L(z) = \int_{-\infty}^{\infty} \sin t^2 dt = \frac{1}{2} (\pi/2)^{\frac{1}{2}} - \mathcal{L}(z)$	z Where	$K_{1} = ze^{1z^{2}} \left\{ V_{n}(z^{2}e^{1\pi/2}, \frac{1}{2}) + R_{n}(z^{2}e^{1\pi/2}, \frac{1}{2}) \right\}$ and	$K_{2} = ze^{-1z^{2}} \left\{ v_{n}(z^{2}e^{-1\pi/2}, \frac{1}{2}) + R_{n}(z^{2}e^{-1\pi/2}, \frac{1}{2}) \right\}$
a v auvon	4 0.5 0	(concluded)		5 0.5 0						

- 67 -

C	RATIONAL APPROX., ASCENDING SERIES
	DIMENSION VR(40), VI(40)
1	READ 400, R, TH, A, B, NCODE, IOPT, KOPT, LOPT,
	PRINT 403, R, TH, A, B
	PI=3.1415926
	THA=TH*PI/180.
	HP1=,5*P1
	RTP1=1,7724538
	NN=1
	X=R*COSF(THA)
	Y=R*SINF(THA)
	RO=1OGF(R)
203	IF (10PT-7) 101 102 101
101	READ 401 ERROR
101	FRROR-FRROR*FRROR
102	
102	MT-NT+1
102	CO TO (70 80 SO 100 110) NCODE
00	$CM_{-} = E$
90	
00	
00	
01	KL = (Y + Y - X + X) + CM
	KLI=-2, *X*Y*LM
	C=COSF(TH)
	DEN=R*EXPF(RZ)
	CR=C*DEN
	CI=D*DEN
	X=RZ
	Y=RZI
	GO TO 300
70	C=A*RO-B*THA+X
	DN=1./(A*A+B*B)
	TH=B*RO+A*THA+Y
	DN=EXPF(C)*DN
	CR=DN*(A*COSF(TH)+B*SINF(TH))
	CI=DN*(A*SINF(TH)-B*COSF(TH))
	GO TO 300
100	THA=, 5*THA
	C=X
	X=-Y
	Y=C
105	DN=SQRTF(R)*EXPF(X)
	CR=DN*COSF(THA+Y)
	CI=DN*SINF(THA+Y)
	GO TO 300
110	C=X*X-Y*Y
	D=-2, *X*Y

```
Y=C
     X=D
106
     DN=R*EXPF(X)
     CR=DN*COSF(THA+Y)
     CI=DN*SINF(THA+Y)
     GO TO 300
60
      IF (NN-2) 61,62,62
61
     NN=2
     X=-X
     Y=-Y
     CC=C
     DD=D
     IF(NCODE-4)106,105,106
IF (LOPT-9) 202,205,202
300
202
     A=A-1.
205
     AI = (A+1, )*(A+1, )+B*B
     AI=1, /AI
      IF(LOPT-9)11, 10, 11
10
      P1=1.
      S2=A+2. +X
     S1=1.
     P2=(A+2,)-((A+1,)*X+B*Y)*A1
     01=0.
     Q2=B+(B*X-Y*(A+1.))*A1
     T1=0.
     T2=B+Y
     GO TO 301
11
     P1=0, 0
     P2=A+2.
     Q1=0.0
     Q2=B
      S1=1.0
      S2=X+A+2.
     T1=0, 0
     T2=Y+B
301
      J=1
     VR(1)=(P2*S2+Q2*T2)/(S2*S2+T2*T2)
     VI(1)=(Q2*S2-P2*T2)/(S2*S2+T2*T2)
302
     K=J+1
     F=J
     G=K
     H=2. *F+A
     AL=H*(G+A)-B*B
      BL=B*(H+G+A)
      C = (H+1) * (H*(H+2) - B*B+A*X-B*Y)
     C=C-B*(B*X+A*Y+B*(2.*H+2.))
     D=B*(H*(H+2,)-B*B+A*X-B*Y)
D=D+(H+1,)*(B*X+A*Y+B*(2,*H+2,))
      E=F*((X*X-Y*Y)*(H+2,)-2,*B*X*Y)
      FE=F*(2.*X*Y*(H+2.)+B*(X*X-Y*Y))
      DN=1, /(AL*AL+BL*BL)
```

