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ABSTRACT

An optimal filter in the sense of maximum a posteriori
probability (MAP) is derived for image signals detected at
low light levels. These signals suffer from Poisson noise

and blurring degradations.

The low level photon resolved image signal is modeled
as an inhomogeneous Poisson point process. The photon
noise 1is 1inherent in any detected image, and is
particularly serious at 1low 1light levels. At these low
light levels, the emission of photons 1is described by a
Poisson point process, with the average rate of emission
proportional to the integrated intensity. The blurring
degradation model in the system includes space-variant and
space-invariant effects such as atmospheric turbulence,
linear motion, diffraction, and aberrations. The
estimation is performed assuming that the photon events
counted in each detector are independent, Poisson
distributed random processes for the large time-bandwidth
product case. Since the variance of the Poisson
distribution is identical to its mean, the Poisson noise is
neither multiplicative noise nor a linear additive Gaussian

noise, and is generally signal-dependent. It has been
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demonstrated that MAF estimation with the Poisson noise
model has improved performance because the MAP filter can
be generalizea to linear or nonlinear image models and to
noise models different from additive Gaussian noise. In
addition, the MAP filter can be a local adaptive processing
filter and extended to the case of space-variant blurring.

It also has been shown that image models with a

nonstationary mean and stationary variance give wuseful a

priori information for the MAP filter. The MAP estimation
equations are nonlinear and have large dimensionality. A
sectioning method with a Newton-Raphson solution has been
adapted to cope with these problems. It has been shown
that the strategy 1is an effective and fast way to solve

nonlinear MAP estimation equations.

The Cramer-Rao lower bound (CRLB) on the mean-square
estimation error of the MAP unbiased estimate is derived
for the Poisson noise model. It is shown to be a very
useful bound for finding the best suboptimal sectioning

filters.

Finally, a comparison between the performance of the
MAP filter and that of the linear minimum mean-squaré error
(LQMSE) filter is made for Poisson noise models. The
performance of the MAP filter is much better than that of
the LMMSE filter. The LMMSE filter works very well for

higher signal-to-noise ratios, but the MAF filter works

Xvii
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better for low signal-to-noise ratios where Poisson noise .

gominates.
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CHAPTER 1

INTRODUCTION

.1.1 Introduction

Image restoration can be viewed as an estimation
process in which operations are performed on observed or
measured noisy data to estimate the object. More clearly,
image restoration 1is the estimation of the original image
signal by both blur removal and noise suppression. Image
enhancement is the attempt to improve the appearance of the
image for better human viewing or machine processing.
Hence, image enhancement may not specifically need
knowledge of the degrading phenomena. However, in order to
effectively develop an optimal restoration filter with
various <criteria, it is necessary to characterize
quantitatively the image degradation effects of the
physical image system. Image restoration begins with a
model of degradation effects, assumes given a priori
information and then develops an optimal filter to obtain »a
restored image. Hence, accurate image modeling and more a

priori information are often the key to effective image

restoration.




ffn this dissertation, optimal restoration filters are
developed in the sense of maximum a posteriori probability
(MAP) and maximum likelihood (ML) for blurred image signals
detected at 1low 1light 1levels. This 1low 1level photon
resolved image signal 1is modeled as an inhomogeneous
Poisson point process. The photon noise (which we ceall
Poisson noise throughout this thesis) is inherent in any
detected image signal particularly at low light levels. At
these 1low 1light 1levels, the emission of photons is
described by a Poisson process with the average rate of
emission proportional to the integrated incident intensity.
The estimation 1is performed assming that the number of
photon events counted by the detectors are independent,
Poisson distributed random processes for a given unknowh
object radiance. Since the variance of the Poisson
distribution is identical to its mean, the Poisson noise is
neither multiplicative noise nor linear additive Gaussian

noise. It is, indeed a signal-dependent noise.

1.2 Organization and Contributions of the Dissertation

In next chapter, we discuss three image models and
some system models for image noise; we also present an
inhomogeneous Poisson process model which 1is a photon
counting system. In Chepter 3, we review some important
linear and nonlinear image restoration filters for Poisson

noise models and their motivation for the work in this
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dissertation. We also review other restoration filters for
different image noise models. In Chapter 4, we develop and
implement an MAP filter without blurring degradations for
the Poisson noise model. In Chapter 5, we develop and
implement MAP filters with blurring degradations for the
Poisson noise model. In Chapter 6, we derive Cramer-Rao
lower bounds (CRLB) on the estimation error for MAP filters
b and discuss the results. In Chapter 7, we compare the

restored image performance of the MAP filter with that of

the LMMSE filter. In Chapter 8, we conclude this

dissertation and discuss future research on the problem.

