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ABSTRACT

Deterministic coding schemes are presented for the additive white
gaussian noise two user multiple access and broadcast channels with
noiseless feedback. The error probabilities for these schemes approach
zero at a rate which is doubly exponential in block length.

Outer bounds on the capacity region are also obtained for both
channels. The achievable region obtained for the multiple access chan-
nel is shown to coincide with the outer bound, yielding a solution of
the capacity region for this problem. While the achievable region for
the broadcast channel does not coincide with the outer bound , for all
cases except that in which one channel is a physically degraded version
of the other, the achievable region lies outside the set of rates
achievable in the absence of feedback. This is the first case in which
it has been demonstrated that feedback can enlarge the capacity region
of broadcast channels.
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~BAPTER 3.

INTRODUCT XON

1.1 Motivation

Much of the recent work in information theory has involved

multiple user channels • Such configurations seem natural in view of

modern communication environments , for example satellite or data net-

works. In addition the results obtained for multiple user channels are

sufficiently different in character f rom those in single—source

single-destination problems to justify interest in the area from a

purely theoretical standpoint . A reasonably complete survey

of known results in multiple user communication problem s is contained

in (1] .

In a multiple user problem the notion of the capacity of a

channel is extended to that of an admissible rate region , or capacity

region . In a most general setting, each of M data sources wishes to

communicate reliably with each of N data sinks over some given W input

N-output channel. An admissible rate vector is a point {R~~ } in

(the positive orthant of real ME space ) such that the ith transmitter

can communicate to the ~th receiver with arbitrarily small probability

of error for all i ,j at rates R~~ • The closure of all such is

the capacity region of the channel. A further gsn.r aLt sation sometimes

considered is to allow the message s to have s~~~ correlation. That is ,

two or more transmitters might have one common message intended for a

receiver , which they can communicate cooperatively , in addition to a set

of independent message s • The dual situation is also possib1e~ one trans-

— -
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mitter might have a common message intended for all, or some subset of

the receivers , in addition to private messages for each .

Multi—user problems are rare ly considered in such generality.

Two canonical problems of both theoretical and practical significance are

the two user broadcast channel (BC) in which one transmitter wishes

to communicate separate information to two distinct receivers, and the

two user multiple access channel (MAC) in which two transmitters wish

to communicate separate information to one receiver. Admissible rate

regions in these cases are subsets of the positive quadrant of R2.

In this dissertation we extend these models in that we allow

feedback f rom receivers to transmitters. The results of the use of

feedback are interesting since , unlike the single-input single-output

channel, where it is known (32] that feedback does not increase the ca-

pacity of memoryless channels, it has been shown that in the case of

memoryless MAC’s, feedback can increase the capacity region ((12] , (133) .

On the other hand , it has been shown that for at least one broadcast model,

that in which one channel is a physically degraded version of the other ,

feedback does not increase capacity ( (8] , (163). Although El-Gamal in

(83 conjectures that this result holds true for more general broadcast

channels, it will be shown in this dissertation that this conjecture is

false.

The results presented in this dissertation Will involve

deterministic coding schemes for additive white gaussian noise (AlIGN )

multiple user channels with feedback , whose operation require that the

feedback be noiseless . The coding schemes are extensions of the feed-

• a_________ - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - .
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back coding scheme for single user AliGN channels developed by Schalkwijk

and Kailath (2] and Schalkwijk (3], which also required noiseless feed-

back. The noiseless assumption might be well justified for example, in

the case of satellite communication , where the satellite-to-ground link,

inherently power limited, is considerably more error prone than the

reverse link, over which ground stations can operate at much higher power.

The results obtained here are quite interesting in that the codes

are deterministic and reasonably simple to implement , and yield error

rates which approach zero with doubly exponential behavior in block length .

In additio n the data rates achieved both disprove the conjecture men-

tioned above for the BC, and also exceed previously known achievable

rates for the ~WGN MAC. Indeed for this MAC we will show that the set

* of achievable rates coincides with the capacity region.

Before proceeding we summarize two basic multi—user techniques

which will be useful in the sequel. The first is time-sharing. The

time sharing argument is that if two rate pairs (R~,R~) and (R~,R~) are

achievable , any point of the form

R1 I R + ( l-1) R
1 2 (1.1.1)

R2 UR
2
+ (1—a)R

2

is achievable for all ci between 0 end 1. The intermediate point is

achieved by employing a code which achieves (R~ ,R~) for a fraction Ct

of the time, and a code which achieves (R~ ,R~) for the remaining 1-a .

~~e ccnaequ.nc. of the time—sharing argiment is that capacity regions

- - -- .- -- 
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are always convex. Mother is that in cases for which the capacity

region is a polygon, the achievability of the extreme points suffices

to demonstrate the achievability of the entire capacity region. Another

property derivable from time sharing arguments is that if a point (Rj,R )

is achievable, then all points (R1,R2 ) which satisfy

0 < R 1 < R j— — (1.1.2)
0 < R 2 < R 2

are also achievable. Therefore , in general , achieving points on the

boundary (in R2 ) of the achievable region suffices to demonstrate the

achievabi lity of the entire region.

The other technique which is useful is superposition. The

exact form of the superposition argument varies with the specific appli-

cation , but essentially it is as follows: when two independent codewords

are combined by some method appr opriate to the structure of the channel,

one codeword may be decoded by treating the other as noise (that is ,

part of the randomiz ation imparted by the channel). ~~ce this code-

• word is known (at least with high probability) its effect can be removed

by the decoder, and the other codeword detected as though the first were

known. See (43 for a discussion of the superposition arg~mmnt in the

broadcast context.

In the remainder of this chapter we will discuss the two models

to be considered, the nature of previously known results, and the

Schalkwijk-Kzsilath coding scheme. The fundamental information theoretic

I 
__________________ ________ 

___________________ _____________________________________________________ ____________________________
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quantiti es used below are as in Gallager (24) . Non—st andard or ambi-

guous terminology will be defined when necessary.

1.2 Background

1.2.1 The Multiple Access Channel

The MAC was first discussed by Ahlswede [9] and Liao [10] • A

fairly complete discussion generalized to include the presence of

correlated sources was contributed by Slepian and Wolf (11].

Figur e 1.1 shows a genera l discrete time MAC (with dashed lines

representing feedback links) . The channel output variable at time k ,

denote d by 
~k’ is a random function of the kth input letters , x~~ and

X2k, governed by a time-invariant memoryless conditional probability

law p (y x1x2) . The capacity region without feedback is given by

C — co( U K(p) 1 (1.2.1)
pcP

where co( ] denotes closure of the convex hull , K(p) is given by

K(p) — { (R1,p
~): R,~, < I (X 1,Y I X 2

)

A2 < I (x2~T lx 1) (1.2.2)

R1 + A 2 < I ( X1X2 ;Y) )

and P is the set of probability assignments on CX1 X2) for which and

are statisti cally independent . In the sequel we will omit the cue-

tcmaxy but redundant imposition of a lower bound of zero for rates .

I
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Analogous expressions hold for some continuous amplitude

channels with suitable constraints on the inputs . For the additive -

white gaussian noise channel , p(y~x1x2 ) N(x1+x2 ,ci2 ) ,  where p( ) is

in this case a probability density function , resulting from the addition

of an independent gaussian noise variable with variance a2 to the sum

of x1 and x2 . Under the constraint that E(X~] < P~ for i — 1,2 (1.2.1)

and (1.2.2) reduce to

C ~ RrA2 ) : R~~~,~ ’ln(l+-_ ~)

P
2• A2 

— ln (l + —) (1.2.3)
— a2 -

• P + P
L +R ..< 11n(l + 1 2~ j
i ~~— 2  a2

Figure 1.2 shows the capaci ty region for P1/a
2 

— p2/a
2 

— 10. This

result was shown in (25] and (19] .

Superposition arguments can be used to justify the achieva-

bi lity of the entire region in Fig . 1 2 .  Points A and B can be obtained by

allowing only one transmitte r to c~~~~unicate , at capacity. Point C is

cbtainsd by allowing transmitter 1 to transmi t with power P1 using a cods

which i reliably decod.bls in th. pres.ncs of noise with varianc. P2+C~
2 .

Then if ths code letters 
~~~~~ 

(k—] ...,I and i—1 2) are sequence. of

gaussian random variables with variancs P~, reliable transmission of the

message sent by transmitter 1 is possible at rates up to
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— 0 (Y) - H( Y J X 1)

— in 2lTe (P1+P2+02 ) - ~
. in 2 ITe (P

2+02 )

1 P
— in C 3. + ) (1.2.4)

P2•K~
2

~~ce message 1 is decode d, (x~~}~can be subtracted from the received

data. Then message 2 may be reliably decoded at rate s up to

H(YIX1) — H( Y 1X 1X2 )

— in 2ire (P1+02 ) — in 2nea 2 (1.2.5)

P
— 2 ~~in ( l + — ~~ )

2

This argument may be reversed to obtain point D. The remainder of the

capacity region may he achieved by the use of time-sharing.

The addition of feedback , as mentioned above, can enlarge the

capacity region. This result was first shown using an ad hoc scheme

for the noiseless binary erasure MAC by Gaarder and Wolf [12] . This

channel has input alphabets X1 - X2 — 1o ,l}, output alphabet Y — {0 , l, e},

and a channel probability function given by p (0 100) — pCi 11) — p Cal 01) —

p(e J iO) — 1. That is, when the inputs agree, the output equals their

coemon value, and when they disagree an erasure occurs • For this

channel, the region specified by (1.2.2) is

* R,< l
— (1.2.6)

B2 < 1  
-
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< 1.5 bits/transmission (1.2.6)

Roughly, the approach of (12] is as follows: let the transmitters

independently choose sequences of input letters of length N1, where each

letter is equiprobably 0 or 1. They then send these bits over the chan-

nel. On the average N1/2 transmissions will result in erasures • For

each erasure, specifying eithe r transmitter 1’ s or transmitter 2 ’ s bit

will resolve the receiver’s uncertainty. By the use of feedback both

transmitters know which bits were erased , and what transmitter l’s in-

tended bit was for each transmission (transmitter 1 does since he sent

it and transmitter 2 does since it disagreed with his own) . The trans-

aitters must now resolve N1/2 bits of uncertainty in N2 transmissions .

With the trans mitters sending a co~~~n message, the channel is noiseless

with ternary output and quaternary input . It may therefore be used

at rates up to -
~

0(Y) — 

~~~~~ 
bits/transmission 

- 
(1.2.7)

so that bits can be conveyed in

N2 2 log23 transmissions . (1.2.8)

Therefore the rate pair achieved is given by

— A2 — 
~~~~~~~~ 

— .76 bits /trans mission (1.2.9)

- --

~~~~~~~~~~~~
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which lies outside the region given by (1.2.6) .

Since the appearance of (12] , Cover and Leung [13] have found

an achievable region for discrete memoryless MAC ’s with feedback given

by

A — cotu K(p) J (1.2.10 )
pep

where K(p ) is given by

K(p) — {(
~rA2) : R1 < I( X1; Y I X 2U)

< I(X~,YJX ~U) (1.2.11)

Ri+A2 < I(X 3.X2 ;Y) }

and P is the set of joint probability assignments on (U ,X1,X2) for which

p(ux1x2y) — p (u)p(x1~u)p(x2 I u)p(y~x1x2) (1.2.12 )

The region given by (1.2.7) is at least as large as that given by (1.2.2)

since we can always choose U to be a degenerate random variable which

takes on ‘only one value with probability one , in which case (1.2.7)

reduces to (1.2.2) .

When applied to the noiseless bina ry era sure MAC this region

can be shown to include the point CR1, A2~ 
given by

— A
2 — .7911 bits/tran smission (1.2.13)

_ __ _  _ _ _ _  _
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An outer bound based on total cooperation between the transmitters

can be used to show that the maximum achievable R for which = = R

is given by

A — . 7925 bits/t ransmission (1.2.14)

The result obtained by Cover and Leung is thus very close to optimum for

this channel.

In (131, Cover and Leung found an achievable region for the

AWGN MAC with feeedback analogous to that specified by (1.2.7) , given

by the set of all 
~R1’A2~ 

such that

( 1 +  11)j.— 2

1 
____A2 < in ( 1 + —) nate/transmission (1.2.15)

1 P1+P2+2V’~ j~2P1P2

a2

where O<ct~1<l and 
~~ 

— l-a~ for i - 1,2. In figure i.3 the region do-

scribed by (1.2.15) is superimposed on the non—feedb ack capaci ty region

of figure 1.2. Th, region given by (1.2.15) is formally identical to

that given by (1.2.7) when all the random variables have density func-

tions , power constraints are imposed on the inputs , and a “te st encoder ”

of the form shown in figure 1.4 i. employed. This encoder yields the

mutual informations appearing in (1.2.15), and the joint probability

density function of (U,X1,X2SY) is of the form given in (1.2.12).
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We now present a heuristic disct~esion of the coding approach

of (13] and of the encoder of figure 1. 4. The essence of the coding approach

is that during a code block transmitter 1 (T1) uses a fraction of his

power to transmit a “new” message . T2 independently chooses a new mes-

sage , transmitted by a fraction U2 - of his power. Each uses the remaining

- 1-a1 of his power to transmit information known to both transmi tters ,

which is derived from past data . This infor mation is represented by random

variable U in fig. -1. 4 . Using the feedback link , T2 can both perceive what

the receiver has , and decode the new code word sent by T1. Since U is known

by both transmitters and T2 knows his own transmissions, the rate at which

he can reliably decode T1’ s new message is simply the mutual information

between T1 ‘ s input and the receiver ’s output (which is also T2 ‘a output ) ,

given U and X2. The same reasoning applies with T1 and T2 exchanged.

Requiring then that each transmitter decode the other’s new message, we have

that

R < in (1 + ) (1.2.16)i — 2  a 2

The receiver , however , is rather more confused at this point , as

it knows neithe r U nor eithe r of the new code words a priori . We now define

U to be an encoded signal intended to resolve the receiver ’s uncertainty

about the “new” messages of the previous block . Since , by the reasoning

of the previous paragraph , each transmi tter at the end of a block knows both

codewords and the state of the receiver ’ a knowledge , the transmitters can

cooperate to coherently resolve the receiver’ a residual uncertainty about

both previous messages . Random variable U denotes this encoded data. 
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Now this joint codeword is designed to be reliably decodable in the

presence of channel noise , and while treating the encoded new data as

noise . Therefore U can be decoded first by the receiver and its effect

removed, and then the receiver can resolve as much uncertainty about the

new messages as possible from the remaining signal .

We can now obtain the last part of equation (1.2.15) (the first part

is just (1.2.16)) . We note that an upp er bound on the amount of uncertainty

about a message resolved by a single use of a gaussian channe l is given by

~ ln( , where is the total received power , and a2 is the power of

that portion of the received signal which is independent of the message .

This is the standard capacity result for gaussia n noise channels, with the

change that “unwanted” transmitted data are combined with channel noise.

We now consider a block of data and the two new messages associated with it.

Since that portion of the received signal which corrects old data is

decoded and removed, the net signal received is just channel noise plus

the two new codewords , with powers cs1P1 and a2P2 . Since these variables

are independent of each other , the total energy received is just

— + + (1.2.17)

of which a2 is independent of the data . Therefore the uncertainty

removed at the receiver in this stage is bounded by

a P + a P
~ 

i 1 3. .2 2) (1.2.18)1 — 2  a2 -

)
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Further uncertainty is resolved by the U transmissions in the next block .

