AD-A072 219

NAVY UNDERWATER SOUND LAB NEW LONDON CT
SPATIAL CORRELATION FUNCTION FOR A FREQUENCY BAND FOR VERTICAL --ETC(U)
AUG 65 R L SHAFFER
UNCLASSIFIED

UNCLASSIFIED

END
R
10-F1
R
10-F

	C.g. Becker
i	CCLUMBIA UNIVERSITY
	HEDS IN LABORATORIES
	U. S. NAVY UNDERWATER SOUND LABORATED HACT NONE-266(84) FORT TRUMBULL, NEW LONDON, CONNECTION
	SPATIAL CORRELATION FUNCTION FOR A FREQUENCY BAND
	FOR VERTICAL RECEIVERS AND DIRECTIONAL NOISE.
	0 T 1 1 (A) USL Problem to. 6-1-055-00-00
0	(9) 12chn1cu/ (10)R. L./Shaffer
H	memois USL Technical Memorandum No. 913-136-65
es	(11)27 Aug not 19 65
es	(14) USL-IM-913-136-65
2	INTRODUCTION
DA 072219	The expression for the single frequency spatial correlation function reported in reference 1 as equation 2 of Section II B has been
10	modified by Mr. B. Cron (Reference (2)) to comply with the revised gen-
-	eral expression given in reference 3. The expression for the single frequency spatial correlation function with directional noise $g(\mathcal{L}) = \cos \mathcal{L}$ for vertical receivers as given by reference 2 is:
	$P(d,T) = 2 \frac{\sin kd}{kd} + \frac{(\cos kd-1)}{(kd)^2} \cos \omega$
	DD'C
	Draismust
-5-	+ 2 sin dd - cooled sin w T NG 6 1979
0P	LUGOEUV E
Ö	Α
DOC FILE COPY	(1)
	The definitions of the terms in this expression and those in subsequent equations are found in the glossary at the end of the memorandum. Most
18	equations are found in the glossary at the end of the memorandum. Most of these definitions come from references 1 and 3.
	DISTRIBUTION STATEMENT A
	Approved for multi-
/ / / / / / / / / / / / / / / / / / /	Distribution United 10 8 03 127 254 200 5 FEB 24 1966
	254 200 5 FEB 24 1966 MM
	79 08 07 300

v

UNCLASSIFIED

REPORT DOCUMENTA	READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER	2. GOVT ACCESSION NO. 913-136-65	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) SPATIAL CORRELATION FUNCTION F	5. TYPE OF REPORT & PERIOD COVERED Tech Memo	
BAND FOR VERTICAL RECEIVERS AN	6. PERFORMING ORG. REPORT NUMBER	
7. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(*)	
Shaffer, R. L.		Nonr-266(84)
9. PERFORMING ORGANIZATION NAME AND AI Naval Underwater Systems Cen New London, CT	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
Office of Naval Research, C		12. REPORT DATE 27 AUG 65
800 North Quincy St. Arlington, VA 22217		13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(II	different from Controlling Office)	18. SECURITY CLASS. (of this report) UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING
Approved for public release;	distribution uniimit	.ed.
17. DISTRIBUTION STATEMENT (of the abotract	ontered in Block 20, If different fro	om Report)
18. SUPPLEMENTARY NOTES	/4.	
19. KEY WORDS (Continue on reverse side if nece	eceary and identify by block number	,
20. ABSTRACT (Continue on reverse side if nece	seety and identify by block number)	

In this memorandum the expression for the spatial correlation for a frequency band was obtained by forming the product of the single frequency spatial correlation function and the power spectrum and then integrating this product over a bandwidth. This expression for the spatial correlation for a frequency band was checked by letting b approach unity and obtaining equation (1) again.

DEVIATION OF THE SPATIAL CORRELATION FOR A FREQUENCY BAND

The expression for the spatial correlation for a frequency band, (d, T, b), as outlined in the introduction is:

$$P(d_{3}(b)) = \int_{a}^{b} \left\{ 2 \frac{\sin \beta d}{\beta d} + \frac{(\cos \beta d - 1)}{(\beta d)^{2}} \cos \omega \tau \right\}$$

