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. An optimal filter in the sense of maximum a posteriori

probability (MAP ) is derived for image signals detected at low
light levels. These signals suffer from Poisson noise and
blurring degradations.

The low level photon resolved image signal is modeled as an
inhoniogeneous Poisson point process. The photon noise is
inherent in any detected image,and is particularly serious at low
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~~~~~~~~~~~~~~ light levels. At these low light levels, the emission of photons
is described by a Poisson point process , with the average rate of
emission proportional to the integrated intensity . The blurring
degradation model in the system includes space-variant and space-
invariant effects such as atmospher ic turbu lence, linear motion ,
diff raction , and aberrations . The estimation is performed assuming
that the photon events counted in each detector are independent,
Poisson distributed random processes for the large time—bandwidth
product case. Since the variance of the Poisson distribution is
identical to i m Poisson noise is neither multiplicative
noise nor a linear additive Gaussian noise , and is generally signal
dependent. It has been demonstrated that MAPestimation with the
Poisson noise model has improved performance because the MAP f i lter
can be generalized to linear or nonlinear image models and to
noise models di fferent from additive Gaussian noise. In addition ,
the MAP filter can be a local adaptive processing filter and
extended to the case of space-variant blurring. It also has been
shown that image models wi th a nonstationary mean and stationary
variance give useful a priori information for the MAP filter. The
MAP estimation equations are nonlinear and have large dimensionalit’
A sectioning method with a Newton-Raphson solution has been adapted
to cope with these problems. It has been shown that the strategy
is an effective and fast way to solve nonlinear MAP estimation
equations.

The Cramer-Rao lower bound (CRLB) on the mean-square estimatio
error of the MAP unbiased estimate is derived for the Poisson noise
model. It is shown to be a very useful bound for finding the best
suboptimal sectioning filters.

Finally , a compar ison between the performance of the MAP
filter and that of the linear minimum mean—square error (LMMSE)
filter is made for Poisson noise models. The performance of the
MAP filter is much better than that of the LMMSE filter. The
LMMSE filter works very well for higher signal-to-noise ratios,
but the MAP filter works better for low signal—to-noise ratios where
Poisson noise dominates.
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ABSTRACT

An opt imal  f i l t e r  in the sense of maximum a poste r i o r i

probability (MAP) is derived for image signals detected at

low light levels. These signals suffer from Poisson noise

and blurring degradations.

The low level photon resolved image s ignal  is modeled

as an irihomogeneous Poisson point process. The photon

noise is inheren t in any detec ted image, and is

par ticularly serious at low light levels. At these low

light levels , the emission of photons is described by a

Poisson point process , wi th the avera ge ra te of emission

proportional to the integrated intensity. The blurring

degradation model in the system includes space—variant and

space—invariant effects such as atmospheric turbulence ,

• linear motion , diffraction , and aberrations. The

estimation is performed assuming that the photon events

• counted in each detector are independent , Poisson

distributed random processes for the large time—bandwidth

product case. Since the variance of the Poisson

distribution is identical to its mean , the Poisson noise is

- 

• neither multiplicative noise nor a linear additive Gaussian
4. -

noise , and is generally signal—dependent. It has been
4~.

. xvi

5’;.
.., 

~~~~~~~~~~~~~ 

—

- -_,v -—-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~~ -- - - -~~



_____  -. . - — —~~~~- .- - 

demons tra ted tha t MAP est ima t ion wi th the Poisson noise

model has improve d per fo rmance  because the MAP f i l ter can

be general ized to l inea r  or n o n l i n e a r  ima ge models and to

noise mo c~els different from additive Gaussian noise . In

addition , the MAP filter can be a local adaptive processing

fil ter and extended to the case of space—variant blurring .

It also has been shown that imag e models with a

nons ta tionary  mean and sta t i onary  v a r i a n c e  gi ve use fu l  a

pr iori information for the MAP filter. The MAP estimation

equations are nonlinear and have large d imensionality. A

sectioning method with a Newton—Raphson solu t ion has been

adapted to cope with these problems. It has been shown

that the strategy is an effective and fast way to solve

nonl inear MAP estimation equations.

The Cramer—Rao lower bound (CRLB) on the mean—square

e s t i m a t i o n  e r r o r  of the MAP unb ia sed  e s t ima te  is de r ived

for the Poisson noise model . It is shown to be a very

useful bound for finding the best suboptimal sectioning

filters.

F i n a l l y ,  a comparison between the performance of the

MAP filter and that of the linear minimum mean—square error

(LMMSE) filter is made for Poisson noise models. The

- - 

- per fo rmance  of the MAP f il ter is much better than tha t of

the LMMSE f i l t e r .  The LMMSE f il ter works  very  well  for

h ighe r s i g n a l — t o — n o i s e  r a t i o s , but  the MAP f i l t e r  works
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better for low signal—to—noise ratios where Poisson noise

aom inates.
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CHAPT ER 1

INTRODUCTION

.1.1 Introduction -

Image r e s to ra t ion  can be viewed as an est ima t ion

process in which operations are performed on observed or

measured noisy data to estimate the object. More clearly,

image restoration is the estimation of the original image

signal by both blur removal and noise suppression. Image

enhancement is the attempt to improve the appearance of the

image for better human viewing or machine processing.

Hence, image enhancement may not specifically need

knowledge of the deg rading phenomena. However , in order to

effectively develop an opt imal res tora tion f i l ter wi th

various criteria , it is necessary to characterize

quantitatively the image deg radation effects of the

physical image system . Image restoration begins with a

model of degradation effects , assumes given a priori

information and then develops an optimal filter to obtain a

restored image. Hence, accurate image modeling and more a 
-

- 
( - ~~

-
~~~~~

‘ priori information are often the key to effective image

restoration.

1

~‘
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rn th is  d i s s e r t a t i o n, opt imal res tora t ion f i l ters  a re

developed in the sense of maximum a poste rio r i  probabil i ty

(MAP) and maximum likelihood (ML) for blurred image signals

detected at low light levels. This low level photon

resolved image signal is modeled as an inhomogeneous

Poisson point process. The photon noise (which we call

• Poisson noise throughout this thesis) is inherent in any

detected imag e signal particularly at low light levels. At

• these low light levels , the emiss ion of pho tons is

descri bed by a Poisson proc ess wit h the avera ge ra te of

emission propor tional to the integrated incident intensity.

The estimation is performed assming that the number of

photon events counted by the detectors are independent ,

Poisson distributed random processes for a given unknown

object radiance. Since the variance of the Poisson

distribution is identical to its mean , the Poisson noise is

nei ther mul tipl ica t ive noise nor l inear  add it ive Gauss ian

noise. It is, indeed a signal—dependent noise .

1.2 Organization and Contributions of the Dissertation

In next chapter , we discuss three image models and

some system models for image noise; we also present an

inhomogeneous Poisson process model which is a pho ton

counting system . In Chapte r  3 , we review some important

linear and nonlinear image restoration filters for Poisson

noise models and their motivation for the work in this

4 
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dissertation. We also review other restoration filters for

different image noise models. In Chapter 4, we develop and

implement an MAP filter without blurrin g degradations for

the Poisson noise model. In Chapter 5, we develop and

implement MAP filters with blurring degradations for the

Poisson noise model. In Chapter 6, we derive Cramer—Rao

lower bounds (CRLB ) on the estimation error for MAP filters

and discuss the results. In Chapter 7, we compare the

restored image performance of the MAP filter with that of

the LMMSE filter. In Chapter 8, we conclude this
4 - dissertation and discuss future research on the problem .

The specific research contributions of this

disser tation are now summarized . A model for photon

resolved low light level image signals detected by a

counting array is developed . These signals are impaired by

signal dependent Poisson noise and linear blurring .

I
An optimal res tora tion f i l ter based on m a x i m i z i n g the

a posteriori probability density (MAP) is developed . A

suboptimal overlap— save sectioning method using a

• Newton—Raphson iterative procedure is used for the solution

of the high dimensionality , the nonlinear estimation

equations for any type of space—variant and invariant

linear blur. An accurate image model with a nonstationary

mean and stationary variance is used to provide a ~~J~ori

information for the MAP restoration filter. The Cramer—Rao

4 5
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lower boun d (CRLB) of the unb iased MAP res tora t ion fi l ter

is derived . Finally, a comparison be tween the MAP f i l ter

and a linear space— invarian t minimum mean—square error

( LMMSE) filter is made.

. 4.
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CHAPTER 2

SYSTEM MODELS FOR IMAGE NOISE AND IMAGE MODELS

2.1 Introduction

Using a statistical approach to develop an optimal

restoration filter , the effectiveness of the al gori thm

depen ds on the comp leteness of the stat is tical descript ion

of image and noise. Hence, we inves tigate image and noise

models in detail in the following two sections.

In section 2.4, we presen t an inhomogeneous Poisson

process model (we refer this inhomogeneous Poisson process

as the Poisson noise degradation throughout this thesis.)

which is a photon counting systtem . In section 2.4.1 we

inves tigate a general  pho ton coun t ing system con ta in ing

blurring and Poisson noise degrada t ions .  In section 2 .4 . 2 ,

we first discuss a single detector model and derive its

statistical properties. In section 2.4.3, we extend the

single counter to an array. In section 2.4.4. we discuss

quantum limitations of photon resolved image signals , and

in section 2.4.5, we discuss the simulation of images with

L . Poisson noise at different ensemble mean signal—to—noise

~ ~~. ratios. A comparison is made between Poisson noise

degraded images and linear additive Gaussian noise degraded

5
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images. Finally some conclusions of this chapter are

i i presented .

-

~ 2.2 System Models for Image Noise

2.2.1 Linear Additive Gaussian Noise Model

This model is mos t o ften used for ima ge forma tion in

the field of digital image processing . Its block diagram

is illustrated in Fig . 2.1, where the image g(x ,y) and

object f(x ,y) may be consi dere d in tens ity func t ions o f two

spatial dimensions (x ,y) , ari d h(x ,y) is the point—spread

• function (PSF) or impulse response of the imaging system .

- 

• 
Because the linear blurring degradation in all image noise

- f models is the same as in this model , we investigate more

details about the PSF in this section. — Th e f u n c t ion n (x ,y)

iS additive noise which is signal—independent and Gaussian.

To unify the notation , we deno te con t i nu ous func t ions w ith

(x ,y) an d d iscre te func t ions wi th (i , j )  throughout th i s

thesis. The mathematical representation of Fig . 2.1 is

• g(x ,y) = J J h (c~ n;x~y)f(c~ n)dcdn+n(x rY). (2.1)

Th is equa t ion is a f i r s t order Fre dholm in tegral  equa t ion

pl us a random noise component ,  where (E ,n) is the spatial

- coord ina te  of the object of interest and h (c ,n;x ,y) is a

general space—variant point—spread function (SVPSF)

4 .
~
. describing the effects of the optical imag ing system .
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-
~~~~~~~~~~~~~~~~ 

-

~~~~~~~~~~~ -



r — — 
. —- --- --

~~~
-- — •—---———

~~~~~~~~~~

Ide a l l y ,  it is desirable that the point—spread function for

a Di r ac  del ta func t ion ~ (x,y) , in w h i c h  case the image

g(x ,y) equals the object f(x ,y) in the absence of noise.

Fur thermor e, if h(€ ,n ;x ,y ) is a f unc t ion onl y of the

differences between respective coordinates , that is

h(~~,n;x ,y) = h (x— c ,y-- ri ) (2.2)

the PSF is said to be spatially invariant or isoplanar. In

all other situations , the PSF is said to be spatially

var iant or anisoplanar. The physical meaning of a

spatially invariant PSF is that the blurring deg radation is

unchang ed across the imag e plane and the image and object

are mathema tically related via a twc—dimensional

convolu t ion

g(x ,y) = Jf h(x-c ,y-n)f(r ,n)dcdfl+fl (X,Y) (2.3)

or equ iva len tly

g(x ,y) = ff h(c ,n )f(x-c ,y-n)dCdfl+fl(X,Y). (2.4)

These convo lu t ion  i n t eg r a l s  can be Four i e r  t r ans fo rmed  to

yield

• G(u ,v) = H(U,V)F (U,V)+N(U ,V) (2.5)

4. -

where the capital letters denote the Fourier transform of

4 
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the respective function represented by lower case letters

and (u ,v) is spatial frequency. In the discrete domain

Eq. (2.5) can be expressed by a d iscr ete Fo u r i e r  tr a n sf o r m

(DF’l) equivalent.

To process image signals on a aigital computer we need

a s p a t i a l l y  ai s c r e te  f o r m  of signal. Equation (2.4) can be

represented as a discrete—discrete system 12—l ,2—2J by a

matrix. This matrix can be represented es a vector by

l e x i c ogr a p h i c a l l y  o r d e r i n g  the column of the matrix , i.e.,

the (i ,j)th element of the M — N matrix is the 1 (j—l)m +llth

element of the vector. This ordering permits the use of a

ver y s im ple ma t r i x  model

q = H f + n ( 2 . 6 )

- 2 . . . - •where  ~ is an N xl recorded or rneasurec image  date  vec to r

t is an N 2 xI ori ginal object vector

n is an N
2Xl additive Gaussian noise vector

H is an N
2XN 2 

blurring matrix which is a

transformation matrix representing the

• blurring degradation.

Thus the linear restoration matrix model is as shown in

Fig . 2.2. Ihe additive nature of the noise in Eq. (2.6) is

a model for thermal noise and amplifier electronics noise

in image sensors. This additive noise is often itself

modeled as a Gaussian process. Since this model represents

the physical reality well and is mbthematica lly tractabl€ ’ ,

4 - 
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it is the most conventional practical model .

2.2 .2 Mul t ipl ica t ive Ima ge Noise Model

A bloc k d ia g ra m of a mul t ip l ica tive noise model

t2— b , 2— i ,2—b ) and the associated restoration filter is

illustrated in Fig . 2.3. Its mathematical expression is

g(x,y) = (f(x ,y)~~h(x ,y)1~~n(X ,Y) 
(2.7)

or

g(x ,y) = 
[Jf

h(r~~n;x~Y)f (c.n)dcdn] n (x~Y) (2.8)

where h (x,y) is the PSF of the linear system , f(x ,y) arid

g(x ,y) are the obejct and degraded image functions

- 

respectively. Here n(x ,y) denotes signal—indepe ndent

Gaussian no ise , and ~ denotes two-dimensional convolution.

7. Yatagai (2— ~~J has used this model for speckle no ise in

the  sense t h a t  s t an d a r d  d e v i a t i o n  of the spec kle is equal

to its mean.

• 2.2.3 Add itiv ’~ Signal-Modulated Image Noise Model

The adaitive signal—modulated image noise model and

the associateo restoration filter is illustrated in

- 
Fig . 2.4. Its mathematical expression is

g ( x ,y )  = f ( x , y) eh ( x , y ) + c E f ( X ,Y ) ~~h ( X ,Y ) 1 f l ( X ,Y ) . ( 2 . 9 )

9
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n(x ,y)

Figure 2.1. Block diagram of the linear additive
Gaussian noise model and the associated