Since the U data is decoded while treating the superimposed codewords
I-

as noise the effective noise for this code is given by

a2 — a2+ + U2’2 (1.2.19)

The effective total power is just the total received power given by

T ct1~1 + + (1~~~ j+v’~~~,~1F
2
)

2 
+ a2 (l.2.20a)

— P1 + P 2 + 2) 1~2”~?2 + a2 (1.2.201,)

where the first two terms in (1.2.20a) are due to new data, the third term

is due to coherent transmission of U , and the fourth term is additive noise.

The amount of uncertainty resolved , H 2 , is then bounde d by the quantity

1. ~T ~ 
P1+P2+21~j~ 2~çP 2+c12

H2 <~~~ ].n -T —~~~ 1fl 
2 (1.2.21)

e a

The total entropy about the original two messages which can be resolved at

the receiver, which bounds the total data rate is then

P1+P2+2~iç~2P1P2A1 + A2 < H~ + H2 < -~ ln(1+ .) (1 .2 .22)

which is the last part of (1.2.15)

A rigorous proof of the achievability of this region, based on

typical sequence argusents, is provided in (13].
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~n outer bound to the capacity region for MAC’s with feedback

can be obtained by generalizing equation (1.2.2) to encompass all joint

dist ributions on X1,X2 instead of just statistically independent distrib-

utions . Statisti cal dependence between channel letters is made possible

in the feedback case since the tra nsmitters have the common variable rep-

resente d by the feedback data avai lable , on which to base their new trans-

mitte d lette rs. The authors of (13] exploited this possibility implicit-

ly by having the transmitters part ially cooperate in transmitting their

joint message. The region obtained, while larger than the non-feedback

region, is strictly smaller than the outer bound.

In general, it is not clear how the transmitters can cooperate

to achieve the outer bound, or whether it is possible in all cases. In

thapter 2 below, we present a method for the AlIGN case which actually

achieves the outer bound.

1.2 • 2 The Broadcast thannel

The broadcast channel was introduced by Cover [4]. Prior to

the appearance of (4] c~~~unication with more than one receiver was

generally considered in the context of time or frequency division multi-

plexing, in which the transmitter allots part of its total power to each

of any nusber of receivers by dividing its power, in either time or fre-

quency, between signals intended for each receiver. The nature of the

results attainable using this approach is discussed at length in [53 where

it is shown that the superposition approach introduced in [43 allows

simultaneous ccmaunicaticn at rate s outside the region allowed by various
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sharing strategies. Art exception to the use of time sharing in the earlier

• literature is for the case of two users communicating with each other over
L a common channel , discussed in a quite general settin g by Shannon [6).

Figure 1.5a) shows the general two user broadcast channel, with

dashed lines representing feedback links. Figure 1.5b) is the special

case of physically degraded channels • In this dissertation we treat the

problem where the channels are discrete- time additive white gaussian

noise channels, with an average power constraint at the transmitter.

In order to obtain a simple characterization of the capacity

region of a broadcast channel, it has so far (except for special cases,

• e.g. (27]) been necessary to be able to compare the channels with out-

puts Y and Z in some way. Identifying a channel with its output, we

say that 7 and Z satisfy one of the following relations if the correspond-

ing probabilistic or information theoretic relationship is satisfied.

In all cases below, U and X are random variables for which

p (u,x,y,z) — p (u)p(x lu) p (y, z lx ) (1.2.23)

i) Z is a physically degraded version of 1 if p(y,z~x) — p(z ly)p (y Ix l .
That is, Z is independent of X given I.

ii ) Z is a degraded version of I if p (zIx) — ~~ p( z I y)p( y~x) .
y

iii) Z is more noisy than I if I (U;Z) < I (U,Y) .

iv) Z is less capable than I if I (X ,Z) < X(XiY) e
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Note that ii) is sat isfied if and only if there exists a channel of

type i) with the same marginal conditional probabilities p (y Ix) and
p(z lx ) .

Each successive ordering can be shown to be strictly weaker

than the one preceeding it (13 .

The capacity region for each of these orderings has been found

in the absence of feedback . For orderings i) and ii) (forward part by

Bergmans [28] convers e by Gallager (30] ) and iii) (Korner and- Marton [181 )

the capaci ty region is characte rized by the set of all rate triples

(R0 ,R1, R2) where R0 corresp onds to a common message intended for both

receivers , A1 is intended for I and A2 is intended for a, such that

A0 + P2 I (U ;Z)
— 

(1.2.24)
A.1 < I(x;IIu)

where p(u ,x ,y,z) satisfies (1 .2.23) .

Recently El-Gamal (14] has found the capacity region for

ordering iv), given by the set of triples such that

R
o + A 1 + P 2 < I ( X ; Y )

A0 + + A2 < I(X;YIU) + I (U;Z) (1.2.25)

Ro + P 2 < I (u ,Z )

H 
-

The above characterizations exploit the fact that I is better

than Z in some sense and that receiver 1 can use superposition by decoding

_ _ _ _ _ _  _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _  L
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the message intended for receiver 2 , and then decoding his own message.

This approach also leads to the definition of “degraded” message sets

(Korner and Marton (33]), for which receiver 2’s message is required to

be decoda ble by receiver 1, in which case the capacity region ( for a

general BC) is given by

P2 < I(X,IIU)
(1.2.26)

A0 < min(I(UtI),I(U;Z))

Of course under this restriction P2 might as well be zero.
The capacity region for the AlIGN BC has also been found. Cover

(43 found an achievable region given by the set of all rates such that

P. <~~~~1n ( l + ~~~-)
2

nats /tran smission (1.2.27)
1 

_____P2~~~’~ 
l + .c~~~~~

where P is the power constraint , is the additive noise variance at

receiver i (a~)a~), a is between 0 and 1, and ~ — 1 - a. Bergmans (7]

proved the converse • Of course, by extending the notion of degra deduess

appropriately, using integrals instead of matrix product, it is tru.

that all AWGN BC’s are degraded. As in the case of the MAC , the capaci ty

region for the AlIGN BC is formally identical to that for discrete DC’s

The only previously known feedback result for BC’s is El-Game].’ $

that fe dback does not increas, the capacity of physically degraded DC’s

(discrete memoryless (8] and Ai~~ I (16]). In chapter 3 we present a

~J~L 
_ _ _ _ _ _ _
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constructive coding scheme for AlIGN BC’ a which enlarges the achievable

region for cases where the degradedness is non—physical. This is the

first demonstration of the fact that feedback can enlarge the capacity

region of broadcast channels. We will also obtain outer bounds on the

capacity region with feedback, both for discrete memoryless and AlIGN

BC’s. In addition, in Appendix D, we give a new outer bound on the

capacity region of general discrete memoryless BC’ s without feedback

which is tighte r than previously known bounds .

Figure 1.6 is an example of the results of chapter 3, for

— 2P/G~ = 10, and channel outputs I and Z are independent of each

• other given the input. Figure 1.6 includes the time sharing line, the

superposition curve (equation (1.2 .27)),  and the achievable region and

outer bound of chapter 3.

1.2.3 The coding scheme of Schalkwijk and Kailath -

Schalkwijk and Kailath in (2] ~nd Schalkwijk in (31 presented

coding schemes for the AWGN channel with power-limited transmission and

noiseless feedback . Actually two schemes were given; the one in [21 is

suitable for infinite bandwidth channels, and the one in (33 for band-

limited channels. Both schemes are actually presented in a discrete-

time framework, but their bandwidth requirements can be obtained from

sampling theorem considerations. The scheme discussed here is that of [3].

since in the infinite bandwidth case , simultaneous coastunication at capacity

can be achieved for the MAC, and time-sharing generates the entire capaci ty

region for the broadcast channel.

ii ________________________________
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We consider the probl em of communicati ng a random variab le &

— using average—power limited signals over a discrete—time AWGN channel

with instantaneous noiseless feedback . This communication model is sketched

in Fig. 1.7. Although the noiseless assumption is necessary , feedback with

delay can be incorporated with slight modifications . We will communicate

e via a block of N channel transmissions {t
k
}

1hl
~~~~~ Assume that after the

kth transmission the receiver has an estimate of 0 given by

- 

8k 0
~~~S (1,229~

where is a zero mean gaussian r.v. with variance Assume further

that the transmitter knows Then, at the k+15t time , the transmitter

sends

tk+1 
~~~~~~~~ 

(1.2.29)

Note that since t k+l 
P the power constraint is satisfied.

The receiver.’ s k+l5t channel output is tk+l corrupted by an

independent additive zero mean gaussian r • v. with variance 02 , which we

call Then denoting the received valu, by rk+l

-

: 
Ek+1 — tk+l + 5k+1 (1.2. 30.)

We have ass immd that rk+l ii instantaneously available to the

transmitter, so that both transmitter and receiver can form the receiver’s

— -- - -- --- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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new estimate , given by

A A rk+l~k8k+1 
= 0

k 
— 

~~~
k+l

= ~ + 
~k+l (1.2. 3])

°k+l is readily shown to be the maximum likelihood estimate of 0 given

and rk+l. From (1.2.28) and (1.2.31) we see that 
~k+1 

is a linear

combination of and rk÷ls and is available to the transmitter for the
next transmission.

To compute the variance of 
~k+l ’ write

~~+l = 
~~+l - 

rk~~~ rk+l)rk+l

= ak - 
r~~1ç~ (1 .2.32 )

- k+l

Now -

rk+l + Zk+l (1.2.33 )

• 

and 

— i T vç  (1.2.34 )

J — (1 235 )k+l k+l k+l
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Therefore

— - = ak p+a2

— a0 ( _.Q~~ ) k+1 (1.2.36 )

To compute the performance of this scheme, assume that 0 can

take on any one of hell equally spaced values in the interval (4.~1. Then

the spacing between adjacent value s of 0 is given by

1

(1.2.37)h e l l —
After N iterat ions (a code block) , the receiver ’s estimate is given by

0N l 0
~~ ~~N— l ( 1.2.38)

and the message is decoded as the closest allowable value of 0.

Ac error is made if is sufficiently large that an incor-

rect value of 0 is closer to the estimate than the true one. This can

occur only if

l~N—l l > —
~~

— (1.2.39)

so that the probability of error , P ,  is bounded by

< Pr”f l~~_ 1 l > 4— 1 (1.2.40)

The inequality comes from the fact that when the true -value of 0 is at an

end point, noise which drives 0 out of (- 44 does not cause an error.

a 
_ _ _  ______________ 

_ _ _
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- 

- 
Since is a st~m of jointly gaussian r.v.’s, it is gaussian. Therefore

P < 2Q ( ) (1.2.41 )e 2

where Q (x )  is the tail of the gaussian pdf, equal to ~~~~~

f

~~r
2/2~ y

Substituting (1.2.36) into (].2. 4l) yields
2 N-l

— 2Q (2(1J911_1)~~ . (!~ )i ) (1.2.42 )

Since N total iterations are used , if we define R to be the

tr ansmission rate in nets/channel. use , then

11011 — e~~ (1.2.43 )

In addition the capacity of the channel is given by the well—

known result

C 1 p.
~~

2 
nats/ transmission (1.2.44)

SUbstituting ( 1.2.43) in (1.2.42) we obtain

P < 2Q( 1 ,N (C—R)) (1.2 45)e — 
~- ,P+a’l/22,a0 ~~

—-

~~~~~~

(We have replaced e~~—l by e~~ which decreases the argument. Since Q ()

is a mcnotcnic decreasing function, this upper bounds P,.)

For the initial. tr ansmi ssion, 8 is scaled up to the average

transmitted power and sent without coding . That is,
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t0 ~114~~~~~~~ & (1.2.46 )

There fore

and 

r0 8 + (1.2.47 )

— 0 +~~~~- z ~ — e + (1.2.48)

a0 — E(ç~) — 0 a2 
(1.2.49)

Substituting in (1.2. 45) we obtain

1’e 12~~~~~~~~~7 e
N
~~~~ ) (1.2.50)

For any R < C  the argument can be made arbitrarily large by

increasing N. Thus since Q(x) decreases as x increases, the error prob-

ability can be made arbitrarily small. Furthermore, since Q Cx) - ~~~~~~

and ~~~ for N large, then

~e 
exp( — ~~~~~~~~~~~~ (1.2.51)

e~thibiting a doubly e~~onentia1 decrease with block length . This is in

contras t ‘ with non-feedback codes , whose performance is typically singly

e~~cnential in block length.
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An additional point worth mentioning is that this scheme works

for arbitrary zero mean finite variance noise distributions, as long as

the noise is uncorrelated in time , and independent of the data . The

equations giving the noise variances are valid regardles s of the gaussian

assumption -although the expressions for error pr obability are no longer

necessarily true • In [2] it is shown that for the infinite bandwidth

channel, the scheme analogous to the one used here does yield an asymptotical ly

gaussian noise term , hence doubly exponential behavior . No such claim is

made for the finite bandwidth scheme of (3] (i.e. the one discussed here ) .

Singly exponential decay can be demonstrated as follows .

P~~
_ 

~~lS_ 1I> ~~
- (1.2.52)

By ø~ebyshev’ s inequality

02 N-l
— 4~~ jj

P+a2 — 2N(C— p.) (1.2.53)

Therefore , as long as R <C , p
1 can be made arbitrarily small.

Of course, the capacity for non-gaussian channels is in general larger than

that for gaussian channels with the same variance, so the set of rates

achieved by this scheme is sub—optim um for all but gauss ian channels.

I
___ 

L
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CHAPTER 2

AWGN MAC WITH FEEDBACK -

In this chapter the capacity region of the additive white gaussian

noise MAC with feedback (fig. 2.1) is determined. The forward part of the

resul t will be proved constructively , i.e. a dete rministic coding scheme

(similar to the one in Section 1.2.3) will be presented in Section 2.1,

yielding an achievable region. In Section 2.2 an outer bound to the capa-

city region is found by means of a weak converse. In Section 2.3 the two

regions are shown to be equal.

The result obtained is the following.

Theorem 2.1. Define
p

C U {(R
1
,R
2
)~ R1 <

~~~
- ln(l +

0
~
p<l a2

R2 
ln(1 + _

~
.(l_p 2 ))  (2.1.1)

+ ~~~~~~~~ I~R + R  < — l n ( 1 +
1 2 — 2

C is the capacity region of the AWGN MAC with feedback, where transmitter

1 and 2’ s signals {Xjk
} (k — l, . .. , N , i — 1,2) satisfy

N —
~ x~~<NP1 (2. l.2a)

k—l

NP2 (2.1.2b)
k—l

and the additive noise has variance a~
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2.1 ~~~~ with Feedback.

1 -
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2.1 Achievable Region 
*

In Section 2.1.1 we demonstrate the achievability of a certain

rate point denoted (R~,R~). In 2.1.2, superposition arguments are used to

2extend the result of 2.1.1 to a non-empty subset of R

2.1.1 The Point (R~,R)~

Each of the transmitters (T~~ i—l ,2) has a message to com-

municate to the receive r using a code of block length N. At each time k

the transmitters send signals over the forward link. These signals (real

variables) are added, corrupted by additive gaussian noise with zero mean

and variance a2, and received. The receiver instantaneously transmits his

received variable back to both transmitters, so that the kth received vari-

able may be used in the encoding of the k+l5t transmitted data

and X2 k÷l

We assume that after k-i channel uses the receiver has estimates

o~ 01 
and 02 of the form

Ak_i
0 — e + ~1 1 k—l

(2.1.3)
8 — 0  +n2 2 k—i

where 
~~~~~~~~ 

and ak-i are jointly distributed gaussian random variables, with

means zero, variances ak—i and bk,..l respectively , and correlation coeffi-

cient Further assume that the estimates are formed from linear
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Co~~jnatjons of previously received data. Since both transmitters know all

of the previous received data, then T. knows ~~~~~~ Since he also knows

then T
1 

knows and T
2 knows Each also knows the covariance

parameters , since these are statistical averages.

At the kt~ step each transmitter would like to amplify his cor-

rection term (i.e. for and for T
2) and transmit it to the

receiver as in the scheme of Section 1.2.3. In general these terms may be

negatively correlated , so that when added, they can destructively inter-

fere. However, since all parties involved know 
~k 1 ’ one transmitter can

alter the sign of his transmission, so that the transmitted signals are

positively correlated and thus constructively interfere. The receiver

can then use its knowledge of 
~k-1 

to compensate for this sign change.

We require then that

X
lk ~k-1

(2.1.4)

— ~,.rc- 
5~~ ” ’~~~_1) 

~~~~~~

The received data at the kth step is then

rk x1J~
+ x

2k + zk (2.1.5)

- * where is the new AWGN term with variance a2 , independent of all previous

data.