In equation (2) f'(d, 7, b) can be thought of as being composed of two parts f'(d, 7, b) and $f'_2(d, 7, b)$ where f'(d, 7, b) and $f'_2(d, 7, b)$ are given by

e given by
$$\frac{P_1(d, f, b)}{P_1(d, f, b)} = \int_{\mathbb{R}^2} \frac{aim \cdot Bd}{Bd} + \frac{(nc \cdot Bd - f)}{(Bd)^2} \frac{C_{ov} \cdot u \cdot f \cdot d \cdot f}{f_2^2 - f_1}$$
(3)

$$\mathcal{E}(d,T,b) = \begin{cases} 2 \frac{\sin \beta d}{(kd)^{\frac{1}{2}}} - \frac{\cos \beta d}{(kd)} \frac{\sin w \cdot cs}{f_1 - f_1} \end{cases} \tag{4}$$

Equation (3) has been evaluated in reference 1 and is given by:

$$P(d,1,b) = \frac{1}{2\pi \times (b-1/b)} \left\{ \frac{2\pi \times (b-1/b)}{2\pi \times (b-1/b)} \right\} = \frac{1}{2\pi \times (b-1/b)}$$

79 08 03 127 78 08 07 385

2

which now leaves the solution of the integral in equation 4 to be evaluated.

In evaluating the integral of equation (4) the following notation is used

$$I_{i} = \int \frac{2 \sin \beta d}{(\beta d)^{2}} \frac{\sin \omega T}{5i - 5i} d5$$

$$I_{2} = \int \frac{\cos \beta d}{\beta d} \frac{\sin \omega T}{5i - 5i} d5$$
(6)

and

$$\mathcal{L}(d,T,b) = I_1 - I_2 \tag{8}$$

By letting $u = kd = 2\pi$ f d/c; then $du = 2\pi$ d/c df and wT = u c/d T = x u. Equation (6) can now be written as

$$I_{i} = \frac{1}{3\pi x(4-1/2)} \int_{4}^{4} \frac{20i\pi 4}{42} \sin 44 d4$$
 (9)

where $u_1 = 2\pi x/b$ and $u_2 = 2\pi bx$

Using trigonometric formulas, equation (9) becomes

The values of the integrals are given by

$$\frac{\cos \left[u\left(1-Y\right)\right]}{\cos \left[u\left(1-Y\right)\right]}du = -1 \quad \frac{\cos \left[x+Y\right)u}{u}\Big|_{u=u_1}^{u=u_2} - \left(1-Y\right) \int \frac{\sin \left(1-Y\right)du}{u} du$$

$$= -\cos \left[\frac{(x+y)\pi x+\delta}{2\pi x+\delta}\right] + \frac{\cos \left[\frac{(1-y)}{2\pi x+\delta}\right]}{2\pi x+\delta} - \frac{\cos \left[\frac{(1-y)}{2\pi x+\delta}\right]}{2\pi x+\delta} - \frac{\sin \left[\frac{(1-y)}{2\pi$$

and
$$-\frac{\int \cos u (HY) dy}{U^2} = \frac{\cos \left[\frac{2\pi bx}{Hbx} (HY) \right] - \cos \left[\frac{2\pi x/b}{Hbx} (HY) \right]}{2\pi x/b} + \frac{1}{(HY)} \left[\frac{2\pi x/b}{Hb} + \frac{2\pi x/b}{Hb} \right] - \frac{2\pi x/b}{Hb}$$

Using the same substitutions used in arriving at equation (9), equation (7) becomes

$$I_{2} = \frac{1}{2\pi \times (b-1/b)} \int_{1}^{1/2} \frac{2\cos u}{u} \sin u \, du \qquad (13)$$

Using trigonometric formulas equation (13) becomes

$$\overline{J_2} = \frac{1}{2\pi\chi(b-1/b)} \int_{V_1}^{V_2} \left[\frac{g_{10}[u(1+\mu)]du_T}{4} \frac{g_{10}[u(y-\mu)]du_T}{4} \right] du_T$$