4 
restoration filter

- 

Blurri 

~~~~ 

2~~~

j

Resto ra t ioj  ~

Figure 2.2. Block diagram of the l inear  restorat ion
vector model with additive noise

f (X SY
~~

Jh (c
n ;x Y) 1b

(x ,y~~

1

g(x,~~~~RestOrat ion 

1f

(x ,y)

n (x,y)

Figure 2.3. Block diagram of the multiplicative noise
• 

:-~~ 
model and the associated restoration
filter
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n(x ,y )

1 L
- ¶ Fi gure 2.4. Block diagram of the additive , signal

modulated image noise model and the
associated restoration filter
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Here C is gene ra l l y  a memoryless point non l in ea r  func tion ,

n(x ,y) is the signal—independent noise and • denotes

two—dimens iona l  convo lu t ion .  Film—grain noise and magnetic

tape recording noise are accurately modeled as additive

signal—modulated noise [2—10, 2—il].

2.2.4 Poisson Image Noise Model

Because of the quantum nature of l i g h t , pho tons a r r i v e

at random times and give rise to a fundamental graininess

in detected images at low light levels. 7-he graininess

tends to obscure the de tec t ion  of f i n e  deta i l s  an d f a i n t

con tras ts , thus , a l a r ge number of photons is r equ i r e d for

high quality imaging . The emission of photons is governed

by a Poisson random process 12—19), hence,  we la bel the

noise as Poisson noise . Because a detailed mathematical

model for Poisson noise is given in section 2.4, only

q u a l i t a t i v e  comments on Poisson noise a r e  g iven here for

the completeness of this section.

Poisson noise is ano ther basic type of

signal—dependent image noise which is quite different from

film— grain noise and speckle noise. The signal—depe ndent

nature of Poisson noise is associated with the fact that

the va r i ance  of the Poisson probabil ity dis tr ibu t ion is

equal to its mean. If the signal information received by
4. -

an a r r a y  of photo detector elements is contained in the

-

~ - - mean number of events  recorded by each element , then the

4~ . 12
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Poisson distribut ion of these events implies that Poisson

noise is a form of signal—dependent noise. All low—level

photon resolved signals are exam ples of signals cor rup ted

by Poisson noise. These S i t u a t i o n s  occur in s c i n t i l l a t i o n

camera imagin g , medical imaging , as tronomical imagin g , and

low light level television systems.

2.3  Image Models

Three of the more detailed image models are discussed

in this section. Better estimates of statistical images

should come f r o m  more accura te  imag e models.

2.3.1  Gauss ian  Image Model

On the basis of physical arguments arid mathematical

tractability , Hunt 12—12 ,2—131 developed one of the most t
accurate image models. The imag e is modeled as a

multivariate Gaussian process with nonstationary ensemble

mean and with stationary covariance. The image vector a

• priori probability density function (pdf) is

p(f) = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (2.10)

where f—E(fJ is the nonstationary mean vector

is the stationary covariance matrix

IR f~ is the determinant of Rf and T denotes

• 
- transpose.

Lower case p denotes probability density function (p df )  and
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capi ta l  case p denotes p r o b a b i l i t y  t h r o u g h o u t  t h i s  thes is .

Equa t ion  (2.1 11 ) descr ibes  a random process of s t a t i o n a r y

fluc tuations about a nonstationary mean value . Hunt

• derived this image model based on a heuristic analysis from

follow ing “thought ” expe r iment. Suppose that several

thousan ds of pho tog raphs wi th s imi l ar statistical

pro per ties (such as d r i ve r ’s l icense pho tograp hs) were used

to calculate an ensemble mean image. Each face is

po sit ioned in approx ima tely the same way in each im age

frame. Clearly such art ensemble mean image would not

consis t of a un i fo rm shade of g r ay in d ica t ing spa t ial

stationary. More likel y,  the mean image probably consists

of an oval region where the face is expected to be and some

dark  spo t where the eyes , nose , and other f a c i a l  f e a t u r e s

are expected to be. Thus , images are  genera l ly

n o n s t a t i o n a r y  in fi rst order statistics and are described

by a spatially non—stationary mean vector f. The ensemble

mean is strongly dependent upon the context which is

established by the sample mean of the image to be modeled .

The ensemble is called a context—dependent image ensemble.

Wintz [ 2 — 1 6 ]  has shown tha t  images may have iden t ica l

covar iance statis t ics and the same constan t mean in tensi ty,

but be completely unrelated in context. Therefore ,the

context—dependent ensemble properties are portreyed most

strongly in the mean vector f, since this vector has the

gross structure that represents the context of the ensemble

14
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from which the sample vector t is drawn .

The spa t ial sta ti s t ics  f and Rf of Eq. (2.12) do

not represent a “ second—order ” s t a t i o n a r y  random process if

the context—dependent ensemble mean is assumed , since f is

• assumed to have nonstationary gross structure that depends

upon the ensem ble an d its con tex t . The cova r i anc e

statistics can be described as spatially stationary

fluctuations about a spatially nonstationary mean vector

f. The random process associated with the image ensemble

is not ergodic in the mean , since the ensem ble average of

the context—aependent ensemble is not equal to the spatial

average of an ensemble member. However , the process can

have a stationary autocovariance.

If an image f (J , k) can be described as being the sum

H of two componen ts, a low f requency  or bl u r r e d componen t

f(j,k) and a high-frequency component s(j,k) of the

f luc tua tions abou t 1, i .e.

f(j,k) = ?(j,k) + s(j,k) (2.11)

then r~ j,k) represents the nonstationary mean and the

v a r i a n c e  of the d i f f e r e n c e  imag e between the image f and

the nonstationary mean image T is approx imate ly  equal to

that of the high—frequency component s(j,k). Thus , the

ensemble mean of the random process for an image is

nonstationary and carries the low spatial frequency gross

4 
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fea tures  of an image, while the covari~ nce properties about

this  ensemble mean represent random perturbations carrying

the detailed image structure. This image model is one of

the mos t sophis t ica ted an d w i l l  be used in de r i v ing opt imum

nonl inear filters in later chapters.

2.3.2 I8aplacian Image Model

Trussel et al. [2—13) using a nonlinear least—sau are

f i t  t echn ique  found  t h a t  a L ap l a c i an  pdf had a b e t t e r  f i t

to expe r imental image pdt’ s than the Gaussian pdf. Thus

the model of Eq. (2.9) can be restated as

—1
= k2

exp{_,T~ [(f_ ~ )
TRf (f—f)Y2} (2.12)

wher e -

•

f = E E f ]

Rf = E [ ( f _ f ) ( f _ f ) T l .

Th i s  process is s i m i l a r  to the Ga u s s i a n  mode l because it

contains a nonstationary mean end stationary covariance. F

The square root of the term in brackets in Eq. (2.12) wakes

the model Laplacian instead of Gaussian. ‘Ihe MAP filter

an d other res tora t ion me thods a r e  la te r de r i v e d for  bo th

the Gaussian pdf and Lapiaciar . pdf . -

2.3.~ Lebeoev ’s Compos it e Ima ge Model

‘Thi s image model repesents a completely different

approach f rom Hun t ’ s image model. Lebedev and M irkin

cal led th e i r  model a “composi te model of an image fragment”
16
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which includes  the n o n s t a t i o n a r y  s t a t i s t i c a l  p roper t i e s  of

an imag e [2—14 ,2-15). They model an ensemble of images as

a random f i e l d  with an n—dimensional point pdf p(f) where

= ~~~~~~~~~~~~~~ They decompose the ima ge statistica l ly

in to M classes of f r a gmen ts , whose struc tur e is

• d is t ingu i s hed by the type of co r r e l a t ional l i nks  between

pixels. Some classes are formed by fragments with

iso tropic struc ture ; others  a re  foun d by f r a gmen ts wi th

• some aniso tropy .

Let p(f) be the pdf of a fragment of image f, on the

condition that the fragment belong s to the class 0

(0 = 1 , 2 , . . .  , M) . Denoting the a priori density of the

classes by i(0) , we have

M
~ 1 (2 . 1 3 )

0 — i

and -

M
p (~~ = 

~~ 
p0

(~~~ ( 2 . 1 4 )
0=1

Expression (2.14) is a matrix density decomposition of p(f)

in terms of p 0(f) , 0 = 1,2,... ,M [2—181. This

4 
r epresen tat ion is especially use fu l  when p (f ) is

approximated closely by a small collection of Gaussian

distributions

17
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p0(a) = IR 0 t
lexpt_~~

TR0~~~} (2.15)

where  R0 is the covariance matrix corresponding to the

class ~ fragment image.

Using this imag e model for developing a spatial

restoration filter with a maximum likelihood (ML) , m a x i m u m

a posteriori (MAP) or Wiener criterion leads to a

multicategory filtering problem because of the

decomposition properties of the image model. This

composite image technique seems to be a good model for the

local nonhomogeneous information in the image signals ,

hence an optimal fi ltcr can be a local adaptive filter.

Althoug h this model is not used in the results presented ,

it is believed that using this model with the MAP criterion

may yield good results in future work.

2.4 Inhomogeneous Poisson Process Photon Counting System

• - Model

2.4.1 Photon Counting System

In many practical situations a detected image can be -
•

modeled as a photon counting system illustrated in Fig . 2.5

w i t h  i t s  cor responding  block diagram shown in Fig . 2.6. 
-

For ease of notation , we use a lexicog ra phic  or de r i n g
I ..

vec tor no ta t ion in which

4 .. 18
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~ (Aberrations ,
blur diffraction ,
turbulence)

/

Estimate f

Figure 2.5. Two-dimensional photon counting system
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f is an N 2xl object vector

b is an N 2x1 blurred image vector

~ is an N 2xl pho ton coun t vec tor

d is an N 2xl display image vector

f is an N 2x1 estimate object vector

and H is the N 2xN 2 blurring ma trix.

Here , H lumps together all the linear blurring degradation

effects such as motion blurring , tur bul ence , diffraction ,

• 
and aberrations. The detailed derivation of the

• two—dimensional discrete operator H from a two—dimensional

continuous superposition integral is discussed in

[2—1 ,2—2 1 .

The coun t ing a r r ay  coun ts pho tons inci den t on the

two—dimensional sensor array. The mean of the photon count 
• -

is propor tional to the inci den t in tegra ted image in tensi ty

and the coun ts themselves are ran dom v a r i a bles wh ich have a

Poisson distribution.

• The photon count is a dimensionless number , so we

include a scal e fac tor c~ which provides an image intensity

• whi ch is displayed . Thus the photon counting system is

modeled as an inhomogeneous Poisson process. This is a key

assumption of this thesis because the MAP estimate of the

imag e in the non—blurrin g and blurring cases in the

subsequent two chapters is based directly on it. For

mathemat ical simplicity and ease of physical understanding ,

4 
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we f i r s t de r i v e  the sta t is ti cs of a s ing le coun ter and

later extend it to a large array.

2.4.2 Single Photon Counter

From Fig . 2.5 we tirst assume the H matrix is the

identity matrix , an d assume only  one coun ter ins tead of a

vec tor array as in Fig . 2.7. According to the

semi—class ical theory of photon detection [2—19 ,2—26], the

probability that g1 photon events occur for a given fixed

in tensi ty f1 is

— A f.
(\f.) e

p (g~~ f )  = 
g !  

(2.16)

where  A is a cons tan t r a te pa r a m e ter . Ey d i r ect summa t ion ,

the conditional mean and variance of for constant f1 is

= 
~~~~~~ 

( 2 . 1 7 )

= A f t ,  (2 .18 )

and

• 

= A = 
Average * of ~hoton coun ts 2 19)f1 Intensity unit

with the low light level image signals in which we are

interested , we have Li—2 1 ,2—26)

WT >> 1, (2.20)

22
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or equivalently ,

g.  << WT, (2.21)
1

• where W is the temporal bandwidth and T is the integration

t ime , i.e. the mean number of counted photo events is

small compared to the time—bandwidth product of the light.

This cond it ion is alwa ys sa t i s f i ed for na tura l  thermal

sources encountered in practice. In such cases, Mandel

[2—26] has shown that the count fluctuations are

predominan tly  Poisson sho t noise due to the d iscr ete na ture

of wave— detector interaction , ra ther than classical

“ f l u c tua t ion noise ” associated wi th the ran dom na ture  of

the imag e i n t e n s i t y .  Thus the count registered on the ith

counter  is a Poisson random v a r i a b l e  w i t h  mean g 1 and pdf

expressed by Eq. ( 2 . 1 6) .

From the l i nea r  t r a n s f o r m a t i o n  d 1=ag~ with a a

cons tan t  d i sp lay  scale fac tor , we have

• 
d~ = ag~ = aAf 1, (2.22)

• 2 2 2  2cx = a A f 1. (2.23)
• i 

_
~i

and p(d .jf .) is given by 
- -

d.
i. — A f .

d . (Xf.)~~ e 
1

p ( d
~~If 1

) = lp (_.!~ f )  = 
d .  

— (2.24)

We u s u a l l y  choose c*A 1 in order  to keep the mean va lue  of

4 24
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the processed d isplay image signa l the same as the observed

noisy image.

Before we define an r.m.s. signal—to—noise ratio , it

is useful to discuss some details about signal—to—noise

ratios (SNR’ s) in ge n e ra l .  A study of SN R ’ s a t d i f f e r e n t

points in a system enables us to pinpoint the significant

contributions to the noise . It is a lso a s imple cr ite r ion

for  the des ig n of sys tems to min imize  f rom the noise

degra dation an d thus i t prov ides a m e a s u r e  of the

“nois iness ” of a system . In most cases , the SNR criterion

is applied with signal—independent zero mean additive

noise. If the signal and noise are dependent , then the SNR

is difficult to define because the cross correlation and

other moments are nonzero. Poisson noise is a case of

signal—dependent noise because the variance in Eqs. (2.18)

and (2.23) depends on the signal. In order to compare the

noisiness of images with Poisson noise , we will define an

r.m.s. SNR denoted by (SNR)rms • Because an image signal is

a random process in space an d t ime,  we mus t def ine an

• ensemble mean 
~~~~~rmS 

as the ensemble average of the

(SNR) over the random image field.rms

In the case of Poisson noise , the (SNR)rms is

( SNR )  = 
°d~~ 

= (A f ~ )
½ (2.25)

4 
1 
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and the ensemble mean (St4R)rms is

~~~~rms = (Af 1)~ = ( 2. 2 6 )

Thus , (
~
N
~~
)rm is propor t ional to the square  roo t of the

signal , and is s igna l—dependen t .

This behav ior is qu ite d i f f e r e n t f rom additi ve noise ,

mul tipl ica t iv e noise , or film—grain noise. Figure 2.8 is a

digital simulation of a low—level one—dimensional image

signal whose peak SNR is approximately 18. It is clear

from the illustration of Fig . 2.6, that at low signal

levels the no ise is sta t is t i c a l l y  nons ta t ionar y an d

non—Gaussian. As the signal becomes photon resolved at

very low intensities , t he r e  is little resemblance to the

classical signal. However , at hi gher signal levels , the

noise becomes more Gaussian [2—271 .

2.4.3 Statistics of Array Counters

An array counter model for non—blurred image signals

w i t h  Poisson noise is shown in F i g .  2 .9 .  For one s in gle

counter the conditional density is given by Eq. ( 2 . 1 6) .

For an array of counters, we mus t f i n d the jo int ensemble

s t a t i s t i c s  for  a g iven objec t vector  f. Some assumptions

are necessary to find these joint ensemble Poisson 
—

statistics. Walkup [2—20 ,2—21], Clar k [ 2 — 2 2 ] ,  and Wang

(2-231 have shown that given f, the jo in t ensemble pho ton

4 26
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b) Detected image signal

Figure 2.8. Inhomogeneous Poisson model simulation of
the image signal and noise
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count ing s t a t i s t i c s  at the N detectors of Fig . 2.5 are

independent Poisson variates whose mean is proportional to

the mean intensities at each of the N disjoint detectors .

For this to be true , the time—bandwidth product WT must

sa ti s fy  WT>>l  where W is the temporal ban dwi dth of the

optical  image s igna l  and T is integration time. This is

the usual case in this thesis. From the WT >>1 assumpt ion ,

Mandel [2—26] also has shown that the counts registered by

the N de tec tor/ counte rs  may be taken to be statLtically

independent ,  since classical fluc tua tion no ise is

negligible for light with a low degeneracy parameter , when

Poisson shot noise predominates in the photon count

fluctuations. The degeneracy parameter describes the

va r i ance  c h a r a c t e r i s t i c s  of the pho ton coun ts , and it is

def ined as the ra tio of classical f l uc tua tion nois e to

Poisson shot noise. Thus , al l  g . a re  indepen den t for  a

given f (i.e. every Poisson generator is independent) and

each g . depends only on its corresponding f 1. Also , we

assume that individual detectors have a smaller scale than

the spatial intensity variations of the image so that no

loss of information results from the sampl ing. We also

ini tially assume that background intensities and thermal

noise in the measurement system is negligible compared to

the Poisson noise.  Represent ing the a r r a y  va lues  by

= ~~11g 2, .. g j T and ~ [f 1, f 2 , .  .. ,fN~T (2.27)

4 29
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we have

p(~~if) = p(g1~ f)p(g2~ f). 
..p(g~I f )  ( 2 . 2 8 )

Now , each g. depends only on its corresponding f 1, thus
— 

g. -Xf .
(Af.) ‘e 1

P(2 1 .f) = g.! ( 2 . 2 9 )
1 1

Now f r o m  Eqs . ( 2 . 2 2 ) — ( 2 . 2 4 )  we have

p ( d l f )  = p ( d 1I f ) p ( d 2 l f ) . . . p ( d ~~I f )
( 2 . 3 0 )

= p (d11f 1)p (d2 I f2) .. .p(dN
d~ — A f .

( A f . ) ~~~~e 1

p(~~~ft) = a (2.31)

From th i s  condi t iona l  dens i ty  an MAP est ima te is der ived in

Chapter 4.

2.4.4 The Quantum Limitations Qj Photon R~ so1v~ d Imag e

The informa tion content of a finite amount of light is

l im i t ed  by the f i n i t e  number of photons , by the random 
I 

-

character of their distribution , and by the need to avoid

fa lse  a l a rms .  These l i m i t a t i o n s  mean tha t  a considerable - •

number of photons is required to delineate the fine detail

of images. Low light level image signals conspicuously

suffer from these quantum limitations [2—241.

30
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(i) Discreteness of Light Quanta

The num ber of pic ture  elemen ts N re qu i r e d for a well

resolved image signal often lies in the rang e of l06_l07

.8 9[2—241. Hence, 10 —10 photons are needed to delineate the

location and brightness of pixels , assuming that 100

photons per pixel are arranged in a precise array.

Unfor tuna tely ,  na ture does not work in- so orderly a

• fashion , an d pho tons a r r i v e  a t r an dom times and place s and

g iv e rise to a fun d amen tal gra in iness  in any detec ted

image. This grain noise obscures the detection of fine

deta il in low con tras t ima ges and is called Poisson noise

at these low light levels.

(ii) Ran dom Character of the Photon Distribution

Suppose that the average number of photons arriving in

a g iven area is n0, and that a number n11n2~~...~~n~ are

distributed around n0 in such a fash ion  that the average

value of (n~—n 0) is also n0. Then the mean of the photon

coun t is the same as the var iance  and the (SNR) s 1S

If we need to detect a 1% contrast variation in a

s ignal , we r e q u i r e  t ha t  the noise level def ined  as the

r.m.s. deviation of the mean number of photons also not

exceed 1%. This can be achieved by having an average of

l0~ photons falling on each pixel of the image. The r.m.s.

