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PREFACE

Flight vehicle parameter analysis and synthesis requires---indeed,
demands---most effective vehicle parameter dtermination techniques for
many reasons including vehicle parameter confirmation. This report pre-

sents some of the most powerful results developed to date.
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SECTION 1

INTRODUCTION

The experimental determination of the numerical values of param-
eters in an otherwise completely known mathematical model of a system
based on measurements of quantities which are functions of the param-
eters is generally known as parameter identification. When the
measurements are subject to random inaccuracies (noise), the identifi-
cation problem can no longer be trivial. Parameter identification
using noisy measurements is the problem of estimating a parameter 6,
whose true value is °o' from a sample (¥;,...,x,) assumed to have been
drawn from a population having a distribution function of specified
functional form F(x;6) but where 6 is unknown and 6,6, €©, the set
of admissible values of 0.

The identification problem arises in the development of mathemat-
ical models of systems. Frequently, physical laws or established
empirical relationships exist from which the functional form of the
model can be determined. However, physical, engineering, or economic
limitations cu\ prevent the direct measurement of certain aspects of
the sy-t; required to completely satisfy the model.

B;cause 60 mathematical model is a common tool for analysis in
many fielfll, the identification problem is similarly widespread.
Specific examples occur in economics, biology, geology and engineering.
The need foiidontiﬂcation in engineering often comes about as part
of a larger problem - optimum or adaptive automatic control of systems
subject to stringent performance requirements. This situation can be
found in such areas as industrial process control and control of high
performance aircraft and aerospace vehicles.

1
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The characteristic of identification in automatic control applica-

tions that tends to make it distinct from those in other areas is the
relatively short tiws inlwhich the identification must be accomplished
to be useful. The identification problem generally takes the form of
completing the description of the relationships between the input
states of the plant and its output states. The parameters tc be
identified usually are the coefficients of equations (difference,
differential, or partial differential) of the plant model taken as
linear with constant or slowly varying coefficients. Noisy output
measurements are assumed, but because inputs to the plant can often be
generated with considerably less uncertainty than exists in the
measurement of the output states, input signals frequently are taken as
known. The identification is carried out with normal operating input
or with no more than minor perturbations to the input. (If no restvic-
tions on input exist, then conceivably the identification problem could
be made trivial by adjusting the input so that the output signal swamps
the measurement noise.)

The number of techniques available for identification of param-
eters is large. Among the various possibilities that are statistical
in nature, maximum likelihood is often considered as a standard of
comparison largely because of the desirable large sample properties it
typically has. To use this method sufficient information must be 4
available to determine the functional form of the distribution of the

measurements. Considering the joint probability distribution of the

measurements as a function of the unknown parameter 6, the maximum
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likelihood estimate of 6 is that value of 6 € ® for which the function

is a maximum. The estimate is usually found by seeking the roots of
the derivative of that function (known as the likelihood function).

The literature on identification in control systems is fairly
extensive, but only a relatively small portion is devoted to maximum
likelihood estimation (probably, because of the fact that with the
exception of certain special cases, the evaluation of the estimate
can be a difficult numerical problem). One important aspect in the
application of maximum likelihood estimation to the identification of
parameters in dynamic systems about which there appears to be little
written is the effect that various levels of information on the initial
conditions of the system have on the form, properties, and ease of
solution of the estimator. The primary purpose of this study is to
investigate these effects. The basic model used was a linear constant
coefficient difference equation plant whose output measurements were
corrupted with additive gaussian noise.

Chapter 2 discusses in considerable depth the identification
problem as it arises in modeling dynamic systems and presents an
extended review of the pertinent literature.

In Chapter 3 the maximum likelihood estimators are developed for
the basic model under each of three assumptions on the nature of the
initial condition - known, unknown parameter, and unknown random
variable with known gaussian distribution. A fourth situation
involving correlated noise and based on an equivalent form of the basic
model is also treated. It represents an extension of a much earlier

work and treats the initial measurement as a known deterministic

initial condition.




The estimators are given in the form of likelihood functions for
scalar and, with one exception, for matrix parameters in the case
E i without plant noise and for only scalar parameters with plant noise.
Because the likelihood equations grow in complexity with the number of
measurements, the question of existence of minimal sufficient statis-
tics which would overcome this problem was examined.
In Chapter 4 an analytical investigation of the properties of the

estimators of Chapter 3 is made. The characteristics of the roots of

the likelihood equations and the number of stable roots for finite
samples are investigated. Large sample properties of the estimates
are established. Averaging approximations to the maximum likelihood
estimate are proposed. Their finite sample and large sample properties
are also discussed.

In Chapter 5 the numerical aspects of the estimators developed
in Chapter 3 are treated. Results for evolution of the estimates as
the number of samples increases, examples of the functional behavior
of the derivatives of the joint distributions of the measurements and
histograms for root distribution based on Monte Carlo simulations are

given. Numerical evaluation of the roots of the likelihood equation

and a recursive curve fitting approximation are considered. The

averaging approximation and the curve fitting approximation are simu-

lated and compared to maximum likelihood and least squares.

sistadad atdan o LR L ol

In Chapter 6 the summary of results and conclusions are presented.
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SECTEON II
BACKGROUND

Systems identification is concerned with the experimental deter-
mination of a mathematical model to characterize a system through the
use of measured input-output data. Frequently, this problem appears
in a form where the only unknown aspects are the numerical values of
various parameters in an otherwise completely defined mathematical
model. This situation is referred to as parameter identification (or
parameter estimation).

Early methods of parameter identification in control systems
tended to be ad hoc in nature. Later, the already highly developed
identification techniques in statistics, and in particular, maximum
likelihood estimation, were adapted to applications in control systems
problems. Thus, a complete view of the development of parameter
estimation in control systems requires an appreciation for the relevant

contributions in the field of statistics as well as in control systems.

2.1 PARAMETER IDENTIFICATION IN CLASSICAL STATISTICS
The problem of parameter estimation in classical statistics deals
with obtaining a best estimate, in some statistical sense, of a
parameter vector 6 on the basis of measurements y; which are in error.
In general, the model takes the form:
y; = £3(0) + ¢4 (2.1)
(The term "regression" is usually reserved for estimation with this

model.)




2.1.1 MODEL DEVELOPMENT

The basic thread that runs through the branch of statistics that
moved to the point where it had essentially direct application in
control systems was the development of models of stochastic systems,
especially in time series analysis. According to Parzen [1961] and
Wold [1954), a series of advances in the modeling of stochastic systems
was made starting in the 1920's. Yule in 1927 developed the scheme of
linear autoregression by modeling observations x, as linear combina-

tions of previous observations plus noise, i.e.,

Xe = a)Xp_) *ooee ApXep + &g (z.2)

where m is the order of the autoregressive scheme and the sequence {et}
consists of independent identjically distributed random variables. Also
in 1927, Slutsky introduced the notion of a moving average scheme in
which observations X, are assumed to be generated by a shifting linear
combination of members of an independent identically distributed
sequence of random variables {n;}, i.e,,

Xe = agNe + ajNg-g + *** + apNep (2.3)

The theory of discrete, random, stationary processes emerges with
the work of Kintchine during 1932-1934. Wold in 1938 combines the work
of the above to show that moving average schemes and autoregressive
schemes are special cases in the theory of stationary random processes.
Finally, combining moving average and autoregression schemes yields a
model that is closely related to the modern linear stochastic control
theory model:

Xj4] = A%y + Buy + Wy

S YA NS SRR
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y; = Hx; + ny (2.4)

where the measurements are y;, and the {nj} and {w;} are noise se-

quences.

2.1.2 CLASSICAL METHODS OF PARAMETER IDENTIFICATION
A number of statistical schemes for identification exist. Intu-
itively, a generally desirable property of an estimator § compared to
any other estimator ® would be minimum mean square error in an
admissible set,
E(8-0)2 < E(6-0)2 (2.5)
or minimum variance if 6 and & are unbiased,

v(8) < v(8) (2.6)
where E is the expectation operator and V is the variance operator.
Frequently, identification problems in control systems are approached
by directly seeking a scheme with one of the above properties. In most
of the remaining cases where statistical estimates are sought, one of
the classical statistical methods is chosen. The three most popular
methods appear to be Gauss-Markov, maximum likelihood, and Bayes.

The Gauss-Markov estimation technique applies to the linear model,

y=H0 + e (2.7)

where the expectation E(e) = 0, E(ee”) = R>0, and ¥ is assumed to have
maximal rank. Minimization of the cost function,

c = e"R7le

leads to the Gauss-Markov estimate, (2.8)

8 = (a"R"1H)-1H"R™1y (2.9)

1f R = 0%I, 02 a scalar constant, then § is known as the least squares

estimate. The Gauss-Markov estimate is the minimum variance unbiased

linear estimate (Rao (1965)).




Note that the Gauss-Markov estimate requires knowledge of the first

two moments of the probability distribution of the error e.

A least
squares estimate by virtue of its definition can be used with no

second moment information. The term "least squares" is often used to

describe more general minimum mean square error estimations than its
strict definition would encompass.

An interesting bit of history is related to the development of the
method of maximum likelihood estimation.

Undoubtedly, the earliest
major milestone in parameter estimation occurs in the works of Gauss

where he places the method of least squares on a rather firm foundation.
Curiously enough, Gauss apparently used the principle of maximum like-

lihood to accomplish this but later rejected the principle as a meaning-
ful approach to estimation in its own right. Edgeworth [1908] in a
translation of a letter from Gauss to Bessel in 1839 reveals Gauss
stating,

...That the metaphysic ani)'loyed in my Theoria Motus Corp. Coel.

to justify the method of least squares has been subsequently
allowed by me to drop has chiefly occurred for a reason that I
have myself not mentioned publicly. The fact is, I cannot but
think it in every way less important to ascertain that value of an
unknown magnitude the probability of which is greatest-which

probability is nevertheless infinitely small-rather than that
value by employing which we render the Expectation of detriment
a minimumees.""

However, this stigma on maximum likelihood estimation was finally over-
came in 1922 by Fisher (Berkson [1956]).
The method of maximum likelihood estimation requires that the

probability density of the error (or noise) be known at least within

some constants, e.g., mean or variance.

Using the equations of the
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model and the distribution of the noise, the likelihood function L
can in principle be determined where

L= p(ygese*,9n8) (2.10)
For a given set of measurements Yye***e¥pe the value of the unknown
parameters 8 which maximiges L is the maximum likelihood estimate of 6.

According to Rao [1965], [1952], and Finney [1968), maximum likeli-
hood (ML) estimates, §L, have several desirable properties under a wide
variety of situations. Among them are:

1. The ML estimate is consistent, 55& 6 or GL-‘-'-'& 0.

2. The ML estimate is asymptotically efficient, i.e., among

consistent estimators it has minimum variance in the limit.

3. For large samples, the distribution of 8 L becomes normal.

4. If L possesses a sufficient estimator for 6, then SL is

sufficient.

Berkson [1956] points out that the nice properties of ML estimates
occur in the limit. This asymptotic information is not necessarily
useful in any practical situation. Except in those special cases where
the least squares estimate and ML estimate are identical, e.g., with
normal distributions, little has been said about finite sample proper-
ties of ML estimates.

For Bayesian estimation, some a priori information on the proba-
bility densities of the parameters 0 in addition to the noise densities
is required. The a posteriori density p(6/y) is found from Bayes' Rule,

p(8/y) = p(y/8)p(8)/p(y) (d.11)
Various types of estimates can be obtained from this density (Ho and

Lee(1964) and Stear [1970]). The minimum variance unbiased estimate

i b e i




of 6 is the conditional mean of p(6/y). Often this is difficult to

find, and instead the mode of p(6/y) is used as an estimate of 6. The

latter estimate is sometimes known as a posteriori maximum likelihood.

2.1.3 MAXIMUM LIKELIHOOD ESTIMATION OF PARAMETERS IN DIFFERENCE
EQUATIONS

Prior to the development of modern control theory, i.e., prior to
about 1960, the literature contains relatively few examples of general
applications of maximum likelihood estimation for identification of
parameters in difference equations. Two of the better known and more
significant contributions are briefly reviewed below.

Koopmans [1937] in a monograph on linear regression investigates
maximum likelihood estimation of regression coefficients. In state
variable notation, the model in his more general case is of the form:

Xjp1 = Ax; +u; 1= 0,1,000,N
A BB (2.12)
where the {n 1} is a sequence of zero mean independent normal random
vectors with covariance R,
R = o2 [r; j]
and where, u;" = (0,°++,0,c) (c = scalar constant)

and A is a companion matrix, i.e.,

Using maximum 1ikelihood he estimates 02, ¢, x;, and a. (An explicit

expression for the estimate of a generally cannot be given because to

10
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find the estimate an eigenvalue problem must be solved.) 1In addition,

he looks into the asymptotic properties of the estimates and the sig-
nificance of R being singular.
Mann and Wald [1943] treat a related problem. Their model in the

scalar case has the form:

Xp ™ GXp_] + GXg_2 +°°°+ QpXep + Qg + €t

Ve = X, (2.13)
where the regression equation is assumed to be stable and the {¢ .} are
independent normally distributed random variables with zero mean and
variance 02. The maximum likelihood estimates of al.-",ap,ao.oz are
shown to be the solution of a set of linear algebraic equations. They
prove the estimates are consistent and asymptotically normal.

The second half of the paper deals with the more general case of

several equations in several variables, i.e.,

r py
E S R By R S Al (2.14)

or in state variable form with A ij an n x n coampanion matrix and

assuming the matrix [ %i,5,0 ] is non-singular

Xi+1,5 = g Ajikix * 8; + 8547,5 J=1.2,0000r (2.15)
where:

‘j' - (ol...ialaj)l eij' - (0("',0'Ejj)' n = ?; p-ij

A development similar to the scalar case, but considerably more complex,

is given for this case.




2.2 PARAMETER IDENTIFICATION IN CONTROL SYSTEMS

Parameter identification in the terminology of stochastic control
systems generally refers to the estimation of the parameters p in the
otherwise known functional relations (or their discrete equivalent):

x = g(x,u(t),p,E(t) ,t)

y = h(x,p,t) + n(t) (2.16)
where n and £ are unknown random variables and u, t, and the measure-
ment y are known. In the linear case, a typical form would be:

X =Ax + Bu + £

y=Hx + n (2.17)
where the elements of p would be the elements of the matrix A and, in
addition, could include the elements of B and H.

Occasionally, the parameter vector p also includes unknown
parameters in the description of the processes n and £. State estima-
tion, estimating x(t), is in a sense also identification but is treated
as a separate problem in control systems except in those situations
where identification is most efficiently achieved when carried out
jointly with state estimation.

The literature on identification in control systems has been quite
extensive and varied. Significant numbers of publications began to
appear in the middle and late 1950's and have continued to the present.
The early applications naturally tended to be ad hoc in approaches and
typically were concerned with estimating the impulse response of linear
systems. By the early 1960's, approaches employing more powerful
statistical techniques were appearing with greater frequency. Within

a few years, most of the applicable tools of the statistician seem to

Have been borrowed by the controls engineer.
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Before launching into a review of the literature one would hope to
be able to identify categories into which to group the many contribu-
tions. There seems to be no satisfactory way to do this. However,
for this discussion two major groupings serve as a guide - those
methods which are based on least squares or minimum square error
criterion and those which are statistical in nature. Within these
classifications, the literature can be grouped by specific techniques.
There are other characteristics which could be used such as (1) the
model type - linear or nonlinear, continuous or discrete, single or
multiple input/output, constant coefficient or time varying or (2) the
quantity being identified - difference or differential equation
coefficients, Laplace or Z-transform coefficients, or the entire
impulse response or (3) restrictions such as real time estimation or

use of only normal operating input.

2.2.1 MINIMUM SQUARE ERROR METHODS

Among the popular early methods and ones which continue to receive
attention are numerical deconvolution and related impulse response
approximation methods. These techniques are not truly parameter
identification methods in the sense of the definition given earlier.
Their objective is to determine some best values for undetermined
parameters in combinations of functions which are intended to approxi-
mate the input/output characteristics of the actual system. (In
numerical deconvolution these parameters are discrete time values of

the impulse response.)

13




In this regard Zabusky (1956) works with the convolution equation

of a linear continuous system
x(t) = Io h(t)u(t-t)dr (2.18)

and seeks the value of the system's impulse response h(t) at discrete
points in time. He approximates the impulse response by products of
exponentials and polynomials with undetermined parameters. The

parameters are fixed by minimizing € where

€ -L [x(t) - xo(t)]2dt (2.19)

and x,(t) is the output of the approximate model. The two systems are
subject to identical inputs.

Goodman and Reswick [1956] perform a similar investigation but use
delay lines and recognizing the noise problems with convolution equa~-

tions, base the deconvolution on the correlation equation

t
(2.20)
¢xu- Lb(t-r)‘uul‘r)dr

Goodman [1957) extends his previous year's work to multiple input/out-
put systems. Taylor series is used with the convolution integral by
Braun [1959]). Orthogonal filters are used by Elkind, et al. [1963],
Eykhoff [1963], and Kekre and Glenski [1968] but with different
approaches.

The model reference technique is similar to those already dis-
cussed except that this method is used when the true system transfer
function is known but for some or all the coefficients. Again, the
system and the model are driven by the same input. The free parameters
in the model are adjusted to minimize some measure of the differences

in their outputs, generally the integral of the squares of the difference

14




Probably the most frequently referenced paper in this area is the
one by Margolis and Leondes [1959]. They use the integral of the
square of the output error and its derivatives as their cost function

and by a gradient method drive the coefficients in the model to

minimize the cost. Surber [1963]) presents a relatively comprehensive
investigation of the model reference method. Hsia and Vimolvanich
[1969] apply the technique to the tracking of variable parameters in a

linear control system. They adjust the model parameters by differen-

tial equations and explicitly account for measurement noise.

There is another group of methods that is perhaps best described
as least squares methods. Included here is Turin [1957] who estimates
the impulse response of a system by designing a filter whose input is
the output of the system and whose output is the estimate. The design
criterion is the integral of the square of the difference between the
true and estimated responses. (Techniques like that of Turin which
give continuous real time estimation of an unkno&n impulse response
often are referred to as "matched-filter identification" (Gibson
[1963]).) King [1967] proposes an off-line gradient solution to the
problem of identifying system parameters subject to the cost function,
the integral of the square of the difference in true and meacured
output. A similar situation but with a discrete model is treated by
Aoki [1967a) where, in addition, the feasibility of estimating only part
of the A matrix when the A matrix contains some known elements is
considered. Dolbin (1969] also deals with the discrete control prob-

lem but has unknown parameters in A, B, and H matrices. He develops a

gradient type solution, {




The equation error model approach, Figure 2-la, refers to the
least squares regression problem where the system is represented by a

difference equation

Xyt ax, , teot apxi_p = bl"i-l toooy bpui-p (2.21)
and the coefficients a., bk are found by introducing measured ‘as
opposed to true) input-output data into the equation and minimizing the
resulting error. By contrast, the model-plant error approach, Figure
2-1b, seeks to minimize the difference in measured plant output and

model output for the same input through adjustment of a, and b,.

. e ¥ plant Y
Sy 0 S .y B
[ wez) D(2) E7¢7)
Dl2)
€; &
a. equation error b. model~plant error
Figure 2-1

The equation error model problem led to a series of papers.
Kalman ([1958] treated the equation error problem without noise. He
sought the coefficients in N and D, both of which are polynomials in Z,
in order to minimize the sum of €;2. (See Figure 2-1.) This was
accomplished by Gauss-Siedel iteration on a set of equations involving
weighted correlation functions. Later, Steiglitz and McBride [1965)
solve the model-plant error problem by repeated application of the
equation error method and prefiltering. Lion [1967] improves on

Steiglitz and McBride by introducing filters prior to N(2) and D(2)
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in the equation error scheme and uses a gradient on €2 to derive the
polynomial coefficients. (A special version of this solution was
given earlier by Weygandt and Puri [1961].) The Steiglitz and McBride
solution was improved upon by Schultz [1968) by applying quasilinear-
ization to the model-plant error case.

Lendaris [1962] and Weygandt and Puri [1966] present 1 atively
complex methods for finding the coefficients of the plant's transfer
function by using Z-transforms. Solutions of sets of algebraic
equations and roots of polynomials are required to do this. Because
a differencing scheme on the system output is used in this method, the
estimates are likely to be sensitive to noise. Neither of the
approaches incorporate any smoothing, but they could be extended to do
so. Hoppe [1965] has a related method but incorporates integration

for smoothing.

2.2.2 STATISTICALLY ORIENTED METHODS

Cross-correlation and cross-spectral mathods can be used to
determine the impulse response of linear time invariant systems. By
observing system input and output and forming auto- and cross-correla-
tions, the system impulse response can be found from the correlation
equation (2.20) assuming all stochastic aspects are stationary and
independent. Goodman and Reswick [1956] and Goodman [1957] have
already been mentioned as early examples. Later, Levin [1960] demon-
strates that a relation exists between optimal least squares estimates
of the impulse response and correlation methods, citing the Weiner Hopf
equation as the link. He also develops a finite numerical deconvolu-

tion scheme which uses a discrete version of the correlation equation

17




and sample auto- and cross-correlations to yield a least squares multi-
point fit to the system impulse response. The effect on optimality

of the estimates when short operating records are used is investigated
by Kerr [1961]. A comprehensive discussion on correlation techniques
may be found in Akaike [1967].

The instrumental variable techniques are useful with linear
regression problems (equation error models) in the determination of
least squares estimates of the regression coefficients. The instrumen-
tal variables Z are defined as an additional set of observations with

the following correlation properties (Goldberger [1964]),

plim § Z,"Vy(e) = 0 (2.22)
N->co
N

The instrumental variable estimate aN of the vector g of unknown

autoregression coefficients is defined as (Wong and Polak [1967]):

where: g" = (al,...,ap)
ZN = appropriately dimensioned matrix
of instrumental variables
Vn(x) = (X3+¢--s%p)

e’ * gerrs 1 Xgyper)

upv = (upl"OluN+p_1)
Yyj = x4 + ey

a'Xy = Uyyr-]

The main advantage of instrumental variables is that they always yield




consistent estimates. Reiersol [1941] is generally credited with being

first to use the method. A detailed description of the method can be

found in Sargan [1958], and an informative summary is given by
Goldberger [1964).

Joseph, et al. [1961] use the input to their linear discrete
system as the instrumental variable when applying correlation tech-
niques to establish an unbjiased estimator of the Z-transform of the
system's plant. Wong and Polak discuss the application of the
instrumental variables to estimation of coefficients of a linear auto-
regression with noisy state measurements, the properties of instrumen-
tal variables, and some computationally efficient approximations.

Since some freedom exists in the choice of the instrumental variable,
Wong and Polak explore the existence of optimal sequences of these
variables.

An approach to parameter estimation that commonly occurs is to
augment the system state vector with the unknown parameter vector p
by introducing additional state equations to describe the dynamics of
the parameters. These equations typically have the form,

b =qap + B (2.25)
where B is either a deterministic or a random variable but often both 5
a and 8 are zero.

This formulation even with a linear system leads to a nonlinear
arrangement when augmented because some of the terms in the system
equations by definition become products of state variables. In this

situation the usual approach is to estimate simultaneously the original

state variables and the parameters. State vector estimation with a
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nonlinear model is known as nonlinear filtering and typically requires
solution of multipoint boundary value problems to determine the
estimates.

A relatively early work in nonlinear filtering that appears to
have become a basic reference for much of the work in the area is
Bryson and Frazier {1962]. The model used is basically the general
nonlinear one, Equation (2.16), given earlier. The objective is to find
the minimizing state variable function x(t) (which for the identifica-
tion problem would have included the parameters p(t)) for the cost
function J, where,

t

T, = 30e(t)w) Ry T ix(t)u) + -j-s (B'RIE+iT0T A" (2.26)
tO
subject to the constraints :
X - g(x,u(t),t,E) =0 @ 27)

h(y,x,n) =0

and where y = B(x(to)), E = E-E(E), and n = n~E(n).
The minimizing x(t).il found by the method of steepest descent.

Although Bryson and Frazier did not explicitly concern themselves
with parameter estimation, their formulation could have incorporated
that task. 1In fact, most nonlinear estimation schemes could handle
parameter estimation. However, for the most part, no papers were
selected for the following discussion which did not mention at least
some connection with identification. The schemes presented divide
into two groups - those that are patterned directly after Bryson and
Frazier but use some other modern control theory solution technique

and those that depart along the way by linearizing. These papers serve
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to illustrate the variety of ways the nonlinear filtering problem can
be attacked.