Integrating this gives

From equations (11), (12), and (15) equation (8) becomes
$$\binom{2}{4}(\frac{17}{4}) = \frac{1}{2\pi \times 6} \frac{\left[2\pi \times 6(1+\gamma)\right]}{2\pi \times 6} - \cos \frac{\left[2\pi \times 6(1+\gamma)\right]}{2\pi \times 6} - \cos \frac{\left[2\pi \times 6(1+\gamma)\right]}{2\pi \times 6} - \cos \frac{\left[(1+\gamma) \times 2\pi \times 6\right]}{2\pi \times 6} + \cos \frac{\left[(1+\gamma) \times 2\pi \times 6\right]}{2\pi \times 6} + \cos \frac{\left[(1+\gamma) \times 2\pi \times 6\right]}{2\pi \times 6} - 4i \left[(1+\gamma) \times 2\pi \times 6\right] + 4i \left[(1+\gamma) \times 2\pi \times 6\right] - 4i \left[(1+\gamma) \times 2\pi \times 6\right] - 4i \left[(1+\gamma) \times 2\pi \times 6\right] + 4i \left[(1+\gamma) \times 2\pi \times 6\right] - 4i \left[(1+\gamma) \times 2\pi \times 6\right] + 4i \left[(1+\gamma) \times 2\pi \times 6\right] - 4i \left[(1+\gamma) \times 2\pi \times 6\right] + 4i \left[(1+\gamma) \times 6\right] + 4i \left[(1+\gamma) \times 6\right] + 4i \left[(1+\gamma) \times 6\right] +$$

Regrouping terms and using appropriate trigonometric formulas, equation (16) can be rewritten as

$$\frac{2\pi x(15-1)}{2\pi x(15-1)} \left\{ -\frac{1}{2} \frac{\sin 2\pi x b \sin 2\pi x b y}{2\pi x b} \right\}$$

$$+ \frac{2\sin 2\pi x / b \cdot \sin 2\pi x y d}{2\pi x / b} + y \left\{ \text{Li} \left[(1-y) 2\pi x b \right] \right\}$$

$$- \text{Li} \left[(1-y) 2\pi x / b \right] + \text{Li} \left[(1+y) 2\pi x b \right]$$

$$- \text{Li} \left[(1+y) 2\pi x / b \right] \right\}$$

$$- \text{Li} \left[(1+y) 2\pi x / b \right] \right\}$$
(17)

(16)

The expression for $f(d, \tau, b)$ can be regrouped and written as:

$$G(i,T,b) = \frac{1}{2\pi \times (b-1/b)} \int \frac{2\cos 2\pi x/b \cos 2\pi x/b - 2\cos 2\pi x/b \cos 2\pi x/b}{2\pi x/b} = \frac{1}{2\pi x/b} \cos 2\pi x/b \cos 2\pi x/b$$

(18)

(19)

Equations (17) and (18) can be combined to give

$$\frac{P(d, T, b)}{2\pi \times b} = \frac{P(d, T, b)}{2\pi \times b} + \frac{P(d, T, b)}{2\pi \times b} - 2\frac{Cop[2\pi \times b(1-k)]}{2\pi \times b} - 2\pi \times b$$

$$+ 2\frac{Cop[2\pi \times b]}{2\pi \times b} - \frac{2Cop[2\pi \times b]}{2\pi \times b} + 24 \left\{ 2C(2\pi b \times b) - 2C(2\pi x \times b) \right\}$$

$$= 2\pi \times b - 2\pi \times b - 2\pi \times b + 24 \left\{ 2C(2\pi b \times b) - 2C(2\pi x \times b) \right\}$$

COLUMBIA UNIVERSITY
HUDSON LABORATO IES
CONTRACT Non-286(84)

An alternate form of equation (19) is

(20)

EVALUATION OF THE SPATIAL CORRELATION FOR A FREQUENCY BAND AS b APPROACHES UNITY

As a check on the validity of the spatial correlation for a frequency band, b was allowed to approach unity in equation (19). By letting $2\pi x = A$, $2\pi x (1-4) = B$, and $2\pi x = C$ equation (19) becomes

$$P(d,T,b) = \frac{2}{A^{2}(6-16)} \left\{ \begin{array}{ccc} \frac{coo8/b}{b^{-1}} - \frac{coo8/b}{b} + \frac{coo2/b}{b} - \frac{coo2/b}{b^{-1}} \\ + C \left[2icb - 2ic/b \right] - B \left[2i8b - 2i8/b \right] \\ + A \left[2i8b - 2i8/b \right] \end{array} \right.$$

(21)

By expressing the cosine and sine integral in the following series (References (4) and (5))
$$\frac{1}{(2n+2)!} = \frac{1}{(2n+2)!}$$
 (22)

$$\text{Li Z} = \sum_{n=0}^{\infty} \frac{(-1)^n Z^{2n+1}}{(2n+1)!}$$
 (23)

equation (21) becomes

$$A(d,7,6) = \frac{2}{A^{2}(b\cdot 1/b)} \sum_{m=0}^{2d} (-1) \left[\frac{(-1)^{m}}{(2m+2)!} \right] \left[\frac{(-1)^{m}}{(2m+2)!} \right] \left[\frac{(-1)^{m}}{(2m+2)!} \right] \left[\frac{(-1)^{m}}{(2m+1)!} \left[\frac{(-1)^{m}}{(2m+1)!} \right] \right] + A \left[\left[\frac{(-1)^{m}}{(2m+1)!} \left(\frac{(-1)^{m}}{(2m+1)!} \right) \right] \right]$$
(24)

