" AD=A0T0 930 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE==ETC F/G 9/2

THE MDL PROGRAMMING LANGUAGE (U)
JUN 79 S W GALLEYr 6 PFISTER NOOOl“-TS-C-D661
UNCLASSIFIED

-, '

LABORATORY FOR (9Ghs MASSACHUSETTS
COMPUTER SCIENCE TECHNOLOGY

THE
MDL
PROGRAMMING LANGUAGE

A070930

S.W.Galley ° p DC
Greg Pfister o

OPY'

E C

T ey

This work was supported by the Advanced Research Pfojeéts Agency of the
Department of Defense and was monitored by the Office of Naval Research
under contract N00014-75-C-0661

DDC FL

: © 545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
TREPORY NUM r GOVY ACCESSION NO| 3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
/[) e wor » ing L
'\ 4 . i “?‘ anguige) : v €. PERFORMING ORG. REPORT NUMBER
/:_w, AUTHOR(s) 2 9 CONTRACT OR GRANT NUMBER(s) i
/7) A s . =
l[}) Stuart W./Galley@nl Greg IPfister l 1’5 NO0Q14~75-C~0661

TN E

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & N

. PERFORMING ORGANIZATION NAME AND ADDRESS IS kA 5

MIT/Laboratory for Computer Science

545 Technology Square v
Cambridge, MA 02139
11, CONTROLLING OFFICE NAME AND ADDRESS 48— REPORT-DATE-— . ;
ARPA/Department of Defense m Jun 79 ;
1400 Wilson Boulevard T 2 -
Arlington, VA 22209 278
T3 MONITORING AGENCY NAME & ADDRESS(i/ different from Controlling Olffice) | 15. SECURITY CLASS. (of thia report)
ONR/Departmet}t of the Navy Unclassified
Information Systems Program
Arlington’ VA 22217 Sa. gctﬁéolgtl:lcATION/DO'NGRADONG

6. DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited

V) 4 8.8 P

" SN altnE SRS

17. DISTRIBUTION STATEMENT (of the abstract entered in Bloock 20, I different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number) }
MDL :
Muddle
Pracramming Languages

4

ABSTRACT (Continue on reverse side If necessary and identify by block number)

he MDL programming language began existence in late 1970 (under the name Muddle) as
successor to Lisp (Moon, 1974). a candidate vehicle for the Dynamic Modeling Systemn, and a possib
base for implementation of Planner (Hewitt, 1969). The original design goals included a
interactive antegrated environment for programming, debugging. loading, and editing: ease i
learning and use: facilities for structured, modular, shared programs: extensibility of syntax, dat
types and opcrators: data-type cheching for debugging and optional data-type declarations f
compiled efficiency: associative storage, coroutining, and graphics.{lonlthe way to reaching tho

FORM
'\ Jan 73 1473 EOiTiON OF 1 NOV 8813 OBSOLETE

4] ,"\ G /‘ (SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
/ / y -
L/ .

BECURITY CLASZICATION OF THIS ©ASE(WRen Base Bntored)

SO.

goals. it developed flexible input/output (including the ARPA Netwerk), and flexible interrupt and
signal handling. 1t now serves as a base for software prototyping. research, development, education,
and implementation of the majority of programs at MIT-DMS: a library of sharable modules, a
colierent user interface, special research projects, autonomous daemons, etc.

This document was originally intended to be a simple low-level introduction to MDL. It has,
however, acquired a case of clcphantiasis and now amounts to a discursive description of the whole
interpreter, as realized in MDL release numbers 55 (ITS version) and 105 (Tenex and Tops-20
versions). (Significant changes from the previous edition are marked in the margin.) A low-level
introduction may still be had by restricting one’s attention to specially-marked sections only. The
scope of the document is confined as much as possible to the interpreter itself. Other adjuncts
(compiler, assembler, pre-loaded user programs, library) are mentioned as little as possible, despite
their value in promoting the language seen by a user from "basic survival® to "comfortable living"~,
Indeed, MDL could not fulfill the above design goals without the compiler, assembler, structure
editor, control-stack printer, context printer, pretty-printer, dynamic loader, and library system - all
of which are not part of the interpreter but programs written in MDL and symbiotic with one
another. Further information on these adjuncts can be found in Lebling's (1979) document.

SECURITY CLASSIPICATION OF THIS PAGE(When Date Entered)

PR -#\A,M;;_“;...A

Lo e e e i it

AV OWIREPTIE. A7 WP

¢
i’
:
1

The
MDL

Programming Language

S. W. Gallcy and Greg Pfister

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge

| Accession For ; |

| GRA&Y

| IDC TAB

| Unannounced

l Justirfication A

RS ———ey

’
o

‘ By
\ Di (-Qv n\w '\11
Y. Coldes }

i xr\lla:tfx/o‘r
Dist special

et

Massachusetts 02139

2 The MDL Programming Language

Abstract

The MDL programming language began existence in late 1970 (under the name Muddle) as a
successor to Lisp (Moon, 1974). a candidate vehicle for the Dynamic Modeling System, and a possible
base for implementation of Planner (Hewitt, 1969). The original design goals included an
interactive antegrated enviconment for programming, debugging, loading, and editing: ease in
learning and use: facilities for structured, modular, shared programs: extensibility of syntax, data
types and opcrators: data-type checking for debugging and optional data-type declarations for
compiled efficiency: associative storage, coroutining. and graphics. Along the way to reaching those
goals, it developed flexible input/output (including the ARPA Network), and flexible interrupt and
signal handling. It now serves as a base for software prototyping, research, development, education,
and implementation of the majority of programs at MIT-DMS: a library of sharable modules, a
coherent user interface, special research projects, autonomous dacons, etc.

This document was originally intended to be a simple low-level introduction to MDL. It has,
however, acquired a case of clephantiasis and now ameunts to a discursive description of the whole
interpreter, as realized in MDL release numbers 55 (ITS version) and 105 (Tenex and Tops-20
versions). (Significant changes from the previous edition are marked in the margin.) A low-level
introduction may still be had by restricting onc’s attention to specially-marhked sections only. The
scope of the document is confined as much as possible to the interpreter itself. Other adjuncts
(compiler. assembler. pre-loaded user programs, library) are mentioned as little as possible, despite
their value in promoting the language seen by a user from "basic survival” to "comfortable living"~.
Indeed, MDL could not fulfill the above design goals without the compiler, assembler, structure
editor, control-stack printer, context printer, pretty-printer, dynamic loader, and library system -- all
of whicin are not part of the interpreter but programs written in MDL and symbiotic with one
anoiher. Further information on these adjuncts can be found in Lebling's (1979) document.

KEY WORDS: MDL
Muddle
Programming Languages

The MDL Programming Language b}

Acknowledgements

I was not a member of the original group which labored for two years in the design and initial
implementation of Muddle: that group was composed principally of Gerald Sussman, Carl Hewitt,
Chris Reeve, Dave Cressey, and later Bruce Daniels. I would therefore like to take this opportunity
to thank my Muddle wentors, chiefly Chris Reeve and Bruce Daniels, for remaining civil through
several months of verbal badgering. 1 believe that I learned more than “just another programming
language” in learning Muddle, and 1 am grateful for this opportunity to pass on some of that
knowledge. What I cannot pass on is the knowledge gained by using Muddle as a system; that I can
only ask you to share.

f For editing the content of this document and correcting some misconceptions, I would like to thank
| Chris Reeve, Bruce Daniels and especially Gerald Sussman, one of whose good ideas I finally did use.

Greg Pfister
December 15, 1972

Since Greg left the fold, I have taken up the banner and updated his document. The main sources
for small revisions have been the on-line file of changes to MDL, for which credit goes to Neal
Ryan as well as Reeve and Daniels, and the set of on-line abstracts for interpreter Subroutines,
contributed by unnamed members of the Programming Technology Division. Some new sections
were written almost entirely by others: Dave Lebling wrote chapter 14 and appendix 3, Jim Michener
section 14.3. Reeve chapter 19 and appendix I, Daniels and Reeve appendix 2, Brian Berkowitz
section 227, Tak To section 17.2.2, and Ryan section 17.18. Sue Pitkin did the tedious task
of marking phrases in the manuscript for indexing. Pitts Jarvis and Jack Haverty advised on the
use of PUB and the XGP. Many PTD people commented helpfully on a draft version.

My task has been to impose some uniformity and structure on these diverse sources (so that the
result sounds less like a dozen hackers typing at a dozen terminals for a dozen days) and to en joy
some of the richness of MDL from the inside. I especially thank Chris Reeve (“the oracle”) for the
patience to answer questions and resolve doubts, as he no doubt has done innumerable times before.

JET PSR, S WU e

S. W, Galley
May 28, 1979

This work was supported by the Advanced Research Projects Agency of the Department of Defense
and was monitored by the Office of Naval Research under contract N00014-75-C-0661.

This document was prepared using the PUB system (originally from the Stanford Artificial
Intelligence Laboratory) and printed on the Xerox Graphics Printer of the M.LT. Actificial
Intelligence Laboratory.

—————

4 The MDL Programming Language

Foreword

Trying to explain MDL to an uninitiate is somewhat like tryiung to untie a Gordian knot. Whatever
topic one chooses to discuss first, full discussion of it appears to imply discussion of everything
else. What follows is a discursive presentation of MDL in an order apparently requiring the fewest
forward references. It is not perfect in that regard: however, if you are patient and willing to
accept a few, stated things as “magic” until they can be explained better, you will probably not have
too many problems understanding what is going on.

There are no “practice problems™ you are assumed to be learning MDL for some purpose, and your
work in achieving that purpose will be more useful and motivated than artificial problems. In
several cases, the exawmples contain illustrations of important points which are not covered in the
text. Ignore examples at your peril.

This document does not assume knowledge of any specific programming language on the your part.
However, "computational literacy” is assumed: you should have written at least one program before.
Also, very little familiarity is assumed with the interactive time-sharing operating systems under
which MDL runs -- ITS, Tenex, and Tops-20 -- namely just file and user naming conventions.

Notation:

Sections marked (1] are recommended for an uninitiate’s first reading, in lieu of a separate

introduction or primer for MDL. [On first reading, text within brackets like these should be
ignored.)

Most specifically indicated examples herein are composed of pairs of lines. The first line of a pair,
the input, always ends in $ (which is how the ASCII character ESC is represented, and which always
represents it). The second line is the result of MDL's groveling over the first. If you were to type
all the first lines at MDL, it would respond with all the second lines. (More exactly, the “first line”

is one or more objects in MDL followed by §, and the “second line® is everything up to the next
"first line”)

Anything which is written in the MDL language or which is typed on a computer terininal appears
herein in a gothic font, as in ROOT. A metasyntactic variable -- something to be replaced in actual
use by something else -- appears as radix:ifix, in an italic font; often the variable will have both a
meaning and a data type (as here). but sometimes one of those will be owitted, for obvious reasons.

An ellipsis (...) indicates that something uninteresting has been omitted. The character * means
that the following character is to be “controllified™ it is usually typed by holding down a terminal’s
CTRL key and striking the other key.

The MDL Programming Language

Page

16
20
27
30
35
43
52
71
78
89
98
116
120
124
138
146
152
159
163
169
177
192
201
204

List of Chapters

Name

LW NDCL WY -

e et o e
i G- B - B el

24

- Basic Interaction

. Read, Evaluate, and Print
- Bui't-in Functions

. Values of Atoms

. Simple Functions

. Data Types

. Structured Ob jects

. Truth

. Functions

. Looping

. Input/Output

. Locatives

. Assaciation (Propertics)
4. Data-type Declarations

. Lexical Blncking

. Errors, Frames, etc.

. Macro-operations

- Machine Words and Bits
. Compiled Programs

. Coroutines

. Interrupts

. Storage Management

- MDL as a System Process

. Efficiency and Tastefulness

6 The MDL Programming Language

List of Seotions

Page Section

16 Chapter 1. Basic Interaction
16 .1 Loading MDL (1)

16 1.2 Typing [1) 1
18 1.3 Loading a File [l) g
18 1.4 Ervors - Simple Considerations [1] F

20 Chapter 2. Read, Fvaluate, and Print
20 2.1 General (1)

20 2.2 Philosophy (TYPEs) [1)

21 2.3 Example (TYPE FIX) (1)

22 2.4 Fxample (TYPE TLOAT) [I)

22 2.5 Example (1YPE ATOM, PNAME) [1]

22 2.6 FIXes, FLOATs, and ATOMs versus READ: Specifics

22 2.6.1 READ and FIXed-point Numbers

23 2.6.2 READ and PRINT versus FLOATing-point Numbers
24 2.6.3 READ and PNAMEs

24 2.6.3.1 Non-PNAMEs

24 2.6.3.2 Examples

25 2.6.3.3 \ (Backslash) in ATOMs

26 2.6.3.4 Examples of Awful ATOMs

27 Chapter 3. Built-in Functions
27 3.1 Representation [I) :
27 3.2 Evaluation 1] i
28 3.3 Built-in Functions (TYPE SUBR, TYPE FSUBR) (1)
28 3.4 Examples (+ and FIX; Arithwetic) [1]

29 3.5 Avithmetic: Details

S 7

e

i

30 Chapter . Values of Atoms
30 4.1 General (1)

30 4.2 Global Values -
; 30 4.2.1 SETG [1) ,
, 31 4.22 GVAL [1]
i 31 4.2.3 Note on SUBRs and FSUBRs
32 4.2.0 GUNASSIGN L
32 4.3 Local Values :
32 430 st |
, 32 432 LVAL (1) i
i 33 4.33 UNASSIGN
} 33 4.4 VALUE

List of Sections

The MDL Programming Language

35 Chapter 5. Simple Functions

35
35
36
39
40

43
43
43
44
44
44
45
45
46
46
46
46
48

52
52
52
52
52
53
53
53
54
54
54
54
54
55
55
55
55
55
56
56
56
57
57
58

5.1 General (1)

5.2 Representation (1)

5.3 Application of FUNCTIONs; Binding (1)

5.4 Dcfining FUNCTIONs (FUNCTION and DEF INE) [1)
5.5 Examples (Comments) (1)

Chapter 6. Data Types

6.1 General [1)
6.2 Printed Representation [I]
6.3 SUBRs Related to TYPEs
6.3.1 TYPE (1)
6.3.2 PRIMTYPE [1]
6.3.3 TYPEPRIN [1)
6.3.4 CHTYPE [1}
6.4 Morc SUBRs Related to TYPEs
6.4.1 ALLTYPES
6.4.2 VALID-TYPE?
6.4.3 NENTYPE
6.4.4 PRINTTYPE, EVALTYPE and APPLYTYPE

Chapter 7. Structured Objects

7.1 Manipulation
7.1.1 LENGTH [1)
7.2 NTH (1)
7.1.3 REST (1)
7.1.4 PUT 1)
7.1.5 GET
7.1.6 APPLYing a FIX [1]
7.1.7 SUBSTRUC
7.2 Representation of Basic Structures
7.2.1 LIST 1)
7.2.2 VECTOR [1]
7.2.3 UVECTOR [I)
7.2.4 STRING [1)
7.2.5 BYTES
7.2.6 TEMPLATE
7.3 Evaluation of Basic Structures [1)
7.4 Examples [1)
7.5 Generation of Rasic Structures
7.5.1 Direct Representation [1)
7.5.2 QUOTE [I]

7.5.3 LIST, VECTOR, UVECTOR, and STRING (the SUBRSs) [1)

7.5.4 TLIST, IVECTOR, IUVECTOR, and ISTRING [1}
7.5.5 FORM and IFORM

List of Sections

P-
l‘
3 The MDL Programming Language
59 7.6 Unique Properties of Primitive TYPEs
59 7.6.1 LIST (the PRIMTYPE) (1]
59 7.6.1.1 PUTREST [1}
59 7.6.1.2 CONS
60 7.6.2 "Array” PRIMTYPEs (1]
60 7.6.2.1 BACK [1)
60 7622 T0P (1)
60 7.6.3 "Vector” PRINTYPES
60 7.6.3.1 GROW
6l 7.6.3.2 SORT
63 7.6.4 VECTOR (the PRIMTYPE) 1]
63 7.6.5 UVECTOR (the PRIMTYPE) [1)
63 7.6.5.1 UTYPE (1] : |
64 7.6.5.2 CHUTYPE (1] ‘T
64 7.6.6 STRING (the PRIMTYPE) and CHARACTER (1]
65 7.6.6.1 ASCII [1)
(13 7.6.6.2 PARSE (1]
I3 7.6.6.3 LPARSE [1)
65 7.6.6.4 UNPARSE (1)
65 7.6.7 BYTES
66 7.6.8 TEMPLATE
66 7.7 SEGMENTS [1)
66 7.7.1 Representation (1]
67 7.7.2 Evaluation [1]
67 2.7.3 Examples [1)
68 7.7.4 Note on Efficiency (1]
69 7.7.5 SEGMENTs in FORMs [1)
69 7.8 Self-referencing Structures
69 7.8.1 Self-subset
70 7.8.2 Self-element

71 Chapter 8. Truth
n 8.1 Truth Values {1}
71 8.2 Predicates [1)

| 8.2.1 Arithwmetic (1]

7 8.2.2 Equality and Membership (1]
3 8.2.3 Boolean Operators [1)

74 8.2.4 Ob ject Properties (1]

75 8.3 COND [1)

5 8.3.1 Examples [1)

76 8.4 Shortcuts with Conditionals

76 8.4.1 AND and OR as Short CONDs
77 8.4.2 Embedded Unconditionals

78 Chapter 9. Functions

List of Sections

The MDL Programming Language

78
79
79
80
81
82
82
83
83
84
84
86
88
88

89
89
89
90
90
91
92
92
922
94

1=
@

23888838

§_

9.1 "OPTIONAL" [1)
9.2 TUPLES

9.2.1 “TUPLE" and TUPLE (the TYPE) [1]

9.2.2 TUPLE (the SUBR) and ITUPLE
9.3 "AUX" [1)

9.4 QUOTEd arguments
9.5 “"ARGS"

9.6 "CALL"

9.7 EVAL and "BIND"

9.7.1 Local Values versus ENVIRONMENTs
9.8 ACTIVATION, “NAMC", "ACT", AGAIN, and RETURN [I]
9.9 Argument List Summary
9.10 APPLY [1]

9.11 CLOSURE

Chapter 10. Looping

10.1 PROG and REPEAT [I]
10.1.1 Basic EVALuation [I])
10.1.2 AGATN and RCTURN in PROG and REPEAT [I]
10.1.3 Fxamples [1]

10.2 MAPF and MAPR: Basics [1]
10.2.1 MAPT (1]
10.2.2 MAPR [1]
10.2.3 Exawmples [1]

10.3 More on MAPF and MAPR
10.3.1 MAPRCT
10.5.2 MAPSTOP
10.3.3 MAPLEAVE
10.3.4 Only two arguments
10.3.5 STACKFORM

10.4 GO and TAG

10.5 Looping versus Recursion

Chapter 1L Input/Output
1.1 Conversion 1/0

ILLL Input
IL1.L{ READ
11112 READCIIR
11.1.1.3 NEXICHR

11.1.2 Output
1LL2.1 PRINT
11.1.2.2 PRINI
11.1.2.3 PRINC
11.1.2.4 TERPRI
11.1.2.5 CRLF

List of Sections

100
101
101
102
102
103
103
103
103
104
104
105
i05
106
106
106
106
106
106
106
107
107
107
107
108
108
109
109
109
110
110
110
i10
m
i
1
11
112
13
13
113
13
114
115
115

11.1.2.6 TLATSTZC
1.2 CHARNEL (the TYPE)
11.2.1 OPEN
11.2.2 OPEN-NR
11.2.3 CHANNEL (the SUBR)
10.2.4 FILE-EXISTS?
11.2.5 CLOSE
11.2.6 CHANLIST
11.2.7 INCUHAN and QUTCHAN
11.2.8 Contents of CHANNELs
11.2.8.1 Ontput CHANNELS
11.2.8.2 Input CHANNELs
11.3 End-of-File "Routine”
11.4 hmaged 1/0
1L41 Input
11.4.1.1 READB
11.4.1.2 READSTRING
11.4.2 Output
11.4.2.1 PRINTB
11.4.2.2 PRINTSTRING
11.4.2.3 TMAGE
11.5 Dumped 1/0
IL.5.1 Output: GC-DUMP
11.5.7 Input: GC-READ
11.6 SAVE Files
11.G.] SAVE
11.6.2 RESTORE
1.7 Other 1/0 Functions
11.7.1 LOAD
11.7.2 FLOAD
11.7.3 SNAME
11.7.4 ACCESS
1.7.5 FILE-LENGTH
1.7.6 FILECOPY
1.7.7 RESET
11.7.8 BN OUT
11.7.9 RENAME
11.8 Terminal CHANNELs
11.8.1 ECHOPAIR
11.8.2 TIYECHC
11.8.3 1YI
11.9 Internal CHANNELS

1110 The "NET" Device: the ARPA Network

IL.10.1 NETSTATE
11.10.2 NETACC

List of Sections

The MDL Programming Language

The MDL Programming Language

s

16
116
116
1Y
n7
n
nm
1s
18
1ns
i9

120
120
120
120
120
121
121
121
121
123

124
125
128
130
131
131
131
132
132
133
134
134
134
134
135
135
136

138
138

11.10.3 NETS

Chapter 12. Locatives

12.1 Obtaining Locatives
12.1.1 LLOC
12.1.2 GLOC
12.1.3 AT
12.1.4 GETPL and GETL
12.2 LOCATIVE?
12.3 Using Locatives
12.3.1 IN
12.3.2 SETLOC
12.4 Note on Locatives

Chapter 13. Association (Properties)

13.1 Associative Storage

13.1.1 PUTPROP

13.1.2 PUT

13.1.3 Removing Associations
13.2 Associative Retrieval

13.2.1 GETPROP

13.2.2 GET
13.3 Examples of Association
13.4 Examining Associations

Chapter 14. Data-type Declarations

14.1 Patterns

14.2 Examples

14.3 The DECL Syntax

14.4 Good DECLs

14.5 Clobal DECLs
14.5.1 GDECL and MANIFEST
14.5.2 MANIFEST? and UNMANIFEST
14.5.3 GBOUND?

14.6 NEWTYPE (again)

14.7 Controlling DECL Checking
14.7.1 DECL-CHECK
14.7.2 SPECIAL-CHECK and SPECIAL-MODE
14.7.3 GET-DECL and PUT-DECL
14.7.4 DECL?

14.8 OFFSET

14.9 The RSUBR DECL

Chapter 15. Lexical Blocking

15.1 Basic Considerations

List of Sections

SRR TP TSR PSR ———

12 The MDL Programming Language

139 15.2 OBLISTs

139 15.2.1 OBLIST Nanies
140 15.2.2 MOBLIST
140 15.2.3 OBLIST?

140 15.3 READ and OBLISTs

141 15.4 PRINT and OBLISTs

141 15.5 Initial Srate

142 15.6 BLOCK and ENDBLOCK

142 15.7 SUBRs Associated with Lexical Blocking

142 15.7.1 READ (again)

143 15.7.2 PARSE and LPARSE (again)

143 15.7.3 LOOKUP

143 15.7.4 ATOM

143 15.7.5 REMOVE

143 15.7.6 INSERT

144 15.7.7 PNAME

144 15.7.8 SPNAME

144 15.8 Example: Another Solution to the INC Problem

146 Chapter 16. Errors, Frames, etc.
146 16.1 LISTEN
147 16.2 ERROR

147 16.3 FRAME (the TYPE)
148 16.3.1 ARGS

148 16.3.2 FUNCT

148 16.3.3 FRAME (the SUBR)
148 16.3.4 Examples
148 16.4 ERRET

150 16.5 RETRY

150 16.6 UNWIND

150 16.7 Control-G (*6)
151 16.8 Control-S (*S)
151 16.9 OVERFLOW

152 Chapter 17. Macro-operations
152 17.1 READ Macros

152 17.1.1 % and %X

153 17.0.2 LINK

153 17.1.3 Program-defined Macro-characters
153 17.1.3.1 READ (finally)

155 17.1.3.2 Examples

156 17.1.3.3 PARSE and LPARSE (finally)
156 17.2 EVAL Macros

156 17.2.1 DEFMAC and EXPAND

157 17.2.2 Example

List of Sections

EIPPTINRTSRESE RN

The MDL Programming Language I3

159 Chapter 18. Machine Words and Bits
159 18.1 WORDs

160 18.2 BITS

160 18.3 GETBITS

i6l 18.4 PUTBITS

161 18.5 Bitwise Boolean Operations

162 18.6 Ritwise Shifting Operations

163 Chapter 19. Compiled Programs ‘
163 19.1 RSUBR (the TYPE) H
163 19.2 The Reference Vector

164 19.3 RSUBR Linking

164 19.4 Pure and Impure Code

165 19.5 TYPE-C and TYPE-W

165 19.6 RSUBR (the SUBR)

166 19.7 RSUBR-ENTRY

166 19.8 RSUBRs in Files

167 19.9 Fixups i

169 Chapter 20. Coroutines

169 20.1 PROCESS (the TYPE)
170 20.2 STATE of a PROCESS
170 20.3 PROCESS (the SUBR)
170 20.4 RCSUME L

171 20.5 Switching PROCESSes

171 20.5.1 Starting Up a New PROCESS

171 20.5.2 Top-level Return |
172 20.5.3 Symmetric RESUMEing ?

173 20.6 Example
173 20.7 Other Coroutining Features

173 20.7.1 BREAK-SEQ
174 20.7.2 MAIN

174 20.7.3 ME

174 20.7.4 RESUMER
174 20.7.5 SUICIDE
175 20.7.6 1STEP

175 20.7.7 FREE-RUN

175 20.8 Sncakiness with PROCESSes
176 20.9 Final Notes

177 Chapter 21. Interrupts

177 21.1 Definitions of Terms
178 21.2 EVENT

179 21.3 HANDLER (the SUBR)
179 21.4 OFF

List of Sections

— w—nm

14 The MDL Programming Language

180 21.5 IHEADER and HANDLER (the TYPEs)

180 21.5.1 THEADER |
181 21.5.2 HANDLER \
181 21.6 Other SUBRs

182 21.7 Priorities and Interrupt Levels {
182 20.7.4 Interrupt Processing -
183 21.7.2 INT-LEVEL i
183 21.7.3 DISMISS |
184 21.8 Specific Interrupts i1
184 21.8.1 "CHAR" reccived 1’
185 21.8.2 "CHAR® wanted |
185 21.8.3 "CHAR" for new line i
186 21.8.4 "6C" !
186 21.8.5 "DIVERT-AGC"

187 21.8.6 "CLOCK"

187 21.8.7 "BLOCKED"

187 21.8.8 "UNBLOCKED"

187 21.8.9 "READ" and "WRITE"

188 21.8.10 "SYSDOWN*"

188 21.8.11 "ERROR"

189 21.8.12 “1pPC*

189 21.8.13 "INFERIOR"

189 21.8.14 "RUNT" and "REALT" t
189 21.8.15 “Dangerous” Interrupts

190 21.9 User-Defined Interrupts (INTERRUPT) !
191 2110 Waiting for Interrupts |
191 21.10.1 HANG |
191 21.10.2 SLEEP

192 Chapter 22. Storage Management
192 22.1 Movable Garbage-collected Storage

193 22.1.1 Stacks and Other Internal Vectors

194 22.2 Immovable Storage

194 22.2.1 Garbage-collected: FREEZE

194 22.2.2 Non-garbage-collected: STORAGE (the PRIMTYPE)

194 22.3 Other Storage

195 22.4 Garbage Collection: Details
195 22.5 GC

196 22.6 BLOAT

198 22.7 BLOAT-STAT

199 22.8 GC-MON

199 22.9 Related Subroutines

199 22.9.1 SUBSTITUTE

199 22.9.2 PURIFY

List of Sections

201
201
201
202
202
202
203
203
203
203

204
204
205
207
208
208
208
209
209

211
225

258

260

265

267

271

The MDL Programming Language

Chapter 25. MDL as a System Process

23.1 T1IME

23.2 Names

23.3 Exits

23.4 Inter-process Communication
23.4.1 SEND and SEND-WAIT
23.4.2 The "IPC" Interrupt
23.4.3 IPC-OFF
23.44.4 1PC-ON
23.4.5 DEMSIG

Chapter 24. Efficiency and Tastefulness
24.1 Ffficiency
24.1.1 Example
24.2 Creating a LIST in Forward Order
24.3 Read-only Free Variables
24.4 Glohal and Local Values
2.4.5 Making Offsets for Arrays
24.6 Tables
24.7 Nesting
Appcndix 1. A Look Inside
Appendix 2. Predefined Subroutines
Appendix 3. Predefined Types
Appendix 4. Error Messages
Appendix 5. Initial Settings
References

Topic Index

Name Index

List of Sections

The MDL Programming Language

Chapter 1. Basic Interaction

The purpose of this chapter is to provide you with that minimal amount of information needed to
experiment with MDL while reading this document. It is strongly recommended that you do
experiment, especially upon reaching chapter 5 (Simple Functions).

I.I. Loading MDL [I]

First, catch your rabbit. Somechow get the interpreter running -- the program in the file SYS: TS MDL
in the ITS version or SYS:MDL.SAV in the Tenex version or SYS:MDL.EXE in the Tops-20 version.
The interpreter will first type out some news relating to MDL. if any, then type

LISTENING-AT-LEVEL 1 PROCESS 1
and then wait for you to type something.
The program which you are now running is an interpreter for the language MDL. All it knows how
to do is interpret MDL expressions. There is no special "command language”; you communicate
with the program -- make it do things for you -- by actually typing legal MDL expressions, which it
then interprets. Fverything you can do at a terminal can be done in a program, and vice versa, in

exactly the same way.

The program will be referred to as just "MDL" (or “the interpreter”) from here on. There is no
ambiguity, since the program is just an incarnation of the concept "MDL".

1.2. Typing [1]
Typing a character at MDL normally just causes that character to be echoed (printed on your
terminal) and remembered in a buffer. The only characters for which this is normally not true act

as follows:

Typing $ (ESC) canses MDL to echo dollar-sign and causes the contents of the buffer (the characters

1-12 Basic Interaction

The MDL Programming Language 17

which you've typed) to be interpreted as an expression(s) in MDL. When this interpretation is done,
the result will be printed and MDL will wait for more typing. ESC will be represented by the glyph
$ in this document.

Typing the rubout character (DEL in the ITS and Tops-20 versions, control-A ini the Tenex version)
causes the last character in the buffer -- the one most recently typed -- to be thrown away (deleted).
If you now immediately type another rubout, once again the last character is deleted -- namely, the
second most recently typed. Etc. The character deleted is echoed, so you can see what you're doing.
On some "display” terminals, rubout will "echo” by causing the deleted character to disappear. If no
characters are in the buffer, rubout echoes as carriage-return line-feed.

Typing ~@ (control-atsign) deletes everything you have typed since the last $, and prints a carriage-
return line-feed.

Typing ~D (control-D) causes the current input buffer to be typed back out at you. This allows you
to see what you really have, without the confusing re-echoed characters produced by rubout.

Typing ~L (control-L) produces the same effect as typing ~D, except that, if your terminal is a
"display” terminal (for cxample, IMLAC, ARDS, Datapoint), it first clears the screen.

Typing ~G (control-G) causes MDL to stop whatever it is doing and act as if an error had occurred
(section 1.4). ~G is generally most useful for temporary interruptions to check the progress of a

computation. “G is "reversible” -- that is, it does not destroy any of the “state” of the computation it

interrupts. To "undo” a *G, type the characters
<ERRET T>$
(This is discussed more fully far below, in section 16.4.)

Typing ~S (control-S) causes MDL to throw away what it is currently doing and return to a normal
“listening” state. (In the Tenex and Tops-20 versions, “0 also should have the same effect.) “S is
generally most useful for aborting infinite loops and similar terrible things. “S destroys whatever
is going on, and so it is not reversible.

Most expressions in MDL include "brackets” (generically meant) that must be correctly paired and
nested. If you end your typing with the pair of characters !$ (exclamation-point ESC), all currently
unpaired brackets (but not double-quotes, which bracket strings of characters) will automatically be
paired and interpretation will start. Without the !, MDL will just sit there waiting for you to pair
them. If you have improperly nested parentheses, brackets, etc., within the expression you typed, an
error will occur, and MDL will tell you what is wrong.

Once the brackets are properly paired, MDL will immediately echo carriage-return and line-feed, and
the next thing it prints will be the result of the evaluation. Thus, if a plain § is not so echoed, you

1.2 Basic Interaction

18 The MDL Programming Language

have some expression unclosed. In that case, if you have not typed any characters beyond the §,
you can usually rub out the $ and other characters back to the beginning of the unclosed expression.

Otherwise, what you have typed is beyond the help of rubout and ~@; if you want to abort it, use
“S.

MDL accepts and distinguishes between upper and lower case. All “built-in functions” must be
referenced in upper case.

1.3. Loading a File [1]

If you have a program in MDL that you have written as an ASCII file on some device, you can
“load” it by typing

CFLOAD file>$
where file is the name of the file, in standard operating-system syntax, enclosed in *s (double-
quotes). Omitted parts of the file nane are taken by default from the file name "DSK: INPUT >*

(in the ITS version) or *"DSK: INPUT.MUD* (in the Tenex and Tops-20 versions) in the current disk
directory.

Once you type $, MDL will process the text in the file (including FLOADs) exactly as if you had
typed it on a terminal and followed it with §, except that “values” produced by the computations
are not printed. When MDL is finished processing the file, it will print *DONE*" .

When MDL starts running, it will FLOAD the file "MUDDLE INIT" (ITS version) or "MUDDLE.INIT®
(Tenex and Tops-20 versions), if it exists.

1.4. Errors -- Simple Considcrations [1]

When MDL decides for some reason that something is wrong, the standard sequence of evaluation is
interrupted and an error function is called. This produces the following terminal output:

ERROR

often-hyphenated-reason
function-in-which-error-occurred
LISTENING-AT-LEVEL integer PROCESS integer

You can now interact with MDL as usual, typing expressions and having them evaluated. There

exist facilities (built-in functions) allowing you to find out what went wrong, restart, or abandon
whatever was going on. In particular, you can recover from an error -- that is, undo everything but

12-14 Basic Interaction

The MDL Programming Language 19

side effects and return to the initial typing phase - by typing the following first line, to which
MDL will respond with the second line:

CERRE TS
LISTENING-AT-LEVEL 1 PROCESS 1

If you type the following first line while still in the error state (before CERRETY), MDL will print, as

shown, the arguments (or “parameters” or “inputs” or “independent variables) which gave
indigestion to the unhappy function:

CARGS <FRAME <TRANEX>>S
[arguments to unhappy function]

This will be explained by and by.

TR T S 1A R e T A D e

1.4 Basic Interaction

20 The MDL Programming Language

Chapter 2. Read, Evaluate, and Print

2.1. General [1]
Once you type § and all brackets are correctly paired and nested, the current contents of the input
buffer go through processing by three functions successively: first READ, which passes its output to
EVAL ("evaluate™). which passes its output to PRINT, whose output is typed on the terminal.
(Actually, the sequence is more like READ, CRLF, EVAL, PRIN1, CRLF (explained in chapter 11)
MDL gives you a carriage-return line-feed when the READ is complete, that is, when all brackets are
paired.]
Functionally,

READ: printable representations --> MDL ob jects

EVAL: MDL ob jects --> MDL ob jects

PRINT: MDL ob jects --> printable representations
That is, READ takes ASCII text, such as is typed in at a terminal, and creates the MDL ob jects

represented by that text. PRINT takes MDL ob jects, creates ASCII text representations of them, and
types them out. EVAL, which is the really important one, performs transformations on MDL

ob jects.

2.2. Philosophy (TYPCs) [1]

In a general sense. when you are interacting with MDL, you are dealing with a world inhabited only
by a particular sct of objects: MDL ob jects.

MDL objects are best considered as abstract entities with abstract properties. The properties of a
particular MDL ob ject depend upon the class of MDL ob jects to which it belongs. This class is the

2-22 Read, Evaluate, and Print

The MDL Programming Language 21

TYPE of the MDL object. Every MDL object has a TYPE, and every TYPE has its own peculiarities.
There are many different TYPEs in MDL: they will gradually be introduced below, but in the
meantime here is a represeitative sample: SUBR (the TYPE of READ, EVAL and PRINT), FSUBR, LIST,
VECTOR, FORM, FUNCTION, etc. Since every object has a TYPE, one often ahbrevutcs an object of
TYPE type" by gaymg “a type”.

The laws of the MDL world are defined by EVAL. In a very real sense, EVAL is the only MDL ob ject
which "acts”, which "does something”. In "acting”, EVAL is always “following the directions” of some
MDL object. Every MDL object should be looked upon as supplying a set of directions to EVAL;
what these directions are depends heavily on the TYPE of the MDL ob ject.

Since EVAL is so ever-present, an abbreviation is in order: “evaluates to something” or "EVALs to
something” should be taken as an abbreviation for "when given to EVAL, causes EVAL to return
something”.

As abstract entitics, MDL objects are, of course, not “visible”. There is, however, a standard way of
representing abstract MDL ob jects in the real world. The standard way of representing any given
TYPE of MDL object will be given below when the TYPE is introduced. These standard
representations are what READ understands, and what PRINT produces. '

2.3. Example (TYPE FIX) [I)

13

The following has occurred:

First, READ recognized the character 1 as the representation for an object of TYPE FIX, in particular
the one which corresponds to the integer one. (FIX means integer, because the decimal point is
understood always to be in a fixed position: at the right-hand end.) READ built the MDL ob ject
corresponding to the decimal tepresemation typed, and returned it.

Then EVAL noted that its input was of TYPE FIX. An ob_lect of TYPE FIX evaluates to itself, so
EVAL returned its input undisturbed.

Then PRINT saw that its input was of TYPE FIX, and printed on the terminal the decimal character
representation of the corresponding integer.

22-23 Read, Evaluate, and Print

e

22 The MDL Programming Language

2.4. Example (TYPE FLOAT) (1]

1.08
1.0

What went on was cntircly analogous to the preceding example, except that the MDL ob ject was of
TYPE FLOAT. (FLOAT means a real number (of limited precision), because the decimal point can float
around to any convenient position: an internal exponent part tells where it “really” belongs.)

2.5. Example (TYPE ATOM, PNAME) [1]

GEORGLS
GEORGE

This time a lot more happened.

READ noted that what was typed had no special meaning, and therefore assumed that it was the
representation of an identifier. that is, an object of TYPE ATOM. ("Atom”™ means more or less
indivisible.) READ thercfore attempted to look up the representation in a table it keeps for such
purposes [a LIST of OBLISTs, available as the local value of the ATOM ORLIST). If READ finds an
ATOM in its table corresponding to the representation, that ATOM is returned as READ's value. If READ
fails in looking up. it creates a new ATOM, puts it in the table with the representation read [INSERT
into <1 .OBLIST> usually]. and returns the new ATOM. Nothing which could in any way be
referenced as a legal “value” is attached to the new ATOM. The initially-typed representation of an
ATOM becomes its PNAME, meaning its name for PRINT. One often abbreviates “ob ject of TYPE ATOM
with PNAME name” by saying "ATOM name".

EVAL, given an ATOM, returned just that ATON.
PRINT, given an ATOM, typed out its PNAME.

At the end of this chapter, the question "what is a legal PNAME™ will be considered. Further on, the
methods used to attach values to ATOMs will be described.

2.6. FIXes. FLOATs, and ATOMs versus READ: Specifics

2.6.1. READ and F IXed-point Numbers

READ considers any grouping of characters which are solely digits to be a FIX, and the radix of the

24-261 Read, Evaluate, and Print

The MDL Programming Language 23

representation is decimal by default. A - (hyphen) immediately preceding such a grouping
represents a negative FIX. The Jargest FIX representable on the PDP-10 is two to the 35th power
minus one, or 34 359 738 367 (decimal): the smallest is one less than the negative of that number. If
you attempt to type in a FIX outside that range, READ converts it to a FLOAT; if a program you
write attempts to produce a FIX outside that range, an overflow error will occur (unless it is

- disabled).

The radix used by READ and PRINT is changeable by the user: however, there are two formats for
representations of FIXes which cause READ to use a specified radix independent of the current one.
These are as follows:

(1) If a group of digits is immediately followed by a period (.), READ interprets that group as
the decimal representation of a FIX. For example, 10. is always interpreted by READ as the
decimal representation of ten.

(2) If a group of digits is immediately enclosed on both sides by asterisks (*), READ interprets
that group as the octal representation of a FIX. For example, *10* is always interpreted by
READ as the octal representation of eight.

2.6.2. READ and PRINT versus FLOATing-point Numbers

PRINT can produce, and READ can understand, two different formats for objects of TYPE FLOAT.
The first is "decimal-point” notation, the second is “scientific” notation. Decimal radix is always
used for representations of FLOATs.

"Decimal-point” notation for a FLOAT consists of an arbitrarily long string of digits containing one
. (period) which is followed by at least one digit. READ will make a FLOAT out of any such ob ject,
with a limit of precision of one part in 2 to the 27th power.

“"Scientific” notation consists of:

(1) a number,
(2) immediately followed by E or e (upper or lower case letter E),
(3) immediately followed by an exponent,

where a "number” is an arbitrarily long string of digits, with or without a decimal point (see
following notc) and an “exponcut” is up to two digits worth of FIX. This notation represents the
“number” to the "exponent” power of ten. Note: if the "number” as above would by itself be a FIX,
and if the "exponent” is positive, and if the result is within the allowed range of FIXes, then the
result will be a FIX. For example, READ understands 10E1 as 100 (a FIX), but 10E-1 as 1.0000000 (a
FLOAT).

The largest-magnitude FLOAT which can be handled without overflow is 1.7014118E+38 (decimal
radix). The smallest-magnitude FLOAT which can be handled without underflow is .14693679E-38.

2.6.1 -262 Read, Evaluate, and Print

!
i i o b ——— e " - T ﬁ.‘._.__.M_J

24 ' The MDL Programming Language

2.6.3. READ and PNAMEs

The question "what is a legal PNAME?" is actually not a reasonable one to ask: any non-empty string
of arbitrary characters can be the PNAME of an ATOM. However, some PNAMEs are easier to type to
READ than athers. But cven the question "what are easily typed PNAMEs?" is not too reasonable,
because: READ decides that a group of characters is a PNAME by default; if it can’t possibly be
anything else, it's a PNAME. So, the rules governing the specification of PNAMEs are messy, and best
expressed in terms of what is not a PNAME. For simplicity, you can just consider any uninterrupted
group of upper- and lower-case letters and (customarily) hyphens to be a PNAME; that will always

- work. If you are neither a perfectionist nor a masochist, skip to the next chapier.

2.6.3.1. Non-PNAMLs

A group of characters is not a PNAME if:
(1) It represents a FLOAT or a FIX, as described above -- that is, it is composed wholly of digits,
or digits and a single . (period), or digits and a . and the letter E or e (with optional minus
signs in the right places).

(2) It begins with a . (period).

(3) It contains - if typed interactively -- any of the characters which have special interactive
effects: ~@, ~D, “L, “G, ~S, ~0, $ (ESC), rubout.

(4) Tt contains a format character -- space, carriage-return, line-feed, form-feed, horizontal tab,
vertical tab.

(5) Tt contains a , (comma) or a # (number sign) or a ' (singie guote) or a ; (semicolon) or a %
(percent sign).

(6) It contains any varicty of bracket -- (or) or [or Jor<or >or { or } or *.
In addition, the character \ (backslash) has a special interpretation, as mentioned below. Also, the
pair of characters !- (exclamation-point hyphen) has 2z extremely special interpretation, which you
will reach at chapter 15.
The characters mentioned in cases 4 through 6 are "separators” -- that is, they signal to READ that
whatever it was that the preceding characters represented, it's done now. They can also indicate the
start of a new ob ject's representation (all the opening “brackets” do just that).
2.6.3.2. Examples
The following examples are not in the "standard format” of "line typed in$ result printed”, because

they are not. in some cases, complete ob jects: hence, READ would continue waiting for the brackets to

263 -263.2 Read, Evaluate, and Print

The MDL Programming Language 25

be closed. In other cases, they will produce errors during EVALuation if other -- currently irrelevant
= conditions arc not met. Instead, the right-hand column will be used to state just what READ
thought the input in the left-hand column really was.

ABCS an ATOM of PNAME ABC

abc} an ATOM of PNAME abc

ARBITRARTILY-LONG-PNAMES an ATOM of PNAME ARBITRARILY-LONG-PNAME

1.2345% a FLOAT, PRINTed as 1.2345000

1.2.345% an ATOM of PNAME 1.2.345

A.or.BS ' an ATOM of PNAME A.or.B

.A.or.B% not an ATOM, but (as explained later) a FORM containing &
an ATOM of PNAME A.or.B

MORE THAN ONE$ three ATOMs, with PNAMEs MORE, and THAN, and ONE

ab(cd$ an ATOM of PNAME ab, followed by the start of something

else (The something else will contain an ATOM of PNAME
beginning cd.)

12345A34% an ATOM of PNAME 12345A34 (If the A had been an E, the
ob ject would have been a FLOAT.)

2.6.3.3. \ (Backslash) in ATOMs

If you have a strange, uncontrollable compulsion to have what were referred to as “separators” above
as part of the PNAMEs of your ATOMs, you can do so by preceding them with the character \
(backslash). \ will alvo magically turn an otherwise normal FIX or FLOAT into an ATOM if it appears
amongst the digits. In fact, backslash in front of any character changes it from something special .
to “just another character” (including the character \). It is an escape character.

When FRINT confronts an ATOM which had to be backslashed in order to be an ATOM, it will !
dutifully type out the required \s. They will not, however, necessarily be where you typed them;

they wili instead be at those positions which will cause READ the least grief. For example, PRINT will

type out a PNAME which consists wholly of digits by first typing a \ and then typing the digits - no

inatter where you originally typed the \ (or \s).

2.6.3.2-2633 Read, Evaluate, and Print

B TT——

26 The MDL Programming Language

2.6.3.4. Examples of Awful ATOMs

The following examples illustrate the amount of insanity that can be perpetrated by using \. The
format of the examples is again non-standard, this time not because anything is unfinished or in
error. but because commenting is needed: PRINT doesn't do it full Justice.

a\ one\ and\ a\ two$ one ATOM, whose PNAME has four spaces in it

1234\56789% an ATOM of PNAME 123456789, which PRINTs as
\123456789

123\ § an ATOM of PNAME 123space, which PRINTs as \123\ ,

with a space on the end

\\$ an ATOM whose PNAME is a single backslash

2.6.3.4 Read, Evaluate, and Print

NI o BT . A WCTIIRE hi BOT TRt Ve O A

5

The MDL Programming Language 27

Chapter 3. Built-in Functions

3.1. Representation [I]

Up to this point, all the objects we have been concerned with have had no internal structure
discernible in MDL. While the characteristics of objects with internal structure differ greatly, the
way READ and PRINT handle them is uniform, to wit:

READ, when applied to the representation of a structured ob ject, builds and returns an ob ject of

the indicated TYPE with elements formed by applying READ to each of their representations in
turn.

PRINT, when applied to a structured ob ject, produces a representation of the object, with its
elements represented as PRINT applied to each of them in turn.

A MDL ob ject which is used to represent the application of a function to its arguments is an ob ject
of TYPE FORM. Its printed representation is

< func arg-1 arg-2 ... arg-N >
where func i« an object which designates the function to be applied, and arg-1 through arg-N are
objects which designate the arguments or "actual parameters” or “inputs”. A FORM is just a
structured ob ject which is stored and can be manipulated like a LIST (its "primitive type” is LIST -

chapter 6). The application of the function to the arguments is done by EVAL. The usual meaning
of "function” (uncapitalized) in this document will be anything applicable to arguments.

3.2. Evaluation [I]
EVAL applicd 10 a FORM acts as if following these directions:

First, examine the func (first element) of the FORM. If it is an ATOM, look at its "value” (global or
local, in that order -- see next chapter). If it is not an ATOM, EVAL it and look at the result of the

3-32 Built-in Functions

28 The MDL Programming Language

evaluation. If what you arc looking at is not something which can be applied to arguments,
complain (via the ERROR function). Otherwise, inspect what you are Jooking at and follow its
directions in evaluating or not evaluating the arguments (chapters 9 and 19) and then “apply the
function” -- that is, EVAL the body of the ob ject gotten from func.

3.3. Built-in Functions (TYPE SUBR, TYPE FSUBR) [1]

The built-in functions of MDL come in two varieties: those which have all their arguments EVALed
before opcrating on them (TYPE SUBR, for “subroutine”, pronounced “subber”) and those which have
none of their arguments EVALed (TYPE FSUBR, historically from Lisp (Moon, 1974), pronounced
“effsubber”). Collectively they will be called F/SUBRSs, although that term is not meaningful to the
interpreter. See appendix 2 for a listing of all F/SUBRs and short descriptions. The term

“Subroutine” will be used herein to mean both F/SUBRs and compiled user programs (RSUBRs and
RSUBR-ENTRYs -- chapter 19).

Unless otherwise stated. every MDL built-in Subroutine mentioned is of TYPE SUBR. Also, when it

is stated that an argument of a SUBR must be of a particular TYPE, note that this means that EVAL
of what is there must be of the particular TYPE.

Another convenient abbreviation which will be used is "the SUBR pname” in place of “"the SUBR which

is initially the 'value' of the ATOM of PNAME pname”. “The FSUBR pname” will be used with a similar
meaning.

