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initial condition known , initial conditiofl unknown parameter,
,, initial condition unknown random variable , and an equivalent

*quation-errof’model configuration . Finite sample and asymptotic properties
of the estimators as wel l as computational aspects are investigated . The study
is oriented toward rea l time applications. Application of maximum likelihood
to the above feur cases differs from the classical situation in statistics
because the measurements are not identically distributed or are not independent
or both. The resulting estimates are roots or cumberso~~ ionlinear equations.~~ —

First , the likelihood equations of each of the four case( are developed. Goner
ally, they are found to be expressible as polynomials in the unknown parameters.
The degree and complexity of the polynomial likelihood equations grow with the
number of samples upon which the estimates are based . The theorems on minimal
sufficient statistics by Dynkin shown that this characteristic is unavoidable.
Some fi n ite sample properties of the likelihood equation root corresponding to
the maximum likelihood estimate for the scalar model are sought through averagli
or using limiting conditions. As the measurement noise variance goes to zero,
the maximum likelihood estimate is seen to approach the true value of the para-
meter. This conclusion is extended for stable autonomous systems by showing
that the true parameter value is the only stable root, i.e., the only root in
(-1 .1). Simulation results indicate this extension holds for forced systems
also. A related result but without the above assumptions is also proven. In
all four cases, on the average the true parameter value is a root of the corres
ponding likelihood equation. Also , root distributions as found from Monte Can t
simulations are displayed. Consistency is shown when the initial condition is
known and the system is stable and is inferred for the unknown initial conditioi
cases. If the system is stable and autonomous, the proof for consistency fails
because of a loss of uniqueness in the limit. Numerical solutions for the esti
mates depend on such factors as root distribution, likelihoodequation sensitivil
to coefficient perturbations, and shape of the likelihood function derivative.
Simulation results for stable systems show that at least up to moderate noise
levels, while the likelihood equation has multiple roots, generally none of the
other roots appear to lie in the neighborhood of the maximum likelihood estimatt
and the likelihood function derivative is relatively smooth and insensitive to
noise in the neighborhood of the maximum likelihood estimate. To overcome
continued increase in the number of computations and in the amount of storage
required, two approximations are proposed. In one, the likelihood equation po1~nomials are truncated and averaged coefficients are used. In the other, a curvt
fitting scheme is presented which exploits a recursive aspect of the likelihood
function derivative. The former in its simplest form has only two real roots,
one in the stable region and the other outside. Under certain restrictions it
is shown to yield a consistent estimate.
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PREFACE

Plight vehicle parameter analysis and synthesis requires---indeed,

damands---aost effective vehicle parameter dtermination techniques for

many reasons including vehicle parameter confirmation . This report pre-

sents some of the most powerful results developed to date.
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SECTION I

INTRODUCTION

- The experimental determination of the nueerical value. of parem- -

F •ters in an otherwise completely known mathematical model of a system

based on measurements of quantities which are functions of the param-

eters is generally known as parameter identification . When the

measurements are subject to random inaccuracies (noise) , the identif i-

cation problem can no longer be trivial. Parmaster identification

using noisy measurements is the problem of estimating a parameter 0 ,

- whose true value is 0~ , from a sample (xi,...,xd assueed to have been

I drawn from a population having a distribution function of specified

functional form F(x~0) but where 0 is unknown and 0,00 E®. the set
- of a~~issibl. values of 0.

I 

The identification problem arises in the dev.lo~~ent of snathemat-

ical models of systems. Frequently, physical laws or established

empirical re~.ationships exist from which the functional form of the

I 
j model can be determined . However , physical , engineering, or economic

II limitation. óan prevent the direct measurement of certain aspects of

the system required to completely sati sfy the model .

Because the mathematical model is a comeon tool for analysis in

[ 

many fields , the identification problem is similar ly widespread .

Specific examples occur in economics, biology, geology and engineering .

‘the need fo~~identi ficatio n in engineering often comes about as part

of a larger problem - opt ia~ia or adaptive automatic control of systems

- subj ect to stringent perfor mance requir ements . This situation can be

found in such areas as industrial process control and control of high

performance aircraft and aerosp ace vehicles .

1
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The characteristic of identification in automatic control applica-

tions that tend. to make it distinct from those in other areas is the

relatively short tim~ in which the identification must~ be accomplished

to be useful. The identification problem generally takes the form of

completi ng the description of the re lationah ips between the input

states of the plant and its output states. The par ameters to be

identified usually are the coefficients of equations (difference,

di f ferential , or partial differential) of the plant model taken as

linear with constant or slowly varying coefficients. Noisy output

measurements are ass~aned, b-ut because inputs to the plant can often be

generated with considerably less uncertainty than exists in the

measurement of the output states, input signals frequently are taken as

known. The identification is carried out with normal operating input

or with no more than minor perturbations to the input. (If no res~r ic-

tions on input exist, then conceivably the identification problem could

be made trivial by adjusting the input so that the output signal swamps

the measurement noise.)

The ntm~ber of techniques available for identification of param-

eters is large. Among the various possibilities that are statistical

in nature , maxim~an likelihood is often considered as a standard of

comparison largely because of the desirable large sample properties it

typically has . To use this method sufficient information must be

available to determine the functional form of the distribution of the

measurements. Considering the joint probability distribution of the

measurements as a function of the unknown parameter 0, the maximun

2 
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likelihood estimate of 0 is that value of 0 € CE) for which the function

is a maximun. The estimate is usually found by seeking the roots of

the derivative of that function (known as the likelihood function) .

The literature on identification in control systems is fairly

ex tensive, but only a relatively email portion is devoted to maximwn

likel ihood estimation (probably , because of the fact tha t with the

exception of certain special cases, the evalua tion of the estimate

can be a difficult n~~ erica l problem ) . One important aspect in the

applica tion of max imue likelihood estimation to the identificat ion of

parameters in dynamic systems about which there appears to be little

written is the effect that variou s levels of information on the initial

conditions of the system have on the form, properties, and ease of

solution of the estima tor. The primary purpo se of this study is to

investigate these effects . The basic model used was a linear constant

coefficient difference equation plant whose output measurements were

corrupted with additive gaussian noise .

Chapter 2 discusses in considerable dep th the identif ication

problem as it arises in modeling dynamic systems and presents an

extended review of the pertinent literature .

In Chapter 3 the maximum likelihood estimators are developed for

the basic model unde r each of three assumptions on the nature of the

initia l condition - known , unknown par ameter , and unknown random

variable with known gaussian distribution. A fourth situation

involving correlated noise and based on an equivalent form of the basic

model is also treated. It represents an extension of a much earlier

work and treats the initial measurement as a known deterministic

ini tial condition .

3
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The estimators are given in the form of likelihood functions for

scalar and, with one exception , for matrix parameters in the case

without plant noise and for only scalar parameters with plant noise.

Because the likelihood equations grow in complexity with the number of

measurements, the question of existence of minimal sufficient statis-

tics which would overcome this problem was examined.

In Chapter 4 an analytical investigation of the properties of the

estimators of Chapter 3 is made. The characteristics of the roots of

the likelihood equation. and the number of stable roots for finite

- 
samples are investigated. Large sample properties of the estimates

are established. Averaging approximations to the maximum likelihood

estimate are proposed. Their finite sample and large sample properties

are also discussed.

In Chapter 5 the numerical aspects of the estimators developed

in Chapter 3 are treated . Results for evolution of the estimates as

the number of samples increases , examples of the functional behavior

- of the derivatives of the joint distributions of the measurements and
- - 

histograms for root distribution based on Monte Carlo simulations are

given. Numerical evaluation of the roots of the likelihood equation

and a recursive curve fitting approx imation are considered . The

averaging approximation and the curve fitting approximation are simu-

lated and compared to maximum likelihood and least squares.

In Chapter 6 the seminary of results and conclusions are presented.

4
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S~CT*ON II

BA~~GROUND

System. identification is concerned with the experime ntal deter-

mination of a mathematical model to charac terize a system through the

use of measured input -output data . Frequently , this problem appears

in a form where the only unknown aspects are the numerical values of

various parameters in an otherwise completely defined mathematical

model. This situation is referred to as parameter identification (or

parameter estimation).

Early methods of parameter identification in control systems

tended to be ad hoc in nature. Later, the already highly developed

identification techniques in statistics, and in particular, maximum

likelihood estimation, were adapted to application. in control systems
I
L problems. Thus , a complete view of the develcçment of parameter

estimation in control systems requires an appreciation for the relevant

contribution. in the field of statistics as well as in control systems.

2.1 PARAMETER IDENTIFICATION IN CLASSICAL STATISTICS
I

J The problem of parameter estimation in classical statistics deals

with obtaini ng a best estimate, in some statistical sense , of a

parameter vector 0 on the basis of measurements Yj which are in error.

In general, the model takes the form:

a f 1 (0)  + e1 (2.1)

(The term “regression ” is usually reserved for estimation with this

model.)

5
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2.1 • 1 MCVEL DEVELOPMENT

The basic thr ead that runs through the branch of statistics that

moved to the point wher e it had essentially direct application in

control systems was the develo~m~ent of models of stochastic systems,

especially in time series analysis. According to Par sen (19613 and

Mold (1954] , a series of advances in the modeling of stochastic systems

was made starting in the 1920’s. Yule in 1927 developed the scheme of

linear autoregression by modeling observations xt as linear ccctbina-

tions of previous observations plus noise , i.e. ,

— alxt_l + ... + a~x~~ 1 # (7.2)

where m is the ord er of the autor egressive scheme and the sequence

F consists of independent identically distributed random variables. Also

in 1927, Slutsky introduced the notion of a moving average scheme in

— which observations are assumed to be generated by a shifting linear

combination of members of an independent identically distributed

sequence of random variables {n 1), i.e. ,

— aof l t + alfl t ...1 + .‘ + amnt.~ ( 2 .3)

The theory of discrete , random , stat ionary processes emerges with

the work of Kintchine during 1932-1934. Mold in 1938 combines the work

of the above to show that moving average schemes and autoregressive

schemes are special cases in the theory of stationary random processes.

Finally, combining moving average and autoregression schemes yields a
— model that is closely related to the modern linear stochastic control

theory model:

Xj +l Axj # Bu j + wj  —

6 7
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— f ix1 + (2.4)

where the measurements are y1, and the {ni } and {wj } are noise se-

quences.

2.1.2 CLASSICAL METHODS OF PARAMETER IDENTIFICATION

A number of statistical schemes for identification exist. Intu-

itively , a generally desirable property of an estimator § compared to

any other estimator 6 would be minimum mean square error in an

admissible set ,

E (ô —0) 2 ~ E ( O—0) 2 (2.5)

or minimum variance if 0 and 0 are unbiased ,

V(Ô ) ~ V(9) (2 .6)

where S is the expectation operator and V is the variance operator.

Frequently, identification problems in control systems are approached

by directly seeking a scheme with one of the above properties. In most

of the remaining cases where statistical estimates are sought , one of

the classical statistical methods is chosen. The three most popular

methods appear to be Gauss-Markov, maximum likelihood , and Bayes.

The Gauss—Markov estimation technique applies to the linear model,

- 

y a H O + e  (2.7)

where the expectation E(e)  a o~ E(eeT) — R>0 , ~nd ‘i is assumed to have

maximal rank . Minimization of the cost function,

C e~R~~e

leads to the Gauss—Markov estimate , (2 .8)

6 — ( H R 1H1 1H ’R 1 y (2.9)

If R a a2i, 02 a scalar constant, then 0 is known as the least squares

estimate. The Gauss—Markov estimate is the minimum variance unbiased

linear estimate (Rao (1965)).

1 
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Note that the Gaua s-Markov estimate requires knowledge of the first

two moments of the probability distribution of the error e. A least

squares estimate by virtue of its definition can be used with no

second moment information. The term “least squares” is often used to

describe more general minimum mean square error estimations than its

strict definition would encompass.

An interesting bit of history is related to the develc~ nent of the

method of maximum likelihood estimation. Undoubtedly, the earliest

major milestone in parameter estimation occurs in the works of Gauss

where he places the method of least square-s on a rather firm foundation.

Curiously enough, Gauss apparently used the principle of maximum like-

lihood to accomplish this but later rejected the principle as a meaning-

ful approach to estimation in its own right. Edgeworth (19083 in a

translation of a letter from Gauss to Bessel in 1839 reveals Gauss

stating ,

.That the metaphysic emjloyed in my Theoria Motus Corp . Coel.
to justify the method of least squares has been subsequently
allowed by me to drop has chiefly occurred for a reason that I
have myself not mentioned publicly. The fact is, I cannot but
think it in every way less important to ascertain that value of an
unknown magnitude the probability of which is greatest-which
probability is nevertheless infinitely muall—rather than that
value by employing which we render the Expectation of detriment
a minimum.... ’’

However , this stigma on maximum likelihood estimation was finally over-

come in 1922 by Fisher (Berkson ( 1956)).

The method of maximum likelihood estimation requires that the

probability density of the error (or noise) be known at least within

some constants, e.g., mean or variance . Using the equations of the

8
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I
model and the distr ibuti*~ of the noise , the likelihood function L

can in princ iple be determined where

L — p(vp ’ ’ ,w~iO) (2.10)

For a given set of measurements y1,.’.,y,~, the value of the unknow n

parameters 9 which maximizes £ is the maximum likelihood estimat. of 8 .

According to Mo (19653 , ( 19523 , and Finn.y (19683 , max imum likeli-

hood (ML ) estimates , ~~ have several desir ebl. propertie s under a wide

variety of situations. Among then are t
A A a s .1. The ML estimate is consistent , e or ‘ e.

2. The ML estimate is asymptotically efficient, i .e . ,  among

consistent estimators it has minimum variance in the limit .

3. For larg e samples , the distribution of becomes normal .

4. If £ possesses a sufficient estimator for 0 , then is

sufficient.

Berkson (19563 points out tha t the nice propertie s of ~tL estimate s

occur in the limit. This asymptotic information is not necessarily

useful in any practical situation. Except in those special cases where

- 
the least squar es estimate and ML estimate are identic al , e .g. ,  with

normal distributions, little has been sa id about finite sample prop er-

ties of ML estimates.

For Bayesian estimati on , some a priori informati on on the prob e-

bility densities of the parameters 0 in addition to the noise densities

is r equired . The a pos t.riort density p(O/y) is found from Bayes ’ Rule,

p(0/y) — p ( v/ 0) p (9) /p ( y)  (J..1 l)

Various types of estimates can be obtained from this density (Ho and

Le.(19643 and Stear (19703) . The minimum var iance unbiased estimate

H
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of 8 is the conditio nal mean of p(0/y) . Often this i. difficult to —

find, and instead the mode of p(0/y) is used as an estimate of 8. The

latter estimat e is sometimes known as a poat•rlori maximum likelihood . - -

2 • 1.3 MAXIMUM LI)~ LIHOOD ESTIMATION OF PARAMETERS IN DIFFERENCE

EQUATIONS

Prior to the developeent of modern contro l theory , i.e •, prior to

about 1960, the literature contains relativel y few examples of general

applications of maximum likelihood estimation for identific ation of

parameters in difference equations. Two of the better known and more

significant contributions are briefly reviewed below.

Roopeans (19373 in a monograph on linear regression investigates

maximum likelihood estimation of regression coefficients. In state

variable notation, the model in his more general case is of the form :

— Ax1 + I —

— xi + 
~~ (2.12)

where the (n1 } is a sequence of zero mean independent normal random

vector s with covari ance R,

R — 02 (r j j I

and where, UI’ — (O ,...,0,c) (C — scalar constant)

and A is a companion matrix , i.e.,

r0~ ~~~~~~~i

A a I  IL__J -I
L~ ’ J

Using maximum likelihood he estimates a2 , c, xj ,  and a. (An explicit

expression for the estimate of a generally cannot be given because to

10



find the estimate an eigezwalue problem must be solved.) In addition,

he looks into the asymptotic pr operties of the estima tes and the sig-

nit icance of R being singular .

Mann and Wald (19433 treat a related problem. Their model in the

scaler case has the form:

— alXt_l + a2x t_2 +. . .#  apr t_p + a0 + €~~

— (2 . 1 3)

where the regre ssion equation is assumed to be stable and the are

independent normally distributed random variables with zero mean and

variance a2 . The maximum likelihood estimates of a p ..,a~ ,u0 ,a2 are

shown to be the solut ion of a Bet of linear algebraic equations . They

prove the estimates are consistent and asymptotically normal .

The second half of the paper deals with the more general case of

several equations in several variables, i .e.,

Z P j

+ a1 — C j t I — .Z ,••• ,r 
(2.14)

or in state variable form with ~~~ an n x n companion matrix and

assuming the matrix E ~1 ,j,o } is non-singular

ij+i,j a Ajj j~ + + fj+11j j~1,2,
..s,r (2.15)

where:

— (O,m,OAj), 
~~j

T 
— (O

~-”~ O~~jj). ‘~ — Pjj

A develo~eent similar to the scaler case , but considerably more complex,

is given for this case .

11
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2.2 PARAMETER IDENTIFICATION IN CONTROL SYSTEMS

Parameter identification in the terminology of stochastic control

systems generally refers to the estimation of the parameters p in the

otherwise known functional relations (or their discrete equivalent) :

r — g (x ,u (t) ,p,~ ( t) , t)

y — h(x ,p, t) + n (t) (2.16)

where r~ and ~ are unknown random variables and u , t , and the measure-

ment y are known. In the linear case , a typical form would be:

— Ax + Bu +

y — H x + f l  (2.17)

where the elements of p would be the elements of the matrix. A and , in

addition, could include the elements of B and H.

Occasionally, the parameter vector p also includes unknown

parameters in the description of the processes n and F. State estima-

tion , estimating x(t) , is in a sense also identification but is treated

as a separate problem in control systems except in those situations

where identification is most efficiently achieved when carried out

jointly with state estimation.

The literature on identification in control systems has been quite

extensive and varied. Significant numbers of publications began to

appear in the middle and late 1950’s and have continued to the present.

The early applications naturally tended to be ad hoc in approaches and

typically were concerned with estimating the impulse response of linear

systems. By the early 1960’s, approaches employing more powerful

statistical techniques were appearing with greater frequency. Within

a few years, most of the applicable tools of the statistician seem to

Have been borrowed by the controls engineer.

_ _ _  —-- ~~~~~~ 
_____
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Before launching into a review of the literature one would hope to

be able to identify categories into which to group the many contribu-

tions. There seems to be no satisfactory way to do this. However,

for this discussion two major groupings serve as a guide - those

methods which are based on least squares or minimum square error

criterion and those which are statistical in nature. Within these

classifications, the literature can be grouped by specific techniques.

There are other characteristics which could be used such as (1) the

model type — linear or nonlinear, continuous or discrete, single or

multiple input/output, constant coefficient or time varying or (2) the

quantity being identified - di!ference or differential equation

coefficients, Laplace or Z—transform coefficients , or the entire

impulse response or (3) restrictions such as real time estimation or

use of only normal operating input .

2.2.1 MINIMUM SQUARE ERROR METHODS

Among the popular early methods and ones which continue to receive

attention are numerical deconvolution and related impulse response

approx imation methods. These techniques are not truly parameter

identification methods in the sense of the definition given earlier.

Their objective is to determine some best values for undetermined

parameters in combinations of functions which are intended to approxi-

mate the input/output characteristics of the actual system. (In

numerical deconvolution these parameters are discrete time values of

the impulse response.)

13
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In this regard Zabusky (1956) works with the convolution equation

of a linear continuous system

x(t) — f h 4 ’r )u (t—r )dr

and seeks the value of the system’s impulse response h(t) at discrete

P points in time. He approximates the impulse response by products of

exponentials and polynomials with undetermined parameters. The

parameters are fix ed by minimizing c where

— (x(t) — x~ (t)J 2dt (2.19)

and x~ (t) is the output of the approximate model. The two systems are

subject to identical inputs.

Goodman and Reswick [19561 perform a similar investigation but use

delay lines and recognizing the noise problems with convolution equa-

tions , base the deconvolution on the cor relation equation

~~t (2. 20)
— j  h (t—r) di

— Goodman [1957] extends his previous year ’s work to multiple input/out-

put systems. Taylor ser ies is used with the convolution integral by

Braun ( 19593 . Orthogonal filters are used by Elkind , et al. (19633 ,

Eykhoff (19631 , and Kekre and Glenski [1968) but with different

approaches .

The model reference technique is similar to those already dis-

cussed except that this method is used when the true system transfer

function is known but for some or all the coefficients. Again, the

system and the model are driven by the same input. The free parameters

in the model are adjusted to minimize some measure of the differences

in their outputs, generally the integral of the squares of the difference

14 
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Probably th. most frequently referenced paper in this area is the

one by Margolis and Leondes (19591. They use the integral of the

square of the output error and its derivative s as thei r coat function

and by a gradient method drive the coefficients in the model to

minimize the cost. Surber (19633 present s a relatively comprehensive

investigation of the model reference method. H u e  and Vimolvanich

119691 apply the technique to the tracking of variable parameters in a

linear control system. They adjust the model parameters by differen-

tial equations and explicitly account for measurement noise.

There is another group of methods that is perhaps best described

as least squares methods. Included here is Turin (19571 who estimates

the impulse resp onse of a system by designing a filter whose input is

the output of the system and whose output is the estimate. The design

criterion is the integral of the square of the difference between the

true and estimated responses . (Techniques like that of Turin which

give continuous real time estimation of an unknown impulse response

oft en are referred to as “matched-filter identification ” (Gibson

(19633).) King (19671 pro poses an off—line gradient solution to the

problem of identifying system parameters subject to the cost function,

the integral of the square of the difference in true and mea~iur ed

output . A similar situation but with a discrete model is treated by

Aoki j1967.] where , in addition, the feasibility of estimating only part

of the A matrix when the A matrix contains some known elements is

considered . Dolbin (1969) also deals with the di screte contro l prob-

lem but has unknown parameters in A, B, and H matrices. He develops a

gradient type solution.

15
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The equation error model approac h, Figure 2-ia, refers to the

least squares regression problem where the system is represented by a

difference equation

Xj  + ~l~j +• • •+ a~x1 ~~ 
— b1u1 -1 ~~

• • •+ b~,u1 -p (2.21)

and the coefficients &k, bk are found by introducing measured ~as

opposed to true) input-output data into the equation and minimizing the

resulting error. By contrast , the model-plant error approach, Figure

2 -lb, seeks to minimize the difference in measured plant output and

model output for the same input through adjusthent of ak and bk.

1 ~~~~~~~~~~~~~~~~ 

,- 

4 _1I[~~~ (z) f-.4~[ ivz~J v~’z~
‘ 

0(Z)

a. equation error b. model—plant error

- - Figure 2-1

The equation error model problem led to a series of papers.

Kalman (1958] treated the equation error problem without noise. He

sought the coefficients in N and 0, both of which are polynomials in Z ,

in order to minimize the sum of c~2. (See Figure 2-1.) This was

accomplished by Gauss-Siedel iteration on a set of equations involving

weighted correlation functions. Later , Steiglits and McBride (1965]

solve the model-plant error problem by repeated application of the

equation error method and prefiltering. Lion ( 1967) improves on

Steiglitz and McBride by introducing filters prior to N(Z ) and 0(Z)

16 
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in the equation error scheme and uses a gradient on c2 to derive the

polynomial coefficients. (A special version of this solution was

given earlier by Weygandt and Pun [1961].) The Steiglits and McBride

solution was improved upon by Schultz (1968] by applying quasilinear-

ization to the model—plant error case .

Lendaris (1962] and Weygandt and Pun [1966] present z ~tively

complex methods for finding the coefficients of the plant ’ s transfer

function by using Z-transforms . Solutions of sets of algebraic

equations and roots of polynomials are required to do this. Because

a differencing scheme on the system output is used in this method, the

estimates are likely to be sensitive to noise. Neither of the

approaches incorporate any smoothing, but they could be extended to do

so. Hoppe (1965) has a related method but incorporates integration

for emoothing.

2 .2.2 STATISTICALLY ORIENTED METHODS

Cross-correlation and cross-spectral methods can be used to

determine the impulse response of linear time invariant systems. By

observing system input and output and forming auto- and cross-correla-

tions, the system impulse response can be found from the correlation

equation (2.20) assuming all stochastic aspects are stationary and

independent. Goodman and Reswick (1956] and Goodman (1957] have

already been mentioned as early examples. Later , Levin (19601 demon-

strates that a relation exists between optimal least squares estimates

of the impulse response and correlation methods ~iting the Weiner Hopf

equation as the link . He also develops a finite numerical deconvolu-

tion scheme which uses a discrete version of the correlation equation

_ _ _  
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and s ple auto- and crous’-correlations to yield a least squares multi— =
point fit to the system impulse response. The effect on optimality

of the estimates when short operating records are used is investigated

by Kerr (1961]. A comprehensive discussion on correlation techniques

may be found in Akaike (19671 .

The instrumental variable techniques are useful with linear

regression problems (equation error models) in the determination of

least squares estimates of the regres sion coefficients. The instrumen-

tal variables Z are defined as an additional set of observations with

the following correlation properties (Goldberger (19641),

plim N ZN ’VN (e) 0 (2.22)

plim ~~ ZN’VN (X) — p > 0 (2.23)

The instrumental variable estimate of the vector ~ of unknown

autoregression coefficients is defined as (Wong and Polak (1967)):

aN — (ZN’VN(Y)) ’ZN’UP (2 ,24)

where: ~~ — (a1....1a~)

ZN — appropriately dimensioned matrix

of instrumental variables

vN (x) — 
~&i’”~~~p~ 

I 
-

Zr T (xr , . . . ,XN+r_1)

— (upl...~
uN÷p_ 1)

Yj Xj  +

~ Kr UN#r_ 1

The main advantag e of instr umental variables is that they always yield

18
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consistent estimates. Rsiersol (1941] is generally credited with being

first to use ths method . A detailed description of the method can be

found in Sargan (1958], and an informative stmmiary is given by

Goldberger (1964) .

Joseph, •t al (19611 use the input to their linear discrete

system as the instrumental variable when applying correlation tech-

nique s to establish an unbiased estimato r of the Z-tranaform of the

system ’. plant . Wong and Polak discuss the application of the

instrumental variables to estimation of coefficients of a linear auto-

regression with noisy state measurements , the prop erties of instr umen-

tal variables , and some ccmiputationally efficient approximations .

Since some freedom exists in the choice of the instrumental variable,

Wong and Polak explore the existence of optimal sequences of these

variables.

An approach to parameter estimation that commonly occurs is to

augment the system state vector with the unxnown parameter vector p

by introducing additional state equations to describe the dynamics of

the parameters. These equations typically have the form,

(2.25)

where B is eithe r a deterministic or a random variable but often both

a and B are zero.

This formulation even with a linear system leads to a nonlinear

arrangement when augmented because some of the terms in the system

equations by definition become products of state variables. In this

situation th. usual approach is to estimate simultaneously the original

state variables and the parameters . State vector estimation with a

19
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nonlinear model is known as nonlinear filteri ng and typically requires

solution of multipoint boundary value probl to dete rm ine the

estimates .

A relatively early work in nonlinear filteri ng that appears to

have become a basic reference for much of the work in the area is

Bryson and Frazier (19623. The model used is basically the general

nonlinear one, Equation (2.16), given earlier. The objective is to find

the minimizing state variable function x(t) (which for the identifica-

— tion problem would have included the parameters p(t)) for the cost

function 
~t where ,

— ~(x (t0
)_~)tp0

1 (x(t0
)_p) 

~ :o

TR
_1
~
+
~
T0_1

~~
4t1 (2.26)

subject to the constraints

— g ( x ,u ( t) ,t ,~ ) — 0 ç.’. 27)

h(y,x ,n)  — 0

and where ~ — E(x (t 0)) ,  ~ — ~ -E(~~) ,  and ~ —

The minimizing x(t) is found by the method of steepest descent.

Although aryeon and Frazier did not explicitly concern themselves

with parameter estimation, their formulation could have incorporated

that task. In fact, most nonlinear estimation schemes could handle

parameter estimation. However, for the most part, no papers were

selected for the following discussion which did not mention at least

some connection with identification. The schemes presented divide
- into two groups - those that are patterned directly after Bryson and

Frazier but use sane other modern control theory solution technique

and those that depart along the way by linearizing. These papers serve

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~~~~~~~~~ 
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to illustrate the variety of ways th. nonlinear filtering problem can

be attacked.