and the second second

	ACPBD=AI*C+BI*D
	AEPBF=AL*E+BL*FE
	BEMAF=BL*E-AL*FE
	P3=Dil*(P2*ACPBD+O2*BCMAD+P1*AEPBF+O1*BEMAF)
	03-DN+(-P2+BCMAD+02+ACPBD-P1+BEMAE+01+AEPBE)
	$Q_{2} = D_{1} + (C_{2} + ACD D_{2} + T_{2} + D_{2} +$
	SJ=UN*(S2*ALPDU+12*BLMAU+S1*AEPBF+11*BEMAF)
	T3=DN*(-S2*BCMAD+T2*ACPBD-S1*BEMAF+T1*AEPBF)
	Q1=Q2
	02=03
	P1=P2
	P7-P3
	51=52
	\$2=\$3
	T1=T2
	T2=T3
	1 =K+1
	IF (10PT-7) 304 303 304
202	15 (NT_1) 201 201 205
303	IF (NI-L) 304, 30%, 303
305	
	GO TO 302
304	DEN=1./(S?*S2+T2*T2)
	VR(K) = (P2 + S2 + Q2 + T2) + DEN
	VI(K) = (02 + S2 - P2 + T2) + DEN
306	IF (10PT-7) 308 307 308
207	1E (NT-K) 208 208 20E
200	
300	RER=VR(K)-VR(K-1)
	REI=VI(K)-VI(K-1)
	IF (10PT-7) 309, 310, 309
309	C=CR*RER-CI*REI
	D=CI*RER+CR*REI
	FRT=C*C+D*D
	LE (EPT_EPPOP) 310 310 305
210	$C = CD \pm VD (V) = CI \pm VI (V)$
310	
	D=CI*VR(K)+CR*VI(K)
	GO TO (30,40,50,60,60),NCODE
30	PRINT 500.
	PRINT 501.K.C.D
	GO TO 68
40	PRINT 502
40	PRINT FOLK C D
	C- 99622602 C
	C=. 00022092-0
	PRINT 501, K, C, D
	GO TO 68
50	PRINT 502.
	PRINT 501.K.C.D
	C=1 2533141-C
	D=_0
	PRINT FOI K C D
	60 10 68

the second second state when the second s

- 70 -

a state of the sta

62	CM=1.
	IF (IICODE-4) 64.65.64
64	CM=. 5
65	SIZR=CM*(DD-D)
	SIZI=CM*(C-CC)
	CIZR=CI4*(C+CC)
	C171=CM*(D+DD)
	PRINT 505
	PRINT 506 K. SIZR. SIZI. CIZR. CIZI
	DN=1 2533141
	LE (NCODE-5) 66, 67, 66
67	DN= 5*DN
66	C17R=DN-C17R
	S17R=DM-S17R
	C171 = -C171
	S171 = -S171
	PRINT 506 K. SIZR. SIZI. CIZR. CIZI
68	IF (SENSE SWITCH 1) 69.1
69	PRINT 501, K. VR(K), VI(K)
-,	60 TO 1
400	FORMAT(4F12, 0, 413)
401	FORMAT(E14,7)
402	FORMAT(13)
403	FORMAT(4(E14, 7, 2X)/)
500	FORMAT(15H INC. GAMMA FN. /)
501	FORMAT(13, 1X, 2(E14, 7, 2X)/)
502	FORMAT(15H ERROR FUNCTION/)
505	FORMAT (18H FRESNEL INTEGRALS/)
506	FORMAT(13,2X,4(E14,7,2X)/)
	END

APPENDIX D

FORTRAN PROGRAM FOR COMPUTATION OF THE EXPONENTIAL AND CIRCULAR FUNCTIONS

The following FORTRAN program is based on the results of Section IV.

<u>Input</u>: (Cards) Let n be the order of the rational approximations to the exponential and circular functions, and suppose that these approximations are desired for $n = n_1(1)n_k$ and $x = x_1(\Delta x)x_m$. The data are entered in the order n_1 , n_k , x_1 , x_m , Δx .