• deviation (noise) is then the square root of ~~~~~~~~~~ or io 2 ,

31
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and the ra tio of this  ran dom devia t ion to the average wi l l

be 10
2
, or 1%. In general , if we want to detect an image

sig nal w i th  con t ras t  C we mus t increase the num ber of

photon counts proportional to —~~
-. In ad d i tion , we mus t

guar d against false a la rms , that is, the mistaking of any

par ti cu la r ly  random f luc tua t ion for the real signal to be

• detected .

(i i i ) False Alarms

False a la rms  and spur ious  v i sua l  pa tterns  ma y a r i se

f rom the random character of the photon distribution and

not from the original scene itself. If we define the mean

photon count as the signal , and the r.m.s. deviation as

noise , then we can use detection theory to find the false

alarm probability. Figure 2.10 shows the distribution of

noise fluc tuations around the mean value of a parameter.

The ordinate is the probability density and the abscissa k

is plo tted in un~~ s of the r.m.s. deviation. The second

abscissa scale n is a par t icu lar  examp le for  which  the

average number of photons is 900 and its r.m.s. deviation

is 30. From Fig . 2.10 , we can ca lcula te the false a l a r m

pro bab i l i ty g iven a signal which  is k uni ts above its mean

value . Table 2.1 gives the probability that noise

f l u c tua tions wi l l  exceed the mean va lue  of the bac kg round

by an integer number of units of the r.m.s. value of the

noise 
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Figure 2.10. Probability distribution of a RMS
deviation of photon counts about its mean

Table 2.1

False alarm probability of exceeding various
values of k

k prob. of exceeding k

1 0.15

- 

2 0 . 0 2 3

3 1.3 x

4 3 x lO~~

5 3~~~].0~~

1 

6 2 x
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If we locate the signal at k=5 , then we find that only

15% of the time will the signal appear k<4. It will exceed

k 4  85% of the time on the average and be judged a real -

signal. Hence , we usually choose k=5 to avoid false alarms

in or der to g ive a reasona ble r e l i a b i l i ty to our

observation. The ratio of the r.m.s . deviation to the

averag e background brightness varies as n o
½/n0=1/n0

½ , where

no is the average number of photons in the background .

Hence , it will be necessary to increase n by a factor of

k in order to decrease the ratio 1/n 0
2 by k. In summary,

the density of photons required varies as k2 in or der to

avo id fa lse  a l a r m s .  In genera l , the expression for the

total number of photons required to detect a contrast C

w h e r e  C~~’-B/B and 0<C<l is

Total number of photons = N —
~~~~ k

2 (2.32)

Here , N is the total number of pixels in the picture and

reflects the discrete nature of the photons. The factor

is a consequence of contrast the C and the random character

of pho ton d istr i but ions , the fac tor k2 reflects both the

random character of photon distribution and the need to

avoid false alarms. The expression (2.32) is only for the

case in which we do no t have any a pr i o r i  i n f o r m a t ion a bou t

the image. However , we usual ly assume tha t the image is a

M a r k o v i a n  random f ie ld  w i t h  c o r r e l a t i o n  c o e f f i c i e n t  ~ in

image restoration work. Thus , we shoul d be able to obtain : -
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better results than obtained in Eq. (2.32)

~.4.5 Comparison Between L i n e a r  Additive Gaussian Noise

Degraded Imag e Signals and Poisson Noise Degraded Image

Signals

Figure 2.11 illustrates experimental results of

pictures with Poisson noise and Gaussian noise for

comparable (SNR)rms

The uppe r left image (A) in Fig . 2.11 is the original

ideal object. The uppe r right image (B) contains Poisson

noise with some constant amplificati on and (SNR)rms=6 db.

The lower left image (C) has additive Gaussian noise with

(SNR) i.ms also 6 db. The lower right one (D) also has

linear additive Gaussian noise with (SNR)rms approx ima tely

1 ób. From t h i s  e x p e r i m e n t a l  result , we have demonstrated

that images with Poisson noise are more severely degraded

than images with linear additive Gaussian noise for

comparable (SNR)rms even though  the (SNR)rms is 6 db lower

than that of an image with Poisson noise. The Poisson

no ise has obl it er ated almos t comp lete ly the deta i led  edge

and contrast of the face. The image takes on a mottled

appearanc e which  depends on br i g h tness whereas  the image

degraded by Gaussian noise appears uniformly degraded with

some edge contrast still discernible at comparable (SNR).

4 • 
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2 .5  Conclusion s

We have presented some system models for  image noise

and three  imag e models.  We have discussed the d if fer ence

between the Poisson ima ge noise model and other impor tan t

imag e noise models f r o m  a system point of view. The model

which we have developed in the section 2 . 4  is used in l a t e r

chapters for develop ing an d implemen t ing an MAP f i l ter for

the Poisson noise model. Appendix A describes a computer

al gor ithm whi ch is used to genera te Poisson noise for  a l l

simula tions throug hout this thesis. The quantum

limitations of photon resolved image signals are presented

in order to further understand the physical meaning and

causes of Poisson noise in low light level image signals.

By modeling the low level signals as an inhomogeneous

Poisson process , a very accura te , comple te mode l for many

physical systems includ ing medical imaging , astronomical

imaging is developed .

4 .  
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CHAPTER 3

REVIEW OF LINEAR AND NONLINEA R OPTIMAL IMAGE RE STORATION

FILTERS FOR THE IMAGE NOISE MODELS

3.1 Introduction

In this  chap ter , we rev iew previous  wor k on lin ear an d

nonl inear  r estora tion f i l ters  wi th Poisson ima ge nois e

models and other important image noise models. These image

spa t ial restora t ion f i l l e r s  ar e developed based upon the

system models for image noise given in Chape r 2. The

re la t ionship of these f i l l e r s  to the wor k presen ted in

later chaptes is also disc1.~:sed .

3.2 Spatial Restoration Filters for the Signal—Independent

Noise Model and Signal-Dep~nden t Noise Model

3.2.1 Spatial Restoration Filter for Signal—Independent

N o i s e — — — L i n e a r  Add itive Gauss ian  Noise Mode l

Mos t prev ious work in image res tora tion is based on

the model of section 2.2.1. Different filters such as the

inverse  f i l ter , constrained least—squares filter ,

p a r a m e t r i c  Wiener  f i l t e r , homomorphic f i l t e r , max imum

en tropy f i l ter , and pseudo—inverse fil ter have been

developed under various criteria [3—1 , 3 — 2 1 .  Hunt  and

38
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Trussell [3—3 ,3—4 ,3—5) have also developed a nonlinear MAP

filter based on the direct maximization of the posterior

density function with a linear additive image noise model.

3.2.2 Wiener Spatial Filters for Signal—Dependent Noise

Model———Multiplicative Noise, Additive Signal—Modulated

Noise

The models in sections 2.2.2 and 2.2.3 are

• s igna l— depdnent  noise models .  W a l k u p  et al .  [ 3 — 7 ] ,  Kondo

et al. [3-8] and Yatagai [3-9] developed an optimal spatial

f i l t e r  in the sense of min im izing the mean of the square d

error [f(x ,y)—f(x ,y)]2 in the manner of a Wiener filter.

From the minimum mean—square error criterion , the

or thogonal ity pr i n c iple is developed , lea d ing to a spa tial

W iener filter W=R fg [Rgg)
1
~ where Rfg and Rgci are the

cross—covariance matrices between object and image and the

coval ~ance matrices of the image respectively [3—12]. If

g(x ,y) and f(x ,y) are spatially wide—sense stationary

random processes , then the two—dimens iona l  Wiener  f i l t e r

has a spa tial f r e quency dom ain tr ans fe r  func tion

•f (u ,v)
w ( u ,v) = 

• 
g , (3.1)

gg~~U s V 1

where I~fg and •gg represent the cross—spectral densities of

the image g(x ,y) with the object f(x,y) and the spectral

density of the image g(x ,y), respectively.

4 39 - 
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Nader i  and Sawchuk [3—10]  al so developed a bet ter

spatial adaptive Wiener filter for signal—dependent

film—grain noise using a more accurate , complex noise

model. Walkup et al . [3—11 ] developed an MAP spatial

• fil ter for signal—dependent noise models such as film—grain

noise and magnetic recording noise . Their filter involved

scal ar ra ther than vec tor process ing an d d id no t inc lu de

blurring degradations.

3.3 Linear , Invariant Least—Squares Restoration Filter for

the Poisson Image Noise Model

Goodman an d Belsher [3—13]  have mode led a low li ght

level imaging system w ith b l u r r i n g  an d Poisson noise by the

con t inuous  system shown in Fig . 3.1. This system is a

H special case of the discrete restoration model discussed in

H sect ion 2 . 4 .  The detected data  is represented  as

g(x , y )  = ~(x-x~ ,y—y~) (3.2)

where  6 ( , )  is a two—dimens iona l  Di rac  de l ta  f u nc t i o n

(x~~,y~ ) represents the location of the nth photo

even t

- N is the total number of photo events produced by

the blurred image b(x ,y)

I In the expression (3.2), N, X n and y~ are all regarded as

random variables.
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• Figure 3.1. Block diagram of the continuous
restoration filter with Poisson noise
model
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From the semi—classical theory of photo detection

[3—14 ,3—21], the probability that N events occur in an area

A on the detector is taken to be Poisson ,

ill iN
I jj X ( x ,y)dxdy~ (I.

pA (N) = 
L A exp - jJ A(x ,y)dxdy 

(3 3)
N! A

where X (x ,y) is a rate function

X ( x ,y) = ~b(x,y) ~ (3.4)
h v

r~ is the quantum e f f i c i e n c y

h is p l a n k ’ s constant = 6.624Xl0 34W_sec/HZ

~ is the mean optical frequency

T is the detector in tegra tion time

and

b(x,y) = JJ h (e,~~;x,y)f(c,n )dcdn 
-

. (3.5)

Because the image f(x ,y) is a random process , the rate

function A(x ,y) is a random process. Thus the whole

process is called a compound Poisson process or doubly

Poisson process 13—14 ,3—15). The event locations (x~ ,y~)

are independent variables for different n ’s for A (x ,y)

given , and it has pdf. 
-

A ( x  ,y
- ~~- 4 ~~

- p x~~y~ — —
~~ 

. ( .

ff A(x,y)dxdy
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In Fig. 3.2, we illustrate a one—dimensional typical object

in tens i ty d is tr i but ion an d a corr espond in g typical detected

image.

Based on the model of Eq. (3.2) and Fig . 3.1 , Goodm~in

and Belsher [3—131 developed an l inear , space—invar iant ,

least—square restoration filter (LMMSE filter) . The filter

is derived in the Fourier transform domain using the

orthogonality principle. The form of the filter is

t *NW (U~ V)~~f(U~V)W(u ,v) = — 
(3.7)

1+N~W (u,v)l ~f (u~v)

where ~ is the two—dimensional Fourier transform of h(x ,y)

~

I2
f 

is the spectral density of the object f(x ,y) 
-

N is the mean number of photon counts

* deno tes complex con juga te

(u,v) are spa tial f r e quency v a r i a bles

Equation (3.7) can be rewritten as

*

W(u ,v) = 
V (u,v) 

1 (3.8)

where a=N~~f(u ,v) . This f i l ter can be implemen ted in the

F o u r i e r  domain using the FFT. Goodman and Belsher did  not

apply this filter to two—dimensional picture data , so it is

implemen ted in Chap ter 7 and compared wi th the MAP f i l ter

descr ibed in Chapter  4 and 5. From Eq. ( 3 . 8 )  , if ~ is very
;~i 1-5 ;
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(a) Object intensity

(b) Blurred object intensity

d(x,y)

1? ??~????ff 11~1I ? t t ?
(c) Resulting detected image X

Figure 3.2. Model of photon-resolved imagery
(a) object intensity
(b) blurred object intensity
(c) resulting detected image
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large , then W (u,v)zH 1(u,v) which is the ideal inverse

filter in the absence of noise. Hence, the LMMSE filter

should work  very  well at  h i g h  va lues  of a. However , for

the low light levels in which Poisson noise dominates , a is

very small. - There fo re , the performance of the LMMSE filter

is expected to be poor due to i l l — c o n d i t i o n i n g  in the

deconvolution process. Furthermore , the LMMSE filter

assumes that the object signal and noise must be at least

wide—sense stationary and requires knowledge of the blur

func tion and object and convariance functions. It cannot

be extended in the Fourier domain to space—variant

blurring . Because it assumes that signal and noise are

stationary, it leads to a filter that tends to smooth edges

because of its insensitivity to abrupt changes.

3.4 Nonlinear Filtering with the Square—soot Transform for

the Poisson Image Noise Model

Inouye [3—16] developed an ad hoc nonlinear filter

wi th a square—root transformation to suppress Poisson noise

• in nuclear medicine images. He assumed that the observed

data g(x ,y, is the summation of the object function f(x ,y)

and quantum fluctuation n(x ,y) as expressed by

g(x ,y) = f(x ,y)+n(x,y) (3.9)

where n (x ,y ) depend s on f (x ,y) according to

I~
p
~ 

~~~

_ _ _ _  ~ ~~~~~~~~~~~~~~~~
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n(x,y) = 0 
‘ (3 .10)

n2(x y) = czf(x,y) (3.11)

where ~ is a constant of proportionality. Taking the

square root of both sides of Eq. (3.9) we get

lg(x ,y) ] ½ [f(x ,y)+n(x,y))½ ,

(3. 12)

[g(x ,y)1 ½ f½ (x,y)(l+~~~~~~)½

Ta king the f i r s t two terms of a Taylor series expansion of

the above and assuming f(x ,y))>n(x ,y) yields an

approxima t ion

[g(x ,y)]½ ~ f
½ (x ,y)(l+~

(
~
iY)
)) . (3.13)

Vt We now rewrite Eq. (3.13) as follows:

[g(x ,y ) ] ½ f(x,y) + n(x , y) ,  (3.14)

where

f(x,y) = f½ (x ,y ) ,

n (x,y) = ~n(x ,y)/f ½ (x,y).

From Eqs . (3 . 10)  and (3 .11 ) ,  we have

~t (x ,y) = 0, (3.15)
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2 1[n(x,y)] = -
~~~ ci (3.16)

and the noise statistics of the square—root transform are

stationary [3—17]. Thus this transform of g (x ,y ) g ives a

signal-independent fluctuating component n(x ,y)/2f½ (x,y)

around an average value (f(x ,y)) ½. Equation (3.13) becomes

an approxima tely l inear add i t ive noise model an d the usua l

linear fil tering technique is applied . Inouye did not

inc lu de any burring effects of the imaging system and it is

difficult to judge the level of improvement from the line

prin ter pictures in his paper. In addition , this

square—root transform works only at higher (SNR) image

signals , becau se he assumes f (x ,y )> > n (x ,y).

3.5 Nonlinear Optimal Filter for the Poisson Image Noise

Model

From Bay es ’ law we have the posteriori conditional

density I 

-

• p(dlf)p(f)
p(f~d) = 

— — — 
, (3.17)

p(~ )

where f is the original image (object) to be estimated and

d is the observed data. The use of the posterior density

for estimation is well known [3—18]. The minimum

t~~ . mean—square error estimate (MMSE) is the mean of the

posterior density given by E[fld ] , the maximum a posteriori

4~~r
47
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estimate (MAP) is the mode of the poster ior i  dens i ty  as

expressed by max p(f Id) . The maximum likelihood estimate
f

(ML) given by iiax p (dIf) can be viewed as a special case of

the MAP est imate when the a posteriori density is equal to

a p r i o r i  densi ty  ( i . e .  when p ( f )  has a u n i f o r m

d i s t r i b u t i o n ) . The MMSE , MAP , and ML e s t imates  are

genera lly  nonl inear , depend ing on the form of the

probability density functions. The MMSE estimate also

needs the density of the observed data p(d) , but th i s  is

often difficult to obtain in practice. Thus , a l inear

• minimum mean—square error (LMMSE) estimate is commonly used

as described in section 33. The MAP estimate tries to

find the value of object f which maximizes the posterior

densi ty p (f Id) . Thus , it does not need p(d) at all but

does need p (d i~
) and p~f) , whi le  the ML est ima te only needs

the a priori density p(d~ f).

Burke (3—19] has developed a ML spatial filter based

on the Poisson noise model in Fig . 3.1. Its ML estimate is

obtained recursively according to the iteration

f (fl+l) = f ( fl )  exp~8 ~~[ 
(3.18)

B 
~~

where is the kth component of the object to be estimated

is the observed data ~ of the jth component

4 - 1 48
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~~~ is ijth componen t of the b l u r r i n g ma tr i x  H

8 is the quan tum e f f i c i e n c y  constan t,

ans the superscript denotes the iterative step.

Burke ’s expe r imen tal resu lts are  very  impressive

compared to the Wiener filter results. Unfortunately, only

simpl e images of very  small size (32x32 p ixe ls) were

processed and the recursive Eq. (3.18) converges very

slowly. The ML estimate assumes that no information can be

extracted from the a priori term p(f) . Modeling the object

as a nons ta t ionary ran dom f i e l d wi th a pro babi l i ty densi ty

p (f ) to pe r fo rm an MAP est ima te can be thou ght of an

ex tens ion  of ML e s t i m a t i o n .

— 3.6 Conclusions

- 

- 
I t is well known tha t l i nea r  leas t squares  ima ge

res tora t ion is no t opt ima l in the sense of maximum

l ike l ihood or maximum a poste r i o r i  pro bab i l i ty when the

image statistics are Poisson. Rather , nonl inear  f i l te r i n g

is required for true optimality. In addition , Fourier

techn iques  cannot treat space—variant imaging . Thus , it

seems reasonable that a nonlinear filters should per form

better than linear space—invariant filters in the presence

of signal-dependent Poisson noise. In subsequent chapters ,

we try to formulate and implement MAP filters in order to

p e r f o r m  non l inea r  MAP f i l t e r  for  the low SNR ’s image

signals with Poisson noise .
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CHAPTER 4

RESTORATION OF IMAGE SIGNALS WITH POISSON NOISE

4.1 Introduction

In this chapter , we deve lop an opt ima l MAP f i l ter for

non— blurred image signals with Poisson noise based on the

model developed in previous chapters. There are many

practical situations in which the degradation due to

blurring is negligible or zero. More importantly, we

dev elop a f ramewor k fo r MA P es t ima t ion wi th a Po isson noise

model to evaluate the concept for future application to

more complex problems. In section 4.2 .~e presen t the

formulation and solution to the MAP estimate equations. In

section 4.3 , 4.4, and 4.5 we address the implementation of

an MAP estimate with differen t a p r i o r i  knowledge.  In

section 4.b , we describe a recursive MAP filter for the

Poisson noise model. In section 4.7, we d iscus s a local
• adaptive MAP filter and finally some conclusions are

presen ted .

4.2 MAP Estimate Formulation [4—101

• Previously we derived a conditional density p(dIf) for

di splayeo ima ge data a g iven an ideal objec t f w i t h  a

4 -  50
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Poisson noise mocel. Also from chapter 2, we have the pdf

of the objec t expressed as Eq. (2.1(i )- .

~rom the MAP estimate aefinition , we h~ vc

p(dlf)p(f)
Max p(f~d) = — — — ( 4 . 1 )

It is often easier to maximize a monotonic function of the

posterior density, such ~s the logarithm . Taking the log

of Eq. (4.1) we have

Max EQnp(f ld) = ~~~~~~~~~~~~~~~~~~~~~~~ (4.2)
f

• Since the last term ~n p(u) on the right aoes not depend on

t , we neg lect it in max imization with respect to f. Thus

the MAP estir .~ate equation is given by

~Znp(ffd) ~ ‘np(d~ f) a~ np(f) T— 
= _________  + = 0 ( 4 . 3 )

Fr om Eq. ( 2 . 3 1 ) ,  we have
I d1/ct 

_ \ f 
•

Znp(d (f) = ~n I ~~ d.
L •~~~~(_ ! ) j‘-5

*

(4.4)

1

From Eq. (2.10), we have

~np (f) = ~nK f
_
~~(f_ ~ )

TR~~~(f_r) . (4.5)
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Di f f e r e n ti a t in g the above two equa t ions in d iv id u a l l y  wi th
respect to f we get

~~n p ( d~ f )  d1 d2 dN 1— 
= - -

~
----r-- -A , . . .,  jy A ] 1  ( 4 . 6 )

and

~~np (f) 1 — T —1 — T —l
______  = —~ •2(f—f ) Rf = — (f—f) Rf . ( 4 . 7 )

Substituting Eqs. (4.6) and (4.7) into Eq. (4.3), we get

-A , -A ,..., ~~~ _A ]_ (f_flTR~~= 0
T 

