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ABSTRACT

\h%here is increasing interest in map features such as points, Tines and
regions both as a pictoral data base for resource management and as an aid
to identifying objects in aerial images. Owing to the very large amount of
data involved, and the need to perform operations on this data efficiently,
the representation of such features is a crucial issue. We describe a
hierarchical representation of map features that consists of binary trees with
a special datum at each node. This datum is called a strip and the tree that
contains such data is called a strip tree. Lower levels in the tree corresponds
to finer resolution representations of the map feature. The strip tree structure
is a direct consequence of using the method for digitizing lines given by
[Duda & Hart, 1973; Turner, 1974; Douglas & Peucker, 1973] and retaining all
intermediate steps. This representation has several desirable properties.
For features which are well-behaved, calculations such as point-membership
and intersection can be resolved in 0(logn) where n is the number of feature
points. The map features can be efficiently encoded and displayed at various
resolutions.¢ A1l these properties depend on the hierarchical tree structure
which a]]owé‘brimitive operations to be performed at the lowest possible
resolution with great computational savings. The strip tree representation
also can allow parts of the map feature to be accessed sequentially. This
feature is usually desired when the map feature is used in analyzing images.

The price paid for the improved performance is an increased storage cost.
This is approximately 4n, where n is the storage needed to represent the xy

coordinates.
A~

The research described in this report was supported partially by DARPA
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i« Introduction

We present a general representation for polylines'(ccnnected
line segments) and areas (clcsed rpolylines). Although this
representation may have wide applications, its principal
motivation arose from the problem of representing geographical

data tases of map features.

A mafp has several interesting kinds of features such as
contour 1lines, lakes, rivers, roads, etc. These can ke roughly
divided into four feature classes for representation in the

computer [Sloan, 1278 1:

feature examples in map domain
T peimts  towns (large scale maps)
tridges (small scale maps)
" ldaes - zosdw, eomsbiizes
T e m S G vide roads, rivers
" regions  lakes, counties

Our main interest is in rerresenting lines and regions., A pcint
is such a simple datum that it can be e€asily treated as a
primitive in any representation. Collections ¢f vpoints from a
single class can be efficiently represented as k-d trees [Bently,
1975; Barrow et.al., 1977] and so points are not the focus of
our interest, althouqh they do interact with our representation.
A strip feature is essentially a line where a 1locally varying
thickness is important, examples of which are rivers and roads.
As we shall see, our representation for lines will also enccmgass

this type of feature.

¥
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wWe regard collections of these map features as a data tLase

that might te used to perform the following tasks:
.7ind where a road intersects a river

.Display a subset of map features that appear in a given map

sector
.Find out if a given point is in a region
.Search an aerial image near the edge of a dock for shigs.

A very important aspect of all these tasks 1is that we may te
satisfied 1if they are performed at resolution lower tkan the

ultimate resolution represented,

Our rerresentation for 1lines and regions consists of a
binary tree structure where, in general, lower levels in the tree
corraspord to finer resolutions. The tree structure is a direct
consequence of using the method for digitizing lines given ty
[Duda and Hart, 1973; Turner, 1974] and retaining all
intermediate steps in the digitization process. As an example of
+he representation, Figure 1 shcws some roads represented at

various levels (resolutions) in the tree structure,

The idea of representing a line by sets of strigs was
recoqnized ty [Peucker, 197€]. In particular he was able to find
line in*tersection and roint in polygon algorithmns. However, the
tree structure 1is a vast improvement over the se+t orqgamizaticn:
the algorithms are more efficient, 1line-area interesection and
area-arca intersection and union can now te dealth with, and the

tree s+*ructures are closed under these operations.

e S TS WSy




Figure 1.
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Map features displayed at various resolutions

using the hierarchical struc*ure,
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2. The Strip Tree

2.1 Notaticn

We define a strip segment L (delta) as the vector L and the
scalar delta as shown by Figure 2. The vectcr L starts at
(XBeg,Y¥Beq) and ends at (XEond,YEnd). %e use S *to denote the set
cf rpecints inscrited by the rectangle defined by L(delta). Also

we denote the boundaries orf the rectangle by the 1line segmeénts

l+, 1-, €+, e- as shcwn,

Fiqure 2., Definition cf a Strip Segment.