Switch settings: None.

<u>Output</u>: (Printed) The output is of the following form for x_1, x_2, \ldots, x_m .

e ^(x1) e ⁿ¹	,	$sin_{n_1}(x_1)$,	$\cos_{n_1}(x_1)$,	$\tan_{n_1}(x_1)$
$e_{n_2}^{(x_1)}$,	<pre>sin_{n2}(x1) ,</pre>	cos _{n2} (x1),	tan _{n2} (x1)
	-	•••••		
$e_{n_k}^{(x_1)}$,	<pre>sin_{nk}(x1) ,</pre>	$\cos_{n_k}(x_1)$,	tan _{nk} (x1)

and a second and

С	RATIONAL APPROX. TO EXP(-Z), COS(Z), SIN(Z), TAN(Z)
1	READ 100 NI NF ZI ZF ZD
	PRINT 200
	7.=7.1
2	<u>7</u> P=7.*Z
	Z/4=-ZP
	N=2
	FM=2_0
	CM=2 * (2 * EM+1)
	A1P=2 0
	A2P=12 0+7P
	B1P=1 0
	R2P=6 0
	A1M-2 0
	$A^{10} = 2,0$
	$P_1 M_{-1} O$
3	
	AIP=AZP
	AZP=A3P
	BIP=B2P
	B2P=B3P
	A1M=A2M
	A2M=A3M
	BIM=B2M
	B2M=B3M
	FM=FM+1.0
	CM=2.*(2.*FM+1.0)
	IF (NI-N) 4,4,3
L,	EZ=(A3P-Z*B3P)/(A3P+Z*B3P)
	D=A3M*A3M+ZP*B3M*B3M
	CZ=(A3M*A3M+ZM*B3M*B3M)/D
	SZ=2. *Z*A3M*B3M/D
	D=S7/CZ
	PRINT 300, N, Z, EZ, SZ, CZ, D
	IF (NF-N) 1,5,3
5	IF (ZF-Z) 1,1,6
6	Z=7.+ZD
	GO TO 2
100	FORMAT(2(13),3(E15.7))
200	FORMAT(//2H N, 7X1HZ, 13X7HEXP(-Z), 9X6HSIN(Z), 10X6HCOS(Z)
	1, 10X6HTAN(Z)/)
300	FORMAT(12,5(2XE14,7))
	END

APPENDIX E

FORTRAN PROGRAM FOR COMPUTING RATIONAL APPROXIMATIONS TO E(z)

Here we give a brief description of a FORTRAN program which computes the rational approximations to E(z) defined by (5.11). A listing of the program follows the description of input and output data.

Let $z = re^{i\theta}$ and suppose we wish to compute the nth order rational approximation to E(z) as defined by (5.11) for $r_I(\Delta r)r_F$ and $\theta_I(\Delta \theta)\theta_F$ where I and F subscripts denote initial and final values, respectively.

Input: (Cards) The values r_I , r_F , Δr , θ_I , θ_F and $\Delta 0$ are entered in this order (θ in degrees), three numbers per card.

<u>Output</u>: (Typed) For each pair of values of r and θ , the nth order rational approximation is printed, real part and then the imaginary part.

Switch settings: None.

1 The start of 1

C	RATIONAL APPROXIMATIONS TO E(Z)
	$P_2(30) P_3(30) P_4(30)$
1	READ 100, RI, RF, RD, THI, THF, THD
	CF=3, 141592653589/93238462643/180, 00.2 J=1.30
	F1(J)=0,0
	$F_2(J) = 0, 0$
	$F_{3}(J)=0.0$
	P1(J)=0.0
	$P_2(J)=0.0$
2	P4(J)=0,0
	$F_3(1)=1,0$
	$F_3(2)=24.0$ $F_3(3)=180.0$
	F3(4)=480.0
	$F_2(1) = 1.0$
	$F_2(2) = 12,0$ $F_2(3) = 36,0$
	F1(1)=1,0
	F1(2)=4.0 P3(1)=0.0
	P3(2)=17, /3.
	P3(3)=60.0
	$P_2(1)=0.0$
	P2(2)=3.0
	P2(3)=36.0 P1(1)=0.0
	P1(2) = 4,0
	N=4
3	
	TWH=2.*H
	$A_1 = (H_2) * (TWH_1) / (H*(TWH_3))$
	A3=-A1
	B1=2.*(TWH-1.)*(H+1.)/H
	F4(1)=A1*F3(1)+A2*F2(1)+A3*F1(1)
	P4(1)=A1*P3(1)+A2*P2(1)+A3*P1(1)
	UO 4 J=2,M F4(J)=A1*F3(J)+B1*F3(J-1)+A2*F2(J)+B2*F2(J-1)+A3*F1(J)
4	P4(J)=A1*P3(J)+B1*P3(J-1)+A2*P2(J)+B2*P2(J-1)+A3*P1(J)
	D0 5 J=1.M
	F2(J)=F3(J)
	F3(J)=F4(J)
	PI(J)=P2(J)

