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ABSTRACT

~~~here is increasin g interest in map features such as points , lines and
regions both as a pictoral data base for resource management and as an aid
to identifying objects in aerial images . Owing to the very large amount of
data invol ved , and the need to perform operations on this data efficiently,
the rep resen tation of such features is a cruc ial issue. We descr ibe a
hierarchical representation of map features that consists of binary trees wi th
a special datum at each node. Thi s datum is called a strip and the tree that
con tains suc h da ta is cal l ed a stri p tree. Lower levels in the tree corre spon ds
to finer resolution representations of the map feature. The strip tree structure
is a d i rec t consequence of us i ng the metho d for dig itizing lines given by
[Duda & Hart, 1973; Turner , 1974; Douglas & Peucker, 1973) and retaining all
intermediate steps. This representation has several desirabl e properties .
For features which are well-behaved , calcula tions such as point—membershi p
and intersection can be resolved in O(logn) where n is the number of feature
points. The map features can be efficiently encoded and displ ayed at various
resolutions .~ All these properties depend on •the hierarchical tree structure
which allows ’~rimitive operations to be performed at the lowest possibleresolution with great computational savings. The strip tree representation
also can allow parts of the map feature to be accessed sequentially. This
feature is usually desired when the map feature is used in analyzing images .

The price paid for the improved performance is an increased storage cost.
This is approximately 4n, where n is the storage needed to represent the xy
coordinates.

Th~ research described in this report was supported partially by DARPA
Grant #N00014-78-C-0164 and partially by NIH Grant #R23-HL-21253-O]..
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1. In t r o du c t i on

We present  a gene ra l r ep re sent a t i on  for polyi.ines ( ccnnec ted

line segm ents) and areas (closed polylines) . Although this

representat ion m a y  have  wide applications, its principal

mot ivation arose fr o m  the problem of represent ing geographical

dat a bases of map f e a t u r e s .

A m a p  has seve ra l inte res t ing  kinds of feature s such as

contour lines, l akes, rivers, roads, etc. Thes e can be roughly

divided into four feature classes for representation in the

compute r ISloa n, 1’~78 1:

feature examples in map domain

points towns (l arge scale maps)
bridges (snail scale maps)

lines roads , coastlines

strips wide roads, rivers

regions lakes, countie s

Our nain interest is in representing line s and regions. A pcint

is such a simple datum that it can be easily t rea ted  as a

primitive in any representation. Collections of points fro m a

sinqie class can be efficiently represented as k—d trees rBentl y,

19’S; narrow et.al., 19771 and so points are not the focus of

our interest, alt hough the y do interact with our repre sentation.

~ strip feature is essentially a line where a locally varying

thickness is i:nportant , examples of which are rivers and roads.

As we shall see, our representation for lines will also encomp ass

this type of feature .
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We regard collections of these nap features as a data base

that might be used to perform the fo l low ing tasks:

.~ ind where a road intersects a rive r

.Display a subset of map features that appea r in a given map

sector

.Find out if a given point is in a region

.Search an aerial image near the edge of a dock for ships.

A very important aspect of all ~hese tasks is tha t we ma y be

satisfied if the y are performed at resolution lower than the

ultimat e resolution represented.

Our representation for lines and regions consists of a

binary tree structure where , in general, lower levels in the tree

correspond to f iner resolutions. :he tree structure is a direct

consequence of using the method for digitizing lines given by

f~ u da an d Ha rt , 1973; ~urner, 1974] and retaining all

interme-iiate steps in the digitization process. As an example of

the representation , Figure 1 shcws some roads represented at

various levels (resolutions) in the tree struct ure.

The idea of representing a line by sets of strips w~ s

recognized by t Pc ucke r , 1976~ . In part icular he was ab le to find

line intersection and point in pol yqon algorithms . However , the

tree structure is a vast improvement over th e set orgauiz aticn :

~ ie alg rit h~s are more efficient , line—area in tc re section and

area—area intersection and union can now be dealth with , and the

tre~ struct~ires are closed under these operations.
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Figure 1. Map features displayed at various resolutions

using the hierarchical structure.
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2. The Strip Tree

2.1 Notaticn

We define a strip segment .L(delta) as the vector L and the

scalar delta as shown by Fiqure 2. The ve ctcr L starts at

(X~eg,Y3eq) and e n d s  at (XEnd ,YEnd ). We use S to denote the set

cf points inscribed by the rectangle defined by L (delta). Also

we denote the boundaries or the rectangle by the line segments

ii- , 1— , € + , e— as shcwn.

F igu r e  2. Definition of a Strip Seg me nt .

A poly line is an ordered list of discrete points ye ,...,yn

subsets of which nay be colinear. For the moment we reqlire

these point s to be considered as ccnnectcd; later we will relax

this condition. ~e say a polyline is ~~~~esen~ at r~~ 2lu t ion

~~~ta * if there exists an ordered sequence of m strip segments

L~~(delt a~ , k=C , ..., rn—i

such that

delta 4(delta * k C , ...,

yi~~ L) ~~ i= 1 , ... , n
K

~f within a strip segment there is a point y that ~s a m ember of

e+ , anot~ er that is a .aenber of e— , and there is a point v that
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is a nenbe r of 1+ and another that is a member of 1— , then the

stri p seqient is said to be com~~act . The compactness property is

very importa Lt for some of the algorithms which follow . Figure 1

shows some example s for different deltas .