Based on the received data and his previous estimates, the ré-

ceiver forms new estimates of 01 and 02 given by

— + 
ci

— ;~-i - 
rkcl rk (2.1.6)

— 0  + ç  
r
k cC_l

1 -l T kr
k

Similarly,

A
k

0 e + n.. — k ~~ r (2.1.7)2 2 x-l y k

It is easily verified that

i l ,2

— p
1 

+ p
2 + 2lPlP2 Ipk l I + a

(2.1.8)
— iak_l (V5 + 15;IPk l I)

Xkflk 1  I ’bk_l ‘~~~~k-l~ 
c1~ + “~ J~ k-l ’

By defining and b
k~ ~~ and substituting, we obtain 

- —
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a2+P2Cl—p~
= a 

_ _ _ _  (2.1.9a)k-i a2+Pl+P2+2
~~j~~ Jpk l I

02+P (l—p 2
_1)b — b 1 

_ _ _ _  (2.l.9b)k k—i a2+Pl+P2+2v~lcJ pk l ,

Similarly, define C
k 

— 
ci%’ and we obtain

r E  r~~c — c — _ kX l (2.i..9c)k k i
rk

CkBy substituting (2. 1.8) , noting that 
~k 

— 
_ _ _  

, and substituting (2.1.9a)

and (2.l.9b) into (2.i.9c) we obtain

a p k...l — 
sgn (p

= 
_ _ _ _ _ _ _ _ _ _ _  

k 
____________ (2.1.10)k /a2+P1

(l—p~~1
) /a2+P2 (1—p~~1

)

Let us assume that ak-]. — p, where p e (0,1) and p solves the quartic

equation

P(p) a2 (a2+P
1+P2+2/P

1
P

2 p )

— (a2+P
1

(1—p2))  (a2+P
2 

(l— p2 )) (2.1.11)-

We will show in Section 2.3 that this equation also specifies the joint

distribution of E
l that achieves a point on the boundary of ~~~
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outer bound to the capacity region of the AW~~ MAC with feedback, and

use this fact to determine the capacity region . In Appendix A it is

shown that P(p~ has exactly one root in (0 ,1). By squaring (2.1.10)

and subtracting from 1, we obtain

a2 (a2+p
1
+p
2+2v~~~2 ‘~k—1 

I )
1— p2 — Cl — p 2 ) (2.1.12 )k k—i Ca 2+P1(l—p~_1))  (a2+p

2 (l—p ~~1
) )

But the rational term equals one by equation (2.1.11) . Hence

p~ — ~~~~ and ~k—l
1• In (2.1.10) note that if 0<p1~~ <l, then

is strictly less than 
~k—l’ 

and if 
~
1<
~k—l

<0’ then is strictly

greater than 
~k—l 

Therefore if € (0,1), then

— 
~~k—l 

(2.1.13)

The rational term in the iterated version of (2.1.12) is now 1, so that

(2.1.13) holds inductively.

We now describe an initialization procedur, which can achieve

any desired initial correlation (p~+t) . At the _15t epoch , let T1 trane-

mit 

n
v _i — 

~~~~~ 
0
1 

(2.1.14a)

where a is a number to be determined. Let T
2 

transmit

_ _

VT
x — — (2. .14b2 ,—i 2

V~2
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It is true, then, that

— 
a~~i 

~1 - (2.l.l5a)

— 
a~+l ~2 

(2.1.lsb)

th
At the 0 epoch send

— “ —s 6 (2.l.l6a)
1.0 /ctz+i~~~~ 1

— 

/:~~1~~~~
02 (2.l.16b)

It is easily verified that

+ ? 2P
1 

(2.l.l7a)

and

+ 
~~~ 

— 2P
2 (2.1.17b)

-

~~ so that the average power constraints are satisfied.

Now the _1st and 0th received data are
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,~1 1vc v~~~1
r_1 — ~

,

_ 01 +~~~~
. 0

2] 

+ z 1 (2.l.18a)

r0 — 

~,

.._ [ 
~~~~~ 

~l 
+ a~~ 9~ + (2.1.l8b)

The recejver can weight and combine r 1 and r0 
to form the initial estimates

A c& ’~~~1 
—l 

1
- 

[
_.... 

ç~~~~] 

Cr~~ 
- 

~~ 
r~)

— e  ~~~~~~~~~ (2. l.l9a)
1 

(a2—l)/~~ 
1

and

— 
~2 

+ 
0 

— 
] 

~~~~~~~~ 
(2.l.19b)

(a 2—1)J~~2

It can easily be shown that

a — 
(cz2+l) 2a2 ? (2.l.20a)

0 (a2_1) 22p 1

B — 
(a2+l) 2a2 ? (2.i.2~~)0 
(a2

~1)22P
2 

2 

L

and

— ~~~~~~~~~~~~~~ (2.1.20.)
0 (at _1) 2

/ ç 2  
1 2
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Therefore ,

c
= o 

= 
2a 

(2.1.21)o , a+1va b

Any value of p
0 in (0,1) can be obtained by setting

a 1J 2 ~T 1  — (2.1.22)
~~p0

Returning to our problem, we choose a so as to obtain

p0 = p (2 .1 .23)

where p solves P(p ) — o.

Equations (2.1.13) , (2.1.9) and (2.1.10) then become

= (_J )
k
p (2.1.24)

- 
a2 + P2 (l— p 2 )

= ak_l a2+P1+P2+2~5çlPI

1a2 + P~ (l-p
2) 1k

— a 
____ (2 .l .25a)

‘~ [a
2+P1+P2+2v’P1P2 1 9 1 

J

1a2+ P (l—p 2)
b b I 1 I (2.1.25b)k 0 La2+P1~P2+2P’P1P2 IpI 

J

________  __________  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _- ___.
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—— 

S

Define

~. 
________________= — in (2. 1.26a)1 2 a2 + P2 (1—p 2 )

1 ~~~~~~ +2/P P IPI
— — in 2 2 — (2.1.26b )2 2 a2 + P

1
(l—p 2 )

Then

_2kR*
= a

0 
e 1 (2.1.27a)

_2kR*
bk 

= b
0 

e 2 (2.l.27b)

Proceeding as in Section 1.2.3, let O~ equiprobably take on one

of I I e. I I values distributed uniformly between -~~ and ~~. Then for a block

of N transmissions (corresponding to N-2 iterations after the initialization)

R . = in I 0~I I flats/transmission (2.1.28)

The separation between adjacent values of 0~ is

- 
2 (II O~ l I  - 1) 

= 

2~,
NR

i - 1) 2e
MA

i 
(2.1.29)

~e , l ’ the er ror prob ability for message 1 is given by

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _
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P < 2Q (—1 _L 
~~~~~~~e ,l —  NR r2e h a 0

( 2.1.30)

2Q( 1 e~~
Ri. Ri) )

and similarly

P < 2Q( e~~~~
”2~ ) (2.1.31)e,2 — 

2e
2R

2vç

Both of these can be made arbitrarily small by increasing N , so long as

R . < R~’ for i=1,2. These error probabilities, like their counterpart for

the single user scheme in Section 1.2.3, decay to zero in a doubly expo-

nential manner with increasing block length.

By way of a numerical example, consider P
1 

= P
2 

— 10, and a2 — 1

Then the equation P (p)—0 is satisfied by p — .71164, and

= .8905 nats/transmission (2.1.32)

For the scheme described in (13], the largest value of R for

which R
1 

— R2 — R is achievable is given by

R — 4 ln(2 ,J!. + 1 —1) .8643 flats/transmission (2.1.33)
- V a 2

The largest achievable value without feedback is (from equation (1.2.3))
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R — in 21 = .7611 flats/transmission (2.1.34)

2.1.2 Completion of the Achievable Region

We now extend the result of Section 2.1.1. We will describe a

superposition approach which allows communication at all points along a

curve between (R~,R~) of Section 2.1.1 and point D of Section 1.2 (see

Fig. 1.2). By symmetrical arguments, the point (R~,R~) and point C can

be connected. By using the fact that any point in R2 dominated by an

achievable point is in turn achievable , we will have demonstrated the

achievabihity of a region of the form shown in Figure 2.2.

- (1) (2)We allow T
1 
to choose two independent messages, 01 and O

i .

will transmit 0~~~ by means of a code of block length N whose letters

are drawn independently from a zero-mean normal distribution with variance

c*P1(0<a<l) . T
1 

uses the remainder of his power , c*P1(cL=l-a) to participate

in the scheme of Section 2.1.1 while treating the code letters for 0~
1) 

as

noise. T
2 
uses all of his power as in Section 2.1.1.

Since the code letters for ~~~ are independent identically dis-

tributed N (0,csP1), the results of the previous section apply for the detec-

tion of ~~
2) 

and 0 ,  except that a2is replaced by a2 + ce] . and P
1 

is

replaced by ~P1 
everywhere. Equation (2.1.26) then becomes

1 a2+aP1+csP +P +2iãP P~l p I
R~(ct) — In ( 

1 2 1 (2.1.35a)
a2 + + P 2 (1—p 2 )

LI 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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2 

a2+cgP1+P2
(i_p 2)

1 a2+c*p +~p +P2+2LJ~~~~ I~~I
R*(cs) — — ln [ ~ 1 1 2 (2.l.35b)2 2 

a2+aP
1
+~~1

(l—p 2)

— 
a2+P1+P2+2~~~~~~ ( p j

2 
a2+P1

(l_ap 2)

The equation satisfied by Jp ~ (replacing (2.1.11) ) is now

P(c* ,p)=(a2+cgP ) (a2+P1+P2+2~J~~~~~IpI)

— (a2+P
1(1— p2)) (a2+aP

1
+P

2
(l—p 2))

— 0 (2.1.36)

At the end of a block, e~
2) 

and 02 are known with high probability

at the receiver, so that all of the correction terms are also known. Thesc

terms can be subtracted from the received data (which must be stored),

ifaving just the codeword for e1~ and the added channel noise. This code

may be decoded reliably at rates up to

a2+c*P
Rt*(cz) — ln( 

2 

1) (2.1.37)
0

The net result is that T
1 
can communicate at all rates satisfying
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R < R~ (ct) + R**(cg)1 1 
(2.1.38)

— ~ in 
1 2 2r~ 2 I I  

+ 1
2 

a2+c~P1
+P
2
(l—p 2) 2 a

and T2 at rates satisfying

R2 <

a2+P
1
+P

2
+2 ctP1P2 I P I

— ~~ in ( 
— 3 (2.1.39)

02+P1
(l—ap 2)

Since p satisfies equation (2.1.36) , we can solve for the denominator term

in R~(a) and express equation (2.1.38) as

4 in [(l+~~.(1_~p2)J (2.1.40)

Note that when a — 0, P (ct, p) reduces to equation (2.1.11). When

a — 1, P(a,p) becomes

P(l,p) = (a2+P1
) (02+P1+P2)— (a

2+p
1) (a

2+P
1+P2(1—p

2)) (2.1.41)

which has the unique solution p — 0. Denoting the solution of (2.1.11) by

p*, noting that P (cz,p) is continuous in both p and Ct , and is guaranteed (by

Appendix A) to have a unique root in (0,1) , we see that as a varies between

0 and 1, P (and &o) varies continuously between p~ and 0, so that the right

A 
_ _ _ _  

_ _ _  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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hand side of equations (2.1.40) and (2.1.39) vary continuously. At a = 1,

(2.1.40) and (2.1.39) become
I-

1
in (1 + 4 1 (2.1.42a)

4 in L i + I

which is just point D in Figure 1.2.

We can estimate (bound) the overall probability of error for this

approach as follows: Let c
~
,€ be the probabilities that e~

2) and 0
2 

are

decoded incorrectly. By the results of Section 2.1.1 these probabilities

can be driven to zero by making N large. Let be the probability that

is decoded incorrectly given that ~ (2) 
and 02 are decoded correctly,

which also may be made arbitrarily small. Then by the union bound

Pr(error on e~ or e~
2) 

or 02 ] < Pr (error on

+ Pr (err or on 8~
2) ] + Pr (error on (2.1.43)

Now,

(1) (1) (2)Pr(error on 01 3 — Pr (error on 0~ ~~ 
, 02 correct ]

P r (0~
2
~02 correct ] + Pr (error on 0~~~ I$~

2) or 02 incorrectjx

P r (O~
2
~ or 02 incorrect]
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< €~ (i-Pr[0~
2
~ or 02 incorrect]) + Pr (0~

2
~ or 02 incorrect]

= + Pr(0~
2
~ or 0

2 
incorrect) (l~C3)

< €
3 

+ Pr (0
1~

2
~ or 

~2 
incorrect ]

I €1 + €
2 

+ €
3 

(2.1.44)

so that (2.1.43) becomes

Pr (error] < + 2€ + €
3 (2.1.45)

We have shown that we can reliably communicate at all rates ar-

bitrarily close to, but dominated by, a curve in R2 from (R~,R~) given by

equations (2.1.26) and (2.1.11) to point D in Figure 1.2. By reversing the

roles of T
1 
and T

2 on this section we can prove a similar result for a

curve between (Rt,R ~
) and point C in Figure 1.2. The entire region of the

form displayed in Fig. 2 • 2 is thus achievable. Doubly exponential error

decay is no longer guaranteed , since the error probability is now dominated

by the error rate for a non-feedback code , which has singly exponential

behavior .

2.2 Converse

In this section we obtain an outer bound to the capacity region
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C’~ 1.2 nats
nats

,Cic&~it ~ I~ gicrk with Fee~~&k

• 

_  

>~~~A,R )
Cap&~ity “~

I~ gicri wit~~ut• R~ Feedback
£ 

Achievable Regicn of
Cover and Leung

C.

2.2 C~ ecity 1~gicn of the A1~~ l.W~ with Fee~ w* for P = P = 10
1. 2



—58—

of the AWON MAC with feedback. In 2.2.1 we give a single letter charac-

terization of the outer bound for discrete menioryless MAC ’s. In 2.2.2 we

argue that the formal result of 2.2.1 may be applied to the AWGN MAC with

the addition of a power constraint, and evaluate the expression using stan-

dard entropy inequalities.

2.2.1 Outer Bound for Discrete Memoryless MAC’s

Theorem 2.2. The capacity region of a discrete memoryless MAC with feedback

is included in the region

C0 = co ( K(p) ] (2.2.1)

where co [~ ] denotes closure of the convex hull (in R2), and K(p) is given

by

K(p) {
1
,R2~~ R1 < I(Z~;Y 1X2 )

R
2 

< I(X~ ;Y I X 1) (2.2.2)

+ R2 < I (X 1X2 ;Y) }

and P is the set of all joint probability assignments on X1
,X

2 .

The difference between this outer bound and the capacity region

of the MAC without feedback is that the union is carried out over all p (x1 ,x2
)

rather than just product (i .e. ,  independent) distributions.
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The convexificaticn implied by (2.2.1) is really unnecessary since

LS((p) is already convex. To see this, note that the constraints in (2.2.2)P
are concave (Appendix B) and consider any two points in L)K(p) . If they are

contained in a single K(p), then any convex combination is also in K(p)

since each K(p) is by itself convex. Assume then, that they are in dif-

ferent k(p), sa’? (R~,R~)cK (p1) and (R~,R~)cK(p2). Define

(R19R2) — a(R~,R~) + (1—a) (R~,R~) and p — czp1+(i— a)p 2 , where a € [0,1].

Then

— aR~+(l—cg)R~ <aI~~ (X1;YJX 2) + (1—c*)I~~~(X
1; Y f x )

(2.2.3a)

• I I~ (X1; Y I X 2 )

— c*R~+(i—cg)R~ < aI~~(X2 ; Y ( X 1) + (l-ct)I (Z2 ;Y I X 1)

(2.2.3b)

< I~~(X
2
;Y tX

1
)

— a(R ~+R~) + (1-u ) (R~+R~) I ctI~~~(X1
X
2 ;Y) + (1-a) I~~~(X

1
X
2~ Y)

< I (X X ;Y) (2.2.3c)— p 1 2

where the subscripting of the mutual inton ations denote s evaluation at the
appropriate pr obability . The first inequality in each case is by definition
of K (~~ ) and the second is by the concavity of the mutual information s as
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functions of p(x
11x2

). Equation (2.2.3) shows that (R
1
1P
2
) c K (p) C

0
,

so that C is convex. This reasoning does not apply to the MAC without

feedback , since a conxex combinati on of product probabi lities is not

necessarily a product probability. Therefore convexification is necessary

in (1.2.1).

We proceed to prove Theore m 2 • 1. We define the data sources to

independently produce strings of letters drawn from arbi trary discrete

alphabets at rates L~ (i—l ,2) symbols per second. We denote the size of

the i~~ alphabeth by Mi<~. We further ass~~~ that the sources are stationary ,

that is • the joint statistics of any finite string are independent of time

origin . For message !~~‘ 
a string of L letters produced by source i, we de-

fine the quantity

• BL(ai) — ~ H (~~ ) nats /letter (2.2.4)

which is the average per—letter entropy of source i, for a string of L

letters • In general 
~~ 

is a bounded monotonica lly decreasing function

of L [24] .

We consider the problem of transmitting data produced by sources

1 and 2 over a channel using a block code of length N. Assuming the channel

may be used N0 times per second, then

L~~N
L
i 

— (2.2.5)

source letters are produced per code block. The entropy of this string is

given by

_ _ _ _ _  L
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fl(a • )  L~R j(a.) nats (2.2.6)

and the amount of information communicated per channel use (rate ) is given

by

i Li

~ ~~~~~~~ ) ‘  
~~ 

H
L
i(a j ) j~~ 

N~~ (a~ ) flats/transmission (2.2.7)

We now define the encoding and decoding strategies allowed . For

transmitter i, we require that

• X
i k  fj(a, Yk ]~) i—l ,2 k=1,N (2.2.8)

where X
jk is the ith 

transmitter’s channel symbol at time k , f .  is a deter-

ministic function, and is the receiver ’s channel output up to and

including time k—i. ~k 1  
is available to both transmitters via the feed-

back links.

Similarly, define a pair of decoding functions

— g~ (Y) i—L 2 (2.2.9)

which are functions of 1, the vector of N channel outputs.

We will use a per-letter form of Fano ’ s inequality ([24] , Theorem

4.3.2) which states that

~j 
H(g~ I~~ ) 

~ 
L
~ 

ln (M
~~
l) + h(€ ) ~ n~ (c~) nate /letter (2 .2 .10)
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L~
where C. ~ 

~~ :i~ 1 
Pr( a , .  ~ (2.2.1 1)

and

h(x) ~ —x in x — (l—x) in (l—x) (2.2. 12)

and ajj( or ~~~~~) is the ~th 
letter of (or

Now consider source 1. Since — g
1
(Y) we can apply the data

processing theorem (24] to obtain

H (a
1
IY) I H(a1~g1

(Y) ) = H (a
11&1

) (2.2.13)

Also, since conditioning cannot increase entropy,

H(a1~y~a2) < H(a1Iy) < H(a1111) (2.2.14)

Applying (2.2.10) we have

H ( a 1I y a 2 ) < L 1
~1(c1) (2.2.15)

By indep endence ,

H(a 1J a 2 ) — H(a 1) (2.2.16)

Subtracting(2.2.l5) from (2.2.16) we have

Li 
- _ _  

_ _ _ _ _ _ _ _ _ _ _
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‘~-~~i !L~2
) ~~H~~~1) — L1fl1(c1

) (2.2.17)

We bound the left hand side of (2.2.17) as follows:

H(Y~a2) — N~.I~1~2 )

= 
~ ~~

(
~kt?~~~2

) - H (y
k ly k l a a 2) J

k l  1

a) 
= 

k~l 
(H(

~
t I X 2kY~~~

a2) 
_H (Y

k I
1
~~
’!l.~~

)]

b) I 
k~l 

(H (Y
kIX 2k) - H(YkIX lkX2k~~~

1
a
l
a
2
)]

N
C) = 

~ 
(H(Y

kfX~~
)_ H (Yk I X lkX2k

)]
k—i

N
— 

~ 
I (X

1~
; 
~k~~2k~ 

(2.2.18)

Step a) is true since X is a deterministic function of (Y~~
1
a2

),

step b) is true since conditioning cannot increase entropy , and c) follows

f rom the fact that given the current inputs, the outp ut is independen t of

the past .

We can combine (2.2. 17) and (2.2.18) to obtain

Z 1(x
lk

;Tk IX 2k
) > H (a 1) — L~fl1(L1) (2.2.19)

Subtracting both sides from MR1 — H( & 3
)~ we have
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N(R 1 - 
~ 

I (X
k

;Y
~

X
2k

)] I L
1
fl (C1) (2.2.20)

k—l

1
Note that 