The specific research contributions of this

dissertation are now summarized. A model for photon

R -

resolved low 1light 1level 1image signals detected by a

counting array is developed. These signals are impaired by

signal dependent Poisson noise and linear blurring.

An optimal restoration filter based on maximizing the !

a posteriori probability density (MAP) is developed. A

suboptimal overlap-save sectioning method using a

! Newton-Raphson iterative procedure is used for the solution
of the high dimensionality, the nonlinear estimation
equations for any type of space-variant and invariant

linear blur. An accurate image model with a nonstationary

._,1-\«,,,_-42_
P

mean and stationary variance is used to provide a priori

information for the MAP restoration filter. The Cramer-Rao

|
|
|
|
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lower bound (CRLB) of the unbiased MAP restoration filter

is derived. Finally, a comparison between the MAP filter

and a 1linear space-invariant minimum mean-sguare error

(LMMSE) filter is made.
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CHAPTER 2

SYSTEM MODELS FOR IMAGE NOISE AND IMAGE MODELS

2.1 Introduction

Using a statistical approach to develop an optimal
restoration filter, the effectiveness of the algorithm
depends on the completeness of the statistical description
of 1image and noise. Hence, we investigate image and noise

models in detail in the following two sections.

In section 2.4, we present an inhomogeneous Poisson
process model (we refer this inhomogeneous Poisson process
as the Poisson noise degradation throughout this thesis)
which 1is a photon counting systtem. 1In section 2.4.1 we
investigate a general photon counting system containing
blurring and Poisson noise degradations. In section 2.4.5,
we first discuss a single detector model and derive its
statistical properties. In section 2.4.3, we extend the
single counter to an array. In section 2.4.4, we discuss
quantum limitations of photon resolved image signals, and
in section 2.4.5, we discuss the simulation of images with
Poisson noise at different ensemble mean signal-to-noise

ratios. A comparison is made between Poisson noise

degraded images and linear additive Gaussian noise degraded
5

e i




images. Finally some conclusions of this chapter are

presented.

2.2 System Models for Image Noise

2.2.1 Linear Additive Gaussian Noise Model

This model is most often used for image formation in
the field of digital image processing. 1Its block diagram
is illustratea in Fig. 2.1, where the 1image g(x,y) and
object f(x,y) may be considered intensity functions of two
spatial dimensions (x,y), and h(x,y) 1is the point-spread
function (PSF) or impulse response of the imaging system.

Because the linear blurring degradation in zll image noise

models is the same as in this model, we investigate more
! details about the PSF in this section. - The function n(x,y)
is additive noise which is signal-independent end Gaussian.

To unify the notation, we denote continuous functions with

(x,y) and discrete functions with (i,j) throughout this

, thesis. The mathematical representation of Fig. 2.1 is

o0

gx,y) = ” h(e,n;x,y) f(e,n)dedn+n (x,y). (2.1)

This equation is a first order Fredholm integral equation
i plus a random noise component, where (¢ ,n) is the spatiel
coordinate of the object of interest and h(e ,n:x,y) is a

general space~variant point-spread function (SVPSF)

‘ d describing the effects of the optical imaging system.
6




Ideally, it is desirable that the point-spread function for
2 Dirac delta function 8§ (x,y), in which case the image
g(x,y) equals the object f(x,y) in the absence of noise.
Furthermore, if h(e,n;x,y) 1is a function only of the

differences between respective coordinates, that is
h(e,n;x,y) = h(x-¢,y-n) {2.2)

the PSF is said to be spatislly invariant or isoplanar. In
all other situations, the PBSF is said to be spatially
variant or a&nisoplanar. The physical meaning of a
spatially invariant PSF is that the blurring degradation is
unchanged across the image plane and the image &and object

are mathematicelly related via a twc-dimensional

convolution

o]

g(x,y) = J[ h(x-¢,y-n) f(e,n)dedn+n(x,y) (2.3)
or eguivalently
glx,y) = I{ h{e,n) f (x-€,y-n)dedn+n(x,y). (2.4)

- 00

These convolution integrals can be Fourier transformed to

yield

G(u,v) = H(u,v)F{u,v)+N(u,v) (2.5)

where the capital letters denote the Fourier transform of
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the respective function represented by lower case letters
and (u,v) is spatial frequency. In the discrete domain
Eg. (2.5) <can be expressed by a discrete Fourier transform

(DFT) equivalent.