Applying L' Hospital's rule and letting b approach unity

$$P(d,7,6) = \frac{1}{A^{2}} \left\{ \frac{(-1)^{n+1}}{(2n+2)!} \left[\frac{1}{2^{2n+2}} \frac{2n+2}{n} \right] \left[\frac{1}{2^{2n+1}} \right] + \frac{(-1)^{m+1}}{(2n+2)(2n+1)!} \left[\frac{1}{2^{2n+2}} \frac{2n+2}{n} \right] + \frac{(-1)^{n}}{(2n+1)!} \left[\frac{1}{2^{2n+2}} \frac{2n+2}{n} \right] + \frac{(-1)^{n}}{(2n+1)!} \left[\frac{1}{2^{2n+2}} \frac{2n+1}{n} \right] + \frac{(-1)^{n}}{(2n+2)!} \left[\frac{1}{2^{2n+2}} \frac{2n+1}{n} \right] + \frac{(-1)^$$

(25)

USL Tech. 1000 913-136-65

which can be rewritten as

Substituting the appropriate values of A, B, and C equation (26) becomes

$$P(d, 7, 6) = \frac{2}{(2\pi x)^2} \left\{ \cos \left[2\pi x (1-x) \right] - \cos \left[2\pi x y \right] \right\}$$

$$+ \frac{2}{2\pi x} \left\{ \sin \left[2\pi x (1-y) \right] \right\}$$
(21)

Equation (27) can be written in the form

$$P(d, 7, 6) = 2 \left\{ \frac{\cos(6d - \omega_1)}{(6d)^2} - \frac{\cos\omega\tau}{(6d)^2} + \frac{\sin(6d - \omega_1)}{6d} \right\}$$
(28)

Using the proper trigonometric formulas, equation (28) becomes

$$P(d,T,b) = 2 \left[\frac{\cos 8d-1}{(8d)^2} + \frac{\sinh d}{8d} \right] \cos \omega T$$

$$+ 2 \left[\frac{\sinh 6d}{(8d)^2} - \frac{\cosh d}{8d} \right] \sin \omega T$$

(29)

Equation (29) is the desired result. Thus, equation (19) has been verified by letting b approach unity with the expected result of obtaining equation (1) again.

R. L. SHAFFER
Research Physicist

GLOSSARY OF TERMS

- is the angle between the line connecting the receiver and noise source and the vertical line passing through the center of the circular area of noise sources
- d is the distance between receivers
- T is the electrical time delay
 - = 2\pi / wavenumber
- > = c/f wavelength
- $w = 2\pi f$ angular frequency
- c is velocity of sound
- b = 15/5,
- x = d/24
- $\lambda_g = c/V_{x,yz}$ geometric wavelength
 - 4 = T/ d/c
 - Is geometric mean frequency of flat bandwidth 5, to 5.
 - $Si(x) = \int_{0}^{x} \frac{du}{u} du = sine integral$

REFERENCES

- 1. B. F. Cron, B. C. Hassell and F. J. Keltonic, "Comparison of Theoretical and Experimental Values of Spatial Correlation," Journal of Acoustic Society of America, 37, 523-529 (1965)
- 2. Private discussion with Mr. B. F. Cron.
- 3. B. F. Cron and C. H. Sherman, "Spatial Correlation of Noise," Erratum Submitted to Journal of Acoustic Society of America
- 4. M. Abramowitz and I. Stegrum, "Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables," page 232, National Bureau of Standards Applied Mathematics Series 55 (1964)
- 5. R. V. Churchill, "Introduction to Complex Variables and Applications," page 100, McGraw-Hill Book Company, Inc. (1948)

DISTRIBUTION LIST

Code 100 Code 101 Code 900 Code 900A Code 900B Code 902 Code 984.2 (5) Code 905.1 Code 906A Code 906.1 Code 906.2 **Code** 907 Code 907.5 Code 910 Code 911.1 Code 911.2 Code 911.3 Code 911.4 Code 912

RETURN TO LIBRARY