A number of solutions of the first category use quasilinearization

instead of steepest descent. Kumar and Sridhar ( 1964) having measure-

ment s at a number of discrete points solv, the estimation problem as

a multipoint boundary value problem using ~ — 0. Lavi and Strauss

(19653 show that if the total number of measurements (boundary points)

does not exceed the total number of free variables, the solution may

not be unique. They use excess measurements and perform a least

squares solution as do Kumar (1965] and Lee (1968a3 .

Detcheendy and Shrid har (1965] , on the other hand , treat the prob-

lem with noise on input and output by deriving the Ha*niltonian, the

canonical equations, and then solving by invariant imbedding . Lee

(l968b3 derives a least squares version of D.tcheendy and Shnidhar ’ s

solution and applies it to a chemical reactor problem. Cox (1964)

f gives a Bayesian approach with a dynamic programeing solutions and a

Hamilton-Jacobi route is used by Mortens.n ( 1968) .

- - 

- As a result of the work of Kalman (1960], (1961] which led to the

computationally desirable recursive linear state estimation equations ,

and the expanding role of digital computers, aspirations for Kalman

type solution to the nonlinear filteri ng problem were heightened .

However , generally this Ka lman filter characteristic can be achieved

only by linearizi ng the nonlinear probl ems about some nomina l (except

in very special cases , Fariso n ( 1967)).  Examples of recursi ve

solutions by lineari zation are Kopp and Orford ( 1963] and Budin (1969).

21
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The method known as stochastic approximation is one which has

considerable app eal from a computationa l point of view because of its

recursive nature. It resembles the recursive linearized solution to

the nonlinear filtering problem in that it too represents a linear-

ization and the gain (or relaxation factor) generally depends on the

- - error covariance. It differs by computing only the unknown parameters

and not the entire augmented state vector. The recursion equation

has the general form (Balakrishnan and Peterka ( 1969)),

l&N#l &N + PN~’a
0(&N) (2.28)

where is a predetermined relaxation factor and Q(.) is the equation

error at the Nth stage with a taken as &N . The basis for convergence

of this technique rests heavily upon the proofs in Dvoretsky (1956] .

Ho and Whalen (1963) and Ho and Lee (1965) develop stochastic

approximation solutions for the linear discrete model and show con-

vergence of their estimates. Sakrison (1967) treats the continuous

time problem with the equation error type model and develops an

algoritlmt for identifying system Laplace transform coefficients.

Saridis and Stein (1968) extend the work of Ho and Lee.

In spite of convergence claims of the above and others ,

Balakrishnan and Peterka state that this method has fallen short of

expectations apparently with slow convergence being a major difficulty.

Albert and Gardner (1967] give a comprehensive discussion of stochas-

tic approximation .

When appropriate statistics on the parameters to be identified

are available, Bayesian estimation techniques can be used. Unfortu-

nately, using this additional information tends to result in estimators

of greater complexity than found by other methods that require less

L . 
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information. EXamples of Bayesian identification can be found in

Sawarag i and Katsyama (19673 , Aoki (1967), and Kroy and Stubberud

( 19671 .

In the situation where noise statistics are available, maximum

likelihood method s may be employed . (For ML estimates of the usual

a priori type , parameter statist ics are not used.) Frequent claims

are made in th. literature that part icular solutions are maximum

likelihood estimates. Often these are least squares estimates made

in a situation where maximum likelihood gives an identical estimate ,

e .g . ,  with gaussia n noise. The papers described below are not members

of that category.

The problem of Koopinans (1937) i. adapted to control systems by

Levis (19641 . The model used was a discrete single—input, single—

output equation error type with input and output measurement noise .

To achieve independence among the measurements as in Koopsans, Levis

has to stack his measur ement s . This means that parameter estimates

can be updated only after each new stack has been accumulated . However ,

using the stacked measurements he arrives at the eigenvalue problem of

Koopmans. The estimate is shown to correspond to a least square

hyperplane fit to the data. Properties of the estimates and estimation

with overlapping stacks of measurements are discussed .

Astr om and Bolin (1965) estimate the coefficients in the shift

operators a, b c, and the scalar ~ in the system Z transfer function

- 

I a’(2 ’)~ (t) — b’ (Z 1)x(t) + )~c’(Z 1).(t) ~2.29)

where a (S) — 1 + + ... + a,,t’~’, etc.
and the (e(t) I is a sequence of normal independent

random variables

23
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To maximize the likelihood function so that the estimates can be found ,

a Newton—Raphsan algorit}zs was developed which made use of syemstry

among the partials in order to reduce the number of computations.

Astrcm [1967] applies this solution to the control of a paper-making

machine.

Smith and Hilton (1965] review the characteristics of the least

squares solution of the error equation model and Levin ’ s generalized

least squares aigenvector solution . In 1967 they presented the results

of a numerical compar ison of the two methods . They found that the

bias magnitudes of the least squares estimates generally were greater

than those of the eigenvector method , but their standard deviations

were smaller. Also, using overlapping vectors in the eigenvector

method substantially reduced the variance of the estimates.

Rogers and Steiglitz (196Th approach identification in the model-

error formulation by passing the output error through a whitening

filter whose coefficients are estimated along with those in the model.

An approximate Newton-Raphson algorithm is implemented to find the

estimates.

Smith (19681 explores the problems of recovering the Laplace

transform of the system transfer function after forming a sample data

estimate using Levin ’s eigenvector method . Mayne ( 19661 presents

various on—line algorithms for particular regression problems but

finds that in the more general case , the method of Astrom and Bohlin -

performs best. Kashyap [19701 extends the work of Astrom and Boblin to

include vector state and input variables but without the moving average

input . The model includes correlated plant noise and uncorrelated
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output measurement noise. He develops algorithms for estimates of the

system coefficients as well as the plant noise correlation matrices .

2 • 3 IDENTIFIABILITY

The problem of under what conditions can a meaningful estimate

of a parameter be obtained as well as the whole question of input

selection clearly are of interest when developing parameter identifica-

tion techniques . Identifiability refers to the ability to excite all

the modes of a system and being able to observe the results of the

excitation. Input selection deals with input signal design to best

• facilitate identification. (If the identification scheme is restricted

to the use of normal operating inputs, then optimal input selection

is not of any direct interest.) Astrom and Bohlin (19651, Currie

(1968) , and Staley (1968] pursue identifiability. Turin (1957],

• Gagliardi ( 19671 , and Staley deal with input selection.

25
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SECTION III

— L?~~~~ 5~~~~~~ I~~ TICI$

3.1 xi ’raoiuc~x~
The .atkmaticsl dsvs1c~asnt of a maximum likelihood estimator

for the identification of umJ”w,im parameters in the math atical model

of a system can be viewed as a three stsp cperatiout once the model is

oc.plet sly defined ( cspt for the umlu’i,wn perameters) . ~~ploying the

usual tsi~ tho1ogy, e.g., see Cr~~~r (1966) , first the likelihood

fuactics L must be det.x— ined . The Likelihood function is the density

fuaction of the measurements considered as a function of th. unknown

par .ter. It can be viewed as a f ily of px*sbility ~ei sity

fuactiom. p(y~~)  on th. samples (or measurement.) 
~i’• 

. . ,v~, of the

syst output iw’ixed by the Unknown parameter vector 0 which lies in

some set ~~~.

In most of the Lite rature on maximum likelihood estimation, the

s~~~les are seam ed to be independent and identically distr ibuted

• resulting in,

ZIP — P
~Vi’ ••’V~’~~ 

— P(W11I)P(V2’0)’•’P(V~
1ø) (3,1’)

However, in the following discussions not all these conditions are

present , and lees restrictive definitions will be required . For

independent but not identically distributed samples,

I, — p1(v1,0)p,(v2,0)...P~(v5,e) 
(3.2)

and for samples which are neither ind.pendent nor identically

distribut.ds

(3 3)
The unknown parameters 0 in all but on. of the cases to be
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considered are either the scalar or matrix coefficients of the differ—

ence equations in the models investigated. In that exception , 0

includes the initial conditions as well as the coefficients, but

explicit estimation of the initial conditions can be eliminated from

the estimator.

The second step is to find the necessary condition for the

maximization of the likelihood function over 9 for a set of measure-

ments ~~~~~~~~~ The necessary condition is known as the likelihood

equation when defined as:

d iog L 0 (5.Z)

Of course , the logarithm and the derivative must exist, and the

maximizing 0 €9  must not be a boundary point of the set 9. (Because

gaussian densities and O E R , the real. line , will be assumed , these

conditions will be satisfied.) Unfortunately, when 0 is in fact a

matrix, finding the likelihood equation may not be straightforward if

only matrix operations are used.

As will, be shown , the likelihood equations for the situations

treated here can quite naturally be expressed as finite polynomials or ,

more precisely , as sums of finite polynomials in the unknown parameters .

The desirability of expressing the necessary conditions in that form

was based on the fact that there exists an extensive body of knowledge

on the properties of roots of polynomials. On the other hand, there

are well—known problems associated with the numerical solution of

roots of polynomials which must be faced.

The third step is the solution of the likelihood equation for the

appropriate roots. Normally, this can only be done numerically.
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Since sufficient conditions for the maximization of the lik*libood

function will not be sought , it will be assumed that other means will

be available to determine which real root is the desired one if multiple

real roots exist. (The solution of the equations is the topic of

Chapter 5.)

3 .2 PROBLEM STATEMENT

The basic mathematical model used for this study is the usual

linear discrete control system model but without plant noise. Thi s

model can correspond to a local approximation to a more complex

nonlinear system. The measurement noise is treated as additive and

assumed to be white on the basis that in practice its bandwidth is

frequently found to be much wider than that of the plant.

The model is represented as follows :

Plant: x1,1 — Ax1 4

(3 . 5)Measurement: — B~j  4 fl~ I —

where:

xl — n-dimensional state vector

- rn-dimensional measur~~~nt vector

UI - r-dimensional input vector

— rn-dimensional measurement noise vector

with nj ’7VO,R) ,  E (f lj rij ’J — RsSjj , ThO

A — fl x n constant matrix

B — a x r constant matrix

K — m X a constant matrix - •

The following are known : the dimension of all the quantities, the

matrices B and H, and at time tN’ the variables u~ and 

—• ~ -• - - • . •~~- ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ —~~-~~~ ~~~—‘ ~~~~~~
__ 

~~~~~~~~~~~~~~~~~~~~~~~~



I — O,1 ...,N. The unknowns are the matrix A and the variables x1 and

I — O,1,...,N. (The statistical properties of are assumed to

be known.) The objective is to estimate A using the output measure-

ment {gj } and the input sequence (u 1}. (See Figure 3-1.)

UI Xi+1 Xj 
ax]11 —1E.~

]- ~

Basic Model

Figure 3-1

The matrix A is taken to be general except in certain analyses,

when noted , it is assumed to be stable. The model is assumed to be

observable (in the deterministic sense) , i.e., the n x inn matrix

(HT ,ATHv ,...,(A t)fl~~~gn] has rank n. Further restrictions such as

canonical forins*, e.g., see Lee(1964], are not considered here.

The type of estimator of A that is sought is one which is based on

maximum likelihood but operates in real time , requires a fixed and

minimal amount of data storage and computation , and can function with

only normal operating input . Separation** of identification from other

* Though going to an equivalent companion matrix system, for example ,
reduces the number of parameters to be identified, it is not clear that
attempting to recover the A matrix from an equivalent system will be
any less difficult than directly estimating A. While in some situa-
tions knowledge of the equivalent system might be sufficient, availa-
bility of the A matrix for filtering and control is often required.

** A separation theorem for the filterin g aspect of the control problem
does exist , 3oseph and Tou (1961], but, apparently, with the exception
of only a few special cases, Horowitz and Grarmuaticos (1970], one has
not been found for identification, Sawaragi and Xatayaina 11967].
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aspects , in terms of the total control problem , is assumed to be

allowed.

The nature of the a priori information on the initial condition x0

significantly affects the form of the estimator of A. Three possibil-

— - ities are examined: x0 known, x0 unknown parameter, and x0 unknown

random variable with known gaussian distribution .’ A fourth case which

is related to the first two but based on a different approach is also

discussed. In the terminology established in Chapter 2, the first

three cases are similar to the model-plant error formulation while the

fourth is similar to the equation error formulation.

3.3 THE NECESSARY CONDITION - K0 KNOW

In this case the initial condition x~ is assumed to be known. The

max imum likelihood (ML) estimate corresponds to finding a “best” fit of

the solution of the model equations to the system output measurements.

The likelihood equation for the scalar model will be developed first,

followed by the vector-matrix case .

For the analysis of the scalar problem , notational changes are

made in the model as given in Equation (3.5). The scalar model is

written as: -

— ax1 4 bu1

WI — # I — O,.Z,...,N (3 6)

where: n1
Since the 

~ 
are gaussian and independent, the distribution of Yj

follows directly from (3.6) as:

I
Vj ‘~ 7?(ha

1x0 + hb E a uk...1,a) I — 1 ,2 ,...,N (3.7)
k—i

.~~
,I



r~ =~ ~~ ~~~~~

)
-

The maximum likelihood estimate of a , denoted by , is the one which

maximizes P (Y.z ’~ . . ‘YN ”~ 
or, equivalently, the one which minimizes:

QN (a) — E (y1 — a ’hr0 — hb ~~ a
1_ Jtuk_i)

2 
(3.8)

1—1 k—

As expected , the estimate will be a form of least squares. It is

independent of the noise variance and the first sample 
~~, 

(since x0 is

known) . -

dQN (a) .Forming 0 and rearranging terms give the necessary con-da
dition as:

ia’’ y1 + b ~~~ (i_j)a
’ i 1 uj_ 1y1

1= .z=1 —

1a~1~~ - hbx0 (2i_i)a 2 1 i l uj ...1

— hZ~
2 
~~ ~~~~ (i_k)a2~

1_i_1
~~

1uj..iuk_ i — 0 (3.9)

where ,~~ is the appropriate value of “a” which satisfies (3.9) . For the

autonomous case (u. 0), the necessary condition reduces to:

ia
~~~

y1 — ia~
1
~~ = 0 (3.10)

When A is an n x n matrix, the density of is:

Y1 ‘t 77(IM 1x0 ÷ H A ’- iBuj_1,R) I = 1,2,.. ., N (3~11)

and the cost function for the maximum likelihood estimate becomes:

QN (A ) - IM~x0 - H ~~~ AI i B uj . . 1 I I R_ 1 (3.1.?)

Taking differentials at a stationary point gives:
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tQ71(A) — 2 ((v~ — HA1x0 - H ~~~

— H (Mik)Jui c i) 1 — 0 
~3.13)

where
p

- E AP 1 (M) Ap -r

By rewriting (3.13) as an equation in the traces of matrices and

using the ccinmutivity of matrices under the trace operation, an

equation in the trace of the product of two matrices of the following

form can be derived :

QN (a) = tr ((D)(M)) = 0 (3.14)

Since the differential matrix ~A is arbitrary , then D equals zero , and

the necessary condition can be expressed as:

D — A~~
Px0y1~ R ’HAP’

- ~~~~~~~ A P X0x0T(AT)IHTR 1HjLP_1

- 7 ~ 
A P x0uj 1B? (A T) 1 iH TR 1 ILAP_1

N i-i i-k
÷ E E E A1 _k_p Buk l  Yj ‘R~1 HAP 1

1—2 ic—i p—i

N 1-i i-k
- ~~~~~~ Ai_k_P Buk_l xoT(A t) m H TR_1HAP_l

N I i—l i—k
— ~~~~ a

i_k_P
~~k_lu,:lB

v(av)i_igYR_lHw_1 — 0 (3.1S)

where i is the appropriate value of A which satisfies (3.15).
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If the model were autonomous, i.e., u1 0, then (3.15) undergoes

considerable simplification: —

~~~ A 1
~~’x0 (y 1 - KA1x0) ’R 1 HAP 1 — 0 (3~16)

(Note that if x0 is zero in the autonomous case, then the root A of

(3.16) is indeterminate.)

3.4 THE NECESSARY CONDITION - x0 U I~4O~l~ PARA~ETER

Now the initial condition x0 is taken to be an unknown parameter

of the system in the same sense as the coefficient A . The geometric

interpretation of the ML estimate is basically the same as the

known case with the exception that the initial point is free to

participate in the optimization in the present case. As with x0 known ,

but accounting for the free initial condition, the distribution of the

jth measurement for the scalar model is:

i—i
Yj ‘~7~(ha1x0 + 

~~ ~~~ 
a lcuj _k_l ,a2) I — i,2,...,N (3.17)

k—a

vo
Once again, since the measurements are independent and gaussian ,

the max imum likelihood estimate is a least squares estimate, i.e.,

minimize:

0~j (a,x0) — (yj - tia1x0 - a1 I tu~~p
2 # (ye - o 

(3.18)

• The necessary conditions on a and x0 become:
S

2 (Y~j - 
~~~~~ ~~~ 

ai~~uk..l)
(_ha i) + 2(W0 - hx1,)(-h)

— 0 (3,19)

_ _ _  -
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or:

- hb ~~~ a21 ’i uj . 11/ (b ~~~ a2L (3.20)

Forming -~~~ leads to the same condition as obtained with K0

known , i.e.,

x0 ia~~
1 y 1 + b (I - j ) i~~ U~_1y1 f -

- 1zc0
2 

~~~ ia21~~ - hbx0 ~~~~~~~ 
(21 -

— hi,2 

~~ 

(I — k)a2
~~i

It_ 1 uj _iuic..i — 0 (3.21)

(Note that the noise variance does not appear in the necessary

conditions in this case nor when K0 is known.)

Introduction of (3.20) into (3.21) gives an expression for the

stationary points of 
~N 

for the parameter a as a function of the

measurements:

- t)a2~~
i4i 1 y1yj

ft - 2s + 21 —

+ hb ~~ (I — j a 2 t i
~~~

1 uj_i gj

+ i,2 i,2~~~~~~~ ~~~ (2p - a - I)a2 (I#P 1 t~~ u,..1u..1
— 9— r 1

- i~ b2 (r - t)a2
~~ 

3 t l ut_ .Zut_l
—

— 0 (3,22)
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For the autonomous case , (3.20) reduces to:

x O — ( y1a1) / (h  ~~~ a21) (3.23)

and (3.22) , assuming ~ not equal to zero , reduces to:0N

(i — 1)a21+i l Wj  — 0 (3.24)

For the vector-matrix case only the autonomous version is treated

because it yields considerably simpler equations than the nonautonomous

one yet illustrates all the basic steps required to derive the latter.

— The density of the output measurements yj for the autonomous model is:

yl 4j 77 (HA 1x0,R) I — 0,l,...,N (3.25)

and since the (yj } are independent, the cost function for the maximum
likelihood estimate becomes:

— I Iyi — IM1x0~ I R 1 (3.26)

Taking the differentials of x0 at a stationary point of 0N gives:

— 2 ~~~ (—HA
1 (&0)J’~R~~(y1 — ,,*jxoJ — 0 (3.27)

or, tr ( ~~~ ir1 (y1 - I M 1x0) (hx0) ’(A’) 1H ’) — o

or, (AT)l NTR 1Y1 - ~~~~~ (A T) I HTR_ 1&x
0 — 0 (3. 28)

Let $N (AT)IHTR 4JIMI (3.29)

Since all models were assumed to be observable and R 1 is symmetric~

and positive definite , exists for N~n. Then can be expressed 

_1_ 
~~~~~~~~~~ 

_ _ _ _



—--~~~~~~~~
-- 

___-ww__
~~~ _

___________--- - -

~~

- ——-— —- -- ----~~------.- -~~————

as:

xO?l, 
— N ~~ (At)i H~R

1 (3.3R ~

Taking differentials of A at a stationary point of ~1gives:

— 2 ~~~ (—H(bi~)x0)’R~~ (y1 — HA1x0) — 0 (3.31)

or tr ( R~~iy1 
- AIx0)x0

v(At)IP (AA)T(A~)~~1H~J — 0

or 
~~~~~~~ 

(A ’)P N ’R~~y1x0 ’(A ’) 1 P  -

- ~~~~ ~~~~ (A?)Ph H~R~~,&x0x0T(A
T)~~P — 0 (3.32)

Introducing (3.30) into (3.32) with x0 — gives the necessary0N
condition for A as:

~~~ 

(A T) P _ 1 H~R_ 1
yI yj~ R~~IMi$N

_ 1 (A’) 1”

— ~~~ ~~ (A’)~~~ H’R 1 HA~ç’ (A ’) iH ’R 1 y1 Yk’R~ HAk, 1 (A ’)1
~~

— 0 
(3 .33)

3.5 THE NECESSARY CONDITIC~ - DISTRIBt1~ICN OF K0 KNOWN

In this section the initial condition K0 is assumed to be an

unknown random variable whose density is known . Again the nature of

the estimator , roughly speaking, is to seek an A which results in some

best fit of model output to measured output. While this case is

intermediate to the previous two cases with respect to the amount of

information on K 0 assumed available , the polynomial form of the likeli-

hood equation s is substantially more difficult to obtain.
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For the scalar case, take x0 distributed as:

K0 
.~ 77(R ,€2) (3.34)

and x0 independent of { n1} .  Because the random variables x0, n0 , ni ’

~
‘ • ~N are independent and gaussian , and their joint distribution is:

— (21 )
tJ4~~

,
~~

21
~~ exp(.4(n* — i*) YRf

l
(n * — *)j (3 .35)

where:
—

j*V — (R~,0,...,0)

R1 — diag(c2,c2,...,a2)

From the scalar model equations (3.6), the output measurements are

seen to be related to the noise and initial conditions as follows:

— ~~fl* + hbU* (3.36)

where:

— ~~~~~

D — ( h a~~IJ

a’ — (l,a,a2 ..., a~)

— (0 ,uo,ul+auo ,..., uN_l+...+a~
_1

uo)

I = identity matrix

By applying the theorem on the linear transformation of jointly

gaussian random variables (e.g., see Anderson (1958, p.261) to (3.35)

with transformation (3.36) , the measurement density becomes,

p(yta) (
~

)
~~~IR2I~ exp(~~ I I y  - - 

~~~I I I J (3.3fl

where:

R2 — D R1I~’
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Fran (3.35 ) , (3.36) , and (3.37) :

R2 — a21 + (3.38.,

where :

R2 — (N + .1) x (N + .1) matrix.

(Note that the y
1 are now not independent . Further, (3.37) indicates

that the ML estimate will not be a least squares estimate, nor even a

Gauss-Markov estimate.)

It can be shown (see Appendix A) that

1R2 1 — (aZ)N (a2 + h2c2a’a) (3.39)

— — (h 2 s2/ (h~c2a’a + a2))a a ’J (3.4.01)

The cost function can now be expressed in the following form:

QN(a) — a2(log~R2~ + M y  — 

~~~~~~~~ 

— hbu~~~~~~ 1) (3.41)

Equivalently, let the likelihood function L be defined as:

L Ip(y ~a) (3.42)

Since p(y~a) is emooth and greater than zero for. all y and a, and the

løgaritlin is monotonic, the stationary points of L satisfy:

~~~~~~~ 
_ _

~~I R h ~~_~~ I R I # ( y _ h ~~a _ h b u *) TR _1 (h1 da ÷ h i , du*)
da 2 2 da 2 2 °da da

_ y _ h 20~~_ h 1 J *) T ~~~2~.~~~( y — h f a _ h b u *) = O  (.3.43)
2 da -

Multiplying through (3.43) by (—c” (a2 # h2c2a’a) 21 gives:

{a 2 (a2 # h2€ 2
~
’4)h2C24’~a 

-. (11 — — hbu*)T((02 # h2c2!’~
)2I

— (~2 + 24T h 2 E 2
~!T) J g~h~o~a + ~~ 2a*) 

-

+ 
~
‘
~‘ 

— 
~~o— — hbu*)?((hI+€ kIV4a)(4~

V) — (a2 ÷ h2E 2&&(h 2C2)(~a4’)J

(w - - Jii,.j*)} a 0 (3.44)

_ _ _ _ _  

39 

- - - -  a-- -

-

LI ~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~~~~~~~~~ . ___



— ~~~~~~~~ -
~~~~

-- ,.- ~~~--~ -- —-—- n— — —-- —fl---.- — —
~ ---- --.- ~

—.—-—-
~ 

-

- - --- --—— — -~~~~~-— --------- - - -  - - - -__

where: 
I -

a _ ....~.1and u * .A U.-a a da

Dividing through by h2e2, expanding, and regrouping by the various

combinations of inner products results in the following necessary

condition for £:

{1a2 (a2 ÷ h2e24’I) ÷ h2i2 ‘Va 2 J j ’I~
+ (y’a) (2 (a ’~1) ( h 0) a 2 + (~

?ua*)Ith(a
2 ÷ h2c2a’a) + (Y’~)h2~~

2 (
~’~a)

— 2(a ’u*) h.bh2 E 2 (a Ta )  ÷ ~~~~~~~~~~~ ÷ h2 c 2a ’a) )

+ (Vv6a) i I1
~u*)tth (a2 + h2c21’d) — (y ’g) ( a 2 + h2e24’& — hi0’y0

2

— a2I&~.
?I) 

- -:

— (yT u *)hbh2€ 2 (a va + V)2

+ (aIu*)((avu*)(aTa ) h 2b2h2e2 — (avua
*)h2b2(a2 # h~c

2a’a)

— 2h~ hba2 (a ’a ) J
o — — a

÷ (a~ua *) (h~ohb(’Va 2 ÷ a 2
~’~) J

+ (~~u*) (h hi0a2 (at~ + “/) — (4?u*)h 2b2 (02 ÷ h2 c2
~~ &)

+ (u *Tua*)(h2b2h2c2 (aTa + v 21} — 0 (3~45)

where:
a2

Rewriting the above using sirunations instead of inner products

allows many of the terms to combine (though the resulting expression

appears less compact and less efficient computationally ) :

N N
{(a2(c2 + h2102 ’V) + a2h2~

2 ( a2~) ) (  ia2~~ 1)

.~. a2i~~( (21 — j ) a2~+i~~yj )  - h~0I!a 2 ~~~
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+ ~~~ ~~~ (2p - 21 4 i -

+ i.z~
2 i 

~~ 
(2P - r +

+ h2e2( (j — k)a2I+i+k l yjykJ — a2 1a~~i 1 yj yj

N N
+ hl0hba 2 ( (2p - r — 2I)a 2(

~~
l)

~~~~ u~_1J
~~~~~

N D
# ,i0hb,a~( E ~~~~ 

(2p - r)a2P
~~ Ut_li

pai r-

- jgj2~2 (‘V ÷ a21)2 ( (p — r) aP t l  Ut...1 ~~~

+ h2hT~h
2
~

2 ( 
~~~ ~~ 

(1 - 2s # t)a2(
~~

t45) _
~~

t_ 1ur...1ut_1J
i~~ ~~2 r— ä~i t~2

N N s
# h2b2a~( E E E (t — 2s)a2

~~~~~~~~~
t l ur...lut...lJ

~~1 r- i~i t~2

+ (h~br~ 2 (, + E a21) 2 ( E (~ — s)a 2P
~~~~~~ ur_i us_i)}

i~O 9-1

— 0 (3,46)

For the autonomous case (3.45) reduces to:

(~~2 (~2 4 h2e2a’a) + ‘Va2h220
2)a ’a 4 2a2M0(a’a~) (g T&

— (!a2iI + a 2Iio (a ’a ) J (y ’aa ) + (h2c2a’a~)(y’a)
2

— (~2 + h2c 2a’a) (y’a) (y’aa)}  — (3 47)
and (3.46) reduces to:
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(a2 (a2 + h210
2V) ~~~~~~ ÷ a~h~e2 j~2(i#j).4

+ ~~~ (21_i)a2’~ i~~ yj — ~~2 ~~~~~ ft
4 h2c2 (~j - k)a21#i4 c_l yjyk — a2,j~j Ia1 

~yj }

— 0 (3.48)

The situation where A is an unknown n x n matrix presents some

difficulties . Arri’;ing at a density for the vector measurements

analogous to (3.37) for the scalar case is straightforward enough.

Unfortunately, no useful expressions for the determinant and the

inverse of the covariance could be found . Since this precludes

reducing the likelihood equation to the desired polynomial form at this

time, the matrix case will not be developed here .

3.6 THE NECESSARY CONDITICCI - DIFFERENCE EQUATI~~ ERROR APPROACH

The general class of parameter identification problems treated

in the previous three sections could have been approached somewhat

differently . Instead of seeking the parameter values which gave a best

fit of the model output to the measured output , parameter values could

be selected to minimize the error that results when system input and

output measurements are introduced into the model equation .