A polyline is an ordered list cf discrete points Vy0,ee.,¥yn

subsets o¢f which may be <c¢clinear. For the moment we rCeguire

these points to be considered as ccnnected; later we will relax
this condition. We say a polyline is represented at resolution

delta* if there exists an ordered sequence of m strip segments
LK(delta), k=0, oee, 2=1

such that
delta‘gdelta* =0, ases B

™M
Ylé U _L_ i=1' see,p N
k=0 K

If within a strip segument there is a point y that is a wmemkter of

e+, anotter that is a amember of €=, and there is a point v that
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is a menker of 1+ and another that is a member of 1-, +then the
strip segment is said to be compact. The compactness property is

verv important for scme of the algorithms which follow, Figure 1

shows some exanples for different deltas.

2.2. Digitization

Suppose we have a polyline F. such as shcwn by Pigure 2Za.
For any resolution delta we can approximate this line with strip

segqments as follows [Duda & Hart, 1973; Turner, 19741]:

Consider the polyline E defined by (yf,yn} For
each point y€ 2 find the perpendicular distance 4 (y)

from y to P, Denote the suktset of y D such that y.I>?

as P+, P=-= PF=-P+, Now find d+ = max d(y) and 4d- = max
yerr ye P~

df{y)- If (d+) ¢ (d=) <delta* then the polyline 1is
delbax

compactly represented at resoluticn 5 DY the Btrip tree
consisting of a single root strip 1((d+) +(d=-)). If not
then the desired strip tree is oktained ty recursively
applying the algorithm tc the Ps %yo,...,y+} and
aYO)*I,...,vd} and making the results the left son and
right son respectively of the strip tree. In the <case
of ties for the maximum distance d, we will arbtitrarily

pick the point nearest the mid point (in arc length).

For the purposes of the union and intersection algorithms tc
follow it 1is thelpful tc think of the strip trees as completely
expanded down to individual points, even though these points nmay

be <colinear. Figqure 3 shows an example of two levels of

3
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recursion cf this algorithm,.

Figure 2., Steps in the Digitizaticn Process.

To see formally that the ccnvergence 1is gquaranteed, note
that a ? cf k points can always Lte approximated 57 a single strip
seqment L (k) with length k assuming eight-connectedress. Thus
for any delta there must Lke a strip tree with leaves consisting
cf nc more than uny/delta strip segments which approximate 2.
Since ¢the digitization algorithm sglits each P intoe two part
such that each rfart has finite length, the ©process must

ultima*tely consider sets of F of delta points or less.

2.2 Strip 7Tree definitions

The tinary tree resulting from the digitization process is
called a strip tree, where the datum at each node 1s a strip, 1.
The nodes of the tree are initially ordered on arc 1length,
(Later we will =see that when intersection occurs in two areas
which are represented in strip trees, this prorperty is sometines

nct preserved) .

In the ensuing algorithms we will use the fcllowing
definitions:
T = svymbcl for a Strip Tree obtained by ¢the digitizaticn

PLOCESS .




S(T) = t*he points associated with the strip at the root node of
- i.e. (x| x€ S(T)}

Area (T) = the area associated with the strip at the root node of
5 ke measure area in pixels so that a strip L(9Q) still has
finite area. The most primitive strip, a single point has

unit area.

LSon (7)Y = the left scn of *the node T
FSon (T) = the right son of the ncde T

A node of the strifp tree is completely defined by the seven-tugle
(Lson, KkSon, Area, XBegq, XEnd, YEeg, YEnd). The measure Area(7)
is better fcr some of the algorithms tc follow. Area and delta

are related by delta xArea/||L])}.

2.4. VWhy Binary Trees?

The polylines can also be represented as a tree with ncdes
of more than two siblings., In fact,nodes cculd have different
runters of sitlings which wculd still be crdered. Figqure 4 shows
an example c¢£f the al*ternate enccding scheme. In certain cases
this may ke a more concise representation for the polyline and
for all ¢the algcrithms tht follcw we can extend the operations
from two sons to multiple sons. However, this change dces not
alter the complexity of the orferations that we would like to
perform and can bte mnore 1inefficient than +the tinary tree

representaticn.
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Figure 4: A portion of an encoding using m-ary trees.