~~~~ j~~ 
(equation (2 .2 .5 ) )  which is fixed , so that

N L1

— Nk I l  lk k 2k It f l1(E1) (2.2.21)

A similar series of steps , applie d to source 2 , yields

N
— 

N
k_l 2k k lk ~~ 

n2 (e2 ) (2.2.22)

We also consider the joint source 
~~~~~~ 

As in equation (2.2.13)

H ~~~ -~~ 
~ ~~l~2

1 
~~~~

I H (
~~•~ ~~~~ 

+ 
~~2

I H(a1I~1
) + H (

~~I&2
) (2 .2 .23)

so that

I (a 1~~
;y) > H (a 1~~ ) — L1r11

(c1
) — L2fl2 (c2) (2.2.24)

The left hand side is bounded by

~ ~~i~2 
;Y) — H (!) — H (.!J i1!2~

- 
I
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= I [H(Y
k IY~~~

) - H(YJ[ 1
k~l )]

k—i.

a) 
k—l 

[H 
~~~ 

- H 
~~k I xlkX2]~~~~

a
l
a )]

N
1,) = 

~ 
[H(Y~) - H(Y

k IX lkX2k
) ]

k—i

N
~ 

I (X lkX2k ;Y
k
) (2.2.25)

k—i

where a) follows since conditioning cannot increase entropy, and b) follows

since given inputs, the current output is independent of the past.

Substituting (2.2.25) into (2.2.24) we have

~ 
I (X~~X2~ ;Y~ ) > H ( a 1~~) — L~fl1

(c
1
) — L2fl2(c) (2.2.26)

Subtracting from N(R
1 
+R
2
) = H (a

1
) + H(;) — H(a

1
a2

) (by independence)

• we get

N(R1 + R2 — N k~i 
I (X ~~X

2k
;Yk ) )  I L1

T1~~(€~ ) + L2fl2(C2) (2.2.27)

and 1 2

R
1 

+ R
2 

— 
~ k~l 

]~~ 2 k k  ~~ ~1
(e
1
) + 

~i’~2~~ 2~ (2.2.28)

Now any code of arbitrary block length must yield average (per-

transmission) mutual informations which lie inside C . To see this, assume
0

a block length of N and a join t probability assignment on X~ ,X2 given by



-66-

P(!.1!2) k
xlk~

X2k ’~~L 2~2
) (2.2.29)

In general, the probabilities at any time will depend on the values at all

other times, but the mutual informations of equations (2 .2.21) (2 .2 .22) and

(2.2 .25) depen d only on single—letter probabilities , so this dependenc e

does not affect the average . If we define the “average” probability assign-

ment by

p*(x ,x2) — N k=l 
p (X

lk ?X2k ) (2.2.30)

then we can apply Jensen ’s inequality to (for example) I(X
1;YIX 2

) to obtain

N N 
.

‘

~ 
I(Xlk;Y

k IX 2k) — ~ 
I ( X

lk
;Y
K

IX 2k)

I1~ JX1;Y IX 2) (2.2.31)

since I (X1;YIX 2
) is concave in p (X

1
,X
2
). All of the mutual informations

are concave (Appendix B), so that (2.2.21), (2.2.22) and (2.2.28) become

— I~~ (X1;!IX 2 ) I j j~~fl1(L1) (2.2 .32a )

L
2

— I
~~

(X
2aY IX 1

) < j~~ 
n2 (C2) (2.2.32b )

L2 H
R1 + R2 

— :t
~~ 

(x 1,x2 ;Y) I 
~~~ n1

(c
1
) + ~~~ r~2

(c
2
) (2.2 .32c) 

~~ J=,w.•___-•.-•--.-- —.-- -—



Assume (R
1
R2) is not in C .  Since C0 is a closed convex subset

of R~~, then there exists a vector (X
1
,A
2
) where A11A2 > 0 and A1,A2 are not

both zero, for which

A R + A R > sup ?~, x + )~ X (2.2.33)

(see , for example [26 ]) .  In particular , there is a positive 6 such that for
all (x ,x )cC1 2 o

A R 1 + A2
R2 

- A 1x1 - A 2x2 > 6 > 0 (2.2.34)

• Combining (2 .2 .32 )  and (2.2.34) we have

..

. 

L1 L
2

~~ 
+ A

2 ~~ 
n2~~2 ) > 6 (2.2.35)

Now define

0 < A ~ max (A 1A 2
) <

L1 L
2

0 <1 max ~~~ !~~) < ~

c max (~ 1
,~ 2

)

( h(s) 0 < ~~~ <~~
• h’(~) A S 1

~~1CIl (2.2.36)

‘/



- 

—68— 

— -

~~~~~~~~~~~~

—--

~~~~~~~ 

- —

and

r i(c) ~ ~ln (M1M2 — 1) + h ’ ( C )  . (2.2.37)

Clearly

fl (c) > max(~1
(~1
),~2(€2)) (2.2.38)

and 
. 2L L

6 < A1 ~~ n1(E 1) + A 2 ~~ ~2 (c2)

L
2

I A [ ~j ~ ~1
(c

1
) + ~~ ~ 2

(c
2

)]

< AK(A 1(C1) + n2 (c 2 ) 1

< 2AKfl (C) (2.2.39)

Therefore

n(c) >
~~~j

> 0 (2.2.40)

Since fl(0) — 0 and n(c) is strictly u~ nonotonica lly increasing in C, then

(2.2.40) implies that c is greater than some positive constant , independent ~~—-- -

of block length . Theor em 2.1 is proven .

2 .2 .2  Outer Bound for AWGN MAC’s

We first note that the formal result of Section 2.2.1 is valid for

arbitrary ensembles as long as the various entropies involve can be defined

Li _.

~~

- -

~~

. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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by either using the conventional “absolute ” entropy for discrete random

variables, or the “differential ” entropy defined by

H (x) — -f ° in p(x)p(x)dx (2.2.41)

where p (x) is a probability density function. We follow the standard nota-

tion (e.g. (24]) in using the same symbol for absolute and differential en-

tropy. In going from equation (2.2.17) to (2.2.18) we identified a mutual

information defined as a difference between absolute entropies with one

defined using differential entropies. This step is justified so long as

• the differential entropy is defined (i.e. Y has a density function) and

finite ((243 Section 2.5). ‘i has a density function , since it is a sum of

the inputs and gaussian noise. Its entropy is bounded since

-~~ < 4 in 2nea2 = H (Y
k IX lkX2k) ~ 

H(Y
~~1X~~) ~ 

H(Y~)

I41n~~(”~~ + 
,~

••~•)
2 

4.~~2 )

(2.2.42)

where 02 is the noise varianc e and are the average power constraints.

The fourth term above may involve either X - or X . All of the various
• 1k 2k

• conditioning properties hold in this case.

We also note that the concavity of the mutual information. in

(2.2.2)  allows us to reduce the per-block average energy constraint to a
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per-letter average energy constraint . That is, for any code satisfying

L.
N —

~ NP. i—].,2 (2.2.43)
k=i. - 1

a code using the average joint letter probability law (i.e.
N

P (x z ) — ~ P( X ,x ) )  yields mutual informations which are no smaller£ 2  N k l  ~~
(when average d over the block) , and for which each letter satisfies

Xik I P~ i—1,2, k—i,... ,N 
- 

(2.2.44)

We proceed by fixing a joint probability assignment on (X
1

,X
2
) and

bounding K(p) . Any assignment on (X1,X2 ) has the characteristic para meters

a2 = x < p1 1—  1

= 
I ~~2

x x
1 2  

£ [—1,1] (2.2.45)
1 2

We have assumed , witho ut loss of generality , that and are zero-mean .

By our definition ,

Var(Y) — E(12] — a~ + .a~ + 2a1a2 p + a2 (2.2.46)

where 02 is the additive noise variance . The gaussian distrib ut ion has the
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maxim~~ entropy of all continuous distributions subject to a constraint on
• the variance. Its entropy, for variance s is given by

— 4 ln 2ires. A g(s) flats (2.2.47)

The entropy of I is then bounded by

H(I) I g(Var(Y) ) — g(a~ + a~ + 2a1a2 p + 02 (2.2.48)

Given and X2, the only random component of I is the additive noise,

• which is gaussian, so that

H (Y~X1X2
) = g(a2) (2.2.49)

Now consider the conditional entropy of 1’ given X2 . By definition

H(11x2) — E
~

(H (Y Ix 2
_x

2
)] (2.2.50)

where the expectation is over X2 . Now given X2—x2 the ent ropy of I may be
bounded using (2.2.47) , by

H (1JX
2
.x

2
) < g(Var (Y~x2

—x
2
)) (2.2.51)

The variance of I given X
2—x2 is given by



—72—

var (Y1x2—x2
) (7~ + Var(X

1JX2
=’x
2
) (2.2.52)

since channel noise is independent of both and X2. The second term on

the right hand side of (2.2.52) in turn , is by definition

Var(X
11x 2

’ux
2

) 
~ E~

((x1 — E
~
(X
iIX 2

_x
2
])2lX .

2
I.x
2
] (2.2.53)

where the expectation is over x1 given X2—x2 .

Also the condition al expectation of given X~~x2 is the unique function

of x2 which minimizes the right hand side . To upper bound the expression ,

we approximate the conditional mean by the best linear estimate of X1 given

which is

0~ ~~2 (2 .2.54)

yielding

0
1 2

Var(X
11X2

=x
2
) I Ex((Xi — p x2 ) I~2

1 (2 .2 .55)

Averaging over X
2 we have

E
~
(Var(x

1Ix 2—x2
)] A Var (X 11X 2 )

— E
~

E
~

((x
1 

- p x2
) 2 

I~2
1 

•

2
— ERx1 — ~~— p - x

2
) I

I
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q2 
p202 2

01 
~~~

= a~ (1—p 2 ) (2 .2.56)

Going back to equation (2.2.50) we note that g(x) is concave in x,

so that Jensen ’s inequality yields

H(7Jx2
) A E(H (Y1x2=x2)J

I g(a 2 + E(Var(X
11X 2=x2)])

= g (a2 + Va r (X11X 2
) )

I ~(a2 + a~ (1P 2
)) (2.2.57a)

since g(x) is monotonic in x.