2.2. Digit ization

Suppose we have a polylirie P. such as shown by Figure 3a.

For any resolut ion delta we can approximate this line with strip

segments as follows f Dud a & Hart , 197 3 ; T u r n e r , 19741:

Consider the polyline P defined by (y~~,y?~ For

each point yE P fin d the perpendicular distance d(y)

from y to P. Denote the subset of y P such that ~.L> ’~

a~ P4 . P—= P—P + . Now fin d d. = max d(y) and d— = sax
9~~P* 9CP

d ( y ) .  If (d+) + (d—) <delta* then the polyline is
deUw.

compactly represented at resoluticn A by the stri p tree

cons isting of a single root strip 1 ( (d#) + (d—)) . if not

then the desired strip tree i5 obtained by recursively

applying the algorithm tc the Ps ~~~~~~~~~~~ and

and making the results the left son and

right son respectively of the strip tree . In the case

of ti€s for the m aximum distance d , we will arbitrarily

pick the point ne~~rest the mid point (in arc length).

For the purpose s of the union and intersection alqorithm s to

follow it is helpful tc think of the strip trees as comp le4~~ly

expanded ~ohn to individual points , even though these points may

be colinear. Fiqur -3 3 shows an example of two le veis of 

~~-~~~~~~~~~~ -- — - - - ----- - - - -~~~~--~~~~. - - -— -
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recursion cf this algorithm .

Fiqure 3. Steps in the Diqitizaticn Process.

To see formally that the convergenc e is gua ranteed , note

that a ? of k points can always be approximated by a single strip

seq~ ent L (k) with length k assuming eight— connectedness . Thus

for any delta there must be a strip tree with lea ves consisting

of nc sore tha n n/delta strip segments which approximate P.

Since the digit ization algorithm splits each P into two parts

such that each tart has finite length , the process must

ultimately consider sets of P of delta points or less.

2.2 Strip :ree definitions

The binary tree resulting from the digitization process is

ca l led  a strip tree , where the datum at each nod e is a strip, L.

The nodes of the tree are initially ordered on arc l€r.gth .

(Lat~~r we will see that when intersec tion oc’ urs in two areas

which are represented in strip trees , this proper ty is sometimes

me 4 preserved)

In the ensuinq algorith ms we will use the tcj .lowinq

definit ions:

= ~vm bc l for a Strip Tree obt ained by the diqiti zaticn

process.

- - - - - - . - ~~~~~ - - - - - --- - --
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5(1 ) the point s associated with the strip at ‘he root flOdt of

T; i.e. 1X IX€ S (T )~

~re a (’I) = the ar2a associated with the strip at the root node of

1. ~e measure area in pixels so that a strip 1(0) still has

finit e area . T h e  most priiuiti :e strip, a single POif l t ) has

u n it area.

LSon (T) = the lent scm of the node T

PSon (T) the r jiLt son of the node T

A node o~ the strip tree is completel y defined by the seven—tu ple

(LSon , ~.Son , ~rea , XBeg, XThd , Y~ eg, Y!nd) . The measure ~r€a (T)

~s better fcr some of the algorith ms tc follow. Ar ea and delta

are re l - i t el by de1ta~~ Ar ea/HLj).

2.4. Why 3inary Trees?

The polylines can also be represented as a tree wit h ncdes

of more than two siblings. :~ tact ,nodes could have dif f ~~r~~r.t

r .imte rs of siblin~ s whic h uculd still be crde rerl. Figure !4 ~hous

an example of the alternate enccdinq scheme . In certain cases

this iay be a more roncise represent ation for the polylice and

for all the alqcri thns t~ it folicw we c a n  extend the ope ra ti ons

fr om ~do sons to multiple sans. Ho wever , this cha nge UCCS not

alter ~he complexity of the operations that we would likE to

per for i and can be more inefficient tha n the iriary tree

rep resen ta ~ icr..

— - —
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Figure 4: A portion of an encoding using m-ary trees.