5. Operaticns on Folylines

Computational conplexity of the various ofperations is
difficult to <characterize, as it depends on the particular
geometry of polylines. If the pclylines are "well-tehaved", that
is they are relatively smooth ard do not self-intersect for mcre
*har a few points, then the algorithms are very efficiert. What
rhis means for a particular operation in terms of the strip tree
1s that if the number of strips that must be examined at any

level 1is ccnstant, then the complexity of the operatiom is 0(log

3.7 Testing the Frcximity of a Foint

If we would like to find out if a point is near a pclyline,
this way te discovered early using the strip tree. We can rmake
tnis more precise ty exploiting the following property:

Property P1:

A If a poiat z is inside a4 compact strip Il{delta)

deltn
then it can be at most 2, units away from the P.

-

B« If a point 2 is ocutside a <compact strip l(delts)

then the distance cf the point from the P is bounded Ly
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Qe 2 & ds(z, L(delta)) + delta

It is interesting to study these Ltounds as the depth in the
resolution ¢tree increases. Althcugh the <ccnvergence 1is not
monotonic, the bounds do converge to the actual set-theoretic
distance dg¢ (z,P). Now suppose we want to answer the question:
is de(z,PL<do? Tf this can te answered affirmatively we will
find this out at the point where any upper bound is less thanm 4,.
If the answer is nc, then this will be discovered when the <“ree
has been explored to the ©pcint where all rinimum bounds are
greater tham d . Similar arquments <can Ete made for the
qualitative level-of-effort required to amnswer: |is ds(z,P)>dv?
From this discussion we <can see that the search will te
inefficient only if 4, 4. (z,S(T)) and a large numkter of the
strirs are nearly d, from z. Figure 5a shows this case together

vith a more representative exanple.

Fiqure S. Two of many Fossible Geometrics When Testing

the Distance of a Foint from an P.

To summarize this discussion, we provide the algorithms to test

for ds(z,P) A and (z;P) > d These algorithms use the

(] e

da
L
noticn of the distance of a point %o a set which is defined as

follows, Eor any strtip S5, if a point is8 outside S i.es x¢ S

then its distance to S is characterized by the set theoretic

— — ——— - —— e e e — e




fage 12

distance dg(z,S) = min d(x,2z) where d is the euclidean distarce
XS

between the points x and z. For <clarity, the algorithms are

presented as procedures in a pseudo-Algol language. BRigor has
been sacrificed mainly in the specification of data *types, Lut

these should ke obvious from the earlier definitions.

Algorithm A1: Is a point within dC of a polyline?
boclean procedure Within (z,49,T)
tegin
if d0< ds(z,S(T)) + 2.delta(T) then returm (true);
if z / S(T) and d2>ds(z,S(T)) then return {false) ;
retura {(Within (z,d0,LSon(T)) or Within (z,d40,ESon(T))) ;
end ;
Algorithm A2: Is a point further than d) from a polyline?
boolean procedure Further (z,dC,T)
begin
if 4C< ds (z,S(T)) + 2.delta(T) then return (false) ;
if z & S(T) and d9>ds(z,S(T)) then return (true);
return (Further (z,d4)7,LlSon (T)) and Further (z,d92,RSon(T)));

end;

3.2 Displayvying a Polyline at Different Resolutions

As previously demonstrated in Section 2, a polyline may te
represented as a set of strip segments such that each strirp
seqmaent L has a resolution delta less than some fixed delta?.
The algorithm to display such a representation using the strip

tree 1is as follows. This algorithm uses a device-derpendent
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sutrouxine Displaviec*angle which paints the rectangle on the

par*icnlar display d2evice,

Alagorithm A3: Displavy a poliviine at Eesolution deltad
proc«dure PolvDisplay (T,delta0)
kegin
if delta(T) < delta0O then Displaviectangle (L(T),delta(%T))
€lse (PolyDisplay (LSon(T) ,delta0) and PolyDisplay

(~Son (7T) ,deltan));

end ;
3.3 1Intersecting Two 2o0lvlines
(rz of the important rfeatures of the representation is the

ability to compute intsrssctious betwesn polylines. 3Strip tress
provid< the facility to not only compute intersection rpoints,
tut, in *he case +where lower resolution is satisfactory, to
compute small arcas con*taianing the in*ersection points at great
computaztional savings. In order +o develcp the intersection

met hodnlogy, #we need *he following definitions:

A. Twc strip seqnments (L1 derived from P1) and

(L2 derived £froam P2) do not intersect iff

1N L= 4
E. Two strip segments L1, L2 have a clear
intersection jiff:l1l1+ and 11- in*ersect 12+ and

e e e e e e ey s+ o ——— —— e —— —




Page 14

C. 1Two strip sejments L1 and L2 have a possiblz
intersection if condition B is not satisfied

vet LL M) 12£ 4.