We can exchange X
1 and X2 in the above argument to obtain

H(11x1
) ~~g(a

2 + a~ (1—p 2
)) (2.2.57b)

Substituting (2.2.48, (2.2.49) and (2,2,57) into the definitions
• of mutual information, and observing that

g(x) - g (y) - 4 In (2.2.58)

I ~~~.--~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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equation ( 2 . 2 . 1) — (2 . 2 .2 )  becomes

C0 — K (p) (2.2.59)

where K(p) — { ( R
1
5R
2

) :  R
1 ~4 ln(l + ~~(l_p2))

02

R
2 5.4 ln(i + ~~~( l_p 2 ) )

,, 2 2 •,
1 1+ 02 +  0l02PR + R

2 
I -

~~ ln(l+ ) (2.2.601

and

p — {p(x1,x2 ):  a~ I ~1

ci~~< P 2

Ipi ~. 
1) (2.2.61)

We now observe that a region yielded by a negative correlation p

is included in the corresponding region yielded by p1 . Also, for positive

P. the bounds are all maximized when — P
1 
and 0~ P

2. Equation (2.2.59)-

(2.2.60) may be re—written then , as

Theorem 2.3. An outerbound on the capacity region of the AWGN MAC with

feedback ii given by

I
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C — U K’ (p) (2.2.62)
° 0<p<l

where

K’ (p) = ((R
1

,R
2

) :  R
1 1 4 ln(l + ~~ (l_ p2 ))

1 P2R2 5~~~~ 
ln(l + ~~.(l—p 2 ) )  (2.2.63)

1 ~i. 
+ + 2/P1P2p+ R2 <~~ ln(li )}(2.2.63)

We have replaced K(p) , a function of a probability assignment, by K ’ (p) , a

• function of the correlation coefficient.

Observe that (2.2.63) reduces to (1.2.3) , the capacity region of the

AWGN MAC without feedback , when p — 0, which of course for gaussian (x15x2)

corresponds to independent transmitted signals.

2.3 The Capacity Region of the AWGN MAC With Feedback

We will now show that the achievable region of Section 2.1 and

the outer bound of Tt eorem 2.3 are identical. To simplify notation ‘in the

sequel, we define the following auxiliary quantities:

P
1 

+ 
~2 + 2iP1P2 101

— 1 + (2.3.la)

P
- • 

~~~~ 
— ~ + ~ .u_p 2 ) (2.3.2b)

— 1 + ~~.(l_p 2) - (2.3.3c)

________________________________ 
____________________________________ L -
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Equation (2.2.63) then becomes

K’ (p) = {(R
1
,R
2
): R

1 14 in

R2 I 4 1 n P 3 (p)

R
1 

+ R
2 14 in ~~~~~ 

(2.3.4)

The achievable region is

A — A1U A2 (2.3.5)

where A1 is given by (2.1.39) and (2 .L40) , which become

A1 = o<’d<i { (R
15R2): R

1 ~ 4 in

R2 14 1fl 
~~~~~~~~~~~~~~~ 

(2.3.6)

where p satisfies (2.1.36), which we repeat:

P(a ,p) — (02 + ~~1
p~~~~ p — + aP1+P2 (l—p 2 ) )

— 0 (2.3.7)

is given by an identical expression with P
1 

and P2 , R1 and R2 , and
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and p
8 reversed.

Note that and P8 (p) are monotonically decreasing in

(p > 0) and that 
~~~~ 

is monotonically increasing in p. For a particular

value of p, one of three situations can obtain-. Either 4 in + 4 in P8
is less than, equal to , or greater than 4 in These three cases and

the resulting K’ (p) are sumaarized in Figure 2 • 3.

At this point we make two observations:

I • No set of the type portrayed in Figure 2. 3a) can contribute

any points to ( ‘~ that are not in sets of the types of figures 2. 3b) or c) .

To see this, recall the monotonicity just mentioned. By decreasing p a small

amount, and P8(p) may be increased incrementally while decreases

by a sufficiently small amount so that Figure 2.3b) applies. The resulting

K’ (P) is larger than the original one. Thus any K’(p) of type a) is strictly

included in one of type b) .  We will use this fact to place an upper bound

(strictly less than 1) on the value of p needed to generate the capacity

region.

II. Any point on the boundary of C must be on the boundary of

some K ’ (p) . It clearly cannot be interior to any K ’ ( p ) . That it is ac-

tually in K’ (p) for some p is a consequence of the fact that the distance

from a boundary point to C is zero, and i. the infimum of its distance

from K’(p) as p varies on (0 ,1]. Since the ‘ coordinates defining K’( p) are

continuous functions of p, the distance from a point to K’( p) is also a

continuous function of p. It is a standard result from analysis that the

• extrema of a continuous function on a compact set are achieved in the set.

As a result of this observation , we see that every point on the boundary of
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C0 is included in the set of boundary points of the collection of K’ (p).

We now find the point on the boundary of C which maximizes

R
1 

+ R2, and show that it is just the point (R~,R~) of Section 2.1. The

K’(p) which maximizes R1 + R
2 must be of the type shown in Figure b), since

for any K~(p):

+ 
~2 1 4 in + 4 in P

8
(p) (2.3 Ba)

and

+ R2 .5.4 in ~~~~ 
(2.3.8b)

The first bound decreases with p; the second increases. The maximum must

then occur when they are equal. This equality, however, requires that

4 in ~~~~ + 4 in ~~~~ = 4 in (2.3.9)

or

= 
~~~~~ 

(2.3.10)

But this is precisely equation (2.1.11) (or (2.1.36) evaluated at c~ = 0),

which defines the correlation coeff icient obtained by the scheme of Section

2.1. 1. Since the solution to (2.1.11) is unique (Appendix A ) ,  our coding

schea . yields the appropriate correlation between X1 and X2 . The point

chi vsd by this scheme is (from (2.3.6) with a — 0)

__________
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1 
_____— in p (p) (2.3.11)

By substituting 
~~~~~~~~~ 

for we have

= 4 ln 
~~~~ 

(2.3.12)

so that (R~,R~) coincides with the upper right hand corner of K’~p) for the

p (which we will call p*) which yields the maximum (R,3~+R2), and thus is

that extremizing point .

Now consider a point on the boundary of C
0 for which R

1 
> R~. By ob-

servation II above, any such point must lie on the boundary of K(p’) for

some p ’. Also p’< p~ since 
~~~~ 

is strictly monotonically decreasing

with p (observation I). Finding this boundary point for some fixed R~ is

equivalent to maximizing R
2 as a function of R~. In this light it is clear

that the maximum (and hence the boundary point) occurs at the corner labelled

P in Figure 2.3.c), and thus that p ’ must be such that 4 ln ~~~~~ = R~.

If p ’ were larger, then R~ would not be achievable in K(p’), and if p ’

were smaller, then 
~~~~~ 

is diminished, so that a smaller R
2 (bounded by

4 in ~~~~~ - Rt) would result.

These considerations lead us to conclude that the boundary of

Cd is generated by the corners of the basic sets ~ (P) of type C) as p varies

between 0 and ~~~~~ At P — 0 we have not reached the positive axes, but the

time sharing argument applied to the points

H 
~.R

1~~~~~
ln(1 +~~~)

H ~

-•

~~~

-

~~~

- 

~~~~~~~~~~~~~~~

- - -

~~~~~~~~~~ ~~~~~~~ 

— - -  

~~~~~~~~~~~~~~~~~~~ 

- -- “_ ‘ . ‘

~~~~~~~~~~~~~~~~~~~
~ “
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P +P
R2 — 4 ln(l + 1 

~~ 
— R

1 (2.3.13)

generated at p — 0

P
and R

1 
— 4 ln(l + —4)

R
2 

— 0 (2.3.14)

generated by not using Transmitter 2 , suffices to connect with the R1 axis,

and a similar argument connects with the R2 axis.

Now a point on the boundary of C for which R~ > R~ is generated

by p’ < p*, which is given by

R~ — 4 ln(i + ~~~(1_p~ 2 ) (2.3 .15)

The value of R2 (call R~) corresponding to this value of p ’,

at the corner P , is given by

— 4 ~~ - R~

1 
______— in 
~ ~ 

(2.3.16)

Now consider region A
1
. From equation (2.3.6) we see that if a

p such that -~/~p — p ’ can be obtained as a solution to (2.3.7) , then

(R~ ,R~) can be obtained . As noted in Section 2. 1.2 at a — 0,

____________________ ——-- —-*-- -
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= p = p*, and at a — 1, (obviously) ~/~p = 0. The function V~ p is con-

tinuous in a and p. Thus , if p (as the solution of ( 2 . 3 . 7 ) )  is a continuo us

function of a, then au values of v’~ p between 0 and p* can be achieved and,

in particular any (R~ ,R~) on the boundary of C for which R~ > R~ is at-

tained in A
1. The continuity of p as a function of a is a straightforward

consequence of the continuity of P(a,p) in both a and p, and the fact that

a unique root exists for all a.

The desired result (Theorem 2.1) has been proven, that

C0 = A1u A2 (2.3.17)

and the capacity region is given by C0. We refer back to Figure 2.2 for an

example of the capacity region .

2.4 Capacity Region with Correlated Messages and Feedback

In (11] Slepian and Wolf obtained the capacity region for the

discrete memoryless MAC with messages which have a conm~on part. That is ,

in addition to two private messages a
1 
and a2, known only by T1 and T2 res-

pectively , there i. a comeon message ~~, known to both . Siepian and Wolf

showed, defining

R
i 

— ~ H(~~) i—O ,l,2 (2.4.1)

that the region

H
A 

- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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C
~— ~~ { LJ~R(p) } (2.4.2)

where

R (p )  = {(R
1

,R
2
): R

1 •5. I(X1;YIX 2U)

R
2 5. I(X2;YIx 1U)

+ R2 I I (X 1X2 ;Y I U )

+ R
1 

+ R2 I I(X 1X2 ; Y) } (2.4.3)

• and

P C u x 1~c2
y) = p (u)p (x

1~
u)p(x

2~
u)p(y~x1

x
2
)} (2.4.4)

is the capacity region. (Actually they proved the weaker result that outside
C Pr(a. ~ L I  is bounded away from zero as opposed to a per—letter converse.)

P is the set of joint input-output probabilities where U + (X1,X2)+Y

form a Markov chain in that order, and (X1X2 ) are conditionally indep endent

given u. We will now extend the results of Sections 2.1 and 2.2 appropriate-

ly to this case . We will show that if P above is replaced by P ’ where

p1 — {p( ~~~~
1

~c
2

y — p(u)p( x1x2 l u ) p( y I x 1x2) } (2 .4.5)

that

~~
r co{ I~~, R (p) } (2.4.6)
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is an outer bound to the capacity region, and that it is achievable for

gaussian channels.

To derive the outer bound we will make the following definition ; a1 and

A2 are as in Section 2.3 , and is the conunon message. The encoder out-

puts are then

— f1(a1~~~~~ ) (2.4.7a)

X
2k — f2 (~2~~~~~

1
) (2.4.7b)

Define

U - ( a Y ~~~~) (2.4.8)

Now, analogous to equation 2.2.17, we have

> RC a1
) — L

1
fl1(E1) (2.4.9)

Also R ( Y I ~~~~~~ ) - 
~ 

E(Y
k IY~~~~o~~

)

k—i

a) — ~ H (Y k I X 2kYk l )
k—I.

N
b) 

~~~~~k’~~~~k~2~

N
c) <

~~ 
H (Y

k I X 2kUk
) (2.4.10)

k—3. 
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- - -

where a) is true when x
2k 

is a deterministic function of (!
k_1

, a~~

b) is by definition of t
~k ’ and c) follows from the fact that conditioning

does not increase entropy .

Similarly,

H(Y f~~~2a1
) — ~ H(Yk

I?1~~~~~l
)

k—i

N k-la) = 
~ 
H(Y IX lkX

J~~ ~~j2a1)
k—i

N
b) = 

~ 
H (Y~~1X 1~X2~ )k=1

= 

~~~~~~~~~~~~~~~~~~ 
4 .  (2.4.11)

where a) follows from the deterministic encoders and b) from the fact that

the output is independent of the past, given current inputs.

(2.4.10) and (2.4.11) may be substituted into (2.4.9) to obtain

~ 
I (X

~~
;Yk I X 2kUk

) 
~~~~~~~ 

- L1
~~~(c1

) (2.4. 12)
k—i

We can obtain a similar expression involving B (as) .  The bound

on R1 + R2 follows by similarly showing that

I(a 1a2 ;Y~~~ ) < 
~ 

I(X lk
X

2k ;Y
k J U k

) (2.4.13)
• k—i

and the bound on R0 + R1 + R2 from
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I) = H (Y) — H (!I~~A1A2 )

.5.. ~ 
I(X~~X2~

;Y~) (2.4.14)

k=l

All of the subseq uent step s of the derivation of Section 3.2.1

are the same. The sums in (2.4.12), (2.4.13) and (2.4.14) can be reduced

to single letter quantities by convexity considerations and the fact that

U
k 

-
~~ 

(X
lk

,X
k

) + 

~k is a Markov chain.

To show that the region defined by (2.4.6) is achievable for the

AWGN case we use the following superposition: let be mapped into a code-

word of block Length N, whose letters are drawn independent identically dis-

tributed from a gaussian distribution l’1(O ,l). Then let T
1 
amplify the

codeword by /a
1
P
1 

and T
2 

by p’a2P2 where 0 1 < 1. The transmitters then

use the remainder of their powers (a.~,P ., i=1,2) to cooperate as in Section

2.1, where the correction terms are computed at the transmitters by assuming

that the receiver will correctly decode ~~~~~~. At the end of a block the de-

coder then subtracts the superimposed codeword and proceeds as in Section

2.1.2. Clearly this scheme can achieve any R
0 
in the range

(vç + 1~
•_
)
2

0 1 R
0 

I ~ ln(i + ) (2.4.15)

and a derivation similar to the one in 2.2.2 and 2 .3 shows that the inter-

section of the achievable region with any plane of the form R
0 

= R~ coincides

with the intersection of the outer bound with that plane . 
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CHAPTER 3

AWGN BROADCAST CHANNEL WITH FEEDBACK

In this chapter we introduce a constructive deterministic

feedback coding scheme for the AWGN BC with feedback , shown in Figure

3.1. The noise variables are independ ent of each other , uncorrela ted in

time, and independent of the tran smitte d data . The variance of Wk ~the

comeon noise) is a2 , the variance of wik (the separate noise at receiver
5 output ) is a~ . We assume that the average transmitted power is limited

to NP per block of N signals . Note that by setting a2 (or a~) to zero,
• our model includes as a special case the AWGN BC with independ ent (or

physically degraded) channels .