3. Operaticns on Polylines

Computat ional complexity of the various operations is

-iiffi~ ult to characterize , as it depends or. the particular

geometry of polylines. It the pclylines are “well—beha ved” , th at

is ~~ey arc rela~~ively smooth and do not self—intersect for acre

thai. a few points , then the algorithms are very effic i~ ct. what

~~is mean s for a particula r operation in terms of the strip tree

IS th at if the number of strips that must be exam ined at any

.evel is ccnstant , then the com plexit y of the - pe:atior. is O (log

3.1. estinq the Proximity of a point

:f ie would like to find out if a point is near a pclyline ,

tnis ~ay be discovered early using the strip tree. ~e can rake

tnis more nrecise by exploiting the following property :

Property P1:

A. if  a point z is inside a compact strip l (deltM

ti~en it can be at most 2 A units awa y from the P.

E . :f a point z is ou tside a compact str ip l (d e l t a )

then th~ ~istance of the point from the P is bounded ~v
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3 ( Z < d~~( Z~ L (delta) ) + delta

:t is interesting to study these bounds as the depth in the

resolution t ree increases. A l t hough the ccnver gence is not

monotonic , th~ bounds do converge to the actual set—theoretic

distance d~~(z,P). Now suppose we want to answer the question :

is d~~(z,P).<d0? ~f this can be answered affirmatively we sill

find this out at the point where ~~~ upper bound is less than d~ .

~f the answer is mc , the n this will be discovered when the tree

h~ s beers explored to the pcint where all ~ri cim um bounds are

greater than d . Similar arguments can be made for the

qualitative level—of—effort required to answer: is

From thiS discussion we can see that the search will he

inefficient only if d0~ . d~~(z,
S( )) and a large number of the

str ips are nearly d0 from z. Figure 5a shows this case together

w ith a m ore representative example.

Figure ~~. Two of many Possible Geometric s When Testing

the Distance of a Point from an P •

:o surrnariz€ this d i S C I S S i O r i , we provide the algorithms to test

for ds(z ,P) < d0 and d
s
(z,P) ) d0 . Thes~ ~lgori~ hm s use the

rot  ion of the distance of a po~~ t to a set which is defin ed as

fuj~ ows . For any strip 5, if a poin t is outs~~ e S i.e. x~ S

the n it s dista r.c~ to S is ~n-aract. erized by th~ set theoretic

----— - ----— — - - -—  —-- - -- - - - -  - - -- -
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distance d~~(z,S) = mm d(x ,z) where d is the euclidean distance
x~ Sbetween the points x and z. For clarity, the algorithms are

presented as procedures in a pseudo—Pdgol la nqua ge . ~igor has

been sacrificed mainly in the specification of data types , but

these should be obvious from the earlier definitions.

Algorithm Al: Is a point within dC of a polyline ?

hoclean procedure Within (z,dD ,T)

begin

if d0~ ds(z,S(T)) + 2.delta (T) then return (true) ;

if z / 5(T) and d)>d s (z,S (T)) then return (false)

return (Within (z,dO ,LSon (T)) or Within (z,dC ,F!on ()))

en d ;

Al qorith n 12: :s a point further than d) from a polyline?

boolean procedure Furt her (z,dC ,T)

begin

if dC~ ds (z,S CT) ) + 2.delta (T) then return (false) ;

if z ~ S(T) and d~)ds(z,S(T)) then return (true);

return (Further (z , d) ,LSon (T) ) and Further (z ,d O ,R S o n ( ) ) ) ;

end;

3.2  Displaying a ?olyline at Different Fesolutions

As previously demonstrated in Section 2, a polyline may be

represented as a set of strip seqments such that each stri p

segment L h a S  a resolution delta less than some fixed delta ’).

he algorithm to display such a representat ion using the str ip

tree is as follows. This algorithm uses a device—dependent
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su~ routine ~~~2la a~~~l~ whic h paints t~ e rectangle on the

i~ar ’icular display d’3yice.

~liori~ hn .~3: Display a pOiviin~~ at Fesolution deltaO

nroc~-dure PolvDisplav (T,deltaO )

L g in

if de l ta  (‘I) ~ de l taO t h e n  Displayrec tanqle ( 1(T) , ie lta(~~) )

~lsc (L?olyDisplay (LSon (‘I) ,de l taO) and PolyDisplay

(:- Son (’I) ,deltaO ))