These cases are illustrated bty Fiqure 6. A fairly obvious tut

very important lemma is:

Clzar Intersection Lemma. [Pcucker, 1397€6] If <+vwo

strip s

i

gments hava2 a clear in*tersection and the
strips are bo*h compact, then the correspcndiag ?s

must also intersect.

To see this for condition B, comnsult Figure 6t. P1 divides the
regiorn. I into two parts and P2 must cross from one to the cther.

The onlvy way the P2 can do this is by intersec*ting P1.

Fiqure 6: Different Ways Strips can Intersect

~y

he algorithms to <check £feor intersections Letween two
polvlincs are recursive, and assume the existence of an inteqer
procedure StripiIptersection which will return the type of
intersection and, in the case of a clear type, will return a

parallzlogram ( containing +he intersection points.

\lgoritha A4 Finding out whether +wo colylines
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in*tcrsect
Comment. If the two root strip seyments do not
intersect +*hen the Ps do not intersect. If ths
roo* seqments have a clear intersection then *+he
Pz intersect. Since the task is to just dstzrmin2
whz ther or not an intersection exists, we are done
the moment we find a clear intersection.
pool=an prccedure Intersection (I1,I2, Primitive
Flaq)
commen* 2rimitive Flag allows the use of a single
strip as the firs* argument
teqgin
Case StripInterssction (S(TT),S(T2),Q) into
[Bull]) retutn (false),
[ Possiblel if (Ar=a (T1)>Area(7T2)) or (Primi*ive
Flag) *hken
teturn ((Intecsection(Lson(Tl) ,52) or
(Intersection (ESon (T 1) »T2) )3
else return
(Intersection(I1,LSon(T2)) or
Intéetsection(T 11,8300 (L2)) )
[Clear ] return(tru2);
end;
This nrocedure is easily wnodified to re turn a set -
parallelograms comprising intersection points. Further casy
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nodifications can be wmade %o coustrain these parallelograms tc be
of a certain size related *o the del*a(T1) and delta(T2); i.e.,

~hey can be macde to be as small as we want.

Nots, however, that smaller resolutions wmay . te much ©@cre
compntaticnally expensivs, as shown in the folilowing example
(Fiqure ) where intersection at +the <coarsest resolution is

simple, but mulrtiple intersecticns occur at lower levels.

Fiqure 7 .. intcrsection may be simrle a* one level and complicated

at lower levels.

If the two Ps are no* convoluted about each other the
interscc*tion Wwill be conmputed in Q(mlog(mn)) steps where m is the
nunber of in*ersection pcints. ZIf the Ps do nor intersect tut
have a closes* distance =ds(P1,P2) then this will be discovered

1

1t a l:vel in *he tre2 non deeper *han a point whera dy- £ deital + deltaz .

The worst case perforamance is intolerable as the algorithm's
omputation will grow =xponentially as long as all the strirp
seqmen*s in one tree intersect all +he strip seqments in the
other. In fac*, tlhe compntartion can be shown to ke 0(2K ) where
is the sum of the dept*hs in each trece where the comparisons are
rakin place! € this situation were eéncountercd in a practical

application, ons way of handling it would Le +o repcrt the

nissitle intersec+ion r=29ions at the point wherc *he limit of
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The

a strip

Algorithm 3S:

This coustruction

bound on allotted

The Union of

union of two

tkat covers both

resources was exceeded.

20lvlines

of the two root strips.

P=-P Uniodone.