3.4. Examples (+ and FIX; Arithmetic) [I]

<+ 2 4 6>%
12

The SUBR + adds numbers. Most of the usual arithmetic functions are MDL SUBRs: +, -, %, /i
MIN, MAX, MOD, SIN, COS, ATAN, SQRT, LOG, EXP, ABS. (See appendix 2 for short descriptions
of these) All except MOD, which wants FIXes, are indifferent as to whether their arguments are ’

FLOAT or FIX or a mixture. In the last case, they exhibit “contagious FLOATing": one argument of
TYPE FLOAT forces the result to be of TYPE FLOAT.

<FIX 1.0>%
1

The SUBR FIX explicitly returns a FIXed-point number corresponding to a FLOATing-point number.
FLOAT does the opposite.

<+ 5 <" 2 38

32-34 Built-in Functions

The MDL Programming Language 29

11

CSQRT <+ <* 3 3) <* 4 4>>>§
5.0

<- 53 2>%

0

<- 5%

=5

<MIN 1 2.0>%
1.0

</ 117 2.0>8%
0.5

Note this last result: the division of two FIXes gives a FIX with truncation, not rounding, of the
remainder: the intermediate result remains a FIX until a FLOAT argument is encountered.

3.5. Arithmetic: Details

+, -, *, /, MIN, and MAX all take any number of arguments, doing the operation with the first
argument and the second, then with that result and the third argument, etc. If called with no
arguments, each returns the identity for its operation (0, 0, 1, 1, the greatest FLOAT, and the
least FLOAT, respectively): if called with one argument, each acts as if the identity and the argument
had been supplied. They all will cause an overflow or underflow error if any result, intermediate or
final, is too large or too small for the machine’s capacity. (That error can be disabled, if necessary
-- section 16.9).

One arithmetic function that always requires some discussion is the pseudo-random-number
generator. MDL’s is named RANDOM, and it always returns a FIX, uniformly distributed over the
whole range of FIXes. If RANDOM is never called with arguments, it always returns the exact same
sequence of numbers, for convenience in debugging. "Debugged” programs should give RANDOM two
arguments on the first call, which become the seeds for a new sequence. Popular choices of new
seeds are the numnbers given by TIME (which see), possibly with bits modified (chapter 18). Example
("pick a number from one to ten"):

<+ 1 <MOD <RANDOM> 10>>$
4

34-35 Built-in Functions

30 The MDL Programming Language

Chapter 4. Values of Atoms

4.1. General [1]

There are two kinds of "value” which can be attached to an ATOM. An ATOM can have either, both, or
neither. They interact in no way (except that alternately referring to one and then the other is
inefficient). These two values are referred to as the local value and the global value of an ATOM.
The terms “local” and "global” are relative to PROCESSes (chapter 20), not functions or programs.
The SUBRs which reference the local and global values of an ATOM, and some of the characteristics
of local versus global values, follow.

4.2. Global Values

4.2.1. SETG (1]

A global value can be assigned to an ATOM by the SUBR SETG ("set global’), as in

CSETG alom any>

where atorm must EVAL to an ATOM, and any can EVAL to anything. EVAL of the second argument
becomes the global value of EVAL of the first argument. The value returned by the SETG is its
second argument, namely the new global value of atom.

Examples:

<{SETG FOO <SETG BAR 500>>$
500

The above made the global values of both the ATOM FOO and the ATOM BAR equal to the F IXed-point
number 500.

<{SETG BAR F00>$

The MDL Programming Language 1

FOO

That made the global value of the ATOM BAR equal to the ATOM FO0O.

4.2.2. GVAL (1]

The SUBR GVAL ("global value®) is used to reference the global value of an ATOM.

{GVAL atom>

returns as a value the global valuc of atom. If atom does not evaluate to an ATOM, or if the ATOM to
which it evaluates has no global value, an error occurs.

GVAL applicd to an ATOM anywhere, in any PROCESS, in any function, will return the same value.
Any SETG anywhere changes the global value for everybody. Global values are context-independent.

READ understands the character , (comma) as an abbreviation for an application of GVAL to

whatever follows it. PRINT always translates an application of GVAL into the comma format. The
following are absolutely equivalent:

yalom <GVAL atom>

Assuming the examples in section 4.2.1 were carried out in the order given, the following will
evaluate as indicated:

,T00%

500 .

<GVAL FOO>$
500

,BARS

FOO

» +BARS

500

4.2.3. Note on SUBRs and FSUBRs

The initial GVALs of the ATOMs used to refer to MDL “built-in" Subroutines are the SUBRs and FSUBRs
which actually get applied when those ATOMs are referenced. If you don't like the way those
supplied routines work, you are perfectly free to SETG the ATOMs to your own versions.

421-423 Values of Atoms

2

AR 2 e, ST

32 The MDL Programming Language

4.2.4. GUNASSIGN

CGUNASSIGN atom>

("global unassign”) causes atom to have no assigned global value, whether or not it had one
previously. The storage used for the global value can become free for other uses.

4.3. Local Values

4.3.) SET (1)

The SUBR SET is used to assign a local value to an ATOM. Applications of SET are of the form
<SET atom any>

SET returns EVAL of any just like SETG.

Examples:

<SET BAR <SET FOO 100>>$
100

Both BAR and FOO have been given local values equal to the FIXed-point number 100.

<SET F00 BAR>$
BAR

FOO has been given the local value BAR.

Note that neither of the above did anything to any global values FO0 and BAR might have had.

4.3.2. LVAL [1)

The SUBR used to extract the local value of an ATOM is named LVAL. As with GVAL, READ
understands an abbreviation for an application of LVAL: the character . (period), and PRINT
produces it. The following two representations are equivalent, and when EVAL operates on the
corresponding MDL ob ject, it returns the current local value of atom:

CLVAL atom> .atom

424 - 432 Values of Atoms

The MDL Programming Language 33

The local value of an ATOM is unique within a PROCESS. SETting an ATOM in one PROCESS has no

effect on its LVAL in another PROCESS, because each PROCESS has its own “control stack” (chapters
20 and 22).

Assume all of the previous examples in this chapter have been done. Then the following evaluate as
indicated:

.BARS

100

<LVAL BAR>$
100

.F00$

BAR

. .FOO$S

FoO

4.3.3. UNASSIGN

CUNASSIGN afom>

causes afom to have no assigned local value, whether or not it had one previously.

4.4. VALUE
VALUE is a SUBR which takes an ATOM as an argument, and then:
(1) if the ATOM has an LVAL, returns the LVAL;
(2) if the ATOM has no LVAL but has a 6VAL, returns the GVAL;
(3) if the ATOM has neither a GVAL nor an LVAL, calls the ERROR function.

This order of seeking a value is the opposite of that used when an ATOM is the first element of a
FORM. The latter will be called the G/LVAL, even though that name is not used in MDL.

Example:

CUNASSIGN A>S

A
<SETG A 1>$
1
<{VALUE A>$
1
{SET A 2>%

432-44 Values of Atoms

2

<VALUE A>S
2

A3

1

The MDL Programming Language

Values of Atoms

The MDL Programming Language 35

Chapter 5. Simple Funoctions

5.1. General [1]

The MDL cquivalent of a "program” (uncompiled) is an object of TYPE FUNCTION. Actually, full-
blown “programs” arc usually composed of sets of FUNCTIONs, with mast FUNCTIONs in the set acting
as “subprograms”.

A FUNCTION may be considered to be a SUBR or FSUBR which you yourself define. It is “run” by
using a FORM to apply it to arguments (for example, <function arg-1 arg-2 ... >), and it always
“returns” a single object. which is used as the value of the FORM that applied it. The single ob ject
may be ignored by whatever “ran” the FUNCTION -- equivalent to “returning no value” -- or it may be
a structurcd object containing many objects -- equivalent to “returning many values”. MDL is an
“applicative” language, in contrast to “imperative” languages like Fortran. In MDL it is impossible
to return values through arguments in the normal case: they can be returned only as the value of the
FORM itself. or as side effects to structured ob jects or global values.

In this chapter a simple subset of the FUNCTIONs you can write is presented, namely FUNCTIONs
which "act like” SUBRs with a fixed number of arguments. While this class corresponds to about 907
of the FUNCTIONs ever written, you won't be able to do very much with them until you read further
and learn more about MDL's control and manipulatory machinery. However, all that machinery is
just a bunch of SUBRs and FSUBRs, and you already know how to “use” them: you just need to be told
what they do. Once you have FUNCTIONs under your belt, you can immediately make use of
everything presented from this point on in this document. In fact, we recommesd iisat you do so.

5.2. Representation [1)

A FUNCTION is just another data object in MDL, of TYPE FUNCTION. It can be manipulated like any
other data object. PRINT represents a FUNCTION like this:

PFUNCTION (elements)

5-52 Simple Functions

-

36 The MDL Programming Language

that is. a number sign, the ATOM FUNCTION, a left parenthesis, each of the elements of the i 8
FUNCTION, and a right parenthesis. Since PRINT represents FUNCTIONs like this, you can type them :
in to READ this way. (But there are a few TYPEs for which that implication is false.)

The elements of a FUNCTION can be "any number of anythings™ however, when you use a FUNCTION
(apply it with a FORM), EVAL will complain if the FUNCTION does not look like

#FUNCTION (act:atom argumentsiist decl body) :

where act and dec/ arc optional (section 9.8 and chapter 14); body is at least one MDL ob ject -- any
old MDL object: and, in this simple case, arguments is

(any number of ATOMSs) ;

that is. something READ and PRINTed as: left parenthesis, any number -- including zero -- of ATOMs,
right parenthesis. (This is actually a normal MDL ob ject of TYPE LIST, containing only ATOMs.)

Thus. these FUNCTIONs will cause errors -- but only when used:

#FUNCTION () == no argument LIST or body
#FUNCTION ((1) 2 7.3) == non-ATOM in argument LIST
#FUNCTION ((A B C D)) -- no body

#FUNCTION (<+ 1 2> A C) -- no argument LIST
These FUNCTIONs will ncver cause errors because of format:

#FUNCTION (() 1 2 3 4°5)

#FFUNCTION ((A) A)

#TUNCTION (C)CO)OIC)OICI0IC))

#FUNCTION ((A B C D EE F G H HIYA) <+ .A .HIYA))
#FUNCTION ((Q) <SETG C <* .Q ,C>> <+ <MOD ,C 3> .Q>)

and the last two actually do something which might be useful. (The first three are rather
pathological, but legal.)

5.3. Application of FUNCTIONs: Binding [I]

FUNCTIONs, like SUBRs and FSUBRs. are applied using FORMs. So,

C#FUNCTION ((X) <* .X .X>) 5>8 ’
25 1

applied the indicated FUNCTION to 5 and returned 25.

52-53 Simple Functions

The MDL Programming Language 37

What EVAL does when applying a FUNCTION is the following:

() Create a "world™ in which the ATOMs of the argument LIST have been SET to the values

! applicd to the FUNCTION, and all other ATOMs have their original values. This is called
"binding”.

-- In the above, this is a "world” in which X is SETto 5.

(2) In that new “world", evaluate all the objects in the body of the FUNCTION, onc after the
other, from first to Jast.

-- In the above, this means evaluate <* . X .X> in a "world” where X is SET to 5.

(3) Throw away the "world" created. and restore the LVALs of all ATOMs bound in this
application of the FUNCTION to their originals (if any). This is called "unbinding”.

-- In the above, this simply gives X back the local value, if any, that it had before binding.

(4) Return as a value the last value obtained when the FUNCTION's body was evaluated in step
(2).

-- In the above, this means return 25 as the value.

The "world” mentioned above is actually an object of TYPE ENVIRONMENT. The fact that such

"worlds” are separate from the FUNCTIONs which cause their generation means that all MDL
FUNCTIONs can be used recursively.

The only thing that is at all troublesome in this sequence is the effect of creating these new
“"worlds”, in particular, the fact that the previous world is completely restored. This means that if,
inside a FUNCTION, you SET onc of its argument ATOMs to something, that new LVAL will not be

:
remembered when EVAL leaves the FUNCTION. However, if you SET an ATOM which is not in the ¥
argument LIST (or SETG any ATOM) the new local (or global) value will be remembered. Examples: 3

CSET X 08 i
0 y
CHFUNCTION ((X) <SET X <% .X .X>>) B5>§ z.!
25 |
.X$ |
0

q

|

53 Simple Functions

38

On the other hand.

<SET Y 0>%

0

CHFUNCTION ((X) <SET Y <x X .X>>) 58
25

.Y$

25

By using PRINT as a SUBR, we can “see” that an argument’s LVAL really is changed while EVALuating
the body of a FUNCTION:

" CSET X 58
5
CHFUNCTION ((X) <PRINT .X> <+ .X 10>) 3>$
313
X$
5

The first number after the application FORM was typed out by the PRINT; the second is the value of
the application.

Remembering that LVALs of ATOMs not in argument LISTs are not changed, we can reference them
within FUNCTIONs, as in

<SET Z 100>$

100

CHFUNCTION ((Y) </ .7 .Y>) 5%
20

ATOMs uscd like Z or Y in the above examples are referred to as “free variables”. The use of free
variables. while often quite convenient, is rather dangerous unless you know exactly how a
FUNCTION will always be used: if a FUNCTION contairing free variables is used within a FUNCTION
within a FUNCTION within one of those FUNCTIONs might just happen to use your free variable
in its argument LIST, binding it to some unknown value and possibly causing your use of it to be
erroneous. Please nofe that "dangerous”, as used above, really means that it may be effectively

impossible (1) for other people to use your FUNCTIONs, and (2) for you to use your FUNCTIONs a
month (two weeks?) later.

53 Simple Functions

The MDL Programming Language

= o 2

R O T

TR

The MDL Programming Language 39

5.4. Defining FUNCTIONs (FUNCTION and DEF INE) [1]

Obviously, typing #FUNCTION (...) all the time is neither reasonable nor adequate for many
purposes. Normally, you just waut a FUNCTION to be the GVAL of some ATOM -- the way SUBRs and
FSUBRs are -- so you can use it repeatedly (and recursively). Note that you generally do not want a
FUNCTION to be the LVAL of an ATOM; this has the same problems as free variables. (Of course, there
are always cases where you are being clever and want the ATOM to be re-bound . . .)

One way to "name” a FUNCTION is

{SETG SQUARE #FUNCTION ((X) <* .X .X>)>$
#EUNCTION ((X) <* .X .XD)

So that

<SQUARE 5>%
25

<SQUARE 100>%
10000

Another way. which is somewhat cleaner in its typing:

C{SETG SQUARE <FUNCTION (X) <* .X .X>»>$
#FUNCTION ((X) <* .X .X>)

FUNCTION is an FSUBR which simply makes a FUNCTION out of its arguments and returns the created
FUNCTION.

This, however. is generally the best way:

<DEFINE SQUARE (X) <* .X .X>>$
SQUARE

+SQUARL S

#FUNCTION ((X) <* .X .X>)

The last two lines immediately above are just to prove that DEFINE did the “right thing".

DEFINE is an FSUBR which SETGs EVAL of ite first argument to the FUNCTION it makes from the rest
of its arguments, and then returns EVAL of its first argument. DEFINE obviously requires the least
typing of the above methods, and is "best” from that standpoint. Hewever, the real reason for using
DEFINE is the following: If EVAL of DEFINE's first argument already has a GVAL, DEFINE produces an
error. This helps to keep you from accidently redefining things -- like MDL SUBRs and FSUBRs. The
SETG constructions should be used only when you really do want to redefine something. DEFINE will
be used in the rest of this document.

5.4 Simple Functions

40 The MDL Programming Language

[Actually. if it is absolutely necessary to use DEFINE to “redefine” things, there is a "switck” which
can be used: if the LVAL of the ATOM REDEFINE is T (or anything not of TYPE FALSE), DEFINE will
produce no errors. The normal state can be restored by evaluating <SET REDEFINE <>>. See
chapter 8.]

5.5. Examples (Comments) [1]

Using SQUARE as defined above:

<DEFINE HYPOT (SIDE-1 SIDE-2)

;"this is a comment. This FUNCTION finds the
length of the hypotenuse of a right triangle
of sides SIDE-1 and SIDE-2."

(SQRT <+ <SQUARE .SIDE-1> <SQUARE .SIDE-2>>>>$
HYPOT
CHYPOT 3 4>%
5.0

Note that carriage-returns, line-feeds, tabs, etc. are just separators, like spaces. A comment is any
single MDL object which follows a ; (semicolon). A coimment can appear between any two MDL
objects. A comment is totally ignored by EVAL but remembered and associated by READ with the
place in the FUNCTION (or any other structured object) where it appeared. (This will become clearer
after chapter 13) The *s (double-quotes) serve to make everything between them a single MDL
ob ject. whose TYPE is STRING (chapter 7). (SQRT is the SUBR which returns the square root of its
argument. It always returns a FLOAT.)

A whimsical FUNCTION:

<DEFINE ONE (THETA) ;"This FUNCTION always returns 1."
<+ (SQUARE <SIN .THETA>>
(SQUARE <COS .THETA>>>>$
ONE
CONE 5>%
0.99999994
<ONE 0.23>$
0.99999999

ONE always returns (approximately) one, since the sum of the squares of sin(x) and cos(x) is unity
for any x. (SIN and COS always return FLOATs, and each takes its argument in radians. ATAN
(arctangent) returns its value in radians. Any other trigonometric function can be compounded
from these three.)

Simple Functions

S—

_—

The MDL Programming Language 41

MDL doesn’t have a general "to the power” SUBR, so let’s define one using LOG and EXP (log base e,
and e to a power, respectively; again, they return FLOATS).

CDEFINE ** (NUM PWR) CEXP <* .PWR <LOG .NUM>>>>$
"R

<rx 2 2>

4.0000001

<rx 5 3§

125.00000

<x% 25 0.5)8

5.0000001

Two FUNCTIONs which use a single global variable (Since the GVAL is used, it cannot be rebound.):

<DEFINE START () <SETG GV 0>>$

START

<DEFINE STEP () <SETG GV <+ ,GV 1>»>$
STEP

<START>$

0

C(STEP>S

1

<STEP>S

2

<STEP>$;
3 <

START and STEP take no arguments, so their argument LISTs are empty.
An interesting, but pathological, FUNCTION:

<DEFINE INC (ATM) <SET .ATM <+ ..ATM 1>>>§
INC

<SET A 0>%

0

CINC A>S

1

<INC A>S

2

A%

2

INC takes an ATOM as an argument, and SETs that ATOM to its current LVAL plus 1. Note that inside
INC, the ATOM ATM is SET to the ATOM which is its argument; thus ..ATM returns the LVAL of the
argument. However, there is a problem:

5.5 Simple Functions

42 The MDL Programming Language

<(SET ATM 0>%§
0
CINC ATMDS

XLRROR*

ARG-WRONG-TYPE

+

LISTENING-AT-LEVEL 2 PROCESS 1
CARGS <FRAME <FRAME>>>$

[ATM 1]

The error occurred because (ATM was ATM, the argument to INC, and thus ..ATM was ATM also. We

really want the outermost . in . .ATH to be done in the "world" (ENVIRONMENT) which existed just
before INC was entered -- and this definition of INC does both applications of LVAL in its own
"world”. Techniques for doing INC “correctly” will be covered below. Read on.

55 Simple Functions

T

T e S W o

e

The MDL Programming Language 43

Chapter 6. Data Types

6.1. General [1]

A MDL ob ject consists of two parts: its TYPE and its "data part™ (appendix 1). The interpretation of
the “data part” of an object depends of course on jts TYPE. The structural organization of an ob ject,
that is, the way it is organized in storage, is referred to as its "primitive type”. While there are
many different TYPCs of objects in MDL, there are fewer primitive types.

All structured objects in MDL are ordered sequences of elements. As such, there are SUBRs which
operate on all of them uniformly. as ordered sequences. On the other hand, the reason for having
different primitive types of structured ob jects is that there are useful qualities of structured ob jects
which are mutually incompatible. There are, therefore, SUBRs which do not work on all structured
ob jects: these SUBRs exist to take full advantage of those mutually incompatible qualities. The
most-commonly-used primitive types of structured objects are discussed in chapter 7, along with
those special SUBRs operating on them.

It is very easy to make a new MDL object that differs from an old one only in TYPE, as long as the
primitive type is unchanged. It is relatively difficult to make a new structured ob ject that differs

from an old one in primiiive type, even if it has the same elements.

Before talking any more about structured ob jects, some information needs to be given about TYPEs
in gencral,

6.2. Printed Representation [1]

There are many TYPEs for which MDL has no specific representation. There aren't enough different
kinds of brackets. The representation used for TYPEs without any special representation is

#type representation-as-if-it-were-its-primitive-type

READ will understand that format for any TYPE, and PRINT will use it by default. This

6-62 Data Types

v W

" The MDL Programming Language

represcntational format will be referred to below as "# notation”. It was used above to represent
FUNCTIONs.

6.3. SUBRs Related to TYPEs

6.3.1. TYPE [I)

TYPE anmyd

returns an ATOM whose PNAME corresponds to the TYPE of any. There is no TYPE "TYPE". To type a
TYPE (aren’t homonyms wonderful), just type the appropriate ATOM, like FIX or FLOAT or ATOM etc.
However, in this document we will use the convention that a netasyntactic variable can have type

for a “data type™ for example, foo:type means that the TYPE of foo is ATOM, but the ATOM must be
something that the SUBR TYPE can retura.

Examples:

<TYPE DS
F1X

<TYPE 1.038
FLOAT

CTYPE #>8
ATOM

CTYPE ,+>8
SUBR . L
<TYPE GEORGE>$

ATOM

6.3.2. PRIMTYPE [1]

CPRIMTYPE any>

evaluates to the primitive type of any. The PRIMTYPE of any is an ATOM which also represents a

t

f

TYPE. The way an object can be manipulated depends solely upon its PRIMTYPE; the way it is ‘
evaluated depends upon its TYPE, !
|

Examples: .
|
<CPRIMTYPE 1% ‘

WORD
CPRIMTIYPE 1.0>%

6.2-632 Data Types

The MDL Programming Language 435

WORD

<PRIMTYPE ,+>$
WORD

CPRIMTYPE GEORGE>S
ATOM

6.3.3. TYPEPRIN [1)
CTYPEPRIM fype>

returns the PRIMTYPE of an object whose TYPE is type. type is, as usual, an ATOM used to designate a
TYPE.

Examples:

g {TYPEPRIM FIX)S

I WORD
<TYPEPRIM FLOAT)>S
WORD
<TYPEPRIM SUBR)$
WORD
CTYPEPRIM ATOM>S
ATON
CTYPEPRIM FORMDS
LIST

6.3.4. CHTYPE [1)
CCHIYPE any type>

("change type”) returns a new object that has TYPE type and the same "data part” as any (appendix
1.

CCHTYPE (+ 2 2) FORM>S
i e 2 2Y

An error is generated if the PRIMTYPE of any is not the same as the TYPEPRIM of type. An error will
also be generated if the attempted CHTYPE is dangerous and/or senseless, for example, CHTYPEing a
FIX to a SUBR. Unfortunately, there are few useful examples we can do at this point.

[CHTYPEing a FIX to a FLOAT or vice versa produces, in general, nonsense, since the bit formats for
FIXes and FLOATs are different. The SUBRs FIX and FLOAT convert between those formats. Useful

63.2-634 Data Types

46 The MDL Programming Language

obscurity: because of their internal representations on the PDP-10, <CHTYPE <MAX> FIX)> gives the
least possible FIX, and analogously for MIN.)

Passing note: "# notation” is just an instruction to READ saying “READ the representation of the
PRIMTYPE normally and (literally) CHTYPE it to the specified TYPE". [Or, if the PRIMTYPE is
TEMPLATE, “apply the GVAL of the TYPE name (which should be a TEMPLATE constructor) to the given
elements of the PRIMTYPE TEMPLATE as arguments.”]

6.4. More SUBRs Related to TYPEs

6.4.1. ALLTYPES
CALLTYPES>

returns a VECTOR (chapter 7) containing just those ATOMs which can currently be returned by TYPE
or PRIMTYPE. This is the very "TYPE vector™ (section 22.1) that the interpreter uses: look, but don't
touch. No examples: try it. or see appendix 3.

6.4.2. VALID-TYPE?

<VALID-TYPE? atom>

returns #FALSE () if afom is not the name of a TYPE, and the same object that <TYPE-C atom>
(section 19.5) returns if it is.

6.4.3. NEWTYPE

MDL is a type-extensible language, in the sense that the programmer can invent new TYPEs and use
them in every way that the predefined TYPEs can be used. A program-defined TYPE is called a
NEWTYPE. New PRIMTYPEs cannot be invented except by changing the interpreter: thus the TYPEPRIM
of a NEWTYPE must be chosen from those already available. But the name of a NEWTYPE (an ATOM of
course) can be chosen freely -- so long as it does not conflict with an existing TYPE name. More
importantly. the program that defines a NEWTYPE can be included in a set of programs for

manipulating objects of the NEWTYPE in ways that are more meaningful than the predefined SUBRs
of MDI..

Typically an object of a NEWTYPE is a structure that is a model of some entity in the real world -- or
whatever world the program is concerncd with -- and the elements of the structure are models of
parts or aspects of the real-world entity. A NEWTYPE definition is a convenient way of formalizing

634-643 Data Types

R —

The MDL Programming Language 47

this correspondence, of writing it down for all to see and use rather than keeping it in your head.
If the defining set of programs provides functions for manipulating the NEWTYPE objects in all
ways that are meaningful for the intended uses of the NEWTYPE, then any other program that wants
to use the NEWIYPE can call the wanipulation functions for all its needs, and it need never know or
care about the internal details of the NEWTYPE objects This technique is a standard way of
providing modularity and abstraction.

For example, suppose you wanted to deal with airline schedules. If you were to construct a set of
programs that define and manipulate a NEWTYPE called FLIGHT, then you could make that set into a
standard package of programs and call on it to handle all information pertaining to scheduled
airline flights. Since all FLIGHTs would have the same quantity of information (more or less) and
you would want quick access to individual elements, you would not want the TYPEPRIM to be LIST.
Since the elements would be of various TYPEs, you would not want the TYPEPRIM to be UVECTOR --
nor its variations STRING or BYTES. The natural clioice would be a TYPEPRIM of VECTOR (although
you could gain space and lose time with TEMPLATE instead).

Now. the individual elements of a FLIGHT would, no doubt, have TYPEs and meanings that don't
change. The clements of a FLIGP wmight be airline code, flight number, originating-airport code,
list of intermediate stops, destinaty n-airport code, type of aircraft, days of operation, etc. Each and
every FLIGHT would have the airline code for its first element (say), the flight number for its second,
and so on. It is natural to invent names (ATOMs) for these elements and always refer to the elements
by name. For example, you could <SETG AIRLINE 1> or <SETG AIRLINE <OFFSET 1 FLIGHT>> --
and in either case <MANIFEST AIRLINED so the compiler can generate more efficient code. Then, if
the local value of F were a FLIGHT, <AIRLINE .F> would return the airline code, and ¢AIRLINE .F
AA> would sct the airline cade to AA. Once that is done, you can forget about which element comes
first: all you need to know arce the names of the offsets.

The next step is to notice that, outside the package of FLIGHT functions, no one needs tc know
whether AIRLINE is just an offset or in fact a function of some kind. For example, the scheduled
duration of a flight might not be explicitly stored in a FLIGHT, just the scheduled times of
departure and arrival. But, if the package had the proper DURATION function for calculating the
duration, then the call <DURATION .F> could return the duration, no matter how it is found. In this
way the internal details of the package are conveniently hidden from view and abstracted away.

The form of NEWTYPE definition allows for the TYPEs of all components of a NEWTYPE to be declared
(chapter 1), for use both by a programmer while debugging programs that use the NEWTYPE and by
the compiler for generating faster code. It is very convenient to have the type declaration in the
NEWTYPE definition itself, rather than replicating it everywhere the NEWTYPE is used. (If you think
this declaration wmight be obtrusive while debugging the programs in the NEWTYPE package, when
inconsistent improvements are being made to various programs, you can either disassociate any
declaration from the NCWTYPE or turn off MDL type-checking completely. Actually this declaration
is typically more useful to a programmer during development than it is to the compiler.)

CNEWTYPE atom type>

6.4.3 Data Types

48 The MDL Programming Language

returns atom, after causing it to become the representation of a brand-new TYPE whose PRIMTYPE is
CTYPEPRIN fype>. What NEWTYPE actually does is make atom a legal argument to CHTYPE and
TYPEPRIM. (Note that names of new TYPEs can be blocked lexically to prevent collision with other
names. just like any other ATOMs -- chapter 15.) Objects of a NEWTYPE-created TYPE can be generated
by creating an object of the appropriate PRIMTYPE and using CHTYPE. They will be PRINTed
(initially). and can be directly typed in, by the use of "# notation” as described above. EVAL of any
object whose TYPE was created by NEWTYPE is initially the object itself, and, initially, you cannot
APPLY somcthing of a generated TYPE to arguments. But see below.

Examples:

<NEWTYPE GARGLC FIX>$
GARGLE

<TYPEPRIM GARGLE>$
WORD

(SET A <CHTYPE 1 GARGLE>>$
#GARGLE *000000000001*
(SET B #GARGLE 100>$
#GARGLE *000000000144*
<TYPE .B>$

GARGLE

<PRIMTYPE .B>$

WORD

6.4.4. PRINTTYPE, EVALTYPE and APPLYTYPE

<PRINTTYPE type how>

CEVALTYPE type how>

CAPPLYTYPE type how>
all return type. after specifying how MDL is to deal with it.
These three SUBRs can be used to make newly-generated TYPEs behave in arbitrary ways, or to
change the characteristics of standard MDL TYPEs. PRINTTYPE tells MDL how to print type,
EVALTYPE how to cvaluate it, and APPLYTYPE how to apply it in a FORM.
how can be either a TYPE or something that can be applied to arguments.

If how is a TYPE, MDL will treat type just like the TYPE given as how. how must have the same
TYPEPRIM as fype.

If how is applicable, it will be used in the following way:

643-644 Data Types

The MDL Programming Language 49

For PRINTTYPE, how should take one argument: the object being output. how should output
something without formatting (PRINI-style): its result is ignored. (Note: how cannot use an output
SUBR on how's own fype: endless recursion will result. OUTCHAN is bound during the application to
the CHANNEL in use, or to a pseudo-internal channel for FLATSIZE -- chapter 11.) If how is the SUBR
PRINT, tyvpe will receive no special treatment in printing, that is, it will be printed as it was in an
initial MDL or immediately after its defining NEWTYPE.

For EVALTYPE, how should take one argument: the object being evaluated. The value returned by
how will be used as EVAL of the object. If how is the SUBR EVAL, type will receive no special
treatment in cvaluation.

For APPLYTYPE, how should take at least one argument. The first argument will be the ob ject being
applied: the rest will be the objects it was given as arguments. The result returned by how will be
used as the result of the application. If how is the SUBR APPLY, type will receive no special
treatment in application to arguments.

If any of these SUBRs is given only one argument, that is if how is omitted, it returns the currently
active how (a TYPE or an applicable object), or else #FALSE () if type is receiving no special
treatment in that operation.

Unfortunately. these examples are fully understandable only after you have read through chapter 11.

{DEFINE ROMAN-PRINT (NUMB)
<COND (<OR <L=? .NUMB 0> <G? .NUMB 3999>>
<PRINC <CHTYPE .NUMB TIME>>)
(7
<RCPRINT </ .NUMB 1000> '![!'\M]>
<RCPRINT </ .NUMB 100> '![!\C !'\D !'\MD
<RCPRINT </ .NUMB 10> '"![!\X !'\L !\CD
<RCPRINT .NUMB SIEINT N\ IN\XDD)DS
ROMAN-PRINT

<DEFINE RCPRINT (MODN V)
<SET MODN <MOD .MODN 10>>
<COND (<==7 0 .MODN>)

(<==?7 1 .MODN> <PRINC <1 .V>>)

(<==7 2 .MODN> <PRINC <1 .V>> <PRINC <1 .V>>)

(<==7 3 .MODN> <PRINC <1 .V>> <PRINC <1 .V>> <PRINC <1 .V>>)
(<==?7 4 _MODN> <PRINC <1 .V>> <PRINC <2 .V>>)

(<==7 5 .MODN> <PRINC <2 .V>>)

(<==7 6 .MODN> <PRINC <2 .V>> <PRINC <1 .V>>)

(<==?7 7 .MODN> <PRINC <2 .V>> <PRINC <1 .V>> <PRINC <1 .V>>)

(<==7 8 .MODN>
{PRINC <2 .V>>
<PRINC <1 .V»

6.4.4 Data Types

XA

i —

The MDL Programming Language

<PRINC <1 .V>»
<PRINC <1 .V>>)

(<==7 9 .MODN> <PRINC <! .V>> <PRINC <3 .V>>)>>§
RCPRINT

<PRINTTYPE TIME FIX> ;"fairly harmless but necessary here"$

TIME

CPRINTTYPE FIX ,ROMAN-PRINT> ;"hee hee!"$
FIX

<+ 2 2>%

v

19843

MCMLXXX1V

<PRINTTYPE FIX ,PRINT>$

FIX

<NEWTYPE GRITCH LIST> ;"a new TYPE of PRIMTYPE LIST"$
GRITCH

CEVALTYPE GRITCH>S

#FALSE ()

CEVALTYPE GRITCH LIST> ;“evaluated like a LIST"S
GRITCH

CEVALTYPE GRITCH>S

LISTY

#GRITCH (A <+ 1 2 3> '<(SET A "ABC">) :"Type in one."$
#GRITCH (A 6 '\A '\B '\(C)

CNEWTYPE HARRY VECTOR> ;"a new TYPE of PRIMTYPE VECTOR"$S
HARRY
CEVALTYPE HARRY #FUNCTION ((X) <1 .XO)»

;"When a HARRY is EVALed, return its first element."$
HARRY
#HARRY [1 2 3 438
1

CNEWTYPE WINNER LIST> ;"a TYPE with funny application"$
WINNER

CAPPLYTYPE WINNER>S

#FALSE ()

CAPPLYTYPE WINNER <FUNCTION (W “"TUPLE® T) (!.W . T)»S$
WINNER

CAPPLYTYPE WINNER>S

#FUNCTION ((W “TUPLE" T) ('.W 1.T))

CAWINNER (A B C) <+ 1 2> o8

(ABC3q)

6.4.4

Data Types

The MDL Programming Language 51

The following sequence makes MDL look just like Lisp. (This example is understandable only if
you know Lisp (Moon, 1974); it is included only because it is so beautiful.)

CEVALTYPE LIST FORM>$
LIST

CEVALTYPE ATOM ,LVAL>S
ATOM

(+12)8

3

(SET ‘A 5)8
S

AS

5

To complete the job, of course, we would have to do some SETG's: car is !, cdr is ,REST, and
lambda is ,FUNCTION. If you really do this example, you should “undo” it before continuing:

CEVALTYPE 'ATOM ,EVAL>S
ATOM
<EVALTYPE LIST ,EVAL>S
LIST

6.4.4 Data Types

52 The MDL Programming Language

Chapter 7. Structured Objects

This chapter discusses structured ob jects in general and the five basic structured PRIMTYPEs. [We
defer detailed discussion of the structured PRIMTYPEs TUPLE (section 9.2) and STORAGE (section
22.2.2).]

7.1. Manipulation

The following SUBRs operate uniformly on all structured objects and generate an error if not
applied to a structured ob ject. Hereafter, structured represents a structured ob ject.

7.1.1. LENGTH [1]
CLENGTH structured>

evaluates to the number of elements in structured.

7.1.2. NTH [1]
<NTH structured fix>

evaluates to the fixth element of structured. An error occurs if fix is less than 1 or greater than
CLENGTH structured>. fix is optional, 1 by default

7.1.8. REST 1)
CREST structured fix>
evaluates to structured without its first fix elements. fix is optional, 1 by default.

Obscure but important side effect: REST actually returns structurea “"CHTYPEd"™ (but not through

7-7.3 Structured Ob jects

The MDL Programming Language 53

application of CHTYPE) to its PRIMTYPE. For example, REST of a FORM is a LIST. REST with an
explicit second argument of 0 has no effect except for this TYPE change.

7.1.4. PUT [1)

CPUT structured fix anything-legal>
first makes anything-legal the fixth element of structured, then evaluates to structured. anything-legal
is anything which can legally be an element of structured; often, this is synonymous with "any MDL

object”, but see below. An error occurs if fix is less than 1 or greater than <LENGTH structured>.
(PUT is actually more general than this -- chapter 13.)

7.1.5. GET
CGET structured fix>

evaluates the same as <NTH structured fix>. It is more general than NTH, however (chapter 13), and
is included here only for symmetry with PUT.

7.1.6. APPLYing a FIX [I]

EVAL understands the application of an object of TYPE FIX as a “shorthand” call to NTH or PUT,
depending on whether it is given one or two arguments, respectively funless the APPLYTYPE of FIX is
changed]. That is, CVAL considers the following two to be identical:

<fix structured>
<NTH structured fix>

and these:

<fix structured object>
<PUT structured fix object)

[However, the compiler (Lebling. 1979) cannot generate efficient code from the longer forms unless
it is sure that fix is a FIX (section 9.10). The two constructs are not identical even to EVAL, if the
order of evaluation is significant: for example, these two:

<NTH .X CLENGTH <SET X .Y>>» CCLENGTH <SET X .Y>> .X>

are not identical.]

718 -7.16 Structured Ob jects

o Ry LT

s . M

54 The MDL Programming Language

7.1.7. SUBSTRUC

SUBSTRUC ("substructure”) facilitates the construction of structures that are composed of sub-parts of
existing structures. A special case of this would be a “substring” function.

CSUBSTRUC from:structured rest:fix amountfix tostructured
copies the first arount elements of <REST from rest> into another object and returns the latter. All
arguments arc optional except from, which must be of PRIMTYPE LIST, VECTOR, TUPLE (treated like
a VECTOR). STRING, BYTES, or UVECTOR. rest is 0 by default, and amount is all the elements by
default. fo. if given, receives the copied elements, starting at its beginning: it must be an ob ject
whose TYPE is the PRINTYPE of from (a VECTOR if from is a TUPLE). If to is not given, a new ob ject is
returncd. of TYPL <PRINTYPE from> (a VECTOR if from is a TUPLE), which never shares with from.

The copying is done in one fell swoop, not an element at a time. Note: due to an implementation
restriction. if from is of PRIMTYPE LIST, it must not share any elements with to.

7.2. Representation of Basic Structures

7.2.0. LIST 1)
(element-1 element-2 ... element-N)

represents a LIST of N elements.

7.2.2. VECTOR [
[element-1 element-2 ... element-N]

represents a VECTOR of N clements. [A TUPLE is just like a VECTOR, but it lives on the control stack.)

7.2.3. UVECTOR [I)
'[element-1 element-2 ... element-N !)

represents a UVECTOR (uniform vector) of N elements. The second ! (exclamation-point) is optional
for input. [A STORAGE is an archaic kind of UVECTOR that is not garbage-collected.)

707-728 Structured Ob jects

ot — - WM

The MDL Programming Language 55

7.2.4. STRING [I)
“characters"

represents a STRING of ASCII text. A STRING containing the character * (double-quote) is

represented by placing a \ (backslash) before the double-quote inside the STRING. A \ in a STRING
is represented by two consecutive backslashes.

7.2.5. BYTES
#n {element-1 element-2 ... element-N}

represents a string of N uniformly-sized bytes of size n bits.

7.2.6. TEMPLATE
{ element-1 element-2 ... element-N }

represents a TEMPLATE of N elements when output, not input -- when input, a # and a TYPE must
precede it.

7.3. Evaluation of Basic Structures [1]

This section and the next two describe how EVAL treats the basic structured TYPEs [in the absence of
any modifying EVALTYPE calls (section 6.4.4)).

EVAL of a STRING [or BYTES or TEMPLATE] is just the original ob ject.

EVAL acts exactly the same with LISTs, VECTORs, and UVECTORs: it generates a new object with
elements cqual to EVAL of the elements it is given. This is one of the simplest means of
constructing a structure. Iowever, see section 7.7.

7.4. Examples [I]

(1 2 <+ 3 D)8

¢ 2"7)

<SET FOO [5 <- 3> <TYPE "ABC">]>$
[5 -3 STRING]

<2 .F00>$

724-74 Structured Ob jects

56 The MDL Programming Language

-3

<TYPE <3 .FOO0>>$

ATON

(SET BAR ![("meow") (.FOO)I>$
‘[("meow") ([5 -3 STRING])!]
CLENGTH .BAR>$

| 2 |
E CREST <1 <2 .BAR>>)$;
’ [-3 STRING] ?
[<SUBSTRUC <1 <2 .BAR>> 0 2>]§ |
(s -311 ‘
<PUT .FOO 1 SNEAKY) ;"Watch out for .BAR !"§
[SNEAKY -3 STRING]
.BARS
'[("meow") ([SNEAKY -3 STRING])!]

<{SET FOO <REST <1 <1 .BAR>> 2»§
-ow-
.BARS
'[("meow") ([SNEAKY -3 STRING])!]

7.5. Generation of Rasic Structures

Since LISTs, VECTORs, UVECTORs, and STRINGs [and BYTESes) are all generated in a fairly uniform

manner, mcthods of generating them will be covered together here. [TEMPLATEs cannot be generated
by the interpreter itself: see I ebling (1979).]

7.5.1. Direct Representation [1)

Since EVAL of a LIST, VECTOR, or UVECTOR is a new LIST, VECTOR, or UVECTOR with elements which
are EVAL of the original clements. simply evaluating a representation of the object you want will
generate it. (Care must be taken when representing a UVECTOR that all elements have the same
TYPE.) This method of generation was exclusively used in the examples of section 7.4. Note that
new STRINGs [and BYTESes] will not be generated in this manner, since the contents of a STRING are
not interpreted or copicd by CVAL. The same is true of any other TYPE whose TYPEPRIM happens to

be LIST, VECTOR, or UVECTOR [again, assuming it neither has been EVALTYPEd nor has a built-in
EVALTYPE, as do FORM and SEGMENT].

7.5.2. QUOTE [1]

QUOTE is an FSUBR of one argument which returns its argument unevaluated. READ and PRINY

74-752 Structured Ob jects

e —————————————

e s_w

The MDL Programming Language 57

understand the character ' (single-quote) as an abbreviation for a call to QUOTE, the way period and
comma work for LVAL and GVAL. Examples:

<+ 1 2>%
3

'(+ 1 2>%
<+ 1 2>

Auy LIST, VECTOR, ar UVECTOR in a program that is constant and need not have its elements
evaluated should be represented directly and inside a call to QUOTE. This technique prevents the
structure from being copied each time that portion of the program is executed. Examples hereafter
will adhere to this dictum. (Note: onie should never modify a QUOTEd object. The compiler will one
day put it in read-only (pure) storage.)

7.5.3. LIST, VECTOR, UVECTOR, and STRING (the SUBRs) [I]

Each of the SUBRs L1ST, VECTOR, UVECTOR, and STRING takes any number of arguments and
returns an object of the appropriate TYPE whose elements are EVAL of its arguments. There are
limitations on what the arguments to UVECTOR and STRING may EVAL to, due to the nature of the
ob jects generated. See sections 7.6.5 and 7.6.6.

LIST, VECTOR, and UVECTOR are generally used only in special cases, since Direct Representation
usually produces cxactly the same effect (in the absence of errors), and the intention is more
apparent. [Note: if .Lis a LIST, CLIST !.L> makes a copy of .L whereas (!.L) doesn't; see section
7.7.] STRING, on the other hand. produces effects very different from literal STRINGs.

Examples:

CLIST 1 <+ 2 3> ABCO>S

(1 5 ABC)

(1 <+ 2 3> ABC)S

(1 5 ABC)

CSTRING "A" <2 "QWERT"> <CREST "ABC"> "hello"™)$§
“"AWBChello"

"A <+ 2 3> (5)"S

"A <+ 2 3 (9"

7.5.4. ILIST, IVECTOR, IUVECTOR, and ISTRING (]

Each of the SUBRs ILIST, IVECTOR, IUVECTOR, and ISTRING (Timplicit” or “iterated” whatever)
creates and returns an object of the obvious TYPE. The format of an application of any of them is

< Ithing number-of-elements:fix expression:any >

752.-754 Structured Ob jects

i

58 The MDL Programming Language

where /thing is onc of TLIST, IVECTOR, IUVECTOR, or ISTRING. An object of LENGTH number-of-
elements is generated, whose elements are EVAL of expression.

expression is optional. When it is not specified, ILIST, IVECTOR, and IUVECTOR return ob jects 1
filled with objects of TYPC LOSE (PRIMTYPE WORD) as place holders, a TYPE which can be passed

around and have its TYPE checked, but otherwise is an illegal argument. If expression is not

specified in ISTRING, you get a STRING made up of “@ characters.

When evpression is supplied as an argument, it is re-EVALuated each time a new element is
generated. (Actually, EVAL of expression is re-EVALuated, since all of these are SUBRs.) See the last
example for how this argument may be used.

1 [By the way. in a construct like <IUVECTOR 9 '.X>, even if the LVAL of X evaluates to itself, so that

the ' could be omitted without changing the result, the compiler is much happier with the ' in
place.]

TUVECTOR and ISTRING again have limitations on what expression may EVAL to; again, see sections
7.6.5 and 7.6.6.

Examples:

Loty

<ILIST 5 6>$
(6666 6)
<IVLCTOR 2>%

[#LOSE *000000000000* #LOSE *000000000000*] i

i

(SET A 0% |

0 H
CIUVECTOR 9 '<SET A <+ .A DS
'"f1234567809!) A

7.5.5. FORM and IFORM i
Sometimes the need arises to create a FORM without EVALing it or making it the body of a FUNCTION. i
In such cases the SUBRs FORM and IFORM (“implicit form") can be used (or QUOTE can be used). They |
are entirely analogous to LIST and ILIST. Example: f

CDEFINE INC-FORM (A)
CFORM SET .A <FORM + 1 <FORM LVAL .AX>»>$
INC-FORM
<INC-FORM FOO>$
<SET FOO <+ 1 .FO0>>

754 -755 Structured Ob jects

The MDL Programwming Language 59

7.6. Unique Properties of Primitive TYPEs i

7.6.1. LIST (the PRIMTYPE) [1)

An object of PRINTYPE LIST may be considered as a "pointer chain” (appendix 1). Any MDL ob ject
may be an clement of a PRIMTYPE LIST. It is easy to add and remove elements of a PRIMTYPE
LIST, but the higher N is, the longer it takes to refer to the Nth element. The SUBRs which work
only on objects of PRIMTYPE LIST are these:

7.6.1.1. PUTREST {I]

CPUTREST head:primtype-list tail:primtype-list>

changes head sa that <REST head> is tail (actually <CHTYPE tail LIST)), then evaluates to head. Note
that this actually changes heac: it also changes anything having head as an element or a value. For
example:

<SET BOW [<SET ARF (B W)>]>$
[(8w))

CPUTREST .ARF '(3 4)>$

(B 3 4)

.BOWS

[(834)]

PUTREST is probably most often used to splice lists together. For example, given that .L is of
PRIMTYPE LIST, to leave the first m elements of it intact and take out the next n elements of it,
CPUTREST <REST .L <= m 1>> CREST .L <+ m nd>>. Specifically,

CSET NUMS (1234567898
(1234567829)

CPUTREST <REST .NUMS 3> <REST .NUMS 7>>$
(489)

.NUMS$

(1234829)

7.6.1.2. CONS

CCONS new list>

("construct”) adds new to the front of /ist, without copying "st, and returns the resulting LIST. ;
References to /ist arc not affected. '

[Evaluating <CONS .E .LIST> is equivalent to evaluating (.E !.LIST) (section 7.7) but is less t
preferable to the compiler (Lebling, 1979).]

76-76.12 Structured Ob jects

T L

o —

60 The MDL Programming Language

7.6.2. "Array” PRIMTYPEs [I)

VECTORs. UVECTORs, and STRINGs [and BYTESes and TEMPLATEs) may be considered as “arrays”
(appendix 1). It is easy to refer to the Nth element irrespective of how large N is, and it is
relatively difficult to add and delete elements. The following SUBRs can be used only with an ob ject

of PRIMTYPE VECTOR, UVECTOR, or STRING [or BYTES or TEMPLATE]. (In this section array represents
an ob ject of such a PRIMTYPE.)

7.6.2.1. BACK [1)

(BACK array fix>

This is the opposite of REST. It evaluates to array. with fix elements put back onto its front end,
and changed to its PRIMTYPE. fix is optional, 1 by default. If fix is greater than the number of
elements which have been RESTed of f, an error occurs. Example:

CSET Z0P <REST '![1 2 3 4] 3»$
1[ar]

<BACK .ZOP 2>$

12 3 4]

CSET S CREST "Right is might.” 15§

<{BACK .S 6>%
"might."”

7.6.2.2. TOP [1)

<TOP array>

"BACKs up all the way" -- that is, evaluates to array, with all the elements which have been RESTed
of f put back onto it and changed to its PRIMTYPE. Example:

<TOP .ZOP>$

'[123 4]
7.63. "Vector™ PRIMTYPEs '
7.6.3.1. GROV

<GROW vu end.fix beg:tix>
adds/removes elements to/from either or both ends of vu, and returns the entire (TOPped) resultant ’

object. vu can be of PRIMTYPE VECTOR or UVECTOR. end specifies a lower bound for the number of

762-763.1 Structured Ob jects

The MDL Programming Language 61

elements to be added to the end of vui beg specifies the same for the beginning. A negative fix
specifics removal of clements.

