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• SUMMARY

~ Simple approximate formulae for estimating the vibrational frequencies of pl ates, ui ~~ ~shells and membranes are presented. These formulae take the general form F = A,cWmlx ~where F Is a frequency parameter, A is a numerical parameter having a constant vàluè
for many different problems, and W~~ is the maximum deflection of an associated static
deflection problem.

The approach is particularly simple and the agreement between the frequencies
calculated using the approximate formulae and those calculated using standard vibration
analyses is excdlent. D D c
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NOTATION

p Mass per unit area
h Thickness of the plate, membrane or shell

• v Poisson’s ratio
w Frequency
W’,,,~ Maximum deflection due to a uniformly distributed load

Maximum deflection due to a load varying linearly with the distance from the
centroid

k Curvature of a shallow cylindrical or spherical shell
wo Frequency parameter for a flat plate with Poisson’s ratio equal to zero
E Young’s Modulus
Dr. D,, H Flexural rigidities for an orthotropic plate
8 Aspect ratio



I. INTRODUCTION
Static deflection modes, due to particular pressure distributions, have long been used for

vibration and flutter analysis, and are commonly used in conjunction with the Ritz method to
obtain estimates of ihe vibrational frequencies. However, in a recent paper. Jones’ proposed a
new procedure which relate.i the fundamental frequency of a vibrating plate to the maximum
deflection of the corresponding, uniformly loaded plate. Unlike the Ritz method, this technique
has the advantages that it is not necessary to perform any integration, and that the approxi-
marion is explicitly independent of the support conditions.

The aim of the present report is to discuss the developments of this technique, which have
enabled the method to be extended so as to predict the frequencies of several higher modes as
well as the frequencies of membrane and shell structures.

2. FORMULA FOR PLATES

In a recent article. Jonest presented an approximate expression for the fundamental fre-
quency of a vibrating plate: viz.

phwt (l0 215l)1/64W’miit (1)
where p is the mass per unit area, h is the plate thickness, cu the frequency of vibration and
W’~~ is the maximum deflection under unit loading of the corresponding uniformly loaded
plate. Although the accuracy of this expression was clearly shown in Reference I, this paper will
include a more detailed investigation into its accuracy. In Table I, the predicted values of the
frequency, along with corresponding values obtained from the literature are shown for a large

• range of plates of various geometrical shapes and subject to 4 combination of boundary
conditions.

TABLE I

Frequency Parameter wag s, ph/ D \ for Fundamental Mode f t r  Various Plate Problems,
= 0’3 (unless otherwise stated)

• Problem Equation (I) Literature, e.g. Ref. 3

Simply supported equilateral triangle, 39- 80 39 48
sides of length 2a~ 3\

Clamped rectangular plate, sides of
$ length a, b

b/a = l’O 35.97 35.99
= l ’ 5  27 ’22 26 ’59
= 2 ’O  2$’33 24~58

Simply supported rectangular plate
b/a ’~~l’0 20’04 19.74

l’5 14’ 53 l4 26
= 2’O 12’67 12’34

Clamped semicircular plate radius a 28’ 40 27’?
(too inaccurate)

•
.
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TABLE 1—coutlised

Problem Equation (1) Literature, e.g. Ref. 3

Clamped elliptic plate, semi major axis
of length a, semi minor axis of length b

a/ b =F 0  lO’22 l0’22
= l ’5 17’20 l7’20
= 2’O 27’74 27’74
= 3’O 58•68 58’68

Clamped rhombic plate, sides of length a,
an included angle of 8

0 = 7 50  38’lO 38’l9
= 600 46’03 46’17
= 450 65’77 65 ’59
= 30° l22 ’79 12 1’29

Simply supported rhombic plate
0=600 24’23 23’70

450 33’31 31’90

Rectangular plate, two opposite edges
simply supported, two clamped. Length
of clamped sides a, simply supported
sides of length b

b/ a = l ’O  29-14 28 95
= l ’5 l7’52 17’37
=2’0 13’90 13 69
= 3’0 ll’82 ll’36

Circular plate of radius a clamped on the
boundary over angle 8, remaining
boundary simply supported (v = 0’25)