A number of solutions of the first category use quasilinearization
instead of ateepest descent. Kumar and Sridhar [1964]) having measure-
ments at a number of discrete points solve the estimation problem as
a multipoint boundary value problem using 5 = 0. Lavi and Strauss
(1965] show that if the total number of measurements (boundary points)
does not exceed the total number of free variables, the solution may
not be unique. They use excess measurements and perform a least
squares solution as do Kumar [1965] and Lee ([1968a].

Detchmendy and Shridhar [1965], on the other hand, treat the prob-
lem with noise on input and output by deriving the Hamiltonian, the
canonical equations, and then solving by invariant imbedding. Lee
(1968b]) derives a least squares version of Detchmendy and Shridhar's
solution and applies it to a chemical reactor problem. Cox (1964]
gives a Bayesian approach with a dynamic programming solution; and a
Hamilton-Jacobi route is used by Mortensen (1968).

As a result of the work of Kalman [1960), [1961] which led to the
computationally desirable recursive linear state estimation equations,
and the expanding role of digital computers, aspirations for Kalman
type solution to the nonlinear filtering problem were heightened.
However, generally this Kalman filter characteristic can be achieved
only by linearizing the nonlinear problems about some nominal (except
in very special cases, Farison [1967)). Examples of recursive

solutions by linearization are Xopp and Orford (1963] and Budin (1969).
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The method known as stochastic approximation is one which has

considerable appeal from a computational point of view because of its
recursive nature. It resembles the recursive linearized solution to
the nonlinear filtering problem in that it too represents a linear-
ization and the gain (or relaxation factor) generally depends on the
error covariance. It differs by computing only the unknown parameters
and not the entire augmented state vector. The recursion eqguation : |
has the general form (Balakrishnan and Peterka [1969)),

81 = &y + PTa0(8y) £2-38)
where py is a predetermined relaxation factor and Q(.) is the equation
error at the Nth stage with a taken as ‘N' The basis for convergence
of this technique rests heavily upon the proofs in Dvoretsky [1956).

Ho and Whalen [1963) and Ho and Lee [1965] develop stochastic
approximation solutions for the linear discrete model and show con-
vergence of their estimates. Sakrison {(1967] treats the continuous
time problem with the equation error type model and develops an
algorithm for identifying system Laplace transform coefficients.

Saridis and Stein [1968) extend the work of Ho and Lee.

In spite of convergence claims of the above and others,
Balakrishnan and Peterka state that this method has fallen short of
expectations apparently with slow convergence being a major difficulty.
Albert and Gardner [1967] give a comprehensive discussion of stochas-
tic approximation.

When appropriate statistics on the parameters to be identified
are available, Bayesian estimation techniques can be used. Unfortu-

nately, using this additional information tends to result in estimators ]

of greater complexity than found by other methods that require less
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information. Examples of Bayesian identification can be found in
Sawaragi and Katayama (1967], Aoki [1967), and Kroy and Stubberud
(1967].

In the situation where noise statistics are available, maximum
likelihood methods may be employed. (For ML estimates of the usual
a priori type, parameter statistics are not used.) Frequent claims
are made in the literature that particular solutions are maximum
likelihood o_ltinatu. Often these are least squares estimates made
in a situation where maximum likelihood gives an identical estimate,
e.g., with gaussian noise. The papers described below are not members
of that category.

The problem of Koopmans (1937] is adapted to control systems by
Levin [1964]. The model used was a discrete single-input, single-
output equation error type with input and output measurement noise.

To achieve independence among the measurements as in Koopmans, Levin
has to stack his measurements. This means that parameter estimates

can be updated only after each new stack has been accumulated. However,
using the stacked measurements he arrives at the eigenvalue problem of
Koopmans. The estimate is shown to correspond to a least square
hyperplane fit to the data. Properties of the estimates and estimation
with overlapping stacks of measurements are discussed,

Astrom and Bolin [1965] estimate the coefficients in the shift
operators a, b, ¢, and the scalar A in the system Z transfer function

at(z"l)y(t) = b" (27N )x(t) + Ae"(z7))e(t) €2.29)
where a(Z) =1 + a;% + ... + a,,l". etc.

and the {e(t)} is a sequence of normal independent
random variables
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To maximize the likelihood function so that the estimates can be found,
a Newton-Raphson algorithm was developed which made use of symmetry
among the partials in order to reduce the number of computations.
Astrom [1967] applies this solution to the control of a paper-making
machine.

Smith and Hilton [1965] review the characteristics of the least

squares solution of the error equation model and Levin's generalized
least squares eigenvector solution. In 1967 they presented the results
of a numerical comparison of the two methods. They found that the
bias magnitudes of the least squares estimates generally were greater
than those of the eigenvector method, but their standard deviations
were smaller. Also, using overlapping vectors in the eigenvector
method substantially reduced the variance of the estimates.

Rogers and Steiglitz [1967) approach identification in the model-

error formulation by passing the output error through a whitening

filter whose coefficients are estimated along with those in the model.

An approximate Newton-Raphson algorithm is implemented to find the

estimates.

Smith [1968] explores the problems of recovering the Laplace : ]
transform of the system transfer function after forming a sample data % Q
estimate using Levin's eigenvector method. Mayne [1966]) presents f {

various on-line algorithms for particular regression problems but ' 3
finds that in the more general case, the method of Astrom and Bohlin
performs best. Kashyap [1970] extends the work of Astrom and Bohlin to :

include vector state and input variables but without the moving average

input. The model includes correlated plant noise and uncorrelated
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output measurement noise. He develops algorithms for estimates of the

system coefficients as well as the plant noise correlation matrices.

2.3 IDENTIFIABILITY

The problem of under what conditions can a meaningful estimate
of a parameter be obtained as well as the whole question of input
selection clearly are of interest when developing parameter identifica-
tion techniques. 1Identifiability refers to the ability to excite all
the modes of a system and being able to observe the results of the
excitation. Input selection deals with input signal design to best
facilitate identification. (If the identification scheme is restricted
to the use of normal operating inputs, then optimal input selection
is not of any direct interest.) Astrom and Bohlin [1965], Currie
[1968] , and staley [1968] pursue identifiability. Turin [1957],

Gagliardi [1967], and Staley deal with input selection.
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SECTION III
THE LINELINOOD BOUATIONS

3.1 INTRODUCTION

The mathimatical development of a maximum likelihood estimator
for the identification of unknown parameters in the mathematical model
of a system can be viewed as a three step operation once the model is
ccmpletely defined (except for the unknown parameters) . Employing the
usual terminology, e.g., see Crambr [1966]), first the likelihood
function L must be determined. The likelihood function is the density
function of the measurements considered as a function of the unknown
parameter. It can be viewed as a family of probability density
functions p(y,0) on the samples (or measurements) Viseeeslp Of the
system output indexed by the unknown parameter vector @ which lies in
scme set @.

In most of the literature on maximum likelihood estimation, the
samples are assumed to be independent and identically distributed
resulting in;

L= p(Ygeeeesin1®) = p(y310)p(y218) . .p(ypns8) (3.1
However, in the following discussions not all these conditions are
present, and less restrictive definitions will be required. For
independent but not identically distributed samples:

L = py(y;10)p3(93/8) « . -Pp(yps®) 3
and for samples which are neither independent nor identically
distributed:

L= ply1.¥2see+sYn?0) (3.3)

The unknown parameters 0 in all but one of the cases to be
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considered are either the scalar or matrix coefficients of the differ-
ence equations in the models investigated. 1In that exception, 6
includes the initial conditions as well as the coefficients, but
explicit estimation of the initial conditions can be eliminated from
the estimator.

The second step is to find the necessary condition for the
maximization of the likelihood function over 6 for a set of measure- ?
ments y;,...,Y,.- The necessary condition is known as the likelihood

equation when defined as:

-"—;—gS-é- 0 (3.4)

Of course, the logarithm and the ‘derivative must exist, and the
maximizing 6 € ® must not be a boundary point of the set ®. (Because
gaussian densities and 6 €R, the real line, will be assumed, these
conditions will be satisfied.) Unfortunately, when 6 is in fact a
matrix, finding the likelihood equation may not be straightforward if
only matrix operations are used.

As will be shown, the likelihood equations for the situations
treated here can quite naturally be expressed as finite polynomials or,
more precisely, as sums of finite polynomials in the unknown parameters.
The desirability of expressing the necessary conditions in that form
was based on the fact that there exists an extensive body of knowledge
on the properties of roots of palynomials. On the other hand, there
are well-known problems associated with the numerical solution of
roots of polynomials which must be faced.

The third step is the solution of the likelihood equation for the

appropriate roots. Normally, this can only be done numerically.
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Since sufficient conditions for the maximization of the likelihood
function will not be sought, it will be assumed that other means will
be available to determine which real root is the desired one if multiple
real roots exist. (The solution of the equations is the topic of

Chapter 5.)

3.2 PROBLEM STATEMENT
The basic mathematical model used for this study is the usual
linear discrete control system model but without plant noise. This
model can correspond to a local approximation to a more complex
nonlinear system. The measurement noise is treated as additive and
assumed to be white on the basis that in practice its bandwidth is
frequently found to be much wider than that of the plant.
The model is represented as follows:
Plant: x;,; = Ax; + Buj
Measurement: y; = Hx; + n; i=0,1,...,N S
where:

X; = n-dimensional state vector

y; = m-dimensional measurement vector

u; = r-dimensional input vector

n; = m-dimensional measurement noise vector

with n;"T)XO,R), s[ninj'] = Rsij, R>0

A = n x n constant matrix

B =n x r constant matrix

H =m x n constant matrix
The following are known: the dimension of all the quantities, the

matrices B and H, and at time tys the variables u; and y;,
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i=0,1,...,Nc The unknowns are the matrix A and the variables x; and
LI i=0,1,...,N. (The statistical properties of n; are assumed to
be known.) The objective is to estimate A using the output measure-

ment {y;} and the input sequence {u;}. (see Figure 3-1.)

nj uj
uj X A -Xd ML—. ;Li
A
Basic Model
1
Figure 3-1

The matrix A is taken to be general except in certain analyses,
when noted, it is assumed to be stable. The model is assumed to be
observable (in the deterministic sense), i.e., the n x mn matrix
[H',A'H',...,(A')"'IH'] has rank n. Further restrictions such as
canonical forms*, e.g., see Lee[1964], are not considered here.

The type of estimator of A that is sought is one which is based on
maximum likelihood but operates in real time, requires a fixed and
minimal amount of data storage and computation, and can function with

only normal operating input. Separation** of identification from other

* Though going to an equivalent companion matrix system, for example,
reduces the number of parameters to be identified, it is not clear that
attempting to recover the A matrix from an equivalent system will be
any less difficult than directly estimating A. While in some situa-
tions knowledge of the equivalent system might be sufficient, availa-
bility of the A matrix for filtering and control is often required.

** A separation theorem for the filtering aspect of the control problem
does exist, Joseph and Tou [1961], but, apparently, with the exception
of only a few special cases, Horowitz and Grammaticos [1970], one has
not been found for identification, Sawaragi and Katayama [1967].
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aspects, in terms of the total control problem, is assumed to be
allowed.

The nature of the a priori information on the initial condition x,
significantly affects the form of the estimator of A. Three possibil-
ities are examined: x, known, X, unknown parameter, and X, unknown
random variable with known gaussian di:tx;ibution.' A fourth case which
is related to the first two but based on a different approach is also
discussed. In the terminology established in Chapter 2, the first

three cases are similar to the model-plant efror formulation while the

fourth is similar to the equation error formulation.

3.3 THE NECESSARY CONDITION - Xo KNOWN

In this case the initial condition x, is assumed to be known. The
maximum likelihood (ML) estimate corresponds to finding a "best" fit of
the solution of the model equations to the system output measurements.
The likelihood equation for the scalar model will be developed first,
followed by the vector-matrix case.

For the analysis of the scalar problem, notational changes are
made in the model as given in Equation (3.5). The scalar model is
written as:

el T Rt My
Yy = hxi + ny i=0,1,...,N (3.5)
where: n; ~7)(0,02)

Since the n; are gaussian and independent, the distribution of y;
follows directly from (3.6) as:

i
vy '\—‘T)(ha‘ixo + hb 33 ai"kuk_l,oz) i=1,2,...,N 3.7)
k=1

k) §




The maximum likelihood estimate of a, denoted by a, is the one which

maximizes p(y;.,...,yyia) or, equivalently, the one which minimizes:
& i - i-k 2
oy(a) = z (y; - a hx_ - hb E a” Tu ;) (3.8)
i=1
As expected, the estimate will be a form of least squares. It is

independent of the noise variance and the first sample Yo (since x_ is

o
known) .
. doy(a) "
Forming i i = 0 and rearranging terms give the necessary con-
dition as:

N i

N "
%, E id=ly, + b E E (i-j)at=3 Yug_ry;
N g . .
= hxoz E ig2i-1 _ hbxo g E (2i—j)a2""j'luj_1
g 4 ,
s ;; b et S S Ry (3.9)
1= =

where a is the appropriate value of "a" which satisfies (3.9). For the

autonomous case (ui = 0), the necessary condition reduces to:

N N
g ial=ly; - hx, g ia2i-1 = o (3.10)
i= i=

When A is an n x n matrix, the density of Yy is:
3 i 3
y; v T)(HAlxg + H g ai=Jpuj_;,R) 1w 2,200 1D

and the cost function for the maximum likelihood estimate becomes:

N R X 2
Oy (A) = 2; |ly; - HAixy - B E al~TBuj || (3.12)
i= =

Taking differentials at a stationary point gives:
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N 1
AQy (A) = 2 E ((y; - BAdx, - # E ad=Jpu;_;) "R (-H(0A%)x,

i
- & E (8A17K) Buy ;)1 = 0 €3.13)

where

¢ b
AAP = g AP-1(An) aP-T
r=

By rewriting (3.13) as an equation in the traces of matrices and
%‘ using the conmutivity of matrices under the trace operation, an
? equation in the trace of the product of two matrices of the following
form can be derived:

Oy(a) = tx [(D)(AA)] = 0 (3.14)
Since the differential matrix AA is arbitrary, then D equals zero, and

the necessary condition can be expressed as:

- E g Ai-k.pnuk-lxot (AT)iHVR—lmp-l
= p=

L ik 41k ¢ : ,
. g E g a1~K"Ppuy_juyl 8" (A7) I-TwTR- EAPT! = 0 (3.15)
= = P

where A is the appropriate value of A which satisfies (3.15).




If the model were autonomous, i.e., uy £ 0, then (3.15) undergoes

et o

considerable simplification:

g t Ai-pxo (y; - HAlx )"R-1HAP-! = 0 (3.16)
=] p=

(Note that if Xq is zero in the autonomous case, then the root A of

3
i

e

(3.16) is indeterminate.)

3.4 THE NECESSARY CONDITION - X0 UNKNOWN PARAMETER
Now the initial condition x, is taken to be an unknown parameter

of the system in the same sense as the coefficient A. The geometric

e g g A S g AR

interpretation of the ML estimate is basically the same as the x,
known case with the exception that the initial point is free to
participate in the optimization in the present case. As with x, known,
but accounting for the free initial condition, the distribution of the

ith measurement for the scalar model is:
i-1
y; v Thatx, + hb 3o aku;_p_g,0%) i=1,2,0.08 (3.17)
k=0

Yo " 7] (hxg,0%)
Once again, since the measurements are independent and gaussian,
the maximum likelihood estimate is a least squares estimate, i.e.,

minimize:

i
Qn(.'xo) - # (gi - haixo - hb E ai"‘uk_l)z + (Uo - mo)z

(3.18) ‘
4 The necessary conditions on a and x, become:
0N w2 9 (v - halx, - 1-kyy_;) (~hai - hxg) (-
v —_— yj - halx, - hb a x-1) (-hal) + 2(y, = hxp) (=h)
9xo - Je=1
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or:

- g s ”’EE Meduyy1/0 B at)

Fominq a 2 leads to the same condition as obtained with Xo

khm, i.“o'
T g 3
Xo B ia"lyi +D ﬁ ; (1 - j)c"-"‘luj_lyi
- hx 2 ﬁ ia?1-1 - nbxg g g (21 - j)au"j"luj_l
- np? g g ;; (i - k)a?i I "ty ju g =0

(Note that the noise variance does not appear in the necessary
conditions in this case nor when X, is known.)

Introduction of (3.20) into (3.21) gives an expression for the
stationary points of Qy for the parameter a as a function of the

measurements:

N N
{ g 5 E (i - t)a2titi gy gy
Bk
- t 5 E E (¢ - 25 + 21 = Ja2(I*SIHE=I=1y 4, ) b
S= =] =
i }; g g ; (4 = et (0T ay gy,

(3.20)

(3.21)

(3.22)




For the autonomous case, (3.20) reduces to:

%, = g y;al)/(h g a?d) (3.23)

and (3.22), assuming x_ not equal to zero, reduces to:
N

g g (j - p)a2i*dly, =0 (3.24)
For the vector-matrix case only the autonomous version is treated
because it yields considerably simpler equations than the nonautonomous
one yet illustrates all the basic steps required to derive the latter.
The density of the output measurements y; for the autonomous model is:
vi mn(mixo,n) i=0,1,...,;N .(3.25)
and since the {y;} are independent, the cost function for the max imum

likelihood estimate becomes:

N
Oy (Asx,) = H |ly; - Balx,| |2 (3.26)

Taking the differentials of x, at a stationary point of Qy gives:

N
A, [Qy(A,x,)] =2 E (-HAL (Ax,) TR [y; - HAxy] = 0O (3.27)
o
or, tr [ g R"! (y; = mixo) (Axo)'(a')ia'] =0
or, g (ar)ierly; - g (A')ia'a‘lnixo =0 (3.28)
& i i
Let oy & E (a") "R Ha (3.29)

Since all models were assumed to be observable and R~! ig symmetric:

and positive definite, ou‘l exists for N2n. Then ;ou can be expressed
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L -1 iprp-1
x°n - 0" g (AY)*H"R Yy (3.300
Taking differentials of A at a stationary point of o"givu:

N
Bpl0y (Asx,)] = 2 E (-88x")x )R [y, - malx ] =0  (3.31)

1
or tr ( g g R‘llyi - mixo)xo'm')i-P(M)'(A")P‘IH"] =0
=1 p=
N
or E (A7)P-1g7R~1 yix,"” (AT)i-P
=1 p=
- # # (A')P‘lu'a‘lmixoxo'(a')i‘l’ =0 (3.32)
=1 p=.
Introducing (3.30) into (3.32) with x, = X, gives the necessary
N

condition for i as:

1 : -
E g (A')P'l HTR"I vy yj?’R“l IIAjON-l (A-r)i-p
- =0 p=

i
g AT)P- R Hatog! (a)THTR™ y, y, TRV ARG (aT)i7P
p-

™M=
M

(3.33)

3.5 THE NECESSARY CONDITION - DISTRIBUTION OF X, KNOWN

In this section the initial condition X, is assumed to be an
unknown random variable whose density is known. Again the nature of
the oat}mator, roughly speaking, is to seek an a which results in some
best fit of model output to measured output. While this case is
intermediate to the previous two cases with respect to the amount of

information on X, assumed available, the polynomial form of the likeli-
hood equations is substantially more difficult to obtain.
37
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For the scalar case, take X, distributed as:
x, v\.n(go,ez) (3.34)
and x, independent of {n;}. Because the random variables x,, n,, Ny,

***, Ny are independent and gaussian, and their joint distribution is:

p(n*) = (21:)"N'9'2|1'31Ié exp[-g(n* - :?*)’nl"l (n* - x*)] (3.35)

where:
n**

= (XgeNgiNQseeseny)
X*T = (R 00,...,0)
R; = diag(e?,0?,...,0%)
From the scalar model equations (3.6), the output measurements are
seen to be related to the noise and initial conditions as follows:
y = Dn* + hbu* (3.36)
where:
YT = (YgrYpre--oly)
D = [ha} I]
av = B on sses )
ur’ = (O,uo,u1+auo,...,uN_1+...+a~-luo)
I = identity matrix
By applying the theorem on the linear transformation of jointly
gaussian random variables (e.g., see Anderson [1958, p.26]) to (3.35)

with transformation (3.36), the measurement density becomes,

- + o = "
plysa) = (2t) lezl } expl-élly - hxqa - m*||2R al (3.37)
2
where:

= DR,D'
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From (3.35), (3.36), and (3.37):

R, = o?r + hztzee' (3.38)

Rz- (N+ 1) x (N+ 1) matrix.
(Note that the yi are now not independent. Further, (3.37) indicates
that the ML estimate will not be a least squares estimate, nor even a
Gauss-Markov estimate.)

It can be shown (see Appendix A) that

|R2| = (62)¥(02 + h’e2a’a) R
82'1 = i-z[I - (hzez/(hzezg'g + 02))aa’] (3.400
The cost function can now be expressed in the following form:
Oy(a) = o2(1og|R,| + ||y - KX a - hbu*IIZRZ_I) (3.41)
Equivalently, let the likelihood function L be defined as:
L & p(y;a) (3.42)

Since p(y;a) is smooth and greater than zero for. all y and a, and the
logarithm is monotonic, the stationary points of L satisfy:

dlogl ._1|g,|-! _d |r,| + (y - h¥ a - hbu*)"R_~) (hx. 92 4+ pp du*)
da 2' 2 da|?| it 2" "o gs da

4
Ay -nza-nut)r B2 (y - W a - hbut) =0 (3.43)
2 o da O=

Multiplying through (3.43) by [-0"“(0? + h2e2a’a)?] gives:
{02 (02 + hzezg'g)hzezg'g‘ - (y - hk,g - hbu*)"[ (0% + h%e%37a)?r
- (02 + Ke2g7a) (bzezgg’)l(lﬁoga + hbu,*)

+ (y - KX a - hbu*)"[(h*c"a"a,) (aa") - (02 + hPe?3"a) (h%c?) (a,a8")]
(v - hi e - hbu*)} = 0 ' (3.44)
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where:

d d
a = _Sagandu*=_°C y*
& da . a da

Dividing through by bzez, expanding, and regrouping by the various
combinations of inner products results in the following necessary
condition for a:

{102 (0% + n?e2g7a) + n?x,2 ¥o2]a7a,

+ (y'a)[2(a7a,) (hx )o® + (a"u *)hb(c? + He2aa) + (y"a)h®e?(a"a,)

- 2(au*)hbh?e?(a%a ) + (a,Tu*t)hb(0? + hPc%a"a))

+

(y"a,) [ (aTu*)hb(o? + We2a"a) - (y"a) (0? + hPe?g"a) - hX ¥o?

- ozlﬁog’g]

(y7u *)hbh?e? (a%a + ¥)?

+

(a7u*) [(a"u*) (a3, ) WP bPh%e? ~ (a"u *)1W?b?(c? + hPc?a’a)

- 2h% hbo?
2hX_hbo®(ava_)]

+

(au,*) [h% hb(Yo? + 0237a)]

+

(aju*) (hbhx 0% (a"a + ¥) - (a"u*)h?b?(c? + h%c?g"a)]

+

(utrua') [},2b2),2€2(evg + \,)2]} =0 (3._45)

where:
02
¥ =¥
Rewriting the above using summations instead of inner products

allows many of the terms to combine (though the resulting expression

appears less compact and less efficient computationally) :

N N
{16202 + W?%,2¥) + o%h%e?( i[; a?i))¢ i;; ia?i-1)

N N N
+ az,‘o[ E g (2i - j)‘z.i'fj-lgjj - h;oyo2 E 1‘1:-1?1
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N
- hhhlez(\y + H 821)2( g (p - r)‘p-t-lur-lup-l)
= p=l r=

N N N s
o R R R e o
1=0 p=1 r=1 s=
N N S
- ot 3 ﬁ 3 E - ey ey
p=1 r=1 s=
N N
+ [W*DPe2 (¥ + E a2i)2¢ g ﬁ ﬁ (p - s)a?P~T=5"1y._jug_3)}
= p=l1 r=]1 s=

ol (3.46)

For the autonomous case (3.45) reduces to:
{10 (c® + h?e?a”a) + Yo?n?% 2]a"a + 20%h% (a"a,)(y"a)

- [Yo?hR, + o2h% (a%a)](yTa,) + (h’c?aTa,) (y'a)?