The number of elements added to each respective end is end or beg increased to an integral multiple
of X. where X is 32 for PRIMTYPE VECTOR and 64 for PRIMTYPE UVECTOR (1 produces 32 or 64; -1
produces 0). The clements added will be LOSEs if vu is of PRINTYPE VECTOR, and “empty” whatever-
they-are’s if vu is of PRIMTYPE UVECTOR. An “empty" object of PRIMTYPE WORD contains zero. An
“empty” object of any other PRIMTYPE has zero in its "value word” (appendix 1) and is not safe to
play with: it should be replaced via PUT.

Note that, if elements are added to the beginning of vu, previous'y-existing references to vu will
have to use TOP or BACK to get at the added elements. ;

Caution: GROW is a very expensive operation; it requires a garbage collection (section 22.4) every
time it is used. It should be reserved for very special circumstances, such as where the pattern of
shared elements is terribly important.

Example:

<SET A "'[1DS

1]

<GROW .A 0 1>%

'(00000O0O

00000000
00000

oo o
L= — I
[~ I~ I -
oo o
[=~
(=2 — I
o O o
[~ — I —
[~ — B —]
[— I —]
[~ — I]
(-2 — I —
(-2 — I —
-—0 O

7.6.3.2. SORT

This SUBR will sort PRIMTYPEs VECTOR, UVECTOR and TUPLE (section 9.2). It works most
efficiently if the sort keys are of PRIMTYPE WORD, ATOM or STRING. However, the keys may be of
any TYPE, and SORT will still work. SORT acts on fixed-length records which consist of one or more
contiguous elements in the steucture being sorted. One element in the record is declared to be the

sort key. Also, any number of additional structures can be rearranged based on how the main
structure is sorted.

CSORT pred sl 11 off s2 12 s3 13 ... sN IN)
where:
pred is either (see chapter 8 for information about predicates):

(1) TYPE FALSE, in which case the TYPEs of all the sort keys must be the same; they must be of
PRIMTYPC WORD, STRING or ATOM; and a radix-exchange sort is used; or

7631-768.2 Structured Ob jects

. A

..Z.._...i;{ P

62 The MDL Programming Language

(2) something applicable to two sort keys which returns TYPE FALSE if the first is not bigger
than the second. in which case a shell sort is used. For example ,G? sorts numbers in ascending
order. ,L? in descending order. Note: if your pred is buggy, the SORT may never terminate.

sl ... sN arc the (PRIMTYPE) VECTORs, UVECTORs or TUPLEs being sorted, and s/ contains the sort
keys:

11...IN are the corresponding lengths of sort records (optional, one by default); and
off is the offset from start of record to sort key (optional, zero by default).
SORT returns the sorted s/ as a value.

Note: the SUBR SORT calls the RSUBR (chapter 19) SORTX; if the RSUBR wmust be loaded, you may see
some output from the loader on your terminal.

Examples:

C(SORT <> <SET A <IUVECTOR 500 '<RANDOM>>>>$
I vl

sorts a UVECTOR of random integers.

(SET V [1 MONEY 2 SHOW 3 READY 4 GO]>$
Eeund

(SORT <> .V 2 D}

:_ (4 GO 1 MONEY 3 READY 2 SHOW]

<SORT ,L? .V 2>§

[4 GO 3 READY 2 SHOW 1 MONEY]
.V$

[4 GO 3 READY 2 SHOW 1 MONEY]

(SORT <> '[21436587]10 .13
'"M12345678!]

.V§

(GO 4 READY 3 SHOW 2 MONEY 1]

The first sort was based on the ATOMs' PNAMEs, considering records to be two elements. The second
; one sorted based on the FIXes. The third interchanged pairs of elements of each of its structured
arguments.

7632 Structured Ob jects

g~

O S

~pm i

The MDL Programming Language 63

7.6.4. VECTOR (the PRIMTYPE) [1)

Any MDL object may be an element of a PRIMTYPE VECTOR. A PRIMTYPE VECTOR takes two words
of storage more than an equivalent PRIMTYPE LIST, but takes it all in a contiguous chunk, whereas

a PRIMTYPE LIST may be physically spread out in storage (appendix 1). There are no SUBRs or
FSUBRs which operate only on PRIMTYPE VECTOR.

7.6.5. UVECTOR (the PRIMTYPE) [I]
The difference between PRIMTYPEs UVECTOR and VECTOR is that every element of a PRIMTYPE
UVECTOR must be of the same TYPE. A PRIMTYPE UVECTOR takes approximately half the storage of

a PRIMTYPE VECTOR or PRIMTYPE LIST and, like a PRIMTYPE VECTOR, takes it in a contiguous chunk
(appendix 1).

[Note: due to an implementation restriction (appendix 1), PRIMTYPE STRINGs, BYTESes, LOCDs

(chapter 12). and objects on the control stack (chapter 22) may not be elements of PRIMTYPE
UVECTORs.] '

The "same TYPE" restriction causes an equivalent restriction to apply to EVAL of the arguments to
either of the SUBRs UVECTOR or IUVECTOR. Note that attempting to say

1 .A']

will cause READ to produce an error, since you're attempting to put a FORM and a FIX into the same
UVECTOR. On the other hand,

CUVECTOR 1 .A>
is legal, and will EVAL to the appropriate UVECTOR without error if .A EVALs to a TYPE FIX.
The following SUBRs work on PRIMTYPE UVECTORs alone.
7.6.5.1. UTYPE [I)
CUTYPE primtype-uvector>
("uniform type”) evaluates to the TYPE of every element in its argument. Example:

<UTYPE '!'[A B C]>$
ATOM

764-765.1 Structured Ob jects

64 The MDL Programming Language

7.6.5.2. CHUTYPE [1)
CCHUTYPE uv:primtype-uvector type)

("change uniforn type”) changes the UTYPE of uv to type, simultaneously changing the TYPE of all
elements of uv. and returns the new, changed, uv. This works only when the PRIMTYPE of the
elements of vv can remain the same through the whole procedure. (Exception: a uv of UTYPE LOSE

can be CHUTYPEd to any f)pe (legal in a UVECTOR of course): the resulting elements are “"empty”, as
for GROW.)

CHUTYPE actually changes uvi hence all references to that object will reflect the change. This is
quite dif ferent from CHTYPE.

Examples:

<SET LOST <IUVECTOR 2>>§

[#10SE *000000000000% #LOSE *000000000000%!]
CUTYPE .LOST>S

LOSE

CCHUTYPE .LOST FORM>S

1O O

.LOST

1< O]

CCHUTYPE .LOST LIST>$

o) O]

7.6.6. STRING (the PRIMTYPE) and CHARACTER [I]

The best mental image of a PRIMTYPE STRING is a PRIMTYPE UVECTOR of CHARACTERs -- where

CHARACTER is the MDL TYPE for a single ASCII character. The representation of a CHARACTER, by
the way, is

\anyv-ASCII-char acler
That is. the characters '\ (exclamation-point backslash) preceding a single ASCII character

represent the corresponding object of TYPE CHARACTER (PRIMTYPE WORD). (The characters !*®

(exclamation-point double-quote) preceding a character are also acceptable for inputting a
CHARACTER, for historical reasons.)

The SUBR ISTRING will produce an error if you give it an argument that produces a non-
CHARACTER. STRING can take either CHARACTERs or STRINGs.

There are no SUBRs which uniquely manipulate PRINTYPE STRINGs, but some are particularly useful
in connection with them:

7652-766 Structured Ob jects

The MDL Programming Language 65

7.6.6.1. ASCII (1)
CASCII fix-or-character>

If its argument is of TYPE FIX, ASCII evaluates to the CHARACTER with the 7-bit ASCII code of its
argument. Example: C<ASCII 65) evaluates to '\A.

If its argument is of TYPE CHARACTER, ASCII evaluates to the FIXed-point number which is its
argument’s 7-bit ASCII code. Example: CASCII !\Z)> evaluates to 90.

[Actually, a FIX can be CHTYPEd to a CHARACTER (or vice versa) directly, but ASCII checks in the
former case that the FIX is within the permissible range.)

7.6.6.2. PARSE [1)
CPARSE string radix:fix)

PARSE applics to its argument READ's algorithm for converting ASCII representations to MDL
objects and returns the first object created. The remainder of string, after the first ob ject
represented, is ignored. radix (optional, ten by default) is used for converting any FIXes that occur.
[See also sections 15.7.2 and 17.1.3 for additional arguments.)

7.6.6.3. LPARSE [I]

LPARSE ("list parse”) is exactly like PARSE (above), except that it parses the entire string and returns a
LIST of all objects created. If given an empty STRING or one containing only separators, LPARSE
returns an empty LIST, whercas PARSE gets an error.

7.6.6.4. UNPARSE [I]
CUNPARSE any radix:fix>

UNPARSE applies to its argument PRINT's algorithm for converting MDL objects to ASCII
representations and returns a STRING which contains the CHARACTERs PRINT would have typed out.
[However, this STRING will not contain any of the gratuitous carriage-returns PRINT adds to
accommodate a CHANNEL's finite line-width (section 11.2.8).) radix (optional, ten by default) is
used for converting any FIXes that occur.

7.6.7. BYTES

A (PRIMTYPE) BYTES is a string of uniformly-sized bytes. The bytes can be any size between 1 and
36 bits inclusive. A BYTES is similar in some ways to a UVECTOR of FIXes and in some ways to a
STRING of non-seven-bit bytes. The elements of a BYTES are always of TYPE FIX.

7.66.1-76.7 Structured Ob jects

Lo i

L e

66 The MDL Programming Language

The SUBRs BYTES and IBYTES are similar to STRING and ISTRING, respectively, except that each of
the former takes a first argument giving the size of the bytes in the generated BYTES. BYTES takes
one required argument which is a FIX specifying a byte size and any number of PRIMTYPE WORDs.
It returns an object of TYPE BYTES with that byte size containing the objects as elements. These
ob jects will be ANDBed with the appropriate mask of I-bits to fit in the byte size. IBYTES takes two
required FIXes and one optional argument. [t uses the first FIX to specify the byte size and the
second to specify the number of clements. The third argument is repeatedly evaluated to generate
FIXes that become elements of the BYTES (if it is omitted, bytes filled with zeros are generated). The
analog to UTYPE is BYTE-SIZE. Examples:

<BYTES 3 <+ 22> 9 -1>§

“3 {41 7)

<SET A 0>%

0

CIBYTES 3 9 '<SET A <+ A DS
#3{(123456701)

CIBYTES 3 4>%

#3 {000 0)
<BYTE-SIZE <BYTES 1>>$
1

7.6.8. TEMPLATE

A TEMPLATE is similar to a PL/I "structure” of one level: the elements are packed together and
reduced in size to save storage space, while an auxiliary internal data structure describes the
packing format and the elements’ real TYPEs (appendix 1). The interpreter itself is not able to create
objects of PRIMIYPE TEMPLATE (Lebling, 1979): however, it can apply the standard built-in
Subroutines to them. with the same effects as with other “arrays”.

7.7. SEGMENTSs [1]

Ob jects of TYPE SLGMENT (whose TYPEPRiM is LIST) look very much like FORMs. SEGMENTs, however,
undergo a non-standard evaluation designed to ease the construction of structured ob jects from
elements of other structured ob jects.

7.7.1. Representation [1]
The representation of an ob ject of TYPE SEGMENT is the following:

'C func arg=-1 arg-2 ... arg-N !>

76.7-7.71 Structured Ob jects

The MDL Programming Language 67

where the second ! (exclamation-point) is optional, and func and arg-1 through arg-N are any legal
constituents of a FORM (that is, anything). The pointed brackets can be implicit, as in the period
and comma notation for LVAL and GVAL.

All of the following are SEGMENTs:

1<3 .FOO> !'.FOO !,FOO

7.7.2. Evaluation (1]

A SEGMENT is evaluated in exactly the same manner as a FORM, with the following three exceptions:

(1) It had better be done inside an EVAL of a structure; otherwise an error occurs. (See special
case of FORMs in section 7.7.5.)

(2) It had better EVAL to a structured ob ject; otherwise an error occurs.

(3) What actually gets inserted into the structure being built are the elements of the structure
returned by the FORM-like evaluation.

7.7.3. Examples [1]

CSET Z0P '![2 3 4DS
12 3 4]

CSET ARF (B 3 4)>$

(8 3 4)

(.ARF !.Z0P)$

((B 3 4) 23 4)

I[1.Z0P 'CREST .ARF>!]$§
1[2343a)

{SET S "STRUNG.">$

"STRUNG."

('.5)%

('\S '\T '\R '\U "\N !\6 !\.)

<SET NIL ()>$
()

[!.NIL]S ‘
(]

7271-773 Structured Ob jects 3

p————— .

68 The MDL Programming Language

7.7.4. Note on Efficicucy (1)

Most of the cases in which it is possible to use SEGMENTs require EVAL to generate an entire new
object. Naturally, this uses up both storage and time. However, there is one case which it is
possible to handle without copying, and EVAL uses it. When the structure being built is a PRIMTYPE
LIST, and the segment value of a PRIMTYPE LIST is the last (rightinost) element being concatenated,
that last PRIMTYPE LIST is not copied. This case is similar to CONS and is the principle reason why
PRIMTYPE LISTs have their structures more easily varied than PRIMTYPE VECTOR or UVECTOR.

Examples: i

.ARF$
(B 3 4)

This docs not copy ARF:

(1 2 Y.ARF)$

(12834)
These dox

(1 Y.ARF 2) ;"not last element”$
(1B34a2)

[1 2 '.ARF] ;"not PRIMTYPE LIST"S
[12834]

(1 2 '.ARF !'<REST '(1)>) ;"still not last element"$
(128 34)

Note the following, which occurs because copying does not take place:

(SET DOG (A !.ARF)>$

(A B 34)

<PUT .ARF 1 "BOWOW")>$
("BOWON" 3 4)

.DOGS

(A "BOWOW" 3 4)

<PUT .DOG 3 "WOOF">$

(A "BOWOW" "WOOF" 4)

.ART §

(*BOWOW" "“WOOF" 4)

Since ARF was not copicd, it was literally part of DOG. Hence, when an element of ARF was changed,

DOG was changed. Similarly, when an element of DOG which ARF shared was changed, ARF was
changed too.

774 Structured Ob jects

prec

The MDL Programming Language 69

7.7.5. SEGMENTs in FORMs (1]

When a SEGMENT appears as an element of a FORM, the effect is approximately the same as if the
elements of EVAL of the STGMINT were in the FORM. Example:

CSET A '!1[1 234D%

123 4!]
<+ LA 58
15

Note: the clements of the structure segment-evaluated in a FORM are not re-evaluated if the thing
being applicd is a SUBR. Thus if .A were (1 2 <+ 3 4> 5), the above example would produce an
error: you can't add up FORMs.

You could perform the same summation of 5 and the elements of A by using

CEVAL <CHIYPE (+ '.A 5) FORM>»
(Note that [VAL must be explicitly called as a SUBR; if it were not so called, you would just get the
FORM <+ 1 2 3 4 5> -- not its "value") llowever, the latter is more expensive both in time and in

storage: when you use the SEGMENT directly in the FORM, a new FORM is, in fact, not generated as it is
in the latter case. (The elements are put on “the control stack” with the other arguments.)

7.8. Self-referencing Structures

It is possible for a structured object to “contain” itself, cither as a subset or as an element, as an
element of a structured element, etc. Such an object cannot be PRINTed, because recursion begins
and never terminates. Warning: if you try the examples in this section with a live MDL, be sure
you know how to use ~S (section 1.2) to save PRINT from endless agony. (Certain constructs with
ATOMs can give PRINT similar trouble: see chapters 12 and 15.)

7.8.1. Self-subset
CPUTREST head:primtype-list tail:;primtype-list>

If head is a subsct of fail, that is, if CREST tail fix)> is the same ob ject as CREST head 0> for some fix,
then both head and tail will be “circular” (and thus self-referencing) after the PUTREST. Example:

CSET WALTZ (1 2 3)>8

(12 3)

CPUTREST <REST .WALTZ 2> .WALTZ>S
(3123123123123 ...

715 -78.1 Structured Ob jects

TR ST S

B Y

70 The MDL Programming Language

7.8.2. Self-element
<PUT sl:structured fix s2:structured>

If sl is the same object as s2 then it will “contain” itself (and thus be self-referencing) after the
PUT. Examples:

CSET S <LIST 12 3» ;"or VECTOR"S
(123)

<PUT .S 3 .SO8

(H R o2 £ 25

CSET U ' 1S

TEIERIN!

<PUT .U 1 .S

T RISl Sl

Test your reaction time or your terminal’s bracket-maker. Awmaze your friends.

782 Structured Ob jects l

The MDL Programming Language 7

Chapter 8. Truth i3

8.1. Truth Values [1])

MDL represents "false” with an object of a particular TYPE: TYPE FALSE (unsurprisingly). TYPE
FALSE is structured: its PRIMTYPE is LIST. Thus, you can give reasons or excuses by making them
elements of a FALSE. (Again, EVALing a FALSE neither copies it nor EVALs its elements, so it is not
necessary to QUOTE a FALSE appearing in a program.) Objects of TYPE FALSE are represented in “#
notation™

#FALSE list-of-its-elements |
The empty FORM evaluates to the empty FALSE:

(921
#FALSE ()

P 4R

Anything which is not FALSE, is, reasonably enough, true. In this document the "data type” false-
or-any in metasyntactic variables means that the only significant attribute of the object in that
context is whether its TYPE is FALSE or not.

P

e

RTINS « A

8.2. Predicates [1]

There are numerous MDL F/SUBRs which can return a FALSE or a true. See appendix 2 to find
them all. Most rcturn cither #FALSE () or the ATOM with PNAME T. (The latter is for historical
reasons, namely Lisp (Moon, 1974).) Some predicates which are meaningful now are described next.

prer3

8.2.1. Arithmetic [i]

<07 fix-or-float>

evaluates to T only if its argument is identically equal to 0 or 0.0.

8-82l1 ' Truth

72 The MDL Programming Language

<1? fix-or-float>
evaluates to T only if its argument is identically equal to 1 or 1.0.
<G? n:fix-or-float m:fix-or-float)

evaluates to T only if n is algebraically greater than m. L=? is the Boolean complement of 67; that
is, it is T only if n is not algebraically greater than m.

<L? n:dfix-or-float m:Afix-or-floatd

evaluates to T only if n is algcbraically less than m. 6=? is the Boolean complement of L?.

8.2.2. Equality and Membership [I]

{==? el:any e2:an V>

evaluates to T only if ¢! is the same object as e2 (appendix 1. Two objects that look the same i
when PRINTcd may not be ==7. Two FIXes of the same “value” are "the same object™; so are two

FLOATs of exactly the same “valuc”. Ewmpty objects of PRIMTYPE LIST (and no other structured
PRIMTYPE) are ==7? if their TYPEs are the same. Example:

{==?7 <SET X "RANDOM STRING"> <TOP <REST .X 6>>>% ; V i

K | |
<==?7 .X "RANDOM STRING">$ ‘
#FALSE ()

N==7 is the Boolean complement of ==7,

<=7 el:any eZ:any>

evaluates to T if el and e2 have the same TYPE and are structurally equal -- that is, they “look the .
same”, their printed representations are the same. =? is much slower than ==?. =? should be used l
only when its characteristics are necessary: they are not in any comparisons of unstructured ob jects. s
==7 and =7 always return the same value for FIXes, FLOATs, ATOMs, etc. (Mnemonically, ==? tests for
“more equality” than =?; in fact, it tests for actual physical identity.)

Example, illustrating non-copying of a SEGMENT in Direct Representation of a LIST:

CSET A *(1 2 3)>8 ‘

(12 3) |
<==7 LA (1.A)>$ i
-

{==?7 A (SET B <LIST !.AX>>$

82.1-822 Truth

L T i W MG . % S

pes—

-

The MDL Programming Language 73

#FALSE ()
<=7 .A .B>$
T

N=? is the Roolcan complement of =7.
{MEMBER object:any structured>

runs down structured from first to last element, comparing each element of structured with object.
If it finds an element of structurcd which is =7 to object, it returns CREST structured i> (which is of
TYPE <PRIMTYPL structuredd), where the (i+1)th element of structured is =? to object. That is, the
first element of what it returns is the first element of structured that is =? to object.

If no element of structured is =7 to object, MEMBER returns #FALSE ().

The search is more efficient if structured is of PRIMTYPE VECTOR (or UVECTOR, if possible) than if it
is of PRIMTYPE LIST. As usual, if structured is constant, it should be QUOTEd.

If object and structured are of PRIMTYPE STRING [or BYTES) MEMBER does a substring search.
Example:

<MEMBER "PART" "SUM OF PARTS">$
"PARTS"

<MEMQ object:any structured> ("member quick”) is exactly the same as MEMBER, except that the
comparison test is ==7,

(STRCOMP sl s2>

~ ("string comparison”) can be given either two STRINGs or two ATOMs as arguments. In the latter case

the PNAMCs arc used. It actually isn't a predicate, since it can return three possible values: 0 if s/ is
=? to s2 1 if sl sorts alphabetically after s2 and -1 if s/ sorts alphabetically before s2.
“Alphabetically” means, in this case, according to the numeric order of ASCII, with the standard
alphabetizing rules. '

[A predicate suitable for an ascending SORT (which see) is <G? <STRCOMP .ARG1l .ARG2> 0>.)]

8.2.3. Boolean Operatars [l]
{NOT e:false-or-any>

evaluates to T only if e evaluates to a FALSE, and to #FALSE () otherwise.
<AND el e2 ... eN>

8.22-823 Truth

-

74 The MDL Programming Language

AND is an FSUBR. Tt evaluates its arguments from first to last as they appear in the FORM. As soon
[as one of them evaluates to a FALSE, it returns that FALSE, ignoring any remaining arguments. If
i none of thew cvaluate to FALSE, it returns EVAL of its last argument. CANDD returns T. AND? is the
SUBR equivalent to AND, that is, all its arguments are evaluated before any of them is tested.

<OR el e ... eN>

OR is an FSUBR. Tt cvaluates its arguments from first to last as they appear in the FORM. As soon
as one of them evaluates to a non-FALSE, OR returns that non-FALSE value, ignoring any remaining
arguments. If this never occurs, it returns the last FALSE it saw. <OR) returns #FALSE (). OR? is
the SUBR equivalent to OR.

8.2.4. Ob ject Praperties (1)
STYPE? any type-1 ... type-N>

evaluates to fype-r only if <==7 type-r CTYPE any>) is true. It is faster and gives more information
than ORing tests for cach TYPE. I the test fails for all fype-is, TYPE? returns #FALSE ().

CAPFLICABLE? o>

evaluates to T only if e is of a TYPE that can legally be applied to arguments in a FORM, that is, be
(EVAL of) the first clement of a FORM being evaluated (appendix 8).

<MONAD? &>

evaluates to #FALSE () only if NTH and REST (with non-zero second argument) can be performed on

its argument without error. An unstructured or empty structured ob ject will cause MONAD? to return
e

e Tt

CSTRUCTURED? &>

evaluates to T only if e is a structured object. It is not the inverse of MONAD?, since each returns T i
if its argument is an empty structure,

CEMPTY? structuredd
evaluates to T ouly if its argument, which must be a structured ob ject, has no elements.
CLENGTH? structured fix)
evaluates to CLENGTH structured> only if that is less than or equal to fix otherwise, it evaluates to

#FALSE (). Mnemonically, you can think of the first two letters of LENGTH? as signifying the “less
than or equal 10" sense of the test.

823-824 Truth

—

F‘_,‘.-... B — - i

The MDL Programming Language 5

This SUBR was invented to use on lists, because MDL can determine their lengths only by stepping
along the list, counting the elements. If a program needs to know only how the length compares
with a given number, LENGTH? will tell without necessarily stepping all the way to the end of the
list, in contrast to LENGTH.

[If structured is a circular PRIMTYPE LIST, LENGTH? will return a value, whereas LENGTH will execute
forever. To see if you can do <REST structured <+ 1 fix>> without error, do the test <NOT <LENGTH?
structured fix>>.) :

8.3. COND [I

The MDL Subroutine which is most used for varying evaluation depending on a truth value is the
FSUBR COND ("conditional”). A call to COND has this format:

<COND cladse-l dist ... clause-Niist>
where V is at least one.

COND aiways returns the result of the last evaluation it performs. The following rules determine the
order of evaluations performed.

(1) Evaluate the first element of each clause (from first to last) until either a non-FALSE ob ject -
results or the clauses are exhausted.

(2) If a non-FALSE object is found in (1), immediately evaluate the remaining elements (if any)
of that clause and ignore any remaining clauses. :

In other words, COND goes walking down its clauses, EVALing the first element of each clause, looking
for a non-FALSE result. As soon as it finds a non-FALSE, it forgets about all the other clauses and
evaluates, in order, the other elements of the current clause and returns the last thing it evaluates.
If it can’t find a non-FALSE, it returns the last FALSE it saw.

8.3.1. Examples [1]

<SET F *(1)>8

(1)

CCOND (<EMPTY? .F> EMP) (<17 <LENGTH .F>> ONE)>$
ONE

<SET F ()>$

()

CCOND (<EMPTY? .F> EMP) (<17 <LENGTH .F>> ONE)>$
EMP

824 -831 Truth

76 The MDL Programming Language

CSET F (1 2 38

(1 2 3)
CCOND (<EMPTY? .F)> EMP) (<17 <LENGTH .F)>> ONE)>$
#FALSE ()
CCOND (<LENGTH? .F 2> SMALL) (BIG)>S
BIG
<DEFINE FACT (N} ;"the standard recursive factorial®
<COND (<0? .N> 1)
(ELSE <*= .N <FACT <- .N DM)»"S
FACT
<FACT 5>%
120

. 8.4. Shortcuts with Conditionals

8.4.1. AND and OR as Short CONDs
Since AND and OR are FSUBRs, they can be used as miniature CONDs. A construct of the form

<AND pre-conditions action(s)>

<OR pre-exciusions action(s)>
will allow action(s) to be evaluated only if all the pre-conditions are true or only if all the pre-
exclusions are false, respectively. By nesting and using both AND and OR, fairly powerful constructs
can be made. Of course, if action(s) are more than one thing, you must be careful that none but the
last returns false or true, respectively. Watch out especially for TERPRI (chapter 1I).. Examples:
CAND <ASSIGNED? FLAG> .FLAG <FCN .ARG>>

;pplies FCN only if someone else has SET FLAG to true. (ASSIGNED? is true if its argument ATOM has
an LVAL.) No error can occur in the testing of FLAG because of the order of evaluation.

CAND <SET C <OPEN "READ" "A FILE">> <LOAD .C> <CLOSE .C>»>

effectively FLOADs the file (chapter (1) without the possibility of getting an error if the file cannot
be opened.

83.1-84.1

The MDL Programming Language n”

8.4.2. Embedded Unconditionals

One of the disadvantages of COND is that there is no straightforward way to do things
unconditionally in between tests. Oune way around this problem is to insert a dummy clause that
never succeeds, because its only LIST element is an AND that returns a FALSE for the test. Example:

CCOND (<07 .N> <FO .N>)
(<17 N> <F1 .N>)
(CAND <SET N <® 2 <FIX </ .N 2>»
y"Round .N down to even number.®
M)
(CLENGTH? .VEC .N> '[])
(T CREST .VEC <+ 1 N

A variation is to make the last AND argument into the test for the COND clause. (That is, the third
and fourth clanses in the above example can be combined.) Of course, you must be careful that no
other AND argument cvaluates to a FALSE; most Subroutines do not return a FALSE without a very

good rcason for it. (A notable exception is TERPRI (which see).) Even safer is to use PROG (section
10.1) instead of AND.

Another variation is to increase the nesting with a new COND after the unconditional part. At least
this method docs not make the code appear to a human reader as though it does something other
than what it really does. The above example could be done this way:

<COND (<07 .N> <FO .N>)
(<17 .N> <F1 .ND)
(T
CSET N <* 2 <FIX </ .N 2»»»
CCOND (<LENGTH? .VEC .N> '[])
(T CREST .VEC <+ 1 .N)>)>

842 Truth

78 : The MDL Programming Language

Chapter 9. Functions

This chapter could he named "fun and games with argument LISTs". Its purpose is to explain the
more complicated things which can be done with FUNCTIONs, and this involves, basically, explaining
all the various tokens which can appear in the argument LIST of a FUNCTION. Topics are covered
in what is approximately an order of increasing complexity. This order has little to do with the
order in which tolens can actually appear in an argument LIST, so what an argument LIST “looks
like”™ overall gets rather lost in the shuffle. To alleviate this problem, section 9.9 is a summary of
everything that can go into an argument LIST, in the correct order. If you find yourself getting
lost, please vefer to that summary.

9.1. "OPTIONAL* [1]

MDL provides very convenient means for allowing optional arguments. The STRING "OPTIONAL"
(or "OPT" -- they're totally equivalent) in the argument LIST allows the specification of optional
arguments with values to be assigned by default. The syntax of the "OPTIONAL" part of the
argument LIST i< as follows:

"OPTIONAL" a/-1 al-2 ... al-N

First, there is the STRING "OPTIONAL". Then there is any number of either ATOMs or two-element
LISTs. intermixed. one per optional argument. The first element of each two-element LIST must be
an ATOM; this is the dummy variable. The second element is an arbitrary MDL expression. If there
are required arguments, they must come before the "OPTIONAL".

When EVAL is binding the variables of a FUNCTION and sees "OPTIONAL", the following happens:

If an explicit argument was given in the position of an optional one, the explicit argument is
bound to the corresponding dummy ATOM.

If there is no explicit argument and the ATOM stands alone, that is, it is not the first element of

a two-element LIST, that ATOM becomes “bound”, but no local value is assigned to it [see below].
A local value can be assigned to it by using SET.

9.91 Functions

R TR 4 i S A

The MDL Programming Language 79

If there is no explicit argument and the ATOM is the first element of a two-element LIST, the
MDL expression in the LIST with the ATOM is evaluated and bound to the ATOM.

(Until an ATOM is assigned. any attempt to reference its LVAL will produce an error. The predicate
SUBRs BOUND? and ASSIGNED? can be used to check for such situations. BOUND? returns T if its
argument is currently bound via an argument LIST or has ever been SET while not bound via an
argument LIST. The latter kind of binding is called "top-level binding", because it is done outside
all active argument-LIST binding. ASSIGNED? will return #FALSE () if its argument is either
unassigned or unbound. By the way, there are two predicates for global values similar to BOUND?
and ASSIGNED?, nawmely GBOUND? and GASSIGNED?. Each returns T only if its argument, which (as
in BOUND? and ASSIGNED?) must be an ATOM, has a global value “slot™ (chapter 22) or a global value,
respectively.]

Example:

CDEFINE INC1 (A "OPTIONAL"™ (N 1)) <SET .A <+ ..A .NO»$
INCI

<SET B 0>%

0

CINC1 B>$

1

<INC1 B 5>§

6

Here we defined another (not quite working) increment FUNCTION. It now takes an optional
argument specifying how much to increment the ATOM it is given. If not given, the increment is 1.
Now. 1 is a pretty simple MDL expression: there is no reason why the optional argument cannot be
complicated -- for example. a call to a FUNCTION which reads a file on an I/O device.

9.2. TUPLEs

9.2.1. "TUPLE" and TUPLE (the TYPE) [I)

There are also times when you want to be able to have an arbitrary number of arguments. You can
always do this by defining the FUNCTION as having a structure as its argument, with the arbitrary
number of arguments as elements of the structure. This can, however, lead to inelegant-looking
FORMs and extra garbage to be collected. The STRING "TUPLE® appearing in the argument LIST
allows you to avoid that. It must follow explicit and optional dummy arguments (if there are any
of either) and must be followed by an ATOM.

The effect of "TUPLE" appearing in an argument LIST is the following: any arguments left in the

9.1-921 Functions

80 The MDL Prograinming Language

FORM, after satisfying explicit and optional arguments, are EVALed and made sequential elements of
an object of TYPL and PRIMTYPE TUPLE. The TUPLE is then bound to the ATOM following “TUPLE"
in the argument LIST. If there were no arguments left by the time the “TUPLE" was reached, an
empty TUPLE is bound to the ATOM.

An object of TYPE TUPLE is exactly the same as a VECTOR except that a TUPLE is not held in
garbage-collected storage. It is instead held with ATOM bindings in a control stack. This does not
affect manipulation of the TUPLE within the function generating it or any function called within
that onc: it can be treated just like a VECTOR. Note, however, that a TUPLE ceases to exist when the
functior which generated it returns. Returning a TUPLE as a value is a good way to generate an
error. (A copy of a TUPLE can easily be generated by segment-evaluating the TUPLE into something;
that copy can be returned) The predicate LEGAL? returns #FALSE () if it is given a TUPLE
generated by an APPLICABLE ob ject which has already returned, and T if it is given a TUPLE which is
still "good”.

Example:

CDEFINE NTHARG (N "TUPLE" T)
;"Get all but first argument into T.*
CCOND (<==71 .N> 1)

"If N is 1, return lst arg, i.e., .N,
i.e., 1. Note that <1? .N> would be
true even if .N were 1.0."

(<L? <LENGTH .T> <SET N <= .N 1>»
#FALSE ("DUMMY"))

;"Check to see if there is an Nth arg,
and make N a good index into T while
you're at it.

If there isn't an Nth arg, complain."
(ELSE <NTH .T .N¥)»

NTHARG, above. takes any number of arguments. Its first argument must be of TYPE FIX. It
returns EVAL of its Nth argument, if it has an Nth argument. If it doesn't, it returns #FALSE
("DUMMY"). (The FLSE is not absolutely necessary in the last clause. If the Nth argument is a
FALSE, the COND will return that FALSE.) Exercise for the reader: NTHARG will generate an error if
its first argument is not FIX. Where and why? (How about <NTHARG 1.5 2 3>?) Fix it.

922 TUPLE (the SUBR) and ITUPLE
These SUPRS are the same as VECTOR and IVECTOR, except that they build TUPLEs (that is, vectors on
the conteol stack) They can be used only at top level in an "OPTIONAL" list or "AUX" list (see

Webow ' The cleac advantage of TUPLE and ITUPLE ("implicit tuple”) is in storage-management
#ffww oy They produce no garbage, since they are flushed automatically upon function return,

9.2.1-922 Functions

The MDL Programming Language 81

Examples:

<DEFINE F (A B “AUX" (C <ITUPLE 10 3>)) ...>
creates a 10-clement TUPLE and SETs C to it.

CDEFINE H (“OPTIONAL" (A <ITUPLE 10 '<I>>)

"AUX" (B <TUPLE !'.A 1 2 3)))
S

These are valid uses of TUPLE and ITUPLE. However, the following is not a valid use of TUPLE,
because it is not called at top level of the "AUX":

<DEFINE NO (A B "AUX" (C <REST <TUPLE !.A>>)) ...>
However, the desired effect could be achieved by

CDEFINE OK (A B "AUX" (D CTUPLE !.A>) (C <REST .D»)) ...>

9.3. “AUX" [I]

"AUX" (or “EXTRA" -- they're totally equivalent) are STRINGs which, placed in an argument LIST,
serve to dynamically allocate temporary variables for the use of a Function.

"AUX"™ must appear in the argument LIST after any information about explicit arguments. It is
followed by ATOMs or two-clement LISTs as if it were “OPTIONAL*. ATOMs in the two-element LISTs
are bound to CVAL of the second element in the LIST. Atoms not in such LISTs are initially
unassigned: they are explicitly given "no" LVAL.

All binding specificd in an argument LIST is done sequentially from first to last, so initialization
expressions for "AUX" (or "OPTIONAL") can refer to objects which have just been bound. For
example, this works:

<DEFINE AUXEX ("TUPLE" T
"AUX" (A CLENGTH .T>) (B <* 2 .A)>))

'[.A .88
AUXEX
CAUXEX 1 2 “FO0*">$
'[3 6]

922-.93 Functions

82 The MDL Programming Language

9.4. QUOTEd arguments

If an ATOH in an argument LIST which is to be bound to a required or optional argument is
surrounded by a call to QUOTE, that ATOM is bound to the unevaluated argument. Example:

<DEFINF Q2 (A 'B) (.A .B)>$

Q2 '
Q2 <+ 1 2> <+ 1228 £
(3 <+ 1 2) x

It is not often appropriate for a function to take its arguments unevaluated, because such a practice
makes it less modular and harder to maintain: it and the programs that call it tend to need to know
more about cach other, and a change in its argument structure would tend to require more changes
in the programs that call it. And. since few functions, in practice, do take unevaluated arguments,
users tend to assume that no functions do (except FSUBRs of course), and confusion inevitably
results.

9.5. "ARGS"

The indicator "ARGS" can appear in an argument LIST with precisely the same syntax as "TUPLE".
However. "ARGS" causes the ATOM following it to be bound to a LIST of the remaining unevaluated
arguments.

"ARGS" does not cause any copying to take place. It simply gives you
CREST application:form fix>

with an appropriate fiv. The TYPE change to LIST is a result of the REST. Since the LIST shares ¥
all its elements with the original FORM, PUTs into the LIST will change the calling program, 3
however dangerous that may be. 1

Examples:

<DEFINE QIT (N "ARGS" L) <.N .L>>$
QIT &
<QIT 2 <+ 3 4> <LENGTH ,QALL)> F00>$
CLENGTH ,QALL>

<DEFINE FUNCT1 ("ARGS" ARGL-AND-BODY)
{CHTYPE .ARGL-AND-BODY FUNCTION>>$ ‘
FUNCT1 ‘

CFUNCTI (A B) <+ .A .BX>§
#FUNCTION ((A B) <+ .A .B))

94.95 Functions

The MDL Programming Language 83

The last example is a pecfectly valid equivalent of the FSUBR FUNCTION.

9.6. "CALL"

The indicator "CALL" is an ultimate "ARGS". If it appears in an argument LIST, it must be
followed by an ATOM and must be the only thing used to gather arguments. “CALL" causes the ATOM
which follows it to become bound to the actual FORM that is being evaluated -- that is, you get the
“function call” itself. Since "CALL" binds to the FORM itself, and not a copy, PUTs into that FORM will
change the calling code.

"CALL" exists as a Catch-22 for argument manipulation. If you can't do it with "CALL", it can't be
done.

9.7. EVAL and "BIND"

Obtaining uncvaluated arguments, for example, via QUOTE and "ARGS", very often implies that you
wish to evaluate them at some point. You can do this by explicitly calling EVAL, which is a SUBR.
Example:

GET E. < 1 2558

<+ 1 2>
CEVAL .F>§
3

EVAL can take a second argument, of TYPE ENVIRONMENT (or others, see section 20.8). An
ENVIRONMENT consists basically of a state of ATOM bindings: it is the "world" mentioned in chapter 5.
Now. since binding changes the ENVIRONMENT, if you wish to use EVAL within a FUNCTION, you
probably want to get hold of the environment which existed before that FUNCTION's binding took
place. The indicator "BIND", which must, if it is used, be the first thing in an argument LIST,
provides this information. It binds the ATOM imwmediately following it to the ENVIRONMENT existing
"at call time" -- that is, just before any binding is done for its FUNCTION. Example:

{SET A 0>%

0

<DEFINE WRONG ('B "AUX"™ (A 1)) <EVAL .B»$

WRONG

<WRONG .A>$

1

CDEFINE RIGHT ("BIND"™ E 'B "AUX" (A 1)) CEVAL .B .EXS$
RIGUT

Functions

e

84 The MDL Programming Language

CRIGHT .A>$
0

9.7.1. Local Values versus FNVIRONMENTs

SET, LVAL, VALUE, BOUND?, ASSIGNED?, and UNASSIGN all take a final optivnal argument which
has not previously bheen mentioned: an ENVIRONMENT (or other TYPEs, see section 20.8). If this
argument is given, the SET or LVAL is done in the ENVIRONMENT specified. LVAL cannot be

abbreviated by . (periad) if it is given an explicit second argument.

This feature is just what is needed to cure the INC bug mentioned in chapter 5. A “correct™ INC can
be defined as follows:

<DLFINE INC ("BIND"™ OUTER ATM)
(SET .ATM <+ 1 <LVAL .ATM .OUTER>> .OUTER>>

9.8. ACTIVATION, “NAMC", “ACT", AGAIN, and RETURN [I]

EVALuation of a FUNCTION, after the argument LIST has been taken care of, normally consists of
EVALuating cach of the objects in the body in the order given, and returning the value of the last
thing EVALed. If you want to vary this sequence, you need to know, at least, where the FUNCTION
begins. Actually, EVAL normally hasn't the foggiest idea of where its current FUNCTION began.
"Where'd 1 start” information is bundled up with a TYPE called ACTIVATION. In "normal” FUNCTION
EVALuation, ACTIVATIONS are not gencrated: one can be generated, and bound to an ATOM, in either
of the two following ways:

(1) Put an ATOM immediately before the argument LIST. The ACTIVATION of the Function will
be bound to that ATOM.

(2) As the last thing in the argument LIST, insert either of the STRINGs "NAME" or “ACT" and
follow it with an ATOM. The ATOM will be bound to the ACTIVATION of the Function.

In this document "Function” (capitalized) will designate anything that can generate an ACTIVATION;
besides TYPE FUNCIION, this class includes the FSUBRs PROG, BIND, and REPEAT, yet to be
discussed.

Each ACTIVATION refers explicitly to a particular evaluation of a Function. For example, if a
recursive FUNCTION generates an ACTIVATION, a new ACTIVATION referring explicitly to each

recursion step is gencrated on every recursion.

Like TUPLEs, ACTIVATIONs are held in a control stack. Unlike TUPLESs, there is no way to get a copy

9.7.98 Functions

- ece— RS —

The MDL Programming Language 85

of an ACTIVATION which can usefully be returned as a value. (This is a consequence of the fact that
ACTIVATIONs refer to evaluations; when the evaluation is finished, the ACTIVATION no longer exists.)
ACTIVATIONs can be tested, like TUPLEs, by LEGAL? for legality. They are used by the SUBRs AGAIN
and RETURN.

AGAIN can take one argument: an ACTIVATION. It means “start doing this again®, where “this" is
specificd by the ACTIVATION. Specifically, AGAIN causes EVAL to return to where it started working
on the body of the Function in the evaluation specified by the ACTIVATION. The evaluation is not
redone completely: in particular, no re-binding (of arguments, "AUX* variables, etc.) is done.

RETURN can take two arguments: an arbitrary expression and an ACTIVATION, in that order. It
causes the Function evaluation whose ACTIVATION it is given to terminate and return EVAL of
RETURN's first argument. That is, RETURN means “quit doing this and return that", where “this" is the
ACTIVATION -- its second argument -- and "that” is the expression - its first argument. Example:

CDEFINE MY+ ("TUPLE" T "AUX" (M 0) "NAME®" NM)
<COND (<EMPTY? .T> <RETURN .M .NM>)>
<SET M <+ .M <1 .O»
CSET T <REST .T»
CAGAIN .NM>>$

MY+

<MY+ 1 3 <LENGTH "FO0">>$

7

{MY+>$

0

Note: suppose an ACTIVATION of onc Function (call it F1) is passed to another Function (call it F2) —-
for example, via an application of F2 within F1 with F1's ACTIVATION as an argument. If F2
RETURNs to F1's ACTIVATION, F2 and F1 terminate immediately, and F1 returns the RETURN's first
argument. This technique is suitable for error exits. AGAIN can clearly pull a similar trick. In the
following example. F1 computes the sum of F2 applied to each of its arguments; F2 computes the
product of the elements of its structured argument, but it aborts if it finds an element that is not a
number.

<DEFINE F1 ACT ("TUPLE" T "AUX" (T1 .T))
CCOND (<NOT <EMPTY? .TI»
<PUT .T1 1 <F2 <1 .T1> .ACT»
<SET T1 <REST .T1>»>
<AGAIN .ACT>)
(ELSE <+ 1. T))»S$
Fl

9.8 Functions

Ahann

86 The MDL Programming Language

<DEFINE F2 (S A “AUX" (Sl .S)) :
CREPEAT MY-ACT ((PRD 1))
CCOND (<NOT <EMPTY? .S1>>
<COND (<NOT CTYPE? <1 .S1> FIX FLOATY>
CRETURN #FALSE ("NON-NUMBER") .A>)
(ELSE <SET PRD <= .PRD <1 .S1»»>)> 1
CSET S1 <REST .S1»)
(ELSE <RETURN .PRD>)>>>$
F2

<F1 *(1 2) *(3 4>
14 :

<F1 (7 2) *(3 4)>
#FALSE ("NON-NUMBER")

9.9. Argument List Summary

The following is a listing of all the various tokens which can appear in the argument LIST of a
FUNCTION, in the order in which they can occur. Short descriptions of their effects are included.
All of them are optional -- that is, any of them (in any position) can be left out or included -- but

the order in which they appear must be that of this list. "QUOTEd ATOM", “matching ob ject”, and “2-
list™ are defined below.

(1) "BIND"

must be followed by an ATOM. It binds that ATOM to the ENVIRONMENT which existed
when the FUNCTION was applied.

(2) ATOMs and QUOTEd ATOMs (any number)
are required arguments. QUOTEd ATOMs are bound to the matching object. ATOMs are

bound to EVAL of the matching object in the ENVIRONMENT existing when the FUNCTION
was applicd.

(3) "OPTIONAL™ or "OPT" (they're equivalent)

is followed by any number of ATOMs, QUOTEd ATOMs, or 2-lists. These are optional
arguments. If a matching object exists, an ATOM -- either standing alone or the first
element of a 2-list - is bound to EVAL of the object, performed in the ENVIRONMENT
existing when the FUNCTION was applied. A QUOTEd ATOM -- alone or in a 2-list - is
bound to the matching ob ject itself. If no such object exists, ATOMs and QUOTEd ATOMs
arc left unbound, and the first clement of each 2-list is bound to EVAL of the
corresponding second element. (This EVAL is done in the new ENVIRONMENT of the
Function as it is being constructed.)

98-99 Functions

. . I_Mu - A

The MDL Programming Language 87

(4) "ARGS" (and not "TUPLE")
must be followed by an ATOM. The ATOM is bound to a LIST of all the remaining
arguments, unevaluated. (If there are no more arguments, the LIST is empty.) This
LIST is actually a REST of the FORM applying the FUNCTION. If "ARGS" appears in the
argument LIST, “TUPLE" should not appear.

(4) "TUPLE" (and not "ARGS")
must be followed by an ATOM. The ATOM is bound to a TUPLE ("VECTOR on the control
stack™) of all the remaining arguments, evaluated in the environment existing when the
FUNCTION was applicd. (If no arguments remain, the TUPLE is empty.) If “TUPLE®
appears in the argument LIST, "ARGS" should iiot appear.

(5) "AUX" or "EXTRA" (they're equivalent)
is followed by any number of ATOMs or 2-lists. These are auxiliary variables, bound
away from the previous environment for the use of this Function. ATOMs are bound in
the ENVIRONMENT of the Function, but they are unassigned: the first element of each 2-
list is both bound and assigned to EVAL of the corresponding second element. (This
EVAL is donc in the new ENVIRONMENT of the Function as it is being constructed.)

(6) “NAME™ or "ACT" (they're equivalent)

must be followed by an ATOM. The ATOM is bound to the ACTIVATION of the current
evaluation of the Function.

ALSO -- in place of sections (2) (3) and (4), you can have
(2-3-4) "CALL"

which must be followed by an ATOM. The ATOM is bound to the FORM which caused
application of this FUNCTION.

The special terms used above mean this: }

"QUOTCd ATOM™ -- a two-clement FORM whose first element is the ATOM QUOTE, and whose second 1
element is any ATOM. (Can be typed -- and will be PRINTed -- as 'atom.) !

"Matching object” - that clement of a FORM whose position in the FORM matches the position of a
required or optional argument in an argument LIST,

"2-list” -~ a two-element LIST whose first element is an ATOM (or QUOTEd ATOM; see below) and whose
second clement can be anything but a SEGMENT. EVAL of the second element is assigned to a new
binding of the first clement (the ATOM) as the “"value by default” in *OPTIONAL" or the “initial value®
in "AUX". In the case of "OPTIONAL®, the first clement of a 2-list can be a QUOTEd ATOM; in this
case, an argument which is supplied is not EVALed, but if it is not supplied the second element of
the LIST is EVALed and assigned to the ATOM.

9.9 Functions

88 The MDL Programming Language

9.10. APPLY [1]

Occasionally there is a valid reason for the first element of a FORM not to be an ATOM. For example,
the object 10 be applied to arguments may be chosen at run time, or it may depend on the
arguments in some way. While EVAL is perfectly happy in this case to EVALuate the first element
and go on from there, the compiler (Lebling, 1979) can generate more efficient code if it knows
whether the result of the evaluation will (1) always be of TYPE FIX, (2) always be an applicable non-
FIX abject that evaluates all its arguments, or (3) neither. The easiest way to tell the compiler if (1)
or (2) is truc is to use the ATOM NTH (section 7.1.2) or PUT (section 7.1.4) in case (1) or APPLY in case (2)
as the first clement of the FORM. (Note: case (1) can compile into in-line code, but case (2) compiles
into a fully mediated call into the interpreter.)

CAPPLY object arg-1 ... arg-N>

evaluates object and all the arg-is and then applies the former to all the latter. An error occurs if
object evaluates to something not applicable, or to an FSUBR, or to a FUNCTION (or user Subroutine --
chapter 19) with "ARGS" or "CALL" or QUOTEd arguments.

Example:

CAPPLY <NTH .ANALYZERS
CLENGTH CMEMQ <TYPE .ARG> .ARGTYPES>>>
.ARG>

calls a function te analyze .ARG. Which function is called depends on the TYPE of the argument;
this represents the idea of a dispatch table.

9.11. CLOSURE
CCUOSURE function al ... aN>

where function is a FUNCTION, and aJ through aN are any number of ATOMs, returns an object of
TYPE CLOSURE. This can be applied like auy other function, but, whenever it is applied, the ATOMs
given in the call to CLOSURE are first bound to the VALUEs they had when the CLOSURE was
generated, then the function is applicd as normal. This is a “poor man's funarg".