To Implement the latter approach , referred to as the “differencing

approach ” in the following discussions , the model Equations (3.5)

(or (3.6) in the scalar case) must be rearranged. The assumption that

H 1 exists is made to facilitate this (which , of course, means that

now a — n.) Working with Equation (3.5) , the rearranged model is

-
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— 1x141 + fl1~1 (3:49)

— FiX1 4 + flj41

or — Cy1 + H3u1 • 1 — 0,.l ,.. .,N (3.50)

where :

C — NAH~
1

Cj — 
~j+i

(In the scalar case , C becomes a and HB becomes Jib.)

The equivalent system model , Equation (3.50) , has two important

differences relative to the original formulation of the model. In this

new system, the state variables yj in the difference equation are known

as opposed to the in the previous system model which were unknown.

In addition, the noise variable, though still zero mean, is now

correlated and acts as part of the input.

Just as was demonstrated with the original formulation of the

model, the form of the ML estimator based on the equivalent model

strongly depends upon the assumptions made about the initial conditions.

In fact, for each of the three initial condition situations treated

earlier, the equivalent model leads to the same likelihood equations

and thus the same estimators as found previously - a none too sur-

pricing result if the models are one-to-one. To see this , look at the

case where x0 is an unknown parameter. From Equations (3.50) and

(3. 5) ,  where with no loss of generality take u1 E 0:

y0 — H x0 + f l 0

— Cy,, +

— 
~YN—1 ~ ~N—1 (3.S1)
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Using Equation (3.50) s

~~ ~ 17(0,R~) (3.52)

where:
e

* 
~~~~~~~~~ ~3.53)

and

R -RC’

~~~~~~~~~~
— 

~~~~~
., ~~~~~~~~ (3.54) —

‘\ \. ‘,.

I R I -C’ 
-

“ . 0 \ 
~~ ~ 

%
\ 0

—ç 
~~ \ \

— (3.55)

(S~ \ \ 0 
~ 0 ~‘I -C~~r R I

From Equation (3.51), the Jacobian J is:

J — a .z (3.56)

Equation (3.51) can be rewritten as:

V0
0

—C. N 
. 

— 
(3.5 7)

.
‘ 

%... 
.

‘S.. .S.....U ‘S.. ..
‘-C I IN-i

Using Equations (3.57) , (3.56) , and (3.54) along with (3.51)

leads directly to the likelihood function (3.26) except for the mean
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of the joint distribution as given in Equation (3.25 ) . However ,

recognizing that;

IS.. -1 I
S. S..

S..
...

—C ‘S .. 0~~~ C~ ‘... 0
S. % “S ‘S..

S .
’ ~ — . .

‘ S.

‘.
5. ~~

.

~~.‘ 
. 

......
5.

%
.S.
%
.. 

(3.S8)
0 .‘~~ S.~~ S.

‘-c “r c’~’ . . . ‘.c ‘S r

and

C1 — (HAH ~
1 ) - ’ = HAIH 1 (3.59)

the mean is easily established, and the equivalence is shown.

There exists another interesting assumption on the initial

conditions for the alternate model, Equation (3.50), that can be made.

In this case, the initial condition is considered to be and is

assumed known , as it obviously is since it is a measurement, and a

deterministic constant. While thi s assumption can be applied to the

model of Equation (3.50) , it is inconsistent with the underlying model

of Equation (3.5) which says that is a random variable. It would

appear that this discrepancy has the effect of assigning an improper

weight to the first error - an effect which could be expected to have

diminishing influence as the number of samples increases. Treating y0

as a known deterministic constant in the alternate model gives good

results experimentally for systems that correspond to the original

model. Investigation of this formulation , irrespective of whether or

not it directly applies to the original problem, is of interest. (See

Mann and Wald (19431 and Levin (1964] and the related discussion in

Chapter 2.)
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The likelihood function for the alternate model taking y~ a-s a

known consta nt is found as follows . The baaic set of equations for

this problem i~ generated by (3.50) indexed by I — 0,1,...,N—1.

For this system , the joint distribution of ~~~~~~~~~~~~~ is easily

sbown to be 8 .

c ‘~77( 0,R5)  (3.60)

where:

— 

~~o
?
~ 1P•~~

?CN_1)

and

R+cRC’ -RC’

-CR R+CRCT -RCT

0
— ‘5.. ‘55.,, 

(3.61)
-S.

,’.
‘. ‘S.

’5 
.5.
”—RC’

5. 

S.

-CR R#CRC’

Since the Jacobian for Equation (3.50) equals one where:

— 

- (3 62)
.1 8~

and

— (Y11Y2l~~~~
1YN) (3.63)

then: tiN
— (2~r)  2 

~~~ 
2exp(-.j(y* — f)vRz~

l (y* - f ) J  (3.64)

where:

— n-vector,

If Dii,,
0

f — , y~ — ((y1 — Cyo) , . . . , (yN — CyN_l ) J

(3.65)

The characteristics of the likelihood function L2 are considerably
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different from those of the previous sections . The means of those

densities in al) three cases were expressed in terms of powers of the

unknown matrix A. In L5, the mean is not a function of A, but A does

enter linearly in the set of differences of the ‘s. On the other

hand , the covariances of the previous dens ities were of the form a21

or . rØR , where Ø deriotes the Kronecker product , while in the

covariance has tr i—di agona3. form with elements which are of the form

A o r 1 # A 2 .

Because A5 is not diagonal (in the sense that the earlier co-

variances of the form I € R  were diagonal) , crudely speaking , the

estimate for A is found by fitting a hyperplane to the measurements

in the non—trivial norm of R2 ” . This characteristic is interesting

relative to the solution. of the previous sections . There the

residuals were weighted equally. That this can be undesirable is

easily seen by considering the scalar autonctnous model with a 1<1.

Then early measurements have more useful information than later ones,

and thus the later ones should be weighted less than the early ones.

The likelihood function will give uneven weighting to the residuals.

Whether or not this will yield any better estimates than those of the

previous sections is not irmediately clear since the nature of the

residuals is different, and the arrangement of the weighting is not

obvious.

Because of the complexity of this approach, first the scaler

autonomous case will be developed. The covariance matrix A5 reduces

to the N x N matrix :
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—a 
-

~‘5.~~ ~~~~~~ 0
“S., \

— a2 (3.66)

-a 1+a

It can be shown (see Appendix B) that:

(02
)

N a21 (3..67)

and

— (r1j
’) (1.68)

where:

— ( a2
~)ai 1( a~ t)/( a2

~) (j~ i)

Also, in Equation (3.64), for the scaler autonomous case:

n — 1 , f — 0 , a n d C 4 a  (~ .69)

dlogLz
Forming da — 0 gives after considerable manipulation (see

Appendix Ch

VN + Q N’ O (3 . 70)
where:

VN — _20
2 q~2(P#~I ’I (3 .71)

— _20
2 .i -t jj a~~~~

k—i I—
k>N

— 

2(~~~i) 
(y’( (k + 1 — 41)S~~.1..j,...2j J ) yJ a k (3.72)

where :
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0 ,‘
— 

,“ 0 , the unit Hankel matrix

1’

(S
1

)~~~~ p > 0

sp
_ I p — 0

(5 Y)P 
~ 

( 0

0~ 0
S
i 

—

‘1 “0

As a result of differencing the measurements , it would appear

that information about the initial condition is lost , and consequently,

this case is similar to one where was an unknown parameter. In

fact , above is equi valent to the first term of the necessary

condition for unknown parameter case (Equation 3 . 2 2 ), i.e.,

0N ’ — 2 (1 - t)a 2 t#14i 1y19j  (3.73)

For the scalar plant with a forcing function , a necessary

condition in polynomial form can also be found. However, introduction

of the forcing function destroys much of the synunetry characteristic of

the autonomous case and as a result precludes the extensive reduction

in complexity the autonomous expression for 0N can undergo (see

Appendix C). Because of the similarity of this case to the x0 unknown

pa rameter case , 0N is probably equivalent to the necessary condition

for the latter case (Equation 3.22) , but this equivalence has not yet

been shown .
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The necessary conditions for the vector-eiatrix case are somewhat

more difficult to establish. First take the log of

log I.5(A) — - log 2w — log 1R51 - 3 (~* — f)TR
5
”(y* - f)

(3.74)

Taking differentials at a stationary point:

~~1og L5(’A)) — —
~~ 

tx(R5
1A (R5) J  — ‘If ~~(g* — f)

— — f)ut~(R2 1) (g* — — 0 (3.75)

where:

— — (y,,,...,yN_1)(I®t’) — - Y0 t (1®t ~’) - 
.

/ vyo ‘~‘o ‘“‘~N—i

A’ —Rt~’
•‘

~~ 
0

—M ‘

.... 
‘S.

S “I

“5 
5.,, 5

’

~
.‘ 

—RA ’
0 ‘. ‘5

-AR ARA’+ARA’

A(R5
’

~~

) — — Rz’1 (A (R~
))R5 ’

But A(R 5) can be rewritten as:

AR IA’ A —I RA’~
~ 

0

A4’R 5)  — + 
\ 1

0 
~ 

0 0 0 
~AR~~ — I A ’ ‘A

(3.76)

or 

A(R~~ — (IN ØA ’) f ( IN Ø A’) - + ((IIf ØA’) - S~~~’J

where:
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‘N — N x N identity matrix

Using the above and the properties of the trace, Equation (3.74) can

be written as:

tr{UIN ®A’ - S~)R5~~ — (I ®R ~~iy0(y * -

— (IN ØA ’ — 5d~z
_l
~~* — f)(~* —

(IN® A’)) — 0 
(3.78)

Definition: Let ~ be an (ziW) x (nN) matrix partitioned into N2 equal

suiratrices of size a x a. Using the same scheme as

associated with a matrix having scalar elements, denote

the .1 jth sukinatrix of~b by G.j. Define the generalized

trace operation:

— ~~ G~j (3-. 79)
.1—i

Since A ’ is an arbitrary matrix:

- S~
) - (I®R ~~)yo (y * - fT’

— (IN ® A ’ — 5n)~?z~~~(~ * — f)(~* - f)”1R5
’1 } — 0

- 
(3.80)

The usefulness of the necessary condition might be enhanced if an

explicit form for R 1 could be found . However , without some restric-

tive asstsnptions on the structure of the matrices, finding an explicit

inverse appears to be difficult. For example, when R a c521 and A is

normal, i.e., AA’ — A’A , then the inverse can be found. However,

restrictions on the structure of the A matrix invalidate the likelihood

squationa whose derivations are based on completely general variations

of A at the stationary points. It is not clear that rederivation of

I 
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the likelihood equations with any such canonical form for A would

result in any benefits.

Notice that to derive the equivalent system model (Equation (3.50) ,

N~~ had to exist. In the more general case , H is taken as an nt x a

matrix with m ~ a. If m ‘C a, the most obvious approach is to use a

pseudo-inverse form for H which is suited for this problem.

Another approach that appears promising is use of the observer

of Luenberger (1964] . With this scheme, the measurement equation can

be augmented so that it can be inverted directly for plant state

There are a n~~ber of difficulties associated with this technique , not

the least of which is the necessity for the solution of a Lyapunov

equation for the matrix required to augment the ~ matrix.

3.7 PLANT NOISE

Consideration of plant noise introduces additional complexities

in the task of finding polynomial type likelihood functions. Typically,

the effect of plant noise is to add a term to the covariance matrix

for the system without the plant noise . Finding the inverse of the

covariance becomes the problem of finding the resolvent of a matrix

much as already occurred in a simpler form in the case of x0 with

k nown distribution .

The scaler ~ersicns of the four cases covered in the previous

sections will be cons idered . The basic mode l (3.6 ) with plant noise

becomes:

— ax1 + bu1 +

I.
. 
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The following ass~atptiosts are made on the properties of the noise :

~~~ 
independent and {~~ J ~.trft’0,~

2)

{nj ) independent and independent of {~~); n1 ~.77(0,a
2)

For convenience, the likelihood equations will be presented in

a pre-polynosnial form. The polynomials may be found merely by

expanding the equations . (The derivations of the likelihood equations

are given in Appendix D) .

a. Known initial condition x~

The likelihood equation is:

0 — Ry l~ (
~ 1 R~ I) •# { 

~!N — hr0a~ 
- hb

~~r,)’ 
(~~R~ 

‘l)

- 2(hx0(/ a ~,) t hb(/ ~) u~,J TR~~”}( yj . ,  - 
~“o~zi 

- 

~~~~w) (3.82)

where:

~~~

‘ — 
~~~~~~~~~~ 

(3.83.)

— (a,a 21...,aN) (3.84)

UN — (uo,...,uN_i) (3.86)

1
S.

• S.
5
’a

S.
5. 5.

— a2 5’
~~ “,, (‘3.86)

‘S.
. .5 ‘5 .5
• ‘5 ‘5.5

’ 
.5 .5.

N 1  • .
‘
~
““ a ”5a ”1

— (02)P ‘fl (h
282 + 1 -4 a2 - 2a co ) ~~ ,p �.i (3.87)

k—i ~ p il

and J0 — 1

— (a2 i h2B2) 7 t...1 — a2a~ 7t~2 (3.88)

and
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Li — a2 St h2B2

L
2 — a” + a2~

2h2 (2 + a2) +

IR~~I 
— L

N (3.89)

::: ~~~~~~~~ 
(3.90)

\ ‘5,, (3.9r)
5.0 .... S..

—a 1

— (r~~~’) (3.92)

rjj~~ — (a2a)i~~ (Li 1 ) (J N_j ) / ( LN ) ,i�1 (3.93)

b. Initial condition x0 an unknown parameter

This case is identical to the one in part (a) above but with

the addition of an equation for x~~ . Referring to the

definitions above and Equation (3.19):

~~~~~~~~ 
~~~ 

- 
~~O~_N -h u~,)TRj

1(a~)a
Z 

~ 
- hx0) — 0 (3.94)

Or:

XON 
— t

~~N 
- h b u N) ’R

Y
1aNa2 - y~~

)/ ( (i  + a aN R~ a11
)  hi

(3.95)

c. Known distribution of initial condition z
0

Ass’.ine:

x0 independent of {~~ J and x0 ‘~ 7’)(20,c2)

The form of the solution is similar to that where x0 is known.

The likelihood equation is:

0 — R~ ~~ 
(
~ I R~ ~) ~ ~ (MN - 

~~~~~ 
- 

~~~OUN) 
~~~~~~~~~
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- 2(h~0~L~,,) + hb4~~~8o) !~lqJ ’RtJ ’} ( VN ~~ofN -

(3.96)

where :

— 

~~~~~~~~~~~~~~~ 
(3.97)

— ~~~~~~~~~~~~ (3.98)

- 0 ... 0

(3.99)

— fr (82 + a2 1 + a2 - 2aa2 cds ~~~ (3.100)

and 3~~— i

(Note that the masher of samples is N + 1.)

— 1(a 2 St h2~
2) (82 St 02) St a 2h2e2a2J J ~_2

/ — a2a”Jt_3 ,t~4 (3.101)

f and

I j o — i

— L1 a 2 t h ~C 2

- 
— (02 St h2c2) (82 .4 02) ÷ h~~

2a2a2

— (a2 + h2e2)((82 + a~)2 + a282a2j

4 a2h2~
2a2(82 + a~ (1 St a2))

IR
g I — i.~j+i (3.102)

— (ii’) ‘k ’ •1 1 (3.103)

. . .  0
- -~~ 

:- 
•~

_
~ — 

0 
•_~ 

(3.104)

0

- 
— (ijj 1) (3.105)
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tj j
1 
— (a2.)i~~(i~j_i)(K1,+i_j)/tL~~l) ,it.i (3.106)

(h2c2a2 St St 02)JN..1 — a20”3N_2 li—i

~N+1-j — -

~N+1—j

(3.10?)

d. Differencing approach

The likelihood equation is:

0 — I~yI ’4aI~y I) + ((~~ a~ 1_~ — 
~~~~~~~~~~~~

- 

- 
- 2(v 1) ij ’ } (y,, — a~~...l - hbU,,,)

where :

(~~,,,)T  —

— (h2Ø2 # u~ (1 4 a~) — 2aa2 cos
1,~~-) 

,p �1

a 1 (3.110)

— 

(3.111)(~jf
1) (3.112)

— ~‘o
2a i~ ‘~i .i) (~i_j) /~N ~~~~ (3.113)

3.8 MINIMAL SUFFICIENT STATISTICS

When the likelihood equations are derived , the question of what

might be their simplest form inevitably arises • Concern for simplicity

is heightened as the masher of samples increa ses becaus e computational

effort can rapidly increase with more samples.

The problem can be viewed from two aspects. One is purely

algebraic manipulation to r educe complexity . Any approach in thi s area

is basical ly ad hoc. The second , which in a sense is a special case
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of the first , is concerned with condensing the information in the set

of samples into a amal].er set which contains an equivalent amount of

information about the unknown parameter. This second area , which is

based on the theory of sufficient statistics, has formal structure and

is the more important of the two because through sufficient statistics,

the amount of computatio n can be stabi lized as the masher of samples

incr ases. Establishing the existence of (non—trivial) sufficient

statis tics for the four cases investigated in this chapter is clearly

of interest.

For scaler variables , Dynkin (19511 , on whom most of the following

discussion will be based, defines a sufficient statistic in the

following way. Let {p (x ,0) :0 EQ)} be a family of probability densities

denoted by F , defined on the set D in the rn-dimensional space RW.

- / The function x(x), defined in D and with values in some set 1’, is

called a sufficient statistic in the domain D for the family I’, if

the probability densities p(x ,0) may be factored into the form:

p(x ,0) — v(x (x) ,0J W (x)  (x E D, s Ee)

(For a more rigorous definition see Mo (1965, p 1101 ) (3.114)

Then, for example, if the samples X1, .. . , XN are independent and iden—

tically distributed, the existence of a suffici ent statistic X would

allow the following factorization*: —

N
fl p(xj,0) —

i—i (3.115)

(Of course , from a computational point of view what is desired is that

* The statistic x — (x1,...,XN) is sufficient and is known as the
tr ivial statistic.
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x have a recursive form such as:

x(Xi,...IXN ) - ?fX (Xp ...,X~ _~),xyJ 
(3.116)

where F is some reasonable function. Otherwise nothing is likely to

be gained. )

If the sufficient øtatia tic for a family r is not unique, then the

question of which one is most desirable arises • Since suff icient

statistics in a sense partition the sample space, a possible charac-

terization of the most desirable one is that it impose the coarsest

partition on the sample space. Pursuing the approach more formally ,

D-ynkin says let x1(x) and x2 (x) be defined in D. Then is dependent

°fl X ,~~ 
if it follows that x2 (x ’) — X2 (r’) implies x1 (x ’) x1(x ”) .

This gives a partial ordering among the sufficient statistics. The

statistic x (x) is called a necessa ry statistic for the family r in the

domain D if it is dependent on every sufficient statistic. A statistic

which is both necessa ry and sufficient is minimal sufficient.

In order to test for minimal sufficient statistics two theor ems

of Dynkin , as corrected by Brown (19641 , for scaler, independent

identically distributed samples are useful • The first theorem (Theorem

2) cons iders the linear space L(r ,D))generate d by constants and the

functions g
~ 
(0) for any 0 C (~) where

— log p (x ,0) — log p(x ,00)  (3.117)

and some fixed element in ®. If the functions 1, $
,~ 

(x) , . .  .

are a basis in L (F ,D) ,  then for N~r the system of functions:

Xl (Xl,X21...,XN) — •1(x1) St ... St •j (x~) i — i,...,r (3.118)
is shown to be a minimal sufficient statistic for the sample of size N.

In the second theorem (Theorem 3a) Dynkin shows that if the probability

density of the sample has the form

58 
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pg’x,8) — exp { c~(0) $ 1(xJ St c0(0) 4

(3.119)
then the here correspond to those of the previous theorem (Theorem 2)

and thus form a minimal sufficient statistic when s .muned as in (3.118) .

however, Pynkin’ a results do not apply directly to the four

initial condition situations in the previous sections because identi—

cal].y distributed samples are aestased for the above two theorems. The

case of independent samples which are not necessarily identically

distributed is treated by Zhuravlev (19631. A theorem based on the

above theorems of Dyrzkin is presented which results in the desired

generalization. In this case each Pj (x~ O) of the form given in (3.119)

has associated with it the sets of functions {Cj (0) and 
~~ 

(r)

where .1 
~ 

j  Jc > N, the ntsnber of samples. The minimal sufficient

statistics are found by forming linear combinations of various sets

after examining the amount of dependency in spaces generated by

all possible combinations of the sets {Cj}j . Non—trivial minimal

sufficient statistics result only if the dimension of the space gener-

ated by {c .) l , {c . )
2,...,{cj }k is less than k~

Applying Zhuravlev to the known X0 and x0 unknown parameter cases

shows no non—trivial sufficient statistics exist. In the X0 known case

the ith sample is distributed as:

p1 (y~ ,a) — (2-wa2) exp (-~~ y( Yj — a1x0 — a1 i~~_ 1) 2j
i—i

- - (3.120)
The {Ck) for the ith sample are a t 1a11 ,...,a ,1. Clearly , for

I — 1,...,N the dimension of (Ck) x...x {Ck) is not less than N. The

- 
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same conclusion holds when is an unknown parameter . For the other

two cases , none of the above theorems apply because the samples are

neithe r identically distributed nor independent. By factoring the

covariance matrix and transforming the original samples with the fac-

tors, a transformed set of samples which are independent can be found .

Nothing is gained by this approach because the transformed samples are

unknown quantities since they depend on the parameter a. The existence

of non—trivial sufficient statistics for these cases is unlikely

because of the sample dependence. (The literature offers little for

investigation of the vector sample versions of the four cases. Some

related work was done by Barndorff—Nielsen and Pedersen (19681.)

The conclusion from all of this is that the degree of the polynomials

which define the necessary conditions for the t.ff.~ estimate will in-

crease without bound as the nunber of samples increases without bound .
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SECTION IV

PROPERrn~S OF THE IDENTIFIERS ~ND THEIR APPROXIMATIONS

4.1 INTRODUCTION

The properties of the parameter estimate ~ and , in particular ,

the characteristics of the roots of the likelihood equations for each

of the four cases treated in Chapter 3 need to be considered in order

that some evaluation of the practicality of these estimates can be made .

Both the degree to which the ML estimate a can be expected to approxi-

mate the true va lue of a and the extent of the effort required to

determine ~ are of interest. (Discussion of the latter is primarily

the topic of the next chapter.)

The investigation of ~ is developed in two parts - finite sample

properties and large sample or asymptotic properties. To this end , a

number of questions could be posed such e.g the bias, consistency ,

efficiency , asymptotic distribution, and uniqueness of & as well as the

number of real roots , if any , of the likelihood equation and their

sensitivity to the measurements. While furnishing answers to these

questions , as well as related ones , might be desirable , in general this

tends to be diff icul t  to accomplish. Some of these questions p lus

possible approximations to the ML estitsate are explored below , but for

simplicity , generally only the scalar versions of the four cases in

Chapter 3 are investigated.

4.2 FINITE SAMPLE CHARACTERISTICS

When the n i.mber of samples is finite, purely deterministic analy—

sis of the likelihood equations is of only minimal value . Short of
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forming confidence limits for the properties of interest, limiting

forms and averaging appear most advantageous for finite sample analysis.

For this analysis, let a0 and Xoo be the true values of a and x0, 
I
t

the parameters to be identified, a and be their ML estimates, as

previously, and a and x0 be points in some subset of the real line.

Then a measurement 
~ii 

can be expressed as:

I
— hao

1xoo # hb E a0
1 i u~_1 ÷ (1 — .Z ,2,...,N) (4.1)

i_i

except for the differencing model in which case 
~ becomes:

Yj = a0
1y0 St 

~~~ 

(a0~
i
~
i(hbuj_1 ~ ~i~~

) 3 ~ — 1,2,...,N) (4.2)

4.2. 1 LIMITING ESTIMATE FOR ZERO NOISE

One of the simplest questions to answer about the likelihood

equation is what happens to a and It,, as a2 or, equivalently, as the

noise measurement goes to zero. When the initial condition ~~~ is

known , introducing (4.1) with — 0 into (3.9) with the above

notational changes gives :

N
DN (a) ~~~~ 2 1a0

1a2 1  
— ~~~~ 2 ia~~~~

N i  . 

-

St hbx,,,, ia0
1 jal uj _j

St hbx,,0 (I - i) a o
1ai~~

_ 1
uj _ i

- hbx00 (21 — i)a2l~~~
1
uj_i

_______ 



- -w - 
~~~

—-
~~ 

- - 
~
-. -- - -F- -

~~~~~~~~~ 
- 

- —~~ - -~~

St Jib2 (1 —

N I I
— ~~ 2 (i — k)a21_i_

~
Cuj ..luk_l 

(4.3)

Clearly , DN (a Ø) 0, but a0 may not be the only root. However , if

Ti1 — 0, then from Equation (3.8) QN(a~,) — 0 and ~ — a0 (uniquely , unless

— 0 and uj  0). (Of course , to show the above, the ~~ (a) equation

could have been appealed to directly , but then the details of what

happens in DN(a) as 02 -
~~ 0 would not have been illus~~---~ed.)

When x0 is an unknown parameter , the limiting condition can be

found by introducing (4.1) with — 0 into (3.22) . Equivalently,

working with with (3.20):

— (Ji a01 a1x00 9 Jib 50
1 i51uj _ l

— Jib a2~~ iuj _ 1.1 / h  ~~~ a21)  (tL4)

Setting a equal to a
~ 
gives è0 — x

00.

From the discussion on the known case and the above result ,

a~ is seen to be a root of the likelihood equation for the x0 unknown

case . Thus i — a0.

In the case where x0 is an unknown random variable with known

gaussian distribution, introduce (4.1) into (3.46) and let nj go to

zero. (To be consistent in taking the limit, a2 must also go to zero.)