As mentioned in Section 1.2.2 it has been shown that for both

the discrete memoryless (8] and AWGN j l6] BC, feedback does not enlarge

the capacity region if one channel is a physically degraded version of

the other. The results of this chapter will show that such is not the
case when the channels are not physically degraded~, at least for the

A~~N case. Since all AW~ 1 broadcast channels are degraded (that is,
thsre exists a cascade chann•1 with the same marginal probability density
functions , canditicned an th. input), th. result of (8] and (16] will have

- 
2 been shown to fail to apply to a class of (continuous) degrade d channels .

The contents of this chapte r paral lel those of thapt e~ 2.

In Section 3.1 we pres.nt the f edback coding scheme, and obtain an

expression for an achievabl, region. In Section 3 • 2 we Obtain first
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Wik 1
Wk 

+ 
Yk 

~~ 
Receiver1

~~~~~~nsm itter 1
Xk + 

~ Receiver

1 

L1;
Wk~~~

*J(Ofi )

WIk LAJ (04 )

W2k ’ M  (o,~~)

3.1 AW~1 Broadcast Channel. with Feedbaclc.
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an outer bound for the capacity region of arbitrary discrete memoryless

BC’ a with feedback , and then extend this result to the AWGN case • In

Section 3.3 we will compare the achievable regions and outer bounds for

some examples.

3.1 Achievable Region

For the problem we are considering, a single transmitter wishes

to c~~~unicate two messages , 0
~ and O2~ to two separate receivers using

the feedback channel of Figure 3.1. The transmitter will use a single

block of N transmissions to co~smunicate both messages. We assume that

the feeedback links are noiseless and delayless. In this section the

• outputs and in Figure 3.1 are denoted by r~~ and r
2k for the sake

of notational canpactness.

-Assume that after k-i transmissions the receivers have their

respective estimates of and 02 in the form

— + ci
‘k—i02

and are jointly gaussian with zero means, variances a~~1 and

and correlation coefficient 
~k • As in the case of the MAC, we assume

that the estimates are deterministic functi ons of the previously received

data , and are therefore available to the transmitter. Since the transmit-

tar also biows the messages, it can form and fl.~~1.
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For the kth transmission , the transmitter forms a linear corn-

bination of and 
~k-l ’ normalizes it to average power P, and transmits

it. Let the transmitted signal x.x be

~ c-1 ~k-l
— v~ ~ci. ~~~~~~~~ 

g ~~~~~~~~~~~~~ (3.1.2)

where V is the mean squared value of the term in square brackets, given

by

V — 1 + g2 
+ 2 g I p~~1I (3.1.3)

The paramete r g £ (0 ,oo) may be varied to allot a varying proportion of

the available transmitter power to cometunication with receiver one vs.

receiver two. It is readily seen that with V chosen as above, the va-

riance of Xk (i.e., the transmitted power) is P.

The receivers then receive noisy versions of x.~
, where

(i—l ,2), which is the ith receiver’s channel output at the kth time, is

given by

rIJC x)C + wk + w SJC (3.1.4)

where wk is the comeon noise with variance a2 , and Wik is the separate

noise at receiver L, with variance a~.

The receivers then form their new estimates of the appropriate

messages, given by
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k-i 
________

Zlk

(3.1.5)

‘k k-i rjj~1~~~102 = 8 2 Z~2k

Using the above, it is easy to verify that for i = 1,2

rik P + ~ + aj

— + ~~~~~~~ (3.1.6)

(g + I P k—lI )

From equation (3.1.5) we see that

r
~~~~~ l— c—1 - -.~~ r~~ (3.1.7a)
rlk

= Tlk_l - •=,•
~~~~~

•• r~~ (3.1.7b)

These may be squared and averaged to obtain the new variances given by

a2+cy~+ g2 (l-p~_1)
— ak l  a2+a~+p

(3.1.8)

~ (l—p~~1)
b -b• k k-i a2+a~+p 

~~~~~~~~~ — - - —~~~-~~~~~~~ - -~~~~- — -.- -
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Similarly , if we define c
k 

= and T (
~~~~ k_l ) C

~~5~~k_l ) , then we

can multiply (3.i.7a) and (3.l.7b), take expected values , and obtain

i 1 nlkr2kC
k 

= Ck_l — T( + - —~ _
~~~ ) (3.1.9)

rlk “2k “1k “2k

Also

“lk”2k 
= ~ + ~ 2 ‘

~3.i.10)

By substituting (3.1.6) and (3.1.10) into (3.1.9) and using the definition

— 

~~~~~ ~k’ we obtain the following recursive expression for

— 

(a2Z+4a~
)pk_l

_ ~j L g sgn(P~_ 1) (1—p~~1) 
(3.1.11)k

where

— P a 2+a~+ci~

— (p.~~~
2.~~~~

2 ) (p+a2+a2)
1 

(3.1.12)
N
1 

— a2+a~+ ~ g
2 (l—p~~1)

N2 — a2+a~+ ~ 
(l—p~~1)

As in the case of (2.1.10) for the MAC, equation (3.1.11) may

be shown to have a solution in the sense that there exists a p c (0 ,1]

such that j~ — p, then — —p. To see this , one can substitute
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into (3.1.11) and square . The resulting sixth—orde r poly—

nomial in is of opposite sign at 
~k-1~

0 and 
~k 1~

1’ and therefore

has at least one solution in that range • We have not been able to

determine whether the resulting value of p is unique. The values of

p for the numerical examples in Section 3.3 were obtained by iterating

(3.1 • 11) . In all cases , the iterations ccnvsrged to an appropriate

value , regardless of the starting point , so that we suspect that the

solution is unique.

Given the stable value of p, squations (3.1.11) and (3.1.8)

become

(~•]~) kp (3.1.13)

1c2+a~+ ~ g2 (i_p 2 )~ k
— a I I (3.l.14a)0 1 p+ca+a~

1a2+c2+ . (t—p2)1 k
b — b I (3.l.14b)k 0

L~~~~~2~~ 2 J
and the initialization may be carried out in a manner analogous to that

in Section 2.1. Th, error probability analy sis is identical to that

of Section 2.1 and is not repeated. The result is that with p selected

as the (largest if not unique) stable solution of (3.1.11) , then all

rates such that
• -S

R1 < R ~ Cg) _ }l n  (3.1.15)
g (L—p 2)
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P+a2+a2
R~ < R~ (g) 2 (3.1.15)

~ 2 2 2 P , 2a +a2+ ~

are achievable with error probabilities which decay doubly exponentially

with block length, as for the MAC.

The solutions obtained in this section are evaluated nui~~rically

for some examples in Section 3 • 3.

3 • 2 Outer Bound to the Capacity Region

In this section we derive a simple expression for an outer bound

to the capacity region of the broadcast channel with feedback . In

Section 3.2.1 we derive a bonnd’ for discrete memoryless channels , and

in 3.2 .2 for AWGN channels . In this section we revert to the notation of

Figure 3.1, in that the channel outputs are denoted by 7 and Z.

3.2.1 Outer Bound for Discrete Memoxyless_BC’s

We prove the following result

Theorem 3.1 Define

C1 — U {(R 1,R2) :  R~ < I (X ,YZ IU )
peP 

— (3.2.1)
B2 < I (U ,Z )  I

C2 - ~~ p{(P 1~B2) :  R~ 1W:!) 
(3.2.2)

B2 < I (X,!Z I U) }

______- —_ _ _ _ _ _ _ _ _ _  -~~-
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where

P — {p(u,x,y,z) — p (u)p(xJu)p(yz~x)) (3.2.3)

Then the capacity region C of the discrete moryless BC with feedback

satisfies

C C C1flC2 (3.2.4)

To prove this result we introduce the channel shown in Figure 3.2.

It is identical to that of Figure l.5a) except that receiver one knows

receiver two’s output. Any rate pair achievable for the channel of Figure

1.5a) must be achievable for that of Figure 3.2,  since receiver one can

always ignore Z . Therefore , denoting the capacity region of the channel in

Figure 3.2 by C’ ,

C C C’ (3.2.5)

But the channel of Figure 3.2 is physically degraded , since if we

consider (!,Z) to be receiver cne~e channel output, then receiver two’s

output , Z , is trivially independent of the channel input given (T ,Z ) .

The result of (8J then applies , that is, feedback does not .n]arg. 3
the capacity regice in Figure 3.2. Therefore

C’ — U ((R
1,R~) s  R1 < I(X ,!ZIU)

peP (3.2.~ )
I

_ _ _  -
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3.2 Aucjuente d &o~ 3caat channel .



— (3.2.6 )

Therefore Cc C1. By reversing the direction of the add ed link in Figure

3.2 and exchanging the role s of receivers one and two, it follows that

CC C2. Equation (3.2.4) follows imeediate ly.
I

In Appendix D we apply the technique of this section to general

BC’s without feedback , to obtain an outer bound to the capacity region of

those channels.

3.2.2 Outer Bound for the AW(~~ BC with Feedback

In Section 2.2.2 we applied the foreal result of Section 2.2.1

directly to obtain a single letter characterization of the outer bound

on the capacity region of the AWGN MAC with feedback . We used the fact

that the differential entropy of the channel outp ut was well-defined and

bounded and that the resulting information theoretic constraints were

concave in the input probability assignment . For broadcast channels

where neithe r channe l is noiseless , the use of differential entr opies is

still justified, but since I (U;Z) is not concave in p(u ,x) we cannot

directly apply the single letter expression of Section 3.2.1. In (16) ,

El-Gamal obtained the result that feedback does not increase the capacity

of physically degraded M~ N BC’s using a method similar to that used by

B r g ~a .  (7) for the cas• without feedback. Furt hermo re, El-Game]. showed

that in the case of physical degrade~~.ss, allowing the better receiver .

to se. both channel outp uts does not increase capacity , regardless of

- -a —-- --- . --- . — - -
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whethe r there is feedback.

Using the results of (16], we will prove the following :

Theorem 3 • 2 For the channel of Figure 3.1, with

~~~~~~~~ NP
k—i -

a2

~~~~~~ a~ ~k— l, . . .N)  (3.2 .7)

the capacity region satisfies

C C C1flC2 (3.2 .8)

where

C — U ~ (R.1,R2) :  R1 <~~~ 1n ( l + ~~~~ )
1 O<a<l—— (3.2.9a )

~~~4 — 2
2

C2 - ~~~~~~~~~~~~ 
R~ <~~~ln (l +~~~~~~~~~)

— (3.2.9b )

and . .

“a2
a2 — Q 2~ 1 2 (3.2.10)

S
1 2  -

L _ ______________
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To show this result we consider the AWGN version of Figure 3.2.

Ass~~~ a coding strategy which allows reliable coumum icaticn at scee

rat e pair. Then consider the problem where receiver one ’s outp ut is

— 

0~Z~+a~!~ 
, Z~ ) (3.2.11)

a~+ a2

The mapping between (Sk~Zx) and (Yk,Zk) is invertible (as long as

so that any code involving an encoder of the form

— f(e 1,e2 ,Yk_l ,zk~l) (3.2.1.2 )

and decoders

01 — ~~~~~~~
(3.2.13)

— g2 (~ )

can be a~pli.d to the new channel by substituting the appropriate func-

tional. dspendance on S,Z for every occurrence of Y,Z. The code, when

applied to the new channel, will have the same prcbability of error as

on the old d~annel. The channels represented by ((T ,Z ), Z) and ((S ,Z) , z)

are .quival.nt . We now show that is statistically independent of

given k ~ that th. channel (S,Z) is physically degraded , and f roe the

result in (16) , has the s capacity ((S ,Z ) , Z) with feedback .

Mndem Variabl. Ik -may be writt.n as Zk Sk + 
~~~~~~~

_____________ --
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We need show that (Zk 
- sk ) is statistically independent of L

~ 
given

S.d . But j ~

~~~~ +~~
2
~~

Zk_S.x
_ X

k + W k + W 2k
_ ( X

k + w k + l 2 k 2l k )

02 1 2

— 
2 (W — W ) (3.2.14)