A CLOSURE is useful when a FUNCTION must have state information remembered between calls to it,
especially in these two cases: when the LVALs of external state ATOMs might be compromised by other
programs. or when more than one distinct sequence of calls are active concurrently. Example of the
latter: each object of a structured NEWTYPE might have an associated CLOSURE tha: coughs up one
element at a time, remembering between calls how far it got. Often only one ATOM will be included
in the CLOSURE, with a value in the CLOSURE that is a structure containing all the relevant
information.

9.10 - 9.11 Functions

e —

The MDL Programming Language 89

Chapter 10. Looping

10.1. PROG and REPEAT [I})

PROG and REPEAT are alost identical FSUBRs which make it possible to vary the order of EVALuation
arbitrarily -- that is, to have "jumps”. The syntax of PROG ("program") is

<PROG act:atom auxdist body>

where
act is an optional ATOM, which is bound to the ACTIVATION of the PROG.

aux is a LIST which looks exactly like that part of a FUNCTION's argument LIST which follows 4

an "AUX", and serves exactly the same purpose. It is not optional. If you need no temporary
variables or "ACT", make it ().

body is a non-zero number of arbitrary MDL expressions.

The syntax of REPEAT is identical, except that, of course, REPEAT is the first element of the FORM,
not PROG.

10.1.1. Basic EVALuation (1]

Upon entering a PROG, an ACTIVATION is always generated. If there is an ATOM in the right place,
the ACTIVATION is also bound to that ATOM. The variables in the aux (if any) are then bound as
indicated in the aux. All of the expressions in body are then EVALuated in their order of occurrence.

If nothing untoward happens, you leave the PROG upon evaluating the last expression in body,
returning the value of that last expression. !

PROG thus provides a way to package together a group of things you wish to do, in a somewhat more i
limited way than can be done with a FUNCTION. But PROGs are generally used for their other
properties. !

10 - 10.1.1 Looping

90 The MDL Programming Language

REPEAT acts in all ways exactly like a PROG whose last expression is CAGAIN>. The only way to leave
a REPEAT is to explicitly use RETURN (or 60 with a TAG - section 10.4).

10.1.2. AGAIN and RETURN in PROG and REPEAT [I]

Within a PROG or REPEAT, you always have a defined ACTIVATION, whether you bind it to an ATOM
or not. [In fact the interpreter binds it to the ATOM LPROG\ !-INTERRUPTS (“last PROG"). The FSUBR
BIND is identical to PROG except that BIND does not bind that ATOM, so that AGAIN and RETURN with
no ACTIVATION argument will not refer to it. This feature could be useful within MACROs.]

If AGAIN is used with no arguments. it uses the ACTIVATION of the closest surrounding PROG or
REPEAT within the current function (an error occurs if there is none) and re-starts the PROG or
REPEAT without rebinding the aux variables, just the way it works in a FUNCTION. With an
argument, it can of course re-start any Function (PROG or REPEAT or FUNCTION) within which it is
embedded at run time.

As with AGAIN, if RETURN is given no ACTIVATION argument, it uses the ACTIVATION of the closest
surrounding PROG or REPEAT within the current function and causes that PROG or REPEAT to
terminate and return RETURN's first argument. If RETURN is given no arguments, it causes the
closest surrounding PROG or REPEAT to return the ATOM T. Also like AGAIN, it can, with an
ACTIVATION argument, terminate any Function within which it is embedded at run time.

10.1.3. Examples [I]

Examples of the use of PROG are difficult to find, since it is almost never necessary, and it slows
down the interpreter (chapter 24). PROG can be useful as a point of return from the middle of a
computation. or inside a COND (which see), but we won't exemplify these uses. Instead, what follows
is an example of a typically poor use of PROG which has been observed among Lisp (Moon, 1974)
programmers using MDL. Then, the same thing is done using REPEAT. In both cases, the example
FUNCTION just adds up all its arguments and returns the sum. (The SUBR GO is discussed in section
10.4.)

;"Lisp style®
CDEFINE MY+ ("TUPLE"™ TUP)
<PROG (SUM)
<SET SuM 0>
LP CCOND (<EMPTY? .TUP> <RETURN .SUM>)>

{SET SUM <+ .SUM <1 .TUP>>>
<SET TUP <REST .TuP»
<GO LP>>>

10.1.1 - 10.1.8 Looping

The MDL Programming Language 91

;"MDL style"
CDEFINE MY+ ("TUPLE" TUP)
<REPEAT ((SUM 0))
CCOND (<EMPTY? .TUP> C(RETURN .SUM>)>
<{SET SUM <+ .SUM <1 .TUP>>
<SET TUP <REST .TUP>>>>

Of course. neither of the above is optimal MDL code for this problem, since MY+ can be written
using SEGMENT evaluation as

(DEFINE MY+ ("TUPLE"™ TUP) <+ '.TUP>>

There are, of course. lots of problems which can’t be handled so simply, and lots of uses for REPEAT.

10.2. MAPF and MAPR: Basics [1]

MAPF ("map first™) and MAPR ("map rest”) are two SUBRs which take care of a majority of cases which
require loops over data. The basic idea is the following:

Suppose you have a LIST (or other structure) of data, and you want to apply a particular function
to each element. That is exactly what MAPF does: you give it the function and the structure, and it
applies the function to each element of the structure, starting with the first.

On the other hand, suppose you want to change each element of a structure according to a
particular algorithm. This can be done only with great pain using MAPF, since you don't have easy
access to the structure inside the function: you have only the structure’s elements. MAPR solves the
problem by applying a function to RESTs of a structure: first to CREST structure 0>, then to
<REST structure 1>, etc. Thus, the function can change the structure by changing its argument,
for example, by a <PUT argument 1 something>. It can even PUT a new element farther down the
structure, which will be seen by the function on subsequent applications.

Now suppose, in addition to applying a function to a structure, you want to record the results -- the
values returned by the function -- in another structure. Both MAPF and MAPR can do this: they both
take an additional function as an argument, and, when the looping is over, apply the additional
function to all the results, and then return the result of that application. Thus, if the additional
function is ,LIST, you get a LIST of the previous results: if it is ,VECTOR, you get a VECTOR of
results: etc.

Finally, it might be the case that you really want to loop a function over more than one structure
simultancously. For instance. consider creating a LIST whose elements are the element-by-element
sum of the contents of two other LISTs. Both MAPF and MAPR allow this; you can, in fact, give each
of them any number of structures full of arguments for your looping function.

10.1.3 - 10.2 Looping

sibaadil i bosindia.

92 The MDL Programming Language

This was all mentioned because MAPF and MAPR appear to be complex when seen baldly, due to the

fact that the argument descriptions must take into account the general case. Simpler, degenerate
cases are usually the ones used.

10.2.1. MAPF [1)
{MAPF finalf loopf sl s2 ... sNY
where (after argument evaluation)
finalf is something applicable that evaluates all its arguments, or a FALSE;
loopf is something applicable to N arguments that evaluates all its arguments; and
sl through sN are structured ob jects (any TYPE)

does the following:

(1) First. it applics loopf 1o N arguments: the first element of each of the structures. Then it
RESTs cach of the structures, and docs the application again, looping until any of the structures
runs out of elements. Each of the values returned by loopf is recorded in a TUPLE.

(2) Then. it applies finalf to all the recorded values simultaneously, and returns the result of that
application. If finalf is a FALSE, the recorded values are "thrown away"” (actually never recorded

in the first place) and the MAPF returns only the last value returned by loopf. If any of the si

structures is empty, so that /oopf is never invoked, finalf is applied to no arguments; if finalf is a
FALSE, MAPF returns #FALSE ().

10.2.2. MAPR [1]

<{MAPR finalf loopf sl s2 ... sN»

acts just like MAPF, but, instead of applying loopf to NTHs of the structures -- that is, <NTH si 1>,
<NTH si 2>, etc. -- it applics it to RESTs of the structures -- that is, CREST si 0>, <REST si 15, ete.

10.2.3. Examples [I]
Make the clement-wise sum of two LISTs:

<MAPF ,LIST ,+ (1 23 4) "(10 11 12 13)>$
(1t 13 15 17)

10.2 - 10.2.3 Looping

P e i

The MDL Programming Language 93

Chang: a UVECTOR to contain double its values:

CSET UV '!1[56 7 8 9P$
'[56789!]
<MAPR <>
#FUNCTION ((L) <PUT .L 1 <x <1 .L> 2»)
.UV 8
118!]
.Uvs
'[10 12 14 16 18!]
Create a STRING from CHARACTECRs:

<MAPF ,STRING 1 '["MODELING" "DEVELOPMENT" “"LIBRARY"]>$
“MoL"

Sum the squares of the elements of a UVECTOR:

CMAPF ,+ #FUNCTION ((N) <* .N .N>) "![3 4]>$
25

A parallel assignment FUNCTION (Note that the arguments to MAPF are of different lengths.):

<DEFINF PSET (“TUPLE" TUP)

<MAPF <>

+SET
.TuP
CREST .TUP </ <LENGTH .TUP> 2>>>>$

PSET

<PSET ABC 12 3§

3

A%

1

.B%

s

.C$

3

Note: it is easy to forget that finalf must evaluate its arguments, which precludes the use of an
FSUBR. Tt is primarily for this reason that the SUBRs AND? and OR? were invented. As an example,
the predicate =? could have been defined this way:

10.2.3 Looping

P — W

AD=A070 930 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE=-=ETC F/6 9/2
THE MDL PROGRAMMING LANGUAGE: (U)
JUN 79 S W GALLEY: G PFISTER N00013-75-C-0661
UNCLASSIFIED

2 OF
AD

94 The MDL Programming Language

CDEFINE =7 (A B)
<COND (<MONAD? .A> <==7 .A .B))
(CAND <NOT <MONAD? .B>>
==7 CTYPE .A> <TYPE .BY>
<==7 CLENGTH .A> CLENGTH .B>>>
CMAPF ,AND? ,=7 .A .B>)»

[By the way, the following shows how to construct a value that has the same TYPE as an argument.
<DEFINE MAP-NOT (S)
<COND (<MEMQ <PRIMTYPE .S> '"{[LIST VECTOR UVECTOR STRING]>
<{CHTYPE <MAPF ,<(PRIMTYPE .S> ,NOT .S>
CTYPE .5>>)>>

It works because the ATOMs that name the common STRUCTURED PRIMTYPEs (LIST, VECTOR,
UVECTOR and STRING) have as GVALs the corresponding SUBRs to build ob jects of those TYPEs.]

10.3. More on MAPF and MAPR

10.3.1. MAPRE]

- MAPRET is a SUBR that enables the loopf being used in a MAPR or MAPF (and lexically within it, that is,
not separated from it by a function call) to return fromn zero to any number of values as opposed to
Just one. For example, suppose a MAPF of the following form is used:

<MAPF ,LIST <FUNCTION (E) ...> ...>

Now suppose that the programmer wants to add no elements to the final LIST on some calls to the
FUNCTION and add many on other calls to the FUNCTION. To accomplish this, the FUNCTION simply
calls MAPRET with the clements it wants added to the LIST. More generally, MAPRET causes its
arguments to he added to the final TUPLE of arguments to which the finalf will be applied.

Warning: MAPRET is guaranteed to work only if it is called from an explicit FUNCTION which is the
second argument 10 a MAPF or MAPR. In other words, the second argument to MAPF or MAPR must be
#FUNCTION (...) or CFUNCTION ...> if MAPRET is to be used.

Example: the following returns a LIST of all the ATOMs in an OBLIST (chapter 15):
<DEFINE ATOMS (0B)
<MAPF ,LIST
CFUNCTION (BKT) <MAPRET !.BKT>>
.0B>>

1023 - 10.3.1 Looping

l'lIlllllllIllll!llIllllllll!llllllllllllll!!lllllllHlllllll!ll!lllnnlul-u---u-n. - e e

The MDL Programming Language 95

10.3.2. MAPSTOP

: MAPSTOR is the same as MAPRET, except that, after adding its arguments, if any, to the final TUPLE,
it forces the application of findlf to occur, whether or not the structured objects have run out of
elements. Example: the following copics the first ten (or all) elements of its argument into a LIST:

<DEFINE FIRST-1EN (STRUC "AUX* (I 10))
<MAPF , LIST
CFUNCTION (E)
CCOND (<0? <SET I <~ .I 1>>> <MAPSTOP .E>)>
B
.STRUCY)

10.3.3. MAPLEAVE

MAPLEAVL is analogous to RETURN, except that it works in (lexically within) MAPF or MAPR instead of
PROG or REPEAT. It flushes the accumulated TUPLE of results and returns its argument (optional, T
by default) as the value of the MAPE or MAPR. (It finds the MAPF/R that should return in the current
binding of the ATON LMAP\ !'-INTCRRUPTS ("last map").) Example: the following finds and returns
the first non-zero element of its argument, or #FALSE () if there is none:

CDEFINE FIRST-NO (STRUC)
MAPE <
CFUNCTION (X)
CCOND (<N==? X 0> <{MAPLEAVE .X>)»
STRUCY)

10.3.4. Only two arguments H

If MAPF or MAPR is given only two arguments, the iteration function /oopf is applied to no arguments
cach time. and the looping continues indefinitely until a MAPLEAVE or MAPSTOP is invoked.]
Example: the following returns a LIST of the integers from one less than its argument to zero. ‘

<DEFINE LNUM (N)
<MAPE LIST
CFUNCTION ()
CCOND (<0? <SET N <= .N 1>>> <MAPSTOP 0>)
(ELSE N

One principle use of this form of MAPF/R involves processing input characters, in cases where you

don’t know how many characters are going to arrive. The example below demonstrates this, using
SUBRs which are more fully explained in chapter [l Another example can be found in chapter 18.

10321034 Looping

The MDL Programming Language

Example: the following FUNCTION reads characters from the current input channel until an $ (ESC)
is read. and then returns what was read as one STRING. (The SUBR READCHR reads one character from

the input channel and returns it. NEXTCHR returns the next CHARACTER which READCHR will return -
chapter 11.)

<DEFINE RDSTR ()
<MAPF ,STRING

F CFUNCTION () <COND (<NOT <=2? <NEXTCHRY <ASCII 27>>>
CREADCHRY)
(1
CMAPSTOPY)>>>>$
] RDS TR

<PROG () <READCHR) ;"Flush the ESC ending this input."”
<RDSTR>>$
ABC123<+ 3 4>$"ABC123¢<+ 3 4)"

10.3.5. STACKFORM

The FSUBR STACKFORM is archaic, due to improvements in the implementation of MAPF/R, and it
should not be used in new programs.

<STACKFORM function arg pred>

is exactly equivalent to

<MAPE function
CFUNCTION () <COND (pred arg) (T <MAPSTOP>)>>>

e

SN

In fact MAPF/R is more powerful, because MAPRET, MAPSTOP, and MAPLEAVE provide flexibility not
available with STACKFORM,

10.4. GO and TAG !

GO is provided in MDL for people who can't recover from a youthful experience with Basic, Fortran,

PL/L etc. ‘The SUBRs previously described in this chapter are much more tasteful for making good, 5
clean, "structured” programs. GO just bollixes things.

GO is a SUBR which allows you to break the normal order of evaluation and re-start just before any
top-level expression in a PROG or REPEAT. It can take two TYPEs of arguments: ATOM or TAG.

10.3.4 - 104 Looping

The MDL Progiamming Language 97

Given an ATON, GO searches the body of the immediately surrounding PROG or REPEAT within the
current Function. starting after aux, for an occurrence of that ATOM at the top level of body. (This
search is effectively a MCMQ.) If it doesn't find the ATOM, an error occurs. If it does, evaluation is
resumed at the expression following the ATOM.

The SUBR TAG generates and returns objects of TYPE TAG. This SUBR takes one argument: an ATOM
which would be a legal argument for a GO. An object of TYPE TAG contains sufficient information
to allow you to GO to any top-level position in a PROG or REPEAT from within any function called
inside the PROG or REPEAT. GO with a TAG is vaguely like AGAIN with an ACTIVATION; it allows you
to "go back” to the middle of any PROG or REPEAT which called you. Also like ACTIVATIONs, TAGs

into a PROG or REPCAT can no longer be used after the PROG or REPEAT has returned. LEGAL? can be
used to see if a TAG is still valid.

Since any program in MDL can be called recursively, champions of “pure Lisp™ (Moon, 1974) or
somesuch may be tempted to implement any repetitive algorithm using recursion. The advantage
of the looping techniques described in this chapter over recursion is that the overhead of calls is
eliminated. However, a long program (say, bigger than half a printed page) may be more difficult
to write ateratively than recussively and hence wore difficult 1o waintain. A program whose
repetition is controlled by a structured ob ject (for example, "walking a tree" to visit each monad in

the ob ject) of ten should use looping for covering one “level” of the structure and recursion to change
“levels”.

10.4 - 10.5 Looping

98 The MDL Programming Language

Chapter 11. Input/Output

The MDL interpreter can transmit information between an object in MDL and an external device
in three ways. Historically, the first way was to convert an object into a string of characters, or
vice versa. The transformation is nearly one-to-one (although some MDL objects, for example
TUPLEs, cannot be input in this way) and is similar in style to Fortran's formmatted 1/0. It is what
READ and PRINT do, and it is the normal method for terminal 1/0.

The second way is used for the contents of MDL ob jects rather than the objects themselves. Here

an image of numbers or characters within an object is transmitted, similar in style to Fortran's
unformatted 1/0.

The third way is to dump an object in a clever format so that it can be reproduced exactly when
input the next time. Exact reproduction means that any sharing between structures or self-
reference is preserved: only the garbage collector itself can do I/0 in this way.

L3

11.1. Conversion 1/0
All conversion-1/0 SUBRs in MDL take an optional argument which directs their attention to a
specific 1/0 channel. This section will describe SUBRs without their optional arguments. In this
situation, they all refer to a particular channel by default, initially the terminal running the MDL.
When given an optional argument, that argument follows any arguments indicated here. Some of

these SUBRs also have additional optional arguments, relevant to conversion, discussion of which will
be deferred until later.

ILLL Input

All of the following input Subroutines, when directed at a terminal, hang until $ (ESC) is typed and
allow normal use of rubout, “D, “L and “@.

=1L Input/Output

, - _“...-J ' "

The MDL Programming Language 99

ILLLL READ

<READ>
This returns the cntire MDL abject whose character representation is next in the input stream.
Successive <READYs return successive objects. This is precisely the SUBR READ mentioned in chapter
2. See also sections 113, 15.7.1, and 17.1.3 for optional argumeunts.
1LLL2. READCHR

<READCHR>

("read character”) returns the next CHARACTER in the input stream. Successive <READCHRDs return
successive CHARACTERs.

1113, NEXTCHR
CNEXTCHR>

("next character”) returns the CHARACTER which READCHR will return the next time READCHR is called.
Multiple <NEXTCHRDs, with no input operations between them, all return the same thing.

11.1.2. Output
If an object fo be output requires (or can tolerate) separators within it (for example, between the
clements in a structured object or after the TYPE name in "# notation”), these conversion-output

SUBRs will use a carriage-return/line-feed separator to prevent overflowing a line. Overflow is
detected in advance from elements of the CHANNEL in use (section 11.2.8).

1L.1.2.1. PRINT
<PRINT any>
This outputs, in order,
(1) a carriage-return line-feed.
(2) the character representation of EVAL of its argument (PRINT is a SUBR), and
(3) a space
and then retuens EVAL of its argument. This is precisely the SUBR PRINT mentioned in chapter 2.
11.1.2.2. PRINI
CPRINL any>

outputs just the representation of, and returns, EVAL of any,

ILLLL - 10122 Input/Output

190 The MDL Programming Language

10.0.2.3. PRINC
CPRINC any)>

Cprint characters”) acts exactly like PRINI, except that

(1) if its argument is a STRING or a CHARACTER, it suppresses the surrounding “s or initial !\
respectively: or,

(2) if its argument is an ATOM, it suppresses any \s or OBLIST trailers (chapter 15) which would
otherwise be necessary.

If PRINC'S argument is a structure containing STRINGs, CHARACTERs, or ATOM, the service mentioned
will be done for all of them. Ditto for the ATOM used to name the TYPE in “# notation".

11.1.2.4. TERPRI

CTERPRI>
("termiinate printing”) outputs a carriage-return line-feed and then returns #FALSE ()!
11.1.2.5. CRLF

<CRLF>
("carriage-return line-feed") outputs a carriage-return line-feed and then returns T.
11.1.2.6. FLATSIZE

CFLATSIZE any mavifix radix:tix)

docs not actually cause any output to occur and does not take a CHANNEL argument. Instead, it
compares mav with the number of characters PRIN1 would take to print any. If max is less than the
number of characters needed (including the case where any is self-referencing), FLATSIZE returns
#FALSE (): otherwise. it returns the number of characters needed to PRINI any. radix (optional, ten

: by default) is used for couverting any FIXes that oceur.
] This SUBR is especially useful in con junction with (section 11.2.8) those elements of a CHANNEL
] which specify the number of characters per output line and the current position on an output line.

1L1.23 - 11.1.2.6 Input/Output

el

The MDL Programming Language 101

11.2. CHANNEL (the TYPE)

1/O channels are dynamically assigned in MDL, and are represented by an object of TYPE CHANNEL,
which is of FRIMIYPE VECTOR. The format of a CHANNEL will be explained later, in section
1L2.8. First, how to generate and use them.

11.2.1. OPEN
COPCN mode file-spec>
or
COPEN mode namel name2 device dir)

OPEN is a SUBR which creates and returns a CHANNEL. All its arguments must be of TYPE STRING,
and all are optional. The preceding statement is false when the device is *INT* or “NET*; see
sections 119 and 1LI0. If the attempted opening of an operating-system 1/O channel fails, OPEN
returns #EALSE (reasonstring file-specistring statusifix), where the reason and the status are
supplied by the operating system, and the file-spec is the standard name of the file (after any name
transformations by the operating system) that MDL was trying to open.

The choice of mode is wsually determined by which SUBRs will be used on the CHANNEL, and whether
or not the device is a terminal. The following table tells which SUBRs can be used with which modes,
where OK indicates an allowed use:

"READ" “PRINT" "“READB"™ “PRINTB* mode / SUBRs
“PRINTO"
0K 0K READ READCHR NEXTCHR READSTRING FILECOPY FILE-LENGTH
; LOAD
OK oK PRINT PRINI PRINC IMAGE CRLF TERPRI FILECOPY
PRINTSTRING BUFOUT NETS RENAME
oK READB GC-READ
0K PRINTB GC-DUMP
oK 0K ACCESS
oK 0K 0K RESET
oK ECHOPAIR
TTYECHO TYI
* PRINTing (or PRINling) an RSUBR (chapter 19) on a "PRINTB" or "PRINTO* CHANNEL has special
effects.

RRRR

"PRINTB™ differs from "PRINTO" in that the latter mode is used to update a “DSK* file without
copying it. "READB" and "PRINTB" are not used with terminals. *READ" is the mode used by
default.

2. 121 Input/Output

102 The MDL Programming Language

The next one to four arguments to OPEN specify the file involved. If only one STRING is used, it
can contain the entire specification, according to standard operating-sysiem syntax. Otherwise, the
string(s) are interpreted as follows:

namel is the first file name. that part to the left of the space (in the ITS version) or period (in the

Tenex and Tops-20 versions). The name used by default is <VALUE NM1>, if any, otherwise
"INPUT",

name2 is the sccond file name. that part to the right of the space (ITS) or period (Tenex and Tops-
20). The name used by default is <VALUE NM2), if any, otherwise ">* (ITS) or "MUD* and highest
version number (Tenex) or generation number (Tops-20).

device is the device name. The name used by default is <VALUE DEV), if any, otherwise *DSK*®.
(Devices about which MDL has no special knowledge are assumed to behave like "DSK".)

dir is the disk-directory name. The name used by default is <VALUE SNM>, if any, otherwise the
“working-directory” name as defined by the operating system.

Examples:

COPEN "PRINT"™ "TPL:"> opcns a conversion-output CHANNEL to the TPL device.

<OPEN "“PRINT"™ "DUMMY" “NAMES" "TPL")> does the same.

COPEN "PRINT"™ "TPL"> opcns a CHANNEL to the file DSK:TPL > (ITS version) or DSK:TPL.MUD
(Tenex and Tops-20 versions).

COPEN "READ"™ "FOO" ">" "DSK" "GUEST"> opens a conversion-input CHANNEL to the given file.

COPEN "READ"™ "GUEST;F00"> does the same in the ITS version.

11.2.2. OPEN-NR

OPEN-NR is thie same as OPEN, except that the date and time of last reference of the opened file are
not changced.

11.2.3. CHANNEL (the SUBR)

CHANNEL is called exactly like OPCN, but it always returns an unopened CHANNEL, which can later be
opened by RESET (below) just as if it had once been open.

1.2 - 11.2.3 Input/Qutput

Koo .

LT

The MDL Programming Language 108

.24 FILE-EXISTS?

FILE-EXISTS? tests for the existence of a file without creating a CHANNEL, which occupies about a
hundred machine words of storage. It takes file-name arguments just like OPEN (but no mode
argumient) and returns cither T or #FALSE (reason:string status:fix), where the reason and the status

are supplied by the operating system. The date and time of last reference of the file are not
changed.

11.2.5. CLOSE
CCLOSE channel>

closes chanrel and returns its argument, with its “state” changed to “closed”. If channel is for output,
all buffered output is written out first. No harm is done if channel is already CLOSEd.

11.2.6. CHANLIST
CCHANLIST>

returns a LIST whose elements are all the currently open CHANNELs. The first two elements are
usually ,INCHAN and ,OUTCHAN (see below). A CHANNEL not referenced by anything except
CCHANLIST> will be CLOSEd during garbage collection.

11.2.7. INCHAN and OUTCHAN

The channel used by default for input SUBRs is the local value of the ATOMN INCHAN. The channel
used by default for output SUBRs is the local value of the ATOM OUTCHAN.

You can direct 1/0 to a CHANNEL by SETting INCHAN or OUTCHAN (remembering their old values
somewhere). or by giving the SUBR you wish to use an argument of TYPE CHANNEL. (These actually
have the same effect, because READ binds INCHAN to an explicit argument, and PRINT binds OUTCHAN

similarly. Thus the CHANNEL being used is available for READ macros (section 17.1) and PRINTTYPEs
(section 6.4.4))

By the way. a good trick for playing with INCHAN and OUTCHAN within a function is to use the ATOMs
INCHAN and OUTCHAN as "AUX" variables, re-binding their local values to the CHANNEL you want.
When you leave, of course, the old LVALs are restored (which is the whole point). The ATOMs must be
declared SPECIAL (chapter 14) for this trick to compile correctly.

INCHAN and OUTCHAN also have global values, initially the CHANNELs directed at the terminal running
MDL. Initially. INCHAN's and OUTCHAN's local and global values are the same.

.24 - 1127 Input/Output

104 The MDL Programming Language

11.2.8. Contents of CHANNELS

The contents of an object of TYPE CHANNEL are referred to by the 1/0 SUBRs each time such a SUBR
is used. If you change the contents of a CHANNEL (for example, with PUT), the next use of that
CHANNLL will be changed appropriately. Some clements of CHANNELs, however, should be played with
seldom, if ever, and only at your peril. These are marked below with an ¢ (asterisk). Caveat user.

There follows a table of the contents of a CHANNEL, the TYPE of each element, and an interpretation.
The format used is the following:
element-nunibec: tvpe interprelation

i 11.2.8.1. Output CHANNE L s

The contents of a CHANNEL used for output are as follows:

-1: LIST transeript channel(s) (see below)
} ¢ 0: varies device-dependent informnation
e 1 FIX channel ntamber (ITS) or JFN (Tenex and Tops-20), 0 for internal or closed
* 2: STRING mode
¢ 3: STRING first file name argument
* 4: STRING second file name argument

* 5: STRING device name argument

¢ 6: STRING directory name argument
e« 7: STRING real first file name

¢ 8: STRING real second file name

+ % STRING real device name

+10: STRING real directory name

ell: FIX various status bits

«12: FIX PDP-10 instruction used to do one 1/0 operation
13: FIX number of characters per line of output
14: FIX current character nosition on a line
I15: FIX number of lines per page
16: FIX current line number on a page
17: FIX access pointer for file-oriented devices
18: FIX radix for FIX conversion

I 19: FIX sink for an internal CHANNEL

N.B.: The clements of a CHANNEL below number | are usually invisible but are obtainable via <NTH
<TOP channel> fix>, for some appropriate fix,

The transcript-channcls slot has this meaning: if this slot contains a LIST of CHANNELs, then

anything input or output on the original CHANREL is output on these CHANNELs. Caution: do not use
a CHANNEL as its own transcript channek you probably won't live to tell about it.

11.28 - 11.28.1 Input/Qutput

N, S A

The MDL Programming Language 105

11.2.8.2. Input CHANNELS

The contents of the elements up to number 12 of a CHANNEL used for input are the same as that for

output. The remaining elements are as follows ((same) indicates that the use is the same as that for
output): :

13: varies object evaluated when end of file is reached

«14: FIX one “look-ahead” character, used by READ

«15: FIX PDP-10 instruction executed waiting for input

I6: LIST qucuc of buffers for input from a terminal

17: FIX access pointer for file-oriented devices (same) i
18: FIX radix for FIX conversion (same)

19: STRING buffer for input or source for internal CHANNEL

11.3. End-of-Filc "Routine”

As mentioned above, an explicit CHANNEL is the first optional argument of all SUBRs used for
conversion 1/0. The second optional argument for conversion-input SUBRs is an “end-of -file
routine” -- that is, something for the input SUBR to EVAL and return, if it reaches the end of the file
it is reading. A typical end-of-file argument is a QUOTE FORM which applies a function of yours.

The value of this argument used by default is a call to ERROR. Note: the CHANNEL has been CLOSEd

by the time this argument is evaluated.

Example: the following FUNCTION counts the occurrences of a character in a file, according to its
arguments. The file names, device, and directory are optional, with the usual names used by default.

(DEF INE COUNT-CHAR
(CHAR "TUPLE" FILE "AUX" (CNT 0) (CHN <OPEN "READ" t FILED))
<COND (.CHN ;"If CHN is FALSE, bad OPEN: return the FALSE
so result can be tested by another FUNCTION.®
<REPEAT ()
C(AND <==? .CHAR CREADCHR .CHN ‘<RETURN>>>
{SET CNT <+ 1 .CNT>>>>
;"Unti) EOF, keep reading and testing a character at a time."
.CNT ;"Then return the count.")>>

11282113 Input/Output

SRS

el S o i

106 The MDL Programming Language

11.4. Imaged 1/0

1L4.1. Input
11.4.1.1. READB
<READB buffer:uvector-or-storage channel eof:any?

The channcl must be open in "READB" wmode. READB will read as many 36-bit binary words as
necessary to fill the buffer (whose UTYPE must be of PRIMTYPE WORD), unless it hits the end of file.
READB returns the number of words actually read, as a FIXed-point number. This will normally be
the length of the huffer, unless the end of file was read, in which case it will be less, and only the
{ beginning of huffer will have been filled (SUBSTRUC may help). An attempt to READB again, after

buffer is not filled. will evaluate the end-of-file routine eof, which is optional, a call to ERROR by
default.

11.4.1.2. READSTRING

CREADSTRING buffer:string channel stop:fix-or-string eof>
is the STRING analog to READB, where buffer aud eof are as in READB, and channel is any input
CHANNEL (.INCHAN by default). stop tells when to stop inputting: if a FIX, read this many

CHARACTERSs (Fill up buffer by default): if a STRING, stop reading if any CHARACTER in this STRING is
read (don’t include this CHARACTER in final STRING).

11.4.2. Output
11.4.2.1. PRINTB
<PRINTB bufferuvector-or-storage channel)

This call writes the entire contents of the buffer into the specified channel open in "PRINTB* or
"PRINTO" modec. It retarns buffer.

11.4.2.2. PRINTSTRING
<PRINTSTRING buffer:string channel count:fix>

is analogous to READSTRING. It outputs buffer on channel, either the whole thing or the first count
characters. and returns the number of characters output.

11.4 - 11.4.2.2 Input/Output

The MDL Programming Language 107

11.4.2.3. IMAGE
<IMAGE fix channel>

is a rather special-purpose SUBR. When any conversion-output routine outputs an ASCII control
character (with special exceptions like carriage-returns, line-feeds, etc.), it actually outputs two
characters: ~ (circumflex). followed by the upper-case character which has been control-shifted.
IMAGE, on the other hand. always outputs the real thing: that ASCII character whose ASCII 7-bit
code is fix. It is guaranteed not to give any gratuitous line-feeds or such. channel is optional,
-OUTCHAN by default, and its slots for current character position (number 14) and current line
number (I6) are not updated. IMAGE returns fix.

1L.5. Dumped 1/0

1L5.1. Output: GC-DUMP
{GC-DUMP any printb:channel-or-false)

dumps any on printh in a clever format so that GC-READ (below) can reproduce any exactly, including

sharing. any cannot live on the control stack, nor can it be of PRIMTYPE PROCESS or LOCD or ASOC
(which see). any is returned as a value.

If printb is a CHANNEL, it wust be open in "PRINTB® or “"PRINTO" mode. If printb is a FALSE,
GC-DUMP instead returns a UVECTOR (of UTYPE PRIMTYPE WORD) that contains what it would have

output on a CHANNEL. This UVECTOR can be PRINTBed anywhere you desire, but, if it is changed in

any way, GC-READ will not be able to input it. Probably the only reason to get it is to check its
length before output.

Except for the miniature garbage collection required, GC-DUMP is about twice as fast as PRINT, but
the amount of external storage used is (wo or three times as much.

11.5.2. Input: GC-READ
<GC-READ readb:channel eof:any>

returns one ob ject from the channel, which must be open in "READB* mode. The file must have been
produced by GC-DUMP. eof is optional. GC-READ is about ten times faster than READ.

11423 - 11.5.2 Input/Output

ST IO

=

108 The MDL Programming Language

IL.6. SAVE Files

The entire state of MDIL can be saved away in a file for later restoration: this is done with the SUBRs
SAVE and RESTORE . This is a very different form of 1/0 from any mentioned up to now; the file
used contains an actual image of your MDL address space and is not, in general, “legible” to other
MDL routines. RESTORUing a SAVC file is much faster than re-READing the ob jects it contains.

Since a SAVE file does not contain all extant MDL ob jects, only the impure and PURIFYed (section
22.9.2) oncs. a change to the interpreter has the result of making all previous SAVE files unusable.
To preveat crrors fram avising from this, the interpreter has a release number, which is incremented
whenever changes are installed. The current release number is printed out on initially starting up
the program and is available as the GVAL of the ATOM MUDDLE. This release number is written out
as the very first part of cach SAVE file. If RESTORE attempts to re-load a SAVE file whose release
number is not the same as the interpreter being used, an error is produced. If desired, the release
number of a SAVE file can be obtained by deing a READ of that file. Only that initial READ will
work: the rest of the file is not ASCIL

11.6.1. SAVE

(SAVL file-spec:string gc’false-or-any)

CSAVE namel name2 device dir gc’false-or-any>

saves the eutire state of your MDL away in the file specified by its arguments, and then returns
"SAVED". All STRING arguments are optional, with "MUDDLE", “SAVE", "DSK", and <VALUE SNM>
used by default. gc?is optional and, if supplicd and of TYPE FALSE, causes no garbage collection to
occur before SAVEing. (FSAVE is an alias for SAVE that may be seen in old programs.)

If, after restoring, RESTORE finds that <VALUE SNM) is the null STRING (**), it will ask the operating
system for the name of the "working directory” and call SNAME with the result. This mechanism is
handy for "public” SAVE files, which should not point the user at a particular disk directory.

In the ITS version, the file is actually writien with the name _MUDS_ > and renamed to the
argument(s) only when complete, to prevent losing a previous SAVE file if a crash occurs. In the

Tenex and Tops-20 versions, version/generation numbers provide the same safety.

Example:

11.6 - 1161 Input/Output

e ———— e o

The MDL Programming Language 109

<DEFINC SAVE-IT ("OPTIONAL"
(FILE '(“PUBLIC" "SAVE" "DSK" "GUEST"))
“AUX" (SNM "*))
<SETUP>
CCOND (<=? "SAVED" <SAVE !.FILE>> ;"See below."
<CLEANUP>
"Saved.")
(T
<CRLF>
<PRINC "Amazing program at your service.")
<CRLF>
(START-RUNNING>)>>

11.6.2. RESTORE
CRESTORE file-spec>
or

CRESTORE namel name2 device dir>

replaces the entire current state of your MDL with that SAVEd in the file specified. All arguments

are optional, with the same values used by default as by SAVE.

RESTORE completely replaces the contents of the MDL, including the state of execution existing
when the SAVE was done and the state of all open I/O CHANNELs. If a file which was open when the
SAVE was done docs not exist when the RESTORE is done, a message to that effect will appear on the
terminal.

A RESTORE ncver returns (unless it gets an error): it causes a SAVE done some time ago to return

again (this time with the value "RESTORED"), even if the SAVE was done in the midst of running a
program. [In the latter case, the program will continue its execution upon RESTOREation.

11.7. Other 1/O Functions

11.7.1. LOAD
<LOAD input:channel look-up>

eventually returns "DONE". First, however, it READs and EVALs every MDL ob ject in the file pointed

1L6.1 - 1L.7.1 Input/Output

s

g

&

110 The MDL Programming Language

to by input, and then CLOSEs input. Any occurrences of rubout, ~@, ~D, “L, etc., in the file are
given no special meaning: they are simply ATOM constituents.

look-up is aptional, used to specify a LIST of OBLISTs for the READ. .OBLIST is used by default

(chapter 15). 1
i
11.7.2. FLOAD %

<FLOAD file-spec look-up)
or
{FLOAD namel nameZ device dir look-up>
(“file load™) acts just like LOAD, except that it takes arguments (with values used by default) like

OPEN, OPENs the CHANNEL itself for reading, and CLOSEs the CHANNEL when done. /ook-up is optional,
as in LOAD. If the OPEN fails, au ecror accurs, giving the reason for failure.

11.7.3. SNAME

CSNAME string> ("systews mame”, a hangover from ITS) is identical in effect with <SETG SNM string,
that is, it causes string to become the dir argument used by default by all SUBRs which want file
specifications (in the absence of a local value for SNM). SNAME returns its argument.

CSNAME> is identical in effect with <GVAL SNM>, that is, it returns the current dir used by default.

11.7.4. ACCESS i

CACCESS channel fix>
returns channel. after making the next character or binary word (depending on the mode of channel,
which should not be "PRINT") which will be input from or output to channel the (fix+1)st one from

the beginning of the file. channel must be open to a randomly accessible device ("DSK", "USR",
etc.). A fix of 0 positions channel at the beginning of the file.

11.7.5. FILE-LENGTH
CFILE-LENGTH input:channel?

returns a FIX, the length of the file open on input. This information is supplied by the operating

IL7.1 - 1175 Input/Output

The MDL Programming Language 1

system, and it may not be available, for example, with the “NET* device (section 11.10). If input's
mode is "RCAD", the length is in characters (rounded up to a multiple of five); if “READB®, in
binary words. If ACCESS is applicd to input and this length or more, then the next input operation
will detect the end of file.

11.7.6. FILECOPY
CFILECOPY input:channel output:channel>

copies characters from input to output until the end of file on input (thus closing input) and returns
the number of characters copied. Both arguments are optional, with . INCHAN and .QUTCHAN used by
default. respectively. The operation is essentially a READSTRING - PRINTSTRING loop. Neither
CHANNCL need be freshly OPCNed, and output need not be immediately CLOSEd. Restriction: internally
a <FILE-LENGTH input> is done, which must succeed: thus FILECOPY might lose if input is a "NET"
CHANNEL .

11.7.7. RESET
CRESET channel>

returns channel, after "resetting” it. Resetting a CHANNEL is like OPENing it afresh, with only the file-
name sfots preserved. For an input CHANNEL, this means emptying all input buffers and, if it is a
CHANNEL to a file, doing an ACCESS to 0 on it. For an output CHANNEL, this means returning to the
beginning of the file - which implies, if the mode is not "PRINTO", destroying any output done to
it so far. 1f the opening fails (for example, if the mode slot of channel says input, and if the file
specified in its real-name slots does not exist), RESET (like OPEN) returns #FALSE (reason:string file-
spec:string status:Hix) .

11.7.8. BUFOUT
<BUFOUT output:channel>
causes all internal MDL buffers for oulput to be written out and returns its argument. This is

helpful if the operating system or MDL is flaky and you want to attempt to minimize your losses.
The output may be padded with up to four extra spaces, if oufput's mode is "PRINT".

11.7.9. RENAME

RENAME is for renaming and deleting files. It takes three kinds of arguments:
(a) two file names, in cither single- or multi-STRING format, separated by the ATOM TO,
(b) one file name in cither format, or

1L7.5 - 11.7.9 Input/Output

3

H

112 The ML Programming Language

(c) i« CHANKEL and a file name in either format (only in the ITS version).

Omitted Lile-name parts use vie same values by default as does OPEN. If the operation is successful,
RENAML vevurns |, otherwise *FALSE (reason:string status:fix).

In case (a1 the file specified by the first argument is renamed to the second argument. For example:
CRENAME "FCGO 3" TO “BAR"> :"Rename FOO 3 to BAR >.*
In case (b) ihe single file name specifics a file to be deleted. For example:

CRENAME "FOO FOO DSK:HARRY;*> ;"Delete file FOO FOO from
HARRY's directory.®

In case (¢) the CHANNEL must be open in cither *PRINT® or *PRINTB* mode, and a rename while open
for writing is attempted. The real-name slots in the CHANNEL are updated to reflect any successful
change.

LS. Terminal CHALLELY

MDL behaves like the ITS version of the text editor Teco with respect to typing in carriage-return,
in that v automatically adds a line-feed. In order to type in a lone carriage-return, a carriage-return
followea by a rubout must be typed. Also PRINT, PRINI and PRINC do not automatically add a line-
feed when a carviage-retuen is output. This enables overstriking on a terminal that lacks

backspacing capability. It also means that what goes on a terminal and what goes in a file are
more likely to look the same.

In the ITS version, MDL's primary terminal output channel (usually ,OUTCHAN) is normally not in
"display”™ made, except when PRINCing a STRING. Thus errors will rarely occur when a user is
typing in texi containing display-mode control codes.

In the ITS version, MDL can start up without a terminal, give control of the terminal away to an
inferior operating-system process or get it back while running. Doing a RESET on either of the
terminal channels causes MDL to find out if it now has the terminal if it does, the terminal is
reopencd and the current screen size and device parameters are updated. If it doesn't have the
terminal, an internal flag is set, causing output to the terminal to be ignored and attempted input
from the ternanan to make the operaving-system process go to sleep.

In the oS veo ong the are some pouaaliarities associated with pseudo-terminals (*STY" and “STa*
devices). If the CHANNEL given to REZDCHR is open in "READ" mode to a pseudo-terminal, and if no
input is aviaiable, READCHR scturns <o, TYPE FIX. If the CHANNEL given to READSTRING is open in
"READ" modce to a prendo-tecminal, veiding woa stops if and when no wore characters are available,
that is, when READCHR woula return =1.

0.7.9-11.8 Input/Output

1 The MDIL Programming Language 13

11.8.1. ECHOPAIR
CECHOPAIR terminal-in:channel terminal-out:channel>

returns its first argument, after making the two CHANNELs "know about each other” so that rubout,
@, "D and “Lon [+ minal-in will cause the appropriate output on ferminal-out.

11.8,2. TTY[CCHO

KTTYECHO ternunal~input:channel pred>

turns the echaing of typed characters on channel off or on, according to whether or not pred is of
TYPE FALSL, and returns channel. It is useful in conjunction with TYI (below) for a program that
wants to do character input and echoing in its own fashion.

11.8.3. TY1
{TYI1 termunal-input:channei?

returus one CHARACTER from channe! (optional, .INCHAN by default) when it is typed, rather than .
after § (ESC) is typed. as is the case with READCHR. The following example echos input characters
as their ASCII values, until a carriage-return is typed:

<REPEAT ((FOO <TTYECHO .INCHAN <>>))
CAND <==7 13 <PRINC <ASCII <TYI .INCHAN>>>>
<RETURN <TTYECHO .INCHAN T>>>>

11.9. lnternal CHARNLL Ls

If the device specified in an OPEN is “INT", a CHANNEL is created which does not refer to any I/O
device outside MDL. 1In this case. the mode must be "READ* or "PRINT”, and there is another
argument, which must bhe a function.

For a "READ" CHANKEL, the function wust take no arguments. Whenever a CHARACTER is desired ‘
from this CHANNEL, the function will be applied to no arguments and must return a CHARACTER. }
This will occur once per call to READCHR using this CHANNEL, and several times per call to READ. In ;
the ITS version, the function can signal that its "end-of-file" has been reached by returning <CHTYPE !
f
f
!

e g

2777777000003% CHARACTERY (-1 in left half, control-C in right), which is the standard ITS end-of-
file signal. In the Tenex and Tops-20 versions, the function should return either that or <CHTYPE
%777777000032% CHARACTIR) (-1 and control-Z), the latter being their standard end-of-file signal.

11.8.1-119 Input/Output

14 The MDL Programwming Language

For a "PRINI™ CHANNEL, the function must take one argument, which will be a CHARACTER. [t can
dispose of ity argument in any way it pleases. The value returned by the function is ignored.

Example: <OPEN "PRINT® "INT:®* ,FCN> opens an internal output CHANNEL with ,FCN as its
character-gohbler.,

1L10. The "R 1* Device: the ARPA Network
The "NET™ device i dif ferent in many ways from conventional devices. In the ITS version, it is
the only device hesides “INT® that docs not take all strings as its arguments to OPEN, and it must
take an additional optional argument to specify the byte size of the socket. The format of a call to
open a nctwork sochet is

COPEN movestring local-socket:fix foreign-socket:fix "NET® foreign-host:fix byte-sizefix)>

where:

mode is the mode of the desired CHANNEL. This must be either “READ*, "PRINT®, "READB" or
"PRINIB".

locol-socket is the local socket number. If it is -1, the operating system will generate a unique
local socket number. If it is not, in the Tenex and Tops-20 versions, the socket number is
“fork-relative”.

forewn <ochet is the forcign socket number. If it is =1, this is an OPEN for “listening ™.

forewsn hostis the forcign host number. If it is an OPEN for listening, this argument is ignored.

byte-ioe is the aptional byte size. For "READ* or "PRINT* this must be either 7 (used by
default) or £. For "READB" or “PRINTB", it can be any integer from 1 to 36 (used by default).

In the Tenex and Tops20 versions, OPEN can instead be given a STRING argument of the form
"NET:... " in this case the Jocal socket number can be “directory-relative”,

E Like any other OPEN, either a CHARNEL or a FALSE is returned. Once open, a network CHANNEL can
' be used Bihe any other CHANNEL, oxeept that FILE-LENGTH, ACCESS, RENAME, etc.. cannot be done.
The “argument” fiest-name, second-nawe, and directory-name slots in the CHANNEL are used for local i
socket. forcign soclet. and forcign host (as specified in the call to OPEN). respectively. The i
corresponding “real” slots are used somewhat differently. If a channel is OPENed with local socket
=1, the “real” first-name slot will contain the unique socket number generated by the operating
system. If a listening socket is OPENed, the foreign socket and host numbers of the answering host
are stored i the “real” secoad-name and direciory-name slots of the CHANNEL when the Request For
Connection is received.

1.9 - 1110 Input/Output

RS = Sea—

aam i

T —

m"x;

The MDI. Programming Language 115
Au interrapt (chapter 21) can be associated with a “NET"-device CHANNEL, so that a program will
know that the CHANNEL has or needs data, according to its mode.

There also exist several special-purpose SUBRs for the "NET" device. These are described next.

1L10.1. NE1ST/A 0T

CNETSTATE network:channel>
returns a UVECIOR of three FIXes. The first is the state of the connection, the second is a code
specifying why a connection was closed, and the last is the number of bits available on the
connection for input. The meaning of the state and close codes are installation-dependent and so
are not included here.
11.10.2. KETACC

CNEVACC network:channcl>
accepts a conncction to a socket that is open for listening and returns its argument. It will return a
FALSE if the connection is in the wrong state.
11.10.3. NETS

CHETS networt:channel)
returns its argument, after forcing any system-buffered network output to be sent. ITS normally
does this every half <econd anyway. Tenex and Tops-20 do not do it unless and until NETS is called.

NETS is sumilar to BUFOUT for normal CHANNELs, except that even operating-system buffers are
empticd now.

1110 - 11103 Input/Output

116 The MDL Programming Language

Chapter 12. Locatives

There is in MDL a facility for obtaining and working directly with objects which roughly
correspond ta “pointers” in assembly language or “lvals” in BCPL or PAL. In MDL, these are

Locatives exist to provide efficient means for altering structures: direct replacement as opposed to
re-copying.

Locatives always vefer ta clewments in structures. It is not possible to obtain a locative to something
(for example. an ATOM) which is not part of any structure. It is possible to obtain a locative to any
element in any structured object in MDL -- even to associations (chapter 13) and to the values of
ATOMs. structurings which are normally “hidden™.

In the following. the ob ject accupying the structured position to which you have obtained a locative
will be referred to as the object pointed to by the locative.

12.1. Obtaining Locatives

12.1.1. LLOC
<LLOC stom end

returns a locative (TYPE LOCD, “locative to iDentifier”) to the LVAL of atom in env. If atom is not
bound in en . an crior occurs. env is optional, with the current ENVIRONMENT used by default. The
locative returaed by 110C is independent of future re-bindings of atom. That is, IN (see below) of
that locative will veturn the same thing even if afom is re-bound to something else: SETLOC (see
below) will affect only that particular binding of atom.