end

.J..3 intersect ing Tw o Polylines

c i . ~ of the importan t feat ur es of the representat ion is the

abil ity to  comp ute inters~ ctioris b e t w e e n  polylines. Strip trees

provid€ t :~ faci l i ty  t o  not only conpute in te rsect ion points ,

~~~~ :r4 t h e  cas e w her e lowe r resolut ion is sat i s fa c t o r y ,  t o

:omput~� snail ar~:as c o n 4 aining the in~ ersect ion points at great

onp ut~ :ional savings . In o r der  t o develcp the intersection

~e~~hod,loqy , w e need the fo l lowir .q def in i t ions:

A . T w c  strip segm ents (Li der ived f r om P1) and

(L2 de r i ved  f ro~u P2) do not in tersect  i ff

LI/i LL 0

E. ~~c st r i r  ~e qme nts  Li , L 2  ~ave a clear

~nte rs€ct  ion 1ff: 11+ and 1 1— in~~er~ ect  12+ an-i

12—.
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C. ‘!wo strip se~ nents Li and L2 hav e a 2ossible

intersection if condition B is not satisfied

yet L~ fl LZ~ ~
‘
.

Thes e cases are illustrated by Fiqur- e 6. 1 fairly obvious but

very important  lem ma is:

C1~ ar Intersecti n Lenma. f Pcucke: , 1~ 76~ If two

s~ rip segments have a clear intersection and the

st r ips are both compact , then the corresponding Ps

niuct a lso intersect.

To sc e this for condition 3 , consnlt Figure 6b . P1 divides the

reqior. into t w o  parts and P2 must cross from one to the other.

h’- only  w a y  t he P2 can do this is by intersecting P1.

Figure ~: D i f f e re n t  W ays Str ips can Intersect

:~-.e a lqor it hms to check fcr inte rsec t ions between two

polvli~ are recurs ive , and assu me the existence of an integer

procedure Str ip r .t e r sec tj on  whic h will return the type o f

inte-rs- -~~tion and , in  th~ case of a clear t vpe , will re tu rn  a

7aral1~ loqrJm Q co r .ta  ~ning -he : n t er s c ct i o n  po ints.

- iqor i~ hn  ~ L~: Finding o’it ~hc~~her t w o  pol ylines
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C~~~m e n t .  f the two root strip seyments do not

ir.~~ rsect then t~~ Ps do not in tersect .  If the

roo t segments have a clear intersection then the

P~ int ersec’. Since the tas k is to lust determine

wh: thc t or not an int-~rsection exists , we are done

th9 momcc~ we find a .~lear intersection .

r~ool~ an procedure n~ersection (11 ,12 , Primitive

Flaq)

connen 4 primit ive Flag al lows the use of a single

strip as the f i rst argu ment

b~ qin

Case Str iplnte rsect ion ( S ( T 1 )  ,S ( T 2 )  ,Q) into

fl;uill retu rn  ( fa lse) ,

IPoss ibic i if (~~:ea ( T i ) > 3.r~~. a (~ 2 ) )  or (Pr imi t ive

Flaq) th~ r.

r e t ~~rn  ( ( In tersect io n ( LSo r . (T1 ) ,T2) or

(T h t c r se c t i o n ( FS o n ( 1) ,12 ) ) ;

else re tu rn

(Int~ rsec ~- i on (I 1 ,L S o n ( T 2 ) )  or

In t€ r sec t ior. ( 1 ,~ 3on  (T 2) ) )

[C lea n  re~ u r n (t r ue ) ;

en 1;

Th~~ irocedure i~ easily nod~~f~ ed to  return a set of

narall’~loq ra rs  compris in4 in tersect ion point.;. Fur ther  easy
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riodifications car4 be .uade to constrain these parallelograms tc he

a certain size re la ted  to the delta (T i )  and de lt a (T2 )  ; i . e . ,

the y can be made to be as small as we wan t .

Not E , howe ve r , t r i a t  sm all er r~ soiutions may be much acre

cono’itatjcnally expe nsive , a..i shown in t he foilowing exa mple

(Figure- 
~) where intersection at the coarsest resolution is

~implc , Lut ~ultinle int~~rsect ic ns occ ur at  lowe r levels.

F ’ ; r r ’ ~ : ‘.:. intc:sect ion ma’r ~e sinçle at one Le~’el and com pl icated

at lower  le ve ls.

If th~ two  Ps are not convoluted about  each other th~e

~ntc :~- c~~ion  will be co~ puted in 3(mlog(n) ) s teps wh e re  m is the

of  in’e rs ec tj o n  pcints .  :f the ?s do no~ intersect but

Live a c losest  d ista nce d =d s ( P1 ,P2 ) then this will be d iscove red

it a I ~v e l  in ~h e t:~ e no deeper ‘ban a point where  Jj, < ~~~at + de1~~~2- .

T ::c w~~rst cas ’  ~e rf o rm a r rce  is intole rable as the algorithm ’s

:o a p l t a t i o n  w ill  grow ev pon’e r.tiali.y as long as all the st r ip

~~ q mez. .s in one ~ree in te rsect  all the str ip se inents in the

o t h e r .  :n fac ’, tIe :omp ’ Itu~ i~ r. ca n be s hown t o  be 0 (2 ) w he re

t .:~
- sut o~ t h e  d~~p’h: in each t r~ -~ wher e  the- co mparisons are

‘ak i:;q nl~ c~.! Z f hi.3 3~ t ua t ion  we :c ~ncoun4~~rcd ~n a pract ica l

anr l  ic -I  t i cn , one w a y  ~~ :~ ~~d1ir~q it woul d be to repcr t  the

r - ) ~~’ : tk .~ ~‘-rs c ~c-~~cn r~~
j
~~c ns  ~~~‘ the po~ nt w here ~ ie limit of 
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s o me  bo’:x~ci on aj lott ~~1 reso urces was  Exceeded.

3. L4 The Union of ~wo ?olvj ines

Th~ union of two strip trees can be accomplish ed by aefir .inq

a s~ rip that  cov Lrs  both of the two  root strips.
‘
4

~lqo:it hm ~~: P— P Uni )n.

For two  Ps def ined Lv ~~
y ’ ...y ’J, ~

y ” ...v”~
trcat these as two subsets and concat enat e

the  su~ sets. Ibat is , the resultant. ordering

is Fuch that we have v y ’ , v y “. N o w
0 0

define a strip segment that cove rs  ~~
v ! such that c=o and do l ta d* . t’ y

~~l 4t

cor 4s -’:’lction , this sat is f ies all the

ptoper ies of a stri p segment. ~ake this the

roo’~ nodc of a new P—t rcc .  The t w o  subtrees

a re  4 he tw o  ?s of the union.

This const ruct ion is s nown  in Fi;urc ~~. The var iab le  c ~s

def ined l e low .

F ij u r c  8: Co r . s t r uc r io n  for 1Jr ~ior. of S t r ip  T re .~s

~~present 1ng Two  ~oLvl ines
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Cf course ‘his construct ion introd uce s a prob l~~a in that the new

str ip is no longer comp act  and t he re fo re  the Clear in tersect ion

lemm a no longer holds. To overco me this prDL leIa we must add one

bit of informat ion to Lach node to mark w h e t h e r  the under lyinq

polyline is compact. Since later algori thms may result in

underivinc polylir4es that i~ r e  disconnected , we include this in

~he fo llowir.q def in i t ion of C:

c(T) = (i P represented by 5 ( T )  is known to be compact and

connected

0 o ’ herw ise

~j ’h this s t r a t egy  w e can preserve th’~ eloquence of the previous

a lgor it hms in ‘he foL..ow inq ma nner.  W h e n  hit C (T) is not one we

apoly ‘hE rec urs ion r~~ ar-diess of the in tersect ion type . In

alqori’ha~ ~ I3 this means tha t  c lea r int :rsect ions are repor ted as

possil le i~ ‘he bit C (T) is set.

This  cch n i q u~ :a:i also he usLi as a d ig i t izat ion met hcd for

m non—cc n nec t ed  ~;cg~~3 nt s

:h~ se ~c q m e n t s  are g iven an ord~~rinq as show n.  The p rev i c us