For two Ps de<fined hv?‘,;' ...yﬂ'}, 2','0“ ...v":'g

trecat *hese 4s +two sutks=2ts and concatcnate

m

the subsets. That is, the resultant crdering

is such that we have y =y' , v sy s Now
° () menal ~m
define a strip seqment that covers i% g #o
§ such that c=0 and delta =d*., Dy
’ menel
construction, this satisfties alil the

properties of a strip segment. Make this

rcot rode ofi a new P=tree, TLe two subtrzes

are the two 2s of the uniona

is shown in Figure 8. The

defined Lelow.

F
h

3

gqure 8:

Construction for Unior of Strip Traes

Fepresenting Two Folvlines

variaktle

Fage 17

3trip tr2es can ke accomplished by aefiring
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Cf course *his construction introduces a problzm in that the new
strip 1is no longer compact and therefore the Clear Intersaction
lemma no longer holds. To cvercome this problem we mnust add one
bit of information to cach node to mark whether tie underlying
polyline is cowmpact. Since later algorithms may result in
underlvinug polylines ¢that are disconnected, we include this in

+he following definition of C:

()

1 P represanted by S€(T) is known to ke compact and
connected

0 o*herwise

Wirh this strateqy we can preserve the eloquenca of the previous
algori+*hms 1in *he following maunner. When bit C(T) is not cne we
apnly *he recursion r2jardiess o©f the interszction type. In
algorithm 34 this means that c¢lear intcrsections are reported as

possilile if the bi<¢ C(T) is set.

Thise *cchnique can also be used as a digi¢ization methcd for

m  non-ccunected  segments 5(9°,~,gi3,(%ﬂ,A”,qi3,-~,(g‘,~~)9“3§.

m

These scagments are given an  ordering as showne The previcas
digitiza*ion algorithm is applied to this set >f points, and the
perpendicular distance d* is ccmputed fron the set of
disconnected vs anil used *o define the of the root strifr as
tefore. Fowever now “ae set 1is divided into two sSubsets of
connec*:d segments (rather ¢+¢han using v*) and the digitiza*icn
algori*hm is applied recursively <o the subsets. Cnce this

procees produces c¢onaec+zd subsets, ¢the earlier digitization
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scheme 1c arplied.

U, Areas Tepresented by Strip 7Trees

we +ake *he boundary of an are€a to be a <closed ©pclyline.
.not2restingly encugh, +he Jdigitization method described 1in
S2ction 2 wcrks for closed polylines and, incidentally, also for
self-intersecting polvlines. Furthermore, 1f an area is not
simply connected i+t can s*ill be represented as a strip tres,
which a* =some 1level has connect=d primitives. The method for
doing so was described in the previcus sec*ion. If a reqion has
holes it can Le represanted ty a single boundary curve using a

construction (Figure ).

Figure ?:; 1 TFegion with a Hole

i *he holes are iaportant, they thems=slves should ke

independently represente] as strip trees.

The most remarkabls fact is ¢ ha*t by representing an area 1in
“his way many useful operations such as intersection Ltetween a
polvline and an ar¢a, d2ta2roining whether a point is inside au

irza, and intersacting two Arcas are carried out very
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efficientliy.

4.1 Determining Whether a Foint is Inside an Area

The strip *rec representaticn of an ar2a by its toundary

(1%

allows *he determination of whether a point is inside the area :in
a straiqhtfcrward mannar If any semi-infinite line terminating
at the point intersects the houndary of the area ar odd numbter of
times, the pvroint is insid=s. This result appears in [Minsky and
Papert, 1%€¢9]. This result 1is computationally simplified for

strip *trecs in the following manner:

'\
o]
H
=)
o
=
”
8
3
o
ry
177}
f= o
=
T©
"
in
(@]
o |
o
H
+
<

Tc decide whethar a point z is member of an
area represcnted by a strip ‘ree, we need
only computs tae number of clear

intersectinns of the strcip +trse with any

sémi-infinite strip I which has delta = 0 and
emanates from 2. If this number is odd then

+he point is inside the area.