Since bindings are kept on a stack (tra 1a), any attempt to use a locative to an LVAL which has
become unbound will fetch up an error. (It breaks just like a TUPLE....) LEGAL? can, once again,

be used to e if a LOCD is valid. Caution: <SET A <LLOC A>> creates a self-reference and can make
PRINT very unhappy.

12 - 12.11 Locatives

The MDL Programming Language n7

12.1.2. GLOC
CGLOC atom pread

returns a locative (1YPE LOCD) to the GVAL of atom. If atom has no GVAL slot, an error occurs, unless
pred (optionall is given and not FALSE, in which case a slot is created (chapter 22). Caution: <SETG
A <GLOC A>> creates a self-reference and can make PRINT very unhappy.

12.1.3. A1
CAL steactured Niiv-oe-offset)

returns a docative to the Vb element in structured. N is optional, 1 by default. The exact TYPE of
the locative returned depends on the PRINTYPE of structuredt LOCL for LIST, LOCV for VECTOR, LOCU
for UVECIOR, LOCS for SIRING, LOCB for BYTES, LOCT for TEMPLATE, and LOCA for TUPLE. If N is
greater than <LENGIH stroctured> or less than 1, or an OFFSET with a Pattern that doesn't match
structurec, an ettor occurs. The locative is unaffected by applications of REST, BACK, TOP, GROW,

etc. to <fructur. 4.
12,04, GETRE and GLTL

CGETPL item:any indicator :any vefault:any >
reterns a locative (TYPC LOCAS) 1o the association of ifem under indicator. (See chapter 13 for
information ahout associations) If no such association exists, GETPL returns EVAL of default. default
is optional, =t ALSE () by defaulr.
GETPL corresponds to GETPROP amongst the association machinery. There also exists GETL, which

corresponds to GET, veturning either a LOCAS or a locative to the indicatorth element of a structured
item. GETL is like AT if item is a structure and indicator is a FIX or OFFSET, and like GETPL if not.

12.2. LOCAT IVt ?

This SUBR is a prodicate that tells whether or not its argument is a locative. It is cheaper than
CMEMQ <PRIMIYPE & o> "1[LOCD LOCL s s ¥

12.01.2 - 122 Locatives

18 The MDL Programming Language

12.3. Using Locatives

The following twa SUBRs provide the means for working with locatives. They are independent of
the specific TYPE of the locative. The notation locative indicates anything which could be returned
by LLOC, GLOC, AT, GETPL or GETL.

123.1. IN
CIN jocatived

returns the ohject to which /ocative points. The only way you can get an error using IN is when
localive points 1o an LVAL which has become unbound from-an ATOM. This is the same as the

problem in referencing TUPLEs as wmientioned in section 9.2, and it can be avoided by first testing
CLEGAL? /locd>.

Example:

<SET A 1D>3

1

<IN <LLOC AX>S
1

12.3.2. SETLOC
(SETLOC locative any>

returns any. after having made any the contents of that position in a structure pointed to by
locative. The structure itself is not otherwise disturbed. An error occurs if locative is to a non-
LEGAL? LVAL or if you try to put an object of the wrong TYPE into a PRIMTYPE UVECTOR, STRING,
BYTES, or IEMPLATE.

Example:

<SSEV A (1 2 3)8
(1213)

<SETLOC <AT .A 2> HIDS
H1

.AS

(1 HI 3)

123 - 1232 Locatives

The MDL Programming Language 119

12.4. Note on Locatives

You may have noticed that locatives are, strictly speaking, unnecessary: you can do everything
locatives allow by appropriate use of, for example. SET, LVAL, PUT, NTH, etc. What locatives
provide is generality.

Basically, how you obtained a locative is irrelevant to SETLOC and IN; thus the saine program can
play with GVALs. LVALs, abjects in explicit structures, etc., without being bothered by what function
it should wse to da so. This is particularly true with respect to locatives to LVALs: the fact that they
are indcpendent of changes in binding can save a lot of fooling around with EVAL and
ENVIRONMENTS.

12.4 Locatives

e e A I R o D

e e

120 The MDL Programming Language

Chapter 13. Association (Properties)

There is an "associative” data storage and retrieval system embedded in MDL which allows the
construction of data structures with arbitrary selectors. It is used via the SUBRs described in this
chapter.

13.1. Assaciative Siorage

13.1.1. PUTPROP
<PUTPROP item:any indicator:any value:any)

("put property”) returns ifem, having associated value with item under the indicator indicator.

13.1.2. PUT
CPUT ttem:any indicator:any value:any)
is identical to PUTPROP, except that, if item is structured and indicator is of TYPE FIX or OFFSET, it

does <SETLOC <AT ifem indicalor> value>. In other words, an element with an integral selector is

stored in the structure itsclf, instcad of in association space PUT (like AT) will get an error if
indicator is out of range: PUTPROP will not.

13.1.3. Removing Associations
If PUTPROP is used withoat its value argument, it removes any association existing between its item
argument and its indicalor argument. If an association did exist, using PUTPROP in this way returns

the value which was associated. If no association cxisted, it returns #FALSE ().

PUT, with arguments which refer to association, can be used in the same way.

i13-13.1.3 Association (Properties)

The MDIL Programming | anguage 121

If cither item or indicator cease to exist (that is, no one was pointing to them, so they were garbage-
collecteid), and no locatives to the association exist, then the association between themn ceases to exist
(is garbage-collected).

13.2. Associative Reirieval

13.2.1. GETPROP !
CGLTPROP item:any indicator:any exp:any?

{("get property”) returns the value associated with item under indicator, if any. If there is no such
association. GETPROP returns EVAL of exp (that is, exp gets EVALed both at call time and later).

exp is aptional. If not given, GETPROP returns #FALSE () if it cannot return a valve.

Note: item and indicator in GETPROP must be the same MDL objects used to establish the association;
that is. they must be ==? to the objects used by PUTPROP or PUT.

13.2.2. GET i
SGET ftem:any indicator:any exp:any) F’

is the inverse of PUT, using NTH or GETPROP depending on the test outlined in section 13.1.2. exp is ‘
optional and used as in GETPROP.

13.3. Examples of Association

CSET L ‘(1234 ' 7
(1234) I
<PUT .1 FOO "L is a list.")$ i
(1234) |
<GET .L FOOY$ 1
*l is a list." i
CPUIPROP .L 3 *1[ADS i
(1234 i
<GETPROP .L 3>$ g

i

|

'[4!]
<GET .L 3§
3

13.1.3 - 133 Association (Properties)

122 The MDL Programming Language
<{SET N 0>3
0
<PUT .N .L “list on a zero®>$
0
<GET .N *(1 2 3 4)>8
PFALSE ()

The last example failed because READ generated a new LIST - not the one which is L's LVAL.
However,

<GET 0 .1D>$
"list on a zero®

works because <z2? N 0D is true.

To associate something with the Nth position in a structure, as opposed to its Nth element, associate
it with <RLST struclure N-1>, as in the following:

<Pul <REST .L 2> PERCENT 0.3>$

(3 4)

CGET <2 .L> PERCENT>S
“TALSE ()

<GET <REST .L 2> PERCENT>S
0.30000000

Remember comments?

<SET N "!'[A B C ;"third element®” D E]S
"(ABCDE!]

CGET <REST .N 2> COMMENT>$

"third clement”

The ' in the <SET N ... > is to heep EVAL from generating a new UVECTOR ("Direct
Representation™), which would not have the comment on it (and which would be a necdless
duplicate). A “top-level” comment -- one attached to the entire object returned by READ -- is PUT on
the CHANNEL in use. since there is no position in any structure for it. If no top-level comment
follows the ob ject. READ removes the value (CPUT channel COMMENT)): so anybody that wants to see a
top-level comment must look for it after each READ.

If you need to have a structure with sclectors in more than one dimension (for example, a sparse
matrix that docs not deseeve to be lincarized), associations can be cascaded to achieve the desired
result. In effect an extra level of association wmaps two indicators into one. For example, to
associate value with lem under indicator-1 and indicator-2 simultaneously:

CPUTPROP indrcator-1 indicator-2 1)

133 Association (Properties)

N

L A

V- - s

The MDL Programming Language . 123

<PUTPROP stem <GLTPL indicator-1 indicator-2> value>

13.4. Examining Associations
Associations (cecated by PUT and PUTPROP) are chained together in a doubly-linked list, internal to
MDI. ‘The order of associations in the chain is their order of creation, newest first. There are
several SUBRs for examining the chain of associations. ASSOCIATIONS returns the first association
in the chain, or #EALSE () if there are none. NEXT takes an association as an argument and returns
the next association in the chain, or #FALSE () if there are no more. ITEM, INDICATOR and AVALUE
all take an ascociation as an argumcnt and return the item, indicator and value, respectively.
Associations print as:

#ASOC (ilem indicator value)

(sic: only one S). Fxample: the following gathers all the existing associations into a LIST.

<PROG ((A <ASSOCIATIONS>))
CCOND (<KNOT .A> '())
(V (.A 'YCHMAPF ,LIST
CFUNCTION () <COND (<SET A <NEXT .A>> .A)
(T <MAPSTOP>)>>>))>>

133 - 134 Association (Properties)

124 The MDL Programming Language

Chapter 14. Data-type Declarations

In MDL. it is possible to declare the permissible range of “types” and/or structures that an ATOM's
values or a function’s arguments or value may have. This is done using a special TYPE, the DECL
("declaration”™). A DECL is of PRIMTYPE LIST but has a complicated internal structure. DECLs are
used by the interpreter to find TYPE crrors in function calling and by the compiler to generate more
efficient code.

~ There arc two kinds of DECLs. The first kind of DECL is the most common. It is called the ATOM
DECL and is used most commonly to specify the type/structure of the LVALs of the ATOMs in the
argument L IST of a FUNCTION or aux LIST of a PROG or REPEAT. This DECL has the form:

#DCCL (atoms:dist Pattern .. .)

where the pairing of a LIST of A10Ns and a "Pattern” can be repeated indefinitely. This declares the
ATOMs in a /st to be of the type/structure specified in the following Pattern. The special ATOM
VALUL, if it appears. declares the result of a FUNCTION call or PROG or REPEAT evaluation to satisfy
the Pattern specified. An ATOM DECL is useful in only one place: immediately following the
argument LIST of a FUNCTION, PROG or REPEAT. It normally includes ATOMs in the argument LIST
and ATOMs whose LVALs are otherwise used in the Function body.

The second Lind of DECL is rarely seen by the casual MDL user, except in appendix 2. It is called
the RSUBR DECL. 1t is used to specify the type/structure of the arguments and result of an RSUBR or
RSUBR-ENTRY (chapter 19). It is of the following form:

“DECL ("VALUL" Pattern Pattern ...)
where the STRING “VALUC" precedes the specification of the type/structure of the value of the call to
the RSUBR, and the remaining Patterns specify the arguments to the RSUBR in order. The full

specification of the RSUBR DECL will be given in section 14.9. The RSUBR DECL is useful in only
one place: as an element of an RSUBR or RSUBR-ENTRY.

Data-type Declarations

The MDL Programming Language 125

14.1. Patterns

The simplest possible Pattern is to say that a value is exactly some other object, by giving that
ob ject, QUOTCd. For example, to declare that a variable is a particular ATOM:

#DECL ((X) 'T)

declares that .X is always the ATOM T. When variables are DECLed as "being” some other object in
this way. the test used is =?, and not ==?. The distinction is usually not important, since ATOMs,
which are most commonly used in this construction, are ==? to each other if =? anyway.

It is more common to want to specify that a value must be of a given TYPE. This is done with the
simplest non-specific Pattern, a TYPE name. For example,

#DECL ((X) FIX (Y) FLOAT)

declares .X to be of TYPE FIX, and .Y of TYPE FLOAT. In addition to the names of all of the built-
in and created TYPEs, such as FIX, FLOAT and LIST, a few "compound” type names are aliowed:

ANY allows any TYPE.

STRUCTURED allows any structured TYPE, such as LIST, VECTOR, FALSE, CHANNEL, etc.
(appendix 3).

LOCATIVE allows any locative TYPE, such as are returned by LLOC, GLOC, AT, and so on
(chapter 12).

APPLICABIE allows any applicable TYPE, such as FUNCTION, SUBR, FIX (), etc. (appendix 3).
Any other ATOM can be used to stand for a wmore complex construct, if an association is
established on that ATOM and the ATOM DECL. A comimon example is to <PUT NUMBER DECL
'COR FIX FLOAT>> (see below), so that NUMBER can be used as a "compound type name".

The single TYPE name can be gencralized slightly, allowing anything of a given PRIMTYPE, using
the following construction:

#DECL ((X) <PRIMTYPE WORD> (Y) <PRIMTYPE LIST>)

This construction consists of a two-clement FORM, where the first element is the ATOM PRIMTYPE,
and the second the name of a primitive type.

The next step is to specify the elements of a structure. This is done in the simplest way as follows:

< structured:type Pattern Paltern ...>

14.1 Data-type Declarations

]

TR B SO gy

PERYTIRAPT| %S

F——m-w/ r—— ; T e —

126 The MDL Programming Language

where there is a onc-to-one correspondence between the Patferns and the elements of the structure.
For example:

#DECL ((X) <VECTOR FIX FLOAT>)

declares .X to be a VECTOR having at least two clements, the first of which is a FIX and the second a
FLOAT. It is often convenient to allow additional elements, so that only the elements being used in
the local neighborhood of the DECL need to be declared. To disallow additional elements, a SEGMENT
is used instcad of a FORM (the “excl-ed” brackets make it look more emphatic). For example:

#DECL ((X) !'<VECTOR FIX FLOAT))

declares . X to be a VECTOR having exactly two elements, the first of which is a FIX and the second a
FLOAT. Note that the Patterns given for elements can be any legal Pattern:

#DECL ((X) <VECTOR <VECTOR FIX FLOAT)> (Y) <KPRIMTYPE LIST> LIST>)
declares .X to he a VECTOR containing another VECTOR of at least two elements, and .Y to be of
PRIMTYPE LIST, containing a LIST. In the case of a BYTES, the individual elements cannot be
declared (they must be FIXes anyway), only the size and number of the bytes:

#DECL ((B) <BYTES 7 3>)
declares .B to be a BYTES with BYTE-SIZE 7 and at least three elements.

It is possible to say that some number of elements of a structure satisfy a given Pattern (or
sequence of Patterns). This is called an "NTH construction”.

[number:fix Pattern Pattern ...]

states that the sequence of Patlerns which is REST of the VECTOR is repeated the number of times
given. For example:

#DECL ((X) <VECTOR [3 FIX] FLOAT> (Y) <LIST [3 FIX FLOAT]>)

-X is declared to contain three FIXes and a FLOAT, perhaps followed by other elements. .Y is
declared to repeat the sequence FIX-FLOAT three times. Note that there may be more repetitions of f
the sequence in .Y (but not in .X): the DECL specifies only the first six elements. ;

For indcfinite repetition, the same construction is used, but, instead of the number of repetitions of
the sequence of Patterns, the ATOM REST is given. This allows any number of repetitions, from zero
on up. For example:

#DCCL ((X) <VECTOR [REST FIX]> (Y) <LIST [3 FIX] [REST FIXD

141 Data-type Declarations

The MDL Programming Language 127

A "REST constrnction™ can contain any number of Patterns, just like an NTH construction:
#DECL ((X) <VECTOR [REST FIX FLOAT LIST])

declares that X is a VICTOR wherein the sequence FIX-FLOAT-LIST repeats indefinitely. It does not
declare that <LENGTH LX) is an even multiple of three: the VECTOR can end at any point.

A variation on REST is OPT (or OPTIONAL), which is similar to REST except that the construction is
scanned once at most instead of indefinitely, and further undeclared elements can follow. For
example:

DECL ((X) <VICIOR [OPY FIX]>)

declares (hat X is a VECTOR which is empty or whose first element is a FIX. Only a REST
construction can follow an "0OPT construction”,

Note that the REST construction must always be the last element of the structure declaration, since it
gives a Patiern tor the rest of the structure. Thus, the REST construction is different from all others
in that it has an unlimited vange. No matter how many times the Patteen it gives is RESTed off of
the structure, the remainder of the structure still has that Pattern.

This exhausts the possible single Patterns that can be given in a declaration. However, there is also
a compound Pattern detined. 1t allows specification of several possible Patterns for one value:

<OR Peallern Paltern ... D

Any non-compound Pattern can be included as one of the clements of the compound Pattern.
Finally. compound Patterns can be used as Patterns for elements of structures, and so on.

“DCCL ((X) <OR FIX FLOAT>
(Y) <OR FIX <UVECTOR [RCST <OR FIX FLOAT>]>>)

The OR constriuction can be extended to any level of ridiculousness, but the higher the level of
complexity and compoundedness the fess Tikely the compiler will find the DECL useful.

At the highest level any Pattern at top level in an ATON DECL can be enclosed in the construction

< wpecialty atom Pattern D
which explicitly declares the specialty of the ATON(S) in the preceding LIST. specialty can be either
SPECIAL or UNSPLCIAL. Specialty is important only when the program is to be compiled. The word
comes from the conteol stack, which is called “special” in Lisp (Moon, 1974) because the garbage

collector finds objects on it and wodifics their internal pointers when storage is compacted. (An
internal stack is used within the interpreter and is not accessible to programs - section 22.1) In

141 Data-type Declarations

28 The MDL Programming Language

an interpreted program all local values are initially SPECIAL, because all bindings are put on the
control stach (but sec SPLCIAL-MODL below). When the program is compiled, only values declared
SPECIAL (which may or may not be the declaration used by default) remain in bindings on the
control stach. Al others are taken care of simply by storing objects on the control stack: the ATOMs
involved are not needed and are not created on loading. So, a program that SETs an ATOM's local
value far anather progeam to pick up must declare that ATOM to be SPECIAL. If it docsn't, the ATON's
binding will go away during compiling. and the program that nceds to refer to the ATOM will cither
get a no-value error or refer to an erroneous binding. Usually only ATOMs which have the opposite
specialty from that of the current SPECTAL-MODE are explicitly declared. The usual SPECIAL-MODE is
UNSPECIAL, so typically only SPECIAL declarations use this construction:

#DECL ((ACT) <SPECIAL ACTIVATIONY)

explicitly declares ACT to he SPECIAL .

Most well-written. medular programs get all their information from their arguments and from
GVALs. and thus they rarely use SPECIAL ATOMs, except perhaps for ACTIVATIONs and the ATOMs
whose [VAIs MDI uses by default: INCHAN, OUTCHAN, OBLIST, DEV, SNM, NM1, NM2. OUTCHAN is
a special case: the compiler thinks that all conversion-output SUBRs are called with an explicit
CHANNLL argument. whether or not the program being compiled thinks so. For example, <CRLF> is
compiled as thongh it were <CRLF .OUTCHAW>. So you may use (or see) the binding (OUTCHAN
-OUTCHAN) in an argument LIST, however odd that may appear, because that - coupled with the
! usual UNSPECIAL declaration by default -- wakes only one reference to the current binding of
OUTCHAN and stuffs the result in a slot on the stack for use within the Function.

r 14.2. Examples
#DECL ((Q) <OR VECTOR CHANNEL))
declares .Q 1o be cither a VECTOR or a CHANNEL .

#DECL ((P Q R §) <PRINTYPE LIST)) i

declares .P, .Q, .R, and .S all to be of PRINTYPE LIST. |
SDECL ((F) <FORM [3 ANY])) '
declares .1 to be a FORM whose length is at least three, containing ob jects of any old TYPE.
FDECL ((LL) <KPRINTYPE LIST> [4 <LIST [REST FIX]D)

declares (LU to he of PRINTYPE LIST, and to have at least four elements, each of which are LISTs of
unspecified length (possibly empty) containing F IXes.

14.0- 14.2 Data-type Declarations

— . . - ,,_,““._.,J‘

The MDL Programming Tanguage 129

“NECE ((VV) <VECTIOR FIX ATOM CHARACTERY)

declares VYV o he a VECTOR with at least three elements. Those elements are, in order, of TYPE FIX,
ATOM, and CHARACTI R,

ADECE (CEH) <LIST ATOM [REST FLOATD)

declares LI 1o he a FIST whoee first element is an ATOM and the rest of whose elements are FLOATs.
It alsa <ay < that LH s at least one element long.

DECL ((FO0) <LIST [RCST 'T FIXD)

declares 100 10 be a 1IST whose add-positioned elements are the ATOM T and whose even-positioned
elements are | IXes,

CMAPR <>
A UNCITON (X)
SDECL ((X) <VECTOR [1 FIX]))
AT X 10
00

declares X o he a VECTOR containing at least one FIX. The more restrictive [REST FIX] would take
excessive checking time by the interpreter, because the REST of the VECTOR would be checked on
each iteration of the AR, In this case both DECEs are equally powerful, because checking the first
element of all the RESTs of a structure eventually checks all the elements. Also, since the FUNCTION
refers only to the fivst clement of X, this ic as much declaration as the compiler can effectively use.
(I this VECTOR alwavs contains only FIXes, it should be a UVECTOR instead, for space efficiency.
Then a [REST HIXT PECE would make the interpreter cheek only the UTYPE. If the FIXes cover a
small non-negative range, then a BYTES might be even hetter, with a DECL of <BYTES n 0>.)

COEFTHE TACT (W)
=DECE ((N) <HNSPECTAL FIXD)
CCOND (<07 N> 1) (EISE <* (N CFACT <= .N I>»)»

declares (N to he of TYPE FIX and UNSPECIAL. "This specialty declaration ensures that, independent
of SPECTAL-HODE during compiling, .N gets compiled into a fast control-stack reference.

<PROG ({1 (0))
ENECE ((U VALUL) CUNSPECTAL <LIST [REST FIX]»
(N) <CUNSPECIAL FIX))
CCOND (<0? N> CRETURN .L>)>
COLN L §<® N <L L LU
SET N <= N DM

14.2 Data-type Declarations

IllIIlllllllllll--uu-u-ug-n-lllullﬂ""""""""""’“

130 The MDL Programming Language

The above declares L and N (o be UNSPECIAL, says that .Nis a FIX, and says that .L, along with
the value returned. is a LIST of any length composed entirely of FIXes.

14.3. The DECL Syntax

This section gives quasi-BNF productions for the MDL DECL syntax. In the following table MDL
type-specificers are distinguished i this way.

dec)

fDECL (declprs)

declprs ::

(atlist) pattern | declprs declprs

atlist ::

atom | atom atlist

pattern ::= pat | CUNSPECIAL pat)> | <SPECIAL pat>
pat = unit | <OR umit ... unit)
unit = tvpe | <PRIMTYPE typed> | atom | ‘any
| ANY | STRUCTURCD | LOCATIVE | APPLICABLE
| <struc elts> | <COR struc ... struc) elts)
| '<¢struc eclts> | !<<OR struc ... strucd elts>
| <bstruc fix> | <bstruc fix fix>
I | Y<bstruc fix fix>
struc $im struclured-type | <PRIMTYPE structured-type)]
| bstruc ::= BYILS | <PRIMTYPC BYTES) ,
i
14
elts tim pat | pat elts 4
| Lfix pat ... pat] ?
| [fiv pat ... pat] elts i
| [opt pat ... pat] | [REST pat ... pat] i
| [opt pat ... pat] [REST pat ... pat] |
opt tim OPT | OPTIONAL !

142 - 143 Data-type Declarations

D it .

e

e e o

r——"" ——

The MDL Programming Language 131

14.4. Good DCCLs

There are some rules of thumb concerning “good” DECLs. A “good™ DECL is one that is minimally
offensive to the DLCL-checking mechanism and the compiler, but that gives the maximum amount
of information. It is simple to state what gives offense to the compiler and DECL-checking
mechanism: complexity. For example, a large compound DECL like:

#DECL ((X) <OR FIX LIST UVECTOR FALSE>)

is a DECL that the compiler will find totally useless. It might as well be ANY. The more involved
the OR, the less information the compiler will find useful in it. For example, if the function takes
COR LIST VECTOR UVECTOR>, maybe you should really say STRUCTURED. Also, a very general DECL
indicates a very general program, which is not likely to be efficient when compiled (of course there
is a trade-off here)l. Narrowing the DECL to one PRIMTYPE gives a great gain in compiled efficiency,
to one TYPE still more.

Another situation to be avoided is the ordinary large DLCL, cven if it is perfectly straightforward.
If you have created a structure which has a very specific DECL and is used all over your code, it
might be better as a NEWTYPE (see below). The advantage of a NEWTYPE over a large explicit DECL is
twofold. First, the entire structure must be checked only when it is created, that is, CHTYPEd from
its PRIMIYPE. As a full DECL, it is checked completely on entering each function and on each
reassignment of ATOMs DECLed to be it. Second, the amount of storage saved in the DECLs of

FUNCTIONs and so on is large, not to mention the effort of typing in and keeping up to date several
instances of the full DCCL.

14.5. Global DICls

14.5.1. GDECL and MANIFEST

There are two ways to declare GVALs for the DECL-checking mechanism. These are through the
FSUBR GDECL ("global declaration”) and the SUBR MANIFEST.

<GDECL atoms:list Pattern ...>

GDECL allows the type/structure of global values to be declared in much the same way as local
values. Example:

<GDECL (X) FIX (Y) <LIST FIX>>
declares ,X to be a FIX, and ,Y to be a LIST containing at least one FIX.

<MANIFEST atom atom ...>

14.4 - 145.1 Data-type Declarations

132 The MDL Programming Language

MANIFEST takes as arguments ATOMs whose GVALs are declared to be constants. It is used most
commonly to indicate that certain ATOMs are the names of offsets in structures. For example:

, <SE16 X 1>
CMANIFEST X>

; allows the compiler to confidently open-compile applications of X (getting the first element of a
5 structure), knowing that ,X will not change. Any sort of object can be a MANIFEST value: if it does
\ not get embedded in the compiled code, it is included in the RSUBR's “reference vector”, for fast
access. llowever. as a general rule, structured ob jects should not be made MANIFEST: the SETG will
i survive in the compiled version (for the use of new uncompiled programs), but uses of GVAL will

instead refer 1o a distinct copy of the object in each RSUBR that does a GVAL. A structured ob ject
should instead be GDECLed.

An attempt 1o SETG a MANIFFST ATOM will cause an error, unless either:
(1) the ATOHM was previously globally unassigned;
(2) the old value is ==7 to the new value: or
(3) .REDEF INE is not FALSE.
14.5.2. MANIFEST? and UNMANIFEST
{MANIFEST? atom)

| returns T if afom is MANIFEST, #FALSE () otherwise.

CUNMANIFEST atom atom ...>

removes the MANIFEST of the global value of each of its arguments so that the value can be changed.

14.5.3. GBOUND?

<GBOUND? atom>

("globally bound>”) returns T if afom has a global value slot (that is, if it has ever been SETGed

MANIFEST, GDECLed, or GLOCed (chapter 12) with a true second argument), #FALSE () otherwise. H

14.5.1 - 14.5.3 Data-type Declarations

T —

The MDL Programming Language 133

14.6. NEWTYPE (again)
NEWTYPE gives the programmer another way to DECL objects. The third (and optional) argument of
NEWTYPE is a QUOTCA Pattern. If given, it will be saved as the value of an association (chapter 13)
using the name of the NCWTYPE as the item and the ATOM DCCL as the indicator, and it will be used to
check any object that is about to be CHTYPEd to the NEWTYPE. For example:

CNEWTYPE COMPLEX-NUMBER VECTOR '<CPRIMTYPE VECTOR> FLOAT FLOAT>>

creates a new TYPE, with its first two elements declared (o be FLOATs. If later someone types:

#COMPLEX-NUMBER [1.0 2]

an error will result (the second element is not a FLOAT). The Pattern can be replaced by doing

another NEWTYPD for the same TYPE, or by putting a new value in the association. Further
examples:

CNEWTYPE FOO LIST '<CPRIMIYPE LIST> FIX FLOAT [REST ATOM]>>
causes F00s to contain a FIX and a FLOAT and any number of ATOMs.
CNEWTYPE BAR LIST>
<SET A “BAR (#BAR () 1 1.2 GRITCH)>
CNEWTYPE BAR LIST '<CKPRIMTYPE LIST> BAR [REST FIX FLOAT ATOM]>>
This is an example of a vecursively DCCled TYPE. Note that <1 .A> does not satisfy the DECL,

because it is empty. but it was CHTYPEd before the DECL was associated with BAR. Now, even
CCHTYPE <1 .A> CTYPE <1 .A>>> will cause an error.

In each of these examples, the <CPRIMTYPE ...> ...)> construction was used, in order to permit
CHTYPEing an object into itself. See what happens otherwise:

CNEWTYPE OOPS LIST *<LIST ATOM FLOAT)>S
00rs 1]
CSET A CCHTYPE (E 2.71828) O0OPS>>$ 3
#00PS (E 2.71828) e

Now <CHIYPE .A 00PS> will cause an error. Unfortunately, you must

CCHTYPE <CNTYPE .A LIST> OOPS>$
#O0PS (E 2.71828)

14.6 Data-type Declarations

134 The MDL Programming Language

14.7. Controlling DECL Checking
There are several SUBRs and FSUBRs in MDL that are used to control and interact with the DECL-

checking mechanism.

14.7.1. DECL-CHECK

This entire complex checking mechanism can get in the way during debugging. As a result, the
most commeanly used DECL-oriented SUBR is DECL-CHECK. It is used to enable and disable the entire
DECL-checking mechanism.

<DECL-CHECK false-or-any>

If its single argument is non-FALSE, DECL checking is turned on: if it is FALSE, DECL checking is
turned off. The previous state is returned as a value. If no argument is given, DECL-CHECK returns
the current state. In am initial MDL DECL checking is on.

When DECL checking is on, the DECL of an ATOM is checked each time it is SET, the arguments and
results of calls to FUNCTIONs, RSUBRs, and RSUBR-ENTRYs are checked, and the values returned by
PROG and REPEAT arc checked. The same is done for SETGs and, in particular, attempts to change

MANIFEST global values. Attempts to CHTYPE an object to a NEWTYPE (if the NEWTYPE has the
optional DECL) are also checked. When DECL checking is off, none of these checks is performed.

14.7.2. SPECIAL-CHECK and SPECIAL-MODE
(SPECIAL-CHECK false-or-any>

controls whether or not SPECTAL checking is performed at run time by. the interpreter. It is initially
off. Failure to declare an ATOM to be SPECIAL when it should be will produce buggy compiled code.

<SPLCCIAL-MODE specialty:atom>
sets the declaration used by default (for ATOMs not declared either way) and returns the previous such

declaration, or the current such declaration if no argument is given. The initial declaration used by
default is UNSPLCCIAL .

14.7.3. GET-DLCL and PUT-DECL

GET-DECL and PUI-DICL are used to examine and change the current DECL (of either the giobal or
the local value) of an ATOM.

<GET-DCCL. locd>

14.7-14.73 Data-type Declarations

aadic b obasnd.

' The MDL Programming Language i35

returns the DECL Pattern (if any. otherwise #FALSE () associated with the global or local value slot
of an A10M. For example:

<PROG (X) '
#DECL ((X) <OR FIX FLOATY) _ !
<GET-DECL <LLOC X>>
a
would return <OR FIX FLOATY as the result of the application of GET-DECL. Note that because of F

the use of LLOC (or GLOC, for global values) the ATOM being examined must be bound: otherwise you

will get an crver! This can e gotten around by testing first with BOUND? (or GBOUND?, or by giving
GLOC a second argument which is not FALSE). 1

If the slot being examined is the global slot and the value is MANIFEST, then the ATOM MANIFEST is
returned. If the value being examined is not DCCLed, #FALSE () is returned. !

<PUT-DECL locd Fatternd

makes Fattern be the DECL for the value and icturns locd. 1€ <DECL-CHECK) is true, the current value
must satisfy the new Pattern. PUT-DECL is normally used in debugging, to change the DECL of an

object to correspond to changes in the program. Note that it is not legal to PUT-DECL a “Pattern” of
MANIFEST or #FALSE ().

e et o d il £

14.7.4. DCCL?

CODECL? any Pattern)

specifically chechs any against Pattern. For example:
COECL? *[1 2 3] '<VECTOR [REST FIX]»>$:h
T |
<DECL? '[1 2.0 3.0] '<VECTOR [REST FIX]>>$ 5
“TALSC ()

14.8. OFFSET

An OFFSET is essentially a FIX with a Pattern attached, considered as an APPLICABLE rather than a
number. An OFFSET allows a program to specify the type of structure that its FIX applies to.
OFFSETs. dike DECIs - if used properly - can make debugging considerably easier: they will
eventually also help the compiler generate more efficieni code.

1473 - 14.8 Data-type Declarations

136 The MDL Programming Language

The SUER OFFSET takes two arguments, a FIX and a Pattern, and returns an object of TYPE and
PRIMTYPE OFFSCT. An OFFSET, like a FIX, may be given as an argument to NTH or PUT and may be

applied to arguments. The only difference is that the STRUCTURED argument must match the
Pattern contained in the OFFSET, or an error will result. Thus:

<{SCTG OO0 <OFFSET 1 '<CHANNEL FIX>>>$
ACOFFSET 1 "CCHANNCL FIX>)

<FOO , JHCHAN>S

1

<Fo0 <ROOT>>$

*FRROR®

ARG -WRONG-TYPE

NTH

LISTENING-AT-1LEVEL 2 PROCESS 1

Note: when the compiler gets around to understanding OFFSETs, it will not do the right thing with

them unless they are MANIFEST. Since there's no good reason not to MANIFEST them, this isn't a
probicm.

The SUBR INDEX, given an OFFSET, returns its FIX:

CINBEX ,FO0>$
1

GET-DECL of an OrFSET returns the associated Pattern: PUT-DECL of an OFFSET and a Pattern returns
a new OFFSE'T with the same INDEX as the argument, but with a new Pattern:

<GET-DECL ,F00>$
CCHANNLCL FIX>

<PUT-bICL ,100 OBLIST>S
%<OFFSET 1 OBLIST>

,FO0%

4COFFSCT 1 '<CHARNEL FIX>>

An OFFSET is not a structured ob ject, as this example should make clear.

14.9. The RSUBR DECL

The ZSUBR DECL is similar to the ATOM DECL, cxcept that the declarations are of argument positions

anyd value rather than of specific ATOMs. Patterns can be preceded by STRINGs which further
describe the argument (or value).

14.8 - 14.9 Data-type Declarations

The MDL. Programming language 137
The simplest RSURR DECL is for an RSUBR or RSUBR-ENTRY (chapter 19) which has all of its
arguments cvaluated and returns a DECLed value. For example:

#DCCL (“VALUE" FIX FIX FLOAT)
declares that there are two arguments, a FIX and a FLOAT, and a result which is a FIX. While the
STRING “VALUE® is nol constrained to appear at the front of the DECL, it does appear there by
custom. 1t need not appear at all. if the result is not to be declared, but (again by custom) in this

case it is usually declared ANY.

If any arguments are optional. the STRING “OPTIONAL" (or "OPT") is placed before the Pattern for
the first optional argumcent:

#DECL ("VALUE" FIX FIX "OPTIONAL® FLOAT)

If any of the arguments is not to be evaluated, it is preceded by the STRING "QUOTE®:
#DECL ("VALUE* FIX “QUOTE" FORM)

declarcs one argumcnt, which is not EVALed.

If the argumenis are to be evaluated and gathered into a TUPLE, the Pattern for it is preceded by
the STRING "TUPLE":

SDECL ("VALUE®™ FIX “TUPLE* <TUPLE [REST FIX]>)

If the arguments arc to be uncvaluated and gathered into a LIST, or if the calling FORM is the only
“argument”, the Pattern is preceded by the appropriate STRING :

#DECL ("VALUE™ FIX "ARGS" LIST)
#D0CL ("VALUC® FIX "CALL" <PRIMTYPE LIST>)
In every case the specia) indicator STRING is followed by a Pattern which describes the argument,

cven though it may somctimes preduce fairly Judicrous results, since the Pattern for “TUPLE" always
must be a TUPLE; for "ARGS", a LIST; and for "CALL", a FORM or SEGMENT.

14.9 Data-type Declarations

138 The MDL Programming Language

Chapter 15. Lexical Blocking

Lexical, or static, blocking is another means of preveating identificr collisions in MDL. (The first
was dynamic blocking -- binding and ENVIRONMENTs.) By using a subset of the MDL lexical
blocking facilitics, the "block structure” of such languages as Algol, PL/I, SAIL, etc, can be
simulated, should you wish to do so.

15.1. Basic Considerations

Since what follows appears to be rather complex, a short discussion of the basic problem lexical
blocking solves and MDL's basic solution will be given first.

ATOMs are identificrs. It is thus essential that whenever you type an ATOM, READ should respond
with the unique identifier you wish to designate. The problem is that it is unreasonable to expect
the PNANEs of all ATOHs (o be unique. When you use an ATOM A in a program, do you mean the A
you typed two minutes ago, the A you used in another one of your programs, or the A used by some
library program?

Dynamic blacking (pushing down of LVALs) solves many such problems. However, there are some
which it docs not <alve -- such as state variables (whether impure or pure). Major problems with a
system having only dynamic blocking usnally arise only when attempts are wade to share large
numbers of significant programs among many people.

The solution used in MDL is basically as follows: READ must maintain at lcast one table of ATOMs to
guarantee any uniqueness.. So. MDL allows many such tables and makes it easy for the user to
specify which one is wanted. Such a table is an object of TYPE OBLIST ("object list"). All the
complication which follows arises out of a desire to provide a powerful, easily used method of
working with OBLISTs, with reasonable values used by default.

Lexical Blocking

-

The MDI. Programming Language 139

15.2. OBLISTs

An OBLIST is of PRINTYPE UVECTOR with UTYPE LIST; the LISTs hold ATOMs. (The ATOMs are ordered

by a hash coding on their PNAMEs: each LIST is a hashing bucket.) What follows is information
about OBLISTs as such. : 3

caici. L

15.2.1. OBLIST Nawmces

Every normally constituted OBLIST has a name. The name of an 0BLIST is an ATOM associated with
the OBLIST under the indicator OBLIST. Thus,

<GLTPROP oblist OBLIST)

<GET obhist OBLIST

b
returns the nawme of oblist.

Simitarly. every nawme of an OBLIST is associated with its OBLIST, again under the indicator ;
OBLIST, so that , i

CGLCTPROP oblist-name:atom OBLISTY ‘l

<GET obhist-name:atom OBLISTY |

e AP

returns the OBL1ST whose name is oblisi-name.

Since there is nothing special about the association of OBLISTs and their names, the name of an
OBLIST can be changed by use of PUTPROP, hoth on the OBLIST and its name. It is not wise to

change the OBL1IST association without changing the name association, since you are likely to
confuse RLAD and PRINT terribly.

You can also use PUTL or PUTPROP to remove the association between an OBLIST and its name
completely. If you want the OBLIST 1o go away (be garbage collected). and you want to keep its
name around. this must be done: otherwise the association will force it to stay, even if there are no
other references to i, (IC you have wo references to cither the nawme or the OBLIST (an ATON --
including a 1YPE name - points to its OBLIST), both of them - and their association -- will go away
without your having to remove the association, of course.) It is not recommended that you remove
the name of an OBLIST without having it go away, since then ATOMs in that OBLIST will PRINT the
same as if they were in no OBLIST -« which is defeating the purpose of this whole exercise.

e e e p————pA T YT AR T

152 - 15.2.1 Lexical Blocking

b e

140 The MDL Programming Language

15.2.2. MOBL1ST

CHMOBLIST atom fix>

("make oblist™) creates and returns a new OBLIST, containing no ATOO_B. whose name is afom, unless
there alrcady exists an OBLIST of that name, in which case it returns the existing OBLIST. fix is the
size of the OBLIST created - the number of hashing buckets. fix is optional (ignored if the OBLIST

already exists), 13 by default. If specified, fix should be a prime number, since that allows the
hashing to work better.

15.2.3. oBLIST?

COBLIST? alom?

returns #FALSE () if atom is not in any OBLIST. If atom is in an OBLIST, it returns that OBLIST.

15.3. READ and 0BL1STs

READ can be explicitly told to lnok up an ATOM in a particular OBLIST by giving the ATOM a trailer.

A trailer consists of the characters !- (exclamation-point dash) following the ATOM, immediately
followed by the name of the 0BLIST. For example,

A!-0B
specifies the unique A10i of PNAHE A which is in the OBLIST whose name is the ATOM OB.

Note that the name of the OBLIST must follow the !- with no separators (like space, tab, carriage-

return, etc.). There is a name used by default (section 15.5) which types out and is typed in as
! =separ alor.

Trailers can e used recursively:
B!-A'-08

specifics the unique ATOM of PNAME B which is in the OBLIST whose name is the unique ATOM of

PNAME A which is in the OBLIST whose nawe is 08. (Whew!) The repetition is terminated via the
look-up and insertion described below.

If an ATOM with a given PNANC is not found in the OBLIST specified by a trailer, a new ATOM with
that PNAME is created and inserted into that OBLIST.

If an OBLIST whose name is given in a trailer docs not exist, READ creates one, of length 13 buckets.

1522 - 15.3 Lexical Blocking

The MDL. Programming Language 141

If trailer notation is not used (the "normal® case). and for an ATOM that terminates a trailer, READ
looks up the PRANE of the ATOM in a LIST of OBLISTs, the LVAL of the ATOM OBLIST by default. This
look-up starts with <1 .0BLIST> and continues until .0BLIST is exhausted. If the ATOM is not
found. READ usually inserts it into <1 .0BLIST>. (It is possible to force READ to use a different
clement of the LIST of OBLISTs for new insertions. If the ATOM DEFAULT is ill that LIST, the
OBLIST following that ATOM will be used.)

15.4. PRINT and OBI I1S1s

When PRINT is given an ATOM to output. it outputs as little of the trailer as is necessary to specify
the ATON uniquely to READ. That is. if the ATOM is the first ATOM of that PNAME which READ would
find in its normal leok-up in the current .0BLIST, no trailer is output. Otherwise, ! - is output and
the nawe of the OBLIST is recursively PRINled.

Warning: there are obscure cases, which do not occur in normal practice, for which the PRINT trailer
recursion docs not terminate. For instance, if an ATOM must have a trailer printed, and the name of
the OBLIST is an ATOM in that very same OBLIST, death. Any similar circular case will also give
PRINT a hernia.

15.5. Initial State

In an initial MDL. .0BL1ST contains two OBLISTs. <1 .OBLIST) initially contains no ATOMs, and <2
-OBLIST> contains all the ATOMs whose GVALs are SUBRs or FSUBRs, as well as OBLIST, DEFAULT, T,
ete. It is difficalt to lose track of the latter: the specific trailer !-separator will always cause
reference to that OBLTST. In addition, the SUBR ROOT, which takes no arguments, always returns
that OBLIST.

The name of <ROOT> is ROOT; this ATOM is in <ROOT> and would cause infinite PRINT recursion were
it not for the use of !-separator. The name of the initial <1 .0BLISTY is INITIAL (really
INITIALY-).

The ATOM OBLIST aleo has a GUAL. ,OBLIST is initially the same as .OBLIST; however, ,OBLIST is
not affected by the SUBR< used to manipulate the OBLIST structure. It is instead used only when
errors occur.

In the case of an crror, the current ,0BLIST is checked to sce if it is "reasonable” -- that is. contains
nothing of the wrong 1YPE. (It is reasonable, but not standard, for .0BLIST to be a single OBLIST
instead of a LIST of them.) If it is reasonable, that value stays current. Otherwise, OBLIST is SET to
+OBLIST. Natc that changes made to the OBLISTs on ,0BLIST -- for example, new ATOMs added --
remain. If even ,OBLIST is unrcasonable, OBLIST is SCT and SETGed to its initial value. <ERRET>
(section 16.4) always assumes that .0BLIST is unreasonable.

153 - 15.5 Lexical Blocking

142 The MDL Programming Language

Three other OBL1STs exist in a virgin MDL: their names and purposes are as follows:
ERRORS! - contains ATONs whose PNAMES are used as error messages. It is returned by CERRORS).

INTERRUPTS!- is wsed by the interrupt system (section 215.1), It is returned by
CINTERRUPTS).

HUDDLE ! - is used infrequently by the interpreter when loading compiled programs to fix up
references 1o locations within the interpreter.

The pre-leading of compiled programs may create other 0BLISTs in an initialized MDL (Lebling,
1979). {imey

15.6. BLOCK and I NDEI OCK

These SUBRs are analogous to begin and end in Algol, etc., in the way they manipulate static
blacking (and in no ather way).

<BLOCK lcon-up:ist-of-oblists)

returns its argument after “pushing” the current LVAL of the ATOM OBLIST and making its argument
the current [VAL. You usually want <ROOT) to be an element of /ook-up, normally its last.

<ENDBLOCK>
"pops” the LVAL of the ATOM OBLIST and returns the resultant LIST of OBLISTS.

Note that this “pushing”™ and “popping” of .OBLIST is entirely independent of functional
application, bhinding. etc.

15.7. SUBRs Assaciated with Lexical Blocking

15.7.1. RLAD (again)
CREAD channel cof-routine look-up)

This is a fuller call to RCAD. /ook-up is an OBLIST or a LIST of them, used as stated in section 15.3
to look up AlOHs and insert thewm in OBLISTs. If it is not specified, .OBLIST is used. See also
sections 1LLLL 113, and 17.1.3 for other arguments.

155 - 15.7.1 Lexical Blocking

The MDL Programming Language 143

15.7.2. PARSE and LPARSE (again)
SPARSE steing radix:tfix look-up)

as was previously wentioned, applies READ's algorithm to string and returns the first MDL ob ject
resulting. This includes looking up prospective ATOMs on look-up, if given, or .OBLIST. LPARSE can
be called in the same way. See also sections 7.6.6.2 and 17.1.3 for other arguments.

15.7.3. LoOKUP
CLOOKUP séring obVist)

returns the AT0H of PNANE string in the OBLIST obiist, if there is such an ATOM; otherwise, it returns

#FALSE (). If striny would PARSE into an ATOM anyway, LOOKUP is faster, although it looks in only
one OBLIST instcad of a LIST of them.

15. 4. ATOM
CATON string)

creates and returns a spanking new ATOM of PNANE string which is guaranteed not to be on any
OBLIST.

An ATOM which is not on any OBLIST is PRINTed with a trailer of !-#FALSE ().

15.7.5. RENOVE
CREMOVE string oblist)

removes the ATOI of PNANE string from oblist and returns that ATON. If there is no such ATON,
REMOVE returns #FALSE (). Also,

CREMOVE stom>

removes afon from its OBLISY, if it is on one. It returns atom if it was on an OBLIST; otherwise it
returns #FALSE ().

15.7.6. INSERT

CINSERT string-or-atom oblist)

1572 - 15.76 Lexical Blocking

144

The MDL Programming Language

creates an ATOM of PNAMF <tris
the same PNAME as atom in o!
get your alon is

"2, inserts it into oblist and returns it. If there is already an ATOM with
Ylist, an error occurs. The standard way to avoid the error and always

COR <LOOKUP string oblist> <INSERT string oblist>)

As with RCMOVE, INSERT can also take an ATOM as its first argument; this ATOM must not be on any
OBLIST -- it wwst have heen REMOVEG, or Just created by ATOM -- else an error occurs. The OBLIST

argument is never aptional. If you would like the new ATOM to live in the OBLIST that READ would
have chosen, you can <PARSE string instead.

15.7.7. PNAME
<PNAME atom>
returns a SIRING (m'wly crea

PNAME is much f
PRINT algorithm

ted) which is atom's PNAME (“printed name”). If trailers are not nceded,
aster than UNPARSE on atom. (In fact UNPARSE has to go all the way through the
fwice. the first time 1o see how long a STRING is needed.)

15.7.8. SPNAME

SPNANE ("<hared printed name”) is identical to PNANE, except that the STRING it returns shares

storage with ofom (appendix 1), which is wore efficient if the STRING will not be wodified. PUTting
into such a STRING will cause an ecrror.

15.8. Example: Another Solution to the INC Problew

What follows is an example of the way OBLISTs are “normally” used to provide “externally

available™ ATONMs and “local” ATOMs which are not so readily available externally. Lebling (1979)
describes a systematic way to accomplish the same thing and more.

<MOBLIST INCO 1>

i"Create an OBLIST to hold your external symbols.
Its name is INCO!-INITIAL!- .*

INC!-1NCO

i"Put your external symbols into that OBLIST.
IT you have many, just write them successively."

1576 - 158 Lexical Blocking

gt N i

e mmpemgo

The MDL Programming Language 145

<BLOCK (<MOBLIST INCI'-INCO 1> <GET INCO OBLIST> <ROOT>)>
;“Create a local OBLIST, naming it INCI!-INCO, and set up .OBLIST for
reading in your program. The OBLIST INCO is incliuded in the BLOCK so
that as your external symhols are used, they will be found in the
right place. Note that the ATOM INCO is not in any OBLIST of the
BLOCK; therefore, trailer notation of !-INCO will not work within the
current BLOCK-ENDBLOCK pair.®

<DEFINE INC ;"INC is found in the INCO OBLIST." E|
(A) :"A is not found and is therefore put into INCI by READ." °
F0ECL ((VALUE A) <OR FIX FLOAT)) i
(SET .A <+ ..A DO :"A11 other ATOMs are found in the ROOT."
<ENDBLOCK D>

This example is rather trivial, but it contains all the issues, of which there are three.
The first idea is that you should create two OBLISTs, one to hold ATOMs which are to be known to

other users (TNCO), and the ather to hold internal ATOMs which are not normally of interest to others
(INCI). The case ahove has one ATOM in each category.