~~~~

Taking the transpose on both sides of the above equation
- and assuming that the covariance Rf is a symme tr i c  m at r i x ,

(i.e. R~~=(R~~ )
T) we then get

- 5 + - A

A 1- 
- R~ (f-r i ) = 

(4.9)

d~
-p- - A

From Eo. ( 4 . 9 ) ,  we know if the norm of Rf denoted by

H R f II is ve ry  l a rge , then

I

: MAP ~~~~~ML

where O is the observation data vector and is the

52
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maximum likelihood estimate vector. In the blurred image

case , the is the inve r s e solu t ion ins tead of the

observation data.

On the other hand , if the norm of Rf is ver y sma l l

then

-~MAP~~~~~
where T is the a priori nonstation ary mc~~r* of t he  image.

The r e f o r e , solving these equations for tries to

move the solution of f from the c priori nonst~ tion ary mea n

t to a maximum likelihood estimate -~ML~ 
Here Rf j E

measure of our confiáence in the nonstationary mean I z nci

maximum like1~ hood estimate 41L as a solution to the

restoration problem. Equation (4.i) appears very simple ,

but the complexity of the estimate implementation depends

h e a v i l y  on the structure of the R
f covariance matrix. Thus

we will aiscuss in the two following sections method s of

implementing Eq. (4.’~). One assumes Rf is an identity

ma tr i x , and the other assumes that is a Markovi an

matrix.

4.3 MAP Estimate Implementatin with an A Priori Image

Covariance Matrix — Identity Covariance Matrix

FoR simpl ici ty ,  we assume Rf=41, thus each pixel of

the picture is uncorrelateci . In real picture data , each - -•

pixel is highly correlateo with its neighbors [4—111, and

4 -  53

I.

L 

- - 5 - -  ____-5— - 5 -  - —_________________

-5 —-5— .- --5- - -~~-- -•- -------5 —~~~~~~~ -- - - - 5 —



-—-~ ---—----- --—-- — - -5- —-‘---5-— ----

th i s  assumption is t rea ted  in the next section. From

Eq. (4.9) and hf~ofI we then have

d
0

— 

~~ f T = 0 (4.10)
af2 2 2

d~~~ .
0

From Eq. (4.lU), we see that the MAP estimate becomes a

very simple point process instead of a vector process

because equations are decoupled . Hence we can get a closed

form solut ion

~~~~~~~~~~~~~~~~~~~~~f 1 — 
(4.11)1 2

where the positive root is taken because intensity is

always non— negative.

4.3.1 Implementation and Experimental Results
f

The observation data are photon counts with some

amplifica tion gain a. The photon count is simulated from

an original picture (256x256) through a Poisson random

noise genera tor wich is described in detail in Appendix A.

in order to implement Eq. 4.ll),we mus t est ima te the

variance and nonstationary mean r from the available
aata. Hunt [4—13] has shown that an estimate of the

• nonstationary ensemble mean of a context—dependent ensemble

54
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can be made by blurring the given ensemble member with a

point—spread function as expressed by

¶(x,y) = h(x,y)~~f(x ,y) (4.12)

• where <f
K
(x ,y)> denotes an ensemble averag e at (x ,y) over

all k ensemble images

t(x ,y ) is the nons ta t i ona ry  mean of the objec t

f(x ,y) is the object intensity

• denotes two—dimensional convolution

h(x ,y) is a point—spread function related to the

probabilistic process which generates the

ensemble.

Equation (4.12) states that an estimate of the ensemble

mea n can be ma de by convolvin g the or i g inal  image wi th a

point—spread function h(x ,y). In the expe r imental work

shown in this section , an estimate of the nonstationary

mean along each line is made by blurri ng the noisy

measurement data with a point—spread function h(x ,y) chosen

to be square blurring function. We have chosen an 11 pixel

linear moving average window along each line in order to

• obtain nonstationary mean estimate. Because of this large

moving win dow , the noise is averag ed out while the low

frequency components of the object remain. The imag e

variance is estimated by an unbiased estimate of the

popula tion variance.

4; - 55
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The restored pictures produced by the solution of

Eq. (4 .1( i ) are shown in Fig . 4.1 for different mean rms

signal to noise ratio denoted by (SNR)
~I~S . From Fig . 4.1

it can be seen tha t the r estore d pic tures ar e improve d

compared to the noisy pictures and that the nonstationary

mean carries the important low frequency image information.

4.4 MAP Estimate Implementation With An A Priori Image

Covar iance  Ma tr i x  — Mar kovian  Covar iance  Ma tr i x

In this  sec t ion , we assume Rf is a Markovi an

covar iance  ma tr i x  wi th cor r ela t ion c o e f f ic i e n t P . The

M a r k o v i a n  cova r i anc e ma t r i x  is very  good approxim a t ion for

:1 real image signals. The Markovian covariance matrix for a

one— dimensional image model is

2 N—i1 p p ... p
N- 2

2 P 1 
~~ 

... p
Rf G

f (4.13a)

~

N

~

i ~
N_2 

~N— 3

where p is the corre la t ion coef f ic ien t be tween p ixels  and

I~~k i .  It can be shown tha t the inverse  of Rf is [4—12]

0
1+p

Rf
1 = r  (4 . l3b)

- —B ~~~

•-
1 ~-B

1
2-

l+p

where
— I
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r = 
l+p2 

= 2 I p I  1 and 1 8 1
1 0  O

~ 
1+1:3

Substituting Eq. (4.14) into Eq. (4.9), we obta in  a set of

t h ree  types of non l inea r  equa tions wi th N unknowns

d 
_ 

-

~af~~~~
— r (f~~? )+8r(f~~~~ ) = 0

1 1+p

d.
= 0

(4 . 14)

i = 2,3 , . . .  ,N-l

___  = 0 .

Due to the lar ge d imensional i ty an d n o n l i n e a r  na ture  of the

above system equ at ions , or d i na ry  l inear  signal process ing

matrix operations and Fourier methods are of no use. Thus ,

it is impossi ble to d i rec tly solve those equ at ions in or der

to obtain opt imal solutions. Instead a suboptimal method

with sectioning to reduce the dimensionality of the

equations is used. After trying several techniques for

numerical solution of the nonlinear equations , we hav e

found that a Newton—Raphson iterative method [4—4] is the

best. This method is very easily implemented and converges

rapidly with a good starting guess. In th i s  appl ica t ion ,

convergence is generally reached in about three to four

iterative steps. The details of applying this method to

the MAP estimate will be discussed in Appendix B.
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4.5 Implementation and Expe r imental Results

The estimate of image variance and the

nonstationary mean are done by the same technique as in the

last section. The initial value of f in the Newton—Raphson

me thod m ig ht be assumed to be the nons ta t i o n a r y  mean f or

the raw observation data, but the final estimates must

conver ge to the same values. The convergence criterion is

based on the numerical closer’ess to the ideal image

(object) . The convergence rate is also controlled by the

estimatea variance of the image. An accurate estimate

of the loca l v a r i a n c e  is v e r y  impor tan t to the conver gence

of the algorithm . The iterative Newton—Raphson r- ethoc3

employs the grad ient of the function to obtain the

increment value for iteration , t h u s  it conver ges much mor e

rapid ly than other numerical methods.

The boun dar ies  between sec t ions mus t be c a r e f u l l y

consi dere d when the MAP equations are solved by

Newton—Raphson techniques. The overlap sectioning method

may minimize the boundary effects , but more compu t ing time

is r e q u i r e d because the num ber of a r i thme t ic opera t ions in

the Newton—Raphson solution goes up roughly as the cube of

the section size. Thus , there is a compromise between

H section size and processing speed . The sectioning

technique is bes t expla ine d w it h the use of di agram shown I
in Fig . 4.2. In implementing the one—dimensional MAP
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ND/2 Nv ND/2

Nd2 N~ N~/2

_ _ _

ND/2 N~ 
N~/2

.

N~ ~J
I

(1) N measured image data points are processed in each
s~ction with an overlap of N0 data points between
sections.

(2) Each section keeps Nv valid processed data points anddiscards ND/2 erroneous processed data points at thetwo ends.
( 3 )  N~ , N0, 

~~ 
and N1.~ are the section size, overlap size,valid processed data size and discarded data size

respectively.

Figure 4.2 One-dimensional sectioning
method diagram
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• filter we have found that a section size of 32 pixels and

overlap of 16 pixels in each section works well. This

choice reduces the processing time and also minimizes the

- 
boundary effects. These assumptions are based on the fact

- that pixels separated by 16 unit sampling distances are

essentially uncorrelated even if p=U.95 . The restored

pictures with the MAP filter using different overlap sizes

1 in each section are shown in Fig . 4.3 and Fig . 4.4.

Figure 4.~ is the restored picture produced by an MAP

filter with b pixels overlap in each section. Figure 4.4

is the MAP restorea picture with 16 pixels overlap in each

section. From Fig . 4.3 and Fig . 4.4, we can see some

sectioning boundary effects althoug h the restored picture

of Fig . 4.4 has reduced edge effects compared to Fig . 4.3.

The sectioning edge effects of Fig. 4.4 are almost

invisible. Thus , an overlap of 16 p ixels in each section

is a good practical choice for minimizing the ~
‘ sectioning

bounaary effects. Therefore , all the following

one—dimensional processed pictures have used the overlap

sectioning method with a section size of 32 pixels and an

• overlap of 16 pixels in each section.

- We have also found that the cpu processing time of the

MAP filter with U.95 is lesser than that of the MAP

. 
• filter with ~=u.U because of the a priori knowledge of

- ~~ •

‘
. pixel correlation. The restored pictures with M1~P filters

are shown in Fig . 4.5 for different (SNR)rms with ~ 0 and
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p= U.95. The restored images are optimal solutions between

the maximum l ikel ihood (ML) solu t ion an d the a pr io r i

nonstationary mean solut ion. The MAP solution smooths out

the Poisson noise degra dat ions and has also ex trac ted some

highe r frequency information from the noisy images. The

images res tore d wi th the MAP f i l ter hav e more de tail

informa t ion par t i cu l a r ly  a t highe r (SNR)~~ 5 .

4.6 Recursive MAP Estimate for the Poisson Noise Model

From Eq. (4.14) and simple algebraic manipulations , we

get

1 
—

= 2 (4.l5a)
~(l+p ) ~r 1

d.
= Ti+1 (fi i

) _ (
r~~

1)_ (fi_c~ i_i )~ (4.15b)

i = 3 , 4 , . . .  ,N—l

ana

— B + \‘B
2-4C

— — 

2 (4.l5c)

wh e r e

B = 
A (l+p 2) 

+~~(l+p
2) N-l~~N-l~~~N

c =  (l+P 2) d

if we can estimate f1 and ~ , then Eq. (4.15) is a

4 
- 
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recurs ive re la t ion

= f~+kg(f1,d1,~~) (4.16)

where is the previous  es t ima te , d~ is the observation

da ta , k is a res idual gain , f is the estimate of the

non s ta t ionar y mean vec tor an d g is a func t ion o f f
~~
, d 1, f.

Because images with Poisson noise have a very low (SNR)rmS~
the nonstationary mean can only be estimated approximately.

Also , the estimation error is propagated through all the

estimates f~~. Thus , Eq. (4.16) is very unstable and it is

impossible to obtain an accurate recursive solution. Some

simulations have been per formed with different estimates of

and f for different (SNR)rms • All experimental results

quickly blow up, o b l i t e r a t i n g  all the image information.

4.7 A Local Adaptive Processing Filter

As discussed in Ch. 2, image signals are a

nonstationary random field whose statistical properties

vary in a local reg ion of the image. Hence , a local

adapt iv e pro cessing f i l te r  shoul d have m any advan tages

• compared to global processing filters which are defined

over the entire image field . Global processing filters

generally averag e over detail information in local regions

of the images. The local adaptive filter should be

particularly useful when the ima ge noise is

signal—dependent as wi th Poisson noise . The sectioned MAP

4 -  
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f i l t e r  as described can be made to opera te as a local

adaptive processor. Because the MAP filter contains an ML

(maximum likelihood) term and an a priori term

(nons tat ionary mean ) , the f i l ter can be implemen ted by

adapt ively we igh t ing  the terms as a f u n c t i o n  of local

prope r ties such as the f i r s t and second momen ts of the

image or the nonlinearity of the human eye. The local

adapt ive MAP f i lter can be expressed as

Q. * (ML term) + (1—Q ~ ) * (a priori term) = 0

i = 1,2,... ,L (4.17)

wher e is the weight of the ith section arid L is the

total number of sections in the entire image. The local

adaptive filter can also be extended to space—variant

degradations. For simplicity in the experimental results

tha t fo l low , we have s imula ted the g lobal adapt ive

processing filter with 
~~~~~~~~~~~~ 

for all sections. The

equa t ions to be solved are :

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (4.18a)

1 

(4.l8b)
+ (l—Q)*~~ (f

~÷i,
T
~+i) 

= 0

Q* (~~ -l)+ (1-Q) *~~~(f~ _1,?~~1)- (l-Q) * (1+p 2)
(f ~ ) 

— 0 • (4.18c)
N N -

A Newton—Raphson iterative technique with sectioning was

: 4 74
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used to solve Eq. (4.18). All the Newton—Raphson iterative

techniques are described in Appendix B. The only factor

tha t changes are  some cons tan t c o e f f i c i e n ts in the

equations.

The resul ti ng pictures  of th is global adapt ive f i l ter

are shown in Figs. 4.6 through 4.8 for different (SNR)rms

and different weights Q=0 .3 , 0.5 , and 0.8. The Q=0.5

weights both terms equally. The reg ion of highe r (SNR)rms

can be given a highe r weight and then can extract higher

frequency components from the ML term , while the reg ion of

lower (SNR) rms can be weighted more towards the a priori

term. These facts can be seen in Figs. 4.6 through 4.8

wher e we can see c l e a r l y  tha t detai l  in form at ion is mor e

visible and noise suppression is decreased as the ML term

is increased. However , if Q is too large , then the

resulting image is the same as the unprocessed data.

4.b Conclusions

From this chapter , we have found that the estimated

• nonstationary mean carries most of the gross information in

MAP estimation , an d tha t the cova r i anc e ma tr i x  c a r r i e s

important detail information of an image. Also , the

var iance affects the convergence rate of the algorithm .