O - 2.2, 7 v v =
(62 + h%c?a’a)(y"a)(y'a,)} = 0 (3.47)

and (3.46) reduces to:

41

i
1




N
{02(a? + H22Y) g ia2i71 4 g2p2¢2 g 5 ia2(i*+1) 1
oz,,z, E B (21_1).214"" % 02 E j‘i"'j ly 9
+ h2e? E g # (i - k)a2itIk-ly g - o2yng g iai=ly;}

= (3.48)

The situation where A is an unknown n x n matrix presents some
difficulties. Arriving at a density for the vector measurements
analogous to (3.37) for the scalar case is straightforward enough.
Unfortunately, no useful expressions for the determinant and the
inverse of the covariance could be found. Since this precludes
reducing the likelihood equation to the desired polynomial form at this

time, the matrix case will not be developed here.

3.6 THE NECESSARY CONDITION - DIFFERENCE EQUATION ERROR APPROACH

The general class of parameter identification problems treated
in the previous three sections could have been approached somewhat
differently. Instead of seeking the parameter values which gave a best
fit of the model outéut to the measured output, parameter values could
be selected to minimize the error that results when system input and
output measurements are introduced into the model equation.

To implement the latter approach, referred to as the “differencing
approach"” in the following discussions, the model Equations (3.5)
(or (3.6) in the scalar case) must be rearranged. The assumption that
H™! exists is made to facilitate this (which, of course, means that

nowm = n.) Working with Equation (3.5), the rearranged model is
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Yis1 = B¥y41 * N4y (3:49)
= NAx; + HBu; + ngyy
or Yis1 = Cyy + HBuj + 4y i=0,1,...,, (3.50)
where:
C = HAH™!
Ci = Njsp = Oy
(In the scalar case, C becomes a and HB becomes hb.)

The equivalent system model, Equation (3.50), has two important
differences relative to the original formulation of the model. 1In this
new system, the state variables y; in the difference equation are known
as opposed to the x, in the previous system model which were unknown.

In addition, the noise variable, though still zero mean, is now

correlated and acts as part of the input.

Just as was demonstrated with the original formulation of the
model, the form of the ML estimator based on the equivalent model
strongly depends upon the assumptions made about the initial conditions.
In fact, for each of the three initial condition situations treated

earlier, the equivalent model leads to the same likelihood equations

and thus the same estimators as found previously - a none too sur-
prising result if the models are one-to-one. To see this, look at the
case where x, is an unknown parameter. From Equations (3.50) and

0:

(3.5), vhere with no loss of generality take u;

Y = Cyp *+ %

Yn = Cyyn-1 + Ty-2 (3.51)
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Using Equation (3.50):

&* N T)(0,R*)
where:
;*' = (no,CO,CI,"',C,,_l)
and
f R _Rc' 1
~CR R+CRC" -RC" 0
\\ \\ ~\\
~ N S
N \\ gl
* A ~
R = \\\ \\\ \\
o \\ ‘\\
N N ~
\\ \\ -\Rc'
O \\\ \\\
| : SCR R+CRC” |
¢ I 3 'R ) rI -’ 3
\ AN N N 0
" O N O s e
-c\ N\ N \\ \\
o R N \\ \\ AN
\\\ ‘\\ \\ \\ :'C'
\ N \ \,
. S O \ O N
L O de )l ‘&) { T |
From Equation (3.51), the Jacobian J is:
y_
J Lol a;. - 1
Equation (3.51) can be rewritten as:
¢ o Y R ¢ p
I\\ f Yo Ry *+ Ny
N
-C. \\\ ‘o
N \\ . = .
\\ ~
A b L .
0 \\ \\\ .
\ =C I)\y,) L Spy |

Using Equations (3.57), (3.56), and (3.54) along with (3.51)

(3.52)

€3.53)

(3,54)

(3.55)

(3.56)

(3.57)

leads directly to the likelihood function (3.26) except for the mean
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of the joint distribution as given in Equation (3.25). However,

recognizing that:

7 x: SR £ )
\\ \\
~ ~
o i 0 s 0
\\ \\ = = \\ \\
N \\ \\ \\
\\ \\ = ~ \\ (3.58)
0 \\ \\ 3 \\\ \\
~ ~ ~
=8 U F ‘C‘N ¢ . . ¢ T
and
ci = (man~1)i = gaip! (3.59)

the mean is easily established, and the equivalence is shown.

There exists another interesting assumption on the initial
conditions for the alternate model, Equation (3.50), that can be made.
In this case, the initial condition is considered to be Yo and is
assumed known, as it obviously is since it is a measurement, and a
deterministic constant. While this assumption can be applied to the
model of Equation (3.50), it is inconsistent with the underlying model
of Equation (3.5) which says that Yo is a random variable. It would
appear that this discrepancy has the effect of assigning an improper
weight to the first error - an effect which could be expected to have
diminishing influence as the number of samples increases. Treating y,
as a known deterministic constant in the alternate model gives good
results experimentally for systems that correspond to the original
model. Investigation of this formulation, irrespective of whether or
not it directly applies to the original problem, is of interest. (See

Mann and Wald [1943] and Levin [1964] and the related discussion in

Chapter 2.)
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The likelihood function for the alternate model taking y, as a
known constant is found as follows. The basic set of equations for
this problem is generated by (3.50) indexed by i = 0,1,...,N~1.

For this system, the joint distribution of {,,%3,...,4y-) is easily

shown to be:
g vT)(0,Ry) (3.60)
where: f
LT = (G o08pseneslyy)
and
([R+CRCY  -RC” 3
-CR  R+CRC" -RC"
‘\ hat \\ 0
\\ ~0 \\
RS = \\\ \\\ \\\ (3.61)
\\\ \\\ \\\
\\\ \\\ :RC"
0 \\\ \\\
\ -CR  R+CRCT|
Since the Jacobian Jl for Equation (3.50) equals one where:
- (22 ' 3,62
5, - |8 (3,62
and
9T = (Y3,Y2s--- 05y (3.63)
then:
- -3
L, = (2m) 2 |R,| %expl-%(y* - £)"R,7} (v* - £)] €3.64)
where:

91 = n-vector,

HBuo
o - ¥
£f= . + Yt = ”Vl ey Cyo)l“"(yN = cyNOl)]

The characteristics of the likelihood function L, are considerably

e e




different from those of the previous sections. The means of those
densities in all three cases were expressed in terms of powers of the
unknown matrix A. In Lg, the mean is not a function of A, but A does
enter linearly in the set of differences of the y;'s. On the other
hand, the covariances of the previous densities were of the form 021
or I @R, where @ denotes the Kronecker product, while in L, the
covariance has tri-diagonal form with elements which are of the form
Aor 1+ A2,

Because R, is not diagonal (in the sense that the earlier co-
variances of the form I @ R were diagonal), crudely speaking, the
estimate for A is found by fitting a hyperplane to the measurements
in the non-trivial norm of Rz'l . This characteristic is interesting
relative to the solutions of the previous sections. There the
residuals were weighted equally. That this can be undesirable is
easily seen by considering the scalar autoncmous model with |a|<l.
Then early measurements have more useful information than later ones,
and thus the later ones should be weighted less than the early ones.
The likelihood function L, will give uneven weighting to the residuals.
Whether or not this will yield any better estimates than those of the
previous sections is not immediately clear since the nature of the
residuals is different, and the arrangement of the weighting is not
obvious.

Because of the complexity of this approach, first the scalar
autonomous case will be developed. The covariance matrix Ry reduces

to the N x N matrix:
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R = o2 o Rl il (3.66)

.
/

’
/7

4

N N\
| “a  1+a?

It can be shown (see Appendix B) that:

IR = (62N g a2l (3.67)

and
Q- = (xyy™h) (3.68)

where:

i-1 N- N
rgql = o 5 a2k)aj=i¢ g a2t)/( 5 a’P) (j2i)

Also, in Equation (3.64), for the scalar autonomous case:

n=1, f=0, and C + a (3.69)
dlogl,
Forming ~—gaz = 0 gives after considerable manipulation (see
Appendix C):
Vy + Oy' =0
e s (3.70)
where:
N N
Vy = -202 g g qaz(PﬂI)-l (3.71)
p=0 g=
N
= =202 ﬁ [ g i+ j]dzk-l
k=1 li= J=k-N
k<N k>N
2(2N-1)
On' = ly"( (k + 1 = 41)Spypn-247) via¥ (3.72)

where:




st

J = ’ 0 , the unit Hankel matrix

As a result of differencing the measurements, it would appear
that information about the initial condition is lost, and consequently,

this case is similar to one where x_ was an unknown parameter. 1In

o
fact, Oh' above is equivalent to the first term of the necessary

condition for x, unknown parameter case (Equation 3.22), i.e.,

N N
ON' = 2 g g 5 (i - t).2t+.i+j-1yiyj (3.73)
t= =

For the scalar plant with a forcing function, a necessary
condition in polynomial form can also be found. However, introduction
of the forcing function destroys much of the symmetry characteristic of
the autonomous case and as a result precludes the extensive reduction
in complexity the autonomous expression for Qy' can undergo (see

Appendix C). Because of the similarity of this case to the x. unknown

o
parameter case, Q,' is probably equivalent to the necessary condition

for the latter case (Equation 3.22), but this equivalence has not yet

been shown.
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The necessary conditions for the vector-matrix case are somewhat

more difficult to establish. First take the log of L :

log L) = - ¥ log 2n - 3 log IR | - % (3% - )R, (3* - )

(3.74)
Taking differentials at a stationary point:
A(log Ly(A)) = =3 tr(R“\A(R,)] - A(3*) "R (4* - £)
-3t - 0ToR, ) - £) =0 (3.75)
where:
A(a‘)' - (90,---,919-1) (I@A') o go'(I®A')
;o' = - (yov'oc"yn-lv)
(ARA+ARAT  -RA” '
\ N 0
-AR \\\ \\\
A(R) = \ . \
2 N
\\\ \\\ b gt
-R
0 b N\
\ -AR ARAT+ARA"|
8(R,™Y) = = RZTM(A(RYIR,™
But A(Rz) can be rewritten as:
AR AT A =TI RAT
N \ \‘ . 0 N
N\ \ . \,
R o0 B (/) \\ \\\ \\ 0
\ ~ N S
A(R) = \\ " \\ + \\\ " \\
0 2 S 0 " 0 T\
AR -I A’ ‘A RAT
(3.76)

or
ARy = (Iy®b')[(Iy@AT) = Sp] + [(Iy®AT) ~ 5" 1 (1 @A'™)
(3.77)

where:




| A' £ AR
Iy = N x N identity matrix
Using the above and the properties of the trace, Equation (3.74) can
be written as:
ex{((2, @A™ - SR, - TRy, (y* - 1R,
- (7, ®a" - s )R, (* - £) (g* - £)"R"]

(Iy®4')} =0 (3.78)

Definition: Let ) be an (nN) x (nN) matrix partitioned into N2 equal
submatrices of size n x n. Using the same scheme as
associated with a matrix having scalar elements, denote
the ijth submatrix ofﬁ by G; je Define the generalized
trace operation:

N
TROY) = J3 Gij (3.79)
1=1

Since A' is an arbitrary matrix:

TRUM(Iy® A - sp) - (T@R Vyy(u* - )°
- (Iy@aT - SR (y* - £)(§* - £)TIR,™I) = 0
; (3.80)
The usefulness of the necessary condition might be enhanced if an
explicit form for R™! could be found. However, without some restric-

tive assumptions on the structure of the matrices, finding an explicit

PP S ———

inverse appears to be difficult. For example, when R = 02I and A is
normal, i.e., AA" = AVA, then the inverse can be found. However,
restrictions on the structure of the A matrix invalidate the likelihood
equations whose derivations are based on completely general variations

of A at the stationary points. It is not clear that rederivation of

s P ———
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the likelihood equations with any such canonical form for A would
result in any benefits.

Notice that to derive the equivalent system model (Equation (3.50),
B! had to exist. In the more general case, H is taken as an m x n
matrix withm < n. If m < n, the most obvious approach is to use a
pseudo-inverse form for H which is suited for this problem.

Another approach that appears promising is use of the observer
of Luenberger [1964]. With this scheme, the measurement equation can
be augmented so that it can be inverted directly for plant state Xg.
There are a number of difficulties associated with this technique, not
the least of which is the necessity for the solution of a Lyapunov

equation for the matrix required to augment the y matrix.

3.7 PLANT NOISE

Consideration of plant noise introduces additional complexities
in the task of finding polynomial type likelihood functions. Typically,
the effect of plant noise is to add a term to the covariance matrix
for the system without the plant noise. Finding the inverse of the
covariance becomes the problem of finding the resolvent of a matrix
much as already occurred in a simpler form in the case of X, with
known distribution.

The scalar yversions of the four cases covered in the previous

sections will be considered. The basic model (3.6) with plant noise

becomes:

Xjp1 = @x; + bu, + ¢,

y; = hey +n, (3.81)
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The following assumptions are made on the properties of the noise:

{€;} independent and {£;} 4-7*0,82)
{n;} independent and independent of {{;}; n; v7)(0,0?)

i, BTGNS, Sy PO 0 S

For convenience, the likelihood equations will be presented in

S 12 0

a pre-polynomial form. The polynomials may be found merely by
expanding the equations. (The derivations of the likelihood equations
are given in Appendix D).

a. Known initial condition X

The likelihood equation is:

- d =
0= lRyI l(élRyI) + {(!N - MO-‘-N - m!N)v(a;RQ l)

5 d -1

2(hxo(ay) + hbi 80 uyl "Ry Hyy - hxgay - hbduy) (3.87)
where:

gN' - (yli--.;yu) (3.83)

ay” = (a,a’,...,aV) (3.84)

BN' = ("o""’"N-l) (3.85)

® = |a2 . (3.86)

N

N N\
a1 ... a2 N 1

/ {

P
Wt ra2 1P h282 5 kn 3
Jp = (0%) o™ (I-+1+a 2a c°'§+—f) ,p21 (3.87)

2 k=1 ©
and o ® 1
L, = (0 + h?82)J¢) - a%0"J¢-2 t23 (3.88)
and
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Lo = 1

Ll = 0'2 + hzsz

L, = g% + 0282hn2(2 + a2) + g4n*

2
= | =z, (3.89)
-1 o (ov)-lp-lp-1
5 B B (3.90)
¢ 1\ 3
\\ 0
-a N\
-l- \\ \\
’ Y (3.97)
g \\\
t a "l
R o= (ry57h) (3.92)
£, 70 = Py @y, gy 2l (3.93)

b. Initial condition X, an unknown parameter
This case is identical to the one in part (a) above but with
the addition of an equation for ;"N Referring to the

definitions above and Equation (3.19):

aL- = - -1 2 - -= Y
ox, (UN = Moty ~hbAuy)"Ry™ (ay)o® + (4o = Bxo) = 0 (5 o4

or:
X = - e =1 . % 2 T =l
Xoy [(gN hpty,) Ry a0 y,l/0(1 + o%ay, Ry ay) hl
(3.95)
c. Known distribution of initial condition xo
Assume:
x, independent of {£;} and {n;}; x, '\-‘77(20,82)
The form of the solution is similar to that where x, is known.

The likelihood equation is:

= |R |- (_d|R 8 - M i - v dp -1
0 = |ry| (EIR9|)+{(HN HEody - hboouy) T (dR,")
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;_ (3.96)
| { where:
E :
E By " Gty geneeoty G-
&7 = (1,a,8%,...,4"%) (3.98)
3 " 9 2.0
j. o, = ¢ (3.99)
Ep - k‘;ﬁlmz + 02(1 + a%) - 2a0? cos },ﬁ-] (3.100)
and Jo =]
(Note that the number of samples is N + 1.)
L, = [(0% + F2€?) (8% + o2) + o2W2e2a2)3, ,
- a%g%7,_3 St24 (3.101)
and
i‘o =1 ;
i‘.l = 02 + hzez 4
Ly = (02 + K?e?) (B? + 02) + h2e2a?q?
L3 = (02 + He2)[(B? + 02)2 + 02p2a?) !
+ 02h2e2a2(B2 + 02(1 + a%)] {
Ryl = Eyes (3:102) f
i
Ryl = (037) 'R0 (3.103) 1
23 0. ... 9 i
]
0 ]
0,1 = |1 o1 (:108)
&
‘
C 5
Lo : /
i‘l & (i’.ij‘l) (3.105)
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Byl = (020037 (Ry ) (Ryay-3) /() S P20 (3.106)

(h%c2a® + 82 + 02)3};-1 ~ aZotiy_y ,J=1

Kyel-j = (.
€3.107)
d. Differencing approach
The likelihood equation is:
- 4 d D -
0 = R [ GulR 1) + ((yy ~ ayy_; - hbuy)* @R,)
- 2(g”_1)'§y"l}(gn - ayy_; - hdbuy) (3.%08)

where:

(Hﬂ-l)' = (901911-.-:9,,.1)

& P
K " (h282 + g2(1 + a2) - 2ac? COSPI'% ]l ,p21

P e
and
30 i (3.110)
|Ryl = 7y (3.111)
Ry"‘ = (Fi57) (3.112)
fij'l =~ (02a)3~1(3;_y) ,3,,_..,)/3,, 2 (3.113)

3.8 MINIMAL SUFFICIENT STATISTICS

When the likelihood equations are derived, the question of what
might be their simplest form inevitably arises. Concern for simplicity
is heightened as the number of samples increases hecause computational
effort can rapidly increase with more samples.

The problem can be viewed from two aspects. One is purely
algebraic manipulation to reduce complexity. Any approach in this area

is basically ad hoc. The second, which in a sense is a special case
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of the first, is concerned with condensing the information in the set
of samples into a smaller set which contains an equivalent amount of
information about the unknown parameter. This second area, which is
based on the theory of sufficient statistics, has formal structure and
is the more important of the two because through sufficient statistics,
the amount of computation can be stabilized as the number of samples
incraases. Establishing the existence of (non-trivial) sufficient
statistics for the four cases investigated in this chapter is clearly
of interest.

Por scalar variables, Dynkin (1951], on whom most of the following
discussion will be based, defines a sufficient statistic in the
following way. Let {p(x,0):0 €@} be a family of probability densities
denoted by I', defined on the set D in the m-dimensional space .

The function X(x), defined in D and with values in some set T, is
called a sufficient statistic in the domain D for the family T, if
the probability densities p(x,8) may be factored into the fomm:

p(x,0) = v[x(x) ,0]w(x) (x € D, 8 €E®)
(For a more rigorous definition see Rao [1965, p.110].) (3.3
Then, for example, if the samples X;,...,Xy are independent and iden-
tically distributed, the existence of a sufficient statistic x would
allow the following factorization®:

N
" p(x;,8) = VIX(XTreoorXy) BIW(X]peeerXy)

i=1 (3.115)

(Of course, from a computational point of view what is desired is that

* The statistic x = (x3,...,xy) is sufficient and is known as the
trivial statistic.
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X have a recursive form such as:

X(Xgse0esXy) =™ FIX(X300000Xy_1) Xyl (5.116)
where F is some reasonable function. Otherwise nothing is likely to
be gained.)

If the sufficient statistic for a family I' is not unique, then the
question of which one is most desirable arises. Since sufficient
statistics in a sense partition the sample space, a possible charac-
terization of the most desirable one is that it impose the coarsest
partition on the sample space. Pursuing the approach more formally,
Dynkin says let yx 1(x) and x2(x) be defined in D. Then x 1 is dependent
on xz if it follows that xa(x') = x2(x") implies x;(x') = x;(x").

This gives a partial ordering among the sufficient statistics. The

statistic x(x) is called a necessary statistic for the family I' in the

domain D if it is dependent on every sufficient statistic. A statistic

which is both necessary and sufficient is minimal sufficient.

In order to test for minimal sufficient statistics two theorems
of Dynkin, as corrected by Brown [1964], for scalar, independent
identically distributed samples are useful. The first theorem (Theorem
2) considers the linear space L(T,D))generated by constants and the
functions g,(8) for any @ € @ where
gx(®) = log p(x,8) - log p(x,8,) (3.117)
and 6  some fixed element in®. If the functions 1, $,(x) peeesbplx)
are a basis in L(T,D), then for N2r the system of functions:
Xi("llle""xn) - ‘1’.(‘1) + eee ¥ Oi(xn) 1 & FyCa il (3.118)

is shown to be a minimal sufficient statistic for the sample of size N.

In the second theorem (Theorem 3a) Dynkin shows that if the probability

density of the sample has the form
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P(x,8) = exp { # Cy(0)4,(x) + C (8) + ¢, (x)}
=1

(3.119)
then the 01 here correspond to those of the previous theorem (Theorem 2)

and thus form a minimal sufficient statistic when summed as in (3.118).

However, Dynkin's results do not apply directly to the four
initial condition situations in the previous sections because identi-
cally distributed samples are assumed for the above two theorems. The
case of independent samples which are not necessarily identically
distributed is treated by Zhuravlev [1963]. A theorem based on the
above theorems of Dynkin is presented which results in the desired
generalization. 1In this case each pj(x,e) of the form given in (3.119)
has associated with it the sets of functions {Cj(6)} 3 and {¢;(x)} 5
vhere 1 2 j > k > N, the number of samples. The minimal sufficient
statistics are found by forming linear combinations of various sets
{¢ 1) j after examining the amount of dependency in spaces generated by
all possible combinations of the sets {Cil PR Non-trivial minimal
sufficient statistics result only if the dimension of the space gener-
ated by {Ci}ll{ci}z,n-;{ci}k is less than k.

Applying Zhuravlev to the known Xg and X, unknown parameter cases
shows no non-trivial sufficient statistics exist. 1In the X, known case
the ith sample is distributed as:

pj(yj.a) = (2,,02)‘!’ exp l*;f;[lyi - alx, - 42 ai‘Juj-l)zl

(s (3.120)

The {Ck} for the ith sample are al,ai"l,...,a,1. Clearly, for

i=1,...,N the dimension of {Ck}lx...x{ckln is not less than N. The
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same conclusion holds when X, is an unknown parameter. For the other

two cases, none of the above thgorema apply because the samples are
neither identically distributed nor independent. By factoring the
covariance matrix and transforming the original samples with the fac-
tors, a transformed set of samples which are independent can be found.
Nothing is gained by this approach because the transformed samples are
unknown quantities since they depend on the parameter a. The existence
of non-trivial sufficient statistics for these cases is unlikely
because of the sample dependence. (The literature offers little for
investigation of the vector sample versions of the four cases. Some
related work was done by Barndorff-Nielsen and Pedersen [1968].)

The conclusion from all of this is that the degree of the polynomials
which define the necessary conditions for the ML estimate will in-

crease without bound as the number of samples increases without bound.
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SECTION IV

PROPERTI®S OF THE IDENTIFIERS AND THEIR APPROXIMATIONS

4.1 INTRODUCTION

The properties of the parameter estimate a and, in particular,
the characteristics of the roots of the likelihood equations for each
of the four cases treated in Chapter 3 need to be considered in order
that some evaluation of the practicality of these estimates can be made.
Both the degree to which the ML estimate a can be expected to approxi-

mate the true value of a and the extent of the effort required to

determine a are of interest. (Discussion of the latter is primarily
the topic of the next chapter.)

The investigation of a is developed in two parts - finite sample
properties and large sample or asymptotic properties. To this end, a
number of questions could be posed such as the bias, consistency,
efficiency, asymptotic distribution, and uniqueness of a as well as the

number of real roots, if any, of the likelihood equation and their

sensitivity to the measurements. While furnishing answers to these

questions, as well as related ones, might be desirable, in general this

tends to be difficult to accomplish. Some of these questions plus
possible approximations to the ML estimate are explored below, but for
simplicity, generally only the scalar versions of the four cases in

Chapter 3 are investigated.

4.2 FINITE SAMPLE CHARACTERISTICS
When the number of samples is finite, purely deterministic analy-

sis of the likelihood equations is of only minimal value. Short of
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forming confidence limits for the properties of interest, limiting
forms and averaging appear most advantageous for finite sample analysis.
For this analysis, let ap and x,, be the true values of a and X,
the parameters to be identified, & and %, be their ML estimates, as
previously, and a and X, be points in some subset of the real line.
Then a measurement y; can be expressed as:
1 .
T ”‘oi”oo + hb jz-;l aol-Juj_l + 0, (i=1,2,...,5,) (4.1)

except for the differencing model in which case y; becomes:

i :
vy = agly, + ; lag* T (hbug_ g + Ty )] (1 =1,2,...,8) (4.2)

4.2.1 LIMITING ESTIMATE FOR ZERO NOISE

One of the simplest questions to answer about the likelihood

g

equation is what happens to & and R, as o2 or, equivalently, as the

noise measurement goes to zero. When the initial condition Xoo is

known, introducing (4.1) with n; = 0 into (3.9) with the above
notational changes gives:
il ER 2
Dy(a) = hxoo® 35 iag'a’™! - mxg, Fz“m

+ hbx ) iagi Tl
00 ; ap a Uj_l

N

N
-moog

=

(i - j)aoiai-j-luj_l

(21 - yatt Ity
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+ hb? E E E (i - j)loi‘kai’j‘luj_luk_l
2 . L L (i k) 2i-j=k (4.3)
- hb - k)a“+"/ " u, _.u, _ ‘
E E E §-1Yk-1

Clearly, DN(‘Q) = 0, but a, may not be the only root. However, if
n; = 0, then from Equation (3.8) Oy(ay,) = 0 and a= a, (uniguely, unless
Xoo = 0 and u; = 0). (Of course, to show the above, the Qy(a) equation
could have been appealed to directly, but then the details of what
happens in Dy(a) as 02 + 0 would not have been illust::ted.)