This gives :

DN (a) — (1 - k)a 2i9i91~~1a0
i9~C

- 

— 
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+ h~~
2 bJç,01 

~~~ 
(2p-.2I+j_r)a2 l)+t t

~~ao
iur_i

~~~ (21_j_p)a219i+P_ laoi+P t ur_l

- 

~~~~ 

(p—r)a2(I+i)9P~~~ ao
Pur_1J

+ b~b2 c 2 ( E E E (2p_2I+j_a)a2(1#P)9i
_
~~

1a0i~
tu~ ..1u~ ...1

.1—0 já~i p—1 r— a—

÷ 
~~ ~~ 

(I _p ) a2i+ i+P _l a0i+P_Z Su~~ 1u3 1
— j—i p— r— a—

N N N .5~ E E E ~— j—i p —i r—i s—

- E ~ ~— j —0 p — r— a—

+ E ~~ (p _s) a2 (
~
i#i#P) _Z_S_ l ur_ lus_l I (4.5)

— j —O p — r— a—

By syimnatry, D1~(a,,) — 0.

Note that the covariance inverse (3.40) is positive definite for

a2 > 0 and a2a’R5’1 a -
~ 0 as a2 -

~ 0. Consider the cost function QN(a),

Equation (3.41). Then, if a2 — — 0, QN (a) is a minimun when a — a~.

Thus, provided 02 — 0, once again, as + 0, a + a0.

The same conclusion holds for the differencing approach. As in

the previous case , a2 must be set to zero. Once this is done, the

equations are identical to those in the unknown parameter case for

which the limit has been shown.
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4.2.2 ESTIMATES FROM AVERA (~ D LIKELIHOOD EQUATIONS

Mother finite sample pr operty is the parameter value which on the

average is a root of the likelihood equation. In other words , if L is

the likelihood function and
d

r (a) — ~~ log L(a ) (4 .6)

then which a, if any, results in the expectation S (r) — 0. (This

property is obviously closely related to the one for zero noise.)

Let y E Y be the N samples from one of the four models previously
- -

considered , where the samples could be vector quantities and the system
• either autonomous or not. The parameter vector 0 — (01,. . . ,0~) is

• take n as appropr iate for the model, e.g., (a) or (a ,x0) or the elements

of the A matrix, etc. Let and 0 be the true value ~stimate of

0, respectively, where O
~
, êEe. The likelihood functi- ri is

• 

defined as previously, L — p(y,O), and let I -

r1(0) — log L (4.7)

Aasi.m~e log L and r1, I — 1,... ‘p are continuous on Y 0 ® and that~ log LI
and rj  I are bounded ‘i/y E Y, 0 E G by functions on Y which are integra-

ble over Y. Then the following theorem can be stated:

Theorem 4 • 1: For N samples , on the average, the true parameter value

is the maximun likelihood estimate of the parameter.

Proof:

— f t  ~~-j - log p ( y , 0) J p (y , 00) d y

— f t  ~~~ — ~~~~~~~~~~ (4.8)
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1’
1 f 0 00 ,

Efr.j(0&J — (f 1~L.. p(y,0) (ly) I

By the above assunptions,

E(rj(00)) — f..L. f p(y,O) dy.7I o (4.10)
Oj — 0 

i
This conclusion unfortunately does not directly answer the question

of bias of 6. Showing that on the average ther true value of 0 is a

root of the likelihood equation does not necessarily mean that the

average of the root 0 is e0.

4.2.3 THE STABLE ROOTS OF THE LIK~ IHOOD EQUATIONS

The question of the nunber of ~eros of a real—valued polynomial in

an interval of the real line is at best difficult to answer in general

but when , in addition , the coeff icients of the polynomial are random

variables, as is the case with the likelihood equations, general state-

ments with much practical value are rare. Kac (1943 , 1959) investigated

the average nunber of real roots of a real nth degree polynomial whose

coeff icients are independent identically distributed normal random

variables. The results are in the form of complicated integrals. The

conclusions indicate that the density of the root distribution peaks

at ±1, and the average ntnnber of roots within the interval (—1,1) is

the same as the average ni.nnber outside.

As might well be expected, more may be said about the nature of

the roots of the likelihood equations if these equations are investi-

gated directly rather than through the general case considered by Kac.

For simplicity, the discussion will be limited to autonomous models.
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The analysis of each of the four cases has the same pattern. First ,

the rnznber of roots of the underlying deterministic portion of those

terms in the likelihood equation with random coefficients is investi-

gated in the open interval (—1 ,1). Then assessments of the effects

of the remaining purely deterministic terms, if any, and the purely

random segment of the random terms are attempted.

When the initial condition x0,~ is known, the likelihood equation

for the autonomous plant is given by (3.10) and (3.6) :

ia~~~y1 — hx00 la2 1 ’

— hx,,0( 1a1 1 a,,1 — .ia211 1 +

— 0 (4.11)

The plant is asstined to be stable, i.e., —i < a0 < 1.

j The nueber of roots in the open interval (—1 ,1) for the detexmin-

istic portion of (4.11) (the bracketed quantity) will be treated first.

In the interest of clarity, some lemmas are presented prior to the main

theorem on the roots.

Lemma 4.1: Let N be a positive integer, and let k be a real ni.znber

where 0 < k < 1. Then ,

N#1 k <~~~~~ (4.12)

Proof:

When N — i ,

~~~L 
____ — 2k/(1#k) < i (4.13)

Let N~~~2. Find ma3C~~!
k

k 1#k N
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1:
d k 1—(N—i)# — odk l+k”

or ,

k — (_L)
”

~~ 
(4 .14)

~ N-i

Clearly , k0 i. where the maximue in (0,1) occurs. Then ,

11+1 k~ N2-i 1 1/N

~~ 
< 1  

(4.1S) I

L~~~.a 4.2:  Let N be a positive integer and let k , a0 be real nuztbers

w h e r e 0 < a0 , k < 1 .  Then ,

N(i 4 #) — a0
2 (N+i.)k( 1 — > 0 (4.16) T

Proof :

N (1 + #) - a0
2 (N+i)k (1 - ##1)

— N (1 + k~”) (1 - a02 (1 — #~~) !t!
> 0 (by L~~zna 4.1) (4 7) I

Establishing the sign of the deterministic term of (4.11) when

0 c a0 < 1 and —a~ c a c 0 is complicated by the fact that the sign of

the Ith term of the sussnations is either positive or negative depending

on whether or not I is even or odd. The next lemna deals with this

situation.

Lesma 4.3: If N is a positive integer and the real n~rtbers ~~ and a

are such that 0 c a0 < 1 and -a0 < a < 0, then

(4.18)

Proof:

Make the following definitions —

AN — ia1 1a01 and 
~N — j~211 (4.19)
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Inductive proof for N even :

At N — 2,

*2 - — a~ St 2aa0
2 - a - 2a 3

> —2a St 2a (a0
2 — a2)

> (4~20)

Assuee AN_i 8N-1’ N-i even. Then,

- — AN_i - 8N-1 ~ Na” 1a~/’ ~ (N St 1) a Na~j J+ l

— Na 2
~~

1 — (N St i)a2N4i

> N # 1  a0
N + (N 4 1) a1~a0~~

1 - Na2
~~~

— (N # 1)52N41 (4.21)

L e t a — — k a 0, 0 < k < i  (4 .22)

Then,

ANti - BN+l > Nk~~la0
2~~ 1 - (N + 1)#a 2N~~ St Nk2~~

1a0
2
~~~

4 (N St 1)k 2N~ I a 2N# l

- 1 — k~~~ a0
2
~~~

1(N - (N St i)ka0
2 9

+ (N i) k~~
2a0

2 J

— i~~~
1a02

~~
1(N (i # k~ ) — (N + i) a 0

2k(1  - kN+l ) J

> 0 (by Lemma 4. 2) €4.23)

Now, odd N:

A t N 1, A 1 - 81 — a 0 - a > 0  (4.24)

Let N be odd, and using the above conclusions for when N was even,

AN 
- BN — AN_i - 5N-1 + Na’~~~a0~ - Na 2

~~~

> Na1~~1a0
N -

N c ~~
1a0

2
~~~ (1 + kN ) > 0 (4.23) $

With the above lamnas, the main theorem follows easily.
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Theorem 4 • 2: Assiane the ini tial condition xoo is known and the plant

is scalar , stable , and autonomous . Then in the limit as the measurement

noise nj  goes to zero , the likelihood equation for the unknown parameter

a0 has only one stable root. Furthermore , that root is a0.

Proof:

If h or x~0 (in Equation (4.11) ) is zero , no conclusion on

root distribution can be made . Ass~ane h and ~~~ are not zero.

Consider the sign of AN — N a positive integer , for a E (-1 ,1)

where

• AN — ~~~ ia
1
~~a0

1 and BN — Ia21
~~

If a0 is zero, the conclusion is immediate.

Take a0 positive, i.e., a0 E (0,1). Then ,

l . a0 < a < i

Compare the jth terms of AN and 1 
~ 
j ~ N

Since jai 1a0i < ja2i~~, AN < BN.

2 . a O — a , then AN — B N .

3. 0 ~~ a < a0

Since jai 1a0
i > j a2i~~, AN > BN.

4 . a— O

Since ae > 0 ,AN > BN

5. —a0 < a -C 0

AN > 8N by Lemma 4.3

6. — 1 < a ~~~ —a0

ja i~~a0i > ja2i~~, 5 odd

jai~~a0i � ja
2 ih , j  even 4
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j Since s~imnationa on j in AN and BN go from 1 to N, AN BN

The above follow similarly when a0 E (-1,0).

The effect on the above conclusions due to the polynomial noise
N

term in (4.11) , ! iai m 01, is not very clear as indicated by the
1—1

earlier discussion of Kac ’s work. Perhaps the most important character-

istic of the term which can easily be determined is its expectation.

S~~ce the 01 are zero mean and independent , the expectation is zero ,

and thus on the average the conclusions in the above theorem hold for

the likelihood equation. However, for a given realization, the noise

term equals ol when a — 0. Except for that possible b~~p in the neigh-

borhood of a — 0, simulation results indicate that the polynomial should

3 
be smooth on (—14) for finite N. While the nueber of roots of the

noise polynomial is N-i, one would not expect all of them to be real,

nor all the real ones to be in (—1 ,1). For small variance relative to

and a0, the noise term probably only has the effect of biasing the

‘detezministic) root of th. likelihood equation in (— 1,1).

When the initial condition xoo is an unknown parameter x0, the

likelihood equation for the scalar autonomous plant is given by (3 .6)

( and (3 .24) :

N N
(i — 1)a21+i 1yj

j  N N N N
ja 21 f r 1a0i — Ia 21~ i 1 a0i)

N N
+ (j — i)a21+ i 1 f l1 — (t,2~)

The nueber of roots in the open interval (-1 ,1) for the deterministic
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portion of (4. 26) (the bracketed quanti ty ) is investigated below.

Again, preliminary to the main theorem, some lemmas are presented .

L~~~a 4.4: Let z be a real nisuber where 0 < a < 1 and let n be an

integer where n > 2. Then ,

Zn — nz + n - 1 > 0 (Beckenbach and Bellman (1961]) (4.27)

Proof:

Zn — nz + n — I — (a — 1) (i~~ St Zn—2 +...+ z — n ÷ 1) (4.28)

Since Zn1 St...+ a c n — 1 (4 .29)

Zn - nz + n - 1 0 (4.301

Lemma 4 .5: Let a
~ 

and k be real n*.anbers where a0, Jr E (0,1), and

let N be an integer where M > 2. Then ,

i_k3a0
k N-i i+#~~ M— 2 i_#. 2

1G10
2 ~~~ 

St k 
~~~ 1—k 1 > 1 (4.31)

Proof:

1—k3 a0~ K—i i+k~~
1 M-.2 i—k~~

2

ka0
2 ~~~~ i-i!’ 

+ k 
~~~ i_AN

i—k 3 1#j cM~~ St k ~~~ 1_# 2 (4.3~)
k U i~# U i_kM

Placing the right side of (4.32) over a common denominator

and subtracting the denominator from the combined nianerators gives:

(1—k3) (N—i) (1StAM~~) + k2 (N—2) (i—k~~
2) — kM (1 _AM)  (4 .33)

— (N—i) — 14k + (N—2)k2 - (M—l)k 3 + (N—i)AN ’ — (N—2) AN

St Mk~~~ - (M—1) ANt2

— ((N-i) — Uk + k~~
1j  St ((N—2)k2 — (N—1)k3 St JrTM41)

i (14—2) k1
~~ (i—k) 4 (N—i) kM~~ (i—k) (4.34)

> — (M-1)k # (M-2) ) + 1 — A + k2 (kM
~~ - (N—1)k St N - 2)

(4.35)

72

~

- - -~~~- -~~~~~~--~~~~~~~~~ ~~~~~-.- - - 
~~~~ - -  

_ _ _ _



-~~~~~~~ 
- . 

__
~~

_.. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _—._.__ ~~~~~~~~~~~~~~~~~~~~~~~~~~~

> 0 (by Lemma 4.4)

Also, kN( i — ATM) > 0 
(4 . 36) I

Lemna 4.6: Let a and a0 be real rnznbere where — 1 < - a 0 � a < 0 .

Let N and j be even integers where N ~ 2 and 0 
~ 
j ~ N-i.

Then:

d — a0
i4l ahJ~2i (a (x_ j _ 1) (a0N i~~_d~il ) St (N-j -2)  (a0~~i 2 —a~~i~ 2 ) J

+ a0i#f2i~~ (a (N—j )  (a 0~~i—AN i)  St (N—j-1) (a0~~i 1  ...,~N j 1  )j

> 0  - (~~~~~~37)

Proof:

Let a — -ka0, 0 < Jr ~ 1. Then ,

d — #~2 i 2 50~~ 1 (-ka0
2 (N-i) (1-# i) + (i-k 3a0 ’) (N-i-i) (i+AN ~frn)

St k2a0
2(N_j_2) (i_k~~i2 )J (4 . 3 8)

> 0  wh enk— J, i .e., a — - a0

For -a < a  < 0,

d — ~N+2i 2aoN+lk(N j ) (i-# i) ~1_k 3a0
k N-j -i i+AN~~~’ 

—

J ~~ 2 N—j i_ k M

k N-j-2 
i_AN i-2 

- 2
N-i i -il ’

> 0 (by Lemna 4.5) I
Referring to (4.26), make the following definitions for the subsequent

discussions:

N N
AN’ E E ja2i i 1 a0i (4 .39)

1—O j—0

N N
BN

’ ‘ E ia21~f1a0i (4t40)
— i — 0

~~~ N N-i

~ 
AN ’ — AN_i ’ — E 1a211

~
1
~~ a0

1 St E Na21~
1
~~a0

11 (4.41)
1—0 .1—0
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dBN ’ ~ 8~ ’ - B~ ..1’ — Na2N#l~~ a0l St 1a2i~
N l a0N (4.42)

Then jth term of dAM ’ - dBN’ is:

ja 2
~~
i
~~a0

i St Na2i+~~
la0

hhl - Na 2
~~ i ’a0i - ja2i4~~~a0~

— (N—j)a 0
ia~~

2i4 (a0~~i—AN i) (4 43)

Establishing the sign of the deterministic part of (4.26) when

0 -C a0 < 1 and -a0 c a < 0 is even more difficult than was the case

when was known. Now the signs of the terms depend on both N and a

suseting index. Note that for N even , dAM ’ - dBN ’ is negative for all j.

However , when N is even the jth term of (dAM ‘—dBN ’) St (dA~_~ ‘—dBar_ i ’) ,

i.e.,

a0ia1~~2fr2 (a (N-j) ~~~~~~~~~~ St (N—i—i) (a0N 3 ~~ .-~~ N~~~~~~~~~1 
~~ ~~ 

(4.44)

is positive when j is even, but if j is odd, it can be negative.

The next lemma deals with this prob’ em through showing that for

N even, the combined negative terms at N and N+ i are dominated by the

combined positive terms.

Laiuna 4.7: If N is a positive integer and the real nt*nbers a0 and a

are such that 0 < a0 < 1 and -a0 � a < 0, then,

AN ’ > BN’ (4.45)

Proof:

Inductive proof for N event

A t N — 2 ,

A2’ - B~ ’ — (a0-a) (iSt2a (a0Sta) + a0a 3J @.46)

- 

- 

Leta—— ka ,0 < k ~~~1. Then,
0

1 + 2a(a0+a) St a0a3 — 1 - 2a0
2k( 1-k) - a0’~k

3
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1 — 3 a 0k + 3 a 0
2k2 — a 0

3k3

• — (1—s 0k) 3

> 0 (4.47)

Thus, A2 ’ — 
~2 ’ > 0

Ass~.mie ~N—2 ’ > 3N—2 ’ , N ~ 4 and even. From ( 4 . 4 1 )  and

(4.42),

AN’ — AN 2 ’ # dAn’ ~ 
dAN_i ’ (4 .48)

BN’ — 8N_2’ St dBN’ St dBN_i ’ 
(4.49)

Consider the sun of the jth and j+ lst terms of (dAN’-dBN’) St

when j is even and 0 
~ 
j ~ N-2. From (4.44) , this

sun becomes:

a0i’ 
laN 2 i  (a (N—i—i) (a0~~i 1  —a~~i 1 ) St (N-j—2) (a 0~~i 2  ..~N—j -2))

# a0iaI~’~~i 2  (a (N-j) (a0~~i—a~~i) St (N—i—i) (a0~~i 1  — d ’ j 1)) (4 . 50)

> 0 (by Lemma 4.6)

Also, when j
~~~

N, dAN’ _ dB
N’

_ 0 .

Therefore , for N even and ~ 4 ,

dAN’ St dAN_ i ’ > dBN St dBN~1’ (4.51)

or , for N even and ~ 2,• I AN ’ > 
(4 .52)

Now , take N odd.

At N i ,

Al’ — 
~i

’ — a0 — a 0 (4 . 53)

For odd N > 1, the jth term of dAN’ - dB
N

’ from (4.43) becomes,

(N_j ) a0ia?J~2 i l (a0N i_aN i )  ~ 0 (8.54)

For j sven, the inequality in (4.54 ) is strict. Thus , for odd N,

445’ - diN ’ > (4.S5)
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From (4.52) and (4.55) for odd N ‘ .1,

AN ’ — 
~~~~ 

— Ai,..j ’ — BN_ 1 ’ 44N ’ — dB
~’ > 0 (4 .56) ~

L~~~a 4.8: If N is a positive integer and the real nunbers a0 and a

are such that 0 < a0 < i and -1 c a -C -a0, then , AN >

Proof:

Inductive proof for N even:

At N — 2, from (4.46 ) ,

A2’ — B2’ — (a0—a) (.L+2a (a0+a) Sta0a 3j (4 .57)

L e t b -a, a0 —k b , 0 < k < i .  Then

(2 + 2a(a0Sta) + a~,a
3) — i - 2b2(k-1) — kb~

— (1—kb~) + 2b2(i~k) > 0 (4.Sa)

Or, *2’ > B2’

Assune AN_2 ’ > 8N.2’’ N > 4 and even.

Consider the sun of the jth and j+ Ist terms of
• 

(d*N ’
~

dBN ’) St (dAN_f ~dBN_f ) where j  is even and
- 

~• 0 
~ 
j ~ N—2. From (4.44) this sun may be expressed as,

- 
I a0

i41a~+2i (a (N— i— i) (a0~~i 1  —a~~ i~~ ) St (N-j—2) (a0~~
i2 _a~~i 2 )J

÷ a0ia
N42i 2 ra N_ p (a0~~i-a~~

i) + (N-i-i) (a0
j 1_atl i’l)J

— a0iar~+hi l I (i#a 3a0) (N—i— i) (a0~~i 1  .~ N—i—1 ) 4~ a (N-j ) (a0~~i—a~
1i)

÷ a2a0(’N—j— 2) (a0~~i~ 2 _a~~ i 2 )) -

> a0
iI~ 2i~

2 (a (N—j ) (a0~~ i—a~~ i) St a2a0(N— i— 2) (a0~~ i 2 _a~~ i 2 ))

— a0ia’~~2 i 2 (i /i~ ’ (N—i) (i—AN i ) — kb~~i~
1 (N— j—2 ) ( i - c ~~i~~ ) J

> 0 (4.59)

When j — N , 44N - dB1~’ — 0

Therefore, for N even and ~ 4 ,
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dAN ’ St 44N—i ’ > dB , St diN_i ’ (4 .50)

Or, for N even and k 2 ,

AN ’ >

Take N odd.

At N — 1, A1’ > B
~
’ by (4.53)

For odd N > i, consider the ith and iStist terms of dAN ’ - dBN ’,

j even :

(N-i) a0ia~ 2 1  (a0~~i-a~~i) St (N-j- i )  a0i~
1 aNSt2j’~ (a0~~i~~ _a~~i 1 )

)
— aoia~+2i 1 ( (N—j)  bN j  (iStANi) - A (N_j_i)# iSt2 (i_#i1 ) J

> 0 
(4 . 6 1)

Thus AN’ > BN ’.

Theorem 4.3: Assune the initial condition xoo is an unknown parameter

and the plant is scalar, stable, and autonomous . Then in the limit as

the measurement noise n1 goes to zero, the likelihood equation for the

unknown parameter a0 has only one stable root and that root is a0.

Proof:

If h or Xoo (in Equation (4.26)) is zero, no conclusion on

root distribution can be made. Assune that h and are not zero .

Consider the sign of AN ’ - BN’, N positive integer, for

a E (— 1 ,1) where:

AN’ — ia2 1i
~~ a0i (4 ,62)

3N’ — ia21
~i~~a0i (4.63)

If a0 is zero, the conclusion is immediate. Take a0 E (0 ,i) .
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1. a0 -C a < .1

From (4.53) , A2 ’ — if — a0 — a C 0 (4.64 )

From (4.43) , for N > 1,

— dEw ’ — (N_j )a0i#+2i l (a0
N~i_I 1i) < 0 ,0 < j ~ N-i(4.. 65)

and equals zero when i — N. Thus

2. a0 — a

From (4.62) and (4.63), kr ’ — %‘ — 0

3. 0 < a < a0
From (4.64 ) , A1’ — B1’ > 0

Front (4.43 ) , for N > 1

dAM ’ - dBN’ — (N ~j ) a oi#St2i l (a0?~ i~k M i ) > 0 ,O 
~ 
j ~ N-l

C4 .66)
and equals zero when j — N. Then

AN ’ >

4. a — 0

From ( 4 . 6 2 ), ( 4 . 6 3 ),

AN ’ - 8N ’ — a0 > 0

By Lemma 4 • ~~~~ AM’ > iN ’

6. —i -C a -C —a0

By L~~~a 4. 8, AN ’ > B~j ’

The above follow similarly if —1 < a0 -C 0.

Little more can be said about the random polynomial term of the

likelihood equation (4.26) than could be said when the known case

was discussed . Again, the expectation of the random polynomial is zero . —

When the initial condition zoo is an unknown random variable , the
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likelihood equation for the autonomous plant is given by (3.48):

a2((a2+h2~~2’Y) ~~~~
2 11  

~
. ~~~~~~~ ia2(l+i)~~

St 
~~~~ 

( 21_ i) a2iSti l y
i 

— ~~~~

- 
~~~~~ 1a1~~y1J — (h2s2 

~~~ 
(k
~
i)a21

~
’
~~
’yk)( ~~~ aiy~)

— 0  (4.67)

The last term of (4.67) corresponds to the Zoo unknown parameter case

likelihood equation (4 .26) . If in the limit as fl1 goes to zero, its

variance o2 is assuned to go to zero , then the conclusions for the

deterministic portion of the Zoo unknown parameter likelihood equation

hold for the deterministic portion of (4.67) . However, how the a2

terms affect the roots of the likelihood equation when 02 is not zero

- - is not clear .

The scalar autonomous differencjng approach likelihood equation

is given by Equations (3.70) , (3.71) , (3.73), and (3.50)

_3~2 j a2 (lSti) 1 .
~
. 

( 

~~~ 
(j_i)a21+i_1y

i
I( 

~~~

— _2a 2 ia2~’iSti~~ 1

“ I (i_i)a 21”i 1 (a0iy0 St ~~~

I ~~~~ aJC(a0
1ty0 St ~~~ a0

1
~~C~~1))

— 0
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where :

~ 0

when r — 0 and — flj ÷2 - a0n1.

If a2 -‘ 0 as -
~~ 0, then the conclusions for the deterministic portion

of the Zoo unknown parameter case hold for this case if y0 ~ 0.

When ~~~2 
~i c and the random terms are considered, the deterministic

conclusions are again obscured. In this cise , the expectation of the
N Arandom terms is not zero. Furthermore, the term a can have

k—0
zeros when the random terms are considered . Neglecting the a2 term ,

these zeros of the multiplicative random term become zeros of the like-

lihood equation in ad~&tion to the stable deterministic root however

modified by the additive random term.

The a 2 term can be written as:

-

• 

_202 j a2 (i +i) ~~ — _202 ( a2
~
) ( ja2il) (4.69)

If N ~ 1, this term has its only root at a — 0. Its effect for finite

N and email 02 is to bias the stable deterministic root toward zero .

Also , since this term is bounded on (— 1,1), as. N increases , the product

of N 1 and this term diminishes to zero .

The behavior of the roots of the likelihood equations in the inter-

val —i < a c 1 for each of the four scalar cases when the forcing

function is not identically zero is less obvious. In an earlier sec-

tion, the fact that as the measurement noise goes to zero, a approaches

a0 was established for forced plants in all cases except the differen—

cing approach (because only the autonomous version was developed here) .
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For these same cases without the limiting condition on the noise,

Equations (3.9) , (3 . 2 2) , and (3.46) indicate by inspection that after

NI-i samples, the likelihood equations are polynomials of odd degree if

some Uj  ~ 0 (not including UN_i ) whether or not ~~~ — 0. Thus the

likelihood equations for forced plants can be expected to have at least

one real root.

4 • 3 LARGE SAMPLE CHARACTEP.I STICS

• 
-

- 
One of the most important and desirable large samp le characteris-

tics of an estimator is consistency , convergence to the true parameter

value. Proofs of consistency of xnaximun likelihood estimators are

common in the literature. The assunptions on which the proofs are

based may vary, but the instance is relatively rare when the assunption

of independent identically distributed samples is not included.

Unfortunately , the samples for the case when is known or is

unknown parameter are not identically distributed . In the unknown

random variable and the differencing approach cases, the samples are

not even independent.

Kendall and Stuart [1961 , p.60] present a brief general discussion

of max imun likelihood estimation when the samples are independent but

not identically distributed. They point out that in this situation

- - it is ho longer necessarily true that ML estimators are consistent and

• give examples to illustrate this. In fact, for certain situations

the ML estimator may not be meaningful . Thus ML estimators in non-

standard situations must be considered individually.

When the initial condition x0 is known and the plant is scalar ,

the distribution of the .ith sample from (3.7) is:
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p1(yia) — rL2 exp 1- -’ij (y—ha ~r0 — hb ~~~ ai i u~_1)
2) £ — 1,2,...

— (4.70)
Aesizne h, b, and x0 not zero and Uk not identically zero. (If instead,

— 0, neglect p1 and assimte u0 ~ 0 for the following development.)

Then pj(yia1) — pj(V,a2) for a.e. y only if a1 — a2. Taking the limit

of on i gives:

lim pj(y;a) — p(y~a) — 7..!_! exp(—-~j (y  — f ( a ,u0, u1, . ..)) 2J

(4 71)

The function f exists and is continuous on the interior of i-ts region

of convergence , (—1,1) , if the U
1 

are assumed to be uni formly bounded ,

i.e., I uj~ -C N -C — , and a € (—1,1). Since f is not a constant ,

p (y;a1) — p(y~a2) for a.e. y only if a1 a2.

Let the subset of the real line (—1 ,11 be denoted bya, and

assume a0, the true value of the unknown parameter, is an interior

point of CL. Since C~. is compact and Pj is continuous on ~~., there exists

• a max imtmi likelihood estimator of a0 based on N samples . Denote this

estimator by aN .

Let

g1(y,a) — log(p1(y,a) /p1(y,a0)) (4.72)

and

g(y,a) — log (p (y , a) /p ( y , a0) J
• 

(4 . 7 3)

Both and g are integrable for all a interior to 0. in the sense that

their expectations exist.

The following theorem is an extension of one by Jennrich (l970] f

for independent identically distributed random variables.
t Class notes in Classical Statistics, Depar~~tent of Mathematics,
University of California , Los Angeles.
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Theorem 4.3: Under the above assumptions,

aN + a0 a.s.