Ain erytension *o the clear intersection lemma which makes
this property hLold 1is that the uaderlying curves may intersect
more than once tut must intersect an odd numkter of times. The
rollowing aljori*hm is used to determine whether a pcint is

inside an area:

Algorishm A€6: DPoint Membershin

| i
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hooclzan procedure Inside(z,T)
teqir
CreateStrip (S0,2)
comment TreateStrip creates a strip for *he half line.
il NcOf.learin*ersections (5C0,T) is odd then return (true)
€lsc return (false) ;
end;
in*ejer procedurec NoOfClearIntersections(S,T)
begin
CaseS*tripIntersection (S,S (7)) into
[Kull] return (0):
[ Possible] return (lUoCfClearIntersections(S,LSon (T))
+ NoCfCleariInterscctions (S,”Son(T)));
[Clear ] return (1);

end ;

A Eotential difficulty exists with the procedure
WoC fCl=arlIntersections when the strip SO is tangent to the
polvline. Since *his nroblem will only occur a* the lowest level

) *he tree, we cau exacine rneighboring lcaves of the tree +o

4.2 Intersectinqg a polvline with au Areca

The strateqy behind intersecting a strip tree representirg a
polvliine with a strip *ree reprcsenting an arctea is to crecate a
new tr-<¢ for the portiorm of *the polyline which overlaps the area.

This can te done by trimming *he original polyline strip tree.

P
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“his is done efficisntly Lty +taking advantage of amn oktvious
proper*y of the intersection process:
Pruning PFroparty: Consider two s<rips Sp e

Tp @ang Sa & Ta. If the Sp{\Ia is null, then
(a) if any point wo©on Sp is inside Ta the
entire tree whosc root strip is Sp is inside
or on Ta and (b) it any  poiat  om Spois

outside of Ta

-yr 9 1
STELID IS

This

i1ntersection using

strip i
S propert

carried out with di

mav have

polyline 1is

€€ s

that if

NOote

> Area(lZ} , we can

lower levels,

segqnerntially oprunc

&)

o~

"

ip with

resultant pruned

SF

o
i

possible strip intersection may be pruned, the

S

Y.

£

t+heir ktits set

accurately

+he pnolyline

—~
-~

whereas

lett

tree with

then *the entire tre=2 whcse roct

is outside of 1Ta.

2 recursive procedure 17 for polyline-areca

Note that since s+trip ncdes under a

trees.

bit ¢ for

sect to 0 to denote that it no longer has the

Df co intersections

=

as repeatzd are

erent more and more upper-lavel strips

to reverthelzsss, intersected

represented at the leaves of the strig

strip is "fatter," i.e€., Area(T1)

opy the ncde and resolve the intersecticn at

the ver we have to

(9]

the *+ree by firs the poclylirne

area strip ard intersecting the

the right area s*rip.




Algorithkm A7: Polvlinc=Area Iuntersectiorn

2)

reference procedure 2clyir=aln+ (21,

copment X is a global used by EAInt;

reEuwrn (2AInt (T1,72) ;

aT
N

reference procedare 2AInt (T1,T2)
beqgin
Case StripInt(T1,72) iato
f8akl or Primztive ]
if Intersection (71,A, TEkUE) = null then
1f Inside (T1,3) themn return (T7)

e€else return (nnull);

fClear or Possiblz2] if Area (T1)>1rea(T2) then

teqin

ccmment aon=-coapact strip

XBeq (NT) := XBej(T1) ;

fBeg (NT ad fBeyg T V) 3

XEnd{Ntye= XEnd(T1) ¢

YEnd (BT) := YEad {m1) 3

itca (NT):= Arza(tl):

LSon(NT) := Piint Lson (CVy pxd} §

Teon (AT) := 23int (8S0n (V) ,T2) 3
cesarn (™) ;

d

o

ny

Vo)
m
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€lse ccmment Area (T1)< Area (T2
Fetuen (PAZXnt (PATnt (21,1800 (Z22)) RSO0 (T2} )} 2
end;
4.3 Intersecting Two Areas
The problem of intersecting twc arcas can be efficiently
carried ou%*t using their strip tree representations. The method
15 to deconmpose *he problem intc two polylins area intersectlion

problems (refer to Fiqur=z 10).

Peccomposition of

we treat the boundarvy of A1 as r

@®

D

ri

|
rn

+

of repres=nting an acea and in*ersect

Q

tree

representing 12 %ane

the thick 1lines 1in Pignre 10a. If we

trees <he is given by th

10b < The union of these +wo strip trees

Area-Area Inter

esenting

o

e

sectious

a polyline

its strip tree %

lowest level result 1s  sh

evarse the roles

thick lines in
sSae

Section 3.4)

instead

ith the
cwa by
of the

Figure

is ths

ANSWar we want! Thus we can write the aAarea-area intersectioun
procednre in terms of strips as follows:
algori~hm A7¢ Area=-Arza Intersection
‘ referencc procedure Ar=aalireaiInt (T1,72)
. o A R R et B i eoes . - e .