	P2(J)=P3(J)
5	P3(J)=P4(J)
6	RO=RI
7	R=1, /R0
	TH=THI
8	PRINT 101, RC, TH
	T=TH*CF
	RE=R*COSF(T)
	RIM=-R*SINF(T)
	SRN=P4(M)*RE+P4(M-1)
	SIN=P4(M)*RIM
	SRD=F4(M)*RE+F4(M-1)
	SID=F4(M)*RIM
	DC 9 J=3,M
	L=M-J+1
	S=RE*SRN-RIM*SIN+P4(L)
	SIN=RE*SIN+RIM*SRN
	SRN=S
	S=RE*SRD-RIM*SID+F4(L)
	SID=RE*SID+RIM*SRD
0	SRD=S
	DEN=SRD*SRD+SID*SID
	QR=(SRN*SRD+SIN*SID)/DEN
	QI = (SIN*SRD-SRN*SID)/DEP
	PRINT 104, QR, QI
	TH=TH+THD
10	1F (THF-TH) 10,8,8
10	RU=RU+RD
10	IF (RF-RO)12,/,/
12	CONTINUE
13	
100	GO TO 3 FORMAT (2515 7)
100	FORMAT(51) 7 24 511 71
101	FORMAT(2/522 24))
104	FURMAI(2(E32, 24))
	END

DISTRIBUTION LIST

Contract No. Nonr-2638(00)(X)

No. of Copies

のないであると

1

Recipient

10	Chief, Bureau of Ships Washington 25, D. C. 3 Tech. Info Br (Code 335) 1 Tech. Asst. to Chief (Code 106) 3 Computer Systems and Applications Br (Code 732) 1 Asst. Chief for Field Activities (Code 700) 1 Asst. Chief for Nuclear Propulsion (Code 1500) 1 Lab Mgt. (Code 320)
1	Chief, Bureau of Weapons 18th and Constitution Avenue Washington 25, D. C.
1	Chief, Bureau of Supplies and Accounts 18th and Constitution Avenue Washington 25, D. C.
1	Chief, Bureau of Census Washington 25, D. C.
1	Chief, Office of Naval Research Washington 25, D. C.
1	Naval Shipyard Boston, Massachusetts
1	Naval Shipyard Charleston, South Carolina
1	Naval Shipyard Long Beach, California
1	Naval Shipyard Attn: Shipyard Tech. Library Bldg. 746, Code 370a Mare Island, California

No. of Copies	Recipient
1	Naval Shipyard New York, New York
1	Naval Shipyard Norfolk, Virginia
1	Naval Shipyard San Francisco, California
1	Naval Shipyard Philadelphia, Pennsylvania
1	Naval Shipyard Portsmouth, New Hampshire
1	Naval Shipyard Puget Sound, Washington
1	Naval Shipyard Pearl Harbor, Hawaii
1	C O & DIR, USNBTL Philadelphia, Pennsylvania
1	CO & DIR, U. S. Naval Electronics Lab San Diego, California
1	CO & DIR, U. S. Naval Research and Development Lab San Francisco, California
1	CO & DIR, U. S. Naval Training Device Center Computer Branch Port Washington, New York
1	CO, USNCML St. Paul, Minnesota
1	CDR, U. S. Naval Proving Ground Dahlgren, Virginia