~~~i~~i~ a’ion alqori’h~n i.s appl ied t o  this set f points , and the

pe rp~~r1dIcular dis ar.ce d~ is cc mputed f ro rn  the set o f

d i s c o n ne c t e d  vs an~ u~~€ 1  to def ine the of the root s t r ip  as

Lef — e .  Po~ cve r  r ,ow t .~~ s~~ is Iiv~ de -I into t w o  su bset s  o f

conn ~ ct d s e gmen t s  (:at~ cr t i a n  using v *) and the d iq i t izat icn

s appl:’~~ :a-cursiv ~ ly to the s ucsC ts .  C nce th is

:‘c~~s~- ~~~~ ~Cu S  co n :~~- .~~; t : 1  su L~ets , he earl ic~ r ~ iyit .zat ion
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~c nc me. i~: u~~plie~~.

~~. .\r~ as presented by Strip ‘Ire-es

We ‘ake the boundar y of an area to be a closed pclyline .

In re.c’inglv encu gh , the digitiza tion method described in

Section 2 wctk s for closed polylines and , inc identally, al so f or

selt-inttrsectirLq polvlines. Furthermore , if an area is not

~itply connected it can s ill be. represented as a strip tree ,

which a ’ some leve l has connected primitive-s. he method for

bing so w a s  descr i bed in the prev ic us s~~c ’ion. It a region has

holes i~ can he represe n te d  L y a sing le boundary curve using a

const:~ction (Figure ~~) .

Figure 1: i region wLta a Hole

2 z  ‘h~ hole s are i;portant , they thems elves 3hould be

i ndepe nde nt  lv re p rc s e n e I as str ip t rees.

The most re :nark ibi ~ ~ac r is t hi’ by represent ing an area in

‘his way  ma ny usef i l  pe ra tj o ns  s uch is in te rsec t ion  t~~t w e c n  i

pilv jj r.r and an a r ’a , i~ t ~rmininq wr ~e’ her -a point is inside an

and in erse:tiu i t wo ~rcas are carr ied cut v e r y



Page 2C

~: f f ic ie i~ -
~ l’i.