When xo is an unknown parameter, the limiting condition can be
found by introducing (4.1) with nj = 0 into (3.22). Equivalently,

working with with (3.20):

; N N i .
X, = (h g aoiajxoo + hb g E aoi‘ja"'uj-l
1= 1. 3
N 1 N
- hb g ; GZi-jUj_l)/(h g ‘21) (ﬂ .4)

Setting a equal to a, gives §o 8 S

From the discussion on the x, known case and the above result,

a, is seen to be a root of the likelihood equation for the X, unknown
case. Thus a = a,.

In the case where x, is an unknown random variable with known
gaussian distribution, introduce (4.1) into (3.46) and let njy go to
zero. (To be consistent in taking the limit, 02 must also go to zero.)
This gives:

N
=

N N
Dy(a) = h"t:zxoo2 H R 5 (i - k),2i+j+k-1‘oj+k
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ﬁ (zp_31+j-r).2(”i)"‘j -r-1 Ju -1
rs

+

M= M= M=
™M= M= M=

g (2i=3~p) .21+j+p-l‘°j+p-tur_1

M= M= M=

]

ﬁ (p-r)a® (1+3) +p-r-1‘°pur_1]

W p2e?f

+

g (2p-2i+j-s) a2 (1+P)+]-5-1a J=Ty__jus_;

. M. M-
n = mz
M= M- M-

g (i -p)azi"‘jﬂ"laoj"’p'r"ur_lus_l

=

M- e M

& (i_zp,,,s)a2(1+j+p)-r-s lu -1Us-1
S=

N N
BEBRR s e
N

E 2P > g g (p-s)a (4I4P) 28"y _jug 3] (4.5)
s=

By symmetry, Dy(ay) = 0.

Note that the covariance inverse (3.40) is positive definite for
o2 > 0 and 02a"R,"'a + 0 as 02 + 0. Consider the cost function Qy(a),
Equation (3.41). Then, if o2 = n; = 0, Qy(a) is a minimum when a = a,.
Thus, provided 0?2 = 0, once again, as ng > 0, a -+ ag.

The same conclusion holds for the differencing approach. As in
the previous case, 02 must be set to zero. Once this is done, the

equations are identical to those in the x, unknown parameter case for

which the limit has been shown.
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4.2.2 ESTIMATES FROM AVERAGED LIKELIHOOD EQUATIONS

Another finite sample property is the parameter value which on the
average is a root of the likelihood equation. In other words, if L is
the likelihood fuaction and

r(a) = ':: log L(a) (4.6)
then which a, if any, results in the expectation E(r) = 0. (This
property is obviously closely related to the one for zero noise.)

Let y € Y be the N samples from one of the four models previously
considered, where the samples could be vector quantities and the system
either autonomous or not. The parameter vector 6 = (6 qree. .ep) is
taken as appropriate for the model, e.g., (a) or (a,xo) or the elements
of the A matrix, etc. Let 8, and § be the true valuc stimate of
8, respectively, where 6_, 6 € ®. The likelihood functicn L is
defined as previously, L = p(y,6), and let

r;(8) = -ag—i log L (4.7)
Assume log L and r;, i = 1,...,p are continuous on Y@@ and that|log L|

and |ri| are bounded Yy € ¥, 86 € @ by functions on Y which are integra-

ble over Y. Then the following theorem can be stated:

Theorem 4.1: For N samples, on the average, the true parameter value
is the maximum likelihood estimate of the parameter.

Proof:

ol
Elr,(8)] = f.“[ %67 109 p(v,8)1p(y,8 )dy

T p(y.0,)
L.l 5—37 P(y,8)] g dy (4.8)

65




e sscion

I

T 7.-‘
P 1 TR N R R T m

Ife-eor

e (4.9)
Elri(8,)] = [ f_“ s pwe) dull

By the above assumptions,

Elrj(8,)] = [ IO p(y,0) dyl| =0 (4.10)
00 J_o 8o l
This conclusion unfortunately does not directly answer the question
of bias of §. Showing that on the average the true value of 0 is a
root of the likelihood equation does not necessarily mean that the

average of the root 5 is Oo.

4.2.3 THE STABLE ROOTS OF THE LIK:LIHOOD EQUATIONS

The question of the number of .eros of a real-valued polynomial in
an interval of the real line is at best difficult to answer in general
but when, in addition, the coefficients of the polynomial are random
variables, as is the case with the likelihood equations, general state-
ments with much practical value are rare. Kac [1943, 1959] investigated
the average number of real roots of a real nth degree polynomial whose
coefficients are independent identically distributed normal random
variables. The results are in the form of complicated integrals. The
conclusions indicate that the density of the root distribution peaks
at t1, and the average number of roots within the interval (-1,1) is
the same as the average number outside.

As might well be expected, more may be said about the nature of
the roots of the likelihood equations if these equations are investi-
gated directly rather than through the general case considered by Kac.

For simplicity, the discussion will be limited to autonomous models.
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The analysis of each of the four cases has the same pattern. First,

the number of roots of the underlying deterministic portion of those
terms in the likelihood equation with random coefficients is investi-
gated in the open interval (-1,1). Then assessments of the effects
of the remaining purely deterministic terms, if any, and the purely
rahdom segment of the random terms are attempted.

When the initial condition x,, is known, the likelihood equation

for the autonomous plant is given by (3.10) and (3.6):

£ -1 z i-1

gia‘l yi-hxoogiaz
. N g

= hx o[ B ia-“laoi - B ia2i-l) 4 g ial'lni
= - 1=

=0 (4.11)
The plant is assumed to be stable, i.e., -1 < Ry < de
The number of roots in the open interval (-1,1) for the determin-
istic portion of (4.11) (the bracketed quantity) will be treated first.

In the interest of clarity, some lemmas are presented prior to the main

theorem on the roots.

Lemma 4.1: Let N be a positive integer, and let k be a real number

where 0 < k < 1. Then,

N+1 k
Eabr (4.12)
Proof:
When N = 1,
N+l k. 4.13
N m 2k/ (1+k) < 1 ( )

k
N . Find max
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- x,_z-u-zu"
ax ‘1ot (1+xN)

or,
”-1

Clearly, ko is where the maximum in (0,1) occurs.

N+1 N2-1 1
NIk F " W w1 <2

(4.14)

Then,

4.15) 1

Lemma 4.2: Let N be a positive integer and let k, a, be real numbers

where 0 < a,, k < 1. Then,
N+ KY) - a2ne)k(d - KM2) > 0
Proof:
N1+ k) - a2k - )
=N(1+KN)[1 - a2(1 - k) M1k,

NI+
>0 (by Lemma 4.1)

(4.16)

(4:17) i

Establishing the sign of the deterministic term of (4.11) when

0 < ag < 1 and -a, < & < 0 is complicated by the fact that the sign of

the ith term of the summations is either positive or negative depending

on whether or not i is even or odd. The next lemma deals with this

situation.

are such that 0 < a5 < 1 and -ap < a < 0, then

N N
H .iai“laoi > g ia?i=l
- =

Proof:

Make the following definitions -

Ay = ﬁ iai=la i and By = g ia2i-1
- -
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Lemma 4.3: If N is a positive integer and the real numbers a, and a

(4.18)

(4.19)

-




> -2a + 2a(a°2 - a?)

> 0 (4\‘20)
Assume “N-l > By.1: N-1 even. Then,
Ays] = By, = Ay_y - By_g + Na'la N + (N + 1)aNa N+l

= NCZN-I - (N + 1)‘2N+1

, Inductive proof for N even:
At N = 2,
Az-Bz-ao-l-Zaaaz - a - 2a8
{
!
{
-
i
3
é
3

> Na¥"la N + (N + 1)aNa N+! - ya2N-1
- (N + 1)a2N+1 “.21)
Let a = ~ka,, 0 <k <1 (4.22)
Then,
4\"+1 - BN+1 > Nk"_laozu-l - (N + l)kucozu"'l + NkZN-ICOZN-l
+ (N + 1)k2N+la°2N+l
= iN-1a 2¥=1 (N - (N + 1)ka % + NKV
+ (v + 1)K™2a 2
= N"1a 2" (1 + 1) - (v + Da k(1 - K]
>0 (by Lemma 4.2) 4..23)
Now, odd N:
At N=1,2, -B =a,-a>0 (4..24)
Let N be odd, and using the above conclusions for when N was even,
Ay = By = Ay, = By, + Na-la N - ya2i-1

> NaN-laoN - Na2N-1

With the above lemmas, the main theorem follows easily.

= Nkl=la 28113 4 M) > 0 t4.25)0




Theorem 4.2: Assume the initial condition x,o is known and the plant

is scalar, stable, and autonomous. Then in the limit as the measurement

noise nj goes to zero, the likelihood equation for the unknown parameter

a, has only one stable root. Furthermore, that root is a,.

Proof:

If h or oo (in Equation (4.11)) is zero, no conclusion on

root distribution can be made. Assume h and x,, are not zero.

Consider the sign of AN - By, N a positive integer, for a € (-1,1)

where

N g a N =t
1= 1 = i
Ay = F- ia a, and BN Ei ia

If a, is zero, the conclusion is immediate.
Take a, positive, i.e., ao € (0,1). Then,
a,<acx<l

Compare the jth terms of Ay and By, 1 < j s N
since jaJ-layJ < ja2i-1, a, < By.
a, = a, then ay = By.

0 <ac«< a,
Since jaj°laoj > ja2i-1, Ay > By.
a=20

Since a, >0, Ay > By

-a, <ac<o0

Ay > By by Lemma 4.3

-1 < ag -a,

jat=la i > ja2J-1, j oaa

jaj'laoj 2 jazj'l, Jj even
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Since summations on j in Ay and By go from 1 to N, AN > By .

The above follow similarly when a, € (-1,0). i

The effect on the above conclusions due to the polynomial noise
termm in (4.11), '{ .iai"lni, is not very clear as indicated by the
earlier discussiizlof Kac's work. Perhaps the most important character-
istic of the term which can easily be determined is its expectation.
Since the nj are zero mean and independent, the expectation is zero,
and thus on the average the conclusions in the above theorem hold for
the likelihood equation. However, for a given realization, the noise
term equals n when a = 0. Except for that possible bump in the neigh-
borhood of a = 0, simulation results indicate that the polynomial should
be smooth on (-1,1) for finite N. While the number of roots of the
noise polynomial is N-1, one would not expect all of them to be real,
nor all the real ones to be in (-1,1). For small variance relative to
Xoo and a,, the noise term probably only has the effect of biasing the
'deterministic) root of the likelihood equation in (-1,1).

When the initial condition Xoo is an unknown parameter x,, the
likelihood equation for the scalar autonomous plant is given by (3.6)
and (3.24):

N N

E E (j - i)dz'i"'j-lyj
N N N N
pes thO[ E E ja21+j-laoj - E B iaz.i-fj—laoj]

N N
+ B E (3 - 1)a?iti=ly, = 0 (4,26)

The number of roots in the open interval (-1,1) for the deterministic
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portion of (4.26) (the bracketed quantity) is investigated below.

Again, preliminary to the main theorem, some lemmas are presented.

Lemma 4.4: Let z be a real number where 0 < z < 1 and let n be an
integer where n > 2, Then,
2" -nz+n-1>0 (Beckenbach and Bellman [1961])  (4.27)
Proof:
22 ~nz+n-1=(z-1)(1+ 272 4 .. +2-n+1) (4.28)
since 271 4.+ z2<n -1 (4.29)

z2% ~-nz+n-1>0 (4.30%

Lemma 4.5: Let a, and k be real numbers where a,, k € (0,1), and

let M be an integer where M > 2, Then,

1-k3ay" M-1 1+4xM-1 M~2 1-KM-2
ka2 a1tk oA > €4.31)
Proof:
1-k%a," M-1 1+4KM-1 M~2 1-M-2
kag? 1 K Tw I
, 2-k3 -1 2447} PSS S e (4.32)
kK M 1-K u  1-x"

Placing the right side of (4.32) over a common denominator
and subtracting the denominator from the combined numerators gives:
(1-k3) (M-1) (1+XM=1) + k% (M-2) (2-KM"2) - xM(1-XM) (4.53)
= (M-1) - Mk + (M=2)k? - (M-1)k% + (M-1)}M"1 - (M-2)KM
+ MMt o (M-1) P2

= [(M-1) - Mk + KM"1] + [(M-2)k? - (M-1)k3 + KMt

+ (M=2)KkM")(1-k) + (M-1)XMt)(1-k) (4.34)
> (KM« (M-1)k + (M=2)] + 1 - k + KR[N - M=)k + M - 2]
(4.35)
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>0 (by Lemma 4.4)

Also, k(1 - ¥¥) > 0 4.36) 1|

Lemma 4.6: Let a and a, be real numbers where ~1 < -a_, < a < 0.

(o]
Let N and j be even integers where N » 2 and 0 ¢ j < N-1.
Then:

d = a JtaM23ra(n-3-1) (a NIV -aM"T-1) + (N-j-2) (aN"T"2-aN"7-2);
+ a,Ja"*232 [a(N-7) (a N=T-aN"J) + (N-j-1) (aN=T-1-aN-3"1)]
S : (4.37)

Proof:
Let a = -ka,, 0 < k < 1. Then,
d = V2325 N=1[_ka 2(N-j) (1-K¥~T) + (1-k%a ") (N-j-1) (1+1¥-T71)
+ k2ay2 (N-j-2) (1-kN-3-2) (4.38)
>0 whenk=1, i.e., a = -a,

For -a < a < 0,

d = ‘N+2j-2.oﬂ+lk(~_j) (l-k"-j) [l‘kaga“ N"j"i 1+k~-j-l
kag? N-j 1-KVY

x N=i=2 1-1:”‘1'2

- 1)
N-j 1= ‘
>0 (by Lemma 4.5) i 5
Referring to (4.26), make the following definitions for the subsequent |
discussions: '-‘
3
N N 4
ay' 2 Y5 3o jaiti-l, (4.39) 1
i=0 j=0 1
N N
By’ 2 E z 1a21+j-1a°j (4440)
=0 j=0
N N-1
dAN' s AN' e AN-.I' & .izo iazu'*i-laoi + Py Naz.i'#‘""l.o" (4.41)
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N N=1
dml g BNI — BN-I, - E NaZN-fi-laoi + B 1&214."-1‘0" (4'42)

Then jth term of dAN' - dBy' is:
2N+3j-1 2j+N=-1_ N _ 2N+j-1 &) 2j+N-1_ N
Jja ‘ aoj + Na2J a, Na2N+Jj aoj ja Jj a,

o (N_j,,oj,n+2j-1(aoN-j-aN-j) (4.43)

Establishing the sign of the deterministic part of (4.26) when
0 <a,<1and -a; < a < 0 is even more difficult than was the case
when Xo0 Was known. Now the signs of the terms depend on both N and a
suming index. Note that for N even, dAN"- dBy' is negative for all j.
However, when N is even the jth term of (dAy'-dBy') + (dAy-;'-dBy_;').,
i.e.,

a] 232 (an-5) (a N T-a""T) + (W-j-1) (3 NIV -ANTITY))  (4.48)
is positive when j is even, but if j is odd, it can be negative.

The next lemma deals with this problem through showing that for

N even, the combined negative terms at N and N+1 are dominated by the

combined positive terms.

Lemma 4.7: If N is a positive integer and the real numbers a, and a

are such that 0 < a, < 1l and “a, S &< 0, then,

Ay' > By' (4.45)
Proof:
Inductive proof for N even:
At N = 2,
Ay' - By' = (a,-a) [1+2a(agta) + aya’] ' ¢4.46)
Let a = —kao , 0 <k £1. Then,

1+ 2a(agta) + aga® = 1 - 2a 2k(1-k) - a,'k3
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> 1 - 3agk + 3a,2k% - ay3k?

= (l-agk)?

>0 (4.47)
Thus, A,' - By' > 0
Assume Ay_o' > By_2' , N 2 4 and even. From (4.41) and

(4.42),

Ay' = Ay_o' + day' + day.;' (4.48)
By' = By_p' + dBy' + dBy_;' e
Consider the sum of the jth and j+lst terms of (day'-dBy') +
(dAy.;'=dBy_;') when j is even and 0 < j < N-2. From (4.44), this
sum becomes:?
.ojn.mzj,, (N=3=1) (,ou-j-l_,u-j-x, + (N=j=2) (,ou-j-z_,u-j-z”
+ aojaN*zj‘zla(N-j)(aON'j-a"'j) + (N-3-1) (a N"T"1-aN=7"1)) (4.50)
>0 (by Lemma 4.6)
Also, when j = N, dAN' - dBN' = 0.
Therefore, for N even and 2 4,

day' + dAy-1' > dBy' + dBy-1' (4.51)

or, for N even and 2 2,

Ay' > By (4.52)
Now, take N odd.
At N = 1,

Ay -B)' =ap -a>0 (4.53)

For odd N > 1, the jth term of dAy' - dBy' from (4.43) becomes,
(N-7)a,JaN*2]=1 (a N=J-aN=J) > o Vi (4.54)
For j even, the inequality in (4.54) is strict. Thus, for odd N,

day' - dBy' > 0 (4.55)




From (4.52) and (4.55) for odd N > 1,

AN' = By' = Ay_;' - By.p' + day' -dBy' >0 (4.56) 1
Lemma 4.8: If N is a positive integer and the real numbers a, and a
are such that 0 < a, < 1 and -1 < a < -a,, then, “N' > By'.
Proof:
Inductive proof for N even:
At N = 2, from (4.46),
A,' - By' = (a,-a)[l+2a(a ta)+a a’] (4.87)
let b= -a, a5 = kb, 0 < k < 1. Then
[1 + 2a(a+a) + a,a’] = 1 - 2b%(k-1) - kb*
= (1-kb*) + 2b2(1-%) > 0 (4.58)

Or, AZ' > Bz'

Assume Ay_>' > By_p', N > 4 and even.

Consider the sum of the jth and j+lst terms of
(dAN'-dBN') + (dAN_l'-dBN_I‘) where j is even and

0 < j<N-2, From (4.44) this sum may be expressed as,

aoji*l‘N"'Zj[‘ (N=j-1) (aoﬂ'j-l _‘N-j-l) + (N=3=2) (aou—j—z _‘N-j-2)]

+ a Ja"23-21a(n-3) (a N"T-aN"T) + (N-3-1) (a NI -aN=T71))

= a_Ja%23-2[ (1+a% ) (N-j-1) (a N"T"1-aN"T")) + a(N-j) (a N"T-aN"d)
+ a%a (N-3-2) (a N"1-2-aN"]"2)) ,

> a Ja¥*23"2(a(n-3) (a N"I-aN"1) + aa,(N-j-2) (a N"I"2-aN"3"2))

= a,Ja*23=2 (PN=3*) (n-j) (2-KN=3) - kNI (N-3-2) (1-K¥"17%))

> 0 (4.59)

When j = N, dA,' - dBy' = 0

Therefore, for N even and > 4,
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dAy' + dAy.p' > dBy' + dBy_)' (4.50)

Or, for N even and 2 2,
Ay' > By'
Take N odd.
At N =1, A;' > B)' by (4.53)
For odd N > 1, consider the jth and j+lst terms of day' - dBy',
J even:
(N-j)agIal+23=1 (aN=J-aV=J) + (N-j-1)a,I*1aN*23+1 (a N=3=1_gN-3-1)
= aoja"izj"[(m-j)b"'j (1+X8J) = k(N-j-1)DN=T+2 (1 N-]-1);

>0 (4.61)

Thus A,' > By'. l

N

Theorem 4.3: Assume the initial condition X,o 18 an unknown parameter
and the plant is scalar, stable, and autonomous. Then in the limit as
the measurement noise nj goes to zero, the likelihood equation for the
unknown parameter a, has only one stable root and that root is a,.
Proof:
If hor X0 (in Equation (4.26)) is zero, no conclusion on

root distribution can be made. Assume that h and x are not zero.

00

Consider the sign of A,' - B,', N positive integer, for
N N

a € (-1,1) where:

N N
ay' = g B ja2iti=la,J (4,62)

N N
b ja2iti-14 J (4.63)
L >R > °

If a, is zero, the conclusion is immediate. Take a, € (0,1).
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l. a,<ac<1
From (4.53), a3’ ~B)' =a, ~a <9 (4.64)
From (4.43), for N > 1,
ary' - dBy' = (N-J)aJa*23"1 (a N=J-~1) < 0 ,0 < j < N-1

(4.65)
and equals zero when j = N. Thus

M' < ml
2. a =a

From (4.62) and (4.63), ay' - By' = 0
3. 0 < a < a,

From (4.64), a;' - B;' > 0

From (4.43), for N > 1

day' - dBy' = (N-j)apla*23=1(a N=J-gN=J) > 0 ,0 < j < N-1
(4.66)

and equals zero when j = N. Then
Ay' > By'
4. a =0
From (4.62), (4.63),
Ay' - By' =a,> 0
5. ~a, < a<0
By Lemma 4.7, Ay’ > By'

6. ~1 < a < -a,

By Lemma 4.8, Ay’ > By’

The above follow similarly if -1 < a, < 0. l

Little more can be said about the random polynomial term of the
likelihood equation (4.26) than could be said when the Xoo known case
was discussed. Again, the expectation of the random polynomial is zero.

When the initial condition xgo is an unknown random variable, the
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likelihood equation for the autonomous plant is given by (3.48):

N _ N N
o2 [(62+h2%,2Y) §° ia2i-l 4 p2¢2 g E 1a2(1+3) -1

N N N N
on ot e,
b N N N
- h¥ ¥ E iai=ly ] - (h2e? 5 B (k-i)a?itk=ly ) ( 5 ajyj)
=0 (4.67)

The last term of (4.67) corresponds to the Xoo Unknown parameter case
likelihood equation (4.26). If in the limit as n; goes to zero, its
variance 02 is assumed to go to zero, then the conclusions for the
deterministic portion of the X,o Unknown parameter likelihood equation
hold for the deterministic portion of (4.67). However, how the g2
terms affect the roots of the likelihood equation when 02 is not zero
is not clear.

The scalar autonomous differencing approach likelihood equation

is given by Equations (3.70), (3.71), (3.73), and (3.50):

N N g N
-202 ﬁ g L L E E (j~i)a?3*3=1y ) ¢ 5 aky,)
N

& «2gd g ]g ja2 (1+3) -1

N
E (j-1)a%i*J=1(a Jy  + g aoi'Pcp_ln

=

+ £

M=

(4.68)
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where:

2; a TP 2o
(6] p-1
p=

when r = 0 and ;1 " Nj.1 ~ ;.
If 02 + 0 as ¢; > 0, then the conclusions for the deterministic portion
of the X00 unknown parameter case hold for this case if y, # 0.

When 02 # 0 and the random terms are considered, the deterministic
conclusions are again obscured. In this case, the expectation of the
random terms is not zero. Furthermore, the temm g akgk can have
zeros when the random terms are considered. Negl§::1ng the o2 temm,
these zeros of the multiplicative random term become zeros of the like-
lihood equation in ad?ition to the stable deterministic root however
modified by the additive random term.

The 02 term can be written as:

N‘ N N N
-202 B FJ ja2 (1+3)-1 & _242¢ F& a2i)( E ja23=1) (4.69)

If N > 1, this term has its only root at a = 0. 1Its effect for finite
N and small o2 is to bias the stable deterministic root toward zero.
Also, since this term is bounded on (-1,1), as N increases, the product
of N~! and this term diminishes to zero.

The behavior of the roots of the likelihood equations in the inter-
val -1 < a < 1 for each of the four scalar cases when the forcing
function is not identically zero is less obvious. In an earlier sec-
tion, the fact that as the measufument noise goes to zero, ; approaches

a, was established for forced plants in all cases except the differen-

cing approach (because only the autonomous version was developed here) .
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For these same cases without the limiting condition on the noise,
Equations (3.9), (3.22), and (3.46) indicate by inspection that after
N+1 samples, the likelihood equations are polynomials of odd degree if
some u; # 0 (not including uy.;) whether or not Xoo = 0. Thus the
likelihood equations for forced plants can be expected to have at least

one real root.