To process image signals on a digital computer we need
a spatially discrete form of signal. Equation (2.4) can be
represented as a aiscrete-discrete system [2-1,2-2] by a
matrix. This matrix can be represented as & vector by
lexicographically ordering the column of the matrix, 1i.e.,
the (i,j)th element of the MxN matrix is the [(j-1)m+1l]th
element of the vector. This ordering permits the use of @&

very simple matrix model
g = Hf + n (2.6)

j 2 e, e
where g is an N X1 recorded or measured image data vector

- 2 S :
f is an N X1 original object vector

X 2 gy 5 ;
is an N X1 additive Gaussian noise vector

=}

H is an N2><N2 blurring matrix which is a

transformetion matrix representing the

blurring degradation.
Thus the linear restoration matrix moael is &as shown in
Fig. 2.2. 1lhe additive nature of the noise in Eq. (2.6) is
a model for thermal noise and amplifier electronics noise
in image sensors. This additive noise is often itself
modeled as a Gaussian process. Since this model represents

the physical reality well end is mathematically trectable,
8
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it is the most conventional practical model.

2.2.2 Multiplicative Image Noise Model

A block aiagram of a multiplicative noise model
[2-6,2-7,2-6) and the associated restoration filter is

illustrated in Fig. 2.3. 1Its mathematical expression is
g(x,y) = [f(x,y)®h(x,y)]*n(x,y) (2.7)

or

o0

g(x,y) = [JI h(f,n;x,y)f(c,n)dcdn]-n(x,y) (2.8)

o0

where h(x,y) is the ESF of the linear system, f(x,y) and

g(x,y) are the obejct and degraded 1image functions

" respectively. Here n(x,y) denotes signal-independent

Gaussian noise, and ® denotes two-dimensional convolution.
T. Yatagai [2-9%] hes useé this model for speckle noise in
the sense that standard deviation of the speckle is equal

to its mean.

2.2.3 Additive Signal-Modulated Image Noise Model

The adaitive signal-modulated image noise model and

the associatea restoration filter 1is illustrated in

_Fig. 2.4. 1Its mathematical expression is

glx,y) = f(x,y)®h(x,y)+c(f(x,y)8h(x,y)]*n(x,y). (2.9)

mmaid
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Here C is generally a memoryless point nonlinear function,
n(x,y) 1is the signal-independent noise and @ denotes
two-dimensional convolution. Film-grain noise and magnetic
tape recording noise are accurately modeled as additive

signal-modulated noise [2-10,2-11].

2.2.4 Poisson Image Noise Model

Because of the quantum nature of light, photons arrive
at random times and give rise to a fundamental graininess
in detected images at low 1light levels. The graininess
tends to obscure the detection of fine details and faint
contrasts, thus, a large number of photons is required for
high quality imaging. The emission of photons is governed
by a Poisson random process [2-19), hence, we 1label the
noise as Poisson noise. Because a detailed mathematical ]
model for Poisson noise 1is given in section 2.4, only
gualitative comments on Poisson noise are given here for

the completeness of this section.

Poisson noise is another basic type of

signal-dependent image noise which is quite different from
film-grain noise and speckle noise. The signal-dependent
nature of Poisson noise is associated with the fact thet
the variance of the Poisson probability distribution is
equal to its mean. If the signal information received by
an array of photo detector 2lements 1is contained in the

mean number of events recorded by each element, then the
12
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Poisson distribution of these events implies that Poisson
noise 1is a form of signal-dependent noise. All low-level
| photon resolved signals are examples of signals corrupted
by Poisson noise. These situations occur in scintillation .
camera imaging, medical imaging, astronomical imaging, and

low light level television systems.