Proof:

Since the logarithe is a strictly convex function , by Jensen ’s

inequality,

fg1(y,a)p1(y,a0)du(y) < log f p j (w, a) dj l (y)  — 0 (4.74)

with equality holding only if a — a0. Let B be a neighborhood

of a. Then,

sup g2 ( y, a) 4g 1(y , a) as B-I -a. (4 .75)
SiEB

Define the expectation operator E1 as

— ft.)p ~ t’y,a0)dp (y) (4 , 76)

— By the monotone convergence theorem

• E .t sup g1 ( y , u) ) +E1(g 1 (y , a ) )  as B+a (4,71)
aEB

— and therefore there exists a B such that
E1(sup g1(y,a)J -C 0 (4 7S)

c*EB

whenever a ,I a0. Let D C 0.be a neighborhood of a0, and let

DC — 0.—D. Because 0. is compact, the complement DC can be

covered by a finite number of B neighborhoods, and thus

E
~
tsup

~ g1(y,a)) c 0 (4.79)
aED

Similarly ,

Rtsup g(y,a)I -C 0 (4.80)

The variance of g1( y, a) depends on the first, second and four th

moments of y which are bounded above . Then by the strong law

of large numbers, for a.e. set of samples {yj } from p1(y,a0),
I —
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I
N N

~~ ~ 
g1~~1,~~ ~ 

~~

N
+ 

~~~~~ ‘1t”~c g
1

(y,a)) < 0 (4.81)
— aED

Choose such a sample and let aN — *N(yi,...,y1?1 By definition

of the ML estimate,

N p ( y ,~~)...p ( y ,)~~~
n 2.. gj(yj,a~) — log > 0 - . )

• 1—i pl(y l,aO)...pN (YN,aO)

Thus, £N ED for sufficiently large N. Since D is arbitrary,

aN + a O a.s.

When the system is autonomous , the above proof for consistency

• does not hold . Referring to the limit in (4.71) , a1x0 + 0 as i -
~~ —

for a an interior point of 0... The uniqueness of the density p1 with

respect to a is lost in the limit.

If is an unknown parameter, the above proof must be reworked

with the unknown parameter as a vector instead of a scalar. This

appears to be a natural extension of the theorem. Using a different

approach, Aoki and Yue (19703 have shown consistency for this case .

The above theorem can also be used to show consistency when is

an unknown random variable. The proof follows through directly when

the densities for this situation are conditioned on x0. Since consis-

tency exists for a.e. x0, then 4 a,~ a.s.

In the final case, the differencing approach, the samples are not

independent . There does not appear to be any simple technique to get

around this problem as there was when x0 was an unknown random variable.

Wald (19483 and Aoki and Yue, however, do consider the problem of

IH 
_ _ _ _ _ _ _ _ _  
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For vector samples and parameters most of the above should go

through with perhaps some additional algebra. Aoki and Yue treat the

companion matrix case when is an unknown parameter. Mann and Wald

(1943] develop the companion matrix case for the differencing approach

but with independent samples.

4.4 APPROXIMATIONS

A characteristic canmon to the ML estimators in all four cases

considered is that all the samples must be saved to be able to evaluate

the estimate ê.~, and as the number of samples N increases, the amount

of computation involved in this evaluation increases. This situation

is inconsistent with the requirement of real time identification. The

possibility of condensing the data through sufficient statistics was

eliminated earlier. Exact algebraic factoring appears hopeless.

Approaches to approximating the inverse of the covariance matrix in the

differencing approach are given by Cochrane and Orcutt (1949], Hannari

(1960, p.47] and Anderson [1963]. None of these appear to be very

satisfactory.

The approximations with most appeal involve some form of truncation

of the likelihood equation polynomial. The simplest approach of this

nature is to truncate the polynomials after some arbitrary number of

terms. However, this limits the number of samples that can be used

to compute the estimate, and as a result , new data beyond some point

will not be used. Forgetting for the moment how to acconiodate initial

condition information , for systems whose parameters are in fact slowly

varying with time, the truncated polynomial could be made to undergo a

— 
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continual shift in indices so that old data is dropped ~ ff as new data

comas in. I f,  however, use of all the data is desirable as would be

the case for constant parameters, some sort of averaging scheme can

be used with the truncation . This latter approach is pursued in what

follows.

There are two obvious types of averaging modifications that could

be made to the shifting polynomial scheme just described. One would

be to define a new estimate as the running average of the estimates

f rom the shifting po].yncmials . Because ~in certain situations this

estimate tends to have an (infinite variance) Cauchy distribution, it

does not appear to be as useful as an alternative scheme which keeps

a running average of each of the coefficients of the shifting poly-

nomials. The latter scheme bases estimates on the truncated poly-

nomial evaluated using averaged coefficients.

Both the x0 known and the x0 unknown random variable cases use

initial condition information in the ML estimate. Use of this

information in either shifting polynomial scheme generates another

growing polynomial required to shift the origin thus nullifying the

computational advantage gained by truncating. The coefficient averaging

scheme for the x0 unknown parameter case, which is more or less a

steady state version of the other two, will be assumed to apply to all

three cases.

4.4.1 AVERAGE COEFFICIENT APPROXIMATIONS TO THE LIKELIHOOD EQUATICt~S

The average coefficient approximation equation when x0 is an

unknown parameter can be developed from Equation (3.22) . The number

of samples, (Nfl) in Equation (3.22), at which to truncate the

dependent observations .
86 
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polynomials is arbitrary, but at least two sample. must be used over

which to avera ge. Because truncation after two samples yields the

simplest result, the truncation will be taken at that point. Thus for

two samples , the likelihood equation becomes:

y0 (y 1- hbu0) + t (y 1—h~u0) 2 —y0
2Ja — y0(y1—hbu0)a

2 — 0 (4 .83)

or with averaging over N + 1 samples gives the average coefficient

expression for unknown ptrameter (as well as x0 known and x0 unknown

random variable) .

CN a - DN a - CN’ — 0 (4.84)

where:

CN’ — y1 ...1(y 1 —hbu1..1) (4.85)

DN’ — (yj—1~2.’a1_1)
2 — ~~ Yi_i2) (4.86)

For the same situation but with the vector-valued autonomous system ,

Equations (3.29) and (3.33) give

— H~R
1H + A’H ’R 1HA (4.87)

,~V1 — ~~~~~ y1-J1 ’R 1 JIA~1 
1H~R

1 y0-.irIr ’ IJA~f ’A ‘H’R 1 y1)

f g 0’R 1H+y1
~

R
~

1 HAi a (4.8 8)

- 
- 

or, averaging over N + 1 samples:

(~ ~~~~ 
y~y1,..f)R

_h Ii + H’R 1 (
~ ~ YIYf)R h IM

— E’Ir 1iiA$1
1,rR 1 

~~~~~~ Yj...1Y1... iv),rlH + (
~ ~ YIYI_l7)V,r1HA]

- HVR HA$flATHTR~~ ~~~~~~ Y1Y1_1v)R
_ 1H + (

~ 
~~~~~ YjY1~)R

_h
IM] — 0

(4.~*9)

- 
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Similarly , for the differencing approach , (3.64) gives .

a2a3 + yo(yi—hbuc,)a2 + (a 2+y0
2—(y 1 —hbu,~) 2Ja - 

~~~~~~~~~~ 
— 0

(4.90)

or treating the shifted y0
1s as known initial conditions and averaging

over N + 1 samples gives the average coefficient expression for the

differencing approach:

a2a3 + CN a + Ic2 — DN’)a - — 0 (4,91)

If the plant is vector-valued and El — I, the identity matrix , then from

(3.80) the two sample average coefficient approximation becomes:

• —AR + 

~ 
(
~ 

(Yj _AY1... i_BU
1... i)Y j _1T)

+ 
~ 

(
~ 

(y1—Ay1_1—Bu11) (y1—Ay1_ 1—3u1_1) (R+ARA ’) 1AR = 0

(4,92)

4.4.2 PROPERTIES OF THE TWO-SAMPLE AVERAGE COEFFICIENT APPROXIMATIONS

The finite sample properties of the two-sample average coefficient

approximations to the scalar plant likelihood equations will be

investigated first. When the initial condition is an unknown parameter,

the average coefficient equation (4.82) is a quadratic with roots:

(D ’  ± / (~~~I) 2 + 4(CN’) 2)/(2CN’) (4:93)

Two conclusions are immediate. The two roots are always real. By the

triangle inequality, one root lies in the closed interval (-1,13, and

the other root lies outside the open interval (-1,1) unless DN ’aO, an

event which occurs with probability zero . In that case , the roots

are ±1.

Earlier , in the case where is an unknown parameter , the ML

88
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estimate ~ was shown to approach the true parameter a0 as the measure-

ment noise goes to zero. Since this property holds independent of

which sample in the sequence of samples { yj} is denoted y0 (the first

sample of the string to be used for the two—sample ML estimate), the

— average coefficient approximation (4.84) for any N yields a — a0 for

zero noise.

rurthermore, the expected value of the noise terms of (4.84) are

easily seen to be zero. In CN ’, the noise terms are weighted s~zns of

and a s~nu of product terms of the form 
~~~~~~~~~~~ 

Because the r~ are

- - independent and zero mean , the expectation of each term in the stms is

zero. In DN ’, the noise terms are also weighted s~.ms of n~ and, in

addition, a telescoping s~~ of square terms of the form n~
2. The

telescoping s~n reduces to 
~N
2 whose expectation is zero.

This approximation (4.84) is related to the ML estimator of Levin

[1964) discussed in Chapter 2. If his result is applied as each new

sample is made, in the so—called “overlapping” mode, instead of after

collecting groups of samples as intended, his result becomes identical

to, (4.84).

The finite sample properties of the average coefficient approxi-

mation to the differencing approach likelihood equation are more

difficult to establish. Now, the equation , (4.91), is a cubic. An

indication of the root location can be obtained by first considering

(4.91) without the a2a3 term. This portion of the equation h~s two

real roots which can be expressed as:

(— (a —DN ) ± /(a
2_ D ) 2#4C~~

2)/(2C 1)

Again, unless DN ’ — a 2 , one root is stable , and the other is unstable .
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When DR ’ — a2 , the roots ar e ± 1.

Closer examination of (4.94) shows that the pair of roots falls

into one of two categories. Either the stab ls root is positive , and

the unstabl. root is negative or vice versa. In the form er case when

CN’ 
) 0 ( and a2

~
DN ’ > 0 ) ,  the ~2~3 term has the effect of biasing the

stab le root toward zero m d  either biasing the unstable root away from

zero while introducing another negative unstable root or merely

ramovinq ths unstable root. In the latter case when CN > 0 (and

< 0) • the a2a 3 term moves the unstable positive root toward zero

to the point where it becomes stable if a2 > D~~/2. Also, if a2 
~

the stable root is shifted toward -1, and a negative unstable root is

introduced. If a~ > DN’/2, either the stable root disappears or it

becomes unstable ( and negative) and a still more negative root is added .
,1

Similar conclusions follow for CN ’ ~

Unless 02 .. 0 as the noise goes to zero , the zero noise condition

does not give the true parameter as the estimate. As was the case with

the x0 unknown parameter approximation, the noise terms have zer o

expectation.

The two-sample average coefficient approximation to the likelihood

equation for the differencing approach , Equation (4.91) , could have

been derived in two other ways each of which gives further insight into

the nature of the approximation. In one, the approximation (4.91)

follows directly from the scalar autonomous version of the likelihood

function (3.64 ) with the noise covar ianoe ~ of Equation (3.66 )

approximated as

R — 02 diag (1+a2 ,. .. , 14’ 2) (4 ,95)

-~~~~~ -
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In ths second, a modified version of the likelihood function can be

developed using grouped samples in the sense of Levin by basing the

likelihood function on the model (3.50) with 1aO,2,4,.~ .. The resulting

likelihood equation is then used in an overlapping mode by resubscript-

ing such that in effect i—0 ,i,• • •  once again as in (3.50) .

The large sample properties of the approximate ML estimate in the

unknown parameter case can be inferred by the large sample character-

istics of its “likelihood equation” , Equation (4.84) .

— Ass~ine the {u1} are uni formly bounded by M>_0 and that Ia oI<i. Then

the {x1} are uniformly bounded also. From Equation (4.85) :

CN ’ — (~ X~ _~ + n1_1) (ha0x~ .1 +

— ~~~~ 
(h~a0x1_12 + hxj _ini + ha0f l 1_1x 

~~ 
#

— (4,96)
Examining (4.96 ) term by term :

— h254 ~~~~ (aoi 1 xo # 501 1i uj_ 1) 2 (4~ 9.7)

(1>1)

Llat (a02) i~~ — 0 (4.~ 8)

N i l
h a  E a 2 ( 1_ 1)_ iu~..1I
!I+c’ 1—2 —

~ z~a u r n  ~~ ~~~(a0i l _(a02) i~ h )~ —
0 N4c~ j

4 N i—i l—i
lix f~I ~ a0

21_ i_k 2 uj _ luk...l I
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By the strong law of large n rtbers,

-‘ o a.s. (4 .101) 3.

Also,-

— 0 (4.102)

‘1_iX((Ti1v~1~2) (flj~j +j)J — (4 .103)
0 ,1~j

So,

E[~~~~ r)1fl1_2] — 0 (4.104)

and,

~~ ~~j flj_ l]
ll ~~~~~~ (4.105)

Then by Chebyshev’ s inequality , for any e > 0,

~ ~~~~~~ (4 .106)

or

,~~ ~ (~
, 

~~ 
— 0 (4.107)

i—i

A stronger result than (4.107) can be shown by using a theoram of

Révész [1968, p. 87] . By (4.102) and (4.103) and since, V -
-

~~~ E(n12n1_12) 
log2i < ak f ~2~ .

Jl!
dx — a~F (3) < 

(4.108)
x

then, 
- 

-

‘ 0 a s .  (4,109)

L~L.. ,.~~:ii~ -~-- _
~~~~~ •
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From (4.86) ,

— (ha
0
x11 + fl1)

2 — 

~‘ l—l + n1_1)2] 
(4.110)

Using (4.97) — (4.100) ,

h2 ( 0
2—l) lix 

~~~ 
— —h2N2 ~~~~ (4.111)

N+ i—i 1~ i~

Since,

~~~ 
— ~~2) 0 a.s. (4J12)

then by (4.111) and (4.101),

-h2N2 1+1~ ~—Iz
_ ’I ~ o (4.1)3)

V and from (4.98), (4.99), (4.100), (4.101), and (4.109),

0 1c1•,’ I < h2N2 ~~ (4.114)
— — (l_a&2

At this stage all that has been shown is that if {u1 } uniformly

bounded and a
~ I < 1, the average coefficient approximation likelihood

equation (4.84) does approach some limit. As a special case , consider

u1~~~N > 0 .  Then

coi
l — h2N2 

2 and D,1’ — -h2M2 
(4.115)

The two limiting roots of (4.84) are found by introducing (4.115) into

(4.93) , 
________________

D’ ± /(~~_ S) 2+4 (C l) 2

2C,,’ (4.116)

The two roots are -
~~
- and ae.

— 10
In the average coefficient approximation for the autonomous

differencing approach , Equation (4.91), Ce,,’ and DN ’ both go to zero
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in the limit. Th. limiting roots for this case are given by

52 (12.1). — 0 (4.117)

Therefore , the limiting root is zero .
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SECTION V

N~~~RICAL CONSIDERATIC24S OF THE IDENTIFIERS

5.1 DITRODUCTI~*1

The objectives of the discussions in this chapter are to illustrate

some of the properties of the identifiers which were established by

theorams in the previous chapter and to investigate the mechanics for

the ntnnexjcal evaluation of the parameter estimates from the nonlinear

likelihood equations. To this end the computer simulation results,

grouped according to the four initial condition categories considered

in the preceding chapters, are presented first. The results and related

computational implications are then explored.

The terms “cost” and “cost function” used in this chapter, with

some minor modifications detailed in the following section , were defined

in Chapter 3. Basically, they refer to the function formed by taking

the natural logaritlin of the likelihood function and then discarding

the additive terms and c~mnon factors which do not depend on the

unknown parameter. Terms of the type “derivative of the cost function”

and “derivative function” refer to the function obtained by differenti-

ating the cost function with respect to the unknown parameter. (The

equation which results by setting that derivative function equal to

zero is the likelihood equation.)

5.2 SIMULPITIC14 RESULTS

The figures in this section are based on computations and noise

generated on the IEM 360, model 91. and were prepared on a Cal-Comp

plotter. Results are given for both the scaler model and the multi-

dimensional models.

~ 
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5.2.1 SCALE R MODEL RESULTS

The scaler model is defined by Equation (3.6) , which is repeated

below for convenience.
I

— + bu1
+ n1 I — O,1,...,N (5.2)

(In the text, in order to distinguish between the parameter a and the

true value of a in (5.1), the true value of a is denoted by 
~~~ 

The

noise sequence {n 1} was taken as gaussian independent identically

distribute d , each m ber with distribution: 
V
.

~~ 
v 77(0,a2) (5.2)

The known coefficients were assuned to be unity, i.e.,

h — b — i  (5.3) V

(For purposes of exercising the identification schemes, variou s

ass~nptians about the initial conditions were made , but these did not

affect the model.)

Same theory on optimal input selection for identification exists ,

e.g., Staley (1968) . However 9 since the normal operating input restric-

tion was issiaed for this study , no optimization was attempted .

Instead , for simplicity a step input , u1 — constant, was used.

The four identification problems discussed in Chapter 3 were slrnu-

hated. The fir st three differ strictly by ass~inptiona on the nature
V _ I of the initial condition x0, i.e., x0 known , x0 unknown parameter, or

unknown random variable. The fourth identific ation problem, the

differencing approach , actually is based on a model, (3.49) , which

differs somewhat from (5.1) . By differencing the measuraments
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in (5.1) the models become equivalent except that in th. latter the 
V

initial measureme nt V0 is considered as a constant . (The differencing

approach most closely corresponds to the unknown paramet er case.)

The equations for the four identific ation problems that were

simulated are given in Chapter 3. For the case where the initial

condition x0 is known end the system is scaler, the cost function is

given by (3.8) , and the derivati ve function is given by th. left side

of Equation (3.9) .

The case where x0 is an unkno wn para meter requires a bit of die-

cussion in order to maintai n reaso nable consistency in the terminology.

The difficulty arises becaus e the re are two unknown parameters , x,3 ~~~
a. Since estimation of a is of primary interest the second par ameter,

was eliminated through using *~ instead of in the cost an~
derivative functi ons . Thus the cost function is given by Equation

(3.18) but with x0 replaced by *~ of Equation (3.20) . The derivative

function is given by the lift side of Equation (3.21) with x0 replaced
— 

by *~ of Equation (3.20). (When the der ivative is set equal to zero

it is equivalent to Equation (3.22), the equation for 1. strictly

speaking , the likelihood equation is neither of these but is the pair

of Equations (3.19) and (3.21).)

For the case where x is a gaussian random variable with known
0

mean and variance ~2, the cost function which was simulated is

given by (3.41) normalized with respect to a2 . The derivative function

used in the simulation is given by the left side of (3.44) . However ,

in order that the derivative and cost functions correspond , the

derivative must be divided by (a 2 +
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The differenci ng approach cost function was not simulated. The

left side of the Equation (3.70) was taken as th. derivative function.

(Only the autonomous version was simulated.)

Because the ntmtber of figures is relatively large, the figure

n~~bers are coded to help ident ify the situation the associated figure

represents. The rna~erical designation 1 through 4 corresponds to

known, r0 unknown parameter , 
~~ 

unknown random variable , and the

differencing approach, respectively . The letter designations a through

j  corz espond to the various situations which were simulated as described

below. Again, because of the n~znber of figures and the varying amounts

of new information introduced by then, not all the figures that were

developed have been included . This accounts for what appear to be

gaps in the literal ninbering sequences .

The first three groups of figures are an illustration of the

evolution of the MLE (m.xim~~ likelihood estimate) of a0 for specific,

but arbitrary realizations of the measurement noise sequence (n 1 } .

Also , comparison of the MLE of a0 to the estimate of a0 by other

schemes (described later) - n ely , least squares (LSQ) , 3—point

recursive fit (3PT), and average coefficient (AVC) are shown . These

figures are shown first to unify the later ones which concentrate more V

on the iamediate issue - the solution for for a given n~m~ber of

samples.

a. Compari son of ML, least squares , averag, coeff ic ient, 3-point

• recursiv. fit estimation schemes: Figures 5—la, 5-2a, 5—3a,

and 5—4a . These figures correspond to known , unknown

; parameter , x0 random variable , and differencing approach ,
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respectively . For all, faux’ f ures , a
~ 

— -0.5 , — —3.0, and

u1 ~~l.0 .xcept in 5—4a wh re u1 O ar4 x0 — 6.0. The level

of the measurement noise is relatively low with ~2 — 0.01 . The

increment for the 3—paint recursiv, fit jg 0.1 with points

located at a — —0.65 , —0.55 , and —0.45. The maxim~~ likelihood

estimates were found by regula falsi iterative solution for the

roots of the likelihood equations .

The max im~an ium~ber of samples shown is 30. Most curves were

computed up through 60 samples. The behavior of the curves for

the second 30 samples was similar to that of the first 30

samples , except for the first few samples.

In Figure 5-3a, the initial condition mean and variance are

— -3.0 and c 2 — 0.02. (Another simulation was made, not
0

included here, with conditions identical to those of Figure

5—3a except that — 6.0. The fact that the true initial

condition and the me an initial condition were grossly iniamatched

in terms of the variance c2 resulted in a transient in the MLE

of a
~ 

for the first few samples.)

b. Comp arison of ML, least squares , average coeff icient , 3-point

recursive fit estimation schemes: Figure 5-lb. This group is

computed under the same conditions as thcse in group (a) except

that a0 — 0.75 and x0 — a 2.0 (x0 a 0.6 for differencing

approach) , and the 3-point fit was made at a • 0.6, 0.7, and

V 0.8.

Figures for 1
0 
unknown parameter and 10 unknown random

variable are not included , but they appear very similar to the

99 
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known case, Figure 5-ib, much as was the situation in group

(a) . The figure for the diff.r.ncing approach also is not

included but initially resembles Figure 5-lb and then settles

down as in Figure 5—4a except the average coefficient and least

squares solutions drift at a greater rate.

Both for this group and group (a) with the exception of

d.tfferencing approach, another variation of the 3-point recur-

sive fit was computed but not included among the figures. The

increment for the fit was reset to 0.2 from 0.1 with points at

a a —0.8,  —0.6 and -0.4 for a0 — — 0 5  end at a — 0.45 , 0.6 5,

and 0.85 for a
~ 

— 0.75. This increase in the point separation

resulted in estimates which differed from the true parameter

value by about 10% after 30 samples.

c. Cbmpar iaon of ML, least squares , average coeff i cient, 3-point

recursive f i t  estimation schemes: Figure 5-ic. Thie group is

computed under the same conditions as those in group (a) except

— 0.4356 and the n~~ber of samples is extended to 60.

Again, figures for Xe unknown parameter and unknown

random variable are not included but appear very similar to

Figure 5-lc. The differencing approach was not simulated for

this set of conditions.

The measurement noise variance was increased over that in

group (a) to observe the effectiveness of the schemes when

operating under moderate noise levels. The value of 0.4356 for

a2 was selected to make the one—a value of the noise (approx-

imately) equal to 2/ 3, the limiting value of with 1.
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Of prime importance in the nim~erica1 solution for the MLE of a0
is the expected shape of the derivative function and the root distribu-

tion. Preliminary to displaying various examples of derivative func-

tions, the cost function is presented in order that source of the sharp

fluctuations in the derivative curves be better understood.

d.  Cost f unctions f or  the ML~: Figure 5-id. For this group,

a0 — —0.5 , x0 — —3.0 , a2 — 0.01 and 1.0. (The cost func-

tion for the differencing approach was not evaluated.) In the

case where x was asstmted to be a random variable , x — —3.0
0 0

and £2 = 0.02. The curves are given for 3, 5, 10 , 15, and 20

samples and —1.5 < a < 1.5. Though not necessarily very similar

overall, the curves for unknown parameter and random

variable do exhibit the essential feature of Figure 5—id , the

oscillation at just beyond a — 1. The figures for these two

cases are not included.

The derivative function curves for various parameter values and

noise levels are included in the next three groups.

e. Derivative functions for the MM?: Figure 5-ie. For this group,

a — -0.5, x —3.0 , a2 — 0.01, and u 1.0 (except in the
o 0 i

differencing approach where 0 and — 6.0). When is

taken as a random variable, x0 
a -3.0 and c2 — 0.02. The curves

are computed for 3, 5, 10, 15, and 20 s ples and —1.5 < a  < 1.5.

Over the range displayed, for the scale employed the curves

for the four ML estimators are virtually identical to the no-

noise curves of group (h). (They, of course, are not identical

as can easily be seen from the curves of group (a).) The x0
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known case, Figure 5—le, is presented to illustrate the simi-

larity.

f .  Derivat ive f unctions for the NM?: Figures 5-if, 5-2f , 5- 3f ,

and 5—4f. The conditions for this group are the same as those

of group (e) except a0 — 0.75 and 10 — — 2.0 (or 0.6 for the

differencing approach , Figure 5—31) . *11 cases are shown.

g. Derivative f unctions f or  the MM? : Figures 5-ig, 5-2g, and 5-3g.

This group is identical to group Ce) except the noise level was

raised by increasing the measurement noise variance from

a2 — 0.01 to a2 — 1.0. The derivative function for the differ-

encing approach was not computed .

The curves for all of the above groups of course represent re-

sponses to only one possible realization of the measurement noise

sequence. Just how typical they are is difficult to establish, espe-

cially for email ntinbers of samples. To provide a deterministic

reference for the derivative function curves, limiting versions were

computed ~‘here a2 ~~‘ 0 and + 0.

h. No noise derivative functions for the MM?: Figures 5-lh, 5-2h,

V 
5—3h , and 5—4h. The conditions for this group are the same as

for group (e)or (g) except a2 — = 0.

i. No noise derivative functions for the MM?: Figure 5-41. Only

- 

I 
the differencing approach is presented. (The reason for

including this figure is to provide a contrast with Figure 5—4f

similar to what exists between groups (g) and (h) for the three

other ML estimators.) The conditions in this group are the

same as those in group (1) except that ~2 — — 0.

1

V 
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In another attempt to overcome the inconclusiveness of single

* realisations a Monte Carlo approach was used wherein a random set of

measurement noise sequences was generated. The simulation of the model

was repeated using each of the noise sequences in turn. Based on the

acc~mtu1ated data from the set of experiments, a frequency distributions

were made. With these, some insight into derivative function root

distribution and convergence of the estimate can be derived.

j. Frequency distributions f or  the NM? of a0: Figures 5-.tj , 5-2j,

j 5—3j, and 5—4j. For this group, a0 — 0.75, a2 — 0.01 ,

— 2.0, 
~~, 

— 2.0, c2 — 0.02 , and 1.0 (except for 5—4j

where 10 — 0.6 and 0). The low noise combination of

a,~ — 0.75 and a2 — 0.01 was chosen to help insure rapid con-

vergence primarily for economic reasons . V

In Figures 5—lj, 5—2j, and 5—3j, I distributions are given

for 3, 10, and 60 samples based on 100 experiments with 81

frequencies corresponding to steps in I of 0.002 where

0.675 ‘C & ~ 0.837. In Figure 5—4j , a distributions are given
for 3, 10, and 30 samples based on 50 experiments with 15

frequencies corresponding to steps in I of 0.04 where

0.45 ~ I ~ 1.05.

Since was constant for all the experiments, Figure 5—3j

for the x
~ 
random variable case should be viewed as distribu-

V 
- tions conditioned on x • Also , y was simulated as a random

0 0

variable for a4.l cases.

I
I
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f .

NUMBER ~F SRMPLES
Figure 5—la. Comparison of ML , least squares , average

coefficient , and 3—point fit estimation for known
case. (a0——0.5, 0

2.0.01).
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Figure 5-lb. Comparison of ML, least squares , average
coefficient, and.3-point fit estimation for known
case. (a0—0.75, a

2—0.01).
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NUMBER OF SRMPLES

Figure 5-ic. Comparison of ML, least squares, average
V coefficient, and 3-point fit estimation for x0 known

case. (a0——0.5, a
2_o.4356).
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Figure 5-id. Cost function of the MLE in the known case
for 3, 5, 10, 15, and 20 samples. (a0.—0.5, o

2—o.o1 .
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Figure 5~2*. Derivative function of the MM? in the

case for 3, 5, 10, 15, and 20 samples. (a0——O.5, 0
2.0.01).
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Figure 5-lf. Derivative function of the MM? in the x0 known
case for 3, 5, 10, 15, and 20 samples. (a

~
.0.75, 02.0.01).
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Figure 5-1g. Derivative function of the MLE in the x0 known
case for 3, 5, 10, 15, and 20 sample.. (a0——0.5 , a2_i .0.
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Figure 5-lh. No noise derivative function of the

MLE in the x0 known case for 3, 5, 10, 15, and
20 samples. (a0——0.S, 02.0).