02+02 2k 1k
1 2

Since the noises are independent of the signal , Zk~Sk is independent of

X,~. Since the noises are independent of each other, Zk~Sk is indepen-

dent of Wk . As for the remainde r of 
~~~

E [w —W 2 1 k  1 2k  1 — o (3.2.15 )2k 1k 
02+ 0 2 J
1 2

Since both terms in (3.2.15) are gaussian , and they are uncorrelated,

they are independent . Therefore Zk
_S

k is indep endent of both and

and hence independent of. L~ 
given S.d . Z is therefore a physically

degraded version of S and the result of (16] applies . The capaci ty

region desired is therefore the capacity region of the channel with

outputs S and Z with no feedback . sy definitio n of S, - -

02W + 0 2W
& ~~~~~~~~~~~~~~~~~~~~ + ~~~~~ 2 1 k  (3.2.16 )a a k 2 2

1 2

so that the channel from X to S is an MK2~ channel with noise variance 
S .

~~2O 2

02 
— 02+ (3.2.17)

1 2
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The channel from X to Z is gaussian with noise variance 02+ a~. Equation

(1.2.27) applies, with the appropriate noise variances inserted, and this

yields equation (3.2.9a ) . A symmetric argument applies in obtai ning

(3.2.9b), and Theorem 3.2 follows.

In connection with the AWGN model of Figure 3.2 , we have obtained

a coding approach suited to this model which employs superposition, made

possible in this case since receiver one can form receiver two’ s estimate.

This coding scheme achieves all points in C1, and is discussed in Appendix

C.

3.3 Comparison of Inner and Outer Bounds

In this section we present some numerical results for achiev-

able and converse regions for various realizations of Figure 3.1. In the

subsections to follow, we will discuss degra ded channels , independent

channels, and some intermediate cases .

3.3.1. Degraded Channels

By setting 4 — 0 in Figure 3.1 we obtain the physically

degraded M~N BC. For this model, C1 is specified by

(3.3.1)

)
— 2
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which is just the standard superposition region . C2 becomes

R1 < 11n ( 1+— 2
- 

(3.3. 2)

R2 <~~~ifl (l + -~!~)

The region described by (3 .3.2 )  is the triangle in R2 bounded by the

positive axes and a straight line from (C1,0) to (0 ,C1) ,  where

c1 — in (1 + (3 .3 .3 )

It is an easy matter to show that C1c C2.
In Figure 3.3 we plot the achievable region of Section 3.1 and

the capacity region represente d by (3.3. 1) for P l 0 , and 02,. 4.1.

The achievable region is obtained by varying g in equation (3.1.15) , and

the capacity region by varying a in (3.3 • 2 ) .  Observe that the coding

scheme of Section 3.1 is sub-opt imal in that the entire capaci ty region

is not achieved. This result is somewhat disconcerting in view of the

optiaal ity of the related scheme for the MAC , as demonstrated in Section

2.3.

3.3.2 Channels with Independent Noise

By setting a2_ 0 in Figure 3.]. , we obtain a BC with indep endent

noises at the receiver,. The region C1 is then characterized by

_ _ _
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C1 1.2nats
C2 .90 flats

Eoundazy of Capacity Region
C
2 .

b I~chievable Region

R2 Tine-Sharing

S.
S.

S.

1

3.3 Achievable Region ai~ Capacity Region for Pbysically Degraded
A)Q~ BC with Fee1~ack ~~~ P 10, a’ 1 ar~~ a~ — 1.
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R~~<~~.in (l +~~~2 )

(3.3.4)

R2 < - ~~1n (l + ~~aP +

where — 4a~/ C4+a~) .  The region C2 is described by the same expression

with 1 and 2 exchanged.

Unlike the physically degraded case , where C1C C 2, we can easily

see that (0 ,C2
) and (C* ,O) are on the boundary of C1, and (C1,O)an d (0 ,C*)

are on the boundary of C2. C1 is the single user capacity to the ith receiver ,

and C~ is the capacity to a re ceiver with noise variance CY~~. Since for

4 and >0 , a~ < min (4,a~) ,  then (C5 ,0) is outside of C2 and (0 ,C*) j~

outside of C1, so that neither region includes the other. Figures 3.4

to 3.6 show the achievable regions and outer bounds for equal noise cases ,

for — P/cy~ — 1, 10, and 100, respectively. Note that the achievable

regions and oute r bounds are quite close for P/0~ = 10 and 100 , but that

this is not the case for low signal to noise ratios . In all of these

cases the superposition region, which represents the non-feedback capacity

region , is just the time sharing region , as can be seen from the super-

position equations which become, for 4 — — 02 ,

c}1n (l +~~~~)

(3.3.5 )

clP+c12
0
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~~ iievab1e Region ar~i Outer Bo~u~ ~~r AW~1 BC with Indepenj~~~*ipes ar~ Feedbedc for P — 1, 4 — 1.
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_ _ _ _  _
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Achievable RegionC2 - s
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3.6 Achievable Region and Outer Bo~rd for AIQI BC with Indape dent
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Adding, we obtain

+ R
2 

<~~~ ln(l + ~ 2) — C1 — C2 (3.3 .6)

Since (C1,0) is achieved by cameunicating with only receiver one, and

(0 , C2 ) by comeunicating with only receiver two, time sharing can achieve

any point on the boundary of the region represente d by (3.3.6 ) . Thus ,

for these examples , the use of feedback has enlarged the capacity region.

Figures 3.7 through 3.9 are analogous to Figures 3.4 throu gh

3.6 , but for the cases where — 24, and — 1,10, and 100. The

time sharing line , and the bounda ry of the capacity region without

feedback (superposition curve) are adde d to each of these examples, as

well. Behavior is similar to that for equal noise. We point out that

though the marginal noise distributions for this model are the same as

for the degraded example of Section 3.3.1 , the achievable region here

lies outside the superposition region , while for the degraded example,

the achievable region was inside the superposition region . The behavior

of the coding scheme of Section 3.1, therefore depends critically on the

joint statisti cs of the noise variables , rathe r than just the marginals.

Observe that in Figure 3.6 the achievable region is not convex ,

and that in Figure 3.9 part of the boundary of the achievable region lie.

inside the superposition region . The coding scheme is sub—optimal for

these ex~~~les as well.
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C1 .35
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3.9 Achievable Region and Outer Bow~1 for A)~~i BC with Independent
Noises and Fee€b~ck for P — 100, €4 1 and — 2.
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3.3 .3  Intermediate Cases

We conclude this section on numerical results with two inter—

mediate cases , that is, examples where the noises are partially cor-

related. Recall that for the examples of Figures 3.3 and 3 • 8 , the total

noise variance at receiver one was 1, and at receiver two it was 2 • In

the forme r case the c~~~on noise had variance 1, and in the latte r , variance

0 (it was non-existent) . In both cases P — . 10. Figure 3.10 repe ats the

results for those cases , and gives the achievable region and outer bound

when the co~~on noise has variance ~~~. As expected, the results lie bet-

ween the previ ous results .

For the equal noise case , a degraded channe l is the degenerate

case , that is, a~—0. In this case both receivers are the same , and the

capacity region , with or without feedback is jus t the time sharin g region .

Figure 3.5 , therefore, which had the results for — P/0~ — 10, with

no comeon noise , as well as the time sharing line , already contains the

results for the two extreme cases. Figure 3.11 rep eats 3.5 with the addi-

tion of the outer bound for 72 
— For this set of parameters , the

achievable region was virtually indistinguishable from the outer bound, and

could not be plotted separately.

t
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CHAPTER, 4

CONCLUSIONS

We have presented two similar feedback coding schemes for the

discrete-time AWGN multip le access and broadcast channe ls respectively .

These schemes are extensions of the approach given for the band-l imited

single user A~~N channel with feedback by Schalkwijk and Kailath (23 , [3] .

Th~ multi-user schemes share with the schemes of 12] and [3] the properties

that they are deterministic and achieve doubly exponential. decay of error

probability with block length , although for the MAC this holds only

for rate s dominated by those achieved without the use of the super-

position approach described in Section 2. 1.2. The sets of achievable

rates afforded by the se schemes exceed previ ously known achievable

regions , except in the case of the physical ly degraded broadcast channel ,

for which the true capacity region was alrea dy known .

We have also established outer bounds for the achievable

regions of the MAC and BC with feedback, both for discrete memoryless

channels and for the AlIGN case. The outer bound for the AlIGN MAC coincides

with the achievable region , yielding the capacity region . For the

AWGN broadcast channel the achievable region fai ls to reach the outer

bound in all cases . This failure is due , to at least some extent , to a d

sub-opt4~ *1ity of th. achievable region; the coding scheme fails to achieve

even th. known capacity region of the physically degraded AlIGN BC. It has

not been determined whether the outer bound for the BC is itself too loose.

The results cbtainsd do demonstrate a previously unexpected fact : feedback
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can enlarge the capacity region of broadcast channels as well as multiple

access channels .

A numbe r of areas for further research are suggested by the

results of this dissertation :

1) Extension s of the general approach to othe r two user channe ls with

feedback .

2) Ait achievable region or outer bound for M user channels , where

M >  2 , for either the MAC or BC with feedback .

3) Application to discrete memoryless channels . This work depended . -

on the existence of an optimal constructive approach for the

single user channel and on the fact that transmitted signals combine lin-

early . A constructive approach for single user erasure channels

is well known [24] , and approache s for BSC’ s ( (20 1, t29 1)  and for

general discrete memoryless channels [21] have appeared in the

literatu re . In addition , as mentioned in Section 2 • 1, a coding

scheme for discrete aemoryless MAC’S with feedback has appeared

(13] . ~~e question of particular interest is whethe r the outer

bound for MAC’ s with feedback found in Section 2.2.1 is achievable

in general .

4) The gaussian broadcast channel. The results of ~~apter 3 are •

inco~~lsts in that the capacity region has not been found. From

ths — ‘amples of Section 3 • 3 it is clear that the achievable region

of Section 3.1 is not the capacity region. It se m e  doubtful that
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the additi on of superpositio n followed by convexificati on would

be optimal , though the tegiona so obtaine d might in general lie

close to the oute r bound. Conversely , it is unclear how tight the

outer bound of Section 3.2 rsally is.

5) Noisy feedback. In 12] and [3) and subsequently ([22], (23])

attempts were made to analyze and optimize the basic Schalkwijk-

Kailath approach when additive noise appeared in the feedback

link. Under the reasonable assumption that both forward and feed-

back powers were limited, the results were discouraging: none of

the approaches were able to yield reliable coemunicati on at any

positive rate . From a purely Shannon theoretic point of view

this is somewhat beside the point , since the existence of codes

which do not employ feedback is guaranteed by the coding theorem .

Noiseless feedback simplified the coding problem , but did not add

anything in the way of achievable rate s • In the multi-user case ,

however, feedback generally does enlarge the capacity region , in

addition to allowing a simple coding procedure . Noise in the

feedback links must ther efore affect the size of the capacity

region, and as the feedback links become totally noisy, capacity

regions must degenerate to thei r non—feedback values . Results in

neither the forward nor converse directions exist as yet . -

Two classes of problems related to that of noisy feedback ar e

that where the feedback links are of a different type than the

forward links (e.g. gaussian forward links with noisy or noiseless
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discrete feedback) , and the case where only one feedback link

is available. For the MAC this would correspond to allowing the

receiver feed back to only one transmitter. In the BC eithe r

only one re ceiver could feed back , or perhaps the receivers would

share a single feedback channel in a multiple access mode .

_ _  

___________________________
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APPENDIX :~ ~~OTS OP P (p)

We prove that the quartic polynomial

P(p ) — a2 (O2+P1+P2+2v’~~~2p) —

(o2+P1C1—p 2 )) (ot +P2
(l—p 2 ) )  (A.l)

has exactly on. root in the interval O<p<l.

The following are tru e:

1. A quartic has at most four real roots .

2. Lim P (p) — —

3. P (0) — < O •

4. P (l) — ~~~~~~~~~ > ~

5. P (— l) — (,~~ _~~~)2> ~~

3. and 5. imply that there is at least one negativ, root .

2. and 4. imply that there is at least one root greater than 1.

Hence there are (from 1.) at most two roots in (0 ,1). But by 3. and 4.

there are an odd niabsr of roots in (0, 1). Hence there is exactly one.

Since ~~~~ P~, and a2 are all svbitrazy , this result holds also for the

polynomial P (a , p) defined by equation (2.1.36) .

- ~~
-
~~~ -——~~~~ 

- - . —— -- J
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APPENDIX B: CONCAVITY OF MUTUAL_INFORMATION FOR THE MAC

In this appendix we show that the quantities I (X 1X2 ,y) , I (x1;Y 1X 2) ,

and I (X 2 ;YI X 1) are concave functio ns of the joint probability assignment of

X1 and X2.

The first quantity is concave , -since it is just the mutual in-

formation between the input and the output of a channel (see (24]). We

need only show the result for I (X 1; Y X2), since the same demonstration

holds for I (X
2 ;Y I X 1

) with X1 and X2 exchanged.

Consider two inji ut probability assignments p1 (x1 ,x2 ) and p2 
(x1 ,x2) .

Define

p3(x1
,x2

) — CLp1(x1,x2 ) + (l—a)p2(x1,x2
) a c(o ,l] (8.1)

Obviously, p3 is also a joint probabi lity assignment on X
1 
,X2. Now define

the auxiliary random variable •, with probability law Pr( — 1) — a, and

Pr(’1)’~ 2] — 1—a.

Consider the following comnunication scheme z we wish to ccemunicate

the value of ~ to the receiver. A sample of G is drawn, and a corresponding

axe drawn from the joint probability assignment corresponding to the

.~~~le value. That is (X11X2) has probability assignment P~ (x1.x2) when

$ — i. Denoting the mutual information resulting from by ~~ ~~~
we have that

I(X1;YIX 2
$) — Pr($—l]1

1
(X
1,Y (X 2) + Pr($ .’2112 (X1,T 1X 2)

— a11(X1,Y 1Z 2
) + (1—a)X2(x1,Y1x 2)
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The mutual information unconditioned on • is just I (X1;Y 1x2 )

evaluated at p3 . In other words,

I(X1;Yjx 2
) — I

3 (X1
,YJx2) (B.3)

Subtracting (8.2) from (B. 3) ,  we have that

I(X
1,Y1X 2) 

— I (X1;Y I X 2$) — 13 — a11 — (l—a) 12 (B.4)

The left hand side is

[H(YJx 2 ) - H(YIx1x2fl-[u(71x2$) - H(7jx1X2$)]

— H(Y 1X 2 ) — H (Y jX2$)

• I(Y ;$1X2)

> 0  (3.5)

where the first equality in (3.5) holds since given X1,X2, 1! is independent
of $. Substituting (8.5) into (B.4) , we have

13 — ax1 — (1—cs) x2 > 0  (8.6)

Therefore t(X
1
,Y1x2) is concave in p(x1,x2).
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APPENDIX C:

CODING FOR THE AUGMENTED AWGN BC WITH FEEDBACK

We conside r the model of the BC shown in Figure 3.2. ThIs

model is an extension of the canonical broadcast channel, in that one

receiver is allowed to see both channel outputs . This model may be ap-

propriate in some applications , say in cases where one receiver is located

physically between the trans mitte r and the other receiver , and received

data is fed back to the transmi tter directionally . The example is

interesting theoretically since it allows the exploitation of the super-

position idea, and obtains results which are optimum (i.e. reliable

c’~~”mication is possible at all rate s in the capaci ty region) . The

approach of Section 3.1 does not use superposition , and is suboptimal , at

least for the only case in which it was applied and the capacity region

was known (degraded channel) .

Recall from Section 3.2 that the capacit y region for the ASGN

version of Figure 3.2 is given by

(C.l)

)
—

where o2 +S

We now present a coding saheme which achieves reliable c~~~unication

at all points satisfying (c.l). 



- -i::~-All definitions are as in Section 3.1, except that after k-i

tr ansmissions receiver 1 has

+ — 01 + dk_l e2 + 
~k—l

(c.2)
A k 1
0 2

and receiver 2 has the same estimate of 02 • dk l  above is assumed to

be a known constant . Since receive r 1 knows receiver 2 ’ s channel data ,

there is no problem in his forming the same estimate of

Now for the kth transmission, the transmitter sends

~ P ~k-l ~ k-l— + g 

~~ 
(C.3)

where

V — l + g 2 
(C.4)

Receiver 1 obtains rlk and r2k , while receiver 2 obtains r2k, where

(C.5)

At this point both receivers upgrade th.ir estimates of 02 as before ,

forming

— ê~
c_
~ - 

r21~TL~. 1  (C.6)2 2 p 2k
2k

Mimes that c?1k 0. Then
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r]~~r1k l  
r2 k % l — g (v . 7 )

Since

T~ — 
~ k—l r2k (C .8)

then
K k-ib - ~~~~- b  _ 2 ___

k t-i k-l
2k P

— bk_i - 
~~.q 2b~~~1 

— bk_l 
o2+a~+ l+q 

(C.9)

To upgrade his estimate of 0~
, receiver 1 first combines r~~ and

rZk by forming the maximtm likelihood estimate of x.~

— 
4rlk+a~r2k 

— + ~ + ~~
WflI+tJ~

W2k 
- + ~ + ~k k k k

(C .10)

He then subtracts 
~~~~ ~~k—12 from rj~. The terms cancel , yielding

r3k~~ ~f~
• 

%I~~~~~02 + w k + w J~ (t~.ll)

Treating 02 as an unknown (but non-random) parameter, then

and 

r3k
.