2.3 1Image Models

|

!

i Three of the more detailed image models are discussed
| in this section. Better estimates of statistical images

should come from more accurate image models.

b 2.3.1 Gaussian Image Model

On the basis of physical arguments and mathematical

tractability, Hunt [2-12,2-13] developed one of the most

accurate image models. The image is modeled as a
multivariate Gaussian process with nonstationary ensemble
mean and with stationary covariance. The image vector a

priori probability density function (pdf) is

p(f) = (@mV2|r ") expl-3(£-DTRIH(E-D) (2.10)

where f=E[f] is the nonstationary mean vector
Rf-E[(g-f)(g-f)T) is the stationary covariance matrix
{ ‘ lRfl is the determinant of R¢ and T denotes
transpose.

Lower case p denotes probability density function (pdf) and




capital case P denotes probability throughout this thesis.
Equation (2.1U) describes a random process of stationary
fluctuations about a nonstationary mean value. Hunt
derived this image model based on a heuristic analysis from
following "thought" experiment. Suppose that several
thousands of photographs with similar statistical
properties (such as driver's license photographs) were used
to calculate an ensemble mean image. Each face is
positioned in approximately the same way in each image
frame. Clearly such an ensemble mean image would not
consist of a uniform shade of gray indicating spatial
stationary. More likely, the mean image probably consists
of an oval region where the face is expected to be and some
dark spot where the eyes, nose, and other facial features
are expected to be. Thus, images are generally
nonstationary in first order statistics and are described
by a spatially non-stationary mean vector f. The ensemble
mean is strongly dependent upon the context which is
established by the sample mean of the image to be modeled.
The ensemble is called s context-dependent image ensemble.
Wintz [2-16]) has shown that images may have identical
covariance statistics and the same constant mean intensity,
but be completely unrelated in context. Therefore, the
context-dependent ensemble propefties are portrayed most
strongly in the mean vector f, since this vector has the

gross structure that represents the context of the ensemble

14




—————

from which the sample vector f is drawn.

The spatial statistics f and Rg of Eq. (2.12) do
not represent a "second-oraer" stationary random process if
the context-dependent ensemble mean is assumed, since f is
assumed to have nonstationary gross structure that depends
upon the ensemble and its context. The covariance
statistics can be described as spatially stationary

fluctuations ebout a spatially nonstationary mean vector

1|

. The random process associated with the image ensemble
is not ergodic in the mean, since the ensemble average of
the context-dependent ensemble is not equal to the spatial
average of an ensemble member. However, the process can

have a stationary autocovariance.

If an image f(j,k) can be described as being the sum
of two components, a low frequency or blurred component
f(j,k) and a high-frequency component s(j,k) of the

fluctuations about f, i.e.
f(j,x) = £(3,k) + s(3j,k) (2.11)

then f(j,k) represents the nonstationary mean and the
variance of the difference image between the image f and
the nonstationary mean image f is approximately egqgual to
that of the high-frequency component s(j,k). Thus, the
ensemble mean of the random process for an image is

nonstationary and carries the low spatial frequency gross

15
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features of an image, while the covariance properties zbout
this ensemble mean represent random perturbations carrying i
the detailea image structure. This image model is one of
the most sophisticated and will be used in deriving optimum

nonlinear filters in later chapters.

! 2.3.2 Laplacian Image Model

‘ Trussel et el. [2-13) using & nonlinear least-square
fit technique found that @ Leplacien pdf had & better fit

to experimental image pdf's than the Gsussian pdf. Thus !

the model of Eq. (2.9) cen be restated as

p(£) = kzexp{-/fl(g—f)TRf (£-F) 1%} (2.12)
4
i
| where
| _f = E[f]
| Re = E[(£-F) (£-D) 1.

' This process is similer to the Gaussian model because it
conteins a nonstationary mean end stetionary covariance.

The square root of the term in breckets in Eg. (2.12) mekes

the model Leplacian instead of Gaussian. The MAP filter
| and other restoration methods are later derived for both

the Gaussien pdf and Laplacian pdf.

2.3.3 Lebecev's Composite Image Model

_i'. This image model repesents & completely different
i approcach from Hunt's image model. Lebedev and Mirkin

callea their moael a "composite model of an image fragment"
16
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which includes the nonstationary statistical properties of
an image [2-14,2-15]. They model an ensemble of images as

a random fiela with an n-dimensional point pdf p(f) where

£f = (fl,fz,...,fn]. They decompose the image statistically

into M classes of fragments, whose structure is

distinguished by the type of correlational 1links between

pixels. Some classes are formed by fragments with
isotropic structure; others are found by fragments with

some anisotropy.