A CONTRACTOR OF THE OWNER OWNER OF THE OWNER OWNER

No. of Copies	Recipient
3	CDR, U. S. Naval Ordnance Test Station China Lake, California l Pasadena Annex l Tech. Library l Michelson Lab (Code 5038)
1	CDR, U. S. Naval Ordnance Lab White Oak, Silver Spring, Maryland
1	Director, United States Naval Academy Annapolis, Maryland
1	DIR, U. S. Naval Research Lab 18th and Constitution Avenue Washington 25, D. C.
1	SUPT, U. S. Naval Postgraduate School Monterey, California Attn: Library, Technical Reports Section
1	SUPT, U. S. Naval Academy Department of Math Annapolis, Maryland
1	CG, Aberdeen Proving Ground Aberdeen, Maryland
1	DIR, National Bureau of Standards Washington 25, D. C.
1	G. C. Marshall Flight Center NASA Huntsville, Alabama
1	DIR, Langley Aero Lab NASA Langley Field, Virginia
1	DIR, Lewis Flight Propulsion Lab NASA Cleveland 11, Ohio

No. of Copies	Recipient
1	Commander Aeronautical Systems Division Attn: Applied Mathematics Laboratory Wright-Patterson Air Force Base, Ohio
1	CG, Frankford Arsenal Head, Math Section Pitman-Dunn Laboratories Philadelphia 37, Pennsylvania
1	CG, White Sands Proving Ground Flight Determination Lab Las Cruces, New Mexico
1	USAEC, Technical Information Service Oak Ridge, Tennessee
2	U. S. Atomic Energy Commission Washington 25, D. C. Attn: Tech. Library
1	CO, Diamond Ordnance Fuze Laboratory Washington 25, D. C. Attn: Library
1	George Washington University Logistics Research Washington, D. C.
1	Johns Hopkins University Applied Physics Laboratory Silver Spring, Maryland
1	University of California Librarian, Numerical Analysis Los Angeles 24, California
1	Carnegie Institute of Technology Pittsburgh, Pennsylvania

No. of Copies	Recipient
1	Hudson Laboratory Columbia University Dobbs Ferry, New York
2	Harvard University Cambridge, Massachusetts l Department of Math Attn: Prof. J. S. Walsh l Computation Laboratory
1	Institute for Advanced Study Princeton, New Jersey
2	Massachusetts Institute of Technology Cambridge, Massachusetts Attn: Computation Center
2	New York University New York, New York 1 Inst. of Math Sciences 1 AEC Computing Facility
l	DIR, Research Center Ohio State University Columbus, Ohio
l	Pennsylvania State University Department of Math University Park, Pennsylvania
l	Princeton University Princeton, New Jersey Attn: Library
1	University of California Berkeley, California
2	University of Illinois Urbana, Illinois 1 Department of Math 1 Electronic Digital Computer Lab

and the barries from

No. of Copies	Recipient
1	University of Kansas Department of Mathematics Lawrence, Kansas
3	University of Maryland College Park, Maryland
	I Department of Math 1 Inst. for Fluid Dynamics and Applied Math 1 Attn: Professor Burt Hubbard
1	Willow Run Research Center University of Michigan Ypsilanti, Michigan
1	University of Michigan Ann Arbor, Michigan
1	University of Missouri Department of Mathematics Columbia, Missouri
1	University of Washington Department of Mathematics Seattle, Washington
1	Yale University New Haven, Connecticut
1	State College of Washington Department of Mathematics Pullman, Washington
1	Stanford University Palo Alto, California Attn: Dr. G. E. Forsythe
1	Johns Hopkins University Charles and 34th Streets Baltimore 18, Maryland

and the second s

#315 J

No. of Copies	Recipient
1	Rutgers University New Brunswick, New Jersey Attn: Professor E. P. Starke
1	Brown University Division of Engineering Providence, Rhode Island Attn: Dr. R. D. Kodis
1	University of Rochester Department of Mathematics Rochester, New York
1	The Scripps Institute of Oceanography University of California LaJolla,California Attn: Dr. Walter Munk
1	Dr. Werner C. Rheinboldt, Director Computing Center, 112 Hinds Hall Syracuse University Syracuse 10, New York
1	DIR, Combustion Engineering, Inc. Windsor, Connecticut
1	DIR, Westinghouse Electric Corporation Bettis Atomic Power Division P. O. Box 1468 Pittsburgh 30, Pennsylvania
2	Argonne National Laboratory P. O. Box 299 Lemont, Illinois
1	Armour Research Foundation 35 West 33rd Street Chicago 16, Illinois
1	Battelle Memorial Institute 505 King Avenue Columbus, Ohio