‘4.1 D~ t’~rminir ~g Whe~~eer -1 Point is Inside an Area

The strip ‘ree rep :esentaticn of an are a by its boundar y

allows ‘he determination of whethe r a point is inside the area in

a straiqht fcrward manner. If any semi—inf in i te line ter~~inatinq

at the point intersects the boundar y of the area ar. odd number of

t imes , tne point is inside. This result appears in f~~inskv and

~apert , 1~~€ 9~~. This result is computat ionally simplified for

strip trees in the following manner:

point ~1~embe:sh iu Prope: t y

Tc decide w h e t h er a point z is member of an

area re. pres~~nt .cd by a strip tre e , we nee d

only com pute tij e- number o f  near

L r ~t~~E S eCt i ’ ) f l3  of the st r ip tre e with any

se-mi—infinit~ s t r ip L which has del ta  = 0 and

e mana t es  f r om z. if this number is odd the rm

the point is inside the area .

n €~~ten~~i.on to the clear intersection lemm a wh ich makes

thi s prope rt y hold is that the underlying curves may intersect

more t han once but must intersect an odd nuLnt E- r of t imes.  The

rol iow ing a l ior ithm is used to deter mine w h e t h e r  a pc int  is

inside an at c i :

~l~ ori hm ‘.~~~: ‘o i r ’ ‘
~~. -

~ b e r sh i m
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hool~ a r ~ procedure inSide(z ,T)

‘-. ‘lii .

C r T e  4 e Str ip (~~O ,z)

c)mw~~nt T r L a t e S t r L p  c r e a t o s  a str ip for the half line.

I L  ~cCf ~ j ea rThte rs~ ctj on~; (.3 0 ,T) is odd then r~~tur~ (true.)

c i sc  rE~~l1rn ( f a l se )

end ;

int~~j~~r procedurc NoOfC lear Int€ rsec t ions(S ,”)

Ie~iin

Ca .-eS’ :ipmtersect ion (S ,S ( ‘ 2 ) )  into

~~ull 1 return (0)

IPossible l return (NoC fClcarIntersections (S ,L~ -)n (T))

+ NoC-fC learInterscct io ns (S , S o n ( ’ ) ) ) ;

Id e-an rc t urn  ( 1 ) ;

end

~ poten tial difficulty exists with the proce~ ure

:; rf Cl~ ar :rt~-rsc c~~ions whe n the strip SO is tangent to the

polvline- . Since ‘his rrob lem will only occur at the lowest level

f ‘h~ t r Ee , a C c m exa mine ne ighboring leave s of the tre.~ to

res olv - it.

‘~ .2 i~~’e rsectir.q a pokv l ine w i t h  an A r~ a

Th~ c t r i t€ q v  behind inte rs ect i ng  a st r ip t r e e  re p r e s e nt i r q  a

roivlii~ w i t h  a s t r L o  ~- -ee re p rese nt ing an are a is to c r e a t e  a

new -r~ e f ; t  t he r-o r t i n o~ the ro iy i ine  wh ich  ove r laps  ‘he a r€ a .

~~Lj ~- car . L~ done  n y  r~~ummi r~g ‘ i c  or igina l ~olylinr- s’r:p t r e c .
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nis i.: lone ef f i c ie n t l y  by ‘ak ing ad van tag e  of in obvious

p r o p c r t v  c~. ‘he i r ;te- rs~ ctj on  t~rocess :

:r ’in ir.q Pr o p ~~r~~y :  Consider t w o  s t r ips Sp e

‘i~ and Sa e Ta.  If the Spf l Ia  is null , then

(a)  if a ny point on ~p is inside Ta th~

~nt t r e  t ree w h e s e  root  s tr ip is Sp is inside

or on Ta and (h) if a iA y point on Ep i~
outs ide of T i  then the entire ‘t ee  whcse root

s nip is Sp is Ou t 5i .3C of Ta.

This leads to the recursive procedure- \7 fo r po ly l ine—area

~n~ c rsec t io n  using trees. Note. that  since str ip nodes unde r a

~le at ~r possible str ip in~ e rsect i~~n may be pruned, th~ bi’ c for

he i;i~~tc-r strip is s-s t to C’ to dtnot~ that it no longer has the

conpact r.~~ss prop~ rty .  ~ f course as  re pe .a t~ d ~n te rsec t ~~ons are

ca r r ie r ’ out wi th d i f f e re n t  areas more and more upper— level s t r ips

sal  have ~heir l :ts se~ to 0; r .eve rt he lzss , the inte rsect .~d

r’olvline is accu:at~~Lv rc p r  en~~ed at ~he leaves of t he s t r ip

~ r e.