Let p(f) be the pdf of a fragment of image f, on the
condition that the fragment belongs to the class B8
(6 = 1,2,...,M). Denoting the a priori density of the

classes by m(68), we have

M

3, Tiews 4 (2.13)
6=1
and
M
p(f) = Z m(68)pg (£) . (2.14)
8=1

Expression (2.14) is a matrix density decomposition of p(f)
in terms  of  pg(f), 8 =1,2,...,M (2-18]. This
representation is especially useful when p(f) is
approximated closely by a small collection of Gaussian

distributions




where Re

class 9 fragment image.

Using
restoration
a posteriori
multicategory

decomposition

composite

local nonhomogeneous

hence an

Although this moadel

|Rg | "texol-

covariance

filtering

properties
information

is not used in the

T -1
£ Ry £)

criterion

corresponding

developing a

leads

because

image

the

results

model.

image

(2.15)

to the

spatial

filter with 2 maximum likelihood (ML), maximum

to a

of the

This

image technique seems to be a good model for the

signels,

can be a2 local adaptive filter.

presented,

it is believed that using this model with the MAP criterion

may yield good results in future work.

2.4 Inhomogenecus Pcisson Process Photon

Counting System

Model

2.4.1 Photon Counting System

In many practical situations a detected imeage

modeled as

with its corresponding block

For e¢ase

vector notation in which

notation,

shown in

can be

photon counting system illustrated in Fig. 2.5
Fig. 2.6.

a lexicogrephic ordering
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is an N°xl object vector

|

is an N1 blurred image vector

o

. 2
is an N“x1 photon count vector

is an N“x1 display image vector

(. PO [T Tel

is an N2x1 estimate object vector

and is the N2 2

<

XxN® blurring matrix.

| Here, H lumps together all the linear blurring degradation
j effects such as motion blurring, turbulence, diffraction,
é and aberrations. The detailed derivation of the
f two~dimensional discrete operator H from a two-dimensional
continuous superposition integral is discussed in

{2-1,2-2].

The counting array counts photons incident on the
two-dimensional sensor array. The mean of the photon count
is proportional to the incident integrated image intensity

and the counts themselves are random variables which have a

Poisson distribution.

The photon count is a dimensionless number, so we

include a scale factor a which provides an image intensity

| which is displayed. Thus the photon counting system is
modeled as an inhomogeneous Poisson process. This is a key
assumption of this thesis because the MAP estimate of the ﬂ
image in the non-blurring and blurring cases 1in the 1

subsequent two chapters 1is based directly on it. For

mathematical simplicity and ease of physical understanding,

‘. : 21
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we first derive the statistics of a single counter and

later extend it to a large array.

2.4.2 Single Photon Counter

ot ok g oo ARt Lo

From Fig. 2.5 we first assume the H matrix is the

identity matrix, and assume only one counter instead of a

TR Y.

vector array as in Fig. 2.7. According to the
semi-classical theory of photon detection [2-19,2-26], the
probability that 9; photon events occur for a given fixed
intensity £, is

g: =Af:
(AE,) s TSl
plg;|£,) = , (2.16)
g !
i

where X is a constant rate parameter. By direct summation,

the conditional mean ana variance of 9; for constant fi is

g, = \f,, (2.17)
-
oqi = \f,, (2.18)

and

Average # of photon counts
Intensity unit

e - (2.19)

o-:"' ‘_:PI

With the low light level image signals in which we are

interested, we have [2-21,2-26])

WT >> 1, (2.20)

22
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or equivalently,

51 << WT, (2.21)

where W is the temporal bandwidth and T is the integration
time, 1i.e. the mean number of counted photo events is
small compared to the time-bandwidth product of the 1light.
This condition 1is always satisfied for natural thermal
sources encountered in practice. In such cases, Mandel
[2-26] has shown that the count fluctuations are
predominantly Poisson shot noise due to the discrete nature
of wave-detector interaction, rather than «classical
“fluctuation noise" associated with the random nature of
the image intensity. Thus the count registered on the ith
counter is a Poisson random variable with mean ai and pdf

expressed by Eq. (2.16).