Second. INCO is explicitly used without trailers so that surrounding BLOCKs and ENDBLOCKs will have
an effect on it. Thus INCO will be in the OBLIST desired by the user: INC will be in INCO, and the
user can refer to it by saying INC!-INCO; INCI will also be in INCO, and can be referred to in the
same way: finally, A is really A!-INCI!~INCO. The point of all this is to structure the nesting of
OBLISTs.

Finally. if for some reason (like saving storage space) you wish to throw INCI away, you can follow
the ENDBLOCK with

<RFHOVE "INCI" <GET INCO OBLIST>>

and thus rcmove all references to it. The ability to do such pruning is one reason for structuring
OBLIST references.

Note that, even after removing INCI, you can “get A back™ -- that is, be able to type it in -- by
saying sonmicthing of the form

CINSERT <1 <1 ,TINC!-INCO>> <1 .OBLIST>>

thercby grabbing A out of the structure of INC and re-inserting it into an OBLIST. However, this
resurrccts the name collision caused by <INC!-INCO A>.

15.8 Lexical Blocking

146 The MDL Programming Language

Chapter 18. Errors, Frames, etc.

16.1. LISTEN

This SUBR takes any number of arguments. It first checks the LVALs of INCHAN, OUTCHAN, and
OBLIST for reasonability and terminal usability. In each case, if the value is unreasonable, the ATOM
is rebound to the corresponding GVAL, if reasonable, or to an invented reasonable value. LISTEN
then does CTTYECHO .INCHAN T> and <ECHOPAIR .INCHAN .OUTCHAN). Next, it PRINTs its
arguments, then PRINTs

LISTENING-AT-LEVEL / PROCESS p

where / is an integer (FIX) which is incremented each time LISTEN is called recursively, and p is an
integer identifying the PROCESS (chapter 20) in which the LISTEN was EVALed. LISTEN then does
CAPPLY CVALUE REP>>, if there is one, and if it is APPLICABLE. If not, it applies the SUBR REP
(without making a new FRAME -- see below). This SUBR drops into an infinite READ-EVAL-PRINT loop,
which can be left via ERRET (section 16.4).

The standard LISTEN loop has two features for getting a handle on objects that you have typed in
and MDL has typed out. If the ATOM L-INS has a local value that is a LIST, LISTEN will keep
recent inputs (what READ returns) in it, most recent first. Similarly, if the ATOM L-OUTS has a local
value that is a LIST, LISTEN will keep recent outputs (what EVAL returns) in it, most recent first.
The keeping is done before the PRINTing, so that S does not defeat its purpose. The user can
decide how much to keep around by setting the length of each LIST. Even if L-OUTS is not used,
the atom LAST-OUT is always SET to the last object returned by EVAL in the standard LISTEN loop.
Example:

CSET L-INS (NEWEST NEWER NEW)>$
(NEWEST NEWER NEW)

.L-INSS

(.L-INS NEWEST NEWER)

<{SET FOO 69>$

69 .
CSET FIXIT <2 .L-INS» ;"grab the last input"s
<SET FOO 69>

16 - 16.1 Errors, Frames, etc.

The MDL Programming Language 147

-L-INSS

(.L-1NS <SCT FIXIT €2 .L-INS>)> <SET FOO 69))
CPUT LEIXTIT 3 1058

<SET FOO 105>

<CVAL .FIXii.$

105

LL-1HSS

(.L-INS <EVAL .FIXIT> <PUT .FIXIT 3 105))
.roos

105

16.2. ERROR

This SUBR is the same as LISTEN, except that (1) it generates an interrupt (chapter 21). if enabled,
and (2) it PRINTs *IRROR* hefore PRINTing its arguments.

When any SUBR or FSUBR detects an anomalous condition (for example, its arguments are of the
wrong TYPCL it calls CRROR with at Jeast two arguments, including:

(I an AT1ON whose PNAME describes the problem, normally from the 0BLIST ERRORS! - (appendix

4

(2) the ATO# that names the SUBR or FSUBR, and

(3) any other information of interest,
and then returns whatever the call to ERROR returns. Exception: a few (for example DEFINE) will
take further action that depends on the value returned. This non-standard action is specified in the
error message (first ERROR argument).

16.3. FRAME (the TYPE)

A FRAME is the object placed on a PROCESS's control stack (chapter 20) whenever a SUBR, FSUBR,
RSUBR, or RSUER-LNIRY (chapter 19) is applied. (These objects are herein collectively called
"Subroutines”) It contains information describing what was applied, plus a TUPLE whose elements
are the arguments to the Subroutine applied. If any of the Subroutine's arguments are to be
evaluated. they will have been by the time the FRANE is generated.

A FRANE is an anomalous TYPE in the following ways:

(I} It cannot he typed in. It can be generated only by applying a Subroutine.

(2) 1t does not type out in any standard format. but rather as #FRAME followed by the PNAME of
the Subroutine applicd.

16.1 - 16.3 Errors, Frames, etec.

148 The MDL Programming Language

163.1. ARGS
CARGCS 7rane)

(Carguments”) returns the argument TUPLE of frame.

16.3.2. FUNCT
CFURCT 7romed>

("function”) returns the ATOM whose G/LVAL is being applied in frame.

16.3.3. FRAML (the SURR)

CERAME 17 amie>

returns the TRANC stacked hefare frame or, if there is none, it will generate an error. The oldest
(lowest) TRANE that can be veturned without error has a FUNCT of TOPLEVEL. If called with no
arguments, FRANE vetarns the topmost FRANE used in an application of ERROR or LISTEN, which was
bound by the interpreter to the ATOM LERRY, - INTERRUPTS ("last ersor”).

16.3.4. Examples

Say you have gotten an crvor. You can now type at ERROR's LISTEN loop and get things EVALed.
For example,

CEUNCT CERAME DS

I RROR

SEUNCT CERAME CHRANEDDDS

the -name-of - the - Subr outine - which-c alled-ERROR:atom
CARGS <TRAME <FRAMED> XS

the-ar pument s-to-the -Subroutine-which-c alled-£ RROR:tuple

16.4. ERRL 1
CERRET anv framed

This SUBR ("ertor return®) (1) causes the control stack to be stripped down to the level of frame, and
(2) then returns anv. The net result is that the application which generated frame is forced to return

163.1 - 164 Errors, Frawes, etc.

The MDL Programming Language 149

any. Additional side cffects that would have happened in the absence of an error may not have
happenced.

The second arguwment to [RRET is optional, by default the FRAME of the last invocation of ERROR or
LISTEN.

If ERRED is called with no arguments, it drops you all the way down to the bottom of the control
stach - before the fevel-l LISTEN loop -- and then calls LISTEN. As always, LISTEN first ensures that
MDL is reeeptive.

Examples:
(% 3 <+ al”Ms

*LRROR®

ARG-WRONG-TYPE

+

CISTENING-AT-LCVEL 2 PROCCSS 1
CARGS <FRANE <FRAMED))S

ld l]
CCRRET 9> +"This causes the + to return 5.
) &3 “finally returned by the **

Note that when you are in a call to ERROR, the most recent set of bindings is still in effect. This
means that you can examine values of duniny variables while still in the error state. For example,

<ODEFINE F (A "AUX" (B "a string"))
#DECL ((VALUE) LIST (A) STRUCTURED (B) STRING)
(.B <RCST .A 2>) ;"Return this LIST." >$§

3

<F '(I)>%

I RROR

OuUT-0F -BOUNDS

REST

LISTENING-AT-LCVEL 2 PROCESS 1

AS

(1)

0%

"a strinq"

CERRET '(5)> ; "Make the RCST return (5)."$
("a string” (%))

16.4 Errors, Frames, etc.

150 The MDL Programming Language

16.5. RE IRY

CRETRY frame>

causes the control stack to be stripped down just beyond frame, and then causes the Subroutine call
that generated frome to he done again. frame is optional, by default the FRAME of the last invocation
of ERROR or LISTEN. RETRY differs from AGAIN in that (1) it is not intended to be used in programs;
(2) it can retey any old freme (any Subroutine call), whereas AGAIN requires an ACTIVATION (PROG or
REPEAT or “"ACI"): and (3) if it retries the LVAL of a FORM that makes an ACTIVATION, it will cause
rebinding in the argument LIST, thus duplicating side effects.

16.6. UNVWIND

UNWIND is an | SUBR that takes two arguments, usually FORMs. It EVALs the first one, and, if the EVAL
returns normally, the value of the EVAL call is the value of UNWIND. If, however, during the EVAL a
non-local retwrn attempts to ceturn helow the UNWIND FRAME in the control stack, the second
argument is [VALed, its value is ignored. and the non-local return is completed. The second
argument is evaluated in the enviconment that was present when the call to UNWIND was imade. This
facility is useful for cleaning up data bases that are in inconsistent states and for closing
temporary CHANNELs that wmay be left around. FLOAD sets up an UNWIND to close its CHANNEL if the
user attempts to CRROT without finishing the FLOAD. Example:

SOEFINE CLEAN ACT (“AUX" (C COPEN "READ"™ “A FILE"D))
#DECL ((C) <OR CHANNEL FALSE> ...)
<COND (.C
CUNWIND <PROG () ... <CLOSE .C»
<CLOSE .CM)M

16.7. Contiol-G (76

Typing control0 (G, <ASCIT 7>) at MDL causes it to act just as if an error had occurred in
whatever was currently being done. You can then examine the values of variables as above,
continue by applying ERRET to one argument (which is ignored), RETRY a FRAME lower on the control
stack, or flush cverything by applying ERRET to ne arguments.

16.5 - 16.7 Errors, Frames, ete.

The MDL Programming Language 151

16.8. Control-S (*S)

Typing control-S (S, <ASCII 19)) at MDL causes it to stop what is happening and return to the
FRAME .LERR\ !-INTERRUPTS, returning the ATON T. (In the Tenex and Tops-20 versions, ~0 also
has the same cffect.)

16.9. OVCRI LOW
COVERFLOW false-or-any?

There is one crror that can be disabled: numeric overflow and underflow caused by the arithmetic
SUBRs (+, -, *, /). Thc SUBR OVERFLOW takes onc argument: if it is of TYPE FALSE,
under/overflow errors are disabled: otherwise they are enabled. The initial state is enabled.
OVERFLOW returns T or #FALSE (), reflecting the previous state. Calling it with no argument
returns the current state.

16.8 - 16.9 Errors, Frames, etc.

| —

152 The MDL Programming Language

Chapter 17. Macro-operations

17.1. READ Macros

17.1.1. % and %%

The tokens % and %% are interpreted by READ in such a way as to give a “macro” capability to MDL
similar to 'L/I's. -

Whenever READ encounters a single % - anywhere, at any depth of recursion -- it immediately,
without looking at the rest of the input, evaluates the object following the X. The result of that
cvaluation is used by READ in place of the object following the %. That is, X means “don't really
READ this, use FVAL of it instead.” % is often used in files in front of calls to ASCII, BITS (which
see). etc., although when the FUNCTION is compiled the compiler will do the evaluation if the
arguments are constant. Also seen is %.INCHAN, read as the CHANNEL in use during LOAD or FLOAD;
for example, <PUT %.INCHAN 18 8> causcs succeeding FIXes to be read as octal.

Whenever READ encounters %%, it likewise innmediately evaluates the object following the %X.
However, it completely ignores the result of that evaluation. Side effects of that evaluation remain,
of course.

Exawmple:

<DEFINC SETUP () <SET A 08

SETUP

<DEFINE NXT () <SET A <+ .A 1D2$

NXT

[A%CSETUPY ACNXTY %CNXT> (XXCSETUPY) X<KNXT>]$
(rzQ01)

17-17.01 Macro-operations

The MDL Programming Language 153

17.1.2. LINK
CLINK exp:any string oblist)

creates an object of TYPE LINK, PRIMTYPE ATOM. A LINK looks vaguely like an ATOM; it has a
PNAME (the string argument), resides in an OBLIST (the oblist argument) and has a "value" (the exp
argument). A LINK has the strange property that, whenever it is encountered by READ (that is, its
PNAME is read, just lile an ATOM, possibly with OBLIST trailers), READ substitutes the LINK's "value”
for the LINK immcdiately. The effect of READing a LINK's PNAME is exactly the same as the effect of
reading its "valuc”.

The obtlist argnment is optional, <1 .0BLIST) by default. LINK returns its first argument. The
LINK is created via INSERT, so an error results if there is already an ATOM or LINK in oblist with the
same PHANL .

The primary use of LINKs is in interactive work with MDL: expressions which are commonly used,
but annoyingly long to type, can be "linked" to PNAMEs which are shorter. The standard example is
the following:

CLINK '<ERRETY "~E" <ROOT>>

which links the ATOM of PNAME “E in the ROOT OBLIST to the expression <ERRET).

17.1.3. Program-defined Macro-characters
s

During READing from an input CHARNEL or PARSEing a STRING, any character can be made to have
a special meaning. A character can cause an arbitrary routine to be invoked, which can then return
any nwmber of clements to be put into the object being built by READ, PARSE, or LPARSE.
Translation of characters is also possible. This facility was designed for those persons who want to
use MDL READ to do large parts of their input but have to modify its actions for some areas: for
example. one might want to treat left and right parentheses as tokens, rather than as delimiters
indicating a LIST.

17.1.3.1. READ (Finally)

Associated with RCAD is an ATOM, RCAD-TABLE!-, whose local value, if any, must be a VECTOR of
elements, one for each character up to and including all characters to be trcated specially. Each
element indicates, if not 0, the action to be taken upon READ's encounter with that character. A
similar VECTOR, the local value of PARSE-TABLE!-, if any, is used to find the action to take for
characters cncountered when PARSE or LPARSE is applied to a STRING.

These tables can have up to 256 elements, one for each ASCII character and one for each possible
exclamation-point/ASClI-character pair. In MDL, the exclamation-point is used as a method of

17.1.2 - 17.1.3.1 Macro-cperations

TR

7RO O 3, W)

5 N PV

154 The MDL Programming Language

expanding the ASCH character set, and an exclamation-point/character pair is treated as one logical
character when not reading a STRING.,

The clement cortesponding ta a character is <NTH fable <+ 1 CASCII chard>>. The element
corresponding to an exclamation-point/ASCll-character pair is (NTH table <+ 129 CASCII char>>>.
The table can e shorter than 256 elements, in which case it is treated as if it were 256 long with 0
elements beyoud its actual length.

An element of the tabiles must satisfy one of the following DECL Patterns:
"0 indicates that no special action is to be taken when this character is encountered.

CHARACTER indicates that the encountered charvacter is to be translated into the given CHARACTER
Whenever it appears. except when as an object of TYPE CHARACTER, or in a STRING, or
numediately following a \.

FIX iudicates that the character is to be given the same treatment as the character with the
ASCIL value of the FIX. This allows you to cause other characters to be treated in the same
way as A-Z for example. The same exceptions apply as for a CHARACTER.

CLIST FIX> indicates the same thing, except that the character does not by itself cause a break.
Therefore, if it oceurs when reading an ATOM or number, it will be treated as part of that ATOM
or number,

APPLTCABLE (to one argument) indicates that the character is 10 be a break character. Whenever
it is encountered, the veading of the current object is finished. and the corresponding element
of the talile is APPLYed 1o the ASCIE CHARACTER. (If READ is called during the application, the
end-of-file slot of the CHANNCL temporarily contains a special kind of ACTIVATION (TYPE
REAUA) <o that end-of-file can he signalled properly to the original READ. Isn't that
wonderful?l The value veturned is taken 10 be what was read, unless an ob ject of TYPE SPLICE
is retwened. 1 so, the elements of this object, which is of PRIMTYPE LIST, are spliced in at the
peint where MDI s reading. An empty SPLICE allows one to return nothing. 1If a structured
object is not heing built, and a SPLICE is returned, elewments after the first will be ignored. A
SPLICE during reading is similar 1o a SEGHENT during evaluating, except that, in some sense, a
SPETCUT say< “expand me”, whereas the structure containing a SEGMENT says "I will expand you".

CLIST APPETCARLE > indicates the sawe thing, except that the character does not by itself cause

a break. Therefore, if it accurs when reading an ATOM or number, it will be treated as part of
that ATOH ar number,

READ takes an additional optional argument, which is what to use instead of the local value of the
ATOM READ-TABLE as the VECTOR of read-macro characters. If this argument is supplied, READ-TABLE

is rebound ta it within the call to RCAD. READ takes from zero to four arguments. The fullest call to
READ is thus:

17.1.3.1 Macro-operations

The MDL Progranuning Language 155

CREAD channel cof-routine look-up read-table:vector)
The other avguments are explained in sections 1LLLL 113, and 15.7.1.
ERROR and LISVEN vebind READ-TABLE to the GVAL of READ-TABLE, if any, else UNASSIGN it.
17.0.3.2. Exawmples
Examples of each of the different kinds of entries in macro tables:

{SET RCAD-TABLE <IVECTOR 256 0>>$
R

<PUT LREAD-TABLE <+ 1 <ASCITI '\a>> '"\A>
+"CHARACTER: translate a to A.“$

o]

abcd

Abc

CPUT LREAD=-TABLE <+ 1 <ASCIT '\%>> <ASCII '\A»
;"F1X: make % Just a normal ASCII character."$
Lo
A%BCS
A\%BC

<PUT .RCAD-TABLE <+ 1 <ASCII '\,>»> (<ASCII '\,>)»

JUCLIST TFIXD: make comma no longer a break
character, but still special if at a break."$

sl

ALRS

A\,B

y"That was an ATOM with PNAME A8 "

',8$%

,B

;" That was the FORM (GVAL B> .*

<PUT .READ-TABLE <+ 1 <(ASCIT '\:»

#FUNCTION ((X) <LIST COLON <READ)>

s "APPLICABLE: make a new thing like (< and [."$

b uai
B:A%
B
(COLON A)
:::F00%
(COLON (COLON (COLON F00)))

]

17030 - 17.1.322 Macro-operations

156 The MDL Programming Language

<PUT .READ-TABLE <+ 1 <ASCIT !'\:>>
(YEUNCTION ((X) <LIST COLON <RCAD>>))>
s "CLIST APPLICABLE>: like above, but not a break

now."$
R
B:AY
B:A
UThal was an ATOM."
111 008

{COLON (LOLON (COLON FO00)))
17.1.3.3. PARSU and LPARSE (finally)
CPARSE wtiins radin look-up parse-tablevector look-ahead:character

is the fuliest call to PARSE. PARSE can take from zero to five arguments. 1f PARSE is given no
arguments, it retuens the first objeet parsed from the local value of the STRING PARSE-STRING and
additionally St s PARSE-STRTNG to the STRING having those CHARACTERs which were parsed RESTed
of f. If PARSE is given a SIRING to parse, the ATOM PARSE-STRING is rebound to the STRING within
that eall. 10 the joee fable argument is given to PARSE, PARSE-TABLE is rebound to it within that
call to PARSE . Finally, PARSE can take a look-ahead CHARACTER, which is treated as if it were
logically concatenated to the front of the string being parsed. Other arguments are described in
sections 7.6.6.2 and 15.7.2,

LPARSE is exactly like PARSE, except that it tries to parse the whole STRING, returning a LIST of
the ob jects created.

17.2. EVAL Macros

An CVAL maceo provides thie convenience of a FUNCTION without the overhead of calling. SPECIALs,
etc. in the compiled version. A special-purpose function that is called often by FUNCTIONs that will
be compiled i1s a good candidate for an EVAL macro.

17.2.1. DEFHAC and T XPAND

DEFMAC (“detine macio™) is syntactically exactly the same as DEFINE. However, instead of creating a
FUNCTION, DITHAC creates a HACRO. A MACRO is of PRIMTYPE LIST and in fact has a FUNCTION (or

other APPLICARLE 1YPF) as its single element.

A MACRO can itsell be applicd to arguments. A MACRO is applied in a funny way, however: it is

17132 - 17.21 Macro-operations

The MDI. Programming Language 157

EVALed twice. The firet CVAL causes the MACRO's element to be applied to the MACRO's arguments.
Whatever that application returns (usually another FORM) is also EVALed. The result of the second
EVALuation is the result of applying the MACRO. EXPAND is used to perform the first EVAL without
the sccond.

To avoid complications, the first EVAL (by EXPAND, to create the object to be EVALéd the second time
around) is done in a top-level environment. The result of this policy is that two syntactically
identical invocations of a MACRO always return the same expansion to be EVALed in the second step.
The first TVAL geaerates two extra FRAMEs: one for a call to EXPAND, and one for a call to EVAL the
MACRO application in a top-level environment.

Example:

<DEEMAC INC (ATM "OPTIONAL"™ (N 1))
#DECL ((VALUE) FORM (ATHM) ATOM (N) <OR FIX FLOAT>)
<FORM SET .ATM <FORM + <FORM LVAL .ATM> .N>>>$

INC

, INCS

#MACRO (#FUNCTION ((ATM "OPTIONAL"™ (N 1)) ...))

<SCT X 1>§

1

CINC X>%

Z

X3

s

CEXPAND 'CINC X>>%

<SET X ¢+ X 15

Perhaps the intention is clearer if PARSE and % are used:
<{DCFHMAC INC (ATM "OPTIONAL"™ (N 1))

£DECL (...)

CPARSE "<SET 7%.ATH <+ Z.ATM %.N>>">>
MACROs really exhibit their advantages when they are compiled. The compiler will simply cause the
first CVALuation te occur (via CXPAND) and compile the result. The single element of a compiled
MACRO is an RSUBR or RSUBR-ENTRY.
17.2.2. Example

Suppose you want 1o change the following simple FUNCTION to a MACRO:

<DEFINE DOUBLE (X) #DECL ((X) FIX) <+ .X .X»

17.2.1 - 17.2.2 Macro-operations

158 The MDL Programming Language

You may be tempted to write:
<DEFMAC DOUBLE (X) #DECL ((X) FIX) <FORM + .X .X»

This MACRO works. but only when the argument does not use temporary bindings. Consider
CDETINE TRIPMEE (Y) <+ .Y <DOUBLE .Y>>>

If this FUNCTION is applied. the top-level binding of Y is used, not the binding just created by the
application. Compilation of this FUNCTION would probably fail, because the compiler probably
would have no top-level binding for Y. Well, how about

<DEFNAC DOUBLE ('X) <FORM + .X .X>> ;"The DECL has to go."

Now this is more like the original FUNCTION, because no longer is the argument evaluated and the
result evaluated again. And TRIPLE works. But now consider

"CDCFTNE TNC-AND-DOUBLE (Y) <DOUBLE <SET Y <+ 1 Y>>

You might hope that

CINC-AND-DOUBLE 1> -> <DOUBLE <SET Y <+ 1 >
> <DOUBLE 2>
D+ 2D
-3 4

But, when DOUBLE is applicd to that TORM, the argument is QUOTEM, so:
CINC-AND-DOUBLE 1> -> <DOUBLE <SET Y <+ 1 .Y>»
=> C<FORM + <SET Y <+ 1 .Y>> CSET Y <1 .YO»
<+ 2 D
->5

So. since the evaluation of DOUBLE's argument has a side effect, you should ensure that the
evaluation i« done exactly once, say by FORM:

<DCFHAC DOUBLE ('ANY)
<FORM PROG ((X .ANY)) #DECL ((X) FIX) '<+ .X .X>>>

As a bonus, the DECL can once more be used.

This example is intended to show that writing good MACROs is a little trickier than writing good
FUNCTIONs. Rut the effort may he worthwhile if the compiled program must be speedy.

17.2.2 Macro-operations

RENE A A

PR NSy

The MDI. Programming Language 159

Chapter 18. Machine Words and Bits

The MDL facility for dealing with uninterpreted machine words and bits involves two data TYPEs:
WORD and BITS. A WORD is simply an uninterpreted machine word, while a BITS is a "pointer” to a

set of bits within a WORD. Operating on WORDs is usually done only when compiled programs are
used (chapter 19).

18.1. WORDs

A WORD in MDL is a PDP-10 machine word of 36 bits. A WORD always PRINTs in "# format”, and its
contents arc always printed in octal (hence preceded and followed by ®). Examples:

#*WORD 0 ;"all 0s"$
#WORD *000000000000*

»WORD *x2000* ;"one bit 1"$
#WORD *000000002000*

*WORD *526252626252% :"every other bit 1"§
*WORD *H25252525252%

WORD is its own PRIMTYPL; it is alsa the PRIMTYPE of FIX, FLOAT, CHARACTER, and any other TYPE
which can fit its data into one machine word.

A WORD cannot be an argument to +, -, or indeed any SUBRs except for CHTYPE, GETBITS, PUTBITS
and several bit-manipulating functions, all to be described below. Thus any arithmetic bit
manipulation must be done by CHTYPCing a WORD to FIX, doing the arithetic, and then CHTYPEing
back to WORD. THowever, bit manipulation can be done without CHTYPEing the thing to be played
with to a WORD, so long as it is of PRIMTYPE WORD; the result of the manipulation will be of the
same TYPC as the original object or can be CHTYPE to it.

18 - 18.1 Machine Words and Bits

o

PR AR

160 The MDL Programming Language

18.2. BITS

An object of TYPE BITS is of PRIMTYPE WORD, and PRINTs just like a WORD. The internal form of a
BITS is precisely that of a PDP-10 "byte pointer”, which is, in fact, just what a BITS is.

For purposes of explaining what a B11S is. assume that the bits in a WORD are numbered from right
to left. with the tightmost bit numbered 0 and the leftmost numbered 35, as in

35 34 33 ... 210
(This is not the "vandard” ordering: the "standard” one goes from left to right.)
A BITS is most conveniently created via the SUBR BITS:

CBITS wealhifiv night-edge:dix)

returns a BLIS which “points to” a set of hits width wide, with rightmost bit right-edge. Both
arguments must he of TYPE FIX, and the second is optional, 0 by defauit.

Examples: the indicated application of BITS returns an object of TYPE BITS which points to the
indicated set of hits in a WORD:

<BITS 7> 39 v TGy

<BITS 4 18> 39 ... 2221 20 1918 17 i, O

<BIIS 3o 35 ... 0

18.3. GE1BI1S
CGLTBITS from:primtype-word bits>

where froi is an ob ject of PRINTYPE WORD, returns a new object whose TYPE is WORD. This ob ject is
constructed in the following way: the set of bits in from pointed to by bits is copied into the new
ob ject, right-ad justed, that is, lined up against the right end (bit number 0) of the new object. All
those bits of the new object which are not copicd are set to zero. In other words, GETBITS takes bits
from an arbitravy place in from and puts them at the right end of a new object. The from argument
to GETBITS is not affected.

Examples:

18.2 . 183 Machine Words and Bits

[——

The MDL Programming Language 161

CGETBITS “WORD %777777777777* <BITS 3N$
#WORD *000000000007%

CGETBITS *012345670123% <BITS 6 18>>$
i “WORD *000000000045* 3
3
i
4

18.4. PUIB11S

CPUTBITS towprimtype-word bits from:primt ype-word> 1
where fo and fror are of PRIMTYPE WORD, returns a copy of to. modified as follows: the set of bits]
in to which are pointed to by bifs are replaced by the appropriate number of rightmost bits copied {

from from (optional. 0 by default). In other words: PUTBITS takes bits from the right end of from

and stuffs thew into an arhitrary position in a copy of to. None of the arguments to PUTBITS is
affected.

Examples:

CPUTBLIS #WORD %777777777777% <BITS 6 3>>$

#NORD *777777777007x%

CPUTBITS “WORD *GG66777000111% <BITS 5 15> #WORD *123%>$
#WORD *6G6776300111%

CPUTBITS #WORD *765432107654% <BITS 18>>$

#"WORD *7065432000000%

18.5. Bitwice Boolean Operations i

Each of the SUBRs ANDB, ORB, XORB, and [QUB takes arguments of PRIMTYPE WORD and returns a
WORD which is the bitwise Boolean "and”, inclusive “or", exclusive "or", or “equivalence” (inverse of 5
exclusive “or”) respectively, of its arguments. Each takes any number of arguments. If no l
argument is given, a WORD with all bits off (ORB and XORB) or on (ANDB and EQVB) is returned. If ‘
only one argument is given, it is returned unchanged but CHTYPEd to a WORD. If more than two .‘
arguments are given. the operator is applied to the first two, then applied to that result and the |
third. ete. Be sure not to confuse AND and OR with ANDB and ORB. !

183 - 185 Machine Words and Bits

162 The MDL Programming Language

18.6. Bitwise Shifting Operations
i CLSU fromeprimtype-word amount:fiv)

retucns a new WORD cantaining the bits in from, shifted the number of bits specified by amount (mod
256, says the havdware). Zevo bits are brought in at the end being vacated: bits shifted out at the
other end are lost. I amount is positive, shifting is to the left: if amount is negative, shifting is to
the right. Examples:

<ESH 8 0>

#WORD *000000001000*
<LSHE 8 -0O%

#WORD *000000000000*

CROT frompruatype-word anount:fix>

returns a new WORD containing the bits in from, rotated the number of bits specificd by amount (mod
256, says the havdware). Rotation is a cyclic bitwise shift where bits shifted out at one end are put
back in at the other. If amount is positive, rotation is to the left: if amount is negative, rotation is to
the right. Examples:

CROT 8 0>
#WORD *000000001000*
CROT 8 -0>%
#WORD *100000000000*

18.6 Machine Words and Bits

R

pERrS———

e s .

The MDL Programming Language 163

Chapter 19. Compiled Programs

RSUBRs (“relocatable subroutines”) are machine-language programs written to run in the MDL
environment. They are usually produced by the MDL assembler (often from output produced by the
compiler) although this is not necessary. All RSUBRs have two components: the “reference vector™
and the “code vector”. In some cases the code vector is in pure storage. There is also a set of
"fixups” associated with every RSUBR, although it may not be available in the running MDL.

19.2. The Reference Vector

An RSUBR is basically a VECTOR that has been CHTYPEd to TYPE RSUBR via the SUBR RSUBR (see
below). This ex-VECTOR is the reference vector. The first three elements of the reference vector have
predefined meanings:

The first element is of TYPE CODE or PCODE and is the impure or pure code vector respectively.

The sccond clement is an ATOM and specifics the name of the RSUBR.

The third element is of TYPE DECL and declares the type/structure of the RSUBR's arguments and
result.

The rest of the clements of the reference vector are objects in garbage-collected storage that the
RSUBR needs to reference and any impure slots that the RSUBR needs to use.

When the RSUBR is running, one of the PDP-10 accumulators (with symbolic name R) is always
pointing to the reference vector, to permit rapid access to the various elements.

19 -19.2 Compiled Programs

&

me - — e

164 The MDL Programmming Language

19.3. RSUBR Linking

RSUBRs can call any APPLICABLE ob ject. all in a uniform manner. In general. a call to an F/SUBR is
linked up at assembly/compile time so that the calling instruction (UUO) points directly at the code
in the interpreter for the F/SUBR. However, the locations of most other APPLICABLEs are not
known at assembly/compife time. Therefore, the calling UUO is set up to point at a slot in the
reference vector (by indexing off accumulator R. This slot initially contains the ATOM whose
G/LVAL is the called object. The calling mechanism (UUO handler) causes control to be transferred
to the called ob ject and. depending on the state of the RSUBR-link flag, the ATOM will be replaced by
its G/LVAL. (If the call is of the “quick” variety, the called RSUBR or RSUBR-ENTRY will be CHTYPEd
o a QUICK-RSUBR or QUICK-ENTRY, respectively, before replacement.) Regardless of the RSUBR-link
flag's state. calls to FUNCTIONs are never permanently linked. A call to a non-Subroutine generates
an extra FRAMC, whase TUNCT is the dummy ATOM CALLER.

RSUBRs are linked together for faster execution, but linking may not be desirable if the RSUBRs are
being debugged. and various revisions are being re-loaded. A linked call will forever after go to the
same code, regardless of the current G/LVAL of the called ATOM. Thus, while testing RSUBRs. you
may want to disable linking. by calling the RSUBR-LINK SUBR with a FALSE argument. Calling it
with a non-FALSE argument enables linking thereafter. It returns the previous state of the link flag,
cither T or #TALSE (). Calling it with no argument returns the current state.

19.4. Pure and Impure Code

The first element of an RSUBR is the code vector, of TYPE CODE or PCODE. TYPE CODE is of
PRIMTYPE UVECTOR, and the UTYPE should be of PRIMTYPE WORD. The code vector is simply a block
of words that are the instructions which comprise the RSUBR. Since the code vector is stored just
like a standard UVECTOR, it will be moved around by the garbage collector. Therefore, all RSUBR
code is required to he location-insensitive. The compiler guarantees the location-insensitivity of its
output. The assembler helps to make the code location-insensitive by defining all labels as offsets
relative to the beginning of the code vector and causing instructions that refer to labels to index
automatically off the PDP-10 accumulator symbolically named M. N, like R, is set up by the UUO
handler, but it points to the code vector instead of the reference vector. The code vecior of an
RSUBR can be frozen (using the FREEZE SUBR) to prevent it from moving during debugging by DDT
in the superior aperating-system process.

If the first element of an RSUBR is of TYPE PCODE ("pure code”), the code vector of the RSUBR is pure
and sharable. TYPE PCODE is of PRIMTYPE WORD. The left half of the word specifies an offset into
an internal table of pure RSUBRs, and the right half specifies an offset into the block of code where
this RSUBR starts. The PCODE prints out as:

%CPCODE name:string offset:fix>

193 - 194 Compiled Programs

pre -

bk i et

e ————————

TR

The MDL Programming Language 165

where name names the entry in the user’s pure-RSUBR table, and offset is the offset. (Obviously,
PCODE is also the name of a SUBR, which generates a pure code vector.) Pure RSUBRs may also move
around. but only by being included in MDL's page map at different places. Once again M can be
used exactly as hefore 10 do lacation-independent address referencing. Individual pure code vectors
can be “unmapped” (marcked as being wot in primary storage but in their original pure-code disk
files) if the space in storage allocated for pure code is exhausted. An unmapped RSUBR is mapped in
again wheuever needed. Al pure RSUBRs are unmapped before a SAVE file is written, so that the
code is not duplicated on disk. A purificd RSUBR must use RGLOC (“relative GLOC") instead of GLOC.
RGLOC produces ob jects of TYPE LOCR instead of LOCD.

19.5. TYPE-C and TYPE-U

In order to handle wser NCWTYPCs reasonably, the internal TYPE codes for them have to be able to be
different from one MDL run to another. Therefore, references to the TYPE codes must be in the
reference vector rather than the code vector. To help handle this problem, two TYPEs exist, TYPE-C
("type code”) and TYPE-W ("type word"), both of PRINTYPE WORD. They print as:

%LTYPE=C 1y pe primtype:atorm)
%#S<TYPE=W type primlype:atom)

The SUBR TYPE-C produces an internal TYPE code for the type, and TYPE-W produces a prototype
"TYPE word” (appendix 1) for an object of that TYPE. The primtype argument is optional, included
only as a check against the call to NEWTYPE. TYPE-W can also take a third argument, of PRIMTYPE
WORD, whose right half is included in the generated "TYPE word”. If type is not a valid TYPE, a
NEWTYPE is automatically done.

To be complete, a similar SUBR and TYPE should be mentioned here.

<PRIMIYPE-C fyped

produces an internal "storage allocation code” (appendix 1) for the type. The value is of TYPE
PRIMTYPE-C, PRIMTYPC WORD. In almost all cases the SUBR TYPEPRIM gives just as much

information, except in the case of TCMPLATCs: all TYPEs of TEMPLATEs have the same TYPEPRIM, but
they all have different PRIMTYPE-Cs.

19.6. RSUBR (the SUBR)
<RSUBR [code name decl ref ref ...]>

CHTYPEs its argument to an RSUBR, after checking it for legality. RSUBR is rarely called other than

19.4 - 19.6 Compiled Programs

bl bt o i i

A s

r—————-—'————-—f e VSO

166 The MDL Programming Language

S——

in the MDL Assembler (Lebling. 1979). It can be used if changes ust be made to an RSUBR that are
prohibited by MDL's built-in safety mechanisms. For example, if the GVAL of name is an RSUBR:

C(SET FIXIT <CHTYPE ,name VECTOR>>$
Bl :

...(changes to .FIXIT)...

(SETG name <RSUBR .FIXIT>>$
#RSUBR [...]

19.7. RSUBR-ENTRY

RSUBRs can have multiple entry points. An RSUBR-ENTRY can be applied to arguments exactly like
an RSUBR.

CRSUBR-ENTRY [rsubr-or-atom name:atom decl] offset:fix>

returns the VECTOR argument CHTYPEd to an RSUBR-ENTRY into the rsubr at the spec: icd offset. If
the RSUBR-ENTRY is to have a DECL (RSUBR style), it should come as shown.

CENTRY-LOC rsubr-entry>

("entry location”) returns the offset into the RSUBR of this entry.

19.8. RSUBRs in Files

There are three kinds of files that can contain RSUBRs, identified by second names BINARY, NBIN
and FBIN. There is nothing magic about these names, but they are used by convention.

A BINARY file is a completely ASCII file containing complete impure RSUBRs in character '
representation. Even a code vector appears as #CODE followed by a UVECTOR of PRIMTYPE WORDs.
BINARY files are generally slow to load, because of all the parsing that must be done.

An NBIN file contains a mixture of ASCIL characters and binary code. The start of a binary

portion is signalled fo READ by the character control-C, so naive readers of an NBIN file on ITS may ;
incorrectly assume that it ends before any binary code appears. An NBIN file cannot be edited with ’
a text editor. An RSUBR is written in NBIN format by being PRINTed on a "PRINTB® CHANNEL. The ?
RSUBRs in NBIN files are not purified either.

196-19.8 Compiled Programs

——

e T T———

The MDL Programming Language 167

An FBIN file is actually part of a triad of files. The FBIN file(s) itself is the impure part of a
collection of purified RSUBRs. It is simply ASCII and can be edited at will. (Exception: in the ITS
and Tops-20 versions, the first object in the file should not be removed or changed in any way, lest
a "grim reaper” program for FBIN files think that the other files in the triad are obsolete and delete
them.) The pure code itself resides (in the ITS and Tops-20 versions) in a special large file that
contains all cunrently-used pure code, or (in the Tenex version) in a file in a special disk directory
with first name the same as the name argument to PCODE for the RSUBR. The pure-code file is page-
mapped directly into MDL storage in read-only mode. It can be unmapped when the pure storage
must be reclaimed, and it can be mapped at a different storage address when pure storage must be
compacted. There is also a "fixup” file (see below) or portion of a file associated with the FBIN to
round out the triad.

An initial MDL can have pure RSUBRs in it that were "loaded” during the initialization procedure.
The files are not page-mapped in until they are actually needed. The "loading™ has other side
effects. such as the creation of OBLISTs (chapter 15). Exactly what is pre-loaded is outside the scope
of this document.

19.9. Fixups

The purpose of “finups” is to correct references in the RSUBR to parts of the interpreter that change
from one release of MDL 10 the next. The reason the fixups contain a release number is so that
they can be completely ignored when an RSUBR is Joaded into the same release of MDL as that from
which it was last written out.

There are three forms of fixups, corresponding to the three kinds of RSUBR files. ASCII RSUBRs,
found in BINARY files, have ASCII fixups. The fixups are contained in a LIST that has the
following format:

(MOL-release:fix
name:atom value:fix (use:fix usefix ...)
name:atom value:fix (use:fix usefix ...)

2)

The fixups in NBIN files and the fixup files associated with FBIN files are in a fast internal format
that looks like a UVECTOR of PRIMTYPE WORDs.

Fixups are usually discarded after they are used during the Joading procedure. However, if, while
reading a BINARY or NBIN file the ATOM KEEP-FIXUPS!~ has a non-FALSE LVAL, the fixups will be
kept. via an association between the RSUBR and the ATOM RSUBR. It should be noted that, besides
correcting the code, the fixups themselves are corrected when KEEP-FIXUPS is bound and true. Also,
the assembler and compiler make the same association when they first create an RSUBR, so that it
can be written out with its fixups.

198 - 199 Compiled Programs

t
;
b

168 The MDL Programming Language

In the case of pure RSUBRs (FBIN files), things are a little different. If a pure-code file exists for
this release of MDL. it is used immediately, and the fixups are completely ignored. 1f a pure-code
file for this relcase docsn't exist, the fixup file is used to create a new copy of the file from an old
one. and also a new revision of the fixup file is created to g0 with the new pure-code file. This all
goes on automatically behind the user's back.

199 Compiled Programs

The MDL Programming Language 169

Chapter 20. Coroutines

!
This chapter purports to explain the coroutine primitives of MDL. It does make some attempt to i
explain coroutines as such, but only as required to specify the primitives. If you are unfamiliar ‘
with the basic concepts, confusion will probably reign.

A coroutine in MDL is implemented by an object of TYPE PROCESS. In this manual, this use of the
word “process” is distinguished by capitalization from its normal use of denoting an operating-
system process (which various systems call a process, job, fork, task, etc.).

MDL’s built-in coroutine primitives do not include a "time-sharing system”. Only one PROCESS is
ever running at a time, and control is passed back and forth between PROCESSes on a coroutine-like
basis. The primitives are sufficicnt, however, to allow the writing of a "time-sharing system” in
MDL, with the additional use of the MDL interrupt primitives. This has, in fact, been done.

20.1. PROCESS (the 1YPE)

A PROCESS is an object which contains the "current state” of a computation. This includes the
LVALs of ATOMs ("bindings”), "depth” of functional application, and "position” within the application
of each applied function. Some of the things which are not part of any specific PROCESS are the
GVALs of ATOMs. associations (ASOCs), and the contents of OBLISTs. GVALs (with OBLISTs) are a chief
means of communication and sharing between PROCESSes (all PROCESSes can refer to the SUBR which
is the GVAL of +, for instance). Note that an LVAL in one PROCESS cannot easily be directly
referenced from another PROCESS.

A PROCESS PRINTs as #PROCESS p, where p is a FIX which uniquely identifies the PROCESS; p is the
"PROCESS number” typed out by LISTEN. A PROCESS cannot be read in by READ.

The term “run a PROCESS" will be used below to mean "performm some computation, using the
PROCESS to record the intermediate states of that computation”.

i
N.B.: A PROCESS is a rather large ob ject: creating one will often cause a garbage collection. f

20 - 20.1 Coroutines

170 The MDL Programming Language

20.2. STATE of a PROCESS
(STATE process)

returns an ATOM (in the ROOT 0BLIST) which indicates the "state” of the PROCESS process. The ATOMs
which STATE can return. and their meanings, are as follows:

RUNARBLE (sic) -- process has never ever been run.

RUNNING -- process is currently running. that is, it did the application of STATE.
RESUMABLE -- process has been run, is not currently running, and can run again.
DEAD -- process Iu.;ns been run, but it can not run again: it has “terminated”.

In addition. an interrupt (chapter 21) can be enabled to detect the time at which a PROCESS becomes

“blocked” (waiting for terminal input) or “unblocked” (terminal input arrived). (The STATE BLOCKED
has not been implemented.)

20.3. PROCESS (the SUBR)

CPROCESS starter:applicable)

creates and returns a new PROCESS but does not run it; the STATE of the returned PROCESS is
RUNABLE (sic).

starter is something applicable to one argument, which must be evaluated. starter is used both in

starting and "terminating” a PROCESS. In particular, if the starter of a PROCESS ever returns a
value, that PROCESS becomes DEAD.

20.4. RESUME

The SUBR RESUME is used to cause a computation to start or to continue running in another
PROCESS. An application of RESUME looks like this:

SRESUME retval:any process)

where refval is the “returned value” (sce below) of the PROCESS that does the RESUME, and process is
the PROCESS to be started or continued.

202 - 20.4 Coroutines

e T

The MDL Programming Language 171

The process argument to RESUME is optional, by default the last PROCESS, if any, to RESUME the

PROCESS in which this RESUME is applicd. If and when the current PROCESS is later RESUMEd by
another PROCESS, that RESUME's retval is returned as the value of this RESUME .

20.5. Switching PROCESSes

20.5.1. Starting Up a New PROCESS

Let us say that we are running in some PROCESS, and that this original PROCESS is the GVAL of PO.
Somewhere, we have evaluated

<SETG P1 <PROCESS ,STARTER>>
where ,STARTER is some appropriate function. Now, in ,P0, we evaluate
<RESUME .A ,P1>

and the following happens:

(1) In ,PO the arguments of the RESUME are evaluated: that is, we get that LVAL of A which is
current in , PO and the GVAL of P1.

(2) The STATE of ,PO is changed to RESUMABLE and ,PO is “frozen” right where it is, in the
middle of the RESUME.

(3) The STATE of ,P1 is changed to RUNNING, and ,STARTER is applied to ,P0’s LVAL of A in
2P1. ,P1 now continues on its way, evaluating the body of ,STARTER.

The .A in the RESUNE could have been anything, of course. The important point is that, whatever it
is, it is evaluated in ,P0.

What happens next depends, of course, on what , STARTER does.

20.5.2. Top-level Return

Let us initially assume that ,STARTER does nothing relating to PROCESSes, but instead simply
returns a valuc -- say starval. What happens when ,STARTER returns is this:

(1) The STATE of ,P1 is changed to DEAD. ,P1 can never again be RESUMEd.

20.4 - 20.5.2 Coroutines

172 The MDL Programming Language
(2) The last PROCESS to RESUME ,Pl is found, namely ,P0, and its STATE is changed to
RUNNING.

(3) starval is returned in PO as the value of the original RESUME, and ,PO continues where it
left off.

Allin all, this simple case looks just like an elaborate version of applying ,STARTER to .A in ,PO.

20.5.3. Symmetric RESUMEing

Now suppase that while still in ,P1 the following is evaluated, either in ,STARTER or in something
called by ,STARTER:

CRESUME .BAR ,P0>
This is what happens:
(1) The arguments of the RESUME are evaluated in ,P1.

(2) The STATE of ,P1 is changed to RESUMABLE, and ,Pl is “frozen” right in the middle of the
RESUME .

(3) The STATE of ,P0 is changed to RUNNING, and ,P1's LVAL of BAR is returned as the value of
2PO's original RESUME. PO then continues right where it left off.

This is the interesting case, because ,P0 can now do another RESUME of ,P1; this will "turn of f"
PO, pass a value to ,P1 and "turn on” ,P1. ,P1 can now again RESUME ,P0, which can RESUME
»P1 back again, etc. ad nauseam, with everything done in a perfectly symmetric manner. This can
obviously also be done with three or more PROCESSes in the same manner.

Note how this differs from wormal functional application: you cannot “return” from a function
without destroying the state that function is in. The whole point of PROCESSes is that you can
“return” (RESUME). remembering your state, and later continue where you left off.

20.6. Example

20.5.2 - 20.6 Coroutines

r—-—'-—--—-——'_m—v -
E

The MDL Programming Language 173

;"Initially, we are in LISTEN in some PROCESS.*®
<DEFINE SUM3 (A)
#DECL ((A) <OR FIX FLOAT>)
<REPEAT ((S .A))
#DECL ((S) <OR FIX FLOATY)
{SET S <+ .S <RESUME "GOT 1*>>» ;
(SET S <+ .S <RESUME "GOT 2">» ;
CSET S <RESUME .S>>>)>$§ :

SUM3

;"SUM3, used as the startup function of another PROCESS,
gets RESUMEd with numbers. It returns the sum of the last
three numbers it was given every third RESUME.®

CSETG SUMUP <PROCESS ,SUM3>>$

#PROCESS 2

;"Now we start SUMUP and give SUM3 its three numbers."
CRESUME 5 ,SUMUP>$

“GOT 1"

CRESUME 1 ,SUMUP>S

"GOT 2"

CRESUME 2 ,SUMUP>}

8

Just as a note, by taking advantage of MDL's order of evaluation, SUM3 could have been written as:

<DEFINLC SUM3 (A)
<REPEAT ((S .A))
#DECL ((A S) <OR FIX FLOAT>)
CSET S <RESUME <+ .S <RESUME "GOT 1"> <RESUME "GOT 2">>>>>>

20.7. Other Coroutining Features

20.7.1. BREAK~SEQ

{BREAK-SCQ any process>
("break evaluation sequence”) returns process, which must be RESUMABLE, after having modified it
so that when it is next RESUMEG, it will first evaluate any and then do an absolutely normal RESUME ;
the value returned by any is thrown away, and the value given by the RESUME is used normally.
If a PROCESS is BREAK-SEQed more than once between RESUMES, all of the anys BREAK-SEQed onto it

will be remembered and evaluated when the RESUME is finally done. The anys will be evaluated in

20.6 - 20.7.1 Coroutines

174 The MDL Programming Language

“last-in first-out” order. The FRAME generated by EVALing more than one any will have as its FUNCT
the dummy ATOM BREAKER.

20.7.2. MAIN

When you initially start up MDL, the PROCESS in which you are running is slightly “special” in
these two ways:

(I) Any attempt to cause it to become DEAD will be met with an error.
(2) <MAIN> always returns that PROCESS.

The PROCESS number of <MAIN> is always 1. The initial GVAL of THIS-PROCESS is what MAIN always
returns, #PROCESS 1.

20.7.3. ME

<ME>

returns the PROCESS in which it is evaluated. The LVAL of THIS-PROCESS in a RUNABLE (new)
PROCESS is what ME always returns.

20.7.4. RESUMER
CRESUMER process>

returns the PROCESS which last RESUME process. If no PROCESS has ever RESUMEd process, it returns
#FALSE (). process is optional, <ME> by default. Note that <MAIN> does not ever have any resumer.
Example:

<PROG ((R <RESUMER>)) ;"not effective in <MAIN>"
#DECL ((R) <OR PROCESS FALSE>)
<AND .R

{==? (STATE .R> RESUMABLE>
CRESUME T .R>»

20.7.5. SUICIDE

{SUICIDE retval process)

20.7.1 - 20.7.5 Coroutines

The MDL Programming Language 175

acts just like RESUME, but clobbers the PROCESS (which cannot be <MAINY) in which it is evaluated to
the STATE DEAD.