NO ’ e ‘hat if the ooly line s t r ip  is “fa ’te r ,” i.e. , Area (‘11)

-> ,‘.rea (T 2)  , we car . co py the node and resolve t he i r . te rsec t i cn  at

Lowe:  l Ev ~~ls , wher eas  in hc c c nv e rs e  cas e we have to

sequen t i a l ly  prur. : t r~e t ree by f i rst iaterse:tinq the pclylir.e-

st:~~p w~~t lm ~ hc i~~t~ a’~~a st r ip  end the n intersecting the

res u lt an t  pruned tree ‘ 4 L t : l  the L i g ht  area strip.
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~~lv lin~ —~ r~ d Ii erse:’  icr.

rer ~T r e ~~c’ roc~~i ire ?cly~~r-~-a. n t ( i , 2)

1 e  j i~~

‘ .= ,.- , 
-

cosm:- n ’ ~ i. a glob il used by ~A:nt

rc u:n (
~ 

\ r t  (“~~, T 2 )

ef ~~r e~ice proc~A - ire ~ ~:n: ( ‘2 1,T 2)

he gin

Ca.~e 3t r lp rl t ( T i ,T 2 )  into

f~~u i l cr 7rimit iv~~1

~r :ste:~-~ cti-m (~~1 ,A , ~~ CZ ) null then

i.f :rA side (T1 ,A) t~~~ei~ ret~i:n ( T i )

e l se  r~~t urn (null)

else re tu rn  (T i )

I 1’ a: or ?cssibl :  1 if A:ei ( 1) >\r~ a (T2) then

b€ q  in

C. (N T ) :~~()

,:Cn~t~~nt ,~o n—c r)~~Da:t str .p

X~~eq ( N T)  : (T 1)

X r ~ I ( i ~~) : = I ( 1)

i (NT) : Y’n ~ 
( 1 )  ;

)~t L I  ( N T )  : ~~r e a  (T i )

LIur ( N )  : = P ~:nt ( LZo n  ( r i )  ,T 2 )

- 3or ~ ( NT’i := ?~~:LL ~ (~~3on (~ 1) ,T 2 )  ;

rc ’ j rr .  ( N )
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‘~ ls~ ,:c,:, i~~nt rea  ( T i ) <  A t e a ( T 2)

I e~~u r r ~ (~ X n t  (?\Int (Ti , L So~ ( T 2 )  ) , ?~~~n (T2 )  ) )

e n d ;

ersect m d  r~~ ~~~~~~~~

p tc ~~lcm of  ~nt e rse ct in~ t~~c ar eas  can ~e e f fic~ cnt l v

c i r n i e -~ oi 4 usinq th2 ir st r ip  t ree  repre~ c n ta t ions. The m e t h o d

~~ t o  I eco u rose  t~~e ~i:ob Leii into two polyline area i n t e r s e c t_ o n

~rob le”i s ( r e f er  to ~iqu:e 10 ) .

~“ ; i : c ~ 10 :  ‘c c o w p os l t ioii ot  A re  ~—~.roa Inte r- s ec t i ons

t r~~.-~t the hounIa:i f Al as renresen’ing a polyline instea l

of rc p : c s~~r~ inq ~~ a:~~~i anti Intarsec t its stri p tree wit h ~~~~

st:ip ~:~ e :c p:csc ntin A 2 t~ e 1ow~~~t i~ v~~l r e su l t is s hcwu by

.- b~.c’~ i~ r~~s in F~. Fir e 1.)~ . f we re~ o :se t hE roles Cr the

~~4 - )  -~t t in  ‘:~- e~ he :~~suLt is jive- n by t he  th ick linc~ in Fij u r e

The ‘ mn ~~on ~if t~~--~se two ~t:ip t ree s  ( s J e  Sec t io n  3.~~) is the

ar isr w e  ~dct !  ~~hri~ ~ c ca n w r i ’~ the - i r ea— a :ee  i n t e rsect i on

proc~ a ’ irc i n  t e r m s  o~ -tr ~~p3 ~~ ~olloA s:

.~~~ . ~-o r i ~~~~ :n Y’ : ~ -r~.i— .lr~~i n~~cr ;e ct ion

~ -~ f e r c r . c~~~~ , r o c e d : r e  \ r e a A r e i n ’ (T~~,T 2 )
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1 ~~~~

r t u ri. Llr.ior. ( ? o l v A : e a n e  ( T 1 ,T 2 ) ) , ( ? o ly A r e a T h t

(~ 2 , T i ) ) ) ;

w h e r e  Un ion i~ a p roced ure  that  acco mp lishes ‘he cons t ruc tio n

desc :ihed in Tec ’ion 3.~4.

Note  tha t  in ‘he c a s ~ of areas tnat ir.te:s~ ct in a w a y  that

f r  ~ s n ~~nts the ir boundar ies , t he o rder  ot the se g ments will not be

p:~ s o rv e l Ly  the in t e r s ec r io c  p roced i re .  (~Jr1 4j j  t hii~ pc int w e.

w e r e  i~ria ra n t€ed  t hat  ~~r:ps ~n t h€  tr~-~ wou ld be o rde red

accorc in . j  tc  th~ a r c  l :nqth of  their unde rly ing  po l yl i nes) .