From the 1linear transformation di=agi with a a

constant aisplay scale factor, we have

ai = ag; = arf,, (2.22)
- R SR
odi‘ a ogi = q Afi. (2.23)

and p(dilfi) is given by
E d

i -y
1 di (Xfi)ae
pld, |£;) = =pl-=|f;) = a (2.24)
Q(T)!

We usually choosea) =1 in order to keep the mean value of

24
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the processed display image signal the same as the observed

noisy image.

Before we aefine an r.m.s. signal-to-noise ratio, it
is wuseful to discuss some details about signal-to-noise
ratios (SNR's) in general. A study of SNR's at different
points in a system enables us to pinpoint the significant
contributions to the noise. It is also a simple criterion
for the design of systems to minimize from the noise
degradation and thus it provides a measure of the
"noisiness" of a system. In most cases, the SNR criterion
is applied with signal-independent zero mean additive
noise. If the signal and noise are dependent, then the SNR
is difficult to define because the cross correlation and
other moments are nonzero. Poisson noise is a case of
signal-dependent noise because the variance in Egs. (2.18)
and (2.23) depends on the signal. In order to compare the
noisiness of images with Poisson noise, we will define an
r.m.s. SNR denoted by (SNR)rms‘ Because an image signal is

a random process in space and time, we must define an

ensemble mean (gﬁﬁ)rms as the ensemble average of the

(SNR) over the random image field.
rms

i In the case of Poisson noise, the (SNR) . is

(SNR) o = a—i— = (2 fi)* (2.25)

|
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and the ensemble mean (SNR) .o is

SNR = % o 1
(SNR) .o = (A€;)° = Af] (2.26)

Thus, (SNF)rm is proportional to the square root of the

S
signal, and is signal-dependent.

This behavior is quite different from additive noise,
multiplicative noise, or film-grain noise. Figure 2.8 is a
digital simulation of a 1low-level one-dimensional image
signal whose peak SNR 1is approximately 18. It is clear
from the illustration of Fig. 2.8, that at 1low signal
levels the noise 1is statistically nonstationary and
non-Gaussian. As the signal becomes photon resolved oat
very low intensities, there is little resemblance to the
classical signal. However, at higher signal 1levels, the

noise becomes more Gaussian [2-27].

2.4.3 Statistics of Array Counters

An array counter model for non-blurred image signals
with Poisson noise 1is shown in Fig. 2.9. For one single
counter the conditional density 1is given by Eqg. (2.16).
For an array of counters, we must find the joint ensemble
statistics for a given object vector f. Some assumptions
are necessary to find these joint ensemble Poisson
statistics. Walkup [2-20,2-21), Clark [2-22), and Wang

[2-23] have shown that given f, the joint ensemble photon
26
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counting statistics at the N detectors of Fig. 2.5 are
independent Poisson variates whose mean is proportional to
the mean intensities at each of the N disjoint detectors.
For this to be true, the time-bandwidth product WT must
satisfy WT>>1 where W is the temporal bandwidth of the
optical image signal and T is integration time. This is
the usual case in this thesis. From the WT >>1 assumption,
Mandel [2-26] also has shown that the counts registered by
the N detector/counters may be taken to be statictically
independent, since classical fluctuation noise is
negligible for light with a low degeneracy parameter, when
Poisson shot noise predominates in the photon count
fluctuations. The degeneracy parameter describes the
variance characteristics of the photon counts, and it is
defined as the ratio of classical fluctuation noise to
Poisson shot noise. Thus, all 9, are independent for a
given f (i.e. every Poisson generator is independent) and
each gi depends only on its corresponding fi. Also, we
assume that individual detectors have a smaller scale than
the spatial intensity variations of the image so that no
loss of information results from the sampling. We also
initially assume that background intensities and thermal
noise in the measurement system is negligible compared to

the Poisson noise. Representing the array values by

T

o O GurerssBl” andl £ = IF, E 0. 81" (R.29)
g 9,192 N = 13 N
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we have

p(glf) = p(gylE)p(g,lf)...p(gylf) (2.28)

Now, each 9, depends only on its corresponding fi' thus

g. —AE,
(Af) te T
p(glf) = T ; (2.29)

i 9

Now from Egs. (2.22)-(2.24) we have

P(dlf) = p(dy[£)p(d,|f)...p(dylf)
(2.30)
= p(dl|fl)p(d2|f2)...p(lefN)
jor S
(Afi)a e
p(d|f) = T