7

and the second s

No. of Copies	Recipient
1	Brookhaven National Laboratory Upton, Long Island, New York
1	Cornell Aero Laboratory, Inc. Buffalo, New York
1	Douglas Aircraft Company, Inc. Santa Monica Division 3000 Ocean Park Boulevard
	Santa Monica, California
1	Engineering Research Associates St. Paul 4, Minnesota
1	IBM Corporation 590 Madison Avenue New York 22, New York
1	Knolls Atomic Power Laboratory General Electric Company
	Math Analysis Unit Schenectady, New York
1	Lincoln Lab B-125
	Lexington, Massachusetts
1	Lockheed Aircraft Corporation Missile Systems Division Sunnyvale, California
1	Lockheed Aircraft Corporation Van Nuys, California
1	Los Alamos Scientific Lab Los Alamos, New Mexico
1	Remington Rand Division of Sperry Rand Electronic Computer Department 315 Fourth Avenue New York 10, New York

Contraction of the

8

the to be a strain the second second

No. of Copies	Recipient
1	Ramo Wooldridge Corporation, a Division of Thompson Ramo-Wooldridge, Inc.
	8433 Fallbrook Avenue
	Canoga Park, California
1	Rand Corporation
	Santa Monica, California
1	Sandia Corporation
	Albuquerque, New Mexico
	Attn: Library
1	United Aircraft Corporation
	400 Main Street
	East Hartford 8, Connecticut
1	Division of Vitro Labs
	Vitro Corporation of America
	Silver Spring, Maryland
1	Oregon State College
	Covallis, Oregon
	Attn: Professor W. Milne
2	Mathematics Research Center
	University of Wisconsin
	Madison 6, Wisconsin
	1 Professor R. E. Langer
	1 Professor P. C. Hammer
1	Professor Wallace Givens
	Department of Mathematics
	Northwestern University
	Evanston, Illinois
1	Dr. A. S. Householder
	Oak Ridge National Laboratories
	Oak Ridge, Tennessee

and the second

a state of the sta

No. of Copies	Recipient
1	Professor John Todd Department of Mathematics California Institute of Technology Pasadena, California
1	Dr. Franz Alt Mathematical Computation Laboratory National Bureau of Standards Washington 25, D. C.
1	Dr. E. W. Cannon Applied Mathematics Division National Bureau of Standards Washington 25, D. C.
1	Miss Irene Stegun Mathematical Computation Laboratory National Bureau of Standards Washington 25, D. C.
1	Professor John W. Carr, III Director Research Computation Center University of North Carolina Chapel Hill, North Carolina
1	Professor J. B. Rosser Department of Mathematics Cornell University Ithaca, New York
1	Professor Richard S. Varga Department of Mathematics Case Institute of Technology Cleveland, Ohio
1	Professor D. H. Lehmer Department of Mathematics University of California Berkeley 4, California

DISTRIBUTION LIST (Concluded)

No. of Copies	Recipient
1	Professor Arthur Erdélyi Department of Mathematics California Institute of Technology Pasadena, California
5	Navy Department David W. Taylor Model Basin Washington, D. C. Attn: Dr. John W. Wrench, Jr.
l	Professor Bertram Bussell Department of Engineering University of California Los Angeles 24, California
1	Department of Mathematics University of Queensland St. Lucia, Brisbane Australia Attn: Dr. M. N. Oguztoreli
25	Midwest Research Institute Attn: Yudell L. Luke
1	Midwest Research Institute Attn: Mathematics and Physics Division
1	Midwest Research Institute Attn: Mr. Kenneth Halleck
1	Midwest Research Institute Attn: Library

11

Sectored 1