The variance can act as a weighting factor in sectioned

subopt imal MAP estimation because this method is very

dependent on the local nonstationary variance. The

• - - -  

- I  ~~~ 
-
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sectioning method with a Newton—Raphson solution has been

etfective at cop ing wi th l a r ge d imens i on  nonl inear MAP

estimation equations and has produced good results.

‘I
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CHAPTER 5

RESTORATION OF BLURRED IMAGE WITH POISSON NOISE

5.1 Introduction

This chapter we extend the prev ious results to the

more general imag ing model includ ing blurring degradations

and Poisson noise degradations as discussed in section 2.4.

In many prac tical situations of interest , the de tected

image data arises from a linearly blurred image of the

object. Althoug h the blurring may arise from many

differen t sources, we simply l ump them together as a

blurring matrix H. This system and its block diagram are

shown in Fig . 2.5 and Fig . 2.6 respectively. In

section 5.2, we formulate the MAP estimation equations and

its solution. In section 5.3, we b r i e f l y  review the

sampled infinite area superposition operator model for

image blur. In section 5.4, we d iscuss sec tioning methods

and in section 5.5, we discuss implementation of an MAP

filter with one—dimensional blurring and its experimental

results. In section 5.6, we discuss implementation of the

MAP fil ter with two—dimensional blurring and present some

exper imental results. In the final section , we present

some conclusions of this chapter.
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5.2 MAP Derivation with A Blurring Matrix H

From Bayes ’ Law we have the pos ter io r  densi ty as

fol lows :

p(dlb)pCb)
p(b (d) = p(d) (5.1)

where b H f  and b.= E H. 1..— — 1) )

From Fig . 2.6, we know tha t ~ is the Poisson noise

degraded version of (Hf). As before we have the

cond it iona l densi ty

g
~ 

—Xb 1(Ab.) e
= 

1 
g~ ! 

(5.2)

for the measured counts g. as a function of incident

in tensi ty b .. We also assume that counters i and j  are

independen t for  a g iven b . Hence

p (~ lb) p(g1 1~~~p (g2 1~~~~ ~~~~~~~~ ( 5 .3 )

Because each g. only depend s on i ts corresponding b 1,

P(2 I~
) = pCg 1 Ib 1)p (g2 Ib 2)...pCg~ Ib~)

~~ 
—A b

~(A b . )  e (5 . 4 )
=

and setting d .~~ g . we have
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d./ci -Ab .
C A b . )  1 e 1

p(dlb ) = n 1 
d (5 5)— —  i i

5.2.1  The P robab i l i t y  Dens i ty  of the Blur red  Imag e

The a pr i o r i  dens i ty  p (f ) is mul t i va r i a te normal wi th

nonsta t ionary mean ~ and stat ionary covar iance matr i x  Rf

given by [5—li

p (f) = kfex
p{_~~(f_ ~ )

TR (~~~
-

~~~
) }  . (5.6)

The b lu r red  data b is g iven by the l inear  equat ion ,

b = H f  (5.7)

and the probability density for b can be shown to be

H p(b) Kbexp{4(b-~
)TR

~~
(b-

~
)} (5.8)

where

Rb = HR f HT , (5 .9 )

= H T 
(5.10)

Substituting Eqs. (5.9) and (5.10) into Eq. (5.8), we ge t

p (Hf) = ~~~~~~~~~~~~~~~~~~~~~~~ ~ 11)
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5.2.2 Estimation Equations

From chap ter 4, we have the es t ima t ion equa t ions as
fo l lows :

~~ Znp (d~b)+.~~~np(b) = 0T (5.12)

wher e

b = Hf and b. = H. .f. (5.13)

From Eq. (5.~~) , we have

d./c~ -X b .
(Xb.) ’ e 1

2.n p ( d l b )  = L.s 2.n 1 
d1 

(5.14)

~~~~~
d . d.

= (— !Qn (Xb .)—Ab . — Qn c~...Qn [(..!)!]} (5.15)
i c~ 1 1

F 
. 

~~~Qnp (d~b) = ~~ C ~~~-XH~~ ) (5.16)

I ~E d.
= 

1 
A (E~~

Hji () (5.ifl
I~~~~. 1
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Thus

~~thp (~ I H ~ ) = 

[~~~
A _1)H

~ l,~~~~X ~~~~~~~~~~ , (5.18)
— 1 1. 1 1. 

~~~
A (
~
!_1)H

iN]and f rom before 1 1

~~p(Hf) = _ (f_~ )
TR

_l 
(5.19)

Substituting Eqs. (5.lb) and (5.19) into Eq. (5.13), we get

(5.20)
=

- Taking the transpose of Eq. (5.20) and assuming Rf=R
’
~

then , we get -

— Rf
1 (f—f) = 0 (5.21)

We expand the f i r s t  term of the left side of Eq. (5.21) to

obtain

It. ..-
84
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d d2 dN . 

- -

(E
i_l)H

ll+(B_—l)H2l+.. .+(
~

--
~
l)HNl

(~~ -1)H12+(~~ -l)H22
+.. .+(

~~
_1)H

N2 
(5.22)

d d2 
d~~~

(
~~

_1)H
1N+(S-~

_1)H
2N+. .

d1
H11 1121 H31 . . H~~ 

~iT
1112 H22 1132 ... 11N2 ~~~~~~~

- 1

= x : :
dw

~~1N 
HN2 HN3 11NN 

~~~~~~~~~ 

~~~

.T .d 1
11i1 1112 . . . . 11lN

= x H
~ i. 1122 . . . . ~~~~~~~~~~~~~~ (5.24)

- 1
•

= AHT(~ _1) (5.25)

Here t he H ma tr i x  is no t necessar i ly a square  ma tr i x  bu t

depends on the model of the b l u r r i n g deg ra da t ion where

and 

a 
= ~~1,q2,... ,q 1

T
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~~~~~~~~~ E H ~~f~

For the time—be ing , we assume tha t H is a square ma tr ix

H11 1112 ... H1N

H H ... H
H = 

21 22 2N (5.26)

, HN1 HN2 ... HNN~

Therefore , the MAP est ima te equa tions reduce to

= o (5.27)

This equa tion is the key equa tion of MAP est ima t ion wi th a

blurring matrix.

The complexity of solving this equation is determined

by the structure of the blurring matrix H as well as the

covar iance ma tr i x  of image deno ted by R
f. If the matrix R

f
is a separable matrix it can be expressed as R

f=RfR~
Rf

where  ~ denotes the direct product [5—14) and R
fR 

and R
f

are Nx N ma tr ices of the form 
.

. 2 N-i.1 p p .... p

p 1 p .... p
RfR = : : (5.28)

L~ 
~~~~~~~~~~~~ 1

The Mar kovian covariance matrix Rf is an accura te

• approximation to the statistics of many images [5—2). The
86
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H ma tr i x  is an N
2
xN

2 
bl u r r i n g  ma tr i x  which ma y be

nonseparable or separable. If H is a separable matrix ,

then H=H ~H where H or H is an NxN matrix. The detailR c R C

of mode l in g con t inuous superposi t ion in teg r a l s  for  b l u r r ing

by a di scre te opera tor H is di scussed in the nex t sec t ion.

Solving the MAP estimation Eq. (5.27) is heavily

dependent on the separability of the H matrix and Rf

matrix. If we assume that both are separable , then the MAP

estimate Eq. (5.27 ) can be obtained by separate row and

column processing . Thus , the com pu ta tion t ime of a

separable two—dimensional MAP filter is twice that of a

one—dimensional MAP filter. However , the computation time

of a nonseparable two—dimensional MAP filter is

approximately the square of the time for a one—dimensional

MAP filter. Thus , computing H (~ —l) takes approximately

2N 4 operations (each operation includes one multi pl ica t ion

and one addition) for the nonseparable case and 4N 3

operations for the separable case where N is the picture

s ize , e.g. N=256. The tremendous amount of computing

needed for the MAP es t ima te ma kes solut ion impossi ble even

with the separable case. Thus , we adopt a subopt imal

solution involving sectioning with a Newton—Raphson

solu t ion techn ique . This me thod has been developed in

Cha pter 4 for  solv ing nonl inea r  MAP es t ima te equa t ions of

larger dimensionality. Using the sectioning method [5—4] ,

the MAP estimate Eq. (5.27) becomes
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Cm ) (m)
AHT ~~~~ 

Cm) R
.-]. 

~~~~ 
(m) 

= 0 (5.29)

where the superscript m denotes the mth section of the

image. If each section size is N 2, then g
(m), f (m), and

1(m) are N 2 xl vectors and H Cm ) is an N 2 xN 2 matrix. For
— 5 S S

c l a r i ty ,  we omi t the supersc r ipt (m) in the d iscussion

which follows . The H matrix is constructed from the known

point sprea d func tion (PSF) h(x ,y). The PSF h(x ,y) is

obta ined either from a priori knowle dge or a pos teriori

knowledge. The former assumes that the PSF h (x ,y ) is known

a priori. The latter assumes that the PSF h(x ,y ) is not

available a priori. It must be estimated from noisy

observation data using techniques such as bl ind

deconvolution. References (5—5 ,5—6 ,5—7 ,5—8] describe

several methods for estimating the amplitude response of

h (x ,y), and the Knox-Thompson method can be used to

estimate the phase response of h(x ,y) 15—9 ,5—15]. These

methods determine the degradation parameters by a

posteriori methods [5—31. This thesis assumes that PSF

h(x ,y) of the system is given as a priori information . We

must know the detailed structure of the H blurring matrix

in order to implement the MAP estimate Eq. (5.29). Hence ,

we now discuss how to construct the H matrix from a given

PSF h(x ,y) of the system .
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5
• 3  Construction of the Blurring Matrix H

All blurring deg radat ion ef fec ts  are lumped together

as a two—aimensional point spread function h(x ,y;~~,~ ) as

shown in Fig . 5.1. From linear system theory, we can

describe Fig . 5.1 by the superposition integral

G(x ,y) = ~~~~~~~~~~~~~~~~~~~~ (5.30)
-

IL this linear system is spatiall y invariant, then

h (x ,y;c~,6) = h ( x - c z ; y - B ) .  (5.31)

In order to discretize the continuous Eq. (5.30), we must

sample G(x ,y) over a grid at spac ing (Ax ,Ay) satisfying the

Nyquist criterion (5—21. For notational simplicity, the

continuous objec t function F(cx ,B) and the continuous PSF

h (x ,y;~~,~~) will also be assumed to be sampled over the same

grid spac ing . Thus , Eq. (5.30) can be expressed as a

double summat ion over infinite limits by invok ing the

sampling theorem and a quadrature formula. In order to

expr ess the infinite area superposi ton operator as a

lexicographic ordering for vector processing , it is

necessary to truncate the PSF to some spatial limit , say

(LAx ,Lt~y) and restrict G (x ,y) to an area (MAx ,M Ay). Then

the truncated superposition operator is
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F (cx ,8)  G(x ,y)
.
~~~~~ 

h ( x ,y ; c z , 8 )

Figure 5.1 Two-dimensional linear system
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L+m1-l L+m2— 1

G(m1,m2) F(n1,n2)p (m 1—n 1+L, (5.32)

1 1 m2—n 2+L;m1,m2)

where for simplicity, the grid spacing i\x ,Ay is d roppe d and

p, assume d to be zero outs ide it s range of ind ices,

represen ts the sampled point—spread function which

incor porates the quadrature integration. The detailed

derivation of Eq. (5.32) is in [5—2 1. In order to prevent

serious approxima te error at the boundaries of G , we mus t

choose N such that

N > M+L—l (5.33)

where N is the size of the convolve d image signal G

M is the size of the object image signal F

L is the size of PSf P

These boundary pro b lems are impo r tant and closely rela ted

to the sectioning method used . In the next section we

discuss the use of an overlap—save sectioning method to

minimize the boundary edge effects.

If the arrays F and G are represented as lexicographic

or dered vec tors by f and ~ respec tively, then the

superposi tion operator can be written as

a 
= H f (5.34)

where f and ~ are M xl and N xl vectors respectively. H is

the M2xN2 matr ix
4 .  91

p.

U
i _ _ _ _ _ _ _ _ _ _ _ _ _— ‘V - —

• . . , . 
~~~~~~ 

. .~~. ... : ‘~~~~ .~~~ ~~~~~~~~~~~~

- - - .~~~~~~~ - . 
____ - - ::i . ..... 

- 
~~~~~~~

- 



-~~~~~~~~~ -- .-—- ., 
. -— . -

~~~~ !~~~~~ 
• . .  

~1L 0

H = 

0 

‘
~ 22~~~~~~~~ 2,L~2,L+1 

(5.35)

—M ,N-L+l —M ,N
where are MxN matr ices with entries

Hm n (m1,n1) = p (m1—n 1+L,m2—n 2+L) (5.36)

for

l < m 1 < M , 1 < m 2 < M

(5.37)

m1 < n1 < L+m1-l , m2 < n 2 < L+m2-1

and P is a d iscre t ized trunca ted point sprea d func tion

h (x,y). If the PSF is spatially invariant (SIPSF) , then

~~2,n2 
= 

~~2+1,n2+l 
. (5.38)

When the PSF is spatially invariant and or thogonally

separa ble

H H c~~~
HR (5.39)

and the two—dimensional convolution operation becomes

G = HCFH~ (5.40)

wheree denotes direct product , G and F are the image and

objec t arrays , respectively, and and H are MxN matrices
1 L~ 

C

of the form

H
92
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1~ (L) P (L—1) ... P (1) 0
• R..~ R_ I  -

~~~HR
_ 

I ( 5 . 4 1 )
I 0 -

~~~
L 

~~~~~ 

Another discrete operator models the blurring degradation

by a finite- area superposition operator expressed ~s a D

matrix. The form of this model is

Q ( m 1, m2 ) = 
~~ 

F(n11 n2)D(m1—n 1+1 ,m2—n 24-1) (5.42)n1=l n2=l

where M=N+L—l. Hence the processed array Q is of larger

dimension than object data array F. Its vector form is

a 
= D f (5.43)

where D is an M xN matrix of the form

D 0
—2,1 —2 ,2._,

D = 

~L,l~~~ L-1 ,2 “~~ M-L+l ,N (5.44)

0 
~L ,2 .. 

D

where D 3~ is an MxN matrix.

All  the spec ial cases of the C m at r ix a r e  the same as

those of the H matrix except for the matrix structure which

has the form of Eq. (5.44). The difference between the H

opera tor matrix and the D ma trix for modeling a cont inuous

superpositon are that the processed array for the finite

area H compu tation is equivalent to the processed array for
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the  f i n i t e  ~rc a  H c o m p u t a t i o n , s u r r o u n d e d  by a bound a ry  of

L—l superfluous elements. Conversely, if the processed

3rray size is the same for two supe rposition operators , the

L—l boundary elements for the array obtained by the D

operator will be in error. The resulting implementation of

the MAP filter using the D operator for the blurring matrix

is shown in Fig . 5.2. Figure 5.3 shows the results for the

H operator. We can see the checkerboard noise appearing in

the restored imag e of Fig . 5.2. The checkerboard noise

results from using the D operator giving rise to the

er r o n e o u s  c~ata surrounding each section. Thus , the

two—dimensional MAP filter is implemented with an H

H opera tor ma trix for the nonsepara ble blurring cases ra ther

than the D operator. We can either ado zero elements to

the rectangular H matrix or truncate the boundary elements

wh ich w r a p  a r o u n d , ma k ing it a squar e ma trix as d iscussed

in previous sections. However , the discrete blurring

matrix H should be a rectangular matrix physically. Since

m f inite data points are convolved wi th n finite data

points , the resulting processed data has m+n—l points.

5.4 Sectioning Method

Due to the large d imerisionality and nonlinearity of

the MAP estimate equations , a sectioning method (5—4 ,5—10]

is usea with the Newton—Raphson solution to obtain a

subopt imal solution. There are two sectioning methods:
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overlap—add sectioning and overlap—save sectioning . The

sectioning method chosen will give rise to various boundary

edge effects. Hence , we will investigate which method is

the best for MAP estimat ion. From Eq. (5.29), we have

H 
HT( i ) R~

l (f ?) = (5.29)

where

d .

~i E H
~~

f
~<

In the overlap—add method of sectioning , filtere d

outputs of the mth and m+lth section are added together in

the reg ion of overlap to create the final output. This

method is suitable only for linear es t imat ion.

In our case however , the convolut ion wi th H is

imbedded inside the function ~ of Eq. (5.29). Since ~ is a

nonlinear func tion of (Hf ) , we hav e

d~
m)÷d~

m+l) d~
m) d~

m+l)

(rn)~~f(m+1))~ E H f(m) 
+ E H f(m+1) 

(5.45)
K HiK~~k k K iK k K iK K

which reduces to

q (11f(m)~~11f(m+l)) ~ q~(Hf
Cm) )+~~(Hf

(m+l)) (5.46)

Thus , if f(m) belongs to the overlapped portion of a

section m , and f(m+l) belongs to the overlapped portion of
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an adjacent section m+1, then the overlap—add sectioning

method is not valid because of the nonlinear function in

the MAP estimate equation. Fortunately, the Overlap—save

method remains valid for the nonlinear case and can be used

in our MAP estimate equation because incorrect boundary

points in the overlap reg ion are discarded , ra ther than

being corrected by addition. Thus the overlap—save method

can reduce the boundary edge e ffec ts because it d iscar d s

the e r roneous  pro cessed da ta of the ove r l apped re g ion .

Since Eq. (5.29) contains two H operators and assumes that

the truncated point spread function matrix is LxL , the

amount of overlap required is 2(L’-l)x2(L—l ). If we must

correc t NXN points of processed data at each section , then

we mus t use a working section of JN+2(L -lflx[N+2(L—l)J.

The nec essary ov erlap area cons titutes the ma jor overhea d

in the sec t ioned filtering process. It is clear tha t

smaller sec t ions have a lar ge r percen tage of ov erhead

computation. It is also clear that the computation will be
p more inefficient for lar ger point spread func t ions.

However , it should be kept in mind that the number of

ar ithmetic operations in the Newton—Raphson solution for

each sec t ion is the key comput ing buroen of the sectioning

filter. In order to find the updated incremental estimate

vec tor in each iterative step of the Newton-Raphson method ,

we mus t solve a set of linear system equations. The

dimension of the linear system equations is N~ where N5 is

4 98
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the number of pixels in each section and the structure of

the gradient matrix depends on the structure of the

blurring matrix H when the covariance matrix Rf is assumed

first order Markovian. Hence , the number of arithmetic

operations for solving linear system equations is heavily

dependent on the form of the blurring matrix H. In

general , the number of ari thmet ic opera t ions in solving a

se t of linear sys tem equa t ions goes up roughly as the cube

of the order of the sys tem when the g rad ient matrix is a

H general square matrix. Thus , the smaller the section size ,

the less the computing time of sec tioned fil tering wi th the

Newton—Raphson solution.

5.5 Implementation of the MAP Filter with One—dimensional

Blurring Degradation

As stated ea r l i e r , two of the most interes ting sources

of blur are atmospheric turbulence and linear motion

[5—11 ,5—12]. In this section , we assume that the image is

deg raded by one dimensional linear motion blur with a

rectangular point—spread function. The rectangular

• blurring degradation is troublesome because its amplitude

response has a singularity and phase reversals. The

blurring matrix H is the form of Eq. (5.41), where PR(L) is

the discrete’ truncated point spread function of h(x ,y). We

assume that Rf is a first order Markovian covariance

matrix , and following Eq. (5.29), we can wr ite the
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equations to be solved as

~ 

~ H 1~~f~ 
1)]

_ r
2 (f i

_~ i ) +~ r ( f 2
_~ 2 ) = 0 (5.47a)

~ 
d~ _

1)] +~ r ( f j i
_
~ j i ) _ r ( f j

_
~ j )

j= 1 K

+~r (f.~~1—!.~~1) = 0 ( 5 .4 T h )

i = 2 , 3 , . . .  ,N—1

A 
[~~ 1

H~ N 
~ 

HNK f K ]  1+p 
(5.47c)

w h e r e

l+p 2 1r =  
~~~~~~~l— P