111

I~~~~~~~~~~
-•-•-

-

~lV —. V.~_ ~~~~~~~ •~ V’V~~~~~~~~~~~ ~~~~~~~~~~~~~ 
-V 

~~~~~~~~~ 
_
~‘_ -V—’—-- .’.-~~—--.- ~~~~~~~~

-V’V VV ~~ V



---——V--V - - V  -. —~~~~~—~~~~~~~~~--~~~~~~~ --V — -V  -
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _~

V-

~

V ~ V - V-V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ -

60 3M$PLE3
C.)z
tu.~
0
‘U

_ _ _  _ _ _ _  

I-

cti.ss 0’.70 0~.7S 0~.80 &.BS
ML ESTIMATE OF A 4

lb

10 3~$PLE5
U

0
‘U

a~..70 a~..,s o~.ao o’.es
ML ESTIMATE OF P

5 SRPWLE!
U
z
LU.,,

0
LU

-- 
~~ 1

0,0  o.is 0.00 0.05
ML ESTIMATE OF P

Figure 5-lj. Frequency distribution for MLE of a0 in
10 known case. (a0—0.75, 02.0.01).

112

___________________ 

/
-_ _ _ _ _

—- ~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~V -~~ - ~~~~~~~~~~~ V- V ‘V- V_- VV - -V •V~~~~~~-V ~~ V~ ~~~~~~~~~~~~~~~~~~~~~~~~~



V 
V V V~~•~_~__’V_-V -V~~-V~-V~__V-~V’V W”~~ *~ ’~-V _~_ 

~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ V

IA
3.

ID
3.

I-
3.

p-a-
V L__

_ _ _

_

5T0TTT ~5T0~NUMBER OF SAMPLES
Figure 5—2a . Comparison of ML, least squares , average

ace fficient, and 3—point fit estimation for r~ unknown
parameter. (a0——0.5, 0

2—0.01).

113

-__

L - ~~~~V •V ~~~~~~~ ~~~~~~~~~~~ - -



~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 
— 

~~~~~~~~~~~~~~~~~~ — ‘V

- ~~~~~~~~~ 
- ! , r~~~~~W’ -r-’-—’~~~~ ’~~~ -

--V V - V - - - - - --‘-,——--—-- -,— —~~ - ----- - ---- V- V~’ V V  - - - - -

a

C

_ _  

/J
2~c -~~~~~~~~~~~~~~~~~~~~~~

_ _
__  

- 

V

‘-1.5 —1.0 —0.S 0.0 0.5 1.0 2.5
PARAMETER VAR iABLE A

Figure 5—2f. Derivative function of the MM? in the
unknown parameter case for 3, 5, 10, 15, and 20
samples. (a~—0.75, 0

2.0.01).

114

- ~~ V V V - V

—-V ---V-V - -‘V —~- --V



a
1w. _ _ _ _ _ _ _  _ _ _ _ _ _ _  _ _ _ _ _ _

___
_ _ _

‘ 1 5  —1.0 —0.5 0.0 0.5 1.0 1.5
PRRF1METER VARIABLE A

Figure 5-2g . Derivative function of the MM? in the x0
unknown parameter case for 3, 5, 10, 15, and 20
samples. (a

~——
0.5, a2_i .0).

US

‘ 1
_ _ _ _ _ _

V V

~~~~~~~~~~~~~ i. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - V V V  -



a

a
4 -  _______ _______ _ _ _ _ _ _ _  _ _ _ _ _ _ _  _ _ _ _ _ _ _  _ _ _ _ _ _

A 
_ _ _ _ _  _ _ _ _ _  _ _ _ _ _  _ _ _ _ _  _ _ _ _ _

H 

V _ _ _  _ _ _  _ _ _  _ _ _  _ _ _

‘—1.5 —1.0 —0.5 0 0  0.5 2.0 1.5
PARAMETER VARIABLE A

Figure 5-2h. No noise derivative function of the MM?
in the 10 unknown parameter case for 3, 5, 10, 15,
and 20 samples. (a~——0.5. a

2_ o .

- • 

• . • V -
• •  

116
:-

~~
.

-
. .

~~~~
- :.

V 
-- ~~~~~~~~~~~~~~~~~~ — 



___________________________ - — ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ - •VV V VV_VV V ;__
~____-~VV__ .__7 ,~~~ .- ~~~~~~~~~~~~~~~~~~ - - - - -

60 3MNPLE9
U

‘U
0
‘U

~~.6S &.70 0. 75 0~.B0 0’.ISV 

ML ESTIMATE OF A

)- 20 3~NPLE5
U

0
Lu
L

~~ .6S 0. 70 &.75 0~ D0 0~.ISML EST IMATE OF P

1— 3 3PM?’LE5
c-Iz
Lu

0
Lu
LI-

c
~~ 65 0

1
.75 a~.I0ML ESTIMATE OF P

Figure 5-2j. Frequency distribution for ML! of a0 in10 unknown parameter case. (a0sUO.75, 02.0.01).

~~~~~~~~~~~ V~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V ’ V V V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~VV V •  

V -



— — ‘V_ V’VV

_ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~VV

In
3.
I

40

H

I
- \\~~

1wIA

I,,
-

V U-
:

0~ _ _ _ _ _ _  _ _ _ _ _ _  _ _ _ _ _ _  _ _ _ _ _ _  _ _ _ _ _ _  -_ _ _ _ _ _

‘0 S 10 2 20 25 30
NUMBER OF SAMPLES

Figure 5-3a. Comparison of ML, least squares, average
coefficient , and 3—point fit estimation for r~ random
variable. (a

~~—O.
5, a2.o.01 .

118

- - --~~~~~~~~ - - - -- - ‘V -- -- -- --V • -
V-



- ~~~~~~~~~~~~~~~ V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 

-V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -

__ __  ~ ii~
a
10.
•.1

— 

V

~ _ _ _ _ _  _ _ _ _ _  _ _ _ _ _  _ _ _ _ _  _ _  . - _ _  
-

_ _  _ __ _  _ _

‘— 1.5 —3.0 —0.5 0.0 0.5 3.0 3.5
PARAMETER VAR IABLE A

Figure 5—3f. Derivative function of the MLE in the
random variable case for 3, 5, 10, 15, and 20

samples. (a0—0.75, 0
2.0.01).

- 

119 

--



~ 9F~~ TI~ 
- 

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T - ’ ’~~~~
--
~~~~ - --- V

;.i... 

_ _  _ _ _ _  _ _ _  _ _ _  

1/ ~~~
/ I

c 
_  _ _  _ _  _ _  _ _0. - — _ _ _ _  _ _ _ _ _ _ _  _ _ _ _ _ _ _  -

0
4

~~~~~~~~~~~~~~~~~

- - I — - -

£1

V ‘— l . S  — 1. 0  —0.5 0.0 0.5 3 .0  1.5
PARAMETER VAR IABLE A

Figure 5—3g. Derivative function of the MM? in the
1
0 
random variable case for 3. 5, 10, 15, and 20

samples. (a0——0.5, ~
2_i .0.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -V - - V 

— - - V  

-‘I



V -V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~V 
— ~~~- —~~~~---- ---—-— 

a

4
_ 

_  _ _  
j_ _

V a
‘C.

Ui
I_-. V

~~~~ ~~~~
, _ _ _ _ _  

_ _ _  
_ _ _ _ _  

—m,
~~~ •~~~~~~~~~~~ __~~~~~ !—~~~~

:
~:;.7~~~~~ 

_ _ _  _ _ _  _ _ _  _ _ _

-

‘-3.5 —1.0 —0 .5 0.0 0.5 1.0 1.5
PARAMETER VAR IABLE A

Figure 5-3h . No noise derivative function of the MM?
in the random variable case for 3, 5, 10, 15,
and 20 samples . (a~——0.5, a

2
~O)-.

_ _ _ _ _ _- 

121

L ~~~~~~~~~~~~ ~~~~~~~ VV~~’V_ V
~ 

V’VV__
~

V —~~_~lk 
-V —V ‘V’V

~ ~~~~~~~~~~~~~~~ ~~~~~ 

-V



-~~~~~~~~~~ - _ V V -- -- - - * _ - - _ - - - - —:— —-- --—
~~~

- - -

I
60 3~II?LE3

U

‘U.
a
Lu
‘a-

0~.70 0.75 0.9O 0~.8SML ESTIMPTE OF P

I’

- 10 SRMPLES
U
L U .
a
Lu

- 

~
- ~~.6S &~.70 0.7S 0.I0 0.IS

tIL EST IMATE OF A

3 SRK7’LE3
C.)z
LU-
a
LU

LA.. 

— —
~~.6S 0.70 0.75 0.80 0.05

ML ESTIMATE OF A
Figure 5-3j . Frequency distribution fox- MM? of a0 in

10 random variable case. (a~—0.75, 0
2.0.01).

122

-I
,

- ‘V ~~~~-- 
- -



-V.- — -.- - _ _ _ _ _ _ _ _

- 
_ _ _ _ __

~~~~~

-

~~~ 

-
- 

aa
—

U,

aa
-a.

-

% - MLL 
_ __ _

II ~~~~~~~ 
—

.----

t 

-
~
- E E

~~~~~~iir~~~~_ _

• ~~ i 9-  
V _ _ _ _ _  _ _ _ _ _  _ _ _ _ _

I—

- I

In

I 

¶1~ — _ _ _ _  _ _ _ _  _ _ _ _  _ _ _ _  _ _ _ _

aII,

‘0 S 10 1. 20 2S 30
NUMBER OF SAMPLES

Figure 5-4a . Comparison of ML, least squares, average
coefficient, and 3-point fit estimation for
differencing approach. (a0——0.5, 0

2.0.01).

123

4 
________

- - - —-- --—~~~~  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~



_ _ _  _ _  _ _ _  _ _ _  _ _ _  _ _ _  

I

~~~-li
j  II OI21 ~~~~~~~~ .S

PARAMETER VARIABLE A V

Figure 5-4f. Derivative function of the ML! for the
differencing approach for 3, 5, 10, 15, and 20
samples. (a0—0.75, 0

2_0.01). -

-
~  

124 

)  

— — - - - -
~~1

V V-V~ ~~~~~~~~~~~~~~~~~~~ ‘V - - - - - ‘V, -. ii: 



- -~~~~~~~ —-‘V.—-— V V  ~_V V~ - V - V~~~~~~~~~~~~~~~~~~ - -

-V —V.--- — - — - --——--V -- — ---- -V

a

-
~~~ 

- 

T

a
Al _ _ _ _ _  _ _ _ _ _  _ _ _ _ _

a
I I

0

a
I

a- _ _ _ _ _ _  _ _ _ _ _ _  _ _ _ _ _ _  _ _ _ _ _ _ _3.

I.-
(no

V Ia _ _ _ _ _ _  _ _ _ _ _ _  _ _ _ _ _ _c-I s - 
_ _ _ _

— I 
-

~~~~~

0
Ia

Al

a

_ _ _ _ _ _  _ _ _ _ _ _  _ _ _ _ _ _  _ _ _ _ _ _  _ _ _ _ _  _ _ _ _ _ _

—1.0 —0 .5 0.0 0.5 1.0 1.5
PARAMETER VAR IABLE A

Figure 5-4h. No noise derivative function of the ML!
in the di f ferenci ng approach for 3, 5, 10, 15, and
20 samples. (a0——0.5, 02.0). 

V

125

_ -

a -— - .-—~ -— —— -
~~_~~~~~_ ~ V - V ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ V —V V V -~ -~~~~~~~~~~~~~~~~~~~~~ V ’V~ -- —-~~~~~V ~~ _~~____ ~~ — -V ~~V - V - -V [V ~~~V. V - V - V - V V~ 

-



---V —--V-~—r - - — - V.—- - —~~ ~~~~~~~~~ — - — — ___________________

a
.

sO- _ _ _ _  _ _ _ _ _ _  _ _ _ _ _ _  _ _ _ _ _ _  _ _ _ _ _ _  _ _ _ _ _ _-

—

1

oj  
_  _  _ _  _ _  _ _  _ _A- _ _ _ _ _  _ _ _ _ _ _  _ _ _ _ _ _  _ _ _ _ _ _  _ _ _ _ _ _

—
p

_
_ _

_ _

_ _  _ _ _  

- -—-~~~~~ 
_ _ _  _ _ _

— _ _ _ _  _ _ _ _ _ _  _ _ _ _ _ _  _ _ _ _ _ _  _ _ _  _ _ _ _ _ _s-I s

‘A.’

0

Ui

a

lb

—3. 5 — 3 .0  —0. 5 0.0 0.5 1.0 1.5
PARAMETER VAR IABLE P

Figure S—4i. No noise derivative function of the MM?
in the differencing approach for 3, 5, 10, 15, and
20 samples . (a~.0.75, 02.0).

126

_ _ _ _ _ _ _  

1 - - -- - -

L -V



_ _  -V -- - -——- — --V.—.—— ~ —-V - -

- Ui~~~~~~-~ -- -~~~~~~~~ - -  - -----V -- —

I

1 30 3NIWLE5
U I

I
‘U
‘a- _ _

c~~5 
~~~~~~~ML ESTIMATE OF P

0.
Al

10 3R14PLE5
U 1

a
LU

LA.

I 
__________

%.~s O~SS 065  0.75 01.15 O~iSML ESTIMATE OF P

- : 
)— 3 3RM?L~5
U

Lu0

_ _ _ _ _ _I 1~ L~
1 i I I I

0~SS 0~6S 07S 015 Q. 85 1.05
ML ESTIMATE OF P

Figure 5-4j . Frequency distribution for MM? of a0 indifferencing approach. (a0—0.75, 02.0.01).

~ - - —~~~ ---- -~ -~~



~~~~~~~ - - ~VV_ -V 
~~~~~~-- V - - - -

5.2.2 MULTIDIMENSIONAL MODEL RESULTS

The model in the multidimensional case is given by Equation (3.5),

i.e.,

x~41 AX
j  

+ BU
1

= Hx1 + a O,1,..., N (5.4)

(The true value of A in (5.4) will be denoted by A5~ in order to

distinguish it f rom the parameter A.)

The vector noise sequence (r i . }  is assumed to be a gaussian, 
•

independent, identically distributed random sequence, each member

having the distribution:

ni ‘~ 7(o ,~) (5.5)

The known coefficients were assumed to be identity matrices, i.e.,

H a B a I  (5.6)

Only two of the original four identification probloms were

simulated in multidimensional case - x0 known and the autonomous

version of 10 as an unknown parameter. When the initial condition

x0 is known, the cost function is given by Equation (3.12), and the

derivative function is given by left side of Equation (3.15). For

the case where x0 is an unknown parameter, the cost function (with

as a parameter) is given by Equation (3.26), and the derivative func-

tion is given by the left side of Equation (3.33), where has been

replaced by 
~c’~

Because of dimensionality problems , severa l measures were taken

in order to facilitate the displaying of cost and derivative functions

over a range of parameter values. In order that n x z, matrix parameter

argument A of the functions be represented by a scalar, the cost
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functions and derivative functions were evaluated only along a vector

j~ ~2 dimensional space passing through A0. The derivative functions

are also n x n matrices. Two scalar representations of these were

computed . One is the derivative norm which is the sum of the mag-

nitudes of the elements of the derivative matrix . (This norm is

related to one more ccmmtonly used, the element with largest magnitude.

The latter is bounded by the former and the former I n 2 .) The second

scalar representation, the directional derivative, corresponds to the

inner product of the derivative represented as a vector , i.e., the

gradient vector , and the true parameter matrix A0 represented as a

vector.

Only the 2 x 2 dimensioned possibility was simulated. For the

simulations :

0.1 03 2.0
A0 — and x —

—0.6 1.0 ° 1.5

where the eigenvalues of A0 are 0.4 and 0.7, and the eigenvectors

are [I] and [~J .
The measurement noise covariance is,

0.01 0.005

0.005 0.025

The input sequence for the 1
0 

known and 10 unknown parameter, respec-

tively, are,
V 

1 0
ui~~

1 0

The computations were made for A — cA0 over the range -1.5 < a -c 1.5 ,

the approximate range over which A is stable.
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Figures 5-Sa 5-Sb, and 5-5c display the cost function, norm of

the derivative , and directional derivative , respectively, along A5~
for 3, 5, 10, and 15 sample, (and 20 samples for the cost function)

in the case where x is known . Figures 5-6a , S-6b , and 5-6c give the V

cost function , norm of the derivative, and directional derivative ,

respectively, along A0 for 3, 5, 9, 13, and 18 samples in the case

where 1
0 
is an unknown parameter. However, the cost function in this

latter case is not entirely consistent with the derivative plots V

because in computing the cost curves the true was used instead

of 2~ (see Equation (3.30)).

The figures for the multiparameter case follow.
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- Figure 5-5a. Cost function along A0 in x~ known case
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5.3 DISCUSSIC~I OF MLE SIMULATICI RESULTS

5.3.1 SCALAR MODEL

An important factor in the selection of minerical techniques to

locate the roots of the likelihood equations is the behavior of the

associated derivative function in the neighborhood of the desired root

or better yet , over some area within which the root is nearly certain

to lie. The no—noise derivative functions of groups (h) and (i) of

the previous section provide some deterministic information on behavior -

but only in the limit as the noise variance goes to zero . However , the

question of sensitivity of the behavior of the (polynomial) derivative

functions to noise , i.e., to perturbations in its coefficients, must

be answered before the usefulness of no—noise information in this

regard can be assessed. Lacking well established conclusions on

sensitivity, the investigation of derivative function behavior cannot

be limited to the no-noise results .

The figures in groups Ce) , (f) , and (g) provide some insight into

derivative function behavior. (Because this study is concerned with

stable systems, the figures display essentially only the stable range

of the parameter a.) When a , a0 E (-1,1), the derivative function

generally appears very smooth. In fact , for a,~ — —0.5 , except when

is an unknown parameter , Figures 5-ic , 5-ig , 5-3g , 5—4g indicate that

the derivative function is basically monotone. (This probably would

also have been the case when is an unknown parameter had Equation

(3.22) been used in the simulation instead of (3.21) and (3.20).)

The smoothness continues for parameter values somewhat less than -1,

but for those somewhat greater than +1, sharp fluctuations begin to
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appear in groups Ce) , (f), and (g) as the ntinber of samples increases.

The derivative functions for the differencing approach , Figures 5—4f

and 5-4h, do not exhibit the fluctuations near a — 1. (This may be

related to the fact that the model is autonomous for the differencing

approach simulations while for the three other cases, u. 1.0.) The

derivative fluctuations result from the dips that occur in the cost

function just beyond a = 1 as illustrated by Figure S-ic. (No attsmpt

has been made to :1~over any physical explanation for the dips.)

Comparing group (f)  in which a — 0.75 to group (g) (or group (e))

in which a0 — —0.5 , demonstrates that at least locally, the behavior

of the derivative functions is significantly affected by a0
. In group

(f) the curves exhibit a btm~p adjacent to the root while for a0 — —0.5

except for the case where is an unknown parameter, the curves

tend to be monotone in form. This characteristic greatly detracts from

the general applicability of Newton type ntmierical methods for root

evaluations for stable a .

The effect of noise level is less than might have been expected.

As pointed out in the previous section, for relatively low noise level

— 0.01) and the scales selected, the resulting curves (group (f) )

are practically indistinguishable from the corresponding no-noise

curves of group (h). (This conclusion is less accurate for the differ-

encing approach when a = 0. 75 as shown by Figures 5-4f and 5-4i, and , —

of course, is inaccurate on a magnif ied scale as demonstrated by the

curves of group (a).) Even for moderate noise levels a2 — 1.0 ,

x = 2/3) , group (g) indicates the derivative functions undergo only

relatively minor changes for stable a. (However, the spread of & does

appear to change noticeably.)
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As the ruinber of samples increases • the magnitude of the slope

generally increases with both roots and peaks becoming sharper. In the

neighborhood of the root &, in particular , the slope increase indicates

a lowering sensitivity of a to noise perturbations. (See Section 5.5.)

While this trend probably continues indefinitely, it likewise probably

does not continue without bound for stable systems and a E (-1,1)

because the derivative functions are polynomials in a. Since the

measurement noise has a gaussian distribution, the y and thus the

slope at a cannot be bounded in a deterministic sense . Still , the

slope is most likely bounded in probability if not with probability one.

Because the derivative functions are polynomials , the possibility

of multiple real roots must be faced. The question of multiple roots

takes on added importance as the manber of samples increases because

the degree of the derivative function polynomial grows with the n~inber

of measurements. The figures of groups Ce), (f), and (g) verify

th~t multiple real roots can occur , but in none of the figures does

ore than one root fall in the interval (—1 ,1) .  Furthermore , in the

~urves of groups (a) , (b) , and (c) , in the derivative functions curves

of groups (e) , (f) , and (g) and in the frequency hi stograms of group

(j ) , * is always stable (except for one instance with only three

samples in the differencing approach frequency distribution of Figure

5—4j). There, of course, is nothing preventing a from taking on
unstable values if a0 is stable. All that can be concluded from the

above is that at least up to moderate noise levels , the spread in &

distribution is relatively small.
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The no-noise derivative functions curves of Figures 5-lh , 5- 2h,

5-3h , 5-4h , and 5—4i provide a reference for gauging the effect of

measurement noise on the shape of the derivative functions. Also , they

demonstrate that in the limit as noise level goes to zero, & -~ a0 end

a is the only stable root. Both these situations were predicted by the

theoretical discussions of Chapter 4 except that the proof of the

latter condition was limited to autonomous models of which only Figures

S-4h and 5—4i are examples.

The & curves of groups (a), (b), and (c) are examples of the

evolution of the bILE of a0 as the n~inber of samples increases . Each

group was computed at a different noise level. (In both group (a) and

group (b), o2 — 0.01, but in group (a), x — 2/3, and in group (b) ,

x . = 4.) Once again, the data lead to the conclusion that low and

moderate noise levels present no difficulty for the ML estimation

schemes.

Figures 5—lj , 5—2j , 5—3j , and 5—4j give insight into the distribu—

tLon and consistency of . As expected from theory , the MLE under the

conditions for Figures 5—lj , 5—2j, and 5—3j has al]. appearances of

beinç consistent and gaussian in the limit. On the other hand, con-

sistency of £ in Figure 5-4j is not obvious although considerable

convergence occurred in going from 3 to 10 samples. The problem here

is that  the model for this figure is autonomous. Although improvement

in the estimate can be expected as the ntmber of samples grows, con—

~~~tcnc y cannot be shown for the autonomous case. In fact, in any

~)ractical situation , improved estimates will probably sooner or later

be supplanted by degrading estimates as the signal content in the
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measurements tends to fall below the word length of the computer

providing the MLE .

V 5.3.2 MULTIDIMENSICI4AL MODEL

The figures for the multidimensional model give some indication

of the behavior of the derivative functions for x0 known and the

autonomous version of as an unknown parameter. The cost functions

in both cases, Figures 5—5a and 5-6a , are relatively smooth and

sysmetric - at least along a line in 2 x 2 A-space passing through A0.

The curves for the norm of the derivative , Figures 5-Sb and 5-6b ,

though reasonably smooth in the range shown, take a sharp plunge to

their minima.

The curves for the directional derivatives, Figure 5—5c and 5—6c

behave less dramatically than those for the norm of the derivative and

have the more familiar form of a scaler parameter quadratic cost func—

tion derivative. Figure S—5c corresponds directly to the cost function

of Figure 5-5a, but Figure 5—6c corresponds only in an approximate

sense because Figure 5—6a is based on the true while Figure 5—6c

is based on Note that while the directional derivative curves pass

V through zero , the normed derivative curves do not, because there in

general is non-zero gradient vector orthogonal to the A
0 
direction when

the directional derivative passes through zero.

In all four derivative figures, ~~~~
“ is obvious and close to c = 1

(or “c0
1t) . However, ~ is unique for the range shown in the directional

derivative figures, but there are local minima in normed derivative

figures. Thus, for minerical evaluation of A the combination of

moving the solution along directional derivative type curves but
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measuring convergence by some norm of the derivativE function appears

to have merit.

5.4 CALCULATION OF THE MLE ~ND ITS APPW)XIMATIONs

Expressing the derivative functions in the form of polynomials

does have the advantages that if the coefficients are bounded , the

functions will be bounded and will possess all derivatives. Further-

more, a wealth of literature exists on the properties, analysis, and

solution of (scalar ) polynomial equations . Also well known is the fact

that the roots of a polynomial may be difficult to locate numerically.

5.4.1 SOLUTION OF THE LIKELIHOOD EQUATION

The roots of a polynomial may be well defined mathematically, but

a useful definition for numerical work is not as clear. The most

connuon definition and the one used in the simulation studies is that

any value a is a root of the likelihood equation D
N(a) = 0 if

IDN (a) t < c,  c > 0.

Having established a definition for a root of the polynomial, the

next step is to select some technique to find the root. The classical

numerical technique for solution of likelihood equations is Fisher’s

‘scoring for parameters ’, the ‘score’ being the derivative function

evaluated at the latest estimate of the root (Rao (1965 , p. 302]).

The process is basically a Newton type iteration and has the following

form for a sample size of n and parameter 6:

oj~1 ~ 
+ ~

iogL

1 
/ {nI (~~ ) )  (5.7)

where the information ~(O) is def ined as
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I(s) — R (-. —
~~ 2 I°) 

(5.8)

The basis for this method is that generally in the classical considera-

tions of max inn.sn likelihood estimation

1 ~
2 loaL a.s.ae~ 

- — i(S) (5.9)

The numerical analysis literature offers a variety of methods to

determine roots of polynomials, e.g., see Busk and Svejgaard (1962],

many of which could be more desirable in specific situations, if not

in most situations as contended by some, than scoring for parameters.

The methods can be considered as membex~s of one of two groups, direct

or iterative. The direct methods are recursive and make no use of any

initial estimate of the roots. Generally, for reasonably behaved

functions for which there is at least some rough information on root

locations, the iterative methods are more effective. Barnett (1966]

compares Newton-Raphson (method of tangents), fixed derivative Newton ,

scoring for parameters, and regula falsi (method of chords) methods

for the solution of likelihood equations with multiple roots. He

concludes that regula falsi is most easily controlled and most reliable

for seeking out the desired roots and in addition locates only roots

which correspond to max ima or minima, as the case may be. Jennrich and

V 
Sampson (1968] review steepest descent, Newton-Raphson, and Gauss-Newton

as applied to non-linear least squares estimation. They state that of

the three, Gauss-Newton, an iteration method wnich applies standard

linear regression to a linearized version of the non-linear least

squares problem, is most popular because it specifies the step size for

the iteration and does not require second derivatives. (For the studies
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reported in this chapter , regula f a lsi ‘~ppeared most appropriate and

was the only technique used.)

One other aspect of the numerical solutions should at least be

menticned . The theory on convergence of most standard numerical root

solving methods is reasonably well developed. However, since the roots

of the likelihood equation and the sequence of approximations resulting

from the process of numerical solution of the roots are random variables,

the usual convergence criteria must be reconsidered from a statistical

point of view. Large sample (stochastic) convergence for Newton-

Mphson and scoring for parameters is shown by Kale (19611 for solution

of the (classical) scalar likelihood equation and by Kale (1962] for

the (classical) multiparameter likelihood equation. Jennrich (1969]

V 
shows large sample convergence of the Gauss-Newton method applied to

non-linear least squares.

5.4.2 APPROXIMATIONS TO THE MLE

The maximum likelihood estimators developed in Chapter ~ grow in

total number of terms as the number of samples grows and require the

entire measurement sequence and input sequence to be stored. These

characteristics could preclude real time application of the estimators,

particularly if a completely updated MLE is demanded after each new

sample . Obviously, given enough samples , any computer would eventually

become clogged to the point where further evaluations of the estimate,

real time or not, would be impractical.

The iterative root—finding numerical methods typically require

evaluation of the likelihood equation (and, in some cases, also the

derivative of the likelihood equation) for each iteration. The least
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expensive evaluation of a general polynomial is given by Hom er ’s

method (Lyuatemnick , et al (1965, p. 10]). For an nth degree poly-

nomial, n additions and n multiplications are required.

Clearly , the computational constraints dictated by many practical

situations can be met only by approximating the maximum likelihood

estimate. This problem and some possible responses have been given

limited discussion in Chapter 4. The average coefficient method was

proposed as an analytical approximation to the MLE. The equations

for the scaler parameter estimates are repeated below. Equation (5.10)

(see Equation (4.84)) is the two-sample approximation for the x0 known,

unknown parameter, and unknown random variable cases, and Equation

(5.11) (see Equation (4.91) ) corresponds to the differencing approach

approximation.

cN a - DN’a - CN ’ a 0 (5.10)

~2a 3 + cN a # (c2—DN ’)a — CN ’ — 0 
(5.11)

where

CN’ — y11 (y1—hbu1_1) (5.12)

DN’ — (y1—hbu1_ 1)
2 — ~~~ 

~i_i~J 
(5 .13)

Another approximation , which is more numerical in nature than the

average coefficient method, that also appears to have merit is a form

of curve fitting which exploits a recursive aspect of the likelihood

equation . Through curve fitting , the bILE can be in theory approximated

to any decjree desired whereas the extent to which the average coeffi-

cient estimate approximates the maximum likelihood estimate is relatively
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unclear . The method consists of initially selecting several specific

values of the parameter variable a such that the area in which a is

expected to lie is spanned and, after each new sample, recursively

evaluating the derivative function at these points. The appropriate

root of a curve f itted through the updated points on the derivative

function is taken as the approximation to a.

This recursive curve fitting method results in a substantial

reduction of computations and storage - a reduction by a factor of

approximately N, the total number of samples at the time of computation.

There are some problems associated with this method which tend to offset

its computational advantage. The total number of points which must

be computed depends on the size of the region in which a is expected to

lie and the precision to which ~ must be known. As £ begins to stabilize V

after several samples , moving the points to improve the approximation

would be desirable. There appears to be no way to move the points

without making some approximations. Also, curve fitting can introduce

extraneous roots or, conversely , could result in a curve which has no

real roots in the region of .