20.7.6. 1STEP

CISTEP process>
returns process, after putting it into "single-step mode”.
A PROCESS in single-step mode, whenever RESUMEd, runs only until an application of EVAL in it
begins or finishes. At that point in time, the PROCESS that did the 1STEP is RESUMEd, with a retval
which is a TUPLE. If an application of EVAL just began, the TUPLE contains the ATOM EVLIN and
the arguments to EVAL. If an application of EVAL just finished, the TUPLE contains the ATOM
EVLOUT and the resuit of the evaluation.
process will remain in single-step mode until FREE-RUN (below) is applied to it. Until then, it will
stop before and after each CVAL in it. Exception: if it is RESUMED from an EVLIN break with a retval
of TYPE DISMISS (PRIMTYPE ATOM), it will leave single-step mode only until the current call to
EVAL is about to return. Thus lower-level EVALs are skipped over without leaving the mode. The
usefulness of this mode in debugging is obvious.
20.7.7. FREE-RUN

<FRCE-RUN process>

takes its argument out of single-step mode. Only the PROCESS that put process into single-step
mode can take it out of the mode: if another PROCESS tries, FREE-RUN returns a FALSE.

20.8. Sncakiness with PROCESSes

FRAMEs, ENVIRONMENTs, TAGs, and ACTIVATIONs are specific to the PROCESS which created them, and
each "knows its own father”. Any SUBR which takes these objects as arguments can take one which
was gencrated by any PROCESS, no matter where the SUBR is really applied. This provides a rather
sneaky means of crossing between PROCESSes. The various cases are as follows:

GO, RETURN, AGAIN, and ERRET, given arguments which lie in another PROCESS, each effectively
“restarts” the PROCESS of its argument and acts as if it were evaluated over there. If the PROCESS in

which it was executed is later RESUMEG, it returns a value just like RESUME!

SET, UNASSIGN, BOUND?, ASSIGNED?, LVAL, VALUE, and LLOC, given optional ENVIRONMENT

20.7.5 - 20.8 Coroutines

———

176 The MDL Programming Language

arguments which lie in another PROCESS, will gleefully change, or return, the local values of ATOMs
in the other PROCESS. The optional argument can equally well be a PROCESS, FRAME, or
ACTIVATION in another PROCESS; in those cases, each uses the ENVIRONMENT which is current in the
place specified.

FRAME, ARGS, and FUNCT will be glad to return the FRAMES, argument TUPLEs, and applied
Subroutine names of another PROCESS. If one is given a PROCESS (including <ME)) as an argument

instead of a FRAME, it ceturns all or the appropriate part of the topmost FRAME on that PROCESS's
control stack.

I EVAL is applied in PROCESS P1 with an ENVIRONMENT argument from a PROCESS P2, it will do the
evaluation in P1 but with P2's ENVIRONMENT (). That is, the other PROCESS's LVALS, etc. will be used,
but (1) any new I'RAMCs needed in the course of the evaluation will be created in P1; and (2) P1 will
be RUNNING -- not P2. Note the following: if the EVAL in P} eventually causes a RESUME of P2, P2
could functionally retucn to below the point where the ENVIRONMENT used in P1 is defined; a RESUME
of P1 at this point would cause an error due to an invalid ENVIRONNENT. (Once again, LEGAL? can
be used to forestall this)

20.9. Final Notes

() A RESUMABLE PROCESS can be used in place of an ENVIRONMENT in any application. The
“current” ENVIRONMENT of the PROCESS is cffectively used.

(2) FRAMES and ENVIRONMENTS can be CHTYPEd arbitrarily to one another, or an ACTIVATION can be
CHTYPEM to either of thew, and the result “works™. Historically, these different TYPEs were first used
with different SUBRs - FRAME with ERRET, ENVIRONMENT with LVAL, ACTIVATION with RETURN -
hence the invention of different TYPEs with similar properties,

(3) Bugs in multi-PROCESS programs usually exhibit a degree of subtlety and nastiness otherwise

unknowa to the human mind. If when attempting to work with multiple PROCESSes you begin to
feel that you are rapidly going insane, you are in good company.

20.8 - 209 : Coroutines

The MDL Programming Language 177

Chapter 21. Interrupts

The MDL interrupt-handling facilities provide the ability to say the followmg whenever “this
event” occurs, stop whatever is being done at the time and perform "this action™; when "this action”
is finished, continue with whatever was originally being done. "This event” can be things like the
typing of a character at a terminal, a time interval ending, a PROCESS becoming blocked, or a
program-defined and -gencrated "event”. "This action” is the application of a specified APPLICABLE
ob ject to arguments provided by the MDL interrupt system. The sets of events and actions can be
changed in extremely flexible ways, which accounts for both the variety of SUBRs and arguments,
and the rich interweaving of the topics in this chapter. Interrupt handling is a kind of parallel
processing: a program can be divided into a "main-level” part and one or more interrupt handlers
that execute only when conditions are ripe.

21.1. Definitions of Terns

An interrupt is not an object in MDL, but rather a class of events, for example, “ticks” of a clock,
garbage collections, the typing of a character at a terminal, etc.

An interrupt is said occur when one of the events in its class takes place.

An external interrupt is one whose occurrences are signaled to MDL by the operating system, for
example, “ticks” of a clock. An internal interrupt is one whose occurrences are detected by MDL
itself, for example. garbage collections. MDL can arrange for the operating system not to signal

occurrences of an external interrupt to it then, as far as MDL is concerned, that interrupt does not
occur.

Each interrupt has a name whicl is either a STRING (for example, *6C", "CHAR", "WRITE") or an
ATOM with that PNAME in a special OBLIST, named INTERRUPTS!- . (This OBLIST is returned by
CINTERRUPTS>.) Certain names must always be further specified by a CHANNEL or a LOCATIVE to
tell which interrupt by that name is meant.

When an interrupt occurs, the interpreter looks for an association on the interrupt's name. If there

is an association, its AVALUE should be an IHEADER, which heads a list of actions to be performed.
In each IHEADER is the name of the interrupt with which the IHEADER is or was associated.

21 - 211 Interrupts

178 The MDL Programming Language

In each THEADER is an element telling whether it is disabled. If an IHEADER is disabled, then none of
its actions is performed. The opposite of disabled is enabled. It is sometimes useful to disable an
THEADER temporarily, but removing its association with the interrupt's name is better than long-
term disabling. There are SUBRs for creating an IHEADER, associating it with an interrupt, and later
removing the association.

In each THEADER is a priority, a FIX greater than 0 which specifies the interrupt's "importance”.
The processing of a higher-priority (larger-numbered) interrupt will supersede the processing of a
lower-priority (smaller-numbercd) intercupt until the high-priority interrupt has been handled.

In each THEADER is a (possibly empty) list of HANDLERs. (This list is not a MDL LIST.) Each
HANDLER corresponds to an action to perform. There are SUBRs for creating a HANDLER, adding it to
an IHEADCR's list, and later removing it.

In each HANDLER is a function that we will call a handler (in lower case), despite possible confusion,
because that is really the best nawe for it. An action consists of applying a handler to arguments
supplicd by the interrupt system. The number and meaning of the arguments depend on the name
of the interrupt. In cach NANDLER is an element telling in which PROCESS the action should be
perforined. :

21.2. EVENT

CEVENT name priority which)

creates and returns an enabled IHEADER with no HANDLERs. The name may be an ATOM in the
INTERRUPTS OBLIST or a STRING; if it is a STRING, EVENT does a LOOKUP or INSERT in
CINTERRUPTS>. If there alrcady is an IHEADER associated with name, EVENT just returns it, ignoring
the given priority.

which must be given only for certain names:

It must be a CHANNEL if and only if name is "CHAR" (or CHAR!-INTERRUPTS). In this case it is
the input CHANNEL from the (pseudo-)terminal or Network socket whose received characters will
cause the interrupt to occur, or the output CHANNEL to the pseudo-terminal or Network socket
whose desired characters will cause the interrupt to occur. (See below. Pseudo-terminals are not
available in the Tenex and Tops-20 versions.)

The argument must be a LOCATIVE if and only if name is "READ" (or READ!-INTERRUPTS) or
"WRITE" (or WRITE!-INTERRUPTS). 1In this case it specifies an object to be "monitored” for
usage by (interpreted) MDL programs (section 21.8.9).

If the interrupt is external, MDL arranges for the operating system to signal its occurrences.

211 - 21.2 Interrupts

T A e

The MDL Programming Language 179

21.3. HANDLER (the SUBR)

CHANDLER iheader applicable process)

creates a HANDLER, adds it to the front of iheader's HANDLER list (first action to be performed), and
returns it as a value. applicable may be any APPLICABLE object that takes the proper number of
arguments. (None of the arguments can be QUOTEd: they must all be evaluated at call time.) process

is the PROCESS in which the handler will be applied. by default whatever PROCESS was running when
the interrupt occurred.

The value returned by the handler is ignored, unless it is of TYPE DISMISS (PRIMTYPE ATOM), in
which case none of the remaining actions in the list will be performed.

The processing of an interrupt's actions can terminate prematurely if a handler calls the SUBR
DISMISS (see below).

21.4. OFF

<OFF iheader)

removes the assaciation between iheader and the name of its interrupt, and then disables iheader and
returns it. (An crror occurs if there is no association.) If the interrupt is external, MDL arranges for
the operating system not to signal its occurrences.

COFF mame which>

finds the THEADER associated with name and proceeds as above, returning the IHEADER. which must

be given only for certain names, as for EVENT. Caution: if you <OFF "CHAR" ,INCHAN>, MDL will
become deaf.

COFF handler >

returns handler after removing it from its list of actions. There is no effect on any other HANDLERs
in the list.

Now that you know how to remove IHEADERs and HANDLERs from their normal places, you need to
know how to put them back:

CEVENT ihecader)

If iheader was previously disabled or disassociated from its name, EVENT will associate and enable it.

CHANDLER theader handler)>

213 - 214 Interrupts

B

ST

180 The MDL Programming Language

If handler was previously removed from its list, HANDLER will add it to the front of iheader's list of
actions. Note that process cannot be specified.

21.5. THEADER and HANDLER (1he TYPEs)

Both these TYPEs are of PRINTYPE VECTOR, but they do not PRINT that way, since they are self-
referencing. Instead they PRINT as

#ty pe mostnteresting-element

The contents of IHEADERs and HANDLERs can be changed by PUT, and the new values will then
determine the behavior of MDL,

Before describing the clements of these TYPEs in detail, here are a picture and a Pattern, both
purporting to show how they look:

#IHEADER [name:atom or which

disabled?

e > #HANDLER [*=-===v-ncue > #HANDLER [#HANDLER []

priority] (----cccveocno L $--me- -
applicable | applicable
process] (======- + process]

CIHEADER <OR ATOM CHANNEL LOCATIVE)>
COR '#LOSE 0 '#LOSE -1>
CHANDLER HANDLER <OR HANDLER IHEADER)> APPLICABLE PROCESS)
FIX>

21.5.1. IHEADER
The elewments of an THCADER are as follows:
(1) name of interrupt (ATOM, or CHANNEL if the name is "CHAR®, or LOCATIVE if the name is
"READ" or "WRITE")
(2) nou-zeca if and only if disabled
(3) First HANDLER, if any, else a zero-length HANDLER
(4) priority

If you lose track of an THEADER, you can get it via the association:

For "CHAR" interrupts, <GET channel INTERRUPT> returns the IHEADER or #FALSE () if there is

214 - 21.5.1 Interrupts

The MDL Programming Language 181

no association: <EVENT "CHAR™ 0 channel> returns the IHEADER, creating it if there is no
association.

For "READ" interrupts, <GET locative READ!-INTERRUPTS) returns the IHEADER or #FALSE () if
there is no association: CCVENT “READ" 0 /ocative) returns the IHEADER, creating it if there is
no association.

For "WRITE" interrupts, <GET locative WRITE!-INTERRUPTS> returns the IHEADER or #FALSE ()
if there is no association: CEVENT "WRITE" 0 locative> returns the IHEADER, creating it if there
iS No assaciation,

Otherwise, the THEADER is PUT on the name ATOM with the indicator INTERRUPT. Thus, for
example, <GCT CLOCK!-INTERRUPTS INTERRUPT) returns the IHEADER for the clock interrupt or
#FALSE () if there is no association: C<EVENT "CLOCK" 0> returns the IHEADER, creating it if
there is no association.

21.5.2. HANDL ER

A HANDLER specifies a particular action for a particular interrupt. The elements of a HANDLER are as
follows:

(1) next HANDLER if any, else a zero-length HANDLER

(2) previous HANDLER or the THEADCR (Thus the HANDLERs of a given interrupt form a "doubly-
linked list” chaining between each other and back to the IHEADER.)

(3) handler to be applied (anything APPLICABLE that evaluates its arguments -- the application
is done not by APPLY but by RUNINT, which can take a PROCESS argument: see next line)

(4) PROCESS in which the handler will be applied, or #PROCESS 0, meaning whatever PROCESS
was running when the interrupt occurred (In the former case, RUNINT is applied to the handler
and its arguments in the currently running PROCESS, which causes an APPLY in the PROCESS
stored in the HANDLER, which PROCESS must be RESUMABLE. The running PROCESS becomes
RESUMABLE, and the stored PROCESS becomes RUNNING, but no other PROCESS variables (for
example RESUMER) are changed.)

21.6. Other SUBRs

CON name applicable priority:fix process which)

is equivalent to

21.5.1 - 21.6 Interrupts

182 The MDL Programming Language

CHANDLER <EVENT name priority which>
applicable process)

ON is a combination of EVENT and HANDLER: it creates (or finds) the IHEADER, associates and enables
it. adds a HANDLER to the front of the list (first to be performed), and returns the HANDLER .

<DISABLE iheader)

is effectively <PUT iheader 2 #LOSE -1>. Actually the TYPE LOSE is unimportant, but the -1
signifies that iheader is disabled.

CENABLE iheader)

is effectively <PUT iheader 2 #LOSE 0>. Actually the TYPE LOSE is unimportant, but the 0
significs that theader is enabled.

2L.7. Prioritics and Interrupt Levels

At any given time there is a defined interrupt level. This is a FIX which determines which
interrupts can really "interrupt” - that is, cause the current processing to be suspended while their
wants ave satisfied. Normal, non-interrupt programs operate at an interrupt level of 0 (zero). An
interrupt is processed at an interrupt level equal to the interrupt's priority.

21L.7.1. Interrupt Processing

Interrupts "actually™ occur only at well-defined points in time: during a call to a Subroutine, or at
critical places within Subroutines (for example, during each iteration of MAPF on a LIST, which

may be circular), or while a PROCESS is "BLOCKED" (see below). No interrupts can occur during
garbage collection.

What actually happens when an cnabled interrupt occurs is that the priority of the interrupt is
compared with the current interrupt level, and the following is done:

If the priority is greater than the current interrupt level, the current processing is “frozen in its
tracks” and processing of the action(s) specified for that interrupt begins.

If the priority is less than or equal to the current interrupt level, the interrupt occurrence is queued

== that is, the fact that it occurred is saved away for processing when the interrupt level becomes low
enough.

When the processing of an interrupt's actions is completed, MDL usually (1) “acts as if" the

26- 2171 Interrupts

mdos =% WIS VENEE

The MDL Programming Language 183

previously-existing interrupt level is restored, and processing continues on what was left off
(perhaps for no time duration) and (2) "acts as if" any queued interrupt occurrences actually
occurred right then, in their original order of occurrence.

21.7.2. INT-LEVFL
The SUBR INT-LEVEL is used to examine and change the current interrupt level directly. |
CINT-LEVEL> ; '
simply returns the current interrupt level.
CINT-LEVEL fixd
changes the interrupt level to its argument and returns the previously-existing interrupt level.

If INT-LCVEL lowers the interrupt level, it does not “really” return uuntil all queued occurrences of
interrupts of priority higher than the target priority have been processed.

Setting the INT-LEVEL extremely high (for example, CINT-LEVEL <CHTYPE <MIN> FIX)>>) effectively
disables all interrupts (but occurrences of cnabled interrupts will still be queued).

If LISTEN or ERROR is called when the INT-LEVEL is not zero, then the typeout will be

LISTENTNG-AT-LEVEL / PROCESS p INT-LEVEL /

21.7.3. DISMISS

DISMISS permits a handler to return an arbitrary value for an arbitrary ACTIVATION at an arbitrary
interrupt level. The call is as follows:

CDISMISS value:any activation int-level:fix)

where only the value is required. If activation is omitted, return is to the place interrupted from, and
value is ignored. If int-level is omitted, the INT-LEVEL prior to the current interrupt is restored.

2070 - 2178 Interrupts

N

184 The MDL Programming Language

21.8. Specific Interrupts

Descriptions of the characteristics of particular "built-in” MDL interrupts follow. Each is named by
its STRING name. Expect this list to be incomplete yesterday.

"CHAR" is currently the most complex built-in interrupt, because it serves duty in several ways.
These different ways will be described in several different sections. All ways are concerned with
characters or machine words that arrive or depart at unpredictable times, because MDL is
communicating with a person or another processor. Each "CHAR" IHEADER has a CHANNEL for the
element that names the interrupt, and the mode of the CHANNEL tells what kinds of “"CHAR®
interrupts occur to be handled through that THEADER.

(1) If the CHANNEL is for input, "CHAR™ occurs every time an "interesting” character (see below)
is received from the CHANNEL's real terminal, or any character is received from the
CHANNEL's pseudo-terminal, or a character or word is received from the CHANNEL's Network
socket, or indeed (in the ITS version) the operating system generates an interrupt for any
rcason.

(2) If the CHANNEL is for output to a pscudo-terminal or Network socket, "CHAR" occurs every
time a character or word is wanted.

(3) If the CHANNEL is for output to a terminal, "CHAR" occurs every time a line-feed character is
output or (in the ITS version) the operating system generates a screen-full interrupt for
the terminal.

21.8.1. "CHAR" received

A handler for an input "CHAR" interrupt on a real terminal must take two arguments: the
CHARACTER which was typed. and the CHANNEL on which it was typed.

In the ITS version, the "interesting” characters are those "enabled for interrupts” on a real terminal,
namely @ through *G, “K through ~_, and DEL (that is, ASCII codes 0-7, 13-37, and 177 octal).

In the Tenex and Tops-20 versions, the operating system can be told which characters typed on a
terminal should cause this interrupt to occur, by calling the SUBR ACTIVATE-CHARS with a STRING
argument containing those characters (no more than six, all with ASCII codes less than 33 octal). If
called with no argument. ACTIVATE-CHARS returns a STRING containing the characters that currently
interrupt. Initially, only G, “S, and ~0 interrupt.

An initial MDL already has "CHAR" enabled on ,INCHAN with priority 8 (eight), the SUBR QUITTER
for a handler, to run in #PROCESS 0 (the running PROCESS): this is how ~G and “S are processed. In
addition, every time a new CHANNCL is OPENed in "READ" mode to a terminal, a similar THEADER and
HANDLER are associated with that new CHANNEL automatically. These automatically-generated
IHEADERs and HANDLERs use the standard machinery, and they can be DISABLEd or OFFed at will.
However, the THEADCR for , INCHAN should not be OFFed: MDL knows that § is typed only by an
interrupt!

21.8 - 2181 Interrupts

The MDL Programming Language 185

Example: the following causes the given message to be printed out whenever a “Y is typed on ' ,
- INCHAN:

CSET H CHANDLER <GET .INCHAN INTERRUPT) .
#FUNCTION ((CHAR CHAN) 1
#DECL ((VALUE) ANY (CHAR) CHARACTER (CHAN) CHANNEL) i
CAND <==? .CHAR !\AY>
C{PRINC " [Some of my best friends are “Ys.] ">>)»§
#HANDLER #FUNCTION ((CHAR CHAN) ...)

<+ 2 °Y [Some of my best friends are “Ys.] 2>§
4

COFF . H>$
#HANDLER #FUNCTION (...)

Note that accurrences of “CHAR" do not wait for the § to be typed, and the interrupting character is
omitted from the input stream.

A "CHAR™ interrupt can also be associated with an input CHANNEL open to a Network socket ("NET®
device). A handler gets applicd to a NETSTATE array (which see) and the CHANNEL .

In the ITS version, a "CHAR" interrupt can also be associated with an input CHANNEL open to a
pseudo-terminal ("STY" device and friends). An interrupt occurs when a character is available for
input. These interrupts are set up in exactly the same way as real-terminal interrupts, except that a
handler gets applied to only one argument, the CHANNEL. Pseudo-terminals are not available in the
Tenex and Tops-20 versions.

For any other flavor of ITS channel interrupt, a handler gets applied to only one argument, the
CHANNEL .

21.8.2. "CHAR" wanted

A "CHAR™ interrupt can be associated with an output CHANNEL open to a Network socket ("NET*®
device). A handler gets applicd to a NETSTATE array (which see) and the CHANNEL .

In the ITS version, a "CHAR" interrupt can also be associated with an output CHANNEL open to a
pseudo-terminal ("STY" device and friends). An interrupt occurs when the program at the other end
needs a character (and the operating-system buffer is empty). A handler gets applied to one
argument, the CHANNEL . Pseudo-terminals are not available in the Tenex and Tops-20 versions.

21.8.3. "CHAR" for new line

A handler for an output "CHAR" interrupt on a real terminal must take one or two arguments (using

21.8.1-2183 Interrupts

186 The MDL Programming Language

"OPTIONAL" or “TUPLE") if twe arguments are supplied by the interrupt system, they are the line
number (FIX) and the CHANNEL, respectively, and the interrupt is for a line-feed: if only one
argument is supplied (only in the ITS version), it is the CHANNEL, and the interrupt is for a full
terminal screen. Note: the supplied line number comes from the CHANNEL, and it may not be
accurate if the program alters it in subtle ways, for example, via IMAGE calls or special control
characters. (The program can compensate by PUTting the proper line number into the CHANNEL .)

21.8.4. "GC"

"GC" occurs just after every garbage collection. Enabling this interrupt is the only way a program
can know that a garbage collection has occurred. A handler for "GC" takes three arguments. The
first is a FLOAT indicating the number of scconds the garbage collection took. The second argument
is a FIX indicating the cause of the garbage collection, as follows (chapter 22):

0. Program called GC.

1. Movable storage was exhausted.

2. Control stack overflowed.

. Top-level LVALs overflowed.

. GVAL vector overflowed.

5. TYPE vector overflowed.

6. lmmovable garbage-collected storage was exhausted.
7. Internal stack overflowed.
8
9

- W

. Both control and internal stacks overflowed (rare).
. Pure storage was exhausted.
10. Second. exhaustive garbage collection occurred.

The third argument is an ATOM indicating what initiated the garbage collection: GC~READ, BLOAT,
GROW, LIST, VECTOR, SET, SETG, FREEZE, GC, NEWTYPE, PURIFY, PURE-PAGE-LOADER (pure
storage was exhausted), or INTERRUPT-HANDLER (stack overflow, unfortunately).

21.8.5. "DIVERT-AGC"

"DIVERT-AGC" ("Automatic Garbage Collection”) occurs just before a deferrable garbage collection
that is needed because of exhausted movable garbage-collected storage. Enabling this interrupt is
the only way a program can know that a garbage collection is about to occur. A handler takes two
arguments: a FIX telling the number of machine words needed and an ATOM telling what initiated
the garbage collection (sec above). If it wishes, a handler can try to prevent a garbage collection by
calling BLOAT with the FIX argument. If the pending request for garbage-collected storage cannot
then be satisfied, a garbage collection occurs anyway. AGC-FLAG is SET to T while the handler is
running, so that new storage requests do not try to cause a garbage collection.

2183 - 21.85 Interrupts

The MDIL. Programming Language 187

21.8.6. "CLOCK"

"CLOCK™, when enabled, occurs every half second (the ITS "slow-clock” tick). It is not available in
the Tenex and Tops-20 versions. It wants handlers which take no arguments. Example:

CON "CLOCK" <FUNCTION () <PRINC "TICK ">> 1>

21.8.7. "BLOCKED"

"BLOCKED™ occurs whenever any PROCESS (not only the PROCESS which may be in a HANDLER) starts
waiting for terminal input: that is, an occurrence indicates that somewhere, somebody did a READ,
READCHR, NEXTCHR, TYI, etc. to a terminal. A handler for a "BLOCKED" interrupt should take one
argument, namely the PROCESS which started waiting (which will also be the PROCESS in which the
handler runs, if no specific one is in the HANDLER).

Example: the following will cause MDL to acquire a * prompting character.

CON "BLOCKED" #FUNCTION ((IGNORE) <PRINC !\%>) 5>

21.8.8. "UNBLOCKED"

"UNBLOCKED" occurs whenever a § (ESC) is typed on a terminal if a program was hanging and
waiting for input, or when a TYI call (which see) is satisfied. A handler takes one argument: the
CHANNEL via which the $ or character is input.

21.8.9. "READ" and "WRITE"

"READ™ and "WRITC" are associated with read or write references to MDL objects. These interrupts
are often called "monitors”, and enabling the interrupt is often called "monitoring” the associated
object. A “read reference” 1o an ATOM's Jocal value includes applying BOUND? or ASSIGNED? to the
ATOM; similarly for a global value and GASSIGNED?. If the INT-LEVEL is too high when "READ* or
"WRITE" occurs, an crror occurs, because occurrences of these interrupts cannot be queued.

Monitors are set up with EVENT or ON, using a locative to the object being monitored as the extra
which argument, just as a CHANNEL is given for "CHAR". A handler for "READ" takes two arguments:
the locative and the FRAME of the function application that makes the reference. A handler for
"WRITE" takes three arguments: the locative, the new value, and the FRAME. For example:

<SET A (1 2 3)>8
(123)

CSET B <AT .A 2))8
#LOCL 2

21.8.6 - 21.8.9 Interrupts

"lIllll!lIllllll'lll'l!l-lll!llll!lllll!IIlll----l-----uuu--unn--L e e

188 The MDL Programming Language

{ON "WRTITE" <FUNCTION (OBJ VAL FRM)
#DECL ((VALUE VAL) ANY (0BJ) LOCATIVE (FRM) FRAME)
<CRLF>
<PRINC "Program changed ">
<PRIN1 .0BJ>
<PRINC * to ">
<PRINI .VAL>
<PRINC " via ">
i <PRIN1 .FRM>
CCRLF>>
40 .8>%
#HANDLER #FUNCTION (...)
<l A 10>%
€10 2 3)
<2 .A 20>%
Program changed #LOCL 2 to 20 via #FRAME PUT
(10 20 3)
<OFF "WRITE" .B>$%
#IHLADER #LOCL 20

21.8.10. "SYSDOWN"

"SYSDOWN" occurs when a system-going-down or system-revived signal is received from ITS. It is

| not available in the Tenex and Tops-20 versions. If no IHEADER is associated and enabled, a
warning is printed on the terminal. A handler takes one argument: a FIX giving the number of
thirtieths of a second until the shutdown (-1 for a reprieve).

21.8.11. "ERROR"

P

In an effort to simplify error handling by programs, MDL has a facility allowing errors to be k.
handled like interrupts. SETGing ERROR to a user function is a distasteful method, not safe if any i
bugs are around. An "CRROR" interrupt wants a handler that takes any number of arguments, via
“TUPLE". When an error occurs, handlers are applied to the FRAME of the ERROR call and the TUPLE f
of ERROR arguments. If a given handler "takes care of the error”, it can ERRET with a value from the 1

ERROR FRAME, after having done <INT-LEVEL 0>. If no handler takes care of the error, it falls into
the normal CRROR.

If an error occurs at an INT-LEVEL greater thau or equal to that of the "ERROR" interrupt, real
ERROR will be called. because "ERROR" interrupts cannot be queued.

21.89 - 21.8.11 Interrupts

The MDL Programming Language 189

21.8.12. "1PC"

"IPC" occurs when a message is received on the ITS IPC device (chapter 23). It is not available in
the Tenex and Tops-20 versions.

21.8.13. "INFERIOR"

"INFERTOR" accurs when an inferior I'TS process interrupts the MDL process. It is not available in
the Tenex and Tops-20 versions. A handler takes one argument: a FIX between 0 and 7 inclusive,
telling which inferior process is interrupting.

21.8.14. "RUNT" and "REALT"
These are not available in the Tenex and Tops-20 versions.

"RUNT", if enabled, occurs once, N seconds of MDL running time (CPU time) after calling
CRUNTIMER N:fix-or-float>, which returns its argument. A handler takes no arguments. If RUNTIMER
is called with no argument, it returns a FIX, the number of run-time seconds left until the interrupt
occurs, or #FALSE () if the interrupt is not going to occur.

"REALT", if enabled. occurs every N seconds of real-world time after calling <REALTIMER N:fix-or-
float>, which returns its argument. A handler takes no arguments. <REALTIMER 0> tells the
operating system not to generate real-time interrupts. If REALTIMER is called with no argument, it
returns a FIX, the number of real-time seconds given in the most recent call to REALTIMER with an
argument, or #FALSE () if REALTIMER has not been called.

21.8.15. "Dangerous” Interrupts

"MPV" ("memory-protection violation”) occurs if MDL tries to refer to a storage address not iu its
address space. "PURL" occurs if MDL tries to alter rcad-only storage. "ILOPR" occurs if MDL
executes an illegal instruction ("operator”). "PARITY" occurs if the CPU detects a parity error in
MDL's address space. All of these require a handler that takes one argument: the address (TYPE
WORD) following the instruction that was being executed at the time.

"IOC" occurs if MDL tries to deal illegally with an 1/O channel. A handler must take two
arguments: a three-clement FALSE like one that OPEN might return, and the CHANNEL that got the
error. ri

Ideally. these interrupts should never occur. In fact, in the Tenex and Tops-20 versions, these

interrupts always go to the superior operating-system process instead of to MDL. In the ITS
version, if and when a “dangerous” interrupt does occur:

21.8.12 - 21.8.15 Interrupts

~ AD=AQ70 930 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE=--ETC F/G 9/2 e
THE MDL PROGRAMMING LANGUAGE((U) \
JUN 79 S W GALLEY: 6 PFISTER NO0014=75=C=0661
UNCLASSIFIED

30»—'3

END
DATE
FILMED
8-79

Dpe

190 The MDL Programming Language 1

If no IHEADER is associated with the interrupt, then the interrupt goes to the superior
operating-system process.

If an IHCADER is associated but disabled, the error DANGEROUS-INTERRUPT-NOT~HANDLED occurs
(FILE-SYSTCM-ERROR for "IOC").

If an THEADER is associated and enabled, but the INT-LEVEL is too high, the error ATTEMPT-TO-
DEFER-UNDEFERABLE-INTERRUPT occurs.

21.9. User-Defined Interrupts (INTERRUPT)

If the interrupt name given to EVENT or ON is not one of the standard predefined interrupts of MDL,

| they will gleefully create an ATOM in CINTERRUPTS> and an associated IHEADER anyway, making the

assumption that you are setting up a “program-defined” interrupt. 1

Program-defined interrupts are made to occur by applying the SUBR INTERRUPT, as in
<INTERRUPT name argl ... argh>

where name is a STRING, ATOM or IHEADER, and arg/ through argh are the arguments wanted by the
handlers for the interrupt. 5

If the interrupt specified by INTERRUPT is enabled, INTERRUPT returns T; otherwise it returns
#FALSE (). All the usual priority and queucing rules hold, so that even if INTERRUPT returns T, it
is possible that nothing “really happened” (yet).

INTERRUPT can also be used to cause "artificial” occurrences of standard predefined MDL interrupts.

Making a program-defined interrupt occur is similar to calling a handler directly, but there are
differences. The value returned by a handler is ignored, so side effects must be used in order to

communicate information back to the caller, other than whether any handler ran or will run. One .
good nse for a program-defined interrupt is to use the priority and queueing machinery of INT- &
LEVEL to control the execution of functions that must not run concurrently. For example, if a I
"CHAR" handler just deposits characters in a buffer, then a function to process the buffered '3

characters should probably run at a higher priority level -- to prevent unpredictable changes to the
buy€er during the processing -- and it is natural to invoke the processing with INTERRUPT.

In more exotic applications, INTERRUPT can signal a condition to be handled by an unknown
number of independent and "nameless” functions. The functions are "nameless” because the caller
doesn’t know their names, only the name of the interrupt. This programming style is modular and
event-driven. and it is one way of implementing "heuristic” algorithms. In addition, each HANDLER
has a PROCESS in which to run its handler, and so the different handlers for a given condition can
do their thing in different environments quite easily, with less explicit control than when using
RESUME .

21.8.15 - 21.9 Interrupts

The MDL Programming Language 191
2110, Waiting for Interrupts

21.10.1. HANG

CHANG predd>
suspends execution, interruptibly, without consuming any CPU time, potentially forever. HANG is
handy for a program that cannot do anything until an intercupt occurs. 1f the optional pred is
given. it is cvaluated every time zn interrupt occurs and is dismissed back into the HANG; if the

result of evaluation is not FALSE, HANG unhangs and returns it as a value. If pred is not given,
there had better be a named ACTIVATION somewhere to which a handler can return.

201.10.2. SLLEp
CSLEER time:fix-or-floal pred)

suspends execution, interruptibly, without consuming any CPU tiwme, for time seconds, where time is
non-negative, and then returns 1. pred is the same as for HANG.

3 2110 - 21.10.2 Interrupts

192 The MDL Programming Language

Chapter 22. Storage Management

The reason this chapter comes so late in this document is that, except for special cases, MDL
programs have their storage needs handled automatically. There is usually no need even to consider
storage management. except as it affects efficiency (chapter 24). This chapter gives some

explanation of why this is so, and covers those special wmeans by which a program can assume
control of storage management.

The MDI. address space is divided into five parts, which are usually called

(1) movable garbage-collected space,

(2) immovable space (both garbage-collected and not),
(3) user pure/page space,

(4) pure-RSUBR mapping space, and

(5) internal storage.

Internal storage accupies hoth the highest and lowest addresses in the address space, and its size
never changes as MDL executes. The other spaces can vary in size according to the needs of the
executing program. Generally the interpreter allocates a contiguous set of addresses for each space,

and each space gradually fills up as new objects are created and as disk files are mapped in. The
action taken when a space hecomes full varies, as discussed below.

22.1. Mavable Garbage-collected Storage

Most starage used explicitly by MDL programs is obtained from a pool of free storage managed by
a "garbage collector”. Storage is obtained from this pool by the SUBRs which construct ob jects.

When such a SUBR finds that the pool of available storage is exhausted, it automatically calls the
garbage collector.

The garbage collector has two algorithms available to it: the "copying” algorithm, which is used by
default. and the "mark-sweep” algorithm. Actually, one often speaks of two separate garbage
collectors, the “copying” one and the “mark-sweep” one, because each is an independent module that
is mapped in to the interpreter's internal storage from disk only during garbage collection. For
simplicity, this document speaks of "the” garbage collector, which has two algorithms.

22-221 Storage Management

The MDL Programming Language 193

The garbage collector examines the storage pool and marks all the objects there, separating them
into two classes: those which cannot possibly be referenced by a program, and those which can.
The “copying” algorithan then copies the latter into one compact section of the pool, and the
remainder of the pool is made available for newly constructed objects. The "mark-sweep” algorithm,
instead. puts ail objects in the farmer class (garbage) into "free lists”, where the ob ject-construction . 1
SUBRs can find them and re-use their storage. ' 4

If the request for more storage still cannot be satisfied from reclaimed storage, the garbage collector
will attempt to obtain more total storage from the operating system under which MDL runs. (Also,
if there is a gross superfluity of storage space, the garbage collector will politely return some
storage to the operating system.) Only when the total system resources are exhausted will you
finally lose.

- Thus, if you just "forget about” an object, that is, lose all possible means of referencing it, its
‘ storage arca is automatically reclaimed. "Object” in this context includes that stack-structured
storage space used in PROCESSes for functional application.

22.1.1. Stacks and Other Internal Vectors

Control stacks are used in MDL to control the changes in environment caused by calling and

binding. Each active PROCESS has its own control stack. On this stack are stored LVALs for ATOMs;

PRIMTYPE TUPLEs, which arc otherwise like VECTORs: PRIMTYPE FRAMEs, which are generated by

calling Subroutines: and ACTIVATIONs, which are generated by calling FUNCTIONs with named

ACTIVATIONs. PROG, and REPEAT. TAG and LLOC can make TAGs and LOCDs (respectively) that refer to

a specific place on a specific control stack. (LEGAL? returns T if and only if the portion of the

control stack in which its argument is found or to which its argument refers is still active, or if its

argument doesn’t care about the control stack. The garbage collector may change a non-LEGAL? |
object to TYPE ILLEGAL before reclaiming it.) As the word "stack” implies, things can be put on it 4

F and removed from it at only one end, called the top. It has a maximum size (or depth), and E

1 attempting to put teo many things on it will cause overflow. A stack is stored like a VECTOR, and
it must be GROWn if and when it overflows.

A control stack is actually two stacks in one. One section is used for "top-level” LVALs -- those SET |
while the ATOM is not bhound by any active Function's argument LIST or Subroutine’s SPECIAL
binding -- and the other section is used for everything else. Either section can overflow, of course.
The top-level-LVAL section is below the other one, so that a top-level LVAL will be found only if the
ATOM is not currently bound elsewhere, namely in the other section.

MDL also has an internal stack, used for calling and temporary storage within the interpreter and

compiled programs. It too is stored like 2 VECTOR and can overflow. There are other internal

vectors that can overflow: the "global vector” holds pairs ("slots”) of ATOMs and corresponding GVALs

("globally bound” or GBOUND? means that the ATZ% in question is in this vector, whether or not it |
currently has a global value), and the "TYPE vector” holds TYPE names (predefined and NEWTYPEs) and

how they are to be treated.

22.1 - 22.1.1 Storage Management

194 The MDL Programming Language

22.2. Immovable Storage

22.2.i. Garbage-collected: FREEZE

In very special circumstances, such as debugging RSUBRs, you may need to prevent an object from
being moved by the garbage collector. FREEZE takes one argument, of PRIMTYPE VECTOR, UVECTOR,
STRING, BYTES or TUPLE. It copies its argument into non-moving garbage-collected space. FREEZE

returns the copy CHTYPEd to its PRINTYPE, except in the case of a TUPLE, which is changed to a
VECTOR.

22.2.2. Non-garbage-collected: STORAGE (the PRIMTYPE)

An object of PRIMIYPE STORAGE is really a frozen UVECTOR whose UTYPE is of PRIMTYPE WORD, but
it is always pointed to by something internal to MDL and thus is never garbage-collectible. The use
of FRLEZE is always preferable, except when for historical reasons a STORAGE is necessary.

22.3. Other Storage

User pure/page space serves two purposes. First, when a user program PURIFYs (see below) MDL
objects. they are copied into this space. Second, so-called hand-crafted RSUBRs (assembled but not

compiled) can call on the interpreter to map pages of disk files into this space for arbitrary
purposes.

Pure-RSUBR mapping space is used by the interpreter to dynamically map pages of pure compiled
programs inte and out of the MDI. address space. Pure code can refer to impure storage through

the “transfer vector”, another internal vector. This space is the most vulnerable to being compressed
in size by the long-term growth of other spaces.

Internal storage has both pure and impure parts. The interpreter program itself is pure and
sharable. while impure starage is used for internal pointers, counters, and flags, for example,
pointers to the boundaries of other spaces. In the pure part of this space are most of the ATOMs in
an initial MDL. along with their OBLIST buckets (LISTs) and GVAL slots (a pure extension of the

global vector), where possible. A SET or SETG of a pure ATOM automatically impurifies the ATOM and
as much of its OBLIST bucket as needs to be impure.

22.2-223 Storage Management

The MDL Programming Language 195

22.4. Garbage Collection: Details

When either of the garbage-collected spaces (movable or immovable) becomes full, MDL goes
through the following procedure:

(1) A “DIVERT-AGC" interrupt occurs if the garbage collection can be deferred temporarily by
shifting boundarics between storage spaces slightly. The interrupt handler may postpone a garbage
collectiam by moving boundaries itself with a call to BLOAT (below).

(2) The garbage collector begins execution. The “copying” algorithm creates an inferior operating-
system process (named AGC i the I'TS version) whose address space is used to hold the new copies of
non-garhage objects. MDIE gains access to the inferior's address space through two pages ("frontier”
and “window") in its internal space that are shared with the inferior. If the garbage collection
occurred hecanse movable garbage-collected space was exhausted, then the "mark-sweep” algorithm
might be used instead (see below), and no inferior process is created.

(3) The garbage collector marks all ohjects that can possibly be referenced hereafter. It begins with
the <MATHD> PROCESS and the currently running PROCESS <ME>, considered as vectors containing the
control stacks. object pointers in live registers, ete. Every object in these "PROCESS vectors” is
marked "accessible”, and every clement of these objects (bindings, etc.), and so on recursively. The
“copying” algorithm moves ob jects into the inferior process's address space as it marks them.

(4) If the garbage collection is "exhaustive” -- which is possible only in the “copying” algorithm --
then both the chain of associations and top-level local/global bindings are examined thoroughly,
which takes more time but is more likely to uncover garbage therein. In a normal garbage
collection these constructs are not treated specially.

(5) Finally, the "mark-sweep” algorithm sweeps through the storage space, adding unmarked ob jects
to the internal free lists for later re-use. The “copying” algorithm maps the inferior process'’s

address space into MDL's own, replacing old garbagey storage with the new compact storage, and
the inferior process is destroyed.

22.5. GC
CGC mintin exhtalce-or-any ms-freq:fix>

causes the garbage collector to run and returns the total number of words of storage reclaimed. All
of its arguments are optional: if they are not supplied, a call to GC simply causes a “copying”
garbage collection.

If min is explicitly supplied as an argument, a garbage-collection parameter is changed permanently
before the garbage collector runs. min is the smallest number of words of “"free” (unclaimed,

224 - 225 Storage Management

196 The MDL Programming Language

available for use) movable garbage-collected storage the garbage collector will be satisfied with
having after it is done cach time. Initially it is 8192 words. If the total amount of reclaimed
storage is less than min. the garbage collector will ask the operating system for enough storage (in
1024-word blocks) to make it up. N.B.: the system may be incivil enough not to grant the request: in
that case. the garbage collector will be content with what it has, unless that is not enough to satisfy
a pending request for storage. Then it will inform you that it is losing. A large mn will result in
fewer total garhage collections, but they will take longer since the tot2} quantity of storage to be
dealt with will generally be larger. Smaller mns result in shorter, more frequent garbage collections.

exh? tells whether or not this garbage collection should be “exhaustive™. It is optional, a FACSE by
defanlt. The difference hetween normal and exhaustive “copying” garbage collections is whether
certain kinds of storage that require complicated treatwent (for example, associations) are reclaimed.
An exhaustive garbage collection occurs every eighth time that the “copying” algorithm is used, or

when GC v called with this argument true, or when a normal garbage collection cannot satisfy the
storage request.

ms-freg gives the number of times the “mark-sweep™ algorithm should be used hereafter for every
time the normal “copying” algorithwm is used. Giving 0 for ms-freq means never to use the “mark-
sweep” algorithm, and giving <CHTYPE CMIN> FIX> means (effectively) always to use it. The “mark-
sweep” algorithin wses considerably less processor time than the “copying” algorithm, but it never
shrinks the frecstorage pool, and in fact the pool can become fragmented. The “mark-sweep®
algorithm could be useful in a program system (such as the compiler) where the size of the pool
rarely changes. but ob jects are created and thrown away continuously.

22.6. BLOAT

BLOAT is used to cause a temporary expansion of the available storage space with or without
changing the garbage-collection parameters. BLOAT is particularly useful for avoiding unnecessary
garbage collections when loading a large file. It will cause (at most) one garbage collection, at the
end of which the available storage will be at least the amount specified in the call to BLOAT.
(Unless, of course, the operating system is cranky and will not provide the storage. Then you will
get an error. CERRET 1> from this error will cause the BLOAT to return 1, which usually just causes
you to lose at a later time -- unless the operating system feels nicer when the storage is absolutely

necessary.)

A call to BLOAT loaks like this:

CBLOAT fre stk Il gib tvp sto pstk
min plcl pptb ptyp imp pur dpstk dstkd

where all arguments on the first line above are FIX, optional (0 by default) and indicate the
following:

225 - 226 Storage Management

The MDL Programming Language 197

fres number of words of free movable storage desired (for LISTs, VECTORs, ATOMs, etc.)

stht mumber of words of free control-stack space desiced (for functional applications and
binding of ATOMs)

el number of new top-level LVALs for which to leave space (SETs of ATOMs which are not
currently bound)

glos numbier of new GVALs for which to leave space (in the global vector)
tver number of new TYPE definitions for which to leave space (in the TYPE vector)
stor number of words of immaovable garbage-collected storage desired

o<t number of words of free internal-stack space desired (for READing large STRINGs, and
calling routines within the interpreter and compiled programs)

Arguments on the second line above are also FIX and optional, but they set garbage-collection
parameters permanently, as follows:

min: as for GC

il number of slats for LVALS added when the space for top-level LVALS is expanded (initially
64)

pglbr number of slots for GVALs added when the global vector is grown (initially 64)
pty ot mumber of slots for TYPCs added when the TYPE vector is grown (initially 32)

it number of words of immovable garbage-collected storage added when it is expanded
(initially 1024)

purt mumber of words reserved for pure compiled programs, if possible (initially 0)

dpsths most desirable size for the internal stack, to prevent repeated shrinking and GROWing
(initially 512)

dstai most desirable size for the control stack (initially 4096)

BLOAT returns the actual number of words of free movable garbage-collected storage available when
it is done.

226 Storage Management

S QIR T e

RE S-S

198 The MDL Programming Language

22.7. BLOAT-STAT

BLOAT-STAT can be used with BLOAT to “tune” the garbage collector to particular program
requirements.

{BLOAT-STAT length-2 uvector>

fills the vvector with information about the state of storage of MDL. The argument should be a
UVECTOR of length 27 and UTYPE FIX. If BLOAT-STAT does not get an argument, it will provide its
own UVECTOR. The information returned is as follows: the first 8 elements_indicate the number of
garbage collections that are attributable to certain causes, and the other 19 give information about
certain areas of storage. In detail:

- number of garbage collections caused by exhaustion of movable garbage-collected storage
. ditto by overflow of control stack(s)

- ditto by overflow of top-level-LVAL section of control stack(s)

. ditto by overflow of global vector

. ditto by overflow of TYPL vector

. ditto by exhaustion of inmmovable garbage-collected storage

. ditto by overflow of internal stack

. ditto by overflow of both stacks at the saine time (rare)

D@ NG d W

9. number of words of movable storage
10. number of words of movahle storage used since last BLOAT-STAT
LL vzaximum number of words of movable storage ever existing
12. number of words of movahle storage used since MDL began running
13. maximum <ize of control stack
4. number of words on control stack in use
| I5. maximum size of control stack(s) ever reached
16. number of slots for top-level LVALs
17. number of top-level LVALS existing
18. number of slots for GVALs in global vector
19. number of GVALS existing
20. number of slots for TYPIs in TYPE vector
21 number of TYPES existing
22. number of words of immovable garbage-collected storage
23. number of words of immovable storage unused ;
24. size of largest unused contiguous immovable-storage block .’
25. number of words on internal stack
26. number of words on internal stack in use
27. maximum size of internal stack ever reached

27 Storage Management

The MDL. Programming Language 199

22.8. GC-MON

<GC-MON pred>
("garbage-colicctor monitor”) determines whether or not the interpreter will hereafter print
information on the terminal when a garbage collection starts and finishes, according to whether or
not its argument is true. It returns the previous state. Calling it with no argument returns the
current state. The initial state is false.
When typing is enabled, the "copying” garbage collector prints, when it starts:

GIN reason subr-that-caused:atom
and. when it finishes:

GOUT seconds-needed

The "mark-sweep” garbage collector prints MSGIN and MSGOUT instead of GIN and GOUT.

22.9. Related Subroutines

Two SUBRs. described next, use oniy part of the garbage-collector algorithm, in order to find all
pointers to an object. GC-DUMP and GC-READ, as their names imply, also use part in order to
translate between MDL ob jects and binary representations thereof.

22.9.1. SUBSTITUTE
(SUBSTITUTE new:any old:any>

returns o'd, after cansing a miniature garbage collection to occur, during which all references to old
are changed so as to refer to new. Neither argument can be of PRIMTYPE STRING or BYTES or LOCD
or live on the control stack, unless both are of the same PRIMTYPE. One TYPE name cannot be
substituted for another. One of the few legitimate uses for it is to substitute the “right™ ATOM for
the “wrong” one. after OBLISTs have been in the wrong state. This is more or less the way ATOMs are
impurified. Tt is also useful for unlinking RSUBRs. SUBSTITUTE returns o/d as a favor: unless you
hang onto o/d at that peint, it will be garbage.

22.9.2. PURIFY

CPURIEY any-1 ... any-N>

22.8 - 22.9.2 Storage Management

e e+ e

{
|

200 The MDL Programming Language

returns its last argument. after causing a miniature garbage collection that results in all the
arguments becoming pure and sharable, and ignored afterward by the garbage collector. No
argument can live on the control stack or be of PRIMTYPE PROCESS or LOCD or ASOC. Sharing

between operating-system processes actually occurs after a SAVE, if and when the SAVE file is
RESTOREG.