C2 = = ____ . —

( l+p  ) ( 1— a )

- 8r -

1 — — 
~~ 2

N is the num ber of p ixels  of each sec t ion ,

p is the co r r e l a t ion c o e f f i c i e nc y  between p ixel ,

is the var iance of the objec t,

is the ijth element of the H matrix ,

is the nons ta t ionary  mean of the i th p ixe l  of the

sec t ion ,

d. is the observation measurement.

Using the overlap—save sectioning method with an
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iterative Newton—Raphson solution , the MAP solution to

Eq. (5.47) is obtained . The convergence is very rapid ,

generally requiring about two to three iterative ZL..~ps as

described in detail in Appendix B. The discrete point

spread function ot h(x ,y) is a rec tangu l a r  blu r r ing

degradation with a width of 5 pixels. The nonstationary

mean is estimated by a one—dimensional moving average on 11

pixels of observation data and its variance is obtained

from all the picture data by an unbiased estimate. The

l i ne ar sys tem of equ a t i o n s  fo r  the g ra d ien t f u n cti on of

Eq. (5.47) which determines the increment value for the

iterations is heavil y dependent on the structure of the

blurring matrix H. When the H matrix is symmetrical , the

computing time of Eq. (5.47) with the Newton—Raphson

solution can be reduced. A simulation is done for one

directional linear motion blurring (5 p ixe ls) an d v a r i o u s

(SNR) —
. The sectioned MAP filter has a section size ofrm S

36 pixels with 8 pixels of overlap. The restored images of

the MAP filter are shown in Fig . 5.4 for different

(SNR) rms~

From Fig . 5.4, we can see that the ill—conditioning of

the restored image with p=0 is more severe for the highe r ‘

(SNR) 
~~~ 

image signals. A possible explanation is that the

restoration filter performs more smoothing with a priori

knowledge of high object correlation.
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For a local adap t iv e MAP f i l ter , the equation to be

so lved is

w~ [ A H T(~ _
~)]+(I_W). [— R f

1( f — ~~) ]  = 0, (5.48)

where W= diag ’(W1}. Here , W1 is the weight of the ith

sec ton wh ich var ies w i th the nons tat i o n a r y  mean and the

second moment of the local properties of the image. The

local adaptive MAP filter also can be used for the

restoration of images degraded by spatially variant point

spread functions. The point spread function at each photon

detector may not be identical over the whole array. The

ima ge can be d ivi ded in to sec t ioned ima ges each w it h its

H own space invariant PSF. For s-implicity, we have simu la ted

a global adaptive MAP sectioning filter in which each W is

fixed. The simulation is performed with p=0.95 for

different section weights and different (SNR)~~~5. The

exper imental results are shown in Figs. 5.5 through 5.7

with different (SNR)rmS~ 
The W =0.5 gives equal weight to

- I 
the (ML) solution and the a priori solution.

From these ex per imen tal resul ts , we observe tha t more

hi gh f r e quencies are  ex trac ted if the weigh t on the ML term

is increased. Also we see that large weight on the ML

solution results in ill-conditioning of some of the

solutions with the MAP estimate. With a large weight on

- 
‘
~~~~~~

. 

the ML part of the solution , the MAP est ima te

asymptoti ca l ly  approaches the ML estimate. This is

105

• . .----

~~~~~~~~~~~ ‘~~—~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
________ — ——.~~~ --- . — 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -— - _____









— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~

consistent with fact that the ML estimate is the inverse

fil ter for imag e restoration with blurring deg radations.

(For the non blurring case , the inverse solu t ion of image

res tora tion jus t is the observa t ion  d ata as d iscussed in

the last chapter). From those observations , we can

conclu de that there  is an opt imal sec t ion wei ght over the

global adapt iv e f i l ter as well  as the local adapt ive

fil ter.

5.6 Implementation of the MAP Filter with a

Two—dimensiona l Blurring Degradation

This section is divided into two subsections to

separately discuss the assumptions of separability and

non—separability. The blurring degradation is simulated by

a 3x3 pixel moving window blurring for different (SNR)rms •

The nonstationary mean is estimated by a 7x7 window moving

average over the measured photon cc’unts. This size of

mov ing wndow was found to g ive a reasona bly good es t ima te

wi th a minimum amount of computing .

5.6.1 Separable Case

In this section references to separability means that

the PSF is a separable space—invariant function (SSIPSF) in

the sectioned MAP filter and that the covarance matrix Rf

.
.
.~ 1- is Markovian and separable [5—3j . This can be expressed in

vector notation as
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H H R~~~
Hc 

(5.49)

and Rf=RRSRC, where

~~~~ ~~~~~~ ~~~~ 0
— — (5.41)HR
_ H

c
_

0

1 p

P P P~ (5.28)

~
N_ 1 ~N_ 2 ~N~ 3 p 1

and ~ denotes the direct product.

From direct product identities [5—14] , we have

= (RR ~ 
R
~
)
~~ 

= RR
1 
~ R~~ (5.50)

There fore , the two—dimensional Eq. (5.29) can be

implemented using Eq. (5.47) as a row processor and then

using Eq. (5.47) as a column processor. The solution to

Eq. (5.47) uses the same sectioning method with a

Newton—Raphson iterative solution as before. The

processing time of this two—dimensional MAP filter is twice

that of the one—dimensional case. Without describing the

de tai ls  of the MAP implemen ta ton , the expe r imen tal resul ts

are shown in Fig . 5.8 for differen t (SNR) rms and P =0.95.

I 
~~~~~

‘ 

From Fig . 5.8, we can see that the restored image with

a two—dimensional separable filter per forms considerable

110
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smoothing of the Poisson noise . The restored images show

some improvement over the noisy originals. Althoug h the

separable assumption is an accurate first—order

app rox ima t ion for  the sys tem , the ima ge f i e l d itself is no t

separable. Thus , we implement a two—dimensional

non—separable MAP sectioned filter next.

5.6.2 Non—separable Case

We now assume that the PSF is a non— separable

space—invariant function (NSIPSF) and that R f is an

identity matrix to simplif y the simulation. The

two—dimensional non—separable sampled infinite area

superposition model is used to reduce the two—dimensional

blurring degradation to a matrix H. This matrix is an

M2xN2 ma tr i x , where M is the observed data size and N is

the processed d d t a  size for the sectioned MAP filter .

Thus , we need to solve a l i n e a r  sys tem of equa tions of

or der N2xN 2 (Eq. (5.29)) in order to find the updated

increment value of the root in each iterative step. Even

H thoug h the sections are small , a lar ge amoun t of compu t ing

is needed for this sectioned MAP filter. The details of

computing time of the sectioned MAP filter are described in

the last section. Since the sectioned MAP filter uses a

lexicog raphic  or dered vec tor represen ta tion and the

- ~~
- 

, observed image uses a ma tr i x  represen tat ion , some
S.

conversion between them is needed . The conversion relation
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from ma tr i x  to vector is

D = ( ( J — l ) *M ) + I  (5.51)

and f rom vec tor to ma tr i x  they are

I = Mod (P—1 ,M)+l (5.52)

J = ((P—l)Mod(P—l ,M))/M+l (5.53)

where P is the location of the vec tor element with

lex icog ra h ic or de r i n g , M is the size of the section to be

processed , (J,I) is the (row , column) location of the imag e

pixel and Mod is the modulo operator. The overlap-save

sectioned MAP filter is used to minimize the boundary edge

effects of sectioning . The simulation is done with section

size 9x9 and an overlap of 4x4. Since the blurring

degradation is an unweighted average over 3x3 pixe’s , from

the discussion of the previous section , the wrap around

data is 2(L—l )x2(L—l ) pixels which is 4x4 pixels. The

nons ta tionary  mean is est ima ted by a rol l ing wi ndow movin g

avera ge method which ef f i c i e n tly keeps onl y the data
4 re qu ire d in h igh speed memor y . Becuase of the lar ge

estimated CPU time for this filter on the DEC KL—lO only

the right side of the noisy picture is processed. Two

( .  original images with different (SNR) rms were fil tered an d

the expe r imental results are shown in Fig . 5.9. From

Fig. 5.9, we can see that the two—dimensional filter has
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produced noticeably better results than the restored images

of Fig . 5.8. However , the CPU time of the general

non—separable fil ter is approximately a factor of 100

longer than that for a separable filter with a 256x256

imag e and section sizes indicated . The results shown in

Fig. 5.9 were done with a preliminary version of the

algorithm to show feasibility only. Processing the entire

256x256 imag e would take approximately 100 minutes. It is

l i kely tha t consi dera ble savin gs in compu ter t im e woul d

resul t f rom a ve ry  c a r e f u l l y  wr i tten algor i thm which  woul d

recurs ively perform Newton-Raphson solutions between

win dows .

5.7 Conclusions

We have developed an MAP f i l ter for a Poisson noise

model with blurring deg radations. The implementation and

me thod of solut ion for  the MAP f i l ter a re  heav i ly  dependen t

on the form of the blurring degradat ion ma tr ix H and the

covar iance matrix of the object image. The overlap—save

sectioning method with a Newton—Raphson solution has been

shown to be an e f f ec tive fas t approach to the subopt imal

MAP estimate. The sampled infinite area superposition

model is used for the blurring degradation. Both the

one— dimensional blurring and two-dimensional blurring

situations with different levels of Poisson noise were

simula ted .
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From these exper imental results , we f ind  tha t the

nons tat ionary mean car ries  the mos t of the struc tu r ed

background information and that the covariance matrix leads

to a stable Newton—Raphson solution especially for higher

(SNR)rms image signals. It has been found that there is an

opt imal wei ght in the g lobal adap tive MAP f i l ter which

produce s the best quality restoration. Too much weight on

the ML term solution will gives rise to ill—conditioning .

From Fig. 5.9 , we see that the quality of the restored

image with the MAP filter assuming a non—separable PSF

gives better results than the separable MAP filter .

However , the CPU time for the non—separable filter is much

longer than for the separable filter. The overlap—save

sectioned MAp filter has been shown to be useful for

overcoming problem s of large d imensionality and

nonlineari ty which are inherent in MAP estimation.

4, 
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CHAPTER 6

THE QUALITY OF THE MAP ESTIMATE

6.1 Introduction

In th is chap ter , we inves t iga te the qua l ity of the MAP

estimate for Poisson noise . The quality of the estimate

depend s on the performance criteria chosen. There are two

types of performance criteria [6—1 ,6—2]: one depends on the

estimator structure and the other depends on the

performance itself. The MAP estimate and ML estimate

belong to the former one because the MAP estimate is the

mode of the posteror probability density and the ML

estimate is the mode of the a priori probability density.

The Bayes est imate belongs to la tter because it minimizes

the risk of the estimate. The MMSE (minimum mean square

error ) estimate is a special case of the Bayes estimate

when the cost func tion is proport ional  to the mean square

error. However , it is customary to choose the conditional

or uncond itional expected squared error as a universal

measure of quality of all estimates. Unfortunately, the

expectation operator leading to this measure is, in

general , very complicated due to the complexity of variance

estimates. However , it is possible to derive an expression

5’
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for a lower boun d on the var iance  in terms of onl y the

stat istical proper ties of the observed signal and

estimation bias. This quality measure can be formed for

an y est ima tor wi thou t de tai led knowledge of i ts struc tur e

as long as the estimate is unbiased . This lower bound for

the estimation error variance is the well known Cramer—Rao

lower bound (CRLB) [6-3 ,6—15].

Ther e are  two measures  tha t are used together to

determine the quality of an estimate. These are the

expe ctat ion of the est ima te and the va r i ance  of the

estimation error. The first of these measures the bias

inheren t in an est ima te , and the second is equivalent to

the mean— squared error between the estimate and the

original data. In general , we try  to f i n d unbiase d

estimates with small estimation error variance.

In section 6.2 and 6.3, we discuss biased and unbiased

estimates and show that the 
~MAP 

es t imate for the Poisson

noise model is an unbiased estimate. In sections 6.4, 6.5

and 6.6, we derive the Cramer—Rao lower bound of the

estimate for non—random scalar parameters and random vector

parameters with the Poisson noise model. In the final

section , we present the conclusions of this chapter.

I 

:~~ . 6 . 2  Biased and Unbiased Estimates

A cond itional unbiased estimate is one whose expect:d
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value is equal to the true value of the quantity being

estimated. An unconditional unbiased estimate is one whose

expec ted value is equal to the expe cted value of the

quantity being estimated . We denote the estimate by a

random variable X which is a function of the observations

Y. If X is a conditional unbiased estimate , then

E~~[X) = JX (Y)P (YIX ) dY = X. (6.1)

and if X is an uncondit ional unbiased es t imate , then

- 

E~~LX] = JX(Y)P(Y)dY = E(X) = ~~~. (6.2)

On the other hand , biased estimates do not possess this

desirable feature; their expected values contain an

H additional function B (X) of the parameter to be estimated .

Accordin g ly,  for  b iased est ima tes we have

E~~~[X]  = X + B ( X ) , ( 6 . 3 )

or

E~~[X] = ~~+ B ( X ) .  (6.4)

p for the conditional biased estimate and the unconditional

biased estimate , respectively 16—3 , 6—4 , 6—5].

6 . 3  
~~MAp 1

~ 
an Unconditional Unbiased Estimate Vector

From previous chapters , we have
a.
4~~

.

I = ?+AR H T (~~_ l )  ( 6 . 5)
-MAP f —
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where .&MA P is the N2xl estimate vector

f is the N
2x 1 non sta t ionary  mean vec tor

Rf is the covar iance  ma tr ix of the imag e

ano H is the N
2xN2 

discrete blurring matrix.

Taking the expectation on both sides of Eq. (6.5), we have

E [fMAPI = ¶ + E [X R
f

H
T ( q _ i ) ] .  ( 6 . 6 )

Since
d.

:1-

1

(6.7)

then

EEq~ ] = E~~ , {E
g , 1 ~~~~~(_ ~~~

1 ) }

g. (6.8)

aEb (E
g 1 b

(
~~~

)}

where Eg .Jb. denotes condit ional ex pec tat ion over g1 for a

giv en  b1. Eb deno tes expec ta t ion over b
~
, henc e

E[q~ 1 = clE b 
[~~~ ‘1 = = 1 (6.9)

1 1

Thus

. E [~~J = 1 (6.10)

and substituting Eq. (6.10) int: Eq. (6.6), we get

= f ( 6 . 1 1 )
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Therefore , 
~MAp 

is an unconditional unbiased estimate

vector.