4.3 LARGE SAMPLE CHARACTERISTICS

One of the most important and desirable large sample characteris-
tics of an estimator is consistency, convergence to the true parameter
value. Proofs of consistency of maximum likelihood estimators are
common in the literature. The assumptions on which the proofs are
based may vary, but the instance is relatively rare when the assumption
of independent identically distributed samples is not included.
is

Unfortunately, the samples for the case when X, is known or x,

unknown parameter are not identically distributed. 1In the X, unknown
random variable and the differencing approach cases, the samples are
not even independent.
Kendall and Stuart [1961, p.60] present a brief general discussion
of maximum likelihood estimation when the samples are independent but
not identically distributed. They point out that in this situation
it is ho longer necessarily true that ML estimators are consistent and §
give examples to illustrate this. 1In fact, for certain situations
the ML estimator may not be meaningful. Thus ML estimators in non-
standard situations must be considered individually.

When the initial condition x5 is known and the plant is scalar,

the distribution of the ith sample from (3.7) is:
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p;(ysa) = 721+o7 exp[-”-'l-z(y-haixo - hb g atduy )] 1=1,,...

(4.70)

Assume h, b, and x, not zero and u, not identically zero. (If instead,
x, = 0, neglect p; and assume u, # 0 for the following development.)

Then p;(y;a;) = pj(y;ay) for a.e. y only if a, = a,. Taking the limit

of p; on i gives:

}: pjl(y;a) = p(y;a) = 7;-1%5- exp[";‘:‘z (y - £(a,up,u;,...))?]

4.71)
The function f exists and is continuous on the interior of its region
of convergence, (-1,1), if the u, are assumed to be uniformly bounded,
i.e., |u;| <M <w , and a € (-1,1). Since f is not a constant,
p(y;al) - p{y;az) for a.e. y only if a; = a,.

Let the subset of the real line [-1,1] be denoted by (1, and
assume a_, the true value of the unknown parameter, is an interior
point of Cl. Since (1 is compact and P; is continuous on(l, there exists
a maximum likelihood estimator of a, based on N samples. Denote this
estimator by ;N‘

Let

g;(y,a) = loglp;(y,a)/p;(y,a,)] (4.72)

and

g(y.,a) = loglp(y,a)/p(y,a,)]
(4.73)
Both g; and g are integrable for all a interior to QL in the sense that
their expectations exist.
The following theorem is an extension of one by Jennrich [1970]+

for independent identically distributed random variables.

t Class notes in Classical Statistics, Department of Mathematics,
University of California, Los Angeles.
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Theorem 4.3: Under the above assumptions,

Proof:

Since the logarithm is a strictly convex function, by Jensen's

inequality,

[9,(v,2)p,(v,a,)du(y) < log [p;(y,a)du(y) = 0 (4.74)
with equality holding only if a = a,. Let B be a neighborhood
of a. Then,

sup g; (y,a)¥g;(y,a) as Bta. (4.75)

a€B

Define the expectation operator E; as

B, (.) = [(.)p;(y,az)dn(y) (4.76)

By the monotone convergence theorem

E;l[sup g;(y,0)]¥E;[g;(y,a)] as Bta 4.7
a€B \

and therefore there exists a B such that

E;[sup 9"(!],0!)] <0
aem o (4.78)

whenever a # a,. LetD C QO be a neighborhood of a,, and let

|
D° =Q-D. Because (L is compact, the complement DC can be |
|

covered by a finite number of B neighborhoods, and thus

Eylsup, g;(y,a)] < 0 (4.79)
a€D

Similarly,

E[sup g(y,a)] < 0 (4.80)
GEDC

The variance of g;(y,a) depends on the first, second and fourth
moments of y which are bounded above. Then by the strong law

of large numbers, for a.e. set of samples {91} from pi(y,ao),
i - 1[.0.,";

83




gj(94,0) S-E sup_g.(y;,a)
u@cug 4 s

N
1
> = E;(sup,_ g;(y,a)] < 0 (4.81)
i i
» E c@c

Choose such a sample and let &N = &N(yl,...,y"). By definition x
of the ML estimate, -
N Py(Yg,ay) -+ -Py(yy.ay)

:7 ;; gi(vi.ay) = ',l-, log >0 (4.82)
= pl(y.l"‘o)"'PN(QN"a) »

Thus, SNGD for sufficiently large N. Since D is arbitrary,

N g do a.s. '

a
When the system is autonomous, the above proof for consistency
does not hold. Referring to the limit in (4.71), alx, + 0 as i + »
for a an interior point of Cl. The uniqueness of the density p 4 with
respect to a is lost in the limit. v
If x, is an unknown parameter, the above proof must be reworked
with the unknown parameter as a vector instead of a scalar. This
appears to be a natural extension of the theorem. Using a different
approach, Aocki and Yue [1970] have shown consistency for this case.
The above theorem can also be used to show consistency when X, is
an unknown random variable. The proof follows through directly when i
the densities for this situation are conditioned on X,- Since consis- |

tency exists for a.e. x_., then ‘;N + a, a.s.

o
In the final case, the differencing approach, the samples are not

independent. There does not appear to be any simple technique to get

around this problem as there was when x, was an unknown random variable.

Wald [1948] and Aoki and Yue, however, do consider the problem of
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For vector samples and parameters most of the above should go

through with perhaps some additional algebra. Aoki and Yue treat the
companion matrix case when x, is an unknown parameter. Mann and Wald
[1943] develop the companion matrix case for the differencing approach

but with independent samples.

4.4 APPROXIMATIONS

A characteristic common to the ML estimators in all four cases
considered is that all the samples must be saved to be able to evaluate
the estimate SN, and as the number of samples N increases, the amount
of computation involved in this evaluation increases. This situation
is inconsistent with the requirement of real time identification. The
possibility of condensing the data through sufficient statistics was
eliminated earlier. Exact algebraic factoring appears hopeless.
Approaches to approximating the inverse of the covariance matrix in the
differencing approach are given by Cochrane and Orcutt [1949], Hannan
[1960, p.47] and Anderson [1963]. None of these appear to be very
satisfactory.

The approximations with most appeal involve some form of truncation
of the likelihood equation polynomial. The simplest approach of this

nature is to truncate the polynomials after some arbitrary number of

terms. However, this limits the number of samples that can be used :?
to compute the estimate, and as a result, new data beyond same point |
will not be used. Forgetting for the moment how to accomodate initial :
condition information, for systems whose parameters are in fact slowly

varying with time, the truncated polynomial could be made to undergo a
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continual shift in indices so that old data is dropped off as new data

comes in. If, however, use of all the data is desirable as would be
the case for constant parameters, some sort of averaging scheme can
be used with the truncation. This latter approach is pursued in what
follows.

There are two obvious types of averaging modifications that could
be made to the shifting polynomial scheme just described. One would
be to define a new estimate as the running average of the estimates
from the shifting polynomials. Because in certain situations this
estimate tends to have an (infinite variance) Cauchy distribution, it
does not appear to be as useful as an alternative scheme which keeps
a running average of each of the coefficients of the shifting poly-
nomials. The latter scheme bases estimates on the truncated poly-
nomial evaluated using averaged coefficients.

Both the X, known and the x, unknown random variable cases use
initial condition information in the ML estimate. Use of this
information in either shifting polynomial scheme generates another
growing polynomial required to shiftAthe origin thus nullifying thé
computational advantage gained by truncating. The coefficient averaging
scheme for the X, unknown parameter case, which is more or less a
steady state version of the other two, will be assumed to apply to all

three cases.

4.4.1 AVERAGE COEFFICIENT APPROXIMATIONS TO THE LIKELIHOOD EQUATIONS
The average coefficient approximation equation when X, is an
unknown parameter can be developed from Equation (3.22). The number

of samples, (N+1) in Equation (3.22), at which to truncate the

dependent observations.




polynomials is arbitrary, but at least two samples must be used over
which to average. Because truncation after two samples yields the
simplest result, the truncation will be taken at that point. Thus for
two samples, the likelihood equation becomes:

y,(yy~hbu ) + [(y;-hbu )%~y 2]a - y_(y)-hbu,)a’® = 0 (4.83)
or with averaging over N + 1 samples gives the average coefficient
expression for x, unknown parameter (as well as x, known and x, unknown
random variable).

Cy'a® - Dy'a-Cy' =0 (4.84)
where:
N

Cy' ';13 ?; Yj-1(y;-hbu;_j) (183

L R N
Dy’ = 5(; (yy=hbuj_3)? - g yi-f) (4.86)

For the same situation but with the vector-valued autonomous system,

Equations (3.29) and (3.33) give
¢; = H'R™IH + A"H"R™1HA (4.87)
AD; = [H'R™)y;-H"R™YHA$ ;" H"R™1y ~H"R™1HA¢ ;"1ATH™R™ y; ]
[y,"R™ H+y;"R™1HA] = 0 (4.88)
or, averaging over N + 1 samples:

N N '
H'R"‘(’l-l- E 9191-1')R-1” + H'R™! (:-i Fl yiyi")R‘IHA

N N r
- H'R"'HA¢; " H"R™! [@' E yi_lyi_l')R 1y + (% E yiyi_l") R"‘HA]

N N
- H"R’IHA‘#I'IA'H'R'I [G g yiyi_l')R"llI + ( E yiyi')k'lm] =0

(4.39)
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Similarly, for the differencing approach, (3.64) gives,
o2a’ + y,(y;-hbuy)a® + [02+y,%=(y;-hbuy)?]a ~ y,(yy~hbuy) = O
4.90)
or treating the shifted y,'s as known initial conditions and averaging
over N + 1 samples gives the average coefficient expressicn for the
differencing approach:
g5 2 - ) 2o 2] 4,91
o‘a® + Cy'a® + [o DN')a CN' 0 ( )
If the plant is vector-valued and H = I, the identity matrix, then from

(3.80) the two sample average coefficient approximation becomes:
1 N
= = i = v
e (E; (y;3-Ay;_)=Bu;_))¥51 )

+

2~

N
(F (9 -R9y_,-Bu, _4) (9i~Ayi_1-sui_1)') (R+2RA") 1aR = 0
=1

(4.92)

4.4.2 PROPERTIES OF THE TWO~SAMPLE AVERAGE COEFFICIENT APPROXIMATIONS
The finite sample properties of the two-sample average coefficient

approximations to the scalar plant likelihood equations will be

investigated first. When the initial condition is an unknown parameter,

the average coefficient equation (4.82) is a quadratic with roots:

Dy’ + ¥ (Dy')? + 4(cy')2)/(2Cy") (4.:93)
Two conclusions are immediate. The two roots are always real. By the
triangle inequality, one root lies in the closed interval [-1,1), and
the other root lies outside the open interval (-1,1) unless Dy'=0, an
event which occurs with probability zero. In that case, the roots
are t1.

Earlier, in the case where X, is an unknown parameter, the ML
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estimate & was shown to approach the true parameter a, as the measure-

ment noise goes to zero. Since this property holds independent of

A s oI 2 D Wi S s [, 0

which sample in the sequence of samples {91} is denoted y, (the first

sample of the string to be used for the two-sample ML estimate) , the

P Ty e

average coefficient approximation (4.84) for any N yields & = a, for
? zero noise.
Furthemmore, the expected value of the noise terms of (4.84) are f
easily seen to be zero. In Cy', the noise terms are weighted sums of
n; and a sum of product terms of the form UFLFPOR Because the n; are
independent and zero mean, the expectation of each term in the sums is
zero. In Dy’, the noise terms are also weighted sums of n; and, in
addition, a telescoping sum of square temms of the form "12' The
telescoping sum reduces to nNZ-noz. whose expectation is zero.

This approximation (4.84) is related to the ML estimator of Levin

R

[1964]) discussed in Chapter 2. If his result is applied as each new
sample is made, in the so-called "overlapping” mode, instead of after
collecting groups of samples as intended, his result becomes identical
to (4.84).

g The finite sample properties of the average coefficient approxi-

! mation to the differencing approach likelihood equation are more

difficult to establish. Now, the equation, (4.91), is a cubic. An

indication of the root location can be obtained by first considering
% ’ (4.91) without the 02a3 term. This portion of the equation has two

real roots which can be expressed as:

2 ' 2_p )2 2 '
[-(c2-0y') t /(02-Dy")2+4Cy'21/(2C,") @.94)

Again, unless D' = 02, one root is stable, and the other is unstable.
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When D,' = 02, the roots are & 1.

Closer examination of (4.94) shows that the pair of roots falls
into one of two categories. Either the stable root is positive, and
the unstable root is negative or vice versa. In the former case when
Cy' > 0 (and 02-D,' > 0), the 0%a® term has the effect of biasing the
stable root toward zero and either biasing the unstable root away from
gero while introducing another negative unstable root or merely
removingthe unstable root. In the latter case when Cy' > 0 (and
02-Dy' < 0), the o2a’ term moves the unstable positive root toward zero
to the point where it becomes stable if o2 > D,'/2. Also, if 0% 5 D,'/2,
the stable root is shifted toward -1, and a negative unstable root is
introduced. If ¢? > QN'/2, either the stable root disappears or it
becomes unstable (and negative) and a still more negative root is added.
Similar conclusions follow for CN' < 0.

Unless 02 + 0 as the noise goes to zero, the zero noise condition
does not give the true parameter as the estimate. As was the case with
the x, unknown parameter approximation, the noise terms have zero
expectation.

The two-sample average coefficient approximation to the likelihood
equation for the differencing approach, Equation (4.91), could have
been derived in two other ways each of which gives further insight into
the nature of the approximation. In one, the approximation (4.91)
follows directly from the scalar autonomous version of the likelihood
function (3.64) with the noise covariance R of Equation (3.66)
approximated as:

R = Qz d*.g (1"2'00011"2) (‘095)
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In the second, a modified version of the likelihood function can be
developed using grouped samples in the sense of Levin by basing the
likelihood function on the model (3.50) with i=0,2,4,---. The resulting
likelihood equation is then used in an overlapping mode by resubscript-
ing such that in effect i=0,1,--- once again as in (3.50).

The large sample properties of the approximate ML estimate in the
x, unknown parameter case can be inferred by the large sample character-
istics of its "likelihood equation", Equation (4.84).

Assume the {u;} are uniformly bounded by M20 and that [a°|<1. Then
the {x;} are uniformly bounded also. From Equation (4.85):

N
1
' = 5 E (hx;_j + ny_y)(hax; ; + ny)

N
- fl g [hPax; % + hx;_;n, + bang x, ; +n;_gn,]

3 (4.96)
Examining (4.96) texm by term:

1 £ 1 N 4 i=1 P 3
n & hz.oxi-lz - hz‘o; E (a, -lxo + H a, -l-jUj-l) 4297)

(i>1)
N
1 -
lim * E (a,2)i"1 = 0 (4.98)
N> -
lim 1| ﬁ S8 L 20i-1)-7 |
= a i T
- 1-21§ 4 3
N
- 3 i-1_¢g 2)i=13| = o (4.99)
51:;%“ Elao (42471 |

3 B il e
lim 2| E E ao21=3"k"2uy_qup_;|
N+ - 3
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N2 1, w28 4714¢a 2)4-1;] o M2
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By the strong law of large numbers,

1 N
N hx n, >0 a.s.

Also,
RiBhierl = @
o ,imj
B[(“1“1+1)(ﬂ n 1)] -
So,
o A
Elw E "yNi-a| = 0
and,
1 1 o
. v g "ini-lJ o

Then by Chebyshev's inequality, for any € > 0,

1 1 q"
(32 meuel 2 e

1 N
Py (5 3y nanaet) = 0

or

(4.100)

(4.101)

(4.102)

(4.103)

(4.104)

€4.105)

(4.106)

(4.107)

A stronger result than (4.107) can be shown by using a theorem of

Révész [1968, p. 87]. By (4.102) and (4.103) and since,

Bingng,?) . o . !' log?x 4
___.!__.logi<o dx = 0'T'(3) < »
E i 1 x?

then,

(4.108)

(4.109)
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m (‘Q“) [
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i g 2 4.1
%' N[E (hagxyy *+ 1y g (hxyp * Mgy ] ki

Using (4.97) - (4.100),

N
h2(a_2-1) lim =% x,_,2 = -n2n2 1t% (4.111)
() oo N - i=1 Tma,

Since,
N N o

then by (4.111) and (4.101),

-n2w2 M8 < |p.'| <0 (4.113)
1-a,

and from (4.98), (4.99), (4.100), (4.101), and (4.109),

0 ¢ |ca'| < nM2 _L,u‘.o) (4.114)

At this stage all that has been shown is that if {"i} uni formly
bounded and |¢°| < 1, the average coefficient approximation likelihood
equation (4.84) does approach some limit. As a special case, consider

l+a,

- pint % PR
€' h‘M (1-.0)2 and D hM 1_.0 (4.115)

The two limiting roots of (4.84) are found by introducing (4.115) into

(4.93),

D' % /.(D..)z,“(c..)z
2C,'

(4.116)

The two roots are - -:- and a,.
()

In the average coefficient approximation for the autonomous

differencing approach, Equation (4.91), CN' and DN' both go to zero




in the limit. The limiting roots for this case are given by
o2(al+l)a =0 % (4.117)

Therefore, the limiting root is zero.
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SECTION V

NUMERICAL CONSIDERATIONS OF THE IDENTIFIERS

5.1 INTRODUCTION

The objectives of the discussions in this chapter are to illustrate
some of the properties of the identifiers which were established by
theorems in the previous chapter and to investigate the mechanics for
the numerical evaluation of the parameter estimates from the nonlinear
likelihood equations. To this end the computer simulation results,
grouped according to the four initial condition categories considered
in the preceding chapters, are presented first. The results and related
computational implications are then explored.

The terms "cost" and "cost function" used in this chapter, with
some minor modifications detailed in the following section, were defined
in Chapter 3. Basically, they refer to the function formed by taking
the natural logarithm of the likelihood function and then discarding
the additive terms and common factors which do not depend on the
unknown parameter. Terms of the type "derivative of the cost function"
and “derivative function" refer to the function obtained by differenti-
ating the cost function with respect to the unknown parameter. (The
equation which results by setting that derivative function equal to

zero is the likelihood equation.)

5.2 SIMULATION RESULTS
The figures in this section are based on computations and noise
generated on the IBM 360, model 91 and were prepared on a Cal-Comp

plotter. Results are given for both the scalar model and the multi-

dimensional models.




S5.2.1 SCALPR MODEL RESULTS

The scalar model is defined by Equation (3.6), which is repeated ‘

below for convenience.

x . =ax_ + bu !

i+l i i
y; = bx; + ny i=0,1,..,N (5.1)

B o bt s b0 Lt

1 (In the text, in order to distinguish between the parameter a and the

: true value of a in (5.1), the true value of a is denoted by a,.) The

noise sequence {nj} was taken as gaussian independent identically
distributed, each member with distribution: / -
ng v7(0,0?) €5.2)
The known coefficients were assumed to be unity, i.e.,
h=D)b=] (5.3)
(For purposes of exercising the identification schemes, various

assumptions about the initial conditions were made, but these did not

.s affect the model.)

Some theory on optimal input selection for identification exists,
e.g., Staley [1968). However, since the normal operating input restric-
tion was assumed for this study, no optimization was attempted.

Instead, for simplicity a step input, u; = constant, was used.

The four identification problems discussed in Chapter 3 were simu-
lated. The first three differ strictly by assumptions on the nature
of the initial condition Xo0 i.e., x, known, x, unknown parameter, or
X, unknown random variable. The fourth identification problem, the
differencing approach, actually is based on a model, (3.49), which

differs somewhat from (5.1). By differencing the measurements Vi
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in (5.1) the models become equivalent except that in the latter the
initial measurement Yo is considered as a constant. (The differencing
approach most closely corresponds to the X, unknown parameter case.)

The equations for the four identification problems that were
simulated are given in Chapter 3. For the case where the initial
condition x, is known and the system is scalar, the cost function is
given by (3.8), and the derivative function is given by the left side
of Equation (3.9).

The case where x, is an unknown parameter requires a bit of dis-
cussion in order to maintain reasonable consistency in the terminology.
The difficulty arises because there are two unknown parameters, x, and
a. Since estimation of a is of primary interest the second parameter,
X,, was eliminated through using ’o instead of x, in the cost and
derivative functions. Thus the cost function is given by Equation
(3.18) but with X, replaced by 90 of Equation (3.20). The derivative
function is given by the left side of Equation (3.21) with X, replaced
by ’o of Equation (3.20). (When the derivative is set equal to zero
it is oquivilent to Equation (3.22), the equation for &. Strictly
speaking, the likflihood equation is neither of these but is the pair

Co

For the case where xo is a gaussian random variable with known

of Equations (3.19) and (3.21).)

mean ;6 and variance €2, the cost function which was simulated is
given by (3.41) normaligzed with respect to ¢2. The derivative function
used in the simulation is given by the left side of (3.44). However,
in order that the derivative and cost functions correspond, the

derivative must be divided by (0? + hec2ava)?.




e

e —————

The differencing approach cost function was not simulated. The
left side of the Equation (3.70) was taken as the derivative function.
(Only the autonomous version was simulated.)

Because the number of figures is relatively large, the figure
numbers are coded to help identify the situation the associated figure
represents. The numerical designation 1 through 4 corresponds to xo
known, X, unknown parameter, X, unknown random variable, and the
differencing approach, respectively. The letter designations a through
j corxespond to the various situations which were simulated as described
below. Again, because of the number of figures and the varying amounts
of new information introduced by them, not all the figures that were
developed have been included. This accounts for what appear to be
gaps in the literal numbering sequences.

The first three groups of figures are an illustration of the
evolution of the MLE (maximum likelihood estimate) of a 5 for specific,
but arbitrary realizations of the measurement noise sequence {n i}‘
Also, comparison of the MLE of a, to the estimate of a, by other
schnef (described later) - namely, least squares (LSQ), 3-point
recursive fit (3?‘!), and average coefficient (AVC) are shown. These
figures are shown first to unify the later ones which concentrate more
on the immediate issue -~ the solution for '.N for a given number of
samples.

a. Comparison of ML, least squares, average coefficient, 3-point

® recursive fit estimation schemes: Figures 5-la, 5-2a, 5-3a,

and 5-4a. These figures correspond to x, known, x s unknown

parameter, *, randam variable, and differencing approach,
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b.

respectively. For all four figures, a = -0.5, X -3.0, and

u; = 1.0 except in 5-4a where uy £ 0 and Ry = 6.0. The level
of the measurement noise is relatively low with 02 = 0.01. The
increment for the 3-point recursive fit is 0.l with points
located at a = ~0.65, ~-0.55, and -0.45. The maximum likelihood
estimates were found by regula falsi iterative solution for the
roots of the likelihood equations.

The maximum number of samples shown is 30. Most curves were
computed up through 60 samples. The behavior of the curves for
the second 30 samples was similar to that of the first 30
samples, except for the first few samples.

In Figure 5-3a, the initial condition mean and variance are

;o = -3.0 and €2 = 0.02. (Another simulation was made, not
included here, with conditions identical to those of Figure
5-3a except that ;o = 6.0. The fact that the true initial
condition and the mean initial condition were grossly mismatched
in termms of the variance €? resulted in a transient in the MLE
of a, for the first few samples.)
Comparison of ML, least sguares, average coefficient, 3-point
recursive fit estimation schemes: r.igurei 5-1b. This group is
computed under the same conditions as thcse in group (a) except
that a, = 0.75 and x = X, = 2.0 (x, = 0.6 for differencing
approach) , and the 3-point fit was made at a = 0.6, 0.7, and
0.8.

Figures for x > unknown parameter and X, unknown random

variable are not included, but they appear very similar to the

i
]
i
1




x, known case, Figure S-lb, much as was the situation in group
(a). The figure for the differencing approach also is not
included but initially resembles Figure 5-1b and then settles
down as in Figure 5-4a except the average coefficient and least
squares solutions drift at a greater rate.

Both for this group and group (a) with the exception of
differencing approach, another variation of the 3-point recur-
sive fit was camputed but not included among the figures. The
increment for the fit was reset to 0.2 from 0.1 with points at
a=-0.8, -0.6 and -0.4 for a, = -0.5 and at a = 0.45, 0.65,
and 0.85 for a = 0.75. This increase in the point separation
resulted in estimates which differed from the true parameter
value by about 10% after 30 samples.