• 0= 00  4’98 4’87
45° 6’Ol 5’87
90° 6’49 6’35

= 135° 7’OO 6’88
= 180° 7’59 7’51

-• 

= 225° 8’31 8’23
• = 270° 9’l3 9’12

= 3150 9’72 9’88
= 3600 l0’22 10’22 - •

: •
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TABLE I—continued

Problem Equation (1) Literature, e.g. Ref. 3

Annular plate free on the inner edge
r = b and either

(a) clamped on outer edge r = a,
a/b = 1 ‘25 93.49 85’32

= 2’OO 17’39 l7~51
= 400 lO ’36 lO ’86
=5•00 9.97 lO’34

or
(b) simply supported on outer edge

r = a

a/b = 1 ‘25 9’72 943
=2~00 5-117 5~04
=4 ’00 4’58 4~625= 5 0 0  4’625 4 726

Square plate, sides simply supported, l2~0l I 2’69
free, simply supported and clamped
(SS-F-SS-C)

Square plate, three sides simply supported, 11 ~26 I I  ‘68
the other free (SS—SS--SS—F)

It is interesting to note that Equation (I) does not depend explicitly upon the geometry or
the support conditions at the edges of the plate. Furthermore it should also be noted that, in
order to obtain an estimate of the frequency, it is not necessary to perform any integration. For
example, let us consider a square plate clamped on all of its sides. In this case the value of

• ~
- W ’0,~ is given by Tinioshenko2 as

a4W max = 0~00l26 (2)

where a is the total length of a side of the plate. Substituting for W ‘msx, as given in Equation (2),
into Equation (1), yields

2 
D(l0~2l5l)2phw 
(64a4)’00126 

(3)

and th is subsequently gives

~~ 2 /ph = 35 ,97 (4)
\ J D

which differs from the value of 35’99 given by Leissa,3 by less than 0-1%.
As a second illustration , let us consider the same rectangular plate but with two opposite

sides clamped and the remaining sides simply supported. In this case the value of W’max given
in Reference 2 is

, 0’00192a4
W miix D 

(5)

Substituting for W’msx in Equation (I) now gives

w2a /!~ =29’l4 (6)

3
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which differs by less than 1% from the value of 28’95 as given by Leissa.3
The two illustrative examples considered above clearly indicate the ease of aplpying the

method, while Table I shows its remarkable accuracy.
It should be mentioned that the formula—Equation (1)—was disco ~red when the author

was investigating the vibration of elliptic4I Plates, and the constant was chosen so as to give the
exact value of the fundamental frequency for the case of a clamped circular plate.

The ease and accuracy of this technique prompted Johns4 to extend the method to the
calculation of the frequency parameter for the first anti-symmetric mode. In this case the approxi-
mate expression

40
= 

25v3 4~ . (7;

was found to hold where Wmax is the maximum deflection of the plate due to a load distribution
which is proportional to the distance from the centroid. The accuracy of this approximation
can also be judged by examining Table 2.

TABLE 2
Frequency Parameter wa2.,/ph/ D\ for the First Anti-symmetric Mode

for Various Plate Problems

Equation (7) Literature, e.g. Ref. 3

Circular plate of radius a
(I) clamped 21 90 2 1’20
(2) simply supported 14 00 l3’90

Square plate sides of length a
(I) clamped 75 30 73 ’40
(2) simply supported 47~64) 49• 30

3. FORMULA FOR MEMBRANES AND SHELLS

• Following the success of Johns’4 extension of Jones” original work, Jones5’6 subsequently
extended the approximation so as to predict the fundamental frequencies of membranes and
shells of arbitra ry shape. The governing equation was found to take the following generalized

• form

phw2 = A/W~~~ (8)
where Wmrix is the maximum value of the corresponding static deflection mode, and A is a
constant dependent upon the particular problem and the mode under consideration.