6.4 Cramer—Rao Lower Bound (CRLB)

For notational and ma thema t ical simplic ity ,  we f i r s t

f~ocus our attention on the CRLB for the case of non—random

scalar parame ters , an example is sample mean and sample

var iance  of the ampl i tude , phase , and Doppler fre quency of

the estimation of the radar signals assuming these

parameters unknown but not random variables. Then , for  the

ran dom vec tor parame ters case , the CRLB can be derived by a

straightforward modification of the derivation for the

non—random parameter cases. From the derivation of the

non—random parameter case , we can eas i ly  un ders tan d the

fundamen tal concept of the CR LB an d the basic re la t ion

between the CRLB and the variance of the estimation error.

6.4.1 CRLB for Non—random Variable Case

Fi r s t, we assume X is an unknown constant parameter to

be es tima ted f rom a sequence of measuremen ts

as shown in Fig . 6.1 where ~= [y y 2 y ]
T 

A ssuming X

is an unbiased parameter estimate we have

- 

I 
- = X ( 6 . 1 2 )

p
.

or from Eq. ( 6 . 1) ,  we have
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Figure 6.1 Block diagram of nonrandom
parameter estimate

I~~~~~~~~~~ .

‘4.

125

p

.
~ 

~i~~ j

-r . 
— F

— —.- —p~~~- — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — 

—



- - — - - ---.--.
- -- - -—-- 

~~~~~~~~1

II ••~I 
T(~~) f ( ~~~I X ) d ~~ = X ( 6 . 1 3 )

K-fold
integral

where X=T (1). Differentiating both sides of Eq. (6.13)

with respect to X we have

~f (~ IX )
JJ...JT(~ ) ~ ~ 

-dy = 1. ( 6 . 1 4 )

K-fold
integral

Now we rewrite Eq. (6.14) as

3f(y~X)

= 1 ( 6 . 1 5 )

K-fold —
integral

or

• 
~~nf (yjX)

fI.
~~~

JET(Y) 
~ ~ 

If I X ) d y~ = 1 ( 6 . 1 6 )

K-fold
integral

Inspection of Eq. (6.16) shows that it is

~9~nf (~~ X)
E[T(1) 

~ x 
= 1. ( 6 . 1 7 )

Next , we examine the normalized correlation coefficient

~
Q
~nf(~~IX )between X=T(X) and . From the definition of P , we

have

I ~~~~~ ‘

I1
~~~~~~

.
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~~nf(~~JX) a9~nf (y~X)E{ [ (T(y)—E (T(y) ) I I —E( ~~~~ 
) ] }

a 1 2 Ivar T (y) .%Ivar(~~~~
f
~~~IXT )

where var denotes variance. Now ,

F~Qnf iIx ] [ 
~ ~f ( ~ l X )

E[ ~x J 
= E[~f (yJx)

flyiX) 1= fJ ..I 
~ X f ( ~~~ X) f ( ~~I ’~~~ (6.19)

= 
~~~~ II ... f f ( Y IX ) d Y  = [1] = 0 ,

hence

EI~~ Qnf(y IX) ] = 0. (6.20)

From Eq. (6.20) and simple manipulations , Eq. (6.18) F
becomes

- 
- E[T(y)~~~~~~~ 

X)
1

P = aX (6.21)
/varT (y)*

~~~ar(
a9nf (

~
jX))

a x
From Eq. (6.17), then

1

p = 
_______________  

( 6 . 2 2 )

/varT(~~) ilvar( 
~~~ X))

From the definition of p, we know that ~ is equal to or

less than 1. Therefore , we obtain
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var (T(~~)) = var 
var [ath~~~~l~~~] 

. ( 6 . 2 3 )

or equivalen tly

var X = E [ ( X - X ) ]  
E {[ n

~~~~~~~~~ ] 2 } 
. ( 6 . 2 4 )

Equation (6.24) is called the Cramer—Rao inequality for the

unbiased estimate [6—15]. Note that the CRLB is a bound on
I the mean—square error. For a biased estimate , the CRLB is

1÷
d B ( X )

. 1 var X 
E {[ a

~~~~~~1)O J 2 } ‘ ~ 
)

ax

where B(X) is the bias function of X.

For the non—random variable vector case , we have
d irec tly

var - [x.—x1] > J” , (6.26a)

where J i.]. is the iith element in the KxK square matrix J~~ .

• The elements of J are

J ~ E 1
~~~~~~~~~ . ________

~~~~ L ax~ ax~ J
46.26b)

x = [x 1, x , . , x~ I T = 
~~~~~~~~~~~~~~~~~~~

where x is a vector of non—rand om variables , to be
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estimated and ~ is the measurement data vector.

Equ ivalen tly ,

3 ~ 
E{ ( V

~~
[
~
. np (y Ix ) ] )  (V~~I p ( y 1 x ) ] ) T } ( 6 . 2 7 )

where 
~ T= [

~
j— , -

~
-
~

--- , . . .  , -
~
i-— I

The 3 matrix is commonly called Fisher ’s in forma tion ma tr i x

16— 1 , 6—2 , 6—3 , 6—4 , 6—15].

6.4.2 CRLB for Random Variable Vector Case [6—li.

For the random variable vector case, th e informat ion

matrix 3T now consis ts of two par ts

( 6 . 2 8 )

where

3D ~ 
E({V

~~
[Qnp (yIx)i }{V

~~
[thp (yIx)]}T), (6.29)

~ E ({V~
Qnp(x)HV

~
9
~
np (x)}T). (6.30)

and

~ IaQnp(iI)~ . ~Qnp(iI]~~3D. — E L D x .  D x .  J1) 1 J

~ ~~~~~~~~~ ~ DQnp ()~~“p . . — I D x .  Dx .
1] L. 1 3

The matrix 3D represents information obtained from the data

or from the probability density P(11x) of the MAP estimate.

The ma tr i x  J~ represen ts information obtained a priori.
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The correla tion matrix of 4-he error is

~ 
E(x~x~ ) (6.31)

where x~~~(x—x) . The diagonal elements represent the

mean— square errors and the off diagonal elements are the

cross correla tions. The mean—square error of the estimate

as a funct ion of the information matrix is

E[x~~ ] > (J;’)”. (6.32)
1

The d iagonal elements in the inverse of the total

information matrix 3T are the lower boun ds on the

corresponding mean—square errors , and this is the situation

of interest here.

6.5 Derivation of the CRLB for MAP Estimates with a

Poisson Noise Model

The estimate of error covariance is , in general , very

complica ted to find due to the complexity of the posterior

density. However , for  the MAP estima te it is possible to

der ive  an expression for a lower bound on the var iance

because we know the a pr i o r i  densi ty p (~~ x) and probability

density p(x) of x. From Eq. (6.28), we have

j — J  + j  (6.28)
~r D

where 
~D 

and Jp are defined in Eqs. (6.29) and (6.30)

respectively. From the last chapter , we have
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d./~ -A b.
(kb. ) ~ e 1

p(d lf )  = TI —- 
1 

d1 
, (6.33)

and

p(f) = Kb
exp {_

~~
( f _ f ) TR f ” (f-~

) }  . (6.34)

From Eqs . (6.30) and (6.34), we can obtain [6—1 , 6—10 ,

6—111

= , (6.35)

where R f is the covariance matri x of the image. From

Eqs. (6.25) and (6.33), we have

= E( [‘~
‘
f~ nP (dIf)] [~~fQn P (d If) I } 

-

= E ([\HT(q_1)] [\H T(~ _ l )]T} 
(6.36)

= A 2HTE[(q~ i) (q_1)
TIH ,

where E denotes expectation. From Eq. (6.10) we have

E!g] 1 , thus ,

= \2}1TEE (q_ ~ ) (q-~)
TIH (6.37)

3D 
= A 2HTR~H (6.38)

wh e r e
R E{ (~~~~~) (a_ ~~) T }

Substituting Eqs . ~6.38) and (6.35) into Eq. (6.28), we
a. -

have

4 
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= )~
2HTR~H+R~

l 
. (6.39)

This is the total information matrix for the MAP

estimate with the Poisson noise model.

When the J,~~ exists, from Eq. (6.32) we have 
-

- 
- 

E [ ( f
~~

— f
~~

) 2 ] > {j~~l } , (6.40)

where {J;
i } a re  the d iagonal elemen ts of and is

an est ima te of the ith componen t of the restor ed image

vector f . Inspection of Eq. (6.40) indicates that the

error bound depends on four quantities: the Rate function

cons tan t \ , the discrete blurring matrix H, the covar iance

matrix R~ , and the covariance matrix of the image Rf. To

obtain some physical meaning from this expression , we
- 

assume tha t
2 2R~ = (YqI and Rf = O f I

to obtain -

( ( A 2 H TH o~~I+ ( o~~)
_ l

I ) J ~~~

(6.41)
= [ ~~~~~~~~~~~~~~~~~~~~ ,

Thus

2
EIif

~
—f 1)

2] = 
A 2 I~1I~ :

2 a 2 +1 
. (6.42)

From Eq. (6.42), we divide out on both the numerator and

the denominator of the right hand side of Eq. (6.42) and
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1 1 ,,
A

Of

From Eq. (6.43), we observe that

(1) When is large, we can drop the term 1/o~ f rom the

denominator. Multiplying both the numerator and

denominator of Eq. (6.43) by the mean intensity ~~~ gives

E [(f.-f.)2] 1 
. (6.44)

1 1 ( A E ) 2
Il H I j 2 a 2

In this situation , ~~~ H , and ~
2 pla y more im por tan t rol es

in the error bound of the Poisson noise model than the

variance of the object

( 2 )  The error bound decreases with the square of the

ensemble mean rate function (\E~ ) . From the expe r imental

results of Fig . .2, we see that increEsing the ensemble

mean ra te func tion o f the Poisson pr ocess A b1, reduces the

Poisson noise deg radation. Consequentl y, when the (SNR)rms
is g rea t e r  than  or equal to 10 db (Xb ~>100) , then

E[(f
~
—f
~
)2I > 1o~~ , (6.45)

and the Poisson noise degradation effects are smell in a

practial sense.

(3) The e r ro r  boun d is also inverse ly  propor ti onal to the

squared norm of the point spread function H and the error

~ 

_  S
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due to noise is “amplified by the point spread function.

This results from the ill-conditioning of the restoration

process.

6.6 Conclusions

We conclude that the MAP estimate for the Poisson

noise model is an unbiased estimate and have found the

Cramer—Rao lower bound (CRLB ) for the variance of the

estimation error. The CRLB is the tightest lower bound for

an efficient estimate. When an efficient estimate does not

exis t, the lower bound can be improved compare d to the

Cramer—Rao inequality . Better lower bounds may be the

Bhattacharyya bound and Barankin bound , but these bound s

are very difficult and tedious computationally. The

Barankin bound does not require the probablity density to

be differentiable and it gives the greatest lower bound .

It requires a maximization over a function to obtain the

bound and the procedure for finding this maximum is usually

not straightforward.

Use of the statistical estimation method is

particularly desirable from the viewpoint of error analysis

because known techniques can be applied to compute the

error bound . We have developed the CRLB for MAP estimation

with the Poisson noise model and also shown the behav ior of

the CRLB approximation. From these facts, we are able to
1 — ‘ i-

find the algoritm whose mean— squared errors is closest to
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the CRLB. It must be remembered that the CRLB is a lower

bound and that  the actual res torat ion er ror  wil l  be

greater. It is possible that a better suboptimal sectioned

MAP algorithm can be found to reduce the actual restoration

error closer to the Cramer—Rao lower bound .
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CHAPTER 7

COMPARI SON BETWEE N THE LMMSE RESTORATION FILTER

AND THE MAP RESTORATION FILTER

7 . 1  Introduction

The most common goal for restoring a degraded image is

to reduce the measuremen t error  and to ma ke the in forma tion

mor e visible. A true comparison between filters should

follow some objective criteria. However , the mechanism of

human information extr action is not well understood and

there are no universally agreed upon criteria by which to

judge the quality of a proposed image restoration filter.

There are two simple criteria which are commonly

accomodated . One is the numerical closeness of the

restored image to the undegraded original object image in

terms of mean square error , and t~’e other is the visual

subjective appearance of the restored image compared to the

L original . These two criteria are often in conflict because

of the complex , nonlinear , and adaptive properties in the

psycho—physical processes of human vision [7—1). Pearlman

has proposed a new compromise criterion [7—2) which is a

weighted mean square error. The amplitude weights are not

constants but ate dependent upon the contrast ratio of the
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I

image and also upon an exponential function of average

intensity. This new weig hted mean square  e r r o r  c r i ter ion

r e f l ects some deg ree of the n o n l i n e a r i ty an d complex

proper t ies of the human visual sys tem , althoug h it is

complicated to evaluate. The numerical closeness criterion

is mos t of ten employed because it is well  de f i n e d an d

mathematically tractable. There is a fundamental

dif ference in the es tima t ion cri terion between the MAP and

the LMMSE image restoration filters. The LMMSE filter is

based upon minim izing linear minimum mean—square error

un der pe r t e ct a pr iori  knowle dge of the objec t and ima ge ,

while the MAP filter is based upon the maximization of the

a posteriori density of the image. Although it is

theore tical y har d to make any comparison between them

because of this  fundamen tal c r i te r ion  d i f f e r ence , we will

compare them base d upon the f i rs t two quality cr i teria and

compu tation time.

The structure of the LMMSE filter is discussed and

analyzed in the next section. In section 7.3 we discuss

the implemen ta t ion and i l lus tra te add i t ional expe r imen tal

resul ts. Ir section 7.4 we discuss image quality measures

and compute the normalized mean square error of the

restorations. In the final section we make comparisons and

- L -.- - state the conclusions.

1 ~. -
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7.2 The Structure of the LMMSE Filter and MAP Filter

7.2.1 Structure of the LMMSE Restoration Filte r

From chapter 3, the LMMSE filter 
03
transfer function

W(u ,v) is derived by minimizing E{ ffe
2
(x ,y )dxdy }. By

Parseval ’ s theor em , it is equivalent to minimizing

E [f f  c(u ,v) j 2dudv ] , whe re C is the Four ie r  tr ans fo rm of

e(x ,y). Use of this minimizing mean—square error criterion

and the orthogonality principle [7—10 , 7—11 , 7—12] yiel ds

the transfer funct ion of the LMMSE filter as

~~~ 
(u,v)

W~~
(u

~
v)  = 

• (u ,v) ‘ (7.1)
gg

where 41
fg is the cross—spectral density of the detected

image g(x ,y) and object f(x ,y) while 
~gg 

is the spectral

density of the detected image g(x ,y). From a straight f
forward substitution into Eq. (7.1) [7—3,7—4], we have

~I* (u,v) 4~f(u~v)
W (u,v) = 2 , ( 7 . 2 )p l+~flIW(u ,v)It ~f (u~v)

wher e i~i is mean number of photon counts in the detected

imag e ~i(u ,v) is the Fourier transform of the PSF h(x ,y) and

~ f
(U ,V) is the spectral density of the object. The

detailed derivation of Eq. (7.2) is described in [7—3).

For a linear Gaussian additive noise model , the Wiener

filte r is (7—9 , 7—13 , 7—14 , 7—15 , 7—161
‘4
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~ *(u ,v)~~f(u ,v)
W
w
(U ,V) 2 (7.3)

II W (U ,v)~ 4~f
(U ,V)+~~fl

(U t V)

where  ~~~(u~v) is the spectral densi ty of noise wh ich is

statistically independent of the signal , ~1(u ,v) is the

spectral density of the object and ~ (u ,v) is the Fourier

transtorm of h(x ,y). Rewriting Eq. (7.3), the Wiener

f i l ter ta kes the mos t f a m i l i a r  fo rm

4 : W* (u ,v)W (u,v) = , (7.4)
fl (u ,v)

where 4~B

B is called the signal—to—noise (SNR) for the linear

additive Gaussian noise model.

Lince the linear additive Gaussian model assumes

signal—independent noise , it is reasonable to define B as

the signal—to—noise ratio. Similarly , from Eq. (7.2) for

the Po isson noise model , the LMMSE filter is

~ * u vW (u ,v) = 2 1 ( 7 . 5 )p IV (u ,v)fl +— 
-

where c~~N~~f(u,v). The function W 0(u,v ) is the same as

S q(u,V) except that o. is ôefined differently from B~ Since

Poisson noise is signal—dependent , the SNR is not well

defined . However ~ can be called the equivalent
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signal— to-noise ratio (SNR )
eq~ 

From Eq. (7.5), when the

value of ~ is very  lar ge , which is the case when the ra te

func t ion is hi gh , then Eq. (7.5) becomes

W~ (u~v) ~~i~~~(u,v) - (7.6)

- Thus , the LMMSE fil ter approaches the inverse f i l ter

in the absence of Poissen noise . Indeed , the larger the

ra te func t ion , the lesser is the degradation due to Poisson

noise. In this case , the LMMSE f il ter only needs to remove

the blurring degradation effects. As discussed in

chap ter 5, Poisson noise e f fe cts are much more pronounced

at low light levels when the value of a is smaller. In

this  case, the LMMSE filter W~, is dominated by Poisson

noise and image signals will be seriously distorted . Thus

the performance  of the LMMSE f i l ter wi l l  ex pec ted to be

worse at lower equ iva l en t SNR ’s. Ai though the LMMSE filter

is based upon the minimum mean—square error critericn , this

estimat ion e r r o r  is a min imum un der the cond it ion tha t the

a priori knowledge is perfect. Functions such as the

spec tral densi ty of the objec t 
~~ 

and the mean number of

photon counters N must be perfectly known . In reality, 
~~

and N are never perfectl y known and mus t be est ima ted f rom

the observation [7—7 , 7-18]. Hence , the ac tual LMMSE e r ro r

does not reach the minimum . In short , the LMMSE f i l ter

tries to force the solut ion toward the inverse solution

with some sort of smoothness controlled by the equivalent
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7.2.2 Structure of the MAP Restoration F i l t e r

It has been noted in precedi ng chapter s th a t the

fundamental MAP estimate contains maximum likelihood (ML)

and a priori terms in its solution. From previous

cha pters , the MAP estimate equation is

AH T ( q_ i ) R l (f ~~f )  = 0 , (7.7)

or equivalenty

- -MAP = f + A R f
H ( q — 1 )  - ( 7 . 8 )

The physical interpretat ion of the MAP estimate is that

maximizing the probability p( dlf ) forces the solution

toward the inverse solut ion which is the maximum likelihood

solut ion , while maximizing the probability p (f) is

equiva lent to enforcing a smoothness criterion. Thus , the

MAP filter tries to balance the inverse solution with ~

smoothness constraint [7—5]. Another physical

interpretation from Eq. (7.8) is that the MAP estimate

tr i es  to move the solu t ion of the estima te 
~MAP 

from the e

priori nonstationary mean t to a maximum likelihood

solu t ion 41L

7.2.3 Conclusions

The LIMMSE filter and MAP filter are perform ing similar
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func tions of balancing the inverse solu t ion wi th a

smoothness constraint. - The LMMSE filter uses the

equivalen t SNR to con trol the balan c ing , while the MAP

fil ter uses the covariance matrix R of the object as a

measure of the confidence in the nons ta tionary  mean f an d

the maximum li kelihood solut ion as a solut ion to the

restoration filter. The LMMSE filter is based on the

assumption that the detected image intensity can be

approx imately modeled by a stationary random field. For a

typical image , each part of an imag e generally differs

s u f f ici ently f rom other par ts so tha t the sta tion ar i ty is

not generally valid. Moreover , the LMMSE filtering process

is insensi tive to abrupt changes of image signals. This

results in edge smoothing and contrast reduction. The MAP

f ilter does consi der the nons tat ionar y pro per ties o f ran dom

ima ge fiel ds because i t con ta ins  an ML term and an a pr i o r i

term. Also it is an adaptive processor which depend s on

the local nonstationary properties of imag e signals. The

MAP fi l ter theore tica lly needs more a pr i o r i  knowledge , but

in ac tual implementation, the MAP fil ter uses less a prior i

knowledge than the LMMSE filter. Both filters require

knowledge of the b l u r r i n g  ma tr ix H and mean num ber of

photon counts if but the LMMSE filter also requires the

spectral density of the object 
~~
. It can be in tui tively

concluded that the MAP filter should perform better than

the LMMSE filter for the Poisson noise model.

143

P.

—-5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
s-— . ~~~~~~~~~

‘_ 
5-