Comparison of ML, least squares, average coefficient, 3-point
recursive fit estimation schemes: Figure 5-lc. This group is
computed under the same conditions as those in group (a) except
02 = 0.4356 and the number of samples is extended to 60.

Again, figures for x . unknown parameter and x, unknown
random variable are not included but appear very similar to
Figure 5-1c. The differencing approach was not simulated for
this set of conditijons.

The measurement noise variance was increased over that in
group (a) to observe the effectiveness of the schemes when
operating under moderate noise levels. The value of 0.4356 for
02 was selected to make the one-0 value of the noise (approx-

imately) equal to 2/3, the limiting value of x; with u, = 1.

i
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Of prime importance in the numerical solution for the MLE of a,

is the expected shape of the derivative function and the root distribu-

tion. Preliminary to displaying various examples of derivative func-
tions, the cost function is presented in order that source of the sharp
fluctuations in the derivative curves be better understood.

d. Cost functions for the MLE: Figure 5-1d. For this group, L

a, = -0.5, x, = =3.0, 0 = 0.01 and u; = 1.0. (The cost func-
tion for the differencing approach was not evaluated.) 1In the
case where x, was assumed to be a random variable, ;; = -3.0
and €2 = 0.02. The curves are given for 3, 5, 10, 15, and 20
samples and -1.5 < a < 1.5. Though not necessarily very similar
overall, the curves for x, unknown parameter and X5 random

variable do exhibit the essential feature of Figure 5-1d4, the

oscillation at just beyond a = 1. The figures for these two

cases are not included.
The derivative function curves for various parameter values and
noise levels are included in the next three groups.
e. Derivative functions for the MLE: Figure 5-le. For this group,
a =-0.5,x =-3.0,02 =0.01, and u

) o 3

differencing approach where u; = 0 and x, = 6.0). Wwhen X, is

Z 1.0 (except in the

taken as a random variable, ;; = =3.0 and €2 = 0.02. The curves
are computed for 3, 5, 10, 15, and 20 samples and -1.5 < a < 1.5.
Over the range displayed, for the scale employed the curves
for the four ML estimators are virtually identical to the no-
noise curves of group (h). (They, of course, are not identical

as can easily be seen from the curves of group (a).) The X,

U R —
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known case, Figure S5-le, is presented to illustrate the simi-
larity.

f. Derivative functions for the MLE: Figures 5-1f, 5-2f, 5-3f,
and 5-4f. The conditions for this group are the same as those
of group (e) except a, = 0.75 and x, = X, = 2.0 (or 0.6 for the
differencing approach, Figure 5-3f). All cases are shown.

g. Derivative functions for the MLE: Figures 5-lg, 5-2g, and 5-3g.
This group is identical to group (e) except the noise level was
raised by increasing the measurement noise variance from
02 = 0.01 to 02 = 1.0. The derivative function for the differ-
encing approach was not computed.

The curves for all of the above groups of course represent re-
sponses to only one possible realization of the measurement noise
sequence. Just how typical they are is difficult to establish, espe-
cially for small numbers of samples. To provide a deterministic
reference for the derivative function curves, limiting versions were
computed vhere ¢2 + 0 and n; + 0.

h. No noise derivative functions for the MLE: Figures 5-l1h, 5-2h,

5-3h, and 5-4h. The conditions for this group are the same as
for group (e)or (g) except 0?2 = Ny .= 0.

i. No noise derivative functions for the MLE: Figure 5-4i. Only
the differencing approach is presented. (The reason for
including this figure is to provide a contrast with Figure 5-4f
similar to what exists between groups (g) and (h) for the three
other ML estimators.) The conditions in this group are the

same as those in group (f) except that 02 = q 3" 0.
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In another attempt to overcome the inconclusiveness of single
realizations, a Monte Carlo approach was used wherein a random set of
measurement noise sequences was generated. The simulation of the model
was repeated using each of the noise sequences in turn. Based on the
accumulated data from the set of experiments, & frequency distributions
were made. With these, some insight into derivative function root
distribution and convergence of the estimate can be derived.

Jj. Frequency distributions for the MLE of a: l;‘igures 5-13, 5-23,

5-3j, and 5-4j. For this group, a, = 0.75, o? = 0.01,

Xy, = 2.0, x_ = 2.0, ¢? = 0.02, and u; = 1.0 (except for 5-4)
where x, = 0.6 and u; = 0). The low noise combination of
a = 0.75 and 02 = 0.01 was chosen to help insure rapid con-
vergence primarily for economic reasons.

In Figures 5-1j, 5-2j, and 5-3j, & distributions are given
for 3, 10, and 60 samples based on 100 experiments with 81
frequencies corresponding to steps in & of 0.002 where
0.675 < & < 0.837. 1In Figure 5-4j, & distributions are given
for 3, 10, and 30 samples based on 50 experiments with 15
frequencies corresponding to steps in & of 0.04 where
0.45 < & < 1.05.

Since X, was constant for all the experiments, Figure 5-3j
for the x, random variable case should be viewed as distribu-

tions conditioned on X, Also, 90 was simulated as a random

variable for ail cases.
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5.2.2 MULTIDIMENSIONAL MODEL RESULTS

The model in the multidimensional case is given by Eguation (3.5),
i.e.,

Xis1 = A%y + By

y, = Bx; + 0, 3 w8, eill (5.4)
(The true value of A in (5.4) will be denoted by A, in order to
distinguish it from the parameter A.)

The vector noise sequence {ni} is assumed to be a gaussian,
independent, identically distributed random sequence, each member
having the distribution:

n; “T)(0,R) (5.5)
The known coefficients were assumed to be identity matrices, i.e.,
H=B=1 (5.6)

Only two of the original four identification problems were
simulated in multidimensional case - x, known and the autonomous
version of x, as an unknown parameter. When the initial condition

x_., is known, the cost function is given by Equation (3.12), and the

o
derivative function is given by left side of Equation (3.15). For
the case where x, is an unknown parameter, the cost function (with x,
as a parameter) is given by Equation (3.26), and the derivative func-
tion is given by the left side of Equation (3.33), where X, has been
replaced by 2.

Because of dimensionality problems, several measures were taken
in order to facilitate the displaying of cost and derivative functions

over a range of parameter values. In order that n x n matrix parameter

argument A of the functions be represented by a scalar, the cost
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functions and derivative functions were evaluated only along a vector

in n? dimensional space passing through A,. The derivative functions

g are also n x n matrices. Two scalar representations of these were
computed. One is the derivative norm which is the sum of the mag-
nitudes of the elements of the derivative matrix. (This norm is
related to one more commonly used, the element with largest magnitude.
The latter is bounded by the former and the former + n2.) The second

scalar representation, the directional derivative, corresponds to the

SEardi AN -t o sia WA ek | L el i S St e i o il ol ey, Dhamdet o ol o

inner product of the derivative represented as a vector, i.e., the
gradient vector, and the true parameter matrix Ao represented as a

vector.

Only the 2 x 2 dimensioned possibility was simulated. For the
simulations:
0.1 0.3 2.0
A = and X, -
-0.6 100 1.5
where the eigenvalues of A, are 0.4 and 0.7, and the eigenvectors
are [}] and [%].
: The measurement noise covariance is,
R 0.01 0.005
R =
0.005 0.025

The input sequence for the x, known and x, unknown parameter, respec-

o[l

The computations were made for A = cA, over the range -1.5 < ¢ < 1.5,

tively, are,

the approximate range over which A is stable.
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Figures 5-5a, 5-5b, and 5-5c display the cost function, norm of

the derivative, and directional derivative, respectively, along ‘o
for 3, 5, 10, and 15 samples (and 20 samples for the cost function)
in the case where xo is known. PFigures 5-6a, 5-6b, and 5-6c give the
cost function, norm of the derivative, and directional derivative,
respectively, along A, for 3, 5, 9, 13, and 18 samples in the case
where X, is an unknown parameter. However, the cost function in this
latter case is not entirely consistent with the derivative plots
because in computing the cost curves the true X, was used instead

of 2, (see Equation (3.30)).

The figures for the multiparameter case follow.
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5.3 DISCUSSION OF MLE SIMULATION RESULTS

5.3.1 SCALAR MODEL

An important factor in the selection of numerical techniques to
locate the roots of the likelihood equations is the behavior of the
associated derivative function in the neighborhood of the desired root
or better yet, over some area within which the root is nearly certain
to lie. The no-noise derivative functions of groups (h) and (i) of
the previous section provide some detemministic information on behavior
but only in the limit as the noise variance goes to zero. However, the
question of sensitivity of the behavior of the (polynomial) derivative
functions to noise, i.e., to perturbations in its coefficients, must
be answered before the usefulness of no-noise information in this
regard can be assessed. Lacking well established conclusions on
sensitivity, the investigation of derivative function behavior cannot
be limited to the no-noise results,

The figures in groups (e), (f), and (g) provide some insight into
derivative function behavior. (Because this study is concerned with
stable systems, the figures display essentially only the stable range
of the parameter a.) When a, a, € (-1,1), the derivative function
generally appears very smooth. In fact, for a, = -0.5, except when x,
is an unknown parameter, Figures 5-le, 5-1g, 5-3g, 5-4g indicate that
the derivative function is basically monotone. (This probably would
also have been the case when X, is an unknown parameter had Equation
(3.22) been used in the simulation instead of (3.21) and (3.20).)

The smoothness continues for parameter values somewhat less than -1,

but for those somewhat greater than +1, sharp fluctuations begin to
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appear in groups (e), (f), and (g) as the number of samples increases.

The derivative functions for the differencing approach, Figures 5-4f
and 5-4h, do not exhibit the fluctuations near a = 1. (This may be
related to the fact that the model is autonomous for the differencing
approach simulations while for the three other cases, u, £ 1.0.) The
derivative fluctuations result from the dips that occur in the cost
function just beyond a = 1 as illustrated by Figure 5-le. (No attempt
has been made to ncover any physical explanation for the dips.)

Comparing group (f) in which ao = 0.75 to group (g) (or group (e))
in which a, = -0.5, demonstrates that at least locally, the behavior
of the derivative functions is significantly affected by a,. In group
(f) the curves exhibit a bump adjacent to the root while for a, = -0.5
except for the case where X, is an unknown parameter, the curves
tend to be monotone in form. This characteristic greatly detracts from
the general applicability of Newton type numerical methods for root
evaluations for stable a,-

The effect of noise level is less than might have been expected.
As pointed out in the previous section, for relatively low noise level
(62 = 0.01) and the scales selected, the resulting curves (group (f))
are practically indistinguishable from the corresponding no-noise
curves of group (h). (This conclusion is less accurate for the differ-
encing approach when ao = 0.75 as shown by Figures 5-4f and 5-4i, and,
of course, is inaccurate on a magnified scale as demonstrated by the
curves of group (a).) Even for moderate noise levels (62 = 1.0,
x, = 2/3), group (g) indicates the derivative functions undergo only

relatively minor changes for stable a. (However, the spread of & does

appear to change noticeably.)
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As the number of samples increases, the magnitude of the slope
generally increases with both roots and peaks becoming sharper. In the
neighborhood of the root &, in particular, the slope increase indicates
a lowering sensitivity of & to noise perturbations. (See Section 5.5.)
While this trend probably continues indefinitely, it likewise probably
does not continue without bound for stable systems and a € (-1,1)
because the derivative functions are polynomials in a. Since the
measurement noise has a gaussian distribution, the yi and thus the
slope at & cannot be bounded in a deterministic sense. Still, the
slope is most likely bounded in probability if not with probability one.

Because the derivative functions are polynomials, the possibility
of multiple real roots must be faced. The question of multiple roots
takes on added importance as the number of samples increases because
the degree of the derivative function polynomial grcws with the number
of measurements. The figures of groups (e), (f), and (g) verify
that multiple real roots can occur, but in none of the figures does
«wore than one root fall in the interval (-1,1). Furthermore, in the
rurves of groups (a), (b), and (c), in the derivative functions curves
of groups (e), (f), and (g) and in the frequency histograms of group
(3J) ,» & is always stable (except for one instance with only three
samples in the differencing approach frequency distribution of Figure
5-4j) . There, of course, is nothing preventing & from taking on
unstable values if a, is stable. All that can be concluded from the
abov2 is that at least up to moderate noise levels, the spread in &

distribution is relatively small.
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The no-noise derivative functions curves of Figures 5~l1h, 5-2h,
5-3h, 5-4h, and 5-4i provide a reference for gauging the effect of
measurement noise on the shape of the derivative functions. Also, they
demonstrate that in the limit as noise level goes to zero, & + a, and
4 is the only stable root. Both tﬁese situations were predicted by the
theoretical discussions of Chapter 4 except that the proof of the
latter condition was limited to autonomous models of which only Figures
5-4h and 5-4i are examples.

The & curves of groups (a), (b), and (c) are examples of the
evolution of the MLE of a, as the number of samples increases. Each
group was computed at a different noise level. (In both group (a) and
group (b), 6% = 0.01, but in group (a), - 2/3, and in group (b),

x, = 4.) Once again, the data lead to the conclusion that low and
moderate noise levels present no difficulty for the ML estimation
schemes.

Figures 5-1j, 5-2j, 5-3j, and 5-4j give insight into the distribu-
tion and consistency of a. As expected from theory, the MLE under the
conditions for Figures 5-1j, 5-2j, and 5-3j has all appearances of
beinc consistent and gaussian in the limit. On the other hand, con-
sistency of a in Figure 5-4j is not obvious although considerable
convergence occurred in going from 3 to 10 samples. The problem here
is that the model for this figure is autonomous. Although improvement
in the estimate can be expected as the number of samples grows, con-
slstency cannot be shown for the autonomous case. In fact, in any

practical situation, improved estimates will probably sooner or later

be supplanted by degrading estimates as the signal content in the
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measurements tends to fall below the word length of the computer

providing the MLE.

5.3.2 MULTIDIMENSIONAL MODEL

The figures for the multidimensional model give some indication
of the behavior of the derivative functions for X, known and the
auton&mous version of x, as an unknown parameter. The cost functions
in both cases, Figures 5-5a and 5-6a, are relatively smooth and
symmetric - at least along a line in 2 x 2 A-space passing through A,-
The curves for the norm of the derivative, Figures 5-5b and 5-6b,
though reasonably smooth in the range shown, take a sharp plunge to
their minima.

The curves for the directional derivatives, Figure 5-5¢ and 5-6c¢c
behave less dramatically than those for the norm of the derivative and
have the more familiar form of a scalar parameter quadrgtic cost func-
tion derivative. Figure 5-5c corresponds directly to the cost function
of Figure 5-5a, but Figure 5-6c corresponds only in an approximate
sense because Figure 5-6a is based on the true X, while Figure 5-6¢
is based on %, Note that while the directional derivative curves pass
through zero, the normed derivative curves do not, because there in
general is non-zero gradient vector orthogonal to the Ao direction when
the directional derivative passes through zero.

In all four derivative figures, "&" is obvious and close to ¢ = 1
(or "co“). However, c is unique for the range shown in the directional
derivative figures, but there are local minima in normed derivative
figures. Thus, for numerical evaluation of A the combination of

moving the solution along directional derivative type curves but
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measuring convergence by some noxm of the derivative function appears

to have merit.

5.4 CALCULATION OF THE MLE AND ITS APPROXIMATIONS

Expressing the derivative functions in the form of polynomials |
does have the advantages that if the coefficients are bounded, the
functions will be bounded and will possess all derivatives. Further-

more, a wealth of literature exists on the properties, analysis, and

solution of (scalar) polynomial equations. Also well known is the fact

)
%.
5

that the roots of a polynomial may be difficult to locate numerically.

5.4.1 SOLUTION OF THE LIKELIHOOD EQUATION
The roots of a polynomial may be well defined mathematically, but
a useful definition for numerical work is not as clear. The most

common definition and the one used in the simulation studies is that

any value a is a root of the likelihood equation DN(a) =0 if
IDN(G)l < e, € > 0.

Having established a definition for a root of the polynomial, the
next step is to select some technique to find the root. The classical
numerical technique for solution of likelihood equations is Fisher's
'scoring for parameters', the 'score' being the derivative function
evaluated at the latest estimate of the root (Rao [1965, p. 302]).

The process is basically a Newton type iteration and has the following

form for a sample size of n and parameter 6:
2 A dloglL| e
S % ¥ SRS, /RIS, ] .7

where the information I(6) is defined as



I(e) = x(— iz—lﬂéle) (5.8)
262

The basis for this method is that generally in the classical considera-

tions of maximum likelihood estimation

1 3%logL a.s.
;__a%_e—s—’ - I(8) (5.9)

The numerical analysis literature offers a variety of methods to
determine roots of polynomials, e.g., see Busk and Svejgaard [1962],
many of which could be more desirable in specific situations, if not
in most situations as contended by some, than scoring for parameters.
The methods can be considered as members of one of two groups, direct
or iterative. The direct methods are recursive and make no use of any
initial estimate of the roots. Generally, for reasonably behaved
functions for which there is at least some rough information on root
locations, the iterative methods are more effective. Barnett [1966]
compares Newton-Raphson (method of tangents), fixed derivative Newton,
scoring for parameters, and regula falsi (method of chords) methods
for the solution of likelihood equations with multiple roots. He
concludes that regula falsi is most easily controlled and most reliable
for seeking out the desired roots and in addition locates only roots
which correspond to maxima or minima, as the case may be. Jennrich and

Sampson [1968] review steepest descent, Newton-Raphson, and Gauss-Newton

as applied to non-linear least squares estimation. They state that of
the three, Gauss-Newton, an iteration method which applies standard

linear regression to a linearized version of the non-linear least

PR v T

squares problem, is most popular because it specifies the step size for

the iteration and does not require second derivatives. (For the studies
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reported in this chapter, regula falsi appeared most appropriate and
was the only technique used.)

One other aspect of the numerical solutions should at least be
menticned. The theory on convergence of most standard numerical root
solving methods is reasonably well developed. However, since the roots
of the likelihood equation and the sequence of approximations resulting
from the process of numerical solution of the roots are random variables,
the usual convergence criteria must be reconsidered from a statistical
point of view. Large sample (stochastic) convergence for Newtcn-
Raphson and scoring for parameters is shown by Kale [1961] for solution
of the (classical) scalar likelihood equation and by Kale [1962] for
the (classical) multiparameter likelihood equation. Jennrich [1969]
shcws large sample convergence of the Gauss-Newton method applied to

non-linear least squares.

5.4.2 APPROXIMATIONS TO THE MLE

The maximum likelihood estimators developed in Chapter 2 grow in
total number of terms as the number of samples grows and require the
entire measurement sequence and input sequence to be stored. These
characteristics could preclude real time application of the estimators,
particularly if a completely updated MLE is demanded after each new
sample. Obviously, given enough samples, any computer would eventually
become clogged to the point where further evaluations of the estimate,
real time or not, would be impractical.

The iterative root-finding numerical methods typically require
evaluation of the likelihood equation (and, in some cases, also the

derivative of the likelihood equation) for each iteration. The least
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expensive evaluation of a general poclynomial is given by Horner's

i A N

method (Lyusternick, et al. (1965, p. 10]). For an nth degree poly-
nomial, n additions and n multiplications are required.

Clearly, the computational constraints dictated by many practical
situations can be met only by approximating the maximum likelihood
estimate. This problem and some possible responses have been given
limited discussion in Chapter 4. The average coefficient method was
proposed as an analytical approximation to the MLE. The equations
for the scalar parameter estimates are repeated below. Equation (5.10)
(see Equation (4.84)) is the two-sample approximation for the x, known,
X, unknown parameter, and x » unknown random variable cases, and Equation

(5.11) (see Equation (4.91)) corresponds to the differencing approach

approximation.
cy'a? - Dy'a -Cy' =0 (5.10)
o2a3 + C,'a? + (o2-Dy')a = Cy' = 0 (5.11)
where
1 N
' =y E Yj-g(yy-hbu;_)) (5.12)

1f<" 2 _ % 2
b, = ;[E (y;~hbu;_,)? - E yi_l] (5.13)

i Another approximation, which is more numerical in nature than the
average coefficient method, that also appears to have merit is a form

of curve fitting which exploits a recursive aspect of the likelihood

SR ———

equation. Through curve fitting, the MLE can be in theory approximated

to any dedgree desired whereas the extent to which the average coeffi-

S ——

cient estimate appraximates the maximum likelihood estimate is relatively ,




unclear. The method consists of initially selecting several specific
values of the parameter variable a such that the area in which a is
expected to lie is spanned and, after each new sample, recursively
evaluating the derivative function at these points. The appropriate
root of a curve fitted through the updated points on the derivative
function is taken as the approximation to a.

This recursive curve fitting method results in a substantial
reduction of computations and storage - a reduction by a factor of
approximately N, the total number of samples at the time of computation.
There are some problems associated with this method which tend to offset
its computational advantage. The total number of points which must

be computed depends on the size of the region in which ais expected to

lie and the precision to which a must be known. As a begins to stabilize
after several samples, moving the points to improve the approximation
would be desirable. There appears to be no way to move the points

without making some approximations. Also, curve fitting can introduce

extraneous roots or, conversely, could result in a curve which has no

real roots in the region of a.

5.4.3 SIMULATION OF THE MLE APPROXIMATIONS

To provide some indication of performance, simulations of the
two-sample average coefficient method and a 3-point recursive parabolic
% fit to the derivative functions were made. (The fit was arranged with
a, midway between the second and third points to give a worst case
when a, is spanned by the points.) For comparison, the results are

presented along with the MLE and a least squares estimate, derived as

follows. From Equation (3.50):
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or,

- (5.15)
By = Myt PRyt 5y

or,

i y-1" (dy~hbuy_;)
w Zy-1"8n-1

(5.16)

The curves of group (a) (Figures 5-la, 5-2a, 5-3a, 5-4a), group (b)
(Figure 5-1b), and group (c) (Figure S-lc) display the evolution of a
for maximum likelihood (MLE), 2-sample average coefficient (AVC), 3-
point recursive fit (3PT), and least squares (LSQ). The results indi-
cate that for low noise levels (group (b)), both least squares and
average coefficient do well compared to MLE for all but the autonomous
differencing approach. As the noise level increases (group (a) and
group (c), respectively) the amount by which they are in error increases
substantially relative to the MLE, though average coefficient performed
noticeably better than least squares. (Since theory in Chapter 4
indicated consistency for the average coefficient method under the
conditions of the simulation, it should have performed reasonably well.)
On the other hand, for the autonomous differencing approach, Figure
5-4a, for example, least squares and average coefficient drift toward
zero. (This drift of the average coefficient a was expected because

the limiting root was shown to be zero.)
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The 3-point recursive fit follows the MLE in group (a) and (c)
but drifts away in group (b). The drift in group (b) is most likely
due to the peak in the derivative curves near a, for group (b) (see
Figure 5-2f).

In the description of group (b), the effect of increasing the
separation of the points from 0.1 to 0.2 was mentioned. The error
increased from a few per cent for 0.l separation (as observed from the
curves) to about 10% at 30 samples for 0.2. Thus, for 3 points
separated by 0.1 and a priori knowledge of a, to within 0.1, the
figures show that the a approximation is good to nearly two significant
figures whereas for the 0.2 situation barely more than one significant

figure is obtained.

5.5 COMPUTATIONAL ERRORS

The numerical error resulting from the finite word length of
digital computers can have a substantial effect on the reliability
of camputations. The problem can arise at either end, so to speak,
roundoff or cancellation. (For a double precision accumulator and
single precision storage with floating point operations these events
are mutually exclusive for any single operation.) The problem of
differencing nearly equal quantities (cancellation) was cbserved to
occur during evaluation of the derivative functions at some distance
from a_ or A,, but generally only when |a| > 1 in the scalar case. Also
for |a| > 1, exponential overflow can easily occur. Neither of these
problems is of much interest here however since most of the computational
effort would be confined to the neighborhood of the root a.

The problem of roundoff is discussed in detail by Wilkinson [1963].

For double precision addition, normalization, and rounding to single
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: precision for storage, he shows floating point addition X +x, yields

i (x,+x5) (1+€;), |€1| < 81", (B is the base for the computer's arith-

: metic and t is the number of digits in the single precision mantissa.)