For plates and shallow shells, A = (10.2151)2/64, for the fundamental mode, and
A = 40/25~, 5 for the first antisymmetric mode, wh i le when predicting the fundamental fre-
quency of a membrane of arbitrary shape,

• A (2.4048)2/4. (9)

When predicting the fundamental frequencies of membranes, plates and shells, Wmax iS
the maximum deflection which the structure would experience when subjected to a unif orm
loading of unity. When predicting the frequency of the first antisymmetric mode, the load
distribution is to be taken as proportional to the distance from the centroid.

The accuracy of Equation (7) in predicting the frequencies of plates has already been estab-
lished in Tables I and 2. Its accuracy in predicting the fundamental frequency of membranes
can be seen in Table 3 while Table 4 shows the accuracy of the method in predicting the funda-
mental frequency of a simply supported cylindrical shell of curvature k. Here the fundamental
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frequency w has been compared to the exact frequency in the special case for which k = 0 and
v = 0. The accuracy of the method can also be judged from Figures I, 2 and 3 which show plots
of the fundamental frequency of a shallow spherical shell versus the non-dimensional parameter
ka2/ 2h , where h is the shell thickness, a is the radius of the base of the shell and k is the curvature

TABLE 3
Fundamental Frequency wa2~~ph/E \ of Various Shaped Membranes r

Problem Equation (9) °,, difference from the
literature

Elli ptical membrane major axis length a
minor axis length b

b/ a = l ’O  2 405 0’O
= 1 2  2’134 0 0
= l’5 2’044 0•0
=2 ’O l’792 0’O

1 734 0 0
= l•70 l 0 0

Rectangular; sides of length 2a, 2b
b/ a = l ’O  2’223 0’O

= l l  2 ’ l l 7  0’2
= l ’2  2 041 0~2
= 1~5 l’894 0’3
=2’O l’787 l ’8
= 3 ’0 l’ 7l6 3.7

=4 ’O l’707 5’4

Semicircular radius a 3 848 0 3
Equilateral triangle 6’248 0 6

TABLE 4

Fundamental Frequency Parameter Wa2 
~j E 4h2( I a2/ b2) 2 for a Cylindrical Shallow Shell

ka2/h 1 2 3 4 5

a/b Pred. Exact Pred. Exact Pred. Exact Prod. Exact Prod. Exact

1 l’519 l~ 520 l’062 1 063 l ’076 l’08l l’095 I— lO S l lO8 l’136

4 l~072 l~072 l ’l36 l’140 l ’22 1 l’246 l’308 l’381 l’389 I’536
4 l’089 1 086 l~l98 l’193 l~34l l’35l l ’5 1 3  1~545 l~674 l’766
4 1.09 8 1 093 l’234 1 219 l’387 l’403 l 647 l’627 l’880 1 875

of the shell. Exact values of the frequency are shown as given by Reissner’ as well as the cor-
responding Ritz approximation (also given by Reissner7). In calculating the fundamental
frequency of the spherical shell, exact values of the maximum deflection were not available and
so use was made of the approximate expression, given in Reference 4, of

W 
~~~ Z = 

8D 1( l +k 2 a4( l+v)/ 8h2 1 + (1 + 72k2/6h2) a4 ( l+v) ’ [O l + (I + i .)/ 18( 1—v) J ’
(I0~ 

--•--“----•••• .. •--- - - . - 
~

-• - •• •- - -•• - -  

~~~ 

... • - . • .-



I \\ \
I 7\ \~ I Cl)

\ \ ‘ I
-~~~

\ \ ‘  1~~~w
-
~~

- U — , 0w
• v \ .  U-

-J

t \\‘~‘.\\\ z~~
• - 

LL C/)

I—

C,

\\ U-

a .
, — -

I I I I I I
‘0 U’~ r-

3 J 3°
6



I

2 - 2
—

‘I
Ca

t 41 II

\ - 0 ’

\ I -J

0

‘ a-
V 

Cl)

‘. \
\ \ , \v a- -~~~

/
/

I V \  \ I I.’.
— 

\. \ I  0
- ‘ 0

F c-~i LU
qi ’

. \\ ‘ ‘4 0
LU

L Ul l

< —I0 J
Zw\~• \\\

• U.