~~~~



-5-.-

7.3 Implementation and Experimental Results of the LMMSE

Fil ter and the MAP Fil ter

Our exper imen tal implemen ta t ion of the LMMSE f i l ter is

based on Eq. (7.5) using a fast Fourier transform

al gor i thm. The ensem ble mean ph oton coun ts N and the

object spectral density 
~~ 

are estimated from observed

photon count data. The estimate of can be made by

substituting a similar “prototype ” spec tra l  densi ty

suggested by Cannon in the blind deconvolution process

[7—61 , or estimated by an iteratior. method suggested by

Limb in a method of image r estora tion called spec tral

subtraction (SSIR) [7—7]. Unfortunately, they assume the

noise is linear signal—independent additive. Because the

Poisson noise is signal—dependent , the estimation of 
~~ 

is

different.

The spectral density of the object 
~~ 

is rela ted to

the spectral density of the detected image by

= ~-i- (Th 2
I~ ’(u~v )lI

24f (u~v) (7.9)

whe re 1.1 is ensem ble mean num ber of pho ton coun ts an d W(u ,v)

is the Four i e r  tr a n s f o r m  of the PSF h (x ,y ) . Thus , the

spectral density of the object ~f can be es t ima ted by an

itera t ive method , al thoug h this  involves  an inverse f i l ter

wi th ~~
‘
. We do not investigate the estimation of the

spec tral dens ity 4~. Instead we assume that 
~~~~~ 

is a whi te

4 

- - -  
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spectral density in implcmentating the LMMSE filter . The

white object spectral density assumption extracts more 
P

highe r spatial frequency information such as edge and fine

aetali of the image because the spatial frequency content

ot many i~ agcs falls rapidl y at high spatial frequencies.

For generality, a two—dimensional moving average

blurring point spread function (PSF) is chosen for the

simulation rather than a Gaussian blurring PSF because it

has sinyul ar ities and phase reversals in the frequency

response. Restored images with the LMMSE filter for

dite rent equival ent SNR’ s are illustrated in Fig . 7.1.

The amount of restoration is controlled by the a. The

serious effects of ill—conditioning can be seen in

Fig . 1.1. The restored image gradually blows up as -~ goes

to t-iighe r values , while it becomes more noisy as ~ goes to

lower values. Because the Poisson noise degradation is

v ery pronounced for small values of a and the

ill—con oitioning of the inverse filter is worse at larger

values of ~, implementation of the LMMSE filter is very

sensitive to the equivalent SNR a.

Figures 7.2 and 7.3 show results with the nonlinear

sectioned MAP filter implemented with Newton—Raphson

i terative techniques as before. Figure 7.2 has results
I

with no blur , and Figure 7.3 shows results with linear

blur. The expe r iments for both cases of degradation are
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7.5 Comparisons and Conclusions

The ima ge qua l i ty of the pictures res tore d by the MAP

filter shown in Figs. 7.2 and 7.3 seems superior to those

processed by the LMMSE filter. Images restored by the

LMMSE f i lter have an excessive enhancemen t of Poisson

no ise , especia l ly  for  hi gher values of a . In addition , the

NMSE of the MAP fil ter is lower than that of the LMMSE

filter. The LMMSE filter strongly depends on per fect a

pr io r i know ledge of the objec t and it is very  sensi t ive to

parameters in the filter implementation. Table 7.1 and

Table 7.2 show that the MAP filter has advantages over the

LMMSE filter , particularly at lower (SNR)rms • Fur thermore,

the NMSE of the LMMSE filter does not improve greatly at

increasing (SNR)rms as it does wi th the MAP filter in the

blurring case. A possible explanation for this is that the

LMMSE filter per forms very well for the highe r (SNR) , but

the MAP filter also works better for the lower (SNR) at

which Poisson noise dominates. The disadvantag e is that

the MAP filter is a nonlinear spatial estimate which need s

iterative methods for solution. Thus , the compu tin g time

of the MAP filter is longer than that of the LMMSE filter.

The better performance is achieved at the expense of

- - 
additional computing time.
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Table 7.1

The NMSE for nonbiurring cases

( SN R )  LMNSE f i l t e r  MAP filterrms

0 . 3 6 0 1 2 8 7  0 . 1 5 9 2 7

/3 0.18131 0.11352

/ 10 0 . 0 9 0 1 5 8  0 .0 7 2 8 0 3

0.0449264 0.04180208

Table 7.2

The NMSE for blurrinq cases

(SNR) LMMS E f i l t er MAP filter
___________ — 

0.269397 0.190431

0.1502184 0.0994055

0.1466819 0.054126

vT
~~~ 0.1433148 0.036138

-1
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CHAPTER 8

SUMMARY AND CONCLUSIONS

In this wor k we have modeled pho ton resolved imag e

signals  as a Poisson po in t ran dom process and developed an

optimal spatial restoration filter for the Poisson noise

model.

— Poisson noise is an inherent part of any detected

image and is particularly evident in low level image

signals. Because it results from the discrete random

na ture of quan tum l imi ta tions , it is signal—dependent. The

opt imal spatial f ilter was based on a c r i terion of

max imiz in g the a p~steriori probability density. The

fo rmula tion and solu t ion of the MAP es t imat ion problem have

been presented . It has been found that the overlap—save

sectioning method with a Newton—Raphson iterative solution

is the mos t e f f i c i e n t way of coping wi th the n onl inear i ty

and large d imensionality of the MAP estimation equations.

The implementation of the MAP f i l t e r  wi th  the Poisson noise

a model was made for  both b l u r r i n g  and non—blu r r ing

degradat ion cases. It has been demonstrated that the MAP

filter with the Poisson noise model has improved

performance because the MAP filter can be general ized to
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l ine-ar  or n o n l i n e a r  ima ge models an d to noise models

different from additive Gaussian noise . In addition , the

MAP filter can be a local adaptive processing filter and

can be extended to space—variant blurring . It also has

been shown that modeling images with a nonstationary mean

and stat ionar y v ariance g ives useful a prior i informa t ion

for the MAP filter.

The Cramer—Rao lower bound (CRLB) on the mean—squ are

estimation error of the MAP unbiased estimate was derived

for the Poisson noise mocel. It is likely that the CRLB

may be useful for finding the best suboptimal sectioned MAP

filter. A comparison was made between the LMMSE filter and

the MAP filter with the Poisson noise model. It has been

shown that the quality of the restorco image of the MAP

filter is superior to that of the LMMSE filter by simple

subjective evaluation and by numerical closeness criteria.

Boulter (6—l i has shown that even with large amounts

of blurring present in a detected image , a low noise level

permits almost complete restoration. However , photon

resolved image signals have a very low signal—to—noise

ratio , making it impossible to obtain perfect restoration

fo r  ima ge si gn als suf fer ing f r o m  both bl u r r ing and Po isson

noise .

ihe research pursued in this dissert ation may be

ex tended in several areas. ~ more detailed stud y of an
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optimal local adaptive MAP filter using the local

proper ties of the first and second momen t of image signals

would be of considerable interest. Use of these local

statistics is interesting because image fields are

inheren t ly  nons ta t iona ry.  Another area of practical

importance is to develop a fa s t  a lgor i thm for the MAP

fil ter or a recursive MAP filter for saving computing time

and memory space. A recursive MAP filter would not only

offer computational advantages over a non—recursive filter

but also could be appl ied to space—variant and

nonstationary models. However it is expected that the

recursiv e spatial restoration filter would be very

sensitive to errors in the knowledge of the PSF. Another

intereting area is to apply these results to other types of

pho ton r esolved image s ignal s such as nuclear  med icine ,

med ical imag es, astronomical images and the projection

reconstruction imag e signals (8—3). In these cases, the

image formation system model and data acquisition system

must be carefully modeled to identify the parameters of the

pho ton coun t ing system. Another interesting possibility

- 
I 

- 
for the future is to use Lebedev ’s “composite ” image model

to develop a “mul tica tegory ” spatial MAP filter [8—4~ 8—5).

This model involves multiple categories of random fields in

the image w i th  each category distinguished by its

covariance.  A Gaussian probability density is associated

wi th  the occurence of each ca tegory in the data .  Wi th  th is

4 160
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model , the opt imal estimate is obtained by filtering the

measuremen t da ta for  eac h ca tegory ,  and form ing the

estimate as the weighted sum of all the filter outputs.

The weig ht s are  the a pos te r i o r i  pro bab i l i tes tha t the

poin t is a member of the respective category. The

composite imag e model locally decomposes the image signals ,

and it should be able to model the local nonhomogeneous

information in images.

-

.
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APPENDIX A

POISSON RANDOM NOISE GENERATOR [2-251

For the simula tion of pho ton coun t observa ti on da ta ,

we need an algori thm for generating a sequence of random

numbers f rom a popula tion conformin g to the Poisson

distribution with mean. The solution is to make use of a

random number generator which returns a random variable z

hav ing the uniform distribution h(z) 1 for O<z<l and h(z) 0

for other values of z. If we form xk=z O,zl,z2,...,zk as

the produc t of a sequence of k+l such random v a r i a bles ,

then the lowest value of k which first cause to be less

than or equal to e~~ , wil l  be a ran dom var iable which has a

Poi sson d istr i but ion wi th mean A. A proof of this property

follows. If y and z are independent random variables with

pd f g (y) and h (z) respec tively,  it can be shown that 12—17)

x=yz has pdf

f(x) = 
~ 

g(y)h(~~)~~~ . (A.l)

Let f k(xk) deno te the pdf o f x k. Since f(x0) h(x0) l we

have,  for  x1~ x 0z
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(A.2)

f 1(x 1) -Zfl  X
1 

. ( A . 3 )

By induction , it can be shown that Xk Xk_l zk has pdf

k kfk (xk) = 
(-1) Qri X

k 
. (A.4)

By use of the well known r e c u r s i v e  re la t ion

‘k = ~ ~fl
k x_k 1k-l’  -

where ( A . 5 )
I k

= j 9,n x dx ,

the p r o b a b i l i t y  t h a t  X
k~~~

S less than  e A is

P r (x k <e A ) = 
e

(A.6)

= k! [x~n
kx_k 1k_l i

e

Thus

• Pr (xk<e
X ) = ~~~~~~~~~~~ +P (xk l <e X ) . (A .7)

Using the same method to calculate 
~r(’~k~1i~~~~ 

, we then

have

2

~~~~~~~~~ I 

P k~
(.e~~

) = e~~~
[ k-j - + (k~~l)! 

+ 
~~~~~~~ 

+ 
~

-
~
- + A + ].~ A . 8
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aru  we c o n c l u d e  t h a t  it  x~ <c but  X k l >C , then k obeys

the Poisson aistribution with mean A . This algorithm turns

out to be a very accurate end fast way to generate the

I 
photon counts with given mean image intensities. This

- 

~ lç,o r i t h m  is a lso a v a i l a b l e  in the IMSL subroutine package

(GGPOSH) [2—2b).

1
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APPEN DIX B

NEWTON-RAPHSON ITERATIVE SOLUTION METHOD FOR NONLINEAR

MAP ESTIMATI ON EQUATI ONS

A detailed derivation and procedure for the

Newton—Raphson iterative method is described in [4—4).

Here , we summarize the Newton-Raphson solution of the MAP

estimate equations. From Eq. (4.14), we get N MAP estimate

equations, that is

= (
~~~~

l
~~~~~÷ 2, 

(f
1
-T

1
)+~~~ (f

2-12 ) 0~ (B.la)

giw  = (
~~~~

1)+
~~~

(fj_ l
_ ?

i l
)_
~~

(f
i
_ !

i
) +

~~~
(f i+i

_ !
j+l ) (B.lb)

i = 2,3,4,...,N—].

- 

- g~~(f) = (~~~~ l )+~~~(f N_ l_?
N_ l

)_ 
~~N~~~N

) = O,(B.lc)

2 1where B = ~ r = 1+p • —

~~~~ 

and
l+p 1—p Gf

p is the correlation coefficients between pixels

f is the object vector to be estimated

I is the nonstationary mean vector
Once the problem has been set up as in Eqs.(B.la) :o

I~t
-

/.

4
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(B.lc), the solution procedure is:

- 
Step 1: Choose initial guess of objec t vector

I 

~(k) = f ( O )  
= [! ,!,..~~~~)

T 
(B.2a)

or

f (k) = ~~( O )  = [d l, d2,...,dN ]
T 

(B .2b)

wher e I is the nonstationary mean and d is the noisy

observation data vector. The choice of initial values

I a f f e c ts only the con ver gence ra te because the equa t ions

fina lly converge to a unique set of roots. Here , the

-

I superscript k denotes the kth iterative step

Step 2: Solve the linear system Eq. (B.3) to find the
(k)

solution vector ~(f )

= (B .3)

where
( k )  

— 

Bg~ (k )

~~~~~ 
) — 

~~~~~~~~~~~~~~~ 
) ,

~ (f(k)) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

and incremen tal vec tor

ó (f
~~~

) =

From Eq. (B.1) and ~~~~~~~~~~~~~~~~~~~~ we obtain
:~

.4 - -

• ~I 

- 
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~g1 d1 r
- 

(l +p 2) 
(B.4a)

g1 ~
= ~~~ — ( B . 4 b )

ø L
2 ~

1 =

~
-r— — - —

~~

- - (B.4d)

g
.e

ag d
= — — 

(l+p 2)

These equat ions  can be a r ranged  as a m a t r i x

I
a g2 a g2 ag 2

~ ~.1 , 2 ~

• q~(f (k)) = (B.5)

~~~~~~~~

0 
_____

- - 
- ~~N—l ~~~~~~~~

From Eq. (B.4), we know that the absolute values of
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diagonal entries ar e lar ger than that of off d iagonal

entries. Thus, Eq. (8.3) equations will be converged .

— Step 2 for solving the linear Eq. (B.3) can be

summar izea as follows:

(a) Substitute into Eq. (B.l) and (B.4) to find the

values of ~ (f (k)) and ~ (f
(k)

)

(b) Solve Eq. (B.3) using a linear equation subroutine to

find the solution

Step 3: Update the approximation to the root for the next

iteration

f (k+l) = f (1c )~~~(f(k)) (B.6)

Step 4: Check for possible conver gence to a real root f by

applying the test

~~(f(k)) < c for al l  j  ( B . 7 )

- (k-s-l)
Step ~: IL Eq. (B.7) is true for all i, then I is

taken to be the root. If Eq. (B.7) fails for any i , then

the process is repeated starting from step 2.

In shor t, th is itera tive algor ithm converges very

f a s t , u s u a l l y  in abou t two to th ree steps in our

simula tion.
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