Similarly, the floating point multiplication x;x, yields 81X2(1+£2) ’

- L

|°2| < 87t

Following a development of Adams [1967], an estimate of the round-

ot A 5 I T

off error in polynomial evaluation can be made. Let 0 = Ie 1| and
; m = |e,|. Consider the polynomial
L(a) = c  + cia+...+ ca
Horner's recurrence for computing £ (x) is
by, = cp
by =xby_; +Chxy +k=1,...,n (5.17)
where
{ %(x) = by
| The roundoff accumulation on the kth step in the evaluation of the ]
polynomial can be described as
(|| + ex) = (x(|bp_y| + ep) (2¢1) + |cp_yl] (2 + 0) (5.18)
Expanding (5.18), rearranging, and dropping higher order terms gives
the following error recursion,
i S = |x| 6y + |2yl (5.19)

where

e Gk+|bk|ﬂ
k n+0

and

le,lm
60 T T+0

] Let "o (x) be the true value of the polynomial and ¢ (x) be the computed
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value. Then ;

[2o0x)-2(x) | < (n+0)6,-|b, |7
(Note that the coefficients ¢; = C;(yg,.e-,Yys Ugres.,Uy-3) must also
be computed and consequently are in error).

Wilkinson demonstrates that root locations can be extremely
sensitive to coefficient perturbations. As a measure of the sensitivity
of the roots he develops what he calls the 'condition of a polynomial'.
Briefly, Wilkinson proceeds as follows to arrive at the condition. ’. ‘
Let a be a root of f(a). Consider the zero of & (a)+eg(a) where

gla) =g, + g1@ +e..t gna" (5.20)
By the theory on series reversion, the change in root location can be

bounded for sufficiently small € as

% g g(a) 2 -
a(e) a+ ez,(a) < ke (5.21)
where

L' = _9 g(a)
da
or,

a(e) - an~ e g(8) 5.22
(€) oy £ 8 %8 ( )

As expected, the crucial factor in root sensitivity is the slope at the
root. In the earlier discussions, the fact that the slope of the deriv-

ative functions at & increases as the number of samples increases was

pointed out.
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SECTION VI

SUMMARY OF RESULTS AND CONCLUSIONS

Likelihood equations expressing the MLE for each of four initial |
condition assumptions were derived. The finite sample and large sample |
characteristics of the estimators were examined. Computationally |
efficient approximations to the MLE were proposed and investigated. l
The finite sample and large sample characteristics as well as the |
approximations are discussed for models without plant noise whereas

likelihood equations are presented for both models with and without

plant noise.
The likelihood equations based on the scalar model can be expressed

as polynomials in the unknown parameter a for each of the four initial ]

condition situations considered. For the vector-matrix model (without 1
plant noise) the likelihood equations for initial condition x, known
and x, unknown parameter are again polynomials but now are polynomials
in the matrix A with matrix coefficients. The character of the poly-
nomials varies considerably with initial condition assumptions. One

particularly interesting observation in this regard is that the MLE

without plant noise when X, is known or is an unknown parameter does
not explicitly depend on the variance of the measurement noise. Also,
the degree and camplexity of the polynomials increase with the number
of samples upon which the estimate is based. This expansion appears to
be unavoidable because by the work of Dynkin no sufficient statistic
other than the trivial one (all the samples) exists when x - is known

or an unknown parameter. The same conclusion is expected to hold for




the other two initial condition cases since in those situations the
samples are neither independent nor identically distributed.

For finite samples the scalar MLE in all four cases approaches the
true parameter value as the noise goes to zero. A similar but stronger
result is given by Theorem 4.1 which says that on the average the true
parameter value is a root of the likelihood equation. The converse of
that, the average of the roots of the likelihood equation corresponds
to the true value of the parameter, was not shown nor is it clear that
such is the case. Also, in the limit as the measurement noise goes to
zero, the MLE for stable scalar autonomous models is the only stable
root of the likelihood equations and, as already mentioned, is equal
to the true parameter value. The simulations indicate that this con-
clusion may be nearly true even for non-zero forcing functions and up
to moderate noise levels if the true parameter value is stable and not
in the neighborhood of %1, but extraneous roots do occur outside of
(-1,1).

Concern for possible problems that could be encountered in the
numerical solution of the polynomial likelihood equations is lessened
by evidence from the simulations that for stable models the derivatives
of the likelihood functions in the interval (-1,1) are relatively
smooth and rather insensitive to perturbations from noise up to moderate
levels. A development by Wilkinson shows that an important factor in
the sensitivity of roots of polynomials with respect to perturbations
in their coefficients is the magnitude of the slope of the polynomial
at the roots. In the simulation results, the slope at the root

corresponding to the MLE was observed to increase as the number of
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samples increased. The shape of the derivatives of the likelihood

functions varies considerably with true parameter value and can have
peaks in the neighborhood of the roots. In the light of this and
discussions by Barnett, regula falsi makes a good choice for a numerical
method to compute the roots of the scalar likelihood egquations.

The MLE settles down after the first few samples in the simulations.
Any improvement after that comes about rather slowly if at all. When
X, is an unknown random variable, even a relatively large difference
between the actual initial condition and the mean initial condition
appears to have no significant effect except for a transient during the
first couple of estimates. The ML estimators generally performed well
on an absolute scale as well as relative to least squares and any
approximate ML estimators. Though the form of the estimator depends
on the initial condition assumption, they appear to perform similarly
for the same set of measurements.

The cost and derivativé functioné for matrix parameters appear
relatively smooth over the region of interest in the situations which
were simulated. Along a vector through the true matrix in n? A-matrix
space, the roots (or minima, as the case may be) of the derivative
functions occurred in the neighborhood of the true value of A when the
noise level was relatively low.

The only large sample property investigated was consistency. The
MLE when Xo is known was shown to be consistent for stable scalar
models. The same arguments for consistency appear to hold also when Xo

is an unknown parameter and when X, is an unknown random variable.

Because of lack of uniqueness in the limit, consistency for autonomous
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models was not shown. Though improvements in the MLE can be expected
initially for stable autonomous systems, continued improvement that
may well be theoretically possible for increasing but still finite
numbers of samples cannot be expected to occur because of the finite
word length of any processing computer. The Monte Carlo simulation
results tend to substantiate the above conclusions.

To overcome the growth in complexity of the MLE computed with
increasing numbers of samples, two approximations to the ML estimator
are proposed- average coefficient and recursive curve fitting. The
average coefficient approximation can be based on any length string of
samples but only the two-sample form was considered. This approximation
scheme applies in both scalar and matrix situations, but only to the
differencing approach and X, unknown parameter case. Since there is no
simple way to account for the initial condition information in the
cases where X, is known or X, is an unknown random variable, the unknown
parameter approximation was assumed to serve for these cases also.

Both the two-sample approximations are related to other approximations
and estimators in the literature.

The estimates in both average coefficient approximations approach
the true parameter value as the noise goes to zero, and the expectation
of their noise terms is zero. The one for X, unknown parameter always
has two real roots, one in [-1,1] and the second in (-l,l)c, and gives
a consistent estimate if the input to the system is a constant. In the
one for the differencing approach, the root locations are roughly
similar if the noise level is low. For this case the large sample root

is zero if the model is autonomous. The performance of these methods

in the simuktions lies between least quares and ML.
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The curve fitting method can be based on any number of points but
the greater the number of points the less the computational advantage 3
becomes. (The same is true for string length in the average coefficient
methods.) For three points separated by 0.1 which span the true param-
eter value, the simulation of this approximation yielded an estimate
good to nearly two significant figures. This approximation performs
well if the derivative of the likelihood function is smooth near the
desired root, but as presented can be used only with scalar likelihood
equations.

A number of questions remain only partially answered. Evidence on
the usefulness of initial condition information was not very conclusive.
The numerical aspects of the solution of the matrix likelihocod equations
as well as the properties of the solutions were only touched upon.
Finite sample root distributions were not firmly established.

There are many possible extensions to this study including increas-
ing the unknown parameters to include the H and B matrices or parameters
in the noise distribution, input measurement noise, time varying
coefficients, and A matrices some of whose elements are known. As a
special case of the latter, further studies of the companion matrix

form of A should be considered since the multiparameter identification

T g AR

problem is often posed in this form. E
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APPENDIX A

AR A 0,

DETERMINANT AND INVERSE OF MEASUREMENT COVARIANCE - x, RANDOM VARIABLE

1 Let R = oI + Baa” a.l
where:

a’ = (l,a,...,aN)

®
. &
3
[ & I = identity matrix
3
: E a, B, and a are real numbers
&
; Theorem A.l: Let R be the (N+1) x (N+1) matrix defined by (A.l). Then
L
: its determinant can be expressed as
b %
 § o
i |r| = ¥ +8 ] a%i) .2
g i=0
E {
2 Proof:

Since the rank of a is one, the rank A, where A £ 337,
cannot be greater than one. Clearly, the rank of A is one.
Then if

8 =0, |R| =a¥, and if a = 0, |R| = 0.

ol 3. 3. SR 4o T ATRATIER S I

Assume a and B not zero. a is a non-trivial eigenvector
of A, 1.e.,

A2 = (a'a)a o
Because A is symmetric, there exists an orthogonal matrix M
such that A = M A M" where A = diag(a¥a,0,...,0). Then

|Mear + ga)u7) | = o(a + Bava) A g

Theorem A.2: Let R be the (N+1) x (N+1) matrix defined in (A.l). Then

its inverse can be expressed as

R = L7 - a—;—+§g = aa')
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Proof:

I¥ a = 0, R™! does not exist, and if 8 = 0, R~} = q~Ir,
Assume a and B not zero. Then by (A.3) and the symmetry of A.
there exists an orthogonal matrix ¥ such that

M"RM = oI + B diag(A,0,...,0)

where

xngy
The inverse of (A.6) is

NTR™IM = aiag[(a+BA)"!,a"!,...,a"!)

= =11 + diag(v,0,...,0)
where
v = -8\a"1/(a+BA)

Since MMT = MM = T, M must have the form

Then,
R = a’lr + (v//R)¥N"

where,

R™! = a”l1 + ;-..'
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APPENDIX B

DETERMINANT AND INVERSE OF TRI-DIAGONAL TOEPLITZ MATRIX

Let Ty be an N x N tri-diagonal Toeplitz matrix where

TN = ol + BIo B.l
0.1,
NoN 1@
15\\\ \\\
IO = \\:\\ e 5 B.2
\\\\ ~
N

and where I is the identity matrix. The coefficients a and B are real.

B.1l THE DETERMINANT OF Ty
The eigenvalues of I, are the roots of Ay(A) where
Ay = det (AT - Ip) B.3
Based on Grenander and Szego (1958, §5.3], Ay of (B.3) can be expressed

as a recursion from which the roots can be found.

AN - XAN_J b2 AN': ’ N = 3,‘,.-- B-‘
where
Al(x) = A
2
Aa(l) = ¢ -1
Solving the difference equation:
22 - Az +1=0 B.S
or, 2 , = FOAATT) 8.6

The coefficients ¢, and ¢, are difficult to evaluate when AN is

1
expressed in the form of (B.7). The following change of variable helps

overcome this. Take a such that,

2
A = 1ta , B.8
a
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Then the roots in (B.6) became,

2,2, = a,a”! B.9
The solution to (B.4) in terms of a is

by = c,a" + c,aV B.10
The coefficients are found from the initial conditions:

8, = (1+a?)/a = C,a + C,/a

A, = [(1+2a%+a%)/a?] - 1
= (1+a’+a")/a? = c,a? + C,/a?
or,
¢, = -a%/(1-a%) B.11
Cy = 1/(1-a%) (B.12)
From (B.1l0),
by = 7%532?5;- 8.13

The roots of AN in terms of a are roots of unity. Noting that

a = t]1 is not a root of AN' the roots are

i(N+)

‘k = e k=1,00.,N,N+2,...,2N+1 B.1l4
or in temms of A,
Ak = eiiggg + e-ij§§§
= 2 cos %%g; k=1,...,N,N+2,...,2N+1 B.15
Since Ty is N x N, there are N eigenvalues. 1In (B.15), roots for

N+2 < k < 2N+1 duplicate those for 1 < k < N. Therefore, the eigen-

values of (B.2) are

A = 2 cos %§7 kK= 1,2,00.,N 8.16
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Because I is real and symmetric, there exists a similarity transforma-
tion to diagonalize I.. Thus,
N
km
|z, = k‘[l; (a + 28 cos 37 5.17

As a special case, let a = 0%(1+r2) and B = -02r. Then from B.13

1.1.2"4'2

ITNI = (-02r)N = (02)N (14124, .4r2N) B.18

(1-r2) (-r)¥
(The result in (B.18) could have been obtained somewhat more directly

r
by factoring Ty into the form GNGN .)

B.2 INVERSE OF 7,
Let T, = [t ] and TN'I = [t;4]. since T, is symmetric, 5

need be determmined only for j > i,

The cofactor of tij' j 2 i, has the form:

Tl-l: Bl i
..... !.. _-.-...: By
D
-3
0 ;..l-_.' ......

where Dj-j is a (j-i) x (j-i) upper triangular matrix with B along the
diagonal and T, is of the form (B.1). Then
i+
Tig = (=1) jITi-ll IDj-ll 'Tn-jlllryl
= -8)37 7y )| |7y sl/17,] 334 B.19
where
Ty ® 1
As a special case, let a = 0? (1+r2) and B = -02r. Then for J 24,

;  d=1N=j N
L FUR L e it O o B.20
07 s=0 t=0 v=0
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APPENDIX C

THE LIKELIHOOD EQUATION FOR THE SCALAR AUTONOMOUS DIFFERENCING APPROACH

From Equation (3.64), the likelihood function for the scalar

autonomous differencing approach after N+1 samples is

Le = (20 %|R|V2exp -1 §27RVpe)
where:
9*' = [(y:-‘%),..-,{y,‘"yu-g )]
’1+a\2 -a
O T

R = g2 . . .

Let g* = y ! - ay 0
where:
()T = (Ygreeeryy)

(Y007 = (Ypseenr¥py)

Forming Q__J%E__{w_g = 0 gives:
-1, d E
-IRI TV gIRD + 205,077y, -ay,®)

= (9~1“9~°)’(§% R7Y) (gt -ay,0) = 0
From (3.67):

N

IRI = (02)~ z a2l ¢ (02)"|R‘|
i=0

R 2 ar,

where: R, is the adjoint of %‘[ R

c.1l

c.2

c.8

c.9
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a = (Ule, I)-l

N
Il = (0" 2|x,|

A gl o981 4 g
2t Taf trah
where
d el 2,-1 _d|
32 @ = %R |27 R, |
From (3.68)

i-1 N-
I'.-l P { Zj QZ(COl)oj-l ,j2 i
B 0 s=0

d N s
2:131| =2 ] pa?r-
p=0

i=-1 N-j
af‘.’:" = E Z 12(s+k)+j-1],2 (Sek)+j~1-)

k=0 s=0
Multiplying through (C.7) by °2|R|2/(02)“' s

VN + Q~ = 0
where

d
W = -o?|Ry |3|31|

¥ gl
0= -(y,,‘)'r-(ﬁla,l)azl + |Rgl35 RS 1Y,

C.10

c.1l1

C.12

.13

C.14

c.15

C.1l6

C. 17

c.18

C.19

+ 2(y0) TRy (RS) - a(ag-la,l)a;l + a|Ry | d—g’-n.“w.‘

- a(y,%)"12|ry| (RgY) - a(a%IR,DR;l + a|3,|£ R,“(

19,°

C.20)

The reduced form of (C.20) is relatively simple. At this time

no simple way has been uncovered that yields (3.73) from (C.20).

inductive proof will be given instead after the following lengthy

Lemma is established.
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Lemma Let A

-

1= O " Qg c.21
Then,
N-1
=2 ] (N-k)a
k=0

a(Nek)-2 5 :

AN-J

N-1 N "

; Neje2p=y ‘

+ 2 X z (N+i-2p)a i Yi :
i=0 p=0

N-1 N-1
- 1L (amejena®t ity c.22
r=0 j=0

Proof:

From (C.20) and the preceding definitions:

N g N 1=l Nei L.,
EE ™™t ¢ Y STt
p=0 i=1 k=0 =0

o

N ., N=1 N i=1N-j 5
+ 2¢( Z 2pazp 1)[ Z X ( Z z P Jy;yl
p=0 i=]1 j=i+l k=0 s=0

N N i-1 N-i
Csek)-
(Y 2L e 3 raewga "Nt
p=0 i=1 k=0 .s=0

N, N1 N i1 N=j
2() a*®r) Y () Y r2(stk)+j-i]a
p=0 i=1 j=i+l k=0 s=0

2(sek)+3-i-

Dyiusl

+

N N N i=1 N-j .
2 aWrd Tt} ) o y;l
p=0 i=] j=i k=0 s=0

N N-1 N i-l N-=j s
PRb) aMFLT (F T e Y el
- i=1 jei+l k=0 s=0

N N N i-1 N=j £3;
- Za( Z 2paz"1)[ z Z ( z z aZ(s.k) ) i)yi-j 9,']
p=0 i=] j=i k=0 s=0

N L, N=l N il N=f
YT e TE I S A i et T TRT
pe0 i=1 j=i+l k=0 =0




2 N idrd Bef 2(sehdejed-2
+ 2a( { a"®)( Z I I I (2stk)+j-ila )yi-294]
p=0 i=] j=i k=0 s=0

¥ oo W1 R 118
+2a() a®iI] (Y 1 [2(stk)+j-i]a
p=0

&(sok)ej-4-3
i=] j=i+l k=0 s=0

j Yj5-2 ]

N N i-1 N-i
% 2.( 2 ‘a')[ 2 ( Z 2 ‘3(.”‘) )yi,“]
p=0 i=1 k=0 s=0

N 2 N-1 N i-l N-j
-da(] af)i] )

2 2(sek)ej-i
p=0 i=1 j-§+1 k=0 s=0

)Yj.q Yj-141

N N i~l N-i
BT e el 0 T 3 2" MY
p=0 i=1 k=0 s=0

+

N-1 N 1i-1 N-j 3
2a (z 2pa®?Y) [y (] § ol ruesl
p=0 i=] je=i+l k=0 s=0

+

L 2Csek)-1
a (2 a*h) ] Y ) (2(stk))a )yi.g%1
p=0 i=] k=0 s=0

2p ot & s 00 2(seh)ey-i
2a (X a*f)ry (7 1 (2(s+k)+j-i]a Y y50950)
i=] j=i+l k=0 s=0

(c.23)
Forming Qy - Oy-) and accounting for the fact that the
inverses (C.14) hold only for j > i gives:
By-g = 0y = Qp.g
2N-1 N i-1 N-i

= 2Na - [ Z ( 2 2 a!(.‘k)
i=1 k=0 s=0

)9521

N-1 N i-1
+ ( X 2pa3’ Y Z ( ): aam“‘“)yjll
p=0 i=1 k=0

N-1 N i-1 N-j il
an- 1[ z ; ( .t(“ﬁ)C,

+ 4Na ") vgugl
i=1 j=i+l k=0 s=0
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N=-1 N=-1 N i-1 P
2¢] NPT § (3 Aty

p=0 i=]l jmi+l k=0

+

N i-1 N-i
a*1 T (Y ] r2aser1at Rty
i=] k=0 s=0

N-1 2 N i-1
(Y a®)r) (] r(2N-i+k)]a
p=0 i=1 k=0

A(N-iek)es, 2
4 dy; ]

N i-1 N-j

i=1 jmitl k=0 s=0

N-1 N-1 N

i-1
-2¢] &7 T () (20wek)-j-i]a
p=0 i=1 j=i+l1 k=0
N N i-1 N-j 2
- 232N[ Z z ( Z Z a3(3¢k)01 :)yiql y,]

i=] j=i k=0 s=0

N-1 N N i-1
2 Nek )=y~
- aMr il AR e
p=0 i=1 j=i k=0
N-1 N i-1 N-j ,
+ 2‘2"[ Z ( .3f"‘)0’-j
i=1 jei+l k=0 s=0

Jyiys.2l
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p=0 i=]l j=i+l k=0
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i=] jei k=0 s=0
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p=0 i=1 j=i k=0

Jyi-g 5]
N-1 N i-1 N-j ek i
£ 4Ndz~[ Z z ( 2 2 al(t k)ey-2

Jyivs.al
i=1 j=i+l k=0 s=0

N-1 N-1 N -1 :
-2() 2pa®)( ] NI g """‘)9193-4]
p=0 i=1 j=i+l k=0
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3 2a2¥* N 1-1 N-j 3(osh)ej-d=g
+ [ 2 ) { [2(stk)+j-i]a )yi-g y3]
i=] j=i k=0 s=0

N i-1 e
+ 2( z ah § T I (20wek)-j-11a20057371) g, ggg
p=0 i=1 j=i k=0

N-1 N i-1 N-j

222" Y () Y 12(stk)eg-igat ANt s a0
i=1 j=i+l k=0 s=0
N-1 N-1 N i=1 e
+20F a*Y 7V (] r2mk)-jiga® MY gy g
p=0 i=1 j=i+l k=0
., N i=1 N-i
. L ZNJ ( z 2 2(sehk) 1-121
i i .i-l k=0 s=0

N-1 N i-1
- 2 Z e 2,‘1)[ z ( Z a‘(N 10‘))91-13]
p=0 i=1 k=0

N-1 N  i=l N=j
2ne1 Blaek)ej-i
- 4a G =t ] A e
i=1 j=itl k=0 s=0

N-1 N~1 N i-
- - 2(N+ -
vt a™hE] el o T e
p=0 i=1 j=i+l k=0
N i-1 N-i
+ 2Na 2~¢:[ z ( z 2 a“"”)yj-z 3]
; i=1 k=0 s=0
; N-1 T ;
¥ 3pe 2(N-1+
i +€F pa®Tpe ) o] T e
{ p=0 i=1 k=0
%

N-1 N i=1 N-=j
2N a S
s T boel Y aT e svngi
i=1 j=i+l k=0 s=0

N-1 N-1 N i-1 3
; + 2¢) 2pazp‘1)[ ) 3 C] i ’-'i)y"-l Yj-al
p=0 i=1 j=itl k=0

N i-l1 N-i
a3 5 (T T rasrk)1a PN g .2
i=] k=0 s=0

e

167




N=1 N il aW-ion
- () atey§ (] (2n-itk)]a " )9l
p=0 i=] k=0

N-1 N i-1 N-j
=25 S (] ) (2>stk)eg-11ad ANy g
i=]1 j=i+l k=0 s=0

o< S ¥el: ool 2(Wek)-j-1-1
-2c) a3 ] Y (] r2wek)-j-i]ad@WIY s 0 yig1
p=0 i=1 j=i+l k=0

C.24
Considering the 32 terms of (C.24) and combining them in the
following grouwps - (1,5), (2,6), (3,7), (4,8), (9,13,17), |
(10,14,18), (11,15,19), (12,16,20), (21,25,29), (22,26,30),
(23,27,31), and (24,28,32) gives:
§ e A(Nssek)-3, 2
fus i-zrl (kzo szo e .
N i-1 N-1

Y (3 ¥ r2n-isk-plad(Mihercy,y 2
i=1 k=0 p=0

N-1 N i-1 N-j

+27 T (] ¥ [20-s-k)-jrijatNrecnicia, gy,
i=1 j=i+1 k=0 s=0
N-1 N i-1 N-1 e

2] ] (I 1 12k-p)-j-ijatNeAtRIicicd)y,
i=1 j=i+l k=0 p=0
N N i-1N-j :

2] T 1 t2N-s-k)-jri-1]a® VNI g,
i=1 j=i k=0 s=0
N N i-1N-1 ;

+2% 1 (L ] r2(ek-p)-j-ierjadVAoRsicdyg, oy,

i=1 j=i k=0 p=0 :

N-1 N  i-1 N-j :
2 T (Y ¥ r2-s-k)-jei-1atcseRNId, .
i=1 j=itl k=0 s=0




AR et Aoy, St B ARl tens,,

A TP S G

RS T RN A i e, B g

Byg= L (] I f2(v-s-k)]a

N-1 N i-1 N-1

+

iw] j=i+l k=0 p=0

N i-l N-i
i=1 k=0 s=0
N i-1 N-1
-2 X ( Z Z [N-i{-k-p.‘.l].z(”'lok")oj)yi.zz
i=1 k=0 p=0
N=1 N i=1 N~]
+:2.] Y ¢Y 1 (2(N-s-k-1)-j+i]a

i=] j=it+l k=0 s=0

N-1 N i-1N-1
-2) Y (] } [2(N+k-ptl)-j-ila
i=l j=i+l k=0 p=0

2(N+3eh)v 3y -i.z)y.
2

2(Nskep)-;

27 Y (] 1 (2(Nek-p)-j-i+1]aPNAURIICh)

-1 Y5-1

342 ys 1 i

c.25

Combining texms 3 and 5, 4 and 6, 7 and 11, 8 and 12 of

(C.25) gives:

B 1-1 N-d 2(NosskI-1, 2
)y;

i=1 k=0 s=0

N i-1 N-1 e
- (Y 1 (2n-ivk-p)jadNicheRI-t), 2
i=1 k=0 p=0

N i-1 N-i
+2) () ) [N-s-k-1l]a
i=1 k=0 s=0

z(Nuoh)oS) y 2
i-1

N i-1 N-1
=27 () ) (N-itk-ptl]a
i=1 k=0 p=0

Nedekep)
2(N-i+ke+p)+l )91'-12

N-1 N N-j
-27 () (2(N-s)-j-i]a
i=0 j=i+1 s=0

2(Nes)ey4i-1 Py
2

N-1 N N-1 PR B
+2) ) (] [2N-p)-jri]ad NI,y
i=0 j=i+1 p=0




R ST o —————

T T T 40 b

LI 2(Nes)e3ed
+2] 1 () (2-s)-3-11a3NDti-3,y y.
im1 jmi+l s=0

B 2(N+sek 2
27 (Y 1 r2mw-s-k-1)]a foie . P
i=2 k=0 s=0

N i-2 N-1 3 P
27 () ) [2k-p-i+1)jatWrAvRcda,,, 2
i=2 k=0 p=0

+

N-1 N N-1 :
25 ) (] (2-p)-jrijadPer)-iei-a,,
i=1 j=i+l p=0

Y54 C.26

Combining terms 3 and 8, 6 and 10, and 2, 4, and 9 in

(C.26) gives:

N i-1 N-i
Opng T z ( 2 z [z(N‘S-k)]a"(””"‘"")yiz
i=1 k=0 s=0

N-1 N N-j
-2 z z ( Z [2(N-s)_j_i]a‘(NOS)Oj‘j-l)yjyj
i=0 j=i+l s=0

N N-i PAPIEEIR
2) (] (N-s-i]a®Wre0i)=1,,. B
i=] s=0

+

N i-2 N-i o F
2] (] I [N-s-k-1]aWtethied)y.
i=2 k=0 s=0

N-1 N N-j PR
2] § (] (3m-s)=3=1]a®NOliNt) gy, .
i=1 jeitl s=0

+

N-1 N-1 NtZped
25 (] (N-2ptija” o) gy,
i=0 p=0

+

N-1 N-1 2
2] ] (n-pja®Nepr-1y.2 c.27
i=0 p=0 3

Combining terms 1 and 4 and 2 and 5 in (C.27) gives:




T DY SISt st A AP e 27 1 B

N N-i
a,,=2 () [N-s-i]adNesridca,,, 2
i=1 s=0

N=1 N-1
+2) ()] (N-2p+i]a
i=0 p=0

N'”oj-j) Y Y

2(wn+k)

+2) () (v-kla Yy, 2

N N e
-2) ) [aw-j-ir2]ad NI )y Ly c.28
i=1 j=i

Rearranging and combining terms in (C.28) gives the desired

result:
N-1
By, w2} Dekla TR

k=0
N=1 N '

+2] () [N-2p+i]a™*iPticd)y g
i=0 p=0
N-1 N-1

e Yo -

= 3 1 faw-j-ija®MVeItEY,y, c.29

i=0 j=0

Proposition Let Oy be defined by Equation (C.20). Then Qy can be

written as:

N N N Pk
op=2 1 I 1 c-e)aftrivi-igy, c.30
t=0 i=0 j=0

Proof:
By induction using (C.23), the expanded version of (C.20),
o Zay,z + 2(1+a2)gby, - ¢a2y,y‘ - 2a(1+az)y,2 + 2a3y,2

= 2y,y, + (2y,%-2y,%)a ~ 2y,y,a? c.31
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From (C.30) ’
01 - 2(909; + ‘yga i ayoa i ‘ayoyl)
Again from (C.30),

N-1 N-1 N-1 i
B, *2 [ .1 [ cenaPteiniag,,
t=0 i=0 j=0

Assume (C.30) true for N-1. Then by the Lemma,

QN'J * AN-.’
N-1 N-1 N-1 el
LSRR R e
t=0 i=0 j=0

s 2(nen)-1 2
¥ 1 ety

k=0

N-1 N e
2 ] 1 (w-apri)a™ ety
i=0 p=0

N-1 N-1 ,
I I (an-j-i)a2¥ed-dy, .
i=0 j=0

N-1 N-1 N-1 e
(i-t)aftrdsiz1y, .
t=0 i=0 §=0

NN
2} 1 1 (eeateivdg,
t=0 i=N j=N

N N-1 N 26+d
2 ] 1 1 t-rjattrivciy,,
t=0 i=0 j=N

N N N-1 :
2 ] )1 1 t-rjafteideag,,
t=0 i=N j=0

N N-1 N-1
2 ) 1 1 -ryattdeiidgy,
t=N i=0 j=0

N N N e
=2 ) ) ] (-r)adtittly gy,
t=0 i=0 j=0
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Another version of Qy (Equation 3.72) was developed. It is

written in the standard form of a polynomial and as such was to have

been used with known polynomial theory to yield information on root

locations. The form of the coefficients of the polynomial, being

quadratic forms in the measurements, is interesting. However, Q

as expressed by (3.73) (or (C.30)) has more practical value computation-

N

ally.

A proof by induction is outlined for this second version:

2(2:21-1) A

o, " ly,"( g (k+1-4i)S, ., . ,,J)y,]a c.37
N S0 N P kel-N-24 (Y

where:

Yo' = (Yoreeeryy)
Sp = shift matrix

J = unit Hankel matrix

J)y, 1a*

2 1
Q = I ly,"( ] (k+1-4i)s,
¥ w0 ° 1% s

= 2yy, + 2y,2a - 2y,za - 2y,y,a' Cc.38

Assume (C.37) true for N-1. Then

Q0u., = 2(21Zv-3) 1R fl (k+1-41)S J)y, , la*
N-1 o N-g ot Ke2-N-25 N-2
2(2N-3) , N .
- kzo ly,* (120 (kt1=4d)s\ o . . Jy,*la  c.39
where
Up* " = (Yo s¥g 1everbpuys0)

Consider Qpneg * By

Working with the first term of Aw‘
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ey oI i o A SN e A S L S “

N-1

2(Nh- 2
2 ] m-ka o
k=0
4N-3
- Z (CN-k-.l)a.yu »
k=2N=-1
(k odd)
4&21-3 Nil e
- (dN=k-1) ( S J)a'y
Kk=2N-1 i e
2(2:{-1) r{ Ea
= {(o"iy,) ( (k+1-41)8 J) [=|}a C.40
k=0 ¥ im0 B RS 1
Working with the second term of AN,‘:
N-1 N )
J-
2 J (] mei-299a" g,
i=0  j=0
N-1  j+3N-1 y
= J 1 ) (2N+2j-k-1)a yzy, ]
j=0  k=j+N-1
where
k = j+~"1,j+~+1,j+~+3'-0-
4N52 I§ Ye X
=2 (0...0y.)( (k+1-4i)s 7| |a c.41
k=0 w " im0 e
Working with the third temm of AN-: :
N-1 N-1
- 1 T (aw-per) R gy,
p=0 r=0
2N-1 v eNe k-2
= ] [yT(k-1-2n)s, oy, la
k=1
4N-2 d
= t 2 4 - *
kzo [YXT (kt1-4N)S, o Ty, *]a c.42

Combining (C.39) and (C.42) gives
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PP el e m“gp',ﬁ,w;.n'm. o

e S L s

an-2 N
I 1yt ) e2-e1)s

k=0 i=0 e

4aN=2

On-g *On-2 ™ xzo {7 ( igo (x+

= Q~

Returning to VN
d

VN - -Glezld;' lall

N N
= =202 73 q.:‘"‘"""J
p=0 g=0

Iy, *1a*
ives

1-41i)s,

*3=-N-2i

J) v,

]a*

vV, can be expressed in standard polynomial form though in a

N

somewhat awkward manner,

N+d e
v = -292 'f I (k-i)a®*?
i=0 k=i

N k 5
=-202f § ) (k-i)a®*** +
k=1 i=0

w R N
=202 J [ ] t+ J v¢la
k=1 t=0 t=k-N

(k<N) (k>N)
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2N N
B
k=N+1 i=k-N

ak-2

(k-i)a

3k-1

(Equation (C.19)), and using (C.16) and (C.8),

1

C.43

C.44

C.45

C.46

e,
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APPENDIX D

THE LIKELIHOOD EQUATIONS WITH PLANT NOISE

D.1l THE MODEL
Xj.y = ax; + buj + &£
y; = hx; + ng i=0,1,...
where:
{€;)} independent and &; ~7)(0,8%)
{n;} independent and independent of {{;}
n; v7)(0,0%)

From (D.l),

D.1

i i i-g i i-k :
y; = ha x4 + hb Za uy.4 + h Za Ex-g * Nj i = 1,2,.04
k=1

j=1

Yo = hxg + ng

D.2 x, KNOWN
a. The likelihood function
Because of the assumed independence,
(n; roce ln~IE‘ reoce lgu,l ) "‘n(oanE)
where:
0

B2r

o?r
- - - ——

0

e o

RﬂE

From the model (D.l) and Equation (D.2),

¥, a U, Ee n,
e | =mxy, | o [+mp0| o [+me| o [+

or with the obvious definitions,
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D.2

D.3

D.4
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\\ ~ N
e ¥ N

a*e . Caftan)

From (D.3) and (D.5), the likelihood function is given as,
L = p(Yyseeeryyra)
- (2]t |2, % expl -4 |y -x, ay-nboup| | ;)
where,
Ry = O Rp;0;
¢ = [1 |m]
b. The determinant of Ry
Ry = & Rpe8" = 021 + h28%00"

[Ry| = #1020 (e") ! + n2821)07|

- IOZQ.I(Q') o h2821|
Since,
-:‘\ ~ o
Q-l = b \\\
\\ \
0 -a'l
then,
l -a
-a_l+a® >~ O
e l(em) ! = T
\\ \\\ \’a
O T et

Let the N x N matrices Y, and A, be defined as,

s 0'1(0') -1

€
£ 4
1»
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D.5

D.6

D.7

D.8

D.9

D.10

D.11

D.12

D.13

i
§
|




1+a? -a 3
..:~‘\ \‘\ O {
a,t Wi N T D.14 R
\\\\‘~“~_. ;
| 0 “-a l+a? 1 ]
Let L, be the determinant of the t x t matrix of the 2
? form given by (D.9), i.e., L, = |R,|. Using Equation (B.1l7), ;

Lt may be expressed as:

LL, = (02)* |v2r + ¥, |

= (02)° [(1+v2) | V21 + A,_, |-a?|v21 + A, ,|] i
E
{ t-1 ;
{ = 02) {2 TT v + 1+ a - 2a cos {,i)] i
: k=1 1
| %
| £-2 L !
E | -a? Tl v?*+1+a%-2acos ;) ,t23 D.15 ’
E | k=1 -
" where,
5 ve = h232/02

i and,
£
1

L, = o2 + h?p2

1 a
det {021 + B2m? }
a 1+a?

4
~
n

= g% + 0282h%(2+a2) + h“g" \

PRTEN

Consider the determinant Jp where

Ip = |02 (Vi1 + Ay |

P
'(02)‘,"(\)24-14-&2-20008% w21 D.16
k=1

- T I AL e S T

] andJo..l-

emraog .

Then (D.15) may be rewritten as

L, = (02 + h?8%)J,_, - a%d"7,, D.17

TR
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and

c. The inverse of Ry

From Equation (D.9)

5
:
lgyl =1L, D.18 ;
3
1
1
3

Ry'l = (¢7) lp ¢! D.19 , |

where,
R = (15 = [0207 (07) ! + W2B21) D.20
By the same process that led to Equation (B.19),
rij*t = (°2a)5.i(51-1)(.7~.,-)/(1.,) »F 2 1 D.21

where,

4 j‘l

d. The likelihood equation | 3

= ri “1

Forming = 0 from (D.6) gives,

dlog L
da d

Ryl ™ GzlR,l) + {(y,-hx, ay-hbou,) 7 (35 ;1)

- 2[hx, fﬁ ay) + hb(ﬁ ®)u,] Ry 1} (y, -hx, g, ~hbdu,)

= 0 g D.22

D.3 xo, UNKNOWN PARAMETER
The likelihood equation for a is given by Equation (D.22) with

X, replaced by £,. From (D.2),

i yﬂ 1 r 1 1 ; fl. 1

Yy a u, Eo ng

Y, a? uy €1 ng

. = hxp| * + hbo,| - + hd,| - + | D.23
L Y ) | a" | Upeg En-1 n )

L R
where: =
o ®




Considering the set of random variables (n,,My see«/NysE,ree-s€yg), { 3

i the likelihood function can be written as:

i: -
E | N 2 j
! = = = 1 ,
’. g L= (2m) 71(02) %IRyI '}exp{- 7 [llg- ,gn-hMu,,Ilel {
; + (02) 1(y,-hx,)2]} D.24 g
E ] 9L |
| L2
; Forming axg gives, * 1
(y,,-hx.a,,-mu,,)'ny'lg,, + (02) 1 (y,-hxe) = 0 D.25 i
f or, 2, = [(y,-hbdy,) 'Ry'lg,,oz+g.]/[h(1+g~'n y‘lg,‘oz)] D.26 :
D.4 X, UNKNOWN RANDOM VARIABLE ;
, a. The likelihood function 1 3
Eﬁ
Assume: x, v T) (%, %) ]
and x, independent of {;} and {nj}
E ! By independence,
(X, 4, Mg recesNyrarEgree "EN-I) v 77 (%, "RlﬂE) D.27 1
1 where: i
(X-*)' - (’o +0,0..,0)
21 ) »
- - -P- | - e - -
R = Er L €
l xng 0 "o TRt
3
f From (D.23) with the obvious definitions,
g" = hx,iN + hb@a!n + M.§~ + ﬁ” D.28 : i
Using (D.28) and (D.27), the likelihood function is,
: A
L = p(YosYy r+--s9ysa) ? :
-lz’.l s o8 L 2 !
= (2n) [Ryl exp{- -2-| Iyn-m.a,.-hbo.yul |§y-1} D.29 {
: where, 1

P r
Ry i m'mET

T = [hE, | I:!0,]
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b.mmaiy

From (D.29):
Ry = TR .77 = He28 A7 + oI + 20,07 D.30
where,
0 o o v g
0,
o |
0,0,7 = .E I
*
0.
Let
% = & - I, D.31
where,
10+ -0 FRANE e
0: :
01 - ‘! ® ’ I’ oo 01
o re g
ol |
Note that
G T =447 -4 LT -7+ 1"
=967 -1, D.32

Then,

- -1, 42 - -1
R, = ¢ [hPc?e, "14,8,7(4,7) 7 + o%, "1y )

+ B2r - 2, "l1, (4, ") 0,7

- 2.22 25 -1 -1 27
¢, [h°e“A + © 01 (8,71 + B°(I=1,)]8, " D.33
where
1l a E
R,
A=
0
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Let it be the determinant of the t X t matrix having the form

of Equation (D.33). Expressing ¢, ' in terms of (D.11) and

e

£ expanding the t x t matrix gives (noting that |®.1 | = 1)
[h2e2+02  ah?e? 0 o) .
; ah?e? a?n2e2+2+02 -ao?‘\
i 0 -ac? BZ+0%(1+a?) o =0
| e “~\h~‘ \‘~\\\\ bty
| 1 o CTceao? 242 (lea?)
D.34
or,
L, = (he?+02)[(h2c?a2+82402) (|821+0%A, _,|)
- azo"’(|821’+02At_3|)] -h“e“a2(|821+czat_5l)
= [h2e? (B2+02)+o? (h2e2a?+B2+02) ] (|82I+a%A, _,|)
- a2 (|B2r+02a,_3|) D.35

Using (B.17),
L, = [(02+h2c?) (B2+02)+02M2e2a?]5, 5 - a2"T,_; (t > 4) D.36
where:
gl oo 2.2
Ll o¢ + h‘e
I, = (02+h%e?) (0?+82) + h%eZa?o?
= 2
Ly = (02+h2e2) [ (02+82) +0282a2] + h2e2a202[B2+02 (1+a?)]
i- ~ nk
, dy = 'ﬁ' (82 + o2 (1+a?) - 2ac?cos — ]
: k=1 ptl
Thus,
lgyl o~ Luo‘ D-37
c. The inverse of Ey

From (D.33)

|
|
i
!

K
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S o, ey e
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R = )-lp-lp =1
Ry - (0‘ )R 0‘

where,

D.3a

R = (z351) = (n?e?h + o%¢,71 (8, 7)1 + 82(1-1,)1 7]

Following the same procedure to find (D.21) and (B.19),

N 3-i - -
13}1 - tjjl = (aza) (Lj.J) (Kn’z,j)/(la~") s J2 i

where:

K Neg=5 = -

30-1 .7"“_,, » 2SS J S N+l
Le=1

d. The likelihood equation

From (D.29), forming 5_’_1%_5_ = 0 gives,

- - d ~ i s ~
Ryl 1 (galRyl) + {(Gy=hZy dy=hbRe uy) " (52 Ry™)

(h2e2a?+82+0)g, , - .:zt.t"..im_‘t , 3 =1

D.39

D.40

- 2[h%e (35 3,) + hb(zE % )uyl "Ry} (5 -h%, &-hbbey,)

=0

D.5 THE DIFFERENCING APPROACH

a. The likelihood function
From (D.l), the equivalent model for this scheme is
Yjeg = ayj + hbuj + hEj + (ng, -an;) i =0,1,...
where: Yo is a known constant

Stacking (D.42):

Y, -ay, | | = ] b 1 BN
Yp ~ay, ug €y €y
. = hb - + h . + .
\ y.-.y~"i \ “U’l \ E*‘A \ ‘”"A
183
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where §; = nj, 4 - anyg
or with the obvious definitions
Yt = aYon = hbu, + §, + T,
Because of independence,
(Mg eMy reeeMyrBp oy recerly ) ~T)(0,0,,)

where:

Also,
(Eo"';o LA IEH.‘ +C”.‘ ) v 17 (O’REC)
where
Rep = Y0, ¥7

¥ = [Q {hI]

From (D.42), (D.43):
F 1 o3
y; = a‘y, + Z a’? (hbuj.z +h£7°,1+c7-_1) i .
Jj=1
Y
Since the Jacobian |aT| P Af = hgi + i is one,
L - P(91 19‘ I"'Iy";a)
%15 1% explodllur s
= (21)72|Ry[™2 expl-7| |y, 5-ayy,-hbuy| | Ry
where
R * Bep
b. The determinant and inverse of ﬁy

From (D.48) and (D.46),

Ry = g2Qa" + h2b2r

D.44

D.45

D.47

D.48

D.49

SRt bt oL T b

Adnlhanadode o7 odbol . -

R




D o .

Then from (B.17) and (B.19)

p
A UL M TR Tk
5, ):,-Tz [h*B%+0% (1+a%) -2a0% cos i ] D.50
-1
R~ = (2351) D.51
where:
R LN Lal WS Y: APVY: B R B D.52
Ikyl =J, D.53

c. The likelihood equation

dlogL
From (D.48) forming 'I—ZE— = 0 gives,

-1,d d - .
Ikyl 1 (El ky l) + { (9,,~-ay,‘~-hby~) & (a; Ry l)
= 2(Y,) ’Ry - (Yy,5~2Yo,n~hbUy)

=0 D.54
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APPENDIX E

RECURSIONS FOR FIXED POINT CURVE FITTING

E.1 x, KNOWN 4
From Equation (3.9), the derivative function D,(a) at some point ‘ ?
a, can be expressed as: 5
E 4
4 1 2 3
Dy(ay) = 121 [(y;-A;-hbU;) (iA;_) +hb(U;-U}))] E.1 |
where: §
A, = aim E.2
i 1 o .
i
"1 i-k
3 f ay oa E.3
2 aed k-1
i-1
v - ] iai-r-ly (Uf =0) E.4
4 r=]1 r-1
S e 3
v, = ] sal-%"lu,, (v, = 0) E.S
s=]

The recursions are given below for n 2 1.

Dy =By, + (y,,-An-th,l,) (Mn-1+hb(uz-u:)) E.6
where D, = 0

An = &2, E.7
where A) = a; hx,

U:, - llll;_l + up E.8
where U: = u, E.9

v, = n(2 Uney + tpez) E.9
where Uf =0

v =a vl + (n-l)u £.10

n 17n-1 n-2

where U} = 0
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E.2 X, UNKNOWN PARAMETER

This case is similar to the previous except x, becames x, which

changes with each new sample. Rearranging (E.1l) gives Dy(a) at some

point a, for this case.

Dy(a) = "; * "’; " ": 2 ”:;‘ou);ou

where:

o

s 19 i
b ] [(y;-hbUy) (U; - U;)]
i=]

N
-1
n-1 g, -nbv) (187 ))

N
3 i .2 3
D, = hb 121 [a,” (V;=U)]

N
D: hJ ialu :
i=]

From Equation (3.20)

x =Xx,/3,
oy N'°N
where:
N N i
2i-j
Xg= L uja -wp [ ] oa
i=0 im] j=]1
N
z"-h Z alu
i=0

The recursions for n > 1 are given below.

2 1
e

where A; = ]
X =x_ . +yA - nealet
n n-1 9n‘n n n

where xo =y,
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E.12

E.13

E.14

E.15

E.16

E.17

E.18

E.19

E.20




1.2
3, =3, , +hA) E.21

where zo-h 1\

IJl - D!
n n-

Tove 259
1 + b(yn-thn) ( Un-Un) E.22

where D: = 0
2 2 1 1
Dn - Dn-l + (yn-hbvn) (mn-l) E.23 % :
2 y
where Dl =y - hbuo ;

bt s

3 3 2 3
Dn - Dn-l + hba (Un-Un) E.24 g

S

3
where D = 0 |
1.1
nn-1

where D: - ),.1 p

4
D = -Dl' + hnA
n n-1

E.3 x_ UNKNOWN RANDOM VARIABLE }
From Equation (3.45), the derivative function DN(I) at some point
a, can be expressed as:
& 2
Dy(a,) = {{d? (02+h2e:2¢;) + hzxozaz‘l']cu
6 2 2,3 2 2.1 6,2 2
+ Cyl2CHHR o2+Chhb (02 +h2e2Cy) + Cohelcy q

o S a2, S 2ap2e2n)
2cNh be CN + c"hb(o +h“e CN)

+

7. 4 R 1
C"lcuhb(cz-l-hzezcu) <y (02+h? ezc,,)

3 2yin2 1
h!oo Y=o MOCNJ

9 2 react)2
Cy(h3be? (v+cy) 2]

W42 3 1
CNICNC”h"bzez -c"nzbz (02+h2¢ 2q,,)

+

- 2h2 2.2
2n%g _bo?cyl

+

3 1
Cy [h2g oboz (¥+Cy) ] ﬂ
c: {Bzobuz (wc,l,) -c;;h%? (o2+n2 e’c,l,) 1

+

Cy[h*B2e2 (vocy) ]} E.26

+

where:
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1
Cy = 2,/h E.27
2
;.28
Cy = D/h
s .3
Cy = Dy/hb E.29
. ¥ 1
¢, = I aiu; E.30
i=1
5 2 1
c = ) iai-ly E.31
3  6 N i
: c, - Y aiy; €.32
{ i=0
: 7 N
: i i=]
! & 'E’ 2. %
i = o
| i=]
}
| c 1Zv ww 03)1 E.35
i S Ve e e
| 2l
2 - E.36
% Y-z

2
Cys and c; are given by (E.21), (E.25),

and (E.24), respectively. The recursions for the remaining terms are

1
The recursions for cN'

given below for n > 1.

e I, AP I s

cl=cl .+ AU ,C; = au E.37

n n-1 n"n 1 1%

Sl i Ay .3

C; 7 c:_l + Apy, :C: =Y, + a,y, E.39
c, = o nal iy ,Cl = v, E.40 z
e ty - =0 E.41

R A B £.42 %
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E.4 DIFFERENCING APPROACH (AUTONOMOUS VERSION)

From Equations (3.70), (3.71), and (3.73), the derivative function

%
can be expressed as: ?

D,(a) at some point a
N ‘}
D, (a)) = - o2(F)) (F)) + 120 LAP2FDLFY - 171 E.43 {
where: . f
gl o 3
'12‘ = ci E.45 _ﬁ
r: = c: E.46 : '
F.=Co £.47 _J
The recursion becomes: }
D, = - a2 (r‘l,) (rf,) + FZ E.48

S 5 1.2..3. . b 3 S
Fp=Fp, + (A) (F)[F, -nF)] ,F =0 E.49
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