S ETEe——_——



begin

rcturn (Onion (Polvarsalnt
{225 Ty Ny

end ;

where Unicn 1s a procedure that
described in Section 3. 4.
Note that in the case of

fragments the

*keir toundaries,

preserved

7]

by the intersection

D

e

ere aquaranteed +that strips

according t¢ the arc

Length

lHowever, all the cther

pre served.

T

The

Union Operation

Thes union opera%sions

int erscection operation. Fo

g |

We use A construction similac

&)

disconncted Pse. The

r2sult

operation fcr striv trzes is

W

ne a union operation

[N

lerf

anéd a strip *ree representing a

is define

strip trces

3trip trees do

and is identical %0 the

contrary is then w2 aust

true,

areas that

procedure.,

of

crooerties

are
tue

o

not commutative,

£or a strip

1 and is a reqgiorn
not intarsect, then
me t hod

go

Paqge

('1,72)), (PolyArealnt

accomplishes +the construction

intersect in a way tharc

crder of the segments will not Le

(Tntil this pcint we

the trza2 would be ordered

in

undsrlying polylines).

the representation are

slightly siapler than the

nnion cf a E-tree and a P-*ree

the digitizaticn methods for

is a 2=-*ree. Note that tne union

ilso, we do not*

*ree representing a gclyline

I€EJioNe The union of two region

Sttip tTee. Tf these two

the union 1is s+*traightrtforward

for gpolylines. However, if the

to th

(0]

ttouble o©f defining A&




lage 2¢€

strip tree +*hat represants the union by finding +he points of

intersection in *he¢ same way as was done fer region strip tree
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Se conclusions

Strip trees provide a1 powarful representation fer polylines
and areas. Current work is directed towards characteriziug their
computational complexi:y more precisely but it can already bte
shown that the representation 1s superior to its competitors.
Th2 wmain drawback is that there is a large overhead in terms of
space. Tf n is the raquired srace to represent a polyline then

trip tree will *ake about 4n space units. Also the creaticn

1ts

n

of a s*trifp tree is a labericus process, requiring 0(n log r) time
uni+ts. However, neithzr of +hese drawktacks are thought to te
important in *hLe use of this representation for geographical data

Lases.

The reprcsentation de<fines strip segments as primisives +to
cover subsets of the lire after [Peucker, 1976 . cur
organization of these seqgaents into a tree may te viewed as a

particular case of a jeneral strateqy of dividiang features up and

covering them with arbitrary shapes suchk as depicted Ly Figure
10 Cther attempts in +his class have besn tried bv [ RBarrow ot
dale, 1917 BUurton, e Tanimoto, 19751, but +thev dec not

captur= the notions of orisntation and resolution anywhere nearly
as precisely as strip segments, and do not have +the union ard

intersecticu proper*ies.
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The Notion of an Artitrary Divide-And-Conquer Strategy
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Figure 1.

Map features displayed at various resolutions

using the hierarchical structure.

————




Figure 2:

Definition of a Strip Segment.




224 dlye

v
o

| S

*$S32044 uoirieziytbig ayy ut sdayg

wn_rr_m. _0>o_ {s2mo)

=
Z

i€ aunbLy

— CO.ucu.w_r.qv

. P ammpaa—— e e




"$9343 Aue-w bursn Buipodus ue 340 uotrjaod y

“§ dunbi 4




2

a.

Figure 5: Two of Many Possible Geometrics When Testing
the Distance of a Point from a P.

null clear possible

Figure 6: Different Ways Strips Can Intersect




ES

Figure 7. An intersection may be simple at one leve]
and complicated at lower levels.

ca

Figure 8: Construction for Union of Strip Trees
Representing Two Polylines

/8

Figure 9: A Region with a Hole




Figure 10:
Desired Resul

Result of T
L2

Decomposition of Area-Area Intersections

o+
t AlﬂA2 b. Result of TLIf\KAz

ar, d. Union of Two Results: the polyline
X segments covered by the result tree.
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