5.4.3 SIMULATION OF THE MLE APP1~)XIMATIONS

To provide some indication of performance, simulations of the

two-sample average coefficient method and a 3-point recursive parabolic

fit to the derivative functions were made. (The fit was arranged with

a0 midway between the second and third points to give a worst case

when a~ is spanned by the points.) For comparison, the results are

presented along with the MLE and a least squares estimate , derived as

follows. From Equation (3 .50) :
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Vi U0

Vi U1 C1

. — a . #hb . . (5.14)

VN—.Z UN_i

or,

— a ,_1 # 

~~~u-l 
+ (5.15)

or,

— (5 .16)
Ww-i TMN-l

The curve s of group (a) (Figures 5—la , 5—2 a, 5—3a, 5—4a) , group (b)

(Figure 5—ib) , and group (c) (Figure 5-ic) display the evolution of a

for maximum likelihood (bILE) , 2-sample average coefficient (AVC~), 3-

point recursive fit ( 3PT) , and least squares (LSQ). The results m di-

cats that for low noise levels (group ( b ) ) ,  both least squares and

average coefficient do well compared to bILE for all but the autonomous

differencing approach . As the noise level increases (group (a ) and

group (a) , respectively) the amount by which they are in error increases

substantially relative to the MLE , though averag e coefficient performed

noticeably better than least squares . (Since theory in Chapter 4

indicated consistency for the average coefficient method under the

conditions of the simulation , it should have perfo rm ed reasonab ly well.) V

On the other hand , for the autonomous differencing approach , Figure

5—4a, for example , least squares and averag e coefficient drift towa rd

zero . (This drift of the averag e coefficient ~ was expected because V

the limiting root was shown to be zero.)
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The 3-point recursive fit follows the t4LE in group (a) and (c)

but drifts away in group (b). The drift in group (b) is most likely

due to the peak in the derivative curves near a0 for group (b) (see

Figure 5—2f).

In the description of group (b) , the effect of increasing the

separation of the points from 0.1 to 0.2 was mentioned. The error

increased from a few per cent for 0.1 separation (as observed from the

curves) to about 10% at 30 samples for 0.2. Thus, for 3 points

separated by 0.1 and a priori knowledge of a0 to within ±0.1, the V

figures show that the a approximation is good to nearly two significant

figures whereas for the 0.2 situation barely more than one significant

figure is obtained.

5.5 Ca4PUTATIONAL ERRORS

The numerical error resulting trots the finite word length of

digital computers can have a substantial effect on the reliability V

of computations. The problem can arise at either end, so to speak ,

roundoff or cancellation. (For a double precision accumulator and

single precision storage with floating point operations these events

are mutually exclusive for any single operation.) The problem of

differencing nearly equal quantities (cancellation) was observed to

occur during evaluation of the derivative functions at some distance

from a0 or A0, but generally only when Ia { > 1 in the scalar case. Also

for IaI 1, exponential overflow can easily occur. Neither of these

problems is of much interest here however since most of the computational

effort would be confined to the neighborhood of the root a.

The problem of roundoff is discussed in detail by Wilkinson (1963].

For double precision addition, normalization, and rounding to single
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precision for storage, he shows floating point addition x1#x2 yields

(x1+x2)(l+e1) ,  ~~~ ~ B1~~ . (0 is the base for the computer’s arith—

isetic and t is the number of digits in the single precision mantissa.)

Similarly, the floating point multiplication x1x2 yields x1x2(1+€ 2),

<

Following a developsent of Adams (1967] , an estimate of the round-

off error in polynomial evaluation can be made. Let a — f c~ and

~ — Ic~I . Consider the polynomial

— c0 + c1a #...# c~a’2

Hom er ’s recurrence for computing £(x) is -

= Xbk_l + Cfl..k , k 1,...,n (5.17)

where

£(x) =

The roundoff accumulation on the kth step in the evaluation of the

polynomial can be described as

((b kl + ek) — (x(~z~ _ 1J + ek)(1#lt) # (C~_~jJ (1 + a) (5.18)

Expanding (5.18), rearranging, and dropping higher order terms gives

the following error recursion,

— IX I 6 A...1 + 1I~J~1 (5.19)

where

— 
eJ~+~bJ~j1r

k

V 

V and

Ic13I it
0

Let (x) be the true value of the polynomial and & (x) be the computed

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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value . Then -

I £0(x) —L (x) < (1r+a) 6~— l b ~ I w  
V

(Note that the coefficients Cj — cj (y Q,..., YN, uo,...,uN_ 1)  must also

be computed and consequently are in error).

Wilkinson demonstrates that root locations can be extremely

sensitive to coefficient perturbations . As a measure of the sensitivity

of the roots he develops what he calls the ‘condition of a polynomial’.

V 

Briefly, Wilkinson proceeds as follows to arrive at the condition. 
-

Let be a root of- &(a). Consider the zero of £(a)+sg(a) where

g(a) = ÷ g~a +...# g~a 1
~ 

(5 .20) 
- 

- 

-

By the theory on series reversion , the change in root location can be

bounded for sufficiently small C as

— + < k~~ (5.21)

where

2.’ = .~~~L (a)
da

or ,

â(c) — , c -+ 0 (5.22) 
V

V 

As expected, the crucial factor in root sensitivity is the slope at the

root. In the earlier discussions, the fact that the slope of the deriv-

ative functions at a increases as the number of samples increases was 
V

pointed out .

L

150

_ _ _ _ _   - —-V ~~~~~~~~ _~V_ ~-V V 
V-, V 

~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V V  _______________



- V - V~-VV.~~~~~~~

SECTION VI

SUMMARY OF RESULTS AND CC*ICLUSI~~S

Likelihood equations expressi ng the bILE for each of four initial

condition assumptions were derived. The finite sample and large sample

characteristics of the estimators were examined. oomputationally

efficient approximations to the bILE were proposed and investi9ated .

The finite sample and large sample characteristics as well as the

approximations are discussed for models without plant noise whereas

likelihood equations are presented for both models with and without

plant noise.

The likelihood equations based on the scalar model can be expressed

as polynomials in the unknown parameter a for each of the four initial

condition situations considered. For the vector-matrix model (without

plant noise) the likelihood equations for initial condition x0 known

V and unknown parameter are again polynomials but now are polynomials

in the matrix A with matrix coefficients. The character of the poly-

nomials varies considerably with initial condition assumptions. One

particularly interesting observation in this regard is that the bILE

without plant noise when is known or is an unknown parameter does

not explicitly depend on the variance of the measurement noise. Also ,

the degree and complexity of the polynomials increase with the number

of samples upon which the estimate is based. This expansion appears to

be unavoidable because by the work of Dynkin no sufficient statistic

other than the trivial one (all the samples) exists when is known
V 

or an unknown parameter. The same conclusion is expected to hold for
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the other two initial condition cases since in those situations the

samples are neither independent nor identically distributed.

For finite samples the scalar bILE in all four cases approaches the

true parameter value as the noise goes to zero. A similar but stronger

result is given by Theorem 4.1 which says that on the average the true

parameter value i~ a root of the likelihood equation. The converse of

that , the average of the roots of the likelihood equation corresponds

to the true value of the parameter, was not shown nor is it clear that

such is the case. Also, in the limit as the measurement noise goes to

zero, the MLE for stable scalar autonomous models is the only stable

root of the likelihood equations and, as already mentioned, is equal
V 

to the true parameter value. The simulations indicate that this con-

clusion may be nearly true even for non—zero forcing functions and up

to moderate noise levels if the true parameter value is stable and not

in the neighborhood of ±1, but extraneous roots do occur outside of V

(—1 ,1).

Concern for possible problems that could be encountered in the

numerical solution of the polynomial likelihood equations is lessened

by evidence from the simulations that for stable models the derivatives

of the likelihood functions in the interval (-1,1) are relatively

V 
smooth and rather insensitive to perturbations frost noise up to moderate

levels. A development by Wilkinson shows that an important factor in

the sensitivity of roots of polynomials with respect to perturbations

in their coefficients is the magnitude of the slope of the polynomial

at the roots. In the simulation results, the slope at the root

corresponding to the MLE was observed to increase as the number of
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samples increased. The shape of the derivatives of the likelihood
V 

functions varies considerably with true parameter value and can have

peaks in the neighborhood of the roots. In the light of this and

discussions by Barnett, regula f als.i makes a good choice for a numerical

method to compute the roots of the scaler Likelihood equations .

The bILE settles down after the first few samples in the simulations.

Any improvement after that comes about rather slowly if at all. When

is an unknown random variable , even a relatively large difference

between the actual initial condition and the mean initial condition

appears to have no significant effect except for a transient during the

first couple of estimates. The ML estimators generally performed well

on an absolute scale as well as relative to least squares and any

approximate ML estimators. Though the form of the estimator depends
V on the initial condition assumption, they appear to perform similarly

for the same set of measurements.

The cost and derivative functions for matrix parameters appear

relatively smooth over the region of interest in the situations which

were simulated. Along a vector through the true matrix in ~~ A-matrix

V space, the roots (or minima, as the case may be) of the derivative

V functions occurred in the neighborhood of the true value of A when the

noise level was relatively low.

V The only large sample property investigated was consistency . The

V bILE when x0 is known was shown to be consistent for stable scalar

models. The same arguments for consistency appear to hold also when

is an unknown parameter and when x0 is an unknown random variable.

V Because of lack of uniqueness in the limit, consistency for autonomous
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models was not shown. Though improvements in the bILE can be expected

initially for stable autonomous systems, continued improvement that

may well be theoretically possible for increasing but still finite

numbers of samples cannot be expected to occur because of the finite

word length of any processing computer. The Monte Carlo simulation

results tend to substantiate the above conclusions .

To overcome the growth in complexity of the bILE computed with

increasing numbers of samples , two approximations to the ML estimator

are proposed — average coefficient and recursive curve fitting. The

average coefficient approximation can be based on any length string of

samples but only the two—sample form was considered. This approximation

scheme applies in both scalar and matr ix situations, but only to the

differencing approach and x0 unknown parameter case. Since there is no

simple way to account for the initial condition information in the

cases where is known or ~~ is an unknown random variable , the unknown V

parameter approximation was assume d to serve for these cases also.

Both the two—sample approximations are related to other approx imations

and estimators in the literature.

The estimates in both average coefficient approximations approach

the true parameter value as the noise goes to zero, and the expectation

V 
of their noise terms is zero. The one for unknown parameter always

has two real roots, one in [—1 ,1] and the second in (_ 1~~1)
C
, and gives

a consistent estimate if the input to the system is a constant. In the

one for the differencing approach, the root locations are roughly

similar if the noise level is low . For this case the large sample r oot

is zero if the model is autonomous. The performance of these methods

in the simuhtions lies between least quares and ML.
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The curve fitting method can be based on any number of points but

the greater the number of points the less the computational advantage

becomes. (The same is true for string length in the average coefficient

methods.) For three points separated by 0.1 which span the true param-

eter value, the simulation of this approximation yielded an estimate

good to nearly two significant figures. This approximation performs

well if the derivative of the likelihood function is smooth near the

desired root, but as presented can be used only with scalar likelihood

equations.

A number of questions remain only partially answered . Evidence on

the usefulness of initial condition information was not very conclusive.

The numerical aspects of the solution of the matrix likelihood equations

as well as the properties of the solutions were only touched upon.

Finite sample root distributions were not firmly established .

There are many possible extensions to this study including increas-

V ing the unknown parameters to include the H and B matrices or parameters

in the noise distribution , input measurement noise , time varying

coeff icients, and A matrices some of whose elements are known. As a

special case of the latter , further studies of the companion matrix

form of A should be considered since the multiparameter identification

problem is often posed in this form.

155

_  ___ ___ _  _



~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V._ V
~V:W_ V ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - V.V~V V~~___~ ~~~~~~~~~~ ~~~~~~~~~ V - ~~

APPENDIX A

DETERMINANT AND INVERSE OF MEASUREMENT COVAR.IANCE - RANDOM VARIABLE

Let R— a I + B4aT A .l

where:

I Na — (1,a,...,a )

I — identity matrix

a, B, and a are real numbers

Theorem A.l: Let R be the (11÷1) x (N+1) matrix defined by (A.l) . Then 
V

its determinant can be expressed as

N
IR I — aN(a + B ~ a21) A .2

1—0

Proof:

Since the rank of a is one , the rank A, where A I

cannot be greater than one. Clearly, the rank of A is one.

Then if

t 
B = 0, IR I = a~ , and if a = 0, f~~I = 0.

Assume a and B not zero. a is a non—trivial eigenvector

of A, i.e.,

A s —  (aTa)a A.3
Because A is synvnetric, there exists an orthogonal matrix N

such that A — K A KT where A — diag (aTa ,0,. . . ,0). Then

IN (czI + BA) NT) = aN (a ÷ BaTa) A.4

Theorem A.2: Let R be the (Nfl) x (N+1) matrix defined in (A.1). Then

its inverse can be expressed as

R 1 — - 
a+8a’a 

A .5
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Proof :

I r a  — 0 , R 1 doss not xist , and if 6 — 0 , R 1 • a~~~I.

Assume a and B not zero . Then by (A.3) and the syssnetry of A D

there exists an orth ogonal matrix N such that

MVRN — aX + B diag (A ,0,...,0) A.b

where -

The inverse of (A .6) is

— diag((a+8A)~~~,a
1,...,a 1J

— a~~I + diag (v,0,...,0)

where

— —8Xa 1/(cz+BX)

Since MN’ — NTN — I, N must have the form

A.8 

H

Then , 
-

— c* ’I # (v//~’)~N’ A ,9

where , -

0 )  

1or ,

P ’ — a ”I + ~~~U’

— c* 1[ i  a+L~a ’*’) A.lO 
~
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APPENDIX B

DETERMINANT AND INVERSE OF TRI-DIAGONAL TOEPLITZ MATRIX

Let TN be an N x N tn -diagonal Toeplits matrix where

TN aI + 8IO 8.1

0 1.,
0

10 — B.2
n
‘I

V 

and where I is the identity matrix . The coefficients a and B are real.

0.1 THE DETERMINANT OF TN 
—

Tb. .igenvalues of 10 are the roots of AN(A) where

— det(A T - Zo) 0.3

Based on Grenander and Sz.go (1958, 55.3], AN of (B.3) can be expressed

as a recursion from which the roots can b. found .

AN — 
~
t
~N_ i 

— AN_2 , N — 3,4 ,... 0. 4

where

A1(A) — A

A2 ( A ) — A — 1

Solving the difference equation:

z2 — A z + i — O  B.5

or , 
~1 ,2 

— ~ (A±1A~ —4 ) 8.6

or , AN — 0 5
N 

+ c2z2~ B.7

Th, coefficients and c
2 
are difficult to evaluate when AN is

expressed in the form of (0.7). The following change of variable helps

overcome this. Take a such that,

A — 
i:a2
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Then the roots in (0.6) become ,

— ac ’ B.9

The solution to (3.4) in terms of a is 
V

AN — C 1a~ + c2a~~ 3.10

The coefficients are found from the initial conditions:

A 1 — (1+a 2 ) / a  — C 1 a + C2/a

A 2 — ((i+2a2+a L
~)/a2J — 1

= (1+a2÷a~)/a 2 — C1a2 + C2/a
2

or ,

C1 = —a 2 / (1—a 2 ) B.l1

C2 11(1— a 2 ) (B .l2 ) V

From (B.l0),

3.13
(1 —a 2 )

The roots of A
N in terms of a are roots of unity. Noting that

a — ±1 is not a root of AN, the roots are

ak — e~~~-~i~ 2 k = 1,... ,N ,N+2 .. .. ,2N#J 13.14

or in terms of A ,

j~ 22L& _~~~~1iL ~~~

A
k = e 2N+2 +e  2N+2

= 2 cos ~N
k
#2 k = 1 ,... ,N ,N +2 ,.. . ,2N#1 B. 15

Since TN is N x N , there are N eigenvalues . In ( 13. 15) , roots for

V 
N+ 2 < k < 2N+1 duplicate those for 1 k < N. The r e- fe -re -. th e -  c’iqn n-

values of (0.2) are

Ak = 2 c o s ~ / ~
.j .  k = 1 ,2 , .. .,N 8.16
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Because 10 is real and .ys~ etnic , there exists a similarity transforma—

tion to diagonali s. le. Thus ,

K kitTN I — ‘IT (a + 26 cos 0.17
k-i

As a special case , let a — a2 (1+r2) and B — —c 2r. Then from B. 13

taking r — -a,
211+2Jf I — (~ci2r)N — (02)N(1+r2# # r 2N) 0.18N (i~r
2) (_r)N

(The result in (0.18) could hav• been obtained somewhat more directly

by factoring T11 into the f o rm G11G ’.)

8.2 INVERSE OF TN

Let TN — (tj j i and TN~~ 
— (t .iji~. Since TN is sysmetnic ,

need be determined only for j ~ 1.

£ 
The cof actor of tjjt i ~ 1~ has the form :

T1..1 31 1 

~~j-i I
0 ~- 

0

I where Dj ~ 1 is a (i—I) x (i-I) upper triangular matrix with 8 along the

V diagonal and T5 i~ of the form (8.1). Than

V 

V 

r j j  — (—i )~~~I T1...1I ID~_1I TN_ i l/ IrK I
V 

— (—8)~~
1)T

~_1I ITN_j I/I TNI j ~ 1 3.19

where

V T0 — 1

As a special case , %et a — 02 (1+?) and B — —62r. Then for j > .1,

1-i N-i N
V 

•t j j  2( 
~ ~ r2(+t)i~~)/( ~ r 2”) 8.20

0 s—O t—0 v 0
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APPENDIX C

THE LIKEU HOOD EQUATION FOR THE SCALAR AUTONOMOUS DIFFERENCING APPROACH

Pr om Equation (3.64), the likelihood function for the scalar

autonomous differencing approach after N#i samples is —

a (2wøIRl~~~~exp (-~ ~*t~~4y*J C.1

where:

C.2

1+a 2 —a
••% s s “s . Q

R — ~
2 

a ’’~~
5 

~~~~~~ 

C.3
~~~ ‘~~ —a
‘

0 ‘ 2V -a i+a

Let ~~~ — — ay,J C.4

where:

— I. C.5

— ~~~~~~~~~~~~~ C.6

I da

_ I R h 1 (~~ I R I )  + 2 (y ,,°i’ R ’(Y ’—ay,,°)

- (y 1_ay 0) Y ( ~~~R _1) ( y ,~,1_ay,~,0) — 0 C.7

From (3.67):

) R I  — (02)” ~ a21 ‘ (cr2f’IRjI c.8
1—0

£ C.9

where: R is the adjoint of ~L. R2 0
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a— (c12IRiL~ ’ c.lO

~~~4RI — (a 2)~~~ .I R t  C.ll

~~~R 1 _
~~~ Rj~1 +a~~~ Rj

1 C.l2

where

V 
— ..(02 1R 12 ) 51 ...

~ .IR I 0.13

From (3.68)

— (r11
1) C.14

where

.i—1 N—j V

rI
_i 

— ~ &2 4’* A ) J 1  , j  > 1 0.15
k—0 s—0

N

~~
IR 1I — 2 ~ p~

2?l
da

.i—1 N—j
— ~ t2 (s+k) + i_ iJ a 2 ( *) 1 * ~ C.17

k—0 s—0

Multiplying through (C .7) by 02 1R 12 /(02)” gives:

v,,+~~~_ o  c.l8

where

VN — _a2lRaI~~~IRl) C.19

Q~d~
_ _ (y 1)v (_ (~~ IR,t )Ri4 # Rj j ~~~ Rj h )y 1

+ 2(y1,0)’(R1 (R21) — a(~~fR,I)Ra~ + a I R ~ l ~~.~~ *1Jy 1

— a(y,,°)’t2IRiI(R~~) — a(
~ .lRil)R5~ + aIR&I~~~Rj

hJy 0
(C.20)

The reduced form of (C.20) is relatively simple. At this time

no simple way has been uncovered that yields (3.73) from (C. 20). An

inductive proof will be given instead after the following lengthy

L~~usa is established.
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Lesmia Let A,~.,- Q,, - C.2l

Then ,
N-i z— 2 
~ 

(N-k)a
k—0

N-i N
+ 2 ~ (N+i_2p)a

l
~~
i2P 1

yjy,,
1—0 p—O

N-i N-i
— ~ (2N~j~ r)a 2 ” ’ ’2 y?yj C.22

r—0 j—0

Proof:

From (C.20) and the preceding definitions:

N N i—i N—i 2(s..*) z

~~~~~~~~~~ 
2pa ) t~~ (~~ ~ a ) y

~~ip—0 i—i k=0 s=0

N N-i N i-i N-j

— 
+ 2( ~ 2~~~ P i ) f  ~ 

~ ( ~ ~ ~~~~~~~~~~~ ) J
pa0 i— .I jai+1 k—C s—C

N N i—i N—i
— ( ~ a~~)( ~ ( ~ ~ (2(s+k)Ja

2(3
~~~

V S
)y,

Z
J

p —0 i—i k—C .s~O 
V

N N-i N i-i N-i
• — 2( a2~)( ( ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

p—C i—i jaiti k—C s—C

+ 2( ~ a
2
~)f ~ 

~ ~i~1 N~.i 
a
2
~
’ )I~i)yj_j y11

p —0 i—i fri k—0 s—C

N N-i N i-1 N- j
V + 2 ( ~ 

~~2P
) ( ~ ~ ( ~ ~~ a 2 ~~~~~~~ ) 

~~ Yj .j )

p O  i—i fri+1 k-0 s—0

- 2a( ~ 2pe
2
~~
1
) f 

N—i 
52(~.* Ij J  )Yj.1 y11

p—0 1—i j—1 k—C s—0

N N-i N i-i N-i
— 2a( ~ 2pa 2

~~~)( ~ ~ ( ) ~ a
2(4 *) ~~~

_ a
iy a y , . 2j

V 
p ’-0 i—i j —1+i k—0 s—0
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H N N N i—1 N—j
+ 2a( ~ a2’) ( ~ Z (2(a+k)+j_1Ja

l( *)I5i
~~) ~~)

~
—O i—i i_I k—0 s—0

N N-i N 1-1 11-i
+ 2a ( ~ a 5

~) I 
~ ~ 

( ~ ~ (2 ~~~~~~~~~~~~~~~~~~~ ~ ~~~~
~
—O i—i j—1+i kaO s—C

N N 1-i N-i
— 2a( ~ a2~)( ~ ( ~ ~ a

Z(3#*J
)yj.,j

h j
p—O l i  k—O s—C

V N N-i N 1-1 N-i
— 4a( ~ a ’)(  } ~ ( ~ a 2

~~~~~~
1 ’ ) y151 Yj ..g I

p—C i—i j —i#i k—C s—C

N N i-i N-i
+ a 2( ~ 2pa 2

~~
1)( Z ( ~ ~

p—C 1—1 k—0 saC

N N-i N i-i N-j
+ 2a 2( ~ 2pa~~~

1)( ~ ~ ( ~ ~~ 
a~~~~

”1 )Yj.jYj_ 1 J
p -C i—i j ’~i+i k-C s—C

N N i-i N-i
— a 1( ~ a 2

~) (  ~ (2 (s+k))a1
~~
”

~~~
)yj..a~

i
p—C i—i k—C saO

N N-i N i-i N-i
- 2a2( ~ a

2
~) (~~~ 

(

p—C i—i j —i#i k-C s-0

(C . 23)

Forming 0N - 
~~~ 

and accounting for the fact that the

inverses (C.14) hold only for j ~ .i gives :

2Na~~~~ ( 
N 1—1 N—i

i—i kaO s—C

N-i N i-i
÷ ( ~ 2pa

2
~~~)(  

~ ( ~

p-C i—i k—U

N-i N i-i N-i
V + 4Na 2’11( ~ ( 

z 
~~

i—i ja +i k-O saO
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N—i N—i N 1—i .
+ 2 ( ~ 2pa 2

~
’4) ( ~ ~ ( } a ) y. y~1Jp—0 i—i j—1#1 k—C

- aZWf 
N~1 ( 2 (s+ k) J a l M

~~l ) yj h)
lal k-C s—U

N-i N i-i
— ( ~ a2

~’) (  ~ ( 
~p-C i—i k-C

- 2a2~~
N
~~ ~ N~i 

~~~~~~~~~~~~~~~~~~~~~~ )yjyji
i—i j—i+i k—C s—C

N—i N—i N i—i
— 2( 

~ 
a2

~)( ~ ~ ( ~ (2(N+k)—j—ija
4
~~~~

’
~~~)yjy1J

V p.-C lal i—i-ti k—0

N N i—1 N—j
+ 2a 2

~
1( ~ ~ ( ~ ~ a ’~~~”1)yj , y,J
i—i j—i k—U s—0

N-i N N i-i
+ 2 ( ~ a 2’) I ~ ~ ( ~ a 2 ~~~~ ~ 1) Yj-j Yji

p -C 1—i i—i k-0

N-i N i-1 N-jV 

# 2a
21

~( ~ ~ ( I ~
i—i j —1+ i k-0 sa0

N-i N-i N i-i
+ 2( ~ a~~) (  ~ ~ ( ~ aZ~

N *)
~~

l)yj V;_ l J
P’-O i—i j i+i k-’O

- 4aINN( ~ 
i
~
i N—j 

a Z(a.*) ‘j-l

i—i jai k-U s—C

- 2(~~ 2p a2~) ( a’ 1 4 )yj.~ yjJ
p ar C i—i j—i k—C

N-i N i-i N-j2,l
V — 4Na I ~ ~ ( ~ I a )YjY~4)

i—i j —1+i k—C s—C

- 
- 

N-i N-i N i-i
— 2 ( I 2pa ~~~ I I I ( 

~ 
a Z (*?.A) 

~~ •1 
yj Yg—,

~ Ip—C i—i j 1#i k-C
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V

N N i-i N-iV 
- + 2aZWJ ~ I ~ ~ ~ (2(s+k)+j_1Ja * * ~~

J_ I I  )yj.~ yjii 1  ii k—C s—0

+ a~’~~) I (2(N+k) -i-lie
2 k )3 ~~ 1 1

) yj y5J

- 
- . p—C i 1  fri kaO

N-i N i-i N-i
+ 2a 2”

~
1j I I ( I I t2(a+k)+j_ i)a I * ~~

3_ I1)yj yj~1i
i—i j —i+i k—C s-C

N—i N—i N i—i
÷ 2( I a 2

~~’~) (  I I ( ~

p—C i ’i i—i+i k-U

V I - 2a 2M4h
t 
~ N~1 a 3

~~ )yj.jZj
i—i k—C s—O

N—i N i—i
— 2( I a

2
~~ ) (  

~ ( ~

p—C u n k—C

N—i N i—1 N—j .Ifrd’J r r r V I(s.k).~~-1 - -— 4a ( L  L ( A L a ) Y1.I ~ ~~~ I
i—i j—i+i kssO s-C

N-i N-i N i-i —

V 
— I a 2

~’”) (  
~ I ( I a2

~
” ”~

1)yj..1 y~_1Ip—0 i—i jari+i k-C 
—

N i-i N-i
+ 2Na 21~~( I ( I I a *(8*))y.jj

Z
l

i—i k—C s—C

N-i N i-i .
+ ( 

~ 
2pa 3

~~
1
)( I ( I ~~~~~~~~~~~~~~~~ V

p—C 11 k-U

N—i N i—i N —j
+ 4Na 2N~i1 

~ I ( I I a ~~~~~~~~~~~~~~ ) yj _~2 y ,..1 I
‘i—i j—i#i k—U s—C

N-i N-i N 1-1
÷ 2( I 2pa2~~2) ( I I ( I a 2 ‘ 1

~’~5yj.. 1 g,~~)
p —U 1—i j i+i ka0

N i-i N-i
— a 2’

~’~~( I ( I I (2(s+k))a 2
~
’*0*~~

1)yj.j u)
i—i k—C s—C
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V

N-i N i-i
— ( ~ a 2’~~) I ~ ( I (2 (N—i+k) J a  a (H.I. *~~ f 

~VI• ~i ~)
p-C i—i k—C

N—i N i—1 N—j— 2a I I ( I ~ (2 (si-k)  ti—l i a 3 ( # ~ ) ~~~~ 1) yj_~ Yj _~~ I
1—i i—i+i k—C s—0