- c-.-1

I I I I
‘0 U~ (fl .-

1iT~_ 
.i. _ _ _ _ _ _ _



—-

a

• I,
0
ii a

- 0 ’

N
I..

at C)
-~~~~~~~

‘ Ui

‘ / Ia.\I
. r - .

‘ ‘C
I
Cl)• \

-% 
. ‘0 0

%_ L U ”
‘ ‘ 

- -
~~

‘C -i
\%~~a- U. Cl)

• \\ - m

\\
(

- (

~~\
\
\~~~~~~~

~~~~~ 1~~ 

I .

I I I I

‘0 .4 a

-j 3 J 3° 
8



‘ I
Tables 3 and 4 and Figures I, 2 and 3 can be found in either Reference 5 or in Reference 6.

We thus see that Equation (8) represents an exceptionally simple means of estimating the funda-
• mental frequency of plates, shells and membranes.

4. FORMULAE FOR ANISOTROPIC PLATES

One very important structural form which has not yet been discussed is that of a plate
consisting of orthotropic material. Let us now apply the approximate Equation (8) to the problem

• of a clamped elliptical plate made of composite material. In this case

a4
Wm&x = 

8(3D~ + WD ~ + 2 62H) (11)

where 8 = a/b is the aspect ratio of the ellipse, a, b are the lengths of the major and minor axes
• of the ellipse and D~, D~, H are the rigidities of the plate. This yields

wa2I;h = ( l O .2 l 5 l ) ( - +~~~~~
w

+ i-- ) 
(12)

which is in exact agreement with the recent analytical results of Dharmarajan and Fang Hui Chou.8
As a second illustration, let us consider the case of a simply supported rectangular composite
plate with sides of length a and b respectively. In this case the fundamental frequency is known
to be given by the relationship

phw2 = D,ir4( Dx/ D,,a4 + 2H/ a2b2D~ 1 1) (13)

while the values of W’ max are found in Reference 3 for the particular case H = ~~~~~~ The
values of the fundamental frequency wb2 ~ ph/ D~ thus predicted are shown in Table 5 along with
exact values given by Equation (13) above. As in all previous cases, the agreement between these
two sets of values is excellent.

TABLE 5
Fundamental Frequency.

Parameter wb2 ~/ ph/ Dp\ for an Orthotropic, Simply Supported Rectangular Plate;
= a/b~/D~/Dx

l 0  1-5 2-0 3-0
wb2 ~ ‘ph/D~\

Predicted 20-01 14-53 12-68 1 1-54

Exact l9~74 l4 22 12-33 l0 96

We thus see that the initial work of Jones’ has led to a new technique for estimating the
fundamental frequency of common structural elements. As can be seen in the recent review
article of Leissa,9 this procedure is one of the few new techniques which may be applied to plates
of arbitrary plan form with mixed support conditions.

Although we have concentrated on the positive aspects of this technique, there are two areas
in which the technique is lacking. 1~

The most important lack is the development of a rigorous mathematical basis for the
approximation. So far, the only work in which this has been attempted is that of Sundarajan.’°• Unfortunately it is the opinion of the author that Reference 10 fails to provide this mathematical
basis.

Again, the approximation fails in the field of large amplitude vibrations. The author has
attempted to apply the approximation to the large amplitude vibration of plates but found
that the predicted frequencies were in considerable disagreement with the values given in
Reference 3. The method at present can only be applied when vibration amplitudes are small.

9



& CONCLUSIONS
We have seen that the initial approximation developed by Jon& can be significantly

extended so that it now provides a very simple, yet accurate, means for calculating the funda-
mental frequencies of membranes, plates and shallow shells vibrating at small amplitudes.

10
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