:!o’~c v € r , a ll ihe et her  ~ropcrt ies  of ~~~ re p r e se nta t ion are

nr sc rved .

~.4 ~ l - 2  Union Qpt.rati~~n

~~~ unio n oper at ion. ; ir~ sL ijh ~ l~ s iup ler than  the

:n ~- r s~~-c icr; onerat  icn. ~~ r ~~c un .0r  :f a E — t r e e  and a ?— ~~r e e

~ e usc i co~~s t r uc t io n  ;ioi~~a: to ~h- di~~it iza t icn i~et h o d s  for

i :’co iwc  ed Ps.  ‘The r ?~~1lt is e ~‘— ‘ree. Not e ~hat t he  union

opc rttjor : ~c: st r~~!~ 
t :r~~~~~ i-s not co nmu t ativ e . Usc , w~ do not

let t ne  ‘ union OPE r a t ~ )r~ Li: a ~~ r i p  ‘ t e e  r e p r es e n t  inq a p c ly  l in e

anc  ~ 5 ’Ej P ‘rce  rc pre ;e r, ’in~ a Le- I ton. The un ion of two  regio n

.- ;t r ip  t tc.C F is ie . f i~~-fl i~i - l is a rL -;i ) r. s’rip t:r€. f these t~~ e

~ r r ~ c.~; ~o l i- i  ~ i ~r ~OC t , ~ he n t ~ u n  i o n  i s st r ~~: .J.t tor w ~r 1

u, :  ~ - : : n  ic- i  t i  t he :~I~ tnod for y I yline s. “ow e VE. r , f

i~~i ‘r u ., h~~n ~~ ,;i ’ I s t  . jo ~~~- ‘he tr- )ub le ot l L L lr i r .g  1
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new str ip t r e e  hat r ep ro s e n t s  the  union by  finding the points of

interse ction in th e sa.u e ~ay as ~as d o n e  fc: r~ q ion strip t ree

t o t  € rsect  ions.
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3. Conclii~~ions

Strip trees provi le ~ po we rfu l representation for polylires

and areas. Current w ork  is di rected towards  character iz ing their

conputat ional  complexi :y more precisely but it can alread y be

shown  t h a t  the ~ep rese nta t i - n is superior to  i ts co mpet i tors .

Th o ‘ain drawback is that there is a large ove rhead  in terms of

spac e - . ~f n is the requ i red s pace to represe nt a polyline ‘hen

its strip t re.e will taKe about L~n space units. kiso ‘he. c :eat icn

‘if a s~ rip tree is a labcr~.cus process , requiring O ( n log n) r ime

units. However , ncit h~ r of ‘hese dra w backs  are thought to be

imp ortan t in the use of this representation for geographical data

Las es.

The representat ion def ines st r ip seq nents as primitives t
O

cover subsets of the line after f ?euck e r , 1P T 6 . C u r

orqar,i:a’ i-na of these se q;ncnts into a tree ma y he viewe d as a

particula r  case of a ieneral str ateqy of d iv iding features up and

cove :ins then with arbi’:arv sh apes such as dec ic t ed  by F~~q u r ~

10. C th e r  a t t e m p t s  in this class ha ve bee n tried by f 3 a r r o w  et

al.,1~’ i T ” ; Putton , 1 ’7; :anj.roto , 19751, but t hey do not

caot ur~ th e  not ions -of o r ienta t ion  and resolut ion anywhere  near ly

as precise ly  as str ip seg ments , and do not have the union and

l f lt e r s C C ’ i c i z  propc r ’ies.
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Figure 11: The Notion of an ~rLit rary Div ide— k nd—Conq ue r S t ra tegy

L.

/
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Figure 1. Map features displayed at various resolutions

using the hiera rchical structure .
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Figure 2: Definition of a Strip Segment.
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Figure 5: Two of Many Possible Geometrics When Testing
the Distance of a Point from a P.

rwl l cIeo.t- pos s i b le

Figure 6: Different Ways Strips Can Intersect

- -— - . -  ~~~~~~ - - ~~~~~~~~~~~~ --- —-  _ _— - - - -  —~~~~~~~ ~~
— - - -



Figure 7. An intersection may be simple at one level
and complicated at l ower levels.

~~~~~~~~~~~~~II

Figure 8: Construct ion for Union of Strip Trees
Representing Two Polylines

Figure  9: A R e g i o n  w i t h  a Ho le



/

a .

b. c.

:
Figure 10: Decompositi on of A rea -Area Intersections

a . Desired Result  A (~) A  b. Resu lt of I (iT

c. Result of T
L fl T ,~ d.  Union of Two Results : the poly line2 1 segments covered by the resul t tree .