N—i N—i N i— i
— 2( 

~ 
a2r2) I I I ( 

~ (2(N+k) ~j—iJa2
~~ ~

‘) y
~-i y;-2 I

p —C 1—i j i-i+i k—C

C.24

Considering the 32 terms of (C.24) and combining tham in the

following groups — (1,5), (2,6), (3,7), (4,8), (9,13,17),

(10,14,18), (11,15,19), (12,16,20), (21,25,29), (22,26,30),

(23,27 ,31) , and (24,28,32) gives: V

N i—Z N—i
= I ( I I 2(N—s—kJa 2~

”
~~
”
~~
2
)yj

2

i—i k—U s—U -
V

N 1—i N—i
— I I I

i—i k—C plC

N-i N i-i N-i 
V

+ 2 1 I ( I I t2 (N_s_k)_j+1IaI(~
d3 ~~~ 1-i

iai f r i+ i kao 5—0

N-i N i-i N-i
V 

— 2 1 I ( I I (2 (N+k_p) _j_ iJa*~~~~~~
)
~~~

2 h )y,g5
i—i j a il-i k-C p—C

N N i-Z N-j
— 2 1 1 ( I I (2(N—s—k)—j+i—iIa ”

~~~~~
”’1)yj1 y.

imi j—i k—C s—C

N N i-Z N—i
÷ 2 1 I ( I I (2(N+k—p) —j—i+iJa3~~~~ -’~~

’1 )y~.1 Yj
lal f r i k-U p—C

V N-i N i-1 N-j
— 2 

~ I ( I I 12(11—s—k) —j+1—ZIa ø*~~.~~-i 
~~

i i  j ai+i k-C s—C
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I

N—i N i—i N—i
+ 2 

~ ~ 
( 

~ I1.1 f r I  #1 k-C p -0

N i-i N-i
+ 2 1 1 1

I—i k—C s—O

N i—i N—i
— 2 1 ( I I (N_i+k_p#i)8

2 _ J )1 )yj.j
Z

1—i k—C p-C

N-i N i-i N-i
# 2 

~ I ( I I (2(N_ s_k_i)_j +iIa~~
#*

~~~
*)t

~~~z42 ) yj.. l 
~~:;~~ii~’i j—i#i ic—C s—C

N-i N i-i N-i
— 2 1 1 ( I I (2(N+k—p+i) —j—iJa2 ’

~”~~~~
t)yj1 y ..j

i—i i—li-i k—C p-O

C.25

Combining terms 3 and 5, 4 and 6 , 7 and 11, 8 and 12 àf

(C.25) gives :

N i—i N—i
I ( I I ~~~~~~~~~~~~~~~~~~~~~~~~~~

i—i k—C s—C

N i—i N—i
— I I I ~~~~~~~~~~~~~~~~~~~~~~~~~~~

V i—i k—C p-C

N i-i N-i
# 2 I ( I I (NSk_ iIa 3

~~~
1)ya.2

2

.1—i k—C s—C

N i-i N-i
— 2 1 ( I I ~~~~~~~~~~~~~~~~~~~~~~~ )Yi~z

2

i—i k—U p—C

— 
N-i 

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
i C  fr i-i sC

N-i N N-i
+ 2 1 I ( I f2(N ~p) —j liIa 2

~~~ ’~~’ 4 ~~ )YI Y,
i—O j—i+i p-C 3

I
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V 

N-i N N-j
+ 2 1 1 ( I ~~~~~~~~~~~~~~~~~~~~~~~~ )yj 1 yj_ 1

i—i fri—i s—C

N 1-2 N-i
— 2 I ( I I (2(N_s_k_Z))a 2 0* *1~~) y , j3

i 2  k-C s-C V

N 1— 2 11—i
÷ 2 ~ 

( I 1 (2 tN+k—p—i+i) ) Yi
2

12  k—U p —C

N-i N N-iV 

— 2 1 1 ( I (2 (N—p)—i+11a2 ?~~~~i i )y ~1 ~~~ 
C.26

i i  j—i+i p -C

Combining terms 3 and 8, 6 and 10, and 2, 4, and 9 in

(C.26) gives:

N i-i N-i
— I ( 

~ I f2(N s_k))a2 * ~*~~* )y~2
i—i k—C s—C

V N-i N N-j
— 2 1 I ( 1 t2(N_s)_j_ iJa~~~

43J”$ I 1)yjy1
iaC jaiti s—C

N N-i
V ÷ 2 I ( I (N—s—iJa 2 (Wøs.I)—j 

~i=i s—C

N i—2 N—1
— 2 I ( I I (N—s—k—iIa 2 ”

~~~~~)y~ 1
2

1—2 k—C s—C

N-i N N - j
+ 2 1 1 ( I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ yJ_1

i i  j—i#i s—C

N-i N-i
+ 2 1 ( I (N_2p+lJa ”)’ZP*4 1)yj y,,

I U  p -C

N-i N-i
— 2 1 1 ~~~~~~~~~~~~~~~~~ C.27

i ’C p—C

Combining terms 1 and 4 and 2 and 5 in (C.27) gives:
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N N-I
— 2 ( I tN—s—iIa~~~

’”
~~~ ~YLt

2

i—i s—C

N-i N-i
+ 2 I ( I (N_2p+j J~

P
~~~~~~~) yj  yN

V 
1 0  p—O

V N-i N-i
— 2 1 ( I (N_pJ~~~~~~~~

11
~?) 1)y~~~I

iaC p—C

N i—i
+ 2 I ( I (N_kJ a 2 ( ’

~~ 2)yj 2

i—i k-C
V 

- N N
— 2 1 1 (2N_j_itiJa~”~

’
~~ ’~

4Z 
)Yj~g Y 

C.28
I—i i—i

Rearranging and combining terms in (C.28) gives the desired

result:

2 1  (N k) a 2 (N*r ~~) 
..j

k—C

N-i N
÷ 2 1 t 1 tN—2ptiIa”2’’

~~
)gJ yN

V 
i Cp -O

N—i N—i
— I I (2 N j i ) a ~~’~~~~~ 2Yiy 1 C.29 

~1—0 i—C

Proposition Let be defined by Equation (C.20). Then can be

written as:

N N N
— 2 1 I 1 (i_t)a2tJ~5 1 yjyJ C.30

tao i—o i—C
Proof:

By induction using (C.23), the expanded version of (C.20),

— 2ay12 + 2(i+a2)%y, — 4a2y,y, — 2a (i+a 2 ) ! J.2 + 2a3y,2

— 2y.y, + (2y2
2—2y~

2)a — 2y~ g,a2 C.31
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From (C.30) ,

— 2(y,y~ + ay~~ - ay52 — a2y.!,1) C.32

Again from (C.30),

N-i N-i N-i
— 2 I I I ~~~~~~~~~~~~~~ C.33

t—O 1—0 j aC

Ass~mte (C.30) true for N—i . Then by the Lei~na ,

0 i - AN-I N-I

N-i N-i N-i
— 2 ~ I I ( i_ t) a at~~~~~ L y .  y

t—C i—C i—C

N-i
+ 2 1 (N-k)a 2

~
’”~

” 1  y a
k—0

N-i N
# 2 1 1 (N_2p+i)a~~ SP4~V 1 y~y~

i—O p —C

N-i  N-i
— I I (2N_j_ i)a ~~~~ ’J ’lyj y3 C.34

.1—0 j—O

N-i N-i N-i
— 2 1 1 I ( 1—t)a 2’~~ ’J~~~y1 ~t—O 1—0 j—O

÷ 2 ~ (i_ t)aI*1
~~11 yjy 5t—0 i—N i—N

N N-i N
+ 2 

~ I I ( i — t ) a Z* i4~~1y1 y,.
taO 1—0 j—N

N N N-i
÷ 2 1 I I (i_t) aht

~~~7 2 yj y,
t0 1N  i_C

N N-i N-i
+ 2 I I I (i—t)a2t 1”1 yjy~ C.35

t N  1—0 j —C

N N N
— 2 ~ I I (1— t ) a2 ” 1 yg yj C.36 

~t—0 j—O j—0
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Another version of 0N (Equation 3.72) was developed . It is

written in the standard form of a polynomial and as such was to have

4 
been used with known polynomial theory to yield information on root

locations. The form of the coefficients of the polynomial , being

quadratic forms in the measurenents, is interesting. However, 0N

as expressed by (3.73) (or (C.30)) has more practical value computation-

ally. V

A proof by induction is outlined for this second version :

2( 2 N—i )

— I 1
~ N~~ 

(k+i
~
4i)s*.t Nti 

J)yNIC~ 
C.37 (V  

- 
V

k—C 1—0

where :

—

S~ — shift matrix V

J — unit Hankel matrix
V 

2 1
— 1 (Y1 ’( I (k+i—4i)S~,11 J)y1 )a *

k—0 1—C

2 a— 2y,y1 # 2y, a — a - 2y,y1a C.3$

Assune (C.37) true for N-i . Then

2(2N—3) N—i
— 1L~ ~~~N-$

T 

~ .~L (k+i—4i)S~.1~~,31 J)y~~, )a
k

2(211—3) N—i
— I (y *? ( 1 (k+i_4i)S

k.I.N,~
J)yN *Ia~

l C.39
k—C 1—0

V 

where

y *, —

Con sider 0d4-4 + A, , g .

Working with the first term of
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2 
N—i 

(N-k) a
Z
~
àW* 1

~ 
2

k—C

4N—3
— I (4N_k_i)a k

y,, I
k—2N-i
(k odd)

4N-3 N-i
— 
k—2N—i 

(4N—k—i) ( 1L Sk,~~ 2jt,,J)akyN
Z

2(211-1) N rol
— I { (OI YN ) (  I (k+i_4 1)S,t ,& ti N~~~

1 hH }a b 
C.40

k—U i—C L~”J
Working with the second term of

N-i N
2 

~ 
( I (N#i—2fla ”2”1

1 ) Yj yN
i—C 5—0

N—i ji-3N-i
— I 1 I (2N+2i_k_i)a”YIyNJ

j aC k— 5+11-i

where

k — j +N—1 ,j +N#i ,i+N#3 ,.., .

a 2 (0. . .Oy1 ) i’ 
~~~~~~ 

(k+l_4l)S
k.J N~~~ 

J) 
{
~~‘]a u’ C.41

Working with the third term of

N-i N-i
- I I (2N—p—r) 

2N.~.p .
~

p—U r C

2N-i

— I tyN i 2N) Sk~g JYHj 8
k—i

411-2

k!iO 
(y T(k+1

~
4N)s*.,N+I ~~,,*j5k C.42

Combining (C.39) and (C.42) gives
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V - - ~~~~~~~ — -

4N-2 N 

—

V I t
~N 1 I (k+i—di)S*.z N & L  J1y )m~ 

c.43
k—0 1—0

Combining (C.43) , (C.41) , and (C.42) gives

- 4N-2 N
0N.i ~~

6N-I 
— 

kL ~~~~~~~ 
(k+i

~
4i) SA . I H, j  J)y Ja~

C.44

Returning to V1,~ (Equation (C. 19)), and using (C. 16) and (C.8).,

VN — _a2tR Z l d~
. 1R 11

N N
V — _202 I I qa2~~

’
~~~~ 

C.45
p-C q”O

- VN can be expressed in standard polynomial form though in a

- somewhat awkward manner ,

— N N+i
V — —2a 2 I I (k—i)a~~~~

i—C k”I

‘~~ — _2a2 ( I ~ (k—i)a~~~ + 
2N 

~ (k_i)a~~~
Z j

- k-i 1—0 k-N-t i i—k-N

2N k N
__202 I ( I t -~ ~ 

tJa
a,c 2 C.46

k—i t—O t—k-N
(kEN) (k>N)
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APPENDIX D

THE LIKELIHOOD EQUATIONS WITH PLANT NOISE

D.l THE MODEL

— ax~ + bu2 ÷

— hXj  + T~f 1 — C ,i,... D.2.

where:

{E ~~ } independent and F~ 4a7) (O ,62)

{ n j  } independent and independent of { ~~)

n~
From (D.1) ,

i . iI a-, i—A
— ha r• + iib I a U~..j + h I a 

~~~~~ 
+ — i,2 ,...

V 
f r i  k-i

y9 = h x ~~+ n ~ D.2 
V

D.2 KNOW V

a. The likelihood function

Because of the ass~xned independence,

(fl h l * ”  ?fl p4F~~~~~1” 
. ~~~~~~~ ~~7?(C ,R~~~

)  D.3

where :

0

~~~~~~~~~~~~ 
---- f----

C ~~B
2i

From the model (D.1) and Equation (D.2),

a *1 0

‘ • ÷ hb$ : + h ~ ÷ : D .4

a N U N .j 
~N-l

or with the obvious definitions ,
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D.5

where:

i ..
Q

Si %.s~~ •
a • ._ s

% *

• \ ‘s .
•~ .. •.• *•. 

.
*~~~~ %

• • ~a~
’a’1

Fran (D.3) and (D.5) , the likelihood function is given as ,
V 

L—p (y2,...,y~,a)

— (2~J
”1
~ IR ,l~ exp{-~ I I ~~ -hx N -hb $UNlI 2 1~ _, ) 0.6

where ,

— D.7

— [z ih ~J 0.8

b. The determinant of R,

R1 — 4
~x

R
n~~~~~~~
’ 1 a 21 + J2282~~~

IR,I — 1~ ta2~
_1 •T.

_1 ÷ h2 B2I)~ ’t

— Ia 2• 1
~ ’.i ’ + D.1O

Since,

C 
-

-1 —a~~ ’ 0.11
$1 — •..~ ‘

~•*V.

then,

i -a
—a ita2~~~

— 
~~~~~~~~~~~~ 

0.12
—a0 ~~_a~1+a2

Let the N x N matrices ‘I’,, and A~, be defined as ,

• -1 (~‘~) ~ 0.13

177

— 
-V — 

~~—



- ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~

- - i+a2 -a
~~~~~~~~ ~~*~%

A_ 
‘ 0.14 

- 

-

Q ~~~~~~~~~~~~ _5

—a ita2

Let be the determinant of the t x t matrix of the

form given by (D.9), i.e., L,, — IR, . Using Equation (B.l7),

Lt may be expressed as:

LLt — (a 2) * I v 2z ÷ I
— (~2)t ((i÷v2)1v 21 ÷ A e 2 1 5 2 1V 21 ÷ A t .z I J

~~~~

— (02)t {(i9v 2)(  ‘IT (v 2 + 1 + a2 — 2a COB
k-i - -

V

t—2 
V

— a2 ‘IT (v 2 + 1 ÷ a 2 — 2a cos 
~-j 

)} t 3 D.15
k—i

- where ,

= h282/a2

and , 
V

L2 a2 + h 282

i a
- — det {a 21 + 82h2 }

a i+a 2
V 

— ÷ a 2 8 2h2 ( 2+a 2) + h’~~~

Consider the determinant where

J ~, — Ia 2 (v 2I + A ~)I

— (~2)~ f t  (~~2 
+ ~ + — 2a cos ,p ~ i 0.16 -:k-i

and J 0 — i .

Then (D.l5) may be rewritten as

Lt — (a 2 ÷ h2 B 2)J~..1 — a2a’J
~~ 

0.17
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and

IR~I — D.18

c. The inverse of

From Equation (0.9)

V — (~V) l~~~~~l D.19

where,

— (r1j
2) — ta2

~~~
1 (I~ ) 4 + h2

~
2IJ D.20

By the same process that led to Equation (B.19),

r~f’ — (a 2a) ~~
l ( L j 1) ( J N_j ) / ( Zw) , 5 ~ i 0.21

where,

L~~
’i 

V

rjf1 - rjj4

d. The likelihood equation

Forming d 1~~ L = o from (D.6) gives,

— IR~I 1 (
~~IR~I) + ~ (~N~

h .~~N
hb

~~ N) T(~~~~ R;~)

— 2(hx0 (
~~ ~~

) + hb(~~ ~) ~~~ ‘R~ } 
~w,, 

—hc,

t — o

D. 3 x0 UNKNOWN PARAMETER

The likelihood equation for a is given by Equation (D.22) with

x,~ replaced by 2~. Fran (D.2) ,

Si U1
• ÷~~~~o • + • D. 23

a EN-I

where: •. f  • }
IS: 
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Considering the set of random variables (ri, ,n1 ,.. . ,n ., ,ç,. • •
the likelihood function can be written as:

L — (2w) 
‘
~~~a

2)~~~lR~ I~~ exp{_ ~~ i l  ~,,—hx,I~,~
hb

~~ N I I~~~i

+ (o2) 1(y1 —hx.)2J }  0.24

Forming gives,x.
(~N -h .4N —h 1d~) ’R9 ’,,, ÷ (a 2) 1 ( y, -hr.) — 0 D.25

or , 2• — WN
_1
~~~

VN)TRy
l
~
Na

2 Y.)/th (i÷d N
TR
Y
4
~~N

o2)1 D.26

0.4 UNI~~OWN RANDOM VARIABLE

a. The likelihood function

Ass~nne: r0 “~ 77 (2~ ,c
2)

and x0 independent of {~~} and {n ~}

By independence,

(x, ,r~, ,fl1 ,... ,r~,,E , ,
~~, ~~~~~~~~~ ~~i 77 (2, *,R~n~ ) D.27

where:

(i*)V — (1, ,C,. .. ,C)

0
R -

0 : 8 21

Fran (D.23) with the obvious definitions,

— hc.a~~ + 
~~~~~~&N ÷ + TI,, D.28

Using (D.28) and (D.27), the likelihood function is,

L =
-~~~~ 2

= (2w) 2 I4~ I exp{— 2 I I Y N 0 ~~~ I~~J 4 4 I I R~~1} 0.29

where , V

R -TN f?
Y

T — (ha,, I
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b. The dstsrmtha~~ of

From (D.29) :

— ~~~~~~
1Iv — h

2
e

2
a,,a,,’ + UZI + ~~~~~~~~~~~~ D.30

where ,

0 , o • • • 0

,o •.T _
•:

V 
V

Let

= — D.3l

where , -

V ——0.
•1 = •

~~ • , ~~~~~~

:1 o V

C l

Note that

= •
1
.
.I — — ~~~~ ÷ zI~~

0.32

Then ,

11 = •fh 2c2, laar (s 1
~~

l 
+ ~~2~~

1
l(~~~ Y l

+ 821 — B 2.~ ~~~ (~~ 
I)  l J ~~ Y

= $
1

(h2c2A + a2$~~ 1 (.~1) 4 + 82 (I...I)j , ? 0.33

where:

1

— a a 2~ 
C

0 
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Let be the determinant of the t x 
~ matrix having the form

of Equation (D . 33) . Expressing ~ 
—1 in terms of (D.ll) and

expanding the t x t matrix gives (noting that •~ I — 1):
V 

~2~2~~2 ah2c2 C 
0 

-

ah2c2 a2h2c2+82+a2 —aa~

o _5Ø2 82+a 2 (i+a 2) - _.

£ a . .
t 

~~ 2— — —aa
V 

0 ~~~~~~~
- - _

—aa2 82+a2 (1+a2)

D. 34

or ,

— (hs2+a2) ( (h2c2a2+82+a2) (18 2I+c2At_2 1)

— a 2& ( I B 2I+a 2A
~ 31)) 

— hkc4a2 (f8 2I+a2A
t~~

I)

= (h2 c2 (82+a2)+a2 (h 2 € 2a 2+8 2+a 2 ) J  ( I~
2I+a2A t_ 2 I )

— a 2a 4 ( I 8 21+a2At_ 3 1)  D.35

Using (B l 7),

— ((a2+h2e2)(82+a2)+o2h
~
c2a2JJ t_2 — a2a*3 t .,3 (t ~ 4) D.36

where :

= a~ + h2
~

2

V — (a2+h2c2) (02+82) + h2c2a 2a 2

- 2
£3 — 

(a 2+h2 c2) ( ( a 2+8 2)  +u 2 82a 2)  + h2c 2a 2a2 (82#a 2 (i+a 2))

- P irk
— ‘fl (82 + 02(1÷52) — 2aa 2cos -T J
k—i

Thus,

k~I — D37

c. The inverse of

From (D.33)
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~_~~__V~~~ ~VV_ —

- 

V - -V - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -

* (•~‘)
1R 1•’1 D.38

where,

1I~~ — (~gf1) — (h2t2~ + o2$
~
4($

~
’)
~
’ + B2(111)J ’

D. 39

Following the same procedure to find (0. 21) and (B.l9),

— 1.111 — (Ø 25)
S I

(j j J ) (~ 
3 ) / (~~~ ) i ~ 1 0.40

where:

f~22 e2a2÷B 2+c2)J — a2a kJN_2 , j  — 1
IC .- -

- 
~
,,

~~~~~~~ 
, 2 

~ 
j ~~Nti

J o — i

j o — i  V

d. The likelihood equation
V 

Fran (D.29) , forming ci log £ 
— o gives,

IR~I~’(~~IR~I) +

— 2 (he. (~~~~ i.,) + hb (~~ ~~ ) ~,,J T R~(’ } (~~ -h~, a~ -hb4~ u,,)
— o  D.4 1

D. 5 THE DIFFERENCING APPROACH

— a. The likelihood function

Fran (D.l) , the equivalent model for this scheme is

— ay~ + hbu,j + hF~g + 
~~~bj —an~) I — 0,1,... D.42

where: v~ 
is a known constant

Stacking (0.42) :

y1 —ay• U. C 0

U1
V • — Jib • • + • D.43

• • . •

• • •
- 

y.—av,..~ u,,.1 C ,,.. 1
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•1

where Cj — flj..1 — anj

or with the obvious definitions

D.44

V 
Because of independence,

(ri0 ,n2 1...,ri,,,ç,ç,,...,ç,) ‘~.‘ 77 (O ,Q~~) D.45

where:

~
2r 0

Q - - -1 • - -

0 821

Also, V

~~~~~~~~~~~~~~~~~~~~~~~~ +C,,..~ ) “77 (C ,R~ c) D.46

where :

R~ C

— [~~ ~hIJ

—a i .
V a

0

Fran (D.42) , (D.43):

I

Yj = a1 y0 ÷ ~ ~~~ (hbu5.~ +h~ ~~ +~ ~~~ I = 1,2,... D.47
i—i

Since the Jacobian fr It A~~ = h~ j + Cj~ is one,

L —

— (21r1’2 I~y I~ exp{4I I g4 -ag~~-hblJ ,,I I~, -1) D.48

where

V 

b. The determinant and inverse of

From (D.48) and (D.46),

— 02~~~t ~ h2b21 0.49
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Then from (B.17) and (B 19)

— fr 1h282+02(i+a2)_2aa2 cos J 0.50

j  — (2’jf’) D.51
~V ‘~ where : -

- 
— (a~a)~

4 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

, i � i 0.52

jo — i

-
~~ I

~
yI — 5,, D.53

C. The likelihood equatio~

Fran (D.48) forming dloqL = ~~ gives , 
V

I~k~I ‘~~4~~I) + {(y1 ,,—ag,,,—hZ~g,,~~~~. ~~~~~~
‘)

- 
V 

— 2(~,,,) ‘PV~ ~ } (y~,,—ay0~ -hbg,,)

— C  D.54

1 •
I

-t
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APPENDIX 2

RECURSIC~IS FOR FIXED POINT CURVE FITTING

/
Fran Equation (3.9) , the derivative function DN (a) at s~~ie point f

a1 can be expressed as:
I

N 1 2 3
DN (al) — 

~ 
( ( yj ~Aj —hbUi) ( iA1_i +hb(Ui—Uj ) ) J  E.1

i—i

where:

A1 — a 1
1hv0 E .2

1 i—kU1 — 
~ 

a1 Uk l  
2.3

k—i —

i—i
— 

~ 
Ia 11 

~~u~~1 (U~ — 0) E .4

— ~~~i—s— 1 u5_1 (U~ 0) E.5

The recursions are given below for n ~ 1.
1 2 3

— D~_1 + (y ~-A,1-hbU~) (t~A~_i +Ith(U~-U~)) E.6

where D0 — 0

— a1 A~_1 E.7

where ~i — a1hr0
1

E.8

where U~ U0 2.9

— n( j~~ U~_~ + u~..2)  E.9

where U~~a r O

— a 1U1~_ 1 + (n-1)u ~_2 E.lO

where a 0
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I
2.2 Z0 UlmJO’~1 PMM~ TER

j This case is si.ilar to the previous except x0 b.c~~ee which

changes with each new s ple. Rearranging (2.1) giv.. DN (a) at s~~e

j point a~ for this case.

$ D,( N +~~~~~~~~~~~~~Dj oN
) X oN E.fl

where:

— b 
~~ 

( ( y1- hbL~ ) ( U ~ — U1
3)J  2.12

1—1

N
— ~ ((y

1—hbL~)(Ia
1 1)) 2.13

1—1

N
— hb ~ (a1

1
(U~—U~)J ~.l4.

i—i

— h 
~ 

ia~
21
~~ 2.15

i—i

Fr ~~i Equation (3.20)

ON N N  2.16

where:

N N I
XN — } y1a1

1 
— hb }

~ 
} a1

21 
~uj_1 2.17

1—0 1—1 i—i
p

ZN — 11 1L a121
The recursions for n > 1 are given below.

1 1
— a1A~_1 

2.19

where — 1

— Xfl_ 1 # - hMJ~UJ 
2.20

where x0 — y 0

187

L _



—— — -‘—- - - ~~~~~~~~~~~~~~~~~~~~~ -

— Z1~~ + h(A~) 2.21

where Z0 — h

— + b(y —hbU1) ( U 2
—U

3)  2.22

where D1
1

— 0  
12 12 12

D
2 

— D
2 

+ (g —hbU5 (12A
1 ) E. 23fl n-i 12 12 n 1

2where D — y  — hbu

— D _1 + hbi (U
2

-U
3)  2.24

w h e r e p — 0

D — -P 2.25

where p~ — ha 1

a 2 • 3 X~ tI~ENO1t1 RANDOM VARIABLE

Fr~~ Equation (3.45) , the derivative function D
N4’a) at s~~e point

can be express.d as:

— ((02(02+h2e2c5 # j~2~~ 2~ 2Vj~
2

+ 4t2C~h20c2+C,~hb a 2+h2e24 + 4h2e24

— 2C>3be2C~j # C hb(a2#h2 E 241

+ C~ (C~,hb(a 2+h2 c2C,~,) _4(a2#h2 c24)

-

— c,~(h 3bc2 (~V+C~,) 2J

+ C~ (C~C~~~b2c2 _ C h 2b2 (a 2+h2c 2C~)

- 2h210b0241

+ c~ (h2I0ba 2 (~+4) J

# C~(h210ba2 (Y+’4) ..C>2b2 (~i2+h2~ 2c~)J

+ C ( h 1 b2e2 (?+C~) ) }  2.26

where:
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C~ — Z~/h 
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S • 27

c
2

— o>h 

. 

1.28

• C — 1.29

I
k N

C
N 

— ~ a11U1 2.30
‘i—i

N 1
C,, — ) Ia1i~1U4 2.31

i—i
a’

a 6 N
t CN ~ a11y1 1.32

1 0

~ 
N

CN ~ Ia11 1yj 2.33
I—i

~ 
N 2 3

C
N 

— ~~ lgj(U4 — U4)J 2.34
1—1

~ 
N 1 2  3

C1, — ) (U4 (U4 — U4) 1 2.35
I i

02
2.36

The recursions for C,, C , and C~ are given by (2.21) , (E .25) ,

and (2 .24) , respectively . The recursions for the remaining tezins are

given below for n 1 1.
I, I

~ 4
C12 — C12_1 + A12L1

12 
,C1 — a1u0 237

— C,~_1 + M~~~U~ ,C~ — U0 
2.38

C~ — C~_1 + A~j y12 ,C~ — y0 + a1y1 2.39

C~ — C~_1 + n*2~_1y12 ,C~ — 2.40

C~~— C~_1 + y 12(U~~- U~) ,C~~i.0 2.41

~~~~~~~~~~~~~~~~~~~~~ ,C~~— 0  1.42
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2.4 DI~~~~~ NCXNG APP~~ ACH (AUTOSIOMOUB VERSIQI)

?rcm Equations (3.70) , (3.71) , and (3.73), ths derivativ, function

D1
(a) at acme point a

~ 
can be expressed as:

PN (al
) — — c2 r~~~I~~ ~ 

~ 
~~~~~~~~~~~~~~ — i(r~)J} 2.43

where:

2.44

2.45

3 6 2 4 6
4 $

E.47

Th. recursion becanes:

2 1 2 5
P12 — 

- a (F
12)(F12

) + F12 
2.48

— ~~~~~~~~~ + ~~~ ~~~~~ 
~~~ - nF,~J , F — 0 2.49

I
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