~~~~~~~~ +~~~~~~~~ + a  (C 12 )

— ,1~c—1 (C.13)
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Receiver 1 now forms

A k A k...i 
r3k~k...l+ d~02 — + 6k_l02 
~2 

r3k
3k

— 01 + dkO2 + 
~k (C 14)

By substituting equation (C .11) above, defining r3k, it is seen that

and 

dk k_l + %[ 
!~ 4 2 

(C 15)

— 

~ ~~~~ ~ 
+ ~~ 

(w~ + wQ (C.l6)

which may be squared and averaged to obtain

j a 2 ~2
~ 2 e P 

_ _ _ _ _- 

~k - ak..l + aj  + 

~ 
+ a )2

02
— &k_l ~ (C.l7)

v + 0~

We can multiply equatiâns (C. 8 )  and CC.16) and average to obtain

the following recursive expre ssion for the correlation between the estimate

noises :

~~

_ ~ ~~~~~~ i—l~~~~~k-i~~ r _~~~~~k_1 r3k~k_i
k ’it k-l T

~—l 
~T 2k 3k

— 2k 3k 3k

— 

f2k T~_lrik _l 
(c.lB)
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By assumption 
~k-l~k-l 

— 0. This implies that 5~~k 1  — 0 , so

that the first and third terms of (C .l8) are zero . From the definition

of r3k above , we see that r3kck_l — r2kF k_l l so that defining T —

for i — 2 and 3, we obtain

T 
~ 

2k 3k _ 1 )  (C .l9)
2k 3k

But from (C . 5 )  and (C .l].) we obtain

r2kr3k — + (wk + w~ ) (wk + w2k
)

.! ~~ o2 +~~~~r
v k 2 k

V
_ !+~~a (C.20)

~~~ 3k

Substituting into (C .19) , then ,

To initialise, the messages are sent separately

(~~~iified up to mp.ct.d power P), so that

1 0 2

(C 2l)

— e +
- , 

2 -
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Then

d — 00 02ea — —
0 12?

02+ o~ ~~.22)

0 12?

Thus the hypothesis that — 0 is true by induction, and

a
~ — ao[p

02 

j

k 

~~.23a)

2 1 (C.23b)
1.p+02+a~ .1

(C.23c)

A similar analysi s as in Sections 2.1 and 3.1 yield. that

reliable c~~~ inicatj cn is achieved at all R1 and R2 such that

5~
02e (C.24)

2)— 2

Since V — 1+g2 , V c(i,~j, and e(O,i]. Defining a — ~~, we obt*in the

desired result .

_____ 
~~-- - .-  - - -~~~~~ - - 
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APPENDIX D: ~N CUTER BOUND FOR BROADCAST CRMN~~S

D.l Preliminaries and an Alternate Representation of Prior Results

In Chapter 3 we found it desirable to obtain an outer bound on

the capacity region of the broadcast channe l with feedback . In this

appendix , we apply the methods of Section 3.2 to bound the capaci ty region

of channels without feedback . The best such bound for general broadcast

channels is that found by Sato [31] (also in [1]). For a general BC with

input X and outputs T and Z, with marginal conditional probabilities ~ (y I x)
and p ’ (z I x), let p be the following class of j oint channel probability

functions V

p — {p(yzlx) : ~p (yzIx) — p’(~I x)
y (D.1)

~~~Ix) — p’(y~x)}

Then for each p~~ P define

R (p ) — co(
q~~

{(Ri~R2
): R1 ~~Iq (X~Y)

R2 ~..Iq (X~Z) 
(D.2)

+ ~~. 
Iq (X~TZ) I~ ~

where ~ is the set of all possible input distributions. Sato’ a outer

bound ii then

C’ R(P) (D.3)
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In equation (D.2) and throughout this app endix it is convenient

to express I (X;YZ) as Iq (XIYZ ) Ip to denot e dependence on p, the channel

probability function , and q, the input probability assignm ent . Similarly

I (X ; Y) and I (X ;Z ) are written as Xq (XI Y) and Iq (XI Z ) to denote their

dependence on q. They are independent of p for all p C P.

The Inequalities which define R (p) in (D.2) follow from stan-

dard information theoretic arguments , and the intersection in (D.3)

holds since a code for the actual channel must be a code for every channel

with the same marginal conditi onal probabilities .

If we define the followiz g quanti ty:

~ (X ;YZ ) — inf I (X;YZ ) (D.4)q p

we obtain an nltern ate representation of (D.2) - CD. 3 ) .  Defining the

region

— 001 U (R11R2) :  R1 c Iq (XIY)

R2 ~_ Iq (X1 Z) (D.5)

A1 + R2 ~~i7q (XPY Z ) }1

we will prove

Theor em D.l — C’ (D.6)
S

Before proving Theorem D • 1 we introduce the following limeata :

-- ,

~~~~ 

— . .-
~~~~~~

- —
~~~~~~~~~ - .
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Lenma D.l Jq(X~YZ) is concave in q.

This follows from Theorem 5.5 of (26].

Lezmsa D.2  For R (p) defined as in (D .2 ) ,  and for any non-negati ve vector
.
~ ~l,3in ,c , define

— suP[X1Iq (x~Y) + X21q (L Z) + ‘X3Iq (X;YZ ) 
~~ 

(D. 7)

Then a point (R~,R~)is in R (p) if and only if for all A > 0 ,

+ ~~~~ + x3 (R~+R~) <M (~) (D.8)

The above applies to the set Ce with Jq subsititute d for I
q
(X;YZ ) 

~~ 

in -

.

(D. 7) .

This lemea follows from an appli cation of the separating hyperplane

theorem (Theorem 11.3 of (26 1) .  We note here that the convexification

in (D .2 ) and (D .5) is redundant, since both underlying unions are already

convex (since all of the constraints are concave and is convex) .

L~~~
a 0.3 Since Iq (X$YZ ) ~ is bounded and continuous in p and q, convex

in p and concave in q, and p and are convex and compact , then

inf sup Iq (X ITZ) — 51W inf Iq (XIYZ )~ 
~
, 

(0.9)
p g  q p I

This is Lemea 37.3.2 of (26]. Note that the continuity and c~~~acthess

hypotheses imply that sequential limits of infor .ations are actually achieved.
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We now prove Theorem 0.1. If (Rt ,R~
) is in c*, then there is some

g for which the three inequalities in (D.5) are satisfied (again , by

continuity and compactness , (R~ , R~) is not only approached as a limit , but

actually achieved ) , but since for all r~’ Iq (X ;YZ) 
~ 

>. ~q (XJYZ) i~ the same

q yield. informa tions which satisfy the three inequalities in (D.2) for all

p. Therefore C*CC . .

Conversely, assume (R~ , R~) is in C’ • From Lemsa 0.2 , it is true

that for all p p
~~ , and for all A > 0 ,

+ X2R~ + X 3 (R 1+R2
) ~. SUP (A 1Iq (XiY) + X21q (X ;Z ) +

A I (X;YZ ) ] (D. lO)
3 q  p

Since CD. 10) holds for all p~ P, we can take the infimum of the right hand

side over p, and apply Lemma 0.3 to obtain

+ X2R2 + X3
(R1+R2

) ~ su~ inf [X 11q (XIY) + A21q (XIZ) +

X31q (X ;YZ) I~
] (D.11)

~~ly the last term in (0.11) depends on p, and it. infimum is Jq•

There fore

A1R~ + A2R~ + A3 (Rr+R
~

) sup IA 1Iq (X~T) + X21q (X IZ) +

X3iiTq(X~TZ) 3 (0.12)

and by T~~~~ 0.2 , (R~,R~) is in Ce. Therefore C’c Ce, and Theorem 0.1 is
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proved.

0.2 A New Outer Bound

We now give a new outer bound on the capacity region of broad—

cast channels , based on the approach of Section 3.2.  Consider the aug—

mea’~ted channel of Figure 3.2  without feedback . The capaci ty region of this

channel can be no smaller than that of the corre sponding BC without the

link between receiver 2 and receiver 1. The augmente d channe l is

degraded , so that it has capacity region

C1(p) •q~~~C ( R1~R2) :  R1 < Iq (X ;YZ I U ) 1p CD 13)
A2 ~ Iq (U P Z ) }

where

— {q(u ,x ,y,z) — q (u)q(x~u)p(yz~x)} (0.14)

The capacity region C of the true channel must lie in C1 (p)

for all p c P, so that

C C C~ C1Cp) (0.15)
PCP

By reversing the direction of the added link , we get
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CC (~ C2 (p) (0.16)
pCP

where

C (P) — U 
~~~~~ 

R~ < I (U,?)2 g~~Q’ — q (0.17)
A2 < Ig (X ;TZIU)

1p }

Therefore, we have the following

Theorem 0.2 The capacity region of the general discrete memoryless

BC satisfies

C C I f l C1(p) ](~~[ fl C2 (p) ]
PcP PeP

— Ci tC1(p) r~C2 (p) ] (D.l8)
pep

where P is defined by (D. 1).

0.3 Comparison of the Bounds

We will prove the following

Theorem 0.3 The bound of Theorem D • 2 ii tighter than that of Theorem

0.1. That is

r~(C1(p)flC Cp)] C Ce (0.19 )2
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To show this , we first find an outer bound for C1 (p). For any p, if
PC

- 

~A1’A2~ 
c C1

(p ) ,  then there exists a g for which

< I (X ;YZ ~U)_ q  P (D2~~)
B2 < Iq (U~Z)

Since U+X-’ (Y ,Z) is a markov chain (by definition of Q ’) ,  then by the

data processing theorem ((24] Theorem 4.3. 3)

A2 ~.Iq (U!Z) ~.Iq (X;z) (0.21)

Also,

+ A2 ~ Iq(X;YZIU) ~ 
+ Iq (UtZ)

i~Iq(X;YZIU) ~~
+ Iq(U;YZ) 1~

— Iq (UX ;YZ)~ p
— Iq (X 1YZ )~p (0.22)

Therefore ,

Cl (P) Cq~~ ((A1~
R2): A1 + A2 ~. Iq (XIYZ )

j p (D. 23)
A2 ~~ . 

I
q

(X~Z) }

a

Using an approach similar to that which proved Theorem 0.1, we can show

that
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~~ C1
(p) c C~ — U c ( R 1,B2) : A1 + < J  (X ;TZ )

peP qcQ - - 
‘a (0.24)

- 

A2 ~. X~~(X $ Z ) }

We can define ~ ~ analogously , and obtain

(~ rç (p)nç (p)3 CC °flC° (0.25)p 1 2

We now show that C~~~C~ — C” . To show this , we use the

fact , equivalent to Lemma D.2 , that a convex set is completely specified

by the set of its tang ent hyperplane s (i.e. equals the inte rsection of

the half-spaces determined by the hyperplanes), and show that every tan-

gent to C is tangent to C~rI C~ . We use a geometric argument , similar

to that of Section 2.3.  Recall that C~ is defined by

C” — U {(R ,R2 ): A1 < ~ (X ;Y)1 — q

A2 ~~Iq (X I Z ) (0.26)

+ A2

For every ‘a, the set defined by the inequalities of (0.26 ) is

of one of the types shown in Figure 0.1. A similar situation occurred

in Section 2.3 , and there vs were able to disregard sets of the type

shown in Figure 0.1.) . Bare we can show that type a) does not even occur .

Consider that channe l in P for which Y and Z are independent given X.



/ _ _  _

i) J~x Yz)” -136-

- 
R2 J(X;?Z ) > I (X;Y) + I (X;Z)

i(X;Y) J(X;YZ)- R1

J (X;YZ)a

I(X;Z) 
= I(X;Y) + I(X;Z)

J(X;YZ) ’ .J (X;YZ ) I(X;Y) + I(X;Z)

I(X;Z)

D.1 Remit ’ Sets for Proof of ‘fl~~ zma 0.2. 

~~~~~~~~ _ _
_ 

_ _ _  
_ _ _
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This channel i. always in P. Call this channel p0 . For any q,

~ (X;YZ ) — inf I (X,YZ) < I  (X;YZ ) (D2~ )‘a p ’a P q ,p0

Since , for p0, Y and Z are independent given X , it is true that

— Hq (YZ)~ p0
_ H~ (Yf X) - H~ (Z1 X)

1H
q~~~~ 

+ Hq (Z) - N~ (Y lX) - Hq (Z IX)

— Iq (X7Y) + Iq (ZIZ) (0. 28)

where we have dropped the dependence on p0 for quantities which depend only
on the marginal conditional probability functions. Combining (D.21?) and
(0.28 ) we have that

~Tq (X~YZ) ~.I~ (XIY) + Iq (XJZ) (0.29 )

Therefore sets of the type depicted in Figure D.la) , which correspond

to the reverse (strict) inequality , do not occur .

Now consider a tangent to C”. From continuity and compactness ,

it must be tangent to one of the sets of Figure 0.1. Asstmm the tangent

has equation R1 + )R
2 — k1(A) , where 0 ~ A ~~1. The point of tangency

must be the point marked P in Figure 0.1, since the line has a slops less

than -1. Now assi that this line is not tangent to C~. The basic sets

of C~ axe the s~~~ as those of Figure 0.1, except that the horizontal

- ---a -
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line corresponding to the constraint on is absent . If the tangent we

are considering is not tangent to c ,  assi~ne that there is a tangent with

the same slope and a larger constant , say k2 (A) > k1 (a). The case of

a smaller constant cannot occur, since C~c C~. This new line + AR2 —

Ic2 (A) is tangent to a basic set of C~~ 
for some other q at the point cor-

responding to P. We can evaluate the basic set of Ce for the new ‘a. The

new line is tangent to this set at point P, since the imposition of a

constraint on will not delete that point , because of inequality CD . 29) .

Therefore , there is a point of C* lying above the ass~~ed tangent , leading

to a contradi ction . Hence , all tangents of the form + AR2 — k (A) , for

O < ~~~< 1 are tangent t o~~~.

In a similar fashion , tangents of the form AR1 + — k( X) for

0 < A < 1 can be shown to be tangent to C~.

From these two facts , it is clear that C” is no smaller than

C~flC~. Since each of the latte r sets includes C~, C” is no larger than

the intersection. Therefore C~~C~ - C~, and Theorem D.3 is proved.

Since C” C i? but is defined by three inequalities , the fact

that it can be generated by intersecting sets formed by pairwise combina-

tions of the constraints is intuitively satisfying .

0.4 Discussion
I

In this section we .valuats the bounds for two simple cases, the

degraded channel and Blackvsll ‘s ~x~~~le.

For a degradsd channel , the cascade (physically degraded) channel



is in p .  Since in general I~ (X;YZ) > I~~(X;Y) with equality for cascade

channels , then the cascade channel achieves the infimum in (0.4) and

J~ (X;YZ ) — I~(X;Y) (0.30)

CC then becomes

C” =
q~~ 

{(A1,B2): A1 < I~(X;Y)

< I~~(x;Z) (D.31)

+ B2 5~ 
Iq (X~Y)}

(0.32.) describes a four-sided region in R 2 , which we have sketched in Figure

0.2 for an AWGN channel with P — 10, a~ — 1 and — 2. Although much of

the reasoning of the previous sections may not apply to arbitra ry continuous

channels , the results are all easy to show for the ANON case. In particular

all of the previous theorems are easily shown for degraded channels with-

out using any of the c~a~~ xity theory, which required among other things

compactness for the space of input probabilities and channels , -

which does not hold in the continuous case .

The region C
1

(p) described by equation (0.13) becomes for the

cascads d~ann.1

C1(p) . t j { ( R 1,P3) : R1 < 1(X,Y~U)
qsQ’ — 

- (0.32 )

A2 ’””~ 
}

which is the true capacity region. This region is also sketched in Figure
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S

C1 1.2 mats
tç 

- 

.9Oma ts

/ Sato’s Bow~

C2- 
~~

-
~
:---

~ < -:

~ Capecity Region (and Bots~ of Th. D.2)

Sharing C

C •

C
C

C

ClRI

0.2 Sato’s Round x1 Cspm~ity ~~gicn of AW2I BC with P — 10, — 1
and — 2 .I
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0.2. Clearly, in thi s case the bound of Theorem 0.2 is strictly tighter

than that of Theorem 0.1, and indeed is exact .

Blackwell ’ a example is a channel described by a ternary input

alphabet X — ~0 ,1,2}, two binary output alphabets V — 2 — {0 ,l}, and

the joint channel probability function given by

p(0 ,l I O )  — p(l ,O I l )  — p(1,l~2) — 1 (0.33)

This channel is noiseless and not degraded. An obvious consequence of

the noiselessness is that the set P has only one member, the actual ‘

channel. Sato’s bound for this channel is shown in Figure 0.3. At the

a tim. of the appe arance of thi s result in [1] , it was the smallest known

oute r bound for the channel, and it has since been shown (Gel ’ fend (27] )

that the whole region is achievable • Thus while Sato’ s bound is loose

for degraded channels, it has been shown to be exact for at least one

non-trivial example.

Obviously the bound of Theorem 0.2 must also be exact for this

example.

NOTE: As this manuscript was going into final preparation , a paper ap-

peared in which a new outer bound on the capacity region of discrete

memoryless BC’ s was given (Marton (34) ) .  We have not had time to

compare the bound of (34 1 and Theorem 0.2.
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—

R2 
(~~~~tities in 

:

.5 1

D. 3 C~~ecity Region of Blado iell ’ s Exanpie.

:
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