2292 Storage Management

The MDL Programming Language 201

Chapter 23. MDL as a System Process

This chapter treats MDL considered as executing in an operating-system process, and interactions
between MDL and other operating-system processes. See also section 21.8.13.

23.1. TIME

TIME takes any number of arguments, which are evaluated but ignored, and returns a FLOAT giving
the number of seconds of CPU time the MDL process has used so far. TIME is often used in

machine-level debugging to examine the values of its arguments, by having MDL'’s superior process
(say, DDT) plant a breakpoint in the code for TIME.

23.2. Names

CUNAME >

returns a STRING which is the "user name” of MDL's process. This is the "uname” process-control
variable in the ITS version and the logged-in directory in the Tenex and Tops-20 versions.

CXUNAME>

returns a STRING which is the "intended user name” of MDL's process. This is the "xuname” process-
control variable in the ITS version and identical to CUNAME) in the Tenex and Tops-20 versions.

<JINAME>

returns a STRING which is the "job name” of MDL's process. This is the "jname” process-control
variable in the ITS version and the SETNM name in the Tenex and Tops-20 versions. The characters

belong to the “sixbit” or "printing” subset of ASCII, namely those between <ASCII *40%*> and
<ASCII *137*> inclusive.

<XJINAME>

23 .232 MDL as a System Process

4

A e

',

B e e ee e e ST L

—— e T

202 The MDL Programming Language

returns a SIRING which is the "intended job name” of MDL's process. This is the "x jname” process-
control variable in the ITS version and identical to CINAME in the Tenex and Tops-20 versions.

23.3. Exiis
<LOGOUT>

attempts to log out the process in which it is executed. It will succeed only if the MDL is the top-
level process, that is, it is running disowned or as a daemon. If it succeeds, it of course never
returns. I it docs not, it returns #FALSE ().

<QUIT>

causes MDL to stop running, in an orderly manner. In the ITS version, it is equivalent to a
-LOGOUT T, instruction. In the Tenex and Tops-20 versions, it is equivalent to a control-C signal,
and control passes to the superior process.

SVALRLT string-or-fix>

("value return®) seldom returns. It passes control back up the process tree to the superior of MDL,
passing its argument as a message to that superior. If it does return, the value is #FALSE (). If the
argument is a STRING, it is passed to the superior as commands to be executed, via .VALUE in the
ITS version and RSCAN in the Tops-20 version. If the argument is a FIX, it is passed to the superior
as the “effective address” of a .BREAK 16, instruction in the ITS version and ignored in other
versions.

23.4. Inter-process Communication

All of the SUBRs in this section are available only in the ITS version.

The IPC (“inter-process communication”) device is treated as an 1/0 device by ITS but not
explicitly so by MDI: that is, it is never OPENed. It allows MDL to communicate with other ITS
processes by means of sending and receiving messages. A process identifies itself as sender or
recipient of a message with an ordered pair of "sixbit” STRINGs, which are often but not always
CUNAMED> and CINAMED. A message has a "body” and a “type”.

23.4.1. SEND and SEND-WAIT

<SEND othernl othern2 body type mynamel mynamel>

23.2-234.1 MDL as = System Process

The MDL Programming Language 208

CSEND-WAIT othernl othern2 body type mynamel myname2)

both send an IPC message to any process that is listening for it as othernl othern2. body must be
either a STRING, or a UVECTOR of ob jects of PRIMTYPE WORD. type is an optional FIX, 0 by default,
which is part of the information the other guy receives. The last two arguments are from whom the
message is to be sent. These are optional, and CUNAMED> and <JINAME> respectively are used by
default. SEND veturns a FALSE if no one is listening, while SEND-WAIT hangs until someone wants it.
Both return T if somcone accepts the message.

23.4.2. The "TIPC" Interrupt

When your MDL process receives an IPC message, "IPC* occurs (chapter 21). A handler is called
with cither four or sin arguments gleaned from the received message. body, type, othernl, and
othern? ave always supplied. mynamel and myname2 are supplied only if they are not this process's
CUNAME > and <INAMED .

There is a built-in HANDLER for the "IPC" interrupt, with a handler named IPC-HANDLER and 0 in the
PROCESS «lot. The handler prints out on the terminal the body, whom it is from, the type if not 0,
and whom it is to if not CUNAME> CINAMED . If the type is 1| and the body is a STRING, then, after
the wiessage informatien is printed out, the STRING is PARSEd and EVALuated.

23.4.3. 1PC-OFF

CIPC-OFF > stops all listening on the IPC device.

23.4.4. 1PC-ON
CIPC-ON mynamel myname2>

causes listening on the 1PC device as mynamel myname2. If no arguments are provided, listening is
on CUNAMED> <CINAME>. When a message arrives, "IPC* occurs.

MDL is initially listening as CUNAME> CJINAME> with the built-in HANDLER set up on the “IPC®
interrupt with a priority of 1.

23.4.5. DEMSIG
CDEMSTG daemon:string>

signals to ITS (directly, not via the IPC device) that the daemon named by its argument should run
now. It returns T if the dacmon exists, #FALSE () otherwise.

2341 -2245 MDL as a System Process

R e e

e

204 The MDL Programming Language

Chapter 24. Efficiency and Tastefulness

24.1. Efficiency

Actually, you wmake MDL programs efficient by thinking hard about what they really make the
interpreter do. and making them do less. Some guidelines, in order of decreasing expense:

(1) Free storage is expensive.
(2) Calling functions is expensive.
(3) PROG and REPEAT are expensive, except when compiled.

Explanation:

(1) Unnccessary use of free storage (creating needless LISTs, VECTORs, UVECTORs, etc.) will cause the
garbage collector to run more often. This is expensive! A fairly large MDL (for example, 60 000 36-
bit words) can take ten seconds of PDP-10 CPU time for a garbage collection. Be especially wary of
constructions like (0). Every time that is evaluated, it creates a new one-element LIST; it is too
easy to write such things when they aren't really necessary. Unless you are doing PUTs or PUTRESTs
on it, use '(0) instead.

(2) Sad. but true. Also generally ignored. If you call a function only once, or if it is short (less than
one linc), you are much better off in speed if you substitute its body in by hand. On the other
hand. you may be much worse off in modularity. There are techniques for combining several
FUNCTIONs into one RSUBR (with RSUBR-ENTRYs), either during or after compilation, and for
changing FUNCTIONs into MACROs.

(3) PROG is almost never necessary, given (a) "AUX" in FUNCTIONs: (b) the fact that FUNCTIONs can
contain any number of FORMs: (c) the fact that COND clauses can contain any nunber of FORMs: and
(d) the fact that new variables can be generated and initialized by REPEAT. However, PROG may be
useful when an error occurs, to establish bindings needed for cleaning things up or interacting with
a human.

The use of PROG may be sensible when the normal flow of control can be cut short by unusual
conditions, so that the program wants to RETURN before reaching the end of the PROG. Of course,

24 -24.1 Efficiency and Tastefulness

-

N g

W N

AT SIS <. W

The MDL Programming Language 205

nested CONDs can accomplish the same end, but deep nesting may tend to mmake the program
unreadable. For example:

<PROG (TCMP)
COR <SET TEMP <OK-FOR~STEP-17>>
CRETURN .TEMP>>
<STEP-1>
<OR <SCT TEMP <OK-FOR-STEP-27>>
CRETURN .TEMP>>
{STEP-2>>

could instead be written

{COND (<OK-FOR-STEP-1?7>
<STEP-1>
{COND (<OK-FOR-STEP-27>
(STEP-2>)>)>

By the way, RCPLAT is faster than GO in a PROG. The <GO x> FORM has to be separately interpreted,
right?> In fact, if you organize things properly you very seldoin need a GO; using GO is generally
considered "bad style”, but in some cases it's needed. Very few.

In many cases, a REPEAT can be replaced with a MAPF or MAPR, or an ILIST, IVECTOR, etc. of the
form

CILIST .N '<SET X <+ .X 1>
which generates an N-element LIST of successive numbers sta-ting at X+1.
Whether a program is interpreted or compiled, the first two considerations mentioned above hold:
garbage collection and function calling remain expensive. Garbage collection is, clearly, exactly the
same. Function calling is relatively more expensive. However, the compiler careth not whether you
use REPEAT, GO, PROG, ILIST, MAPF, or whatnot: it all gets compiled into practically the same

thing. llowcver, the REPEAT or PROG will be slower if it has an ACTIVATION that is SPECIAL or used
other than by RCTURN or AGAIN.

24.1.1. Example
There follows an example of a FUNCTION that does many things wrong. It is accompanied by
commentary, and two better versions of the same thing. (This function actually occurred in

practice. Needless to say, names are withheld to protect the guilty.)

Blunt comment: this is terrible. Its purpose is to output the characters needed by a graphics

24.1 - 24.1.1 Efficiency and Tastefulness

206 : The MDL Programming Language

terminal to draw lines connecting a set of points. The points are specified by two input lists: X
values and Y values. The output channel is the third argument. The actual characters for each line
are returned in a L IST by the function TRANS.

CDEFINE PLOTVDSK (X Y CHN "AUX" L LIST)
CCOND (<NOT <==7 <SET L <LENGTH .X>><LENGTH .Y> >
CERROR "LENGTHS NOT EQUAL">)>
{SET LIST (29)>
CREPEAT ((N 1))
(SET LIST (!.LIST !<TRANS <.N .X> <.N .Y>>)
CCOND (<G? <SET N <+ .N 1>> .LXSRETURN .N>)> >
CREPEAT ((N 1) (L1 <LENGTH .LIST>))
{PRINC <ASCII <.N .LIST>> .CHN>
CCOND (<G? <(SET N <+ .N 1>> LD
CRETURN "DONE">)> »

Comments:
(1) LIST is only temporarily necessary. It is just created and then thrown away.

(2) Worse, the construct (!.LIST '<CTRANS ...>) copies the previous elements of LIST every time it
is executed!

(3) Indexing down the elements of LIST as in <.N .LIST> takes a long time, if the LIST is Jong. <3
...>0r <A ...> s not worth worrying about, but <10 ...> is, and <100 ...> takes quite a while.
Even if the indexing were not phascd out, the compiler would be happier with <NTH .LIST .N>.

(4) The variable CHN is unnecessary if OUTCHAN is bound to the argument CHANNEL .

(5) It is tasteful to call ERROR in the same way that F/SUBRs do. This includes using an ATOM from
the ERRORS OBLIST (if one is appropriate) to tell what is wrong, and it includes identifying yourself.

So, do it this way:

24.1.1 Efficiency and Tastefulness

B . . N N T A T T S T VTR T [R TR IrEpy er TaE T Ty

i

Smeg AL e

The MDL Programming Language 207

<DCFINE PLOTVDSK (X Y QUTCHAN)
#DECL ((OUTCHAN) <SPECIAL CHANNEL)>)
CCOND (<NOT <==7 <LENGTH .X> <LENGTH .Y>)
CERROR VECTOR-LENGTHS-DIFFER!=-ERRORS PLOTVDSKY>)>
<PRINC <ASCII 29>
<REPEAT ()
CCOND (<EMPTY? .X> <RETURN "DONE">)>
CREPEAT ((OL <TRANS <1 .X> <1 .Y»))
CPRINC <ASCII <1 .0L>»
CCOND (<EMPTY? <SET OL <REST .0L>>»>
<RETURN>)>>
(SET X <REST .X>>
CSET Y <REST .Y2)O»

Of course. if you know how long is the LIST that TRANS returns, you can avoid using the inner
REPLAT loop and have explicit PRINCs for each clement. This can be done even better by using
MAPF, as in the next version, which does exactly the same thing as the previous one, but uses MAPF
to do the RESTing and the end conditional:

<DCFINE PLOTVDSK (X Y OUTCHAN)
*DECL ({OUTCHAN) <SPECIAL CHANNEL)>)
CCOND (<NOT <==? CLENGTH .X> <LENGTH .Y>>»>
CERROR VECTOR-LENGTHS-DIFFER!-ERRORS PLOTVDSK>))>
<PRINC <ASCII 29>
<MAPF <>
#FUNCTION ((XE YE)
{MAPF <> #FUNCTION ((T) <PRINC <ASCII .T>>) <TRANS .XE .YE>>)

X
Ay
"DONE"> -

24.2. Creating a LIST in Forward Order

If you must create the clements of a LIST in sequence from first to last, you can avoid copying 1
earlier ones when adding a later one to the end. One way is to use MAPF or MAPR with a first]
argument of LIST: the elements are put on the control stack rather than in free storage, unitil the
final call to LIST. If you know how many elements there will be, you can put them on the control
stack yourself, in a TUPLE built for that purpose. Another way is used when REPEAT is necessary:

24.1.1 - 24.2 Efficiency and Tastefulness i

208 The MDL Programming Language

CREPEAT ((FIRST (7)) (LAST .FIRST) ...)
#DECL ((VALUE FIRST LAST) LIST ...)

<SET LAST <REST <PUTREST .LAST (.NEW)>>>

CRETURN <REST .FIRST»
.

Here, .LAST always points to the current last element of the LIST. Because of the order of
evaluation, the <SET LAST ...> could also be written <PUTREST .LAST <SET LAST (.NEW)>.

24.3. Read-only Free Variables

If a Function uses the value of a free variable (CGVAL unmanifest:atomd or <LVAL special:atom))
without changing it. the compiled version may be wore efficient if the value is assigned to a
dummy UNSPECTAL ATOM in the Function's "AUX" list. This is true because an UNSPECIAL ATOM gets
compiled into a <ot on the control stack, which is accessible very quickly. The trade-off is
probably worthwhile if a special is referenced more than once, or if an unmanifest is referenced more
than twice. Example:

<DEFINE MAP-LOOKUP (THINGS "AUX" (DB ,DATA-BASE))
#DECL ((VALUE) VECTOR (THINGS DB) <UNSPECIAL <PRIMTYPE LIST>>)
<MAPF ,VECTOR CFUNCTION (T) <MEMQ .T .DB>> .THINGS>>

24.4. Global and Local Values

In the interpreter the sequence X X X .X is slower than ,X ,X .X .X because of interference
between the GVAL and LVAL mechanisms (appendix 1). Thus it is not good to use both the GVAL and
LVAL of the same ATOM frequently, unless references to the LVAL will be compiled away (made into
control stack references).

24.5. Making Offsets for Arrays

It is often the case that you want to attach some meaning to each element of an array and refer to
an element independently of other elements. Firstly, it is a good idea to use names (ATOMs) rather
than integers (FIXes or even OFFSETs) for offsets into the array, to make future changes easier.
Secondly. it is a good idea to use the GVALs of the name ATOMs to remember the actual FIXes, so that
the ATOMs can be MANIFEST for the compiler's benefit. Thirdly, to establish the GVALs, both the

242-245 Efficiency and Tastefulness

The MDL Programming Language 209

interpreter and the compiler will be happier with <SETG name offset> rather than <DEF INE name
("TUPLE" T) <ofrset 1.T1>.

24.6. Tables

There are several ways in MDL 1o store a table, that is, a collection of (nawmes and) values that will ’

be searched. Unsurprisingly. choosing the best way is often dictated by the size of the table and/or
the nature of the (names and) values.

For a small table, the names and values can be put in (separate) structures -- the choice of LIST or
array being determined by volatility and limitability - which are searched using MEMQ or MEMBER.
This method s very space-efficient. I the table gets larger, and if the elements are completely
orderable. a (uniform) vector can be used, kept sorted, and searched with a binary search.

i
For a large table, where reasonably efficient searches are required, a hashing scheme is probably 3
best. Two methods are available in MDL: associations and OBLISTs. '

In the first method, PUTPROP and GETPROP are used, which are very fast. The number of hashing
buckets is fined. Duplicates are eliminated by ==7? testing. If it is necessary to use =? testing, or to :

find all the entries in the table, you can duplicate the table in a LIST or array. to be used ounly for
those purposes.

d
3
In the second method, INSERT and LOOKUP on a specially-built OBLIST are used. (If the names are f
not STRINGs. they can be converted to STRINGS using UZPARSE, which takes a little time) The |
number of hashing buckets can be chosen for best efficiency. Duplicates are eliminated by =7]

testing. MAPE/R can be used to find all the entries in the table. |

SRty

24.7. Nesting

B e = = 8

The beanty of deeply-nested control structures in a single FUNCTION is definitely in the eye of the
beholder. (PPRINT, a pre-loaded RSUBR, finds them trying. However, the compiler often produces |
better code from thewm) If you don't like excessive nesting, then you will agree that '-

ST X ¥
CCOND (RO0Y X i) oD

looks better than
CCOND (COP CSET X o)) (i) oo i)

and that

245 - 247 Efficiency and Tastefulness

_-‘
PP E—— - OR— e

210

<REPEAT ...
<COND ...

(... <RETURN ..

looks better than

CREPEAT ...
<COND ...
(... <RETURN

(ELSE ...)»
sed

O

X}

The MDL Programming Language

You can see the nature of the choices. Nesting is still and all better than G0.

g o e e

ey o

{3
|
t;
1]
|
|

The MDL Programming Language 21l

Appendix 1. A Look Inside

This appendin tells about the mapping between MDL objects and PDP-10 storage -- in other words,
the way things look “on the inside”. None of this information is essential to knowing how to
program in MDL, but it does give some reasons for capabilities and restrictions that otherwise you
have to memorize. The notation and terminology get a little awkward in this discussion, because we
are in a twilight zone between the worlds of MDL objects and of bit patterns. In general the words
and pheases appearing in diagrams vefer to bit patterns not MDL objects. A lower-case word (like
“tuple”) vefers to the storage occupied by an object of the corresponding PRINTYPE (like TUPLE).

First some terminology needs discussion. The sine qua non of any MDL ob ject is a pair of 36-bit
computer words. In general, lists consist of pairs chained together by pointers (addresses), and
vectors consist of contiguous blocks of pairs. =27 essentially tests two pairs to see whether they
contain the same hit patterns,

The fiest (lower-addiessed) word of a pair is called the 1YPE word, because it contains a numeric
TYPE code that represents the objeet’s TYPE. The second (higher-addressed) word of a pair is called
the value word, because it contains (part of or the beginning of) the "data part™ of the object. The
TYPE word (and somctimes the value word) is considered to be made of a left half and a right half.
We will picture a pair like this:

| 1YPE | |
B L LR R R |
| value |

where a vertical bar in the middle of a word means the word's halves are used independently. You
can sec that the TYPE code is confined to the left half of the TYPE word. (Half-)words are sometimes
subdivided into ficlds appropriate for the context: ficlds are also pictured as separated by vertical
bars. The right half of the 1YPE word is used for different purposes depending on the TYPE of the
ob ject and actual location of the value.

Actually the I8hit TYPE field is further decoded. The high-order (leftmost) bit is the mark bit, used
exclusively by the garbage collector when it runs. The next two bits are monitor bits, used te cause
"READ™ and "WRITE™ interrupts on read and write references to the pair. The next bit is used to
differentiate between list clements and vector dope words. The next bit is unused but could be used
in the future for an “execute” monitor. The remaining 13 bits specify the actual TYPE code. What
CHTYPE does is to copy the pair and put a new TYPE code in the new pair.

Each data TYPE (predefined and NIWTYPES) must belong to one of about 25 “storage allocation

classes™ (roughly corresponding to MDL PRIMTYPES). These classes are characterized primarily by
the manner in which the garbage collector treats them. Some of these classes will now be described.

Appendix |

L_»_‘ .

212 The MDL Programming Language

“one Word"

This class includes all data that are not pointers to some kind of structure. All external (program-
available) TYPEs in this class are of PRIMTYPE WORD. Example:

I FIX l 0 |
| s+ s e e csncceansa |
I 105 I
"Two Word"

The members of this class are all I18-bit pointers to list elements. All external TYPEs in this class are
of PRIMTYPE LIST. Example:

where pointer is a pointer 1o the first list element. If there are no elements, pointer is zero; thus
empty objects of PRIMTYPE LIST are ==7? if their TYPEs are the same.

"Two N Word"

Members of 1his class are all “counting pointers” to blocks of two-word pairs. The right half of a
counting pointer is an address, and the left half is the negative of the number of 36-bit words in the
block. (This format is tailored to the PDP-10 AOBJIN instruction.) The number of pairs in the block
(LENGTH) is half that number, since each pair is two words. All external TYPEs in this class are of
PRIMTYPE VECTOR. Fxample: 4

R L L L T TS

where length is the LENGTH of the VECTOR and pointer is the location of the start (the element
selected by an NTH argument of 1) of the VECTOR.

Appendix | |

The MDL Programming Language 218

"N Word"

This class is the same as the previous one, except that the block contains objects all of the same
TYPE without individual TYPU words. The TYPE code for all the elements is in vector dope words,
which are at addresses just larger than the block itself. Thus, any object that carries information in
its TYPE word cannot go in the block: PRIMTYPEs STRING, BYTES, TUPLE (and the corresponding
locatives LOCS, 10CB, LOCA). FRAME, and LOCD. All external TYPEs in this class are of PRIMTYPE
UVECTOR. Example:

B L bk e ——

where Tength is the LLNGTH of the UVECTOR and pointer points to the beginning of the UVECTOR.

“Byte String” and "Character String”

These two classes are almost identical. Byte strings are byte pointers to strings of arbitrary-size
bytes. PRIMIYPE BYTES is the only member of this class. Character strings are byte pointers to
strings of ASCIH characters. PRINTYPE STRING is the only member of this class. Both of these
classes consist of a length and a PDP-10 byte pointer. In the case of character strings, the byte-size
field in the byte pointer is always seven bits per byte (hence five bytes per word). Example:

where Tength is the LENGTH of the STRING (in bytes) and byte-pointer points to a byte Jjust before
the beginning of the string (an ILDB instruction is needed to get the first byte). A newly-created
STRING always has *010700* in the left half of byte-pointer. Unless the string was created by

SPNAME, byte-pointer points to a uvector, where the elements (characters) of the STRING are stored,
packed together five to a word.

"Frame”

This class gives the user program a handle on its control and variable-reference structures. All
external TYPUs in this class are of PRIMTYPE FRAME. Thrce numbers are needed to designate a frame:
a unique 18-bit identifying number, a pointer to the frame's storage on a control stack, and a
pointer to the PROCESS associated with the frame. Example:

Appendix |

214 The MDL Programming Language

.................................

where PROCCSS-pointer points to the dope words of a PROCESS vector, and unique-id is used for

validating (testing LEGAL?) the frame-pointer, which points to a frame for some Subroutine call
on the control stack.

"Tuple”

A tuple pointer is a counting pointer to a vector on the control stack. It may be a pointer to the
arguments to a Subrontine or a pointer generated by the "TUPLE" declaration in a FUNCTION. Like

ob jects in the previous class, these objects contain a unique identifying number used for validation.
PRIMTYPE TUPLE is the only member of this class. Example:

.................................

Other Storage Classes

The rest of the storage classes include strictly internal TYPEs and pointers to special kinds of lists
and vectors like locatives, ATOMs and ASOCs. A pair for any LOCATIVE except a LOCD looks like a
pair for the corresponding stiucture, except of course that the TYPE is different. A LOCD pair looks
like a tuple pair and needs a word and a half for its value: the unique-id refers to a binding on the

control stack or to the “global stack”™ if zero. Thus LOCDs are in a sense “stack ob jects” and are more
restricted than other locatives.

An OFFSET is stared with the INDEX in the right half of the value word and the Pattern in the left
half. Since the Pattern can be either an ATOM or a FORM, the left half actually points to a pair,
which points to the actual Pattern. The Pattern ANY is recognized as a special case: the left-half
pointer is zero, and no pair is used. Thus, if you're making the production version of your program

and want to save some storage, you can do something like <SETG FOO <PUT-DECL ,FOO ANY>> for
all OFFSETs.

Appendix |

s,]S NN Y]

. . SR

-

The MDL Programming Language 215

Basic Data Structures

Lists

List eclements are pairs linked together by the right halves of their first words. The list is
terminated by a zero in the right half of the last pair. For example the LIST (1 2 3) would look
like this:

| 0 | -=-ee- > FIK | ==-veee | FIX | ==eue- > FIX | 0 |
------------- IR R I B IR
| 1 | | 2 | | 3 |

The use of pointers to tie together clements explains why new elements can be added easily to a list,
how sharing and circularity work, etc. The links go in only one direction through the list, which is
why a list cannot be BACKed or TOPped: there's no way to find the RESTed elements.

Since some MDL values require a word and a half for the value in the pair, they do not fit directly
into list elements. This problem is solved by having "deferred pointers”. Instead of putting the
datum dircctly into the list clement, a pointer to another pair is used as the value with the special
internal TYPE DCFLR, and the real datum is put in the deferred pair. For example the LIST (1
"hello" 3) would look like this:

|STRING| 5|<-
===
|byte-pntr|

Appendix |

216 The MDL Programming Language

Vectors

A vector is a block of contiguous words. More than one pair can point to the block, possibly at
different places in the block: this is how sharing occurs among vectors. Pointers that are different
arise from REST or GROW/BACK operations. The block is followed by two “dope words”, at addresses
Just larger than the largest address in the block. Dope words have the following format:

The various fields have the following meanings:

type -- The fourth bit from the left (the "vector bit", 40000 octal) is always one, to distinguish these
vector dope words from a TYPE/value pair.

If the high-order bit is zero, then the vector is a UVECTOR, and the remaining bits specify the
uniform TYPE of the elements. CHUTYPE just puts a new TYPE code in this field. Each element
is iimited to a one-word value: clearly PRIMTYPE STRINGs and BYTESes and stack ob jects can't
go in uniform vectors.

If the high-order hit is one and the TYPE bits are zero, then this is a regular VECTOR.

If the high-order bit is one and the TYPE bits are not all zero, then this is either an ATOM, a
PROCESS, an ASOC, or a TEMPLATE. The special internal format of these objects will be
described a little later in this appendix.

length -- The high-order bit is the mark bit, used by the garbage collector. The rest of this field
specifies the number of words in the block, including the dope words. This differs from the
length given in pairs pointing to thi= vector, since such pairs may be the result of REST
operations.

grow -- This is actually two nine-bit fields, tpecifying either growth or shrinkage at both the high
and low ends of the vector. The fields are usuaily set only when a stack must be grown or

shrunk.

gc -- This is used by the garbage collector to specify where this vector is moving during
compaction.

Examples (numbers in octal): the VECTOR [1 "bye" 3] looks like:

Appendix 1

g,

e e P

The MDL Programming Language

| VECIOR | 0 |

b a¥iigd1 |
The UVECIOR '[-1 7 -4!] looks like:
| UVECTOR | 0 |
IR | s
N >l -1 |
| e
| -4 !

| 40000+F1IX | 0 |

l-....-.l

| 5 ORR

Atoms

27

Internally, atoms are special vector-like obijects. An atom contains a value cell (the first two words
of the block. filled in whenever the global or local value of the ATOM is referenced and is not already

there). an OBLIST pointer, and a print name (PNANE), in the folloviiig format:

Appendix 1

o 2

m—y

——

218 The MDL Programming Language
| type | bindid |
| pointer-to-value |
| pointer-to-OBLIST |
| print-name |
/ /
£ /
I (ASCIT with NUL padding on end)|
| ATOM) valid-type |
I T e |
| lenath | ac |

.................................

If the type ficld corresponds to TYPE UNBOUND, then the ATOM is locally and globally unbound.
(This is different from a pair, where the same TYPE UNBOUND is used to mean unassigned.) If it
corresponds to TYPE LOCT (an internal TYPL), then the value cell points either to the global stack, if
bindid is zero. or to a jocal control stack, if bindid is non-zero. The bindid field is used to verify
whether the local value pointed to by the value cell is valid in the current environment. The
pointer-to-0BLIST is either a counting pointer to an oblist (uvector), a positive offset into the
“transfer vector” (for pure ATOMs), or zero, meaning that this ATOM is not on an OBLIST. The valid-

type ficld tells whether or not the ATOM represents a TYPE and if so the code for that TYPE; grow
values are never needed for atoms.

Associations

Associations are also special vector-like objects. The first six words of the block contain TYPE/value
pairs for the ITEM, INDICATOR and AVALUE of the ASOC. The next word contains forward and
backward pointers in the chain for that bucket of the association hash table. The last word
contains forward and backward pointers in the chain of all the associations.

Appendix |

—————

|
|
i
|

B

S A .1, o, . S

e 0V gl

The MDL Programming Language 219
| ITEM |
R I |
| pair |
I INDICATOR I
PRl o SRl o el e e e |
| pair |
| AVALUE |
BSOS e |
| pair |
| bucket-chain pointers |

I ASOC | 0 I
2 cessls o aaes |
| 12 octal | gc |

PROCESSes

A PROCESS vector looks exactly like a vector of TYPE/value pairs. It is different only in that the
garbage collector treats it differently from a normal vector, and it contains extremely volatile
information when the PROCESS is RUNNING.

Templates

In a template. the number in the type field (left half of first dope word) identifies to which “storage
allocation class” this TEMPLATE belongs, and it is used to find PDP-10 instructions in internal tables
(frozen uvectors) for performing LENGTH, NTH, and PUT operations on any object of this TYPE.
The programs to build these tables are not part of the interpreter, but the interpreter does know how
to use them properly. The compiler can put these instructions directly in compiled programs if a
TEMPLATE is never RESTed: otherwise it must let the interpreter discover the appropriate instruction.
The value word of a template pair contains, not a counting pointer, but the number of elements
that have been RESTed of [in the left half and a pointer to the first dope word in the right half.

Appendix |

220 The MDL Programming Language

The Coutrol Stack

Accumulators with symbolic names AB, T8, and TP are all pointers into the RUNNING PROCESS's
control stack. AB ("argument base”) is a pointer to the arguments to the Subroutine now being run.
It is set up by the Subroutine-call mediator, and its old vaiue is always restored after a mediated
Subroutine call returns. T8 ("temporaries base”) points to the frame for the running Subroutine and
also serves as a stack base pointer. The TB pointer is rea’’y all that is necessary to return from a
Subroutine -- given a value to return, for example by ERRET -- since the frame specifies the entire
state of the calling routine. TP ("temporaries pointer”) is the actual stack pointer and always points
to the cucrent top of the control stack.

While we're on the subject of accumulators, we might as well be complete. Each accumulator
contains the value word of a pair, the corresponding TYPE words residing in the RUNNING PROCESS
vector. When a PROCESS is nat RUNNING (or when the garbage collector is running), the accumulator
contents are stored in the vector, so that the objects they point to look like elements of the PROCESS
and thus are not garbage-collectible.

Accumulators A, 8, C, D, € and O arc used almost entircly as scratch accumulators, and they are
not saved or restored across Subroutine calls. Of course the interrupt machinery always saves these
and all other accumulators. A and B are used to return a pair as the value of a Subroutine call.
Other than that special feature, they are just like the other scratch accumulators.

M and R are used in running RSUBRs. M is always set up to point to the start of the RSUBR's code,
which is actually just a uniform vector of instructions. All jumps and other references to the code
use M as an index register. This makes the code location-insensitive, which is necessary because the
code uvector will wave around. R is sct up to point to the vector of objects needed by the RSUBR.
This accumulator is necessary because objects in garbage-collected space can move around, but the
pointers to them in the reference vector are always at the same place relative to its beginning.

FRM is the internal frame pointer, used in compiled code to keep track of pending Subroutine calls
when the control stack is heavily used. P is the internal-stack pointer, used primarily for internal
calls in the interpreter.

One of the nicest features of the MDL cavironment is the uniformity of the calling and returning
sequence. A4l Subroutines -« both built-in F/SUBRs and compiled RSUBR(-ENTRY)s -- are called in
exactly the same way and return the same way. Arguments are always passed on the control stack
and results always end up in the same accumulators. For efficiency reasons, a lot of internal calls
within the interpreter ciccumvent the calling sequence. However, all calls wade by the interpreter
when running user programs go through the standard calling sequence.

A Subroutine call is initiated by one of three UUOs (PDP-10 instructions executed by software
rather than hardware). MCALL ("MDL call”) is used when the number of arguments is known at
assemble or compile time, and this number is less than 16. QCALL ("quick call”) may be used if, in
addition, an RSUBR(-ENTRY) is being called that can be called "quickly” by virtue of its having

Appendix 1

e ————

The MDL. Programming Language 221

special information in its reference vector. ACALL (“accumulator call”) is used otherwise. The
general method of calling a Subroutine is to PUSH (a PDP-10 instruction) pairs representing the
arguments onto the control stack via TP and then either (1) MCALL or QCALL or (2) put the number of
arguments into an accumulator and ACALL. Upon return the ob ject returned by the Subroutine will
be in accumulators A and B, and the arguments will have been POPped of f the control stack.

The call mediator stores the contents of P and TP and the address of the calling instruction in the
current frame (pointed to by TB). It also stores MDL's “binding pointer” to the topmost binding in
the control stack. (The hindings are linked together through the control stack so that searching
through them is more efficient than looking at every ob ject on the stack.) This frame now specifies
the entire state of the caller when the call occurred. The mediator then builds a new frame on the
control stack and stores a pointer back to the caller's frame (the current contents of T8), a pointer to
the Subroutine being called, and the new contents of AB, which is a counting pointer to the
arguments and is computed from the information in the MCALL or QCALL instruction or the ACALL
accumulator. T8 is then set up to point to the new frame, and its left half is incremented by one,
making a new unique-id. The wmediator then transfers control to the Subroutine.

A control stack frame has seven words as shown:

.................................
B

| argument pointer |
| saved binding pointer |
e S e
Rl sved 0|
| savod caViing address |

The first three words are set up during the call to the Subroutine. The rest are filled in when this
routine calls anotlier Subroutine. The left half of TB is incremented every time a Subroutine call
occurs and is used as the unique-id for the frame, stored in frame and tuple pairs as mentioned
before. Obviously this id is not strictly unique, since each 256K calls it wraps around to zero. The
right half of 1B is always left pointing one word past the saved-calling-address word in the frame.

TP is also left pointing at that word, since that is the top of the control stack at Subroutine entry.

The arguments to the called Subroutine are below the frame on the control stack (at lower storage
addresses), and the temporaries for the called Subroutine are above the frame (at higher storage
addresses). These arguments and temporaries are just pairs stored on the control stack while needed;
they are all that remain of UNSPECIAL values in compiled programs.

Appendix |

T

=

222 The MDL Programming Lnngiuge

The following figure shaws what the control stack might look like after several Subroutine calls.

| |
| frame for S1 |
S B it o b -~
| ¥]
] | temps for S1 | |
| g
................. ‘
| g
| args for S2 | |
|
|

The above figure shows the frames all linked together through the control stack (the "execution
path”). so that it is casy to return to the caller of a given Subroutine (ERRET or RETRY).

Subroutine exit is accomplished simply by the call wmediator, which loads the right half of T8 from

the previous frame pointer, restares the "binding pointer”, P, and TP, and transfers control back to
the instruction following the saved calling address.

Appendix |

The MDL Programming Language 228

Variable Bindings

All local ATOM values are hept on the control stack of the PROCESS to which they are local. As
described before, the atom contains a word that points to the value on the control stack. The

pointer is actually to a six-word “binding block™ on the control stack. Binding blocks have the
following format:

------------------------------- -

| BIND or UBIND | prev |
| pointer to ATOM |
| value |
f s s nsialw m wielalia e |
| pair |
| dec | unique-id |
| previous-binding |

where:

BIND mcans this is a binding for a SPECIAL ATOM (the only kind used by compiled programs),

and UBIND means this is a binding for an UNSPECIAL ATOM -- for SPECIAL checking by the
interpreter:

prev paints to the closest previous binding block for any ATOM (the “access path” -- UNWIND
ob jects are also linked in this chain):

dec points to a DECL associated with this binding, for SET(LOC) to check:
unique=id is used for validation of this block: and
previous-binding poaints to the closest previous binding for this ATOM (used in unbinding).

Bindings are generated by an internal subroutine called SPECBIND (name comes from SPECIAL). The
caller to SPECBIND PUSHes consecutive siv-word blocks onto the control stack via TP before calling
SPECBIND. The first word of cach block contains the TYPE code for ATOM in its left half and all
ones in its right half. SPECBIND uses this bit pattern to identify the binding blocks. SPECBIND's
caller also fills in the next three words and leaves the last two words empty. SPECBIND fills in the
rest and leaves the “binding pointer™ pointing at the topmost binding on the control stack.
SPECBIND also stores a pointer to the current binding in the value cell of the atom.

Appendix |

224

The MDL Programming Language

Unbinding is accomplished during Subroutine return. When the previous frame is being restored,
the call mediator checks to see if the saved “binding pointer” and the current one are different: if
they are. SPLCSTORE is calied. SPECSTORE runs through the binding blocks, restoring old value
pointers in atoms until the “hinding pointer” is equal to the one saved in the frame.

Obviously variable binding is ware complicated than this, because ATOMs can have both local and
global values and even different local values in different PROCESSes, The solution to all of these
additional problems lies in the bindid ficld of the atom. Each PROCESS vector also contains a
current bindid. Whenever an ATOM's local value is desired, the RUNNING PROCESS's bindid is
checked against that of the atom: if they are the same, the atom points to the current value; if not,
the current PROCESS's contral stack wwust be searched to find a binding block for this ATOM. This
binding scheme might be called “shallow binding". The scarching is facilitated by having all
binding blocks linked together. Referring to global variables is accomplished in a similar way,
using a VECTOR that is referred to as the “glabal stack™. The global stack has only an ATOM and a
value slot for cach variable, since global values never get rebound.

EVAL with respect 1o a different environment causes some additional problems. Whenever this kind
of EVAL is done. a brand new bindid is generated, forcing all current local value cells of atoms to
appear invalid. Local values must now be obtained by searching the control stack, which is
inefficient compared 1o just pulling them out of the atoms. (The greatest incfficiency occurs when
an ATOM's LVAL is never used twice in a row in the same environment.) A special block is built on
the control stack and linked into the binding-block chain. This block is called a “skip block™ or

“environment splice”, and it diverts the "access Path” to the new environment, causing searches to
become relative to this new environment.

Appendix |

PR

The MDL Programming Language 225

Appendix 2. Predefined Subroutines

The following is a very brief description of all the primitives (F/SUBRs) currently available in
MDL. These descriptions are in no way to be considered a definition of the effects or values
produced by the primitives. They just try to be as complete and as accurate as is possible in a
single-statement description. However, because of the complexity of most primitives, many
important assumptions and restrictions have been omitted. Even though all primitives return a
value. some descriptions mention only the side effects produced by a primitive, because these
primitives are most often used for this effect rather than the value.

A description is given in this format:

name (arpuments)
dec/
English description

This format is intended to look like a FUNCTION definition, omitting the call to DEFINE and all
internal variables and code. The name is just the ATOM that is used to refer to the primitive. The
names of the argurients are intended to be mnemonic or suggestive of their meanings. The dec/ is a
FUNCTION-style DECL (chapter 14) for the primitive. In some cases the DECL may look unusual,
because it is intended to convey information to a person about the uses of arguments, not to convey
information to the MDL interpreter or compiler. For example, COR FALSE ANY> is functionally

equivalent to ANY, but it indicates that only the "truth” of the argument is significant. Indeed, the

[OPT ...7 construction is often used illegally, with other elements following it: be warned that
MDL would not accept it. An argument is included in the same LIST with VALUE (the value of the
primitive) only if the argument is actually returned by the primitive as a value. In other words,
#DECL ((VALUE ARG) ...) implies <==7 .VALUE .ARG)>.

* ("TUPLC" FACTORS)
#DECL ((VAILUE) <OR FIX FLOAT>

(FACTORS <TUPLE [REST <OR FIX FLOAT>]>)
multiplics all arguments together (arithmetic)

+ ("TUPLE"™ TERMS)
#DECL ((VALUE) <OR FIX FLOAT>
(TERMS) <TUPLE [REST <OR FIX FLOAT>]>)
adds all arguments together (arithmetic)

Appendix 2

Py

226

= ("OPTIONAL™ MINUEND "TUPLE" SUBTRAHENDS)
#DECL ((VALUL) <OR FIX FLOAT>
(MINUCHND) <OR FIX FLOAT>
(SUBTRAHENDS) <TUPLE [REST <OR FIX FLOATY]>)
subtracts other arguments from first argument (arithmetic)

/ (“OPTIONAL" DIVIDCHD "TUPLE"™ DIVISORS)
#OECL ((VALUE) <OR FIX FLOAT

(DIVIDEND) <OR FIX FLOAT)

(DIVISORS) <TUPLE [REST <OR FIX FLOAT>]>)
divides first argumcnt by other arguments (arithmetic)

07 (NUMBLR)

#DECL ((VALUL) <OR 'T '#FALSE ()
(NUMBER) <OR FIX FLOAT>)

tells whether a number is zero (predicate)

1?7 (NUMBLR)
#DECL ((VALUL) <OR 'T '#FALSE ()>
(NUMBIR) <OR FIX FLOATY)
tells whether a number is one (predicate)

ISTEP (PROCCSS)
#DECL ((VALUE PROCESS) PROCESS)
causes a PROCESS 1o enter single-step wmode

==? (OBJECT-1 OBJICT-2)
#DECL ((VALUE) <OR 'T '#FALSE ()
(OBJECT-1 OBJECT-2) ANY)
tells whether two ob jects are "exactly” cqual (predicate)

=? (OBJECT-1 OBJECT-2)
#DECL ((VALUE) <OR 'T '#FALSE ()
(OBJECT-] OBJECT-2) ANY)
tells whether twn oh jects are "structurally” equal (predicate)

ABS (NUMBER)
#DECL ((VALULC) <OR FIX FLOAT>
{HUMBER) <OR FIX FIOATY)
returns absolute value of a number (arithmetic)

ACCESS (CUANNCL ACCESS-POINTER)
#DECL ((VALUF CHANNFIL) CHANNEL
(ACCESS-POINTER) FIX)
sets access pointer for next 1/0 transfer via a CHANNEL

Appendix 2

The MDL Programming Language

The MDL Programming Language 227

ACTIVATE-CHARS (“OPTIONAL" STRING)
#DECL ((VALUL STRING) STRING)
sets or returins interrupt characters for terminal typing (Tenex and Tops-20 versions only)

AGAIN ("OPTIOHAL"™ (ACTIVATION .LPROG\ '-INTERRUPTS))
#DECL ((VALUL) ANY
(ACTIVATION) ACTIVATION)
resumes exccution at the given ACTIVATION

ALLTYRES ()
#DECL ((VALUE) <VECTOR [REST ATOM]>)
returns the VECIOR of all type names

AND ("ARGS" ARGS)
#DECL ((VALUE) <OR FALSE ANY)
(ARGS) LIST)
computes logical "and” of truth-values, evaluated by the Subroutine

AND? ("TUPLE" TUPLL)
#DECL ((VALUL) <OR FALSE ANY>
(TUPLL) TUPLE)
computes logicai "and” of truth-values, evaluated at call time

ANDB ("TUPLE"™ WORDS)
#DECL ((VAIUE) WORD
(WORDS) <TUPLE [REST <PRIMTYPE WORD>]>)
computes bitwise “and” of machine words

APPLICABLE? (OBIICT)

#DECL ((VALUEL) <OR 'T '#FALSE ()>
(OBJECT) ANY)

tells whether argument is applicable (predicate)

APPLY (APPLICABLE “TUPLE"™ ARGUMENTS)
#DECL ((VALUE) ANY

(APPLICABLE) APPLICABLE (ARGUMENTS) TUPLE)
applies first argument to the other arguments

APPLYTYPE (TYPE "OPTIONAL" HOW)

#DECL ((VALUE) <OR ATOM APPLICABLE '#FALSE ()>
(TYPE) ATOM (HOW) <OR ATOM APPLICABLE>)

specifies or returns how a data type is applied

Appendix 2

B R o
PR — -~ i iR A M :

228 The MDL Programming Language

ARGS (CALL)
#DECL ((VALUE) TuPLE

(CALL) <OR FRAME ENVIRONMENT ACTIVATION PROCESS))
returns arguments of a given un-returned Subroutine call

ASCII (CODE -OR-CHARACTER) ‘

#DECL ((VALUE) <OR CHARACTER FIX> ‘
{CODE-OR-CHARACTLR) <OR FIX CHARACTERY) !

returns CHARACTER with given ASCI) code or vice versa '_

ASSIGNED? (ATOM "OPTIONAL" ENV)
fDECL ((VALUE) <OR 'T '"#FALSE ()

(ATOM) ATOM (FNV) <OR FRAME ENVIRONMENT ACTIVATION PROCESS)>)
tells whether an ATOM has a local value (predicate)

ASSOCIATIONS ()
#DECL ((VALUL) <OR ASOC '#FALSE ()>)
returns the first ab ject in the association chain

AT (STRUCTURLD "OPTIONAL"™ (N 1))
#DECL ((VALUL) 10CATIVE
| (STRUCTURED) STRUCTURED (N) <OR FIX OFFSET))
returns a locative to the Nth clement of a structure

ATAN (NUNBER)
#DECL ((VALUE) FLOAT

(NUMBLR) <OR FIX FLOAT>) i
returns arc tangent of a number (arithmetic) |

| ATOM (PNAME)
#DECL ((VALUL) ATOM
(PNAME) STRING)
creates an ATOM with a given name

e it T

AVALUT (ASSOCIATION) ,’
i #DECL ((VAIUL) ANY ’
‘ {(ASSOCIATION) ASOC)

l returns the “value” field of an association

' Appendix 2

i e i PR I —

The MDL Programming Language 229

BACK (STRUCTURE "OPTIONAL" N)
#DECL ((VALUL) <OR VECTOR TUPLE UVECTOR STORAGE STRING BYTES TEMPLATE>
(*) FIX
(STRUCTURE) <OR <PRIMIYPE VECTOR> <PRIMTYPE TUPLE>
CPRIMTYPE UVECTOR> <PRIMTYPE STORAGE>
CPRIMTYPE STRING> <PRIMTYPE BYTES>
CPRIMTYPL TEMPLATE>>)
replaces some elements removed from a non-list structure by RESTing and chzuges to primitive data
type

BIND ("ARGS" ARGS)
#DECL ((VALUE) ANY
(ARGS) <LIST [OPT ATOM] LIST [OPT DECL] ANY>)
executes scquential expressions without providing a bound ACTIVATION

BIfS (WIDIH "OPTIONAL* (RIGHT-EDGE 0))
#DECL ((VALUL) BIIS

(WIDTH RIGHT-EDGL) FIX)
creates a bit mask for PUTBITS and GETBITS

BLOAT ("OPTIOHAL"
(FREE 0) (STACK 0) (LOCALS 0) (GLOBALS 0) (TYPES 0) (STORAGE 0) (P-STACK 0)
MIN GROW-10CAL GROW-GLOBAL GROW-TYPE GROW-STORAGE PURE P-STACK-SIZE STACK-SIZE)
#DECL ((VALUE) FIX
(FREC STACK LOCALS GLOBALS TYPES STORAGE P-STACK MIN GROW-LOCAL GROW-GLOBAL
GROW-TYPE GROW-STORAGE PURE P-STACK-SIZE STACK-SIZE) FIX)
allocates extra storage temporarily

BLOAT-STAT ("OPTIONAL" STATS)
#DECL ((VALUF) <UVECTOR [27 FIXD
(STATS) <UVECTOR [27 ANY]>)
gives garbage-collector and storage statistics

BLOCK (LOOK-UP)
#DECL((VALUE LOOK-UP) <OR OBLIST <LIST [REST <OR OBLIST 'DEFAULT>]>>)-
SETs OBLIST for looking up ATOMs during READing and PARSEing

BOUND? (ATOM "OPTIONAL"™ ENV)
#DECL ((VALUE) <OR 'T '#FALSE ()>
(ATOM) ATOM (ENV) <OR FRAME ENVIRONMENT ACTIVATION PROCESS>)
tells whether an ATOM is locally bound (predicate)

Appendix 2

e e e

|
5
5
|

230

BREAK-SEQ (0OBJICT PROCESS)
#DECL ((VALUE PROCESS) PROCESS
(OBJECT) ANY)
modifies exccution sequence of another PROCESS

BUFOUT ("CPTIONAL" (CHANNEL .OUTCHAN))
#DECL ((VALUE CHANNEL) CHANNEL)
writes out all internal MDL buffers for an output CHANNEL

BYTE-SIZE (BYTES)
#DECL ((VALUL) FIX
(BYTLS) BYTES)
returns size of bytes in a byte-string

BYTES (SIZE "TUPLE" ELEMENTS)
#DECL ((VALUE) BYTES

(STZE) FIX (ELEMENTS) <TUPLE [REST FIX]>)
creates a byte-string from explicit arguments

CHANLIST ()
#DECL ((VALUF) <LIST [RFST CHANNELD>)
returns a LIST of currently open I/O CHANNELs

CHANNEL ("OPTTONAL"™ (MODE "READ") "TUPLE" FILE-NAME)
#DECL ((VAILUE) CHANNEL

(MODE) STRING (FILE-NAME) TUPLE)
creates an unopened 1/O CHANNEL

CHTYPE (OBJECT TYPE)
#DECL ((VALUE) ANY
{OBJECT) ANY (TYPE) ATOM)
makes a new pair with a given data type from an old one

CHUTYPE (UVECTOR TYPE)
#DECL ((VALUL UVECTOR) <PRIMTYPE UVECTOR>
(TYPE) ATOM)
changes the data type of the elements of a uniform vector

CLOSE (CHANNCL)

#DECL ((VALUF CHANNEL) CHANNEL)
closes an 1/O CHANNEL

Appendix 2

The MDL Programming Language

The MDL Programming Language 281

CLOSURE (FUNCTION "TUPLE"™ VARIABLES) '
#DECL ((VALUE) CLOSURE 3
(FUNCTION) FUNCTION (VARIABLES) <TUPLE [REST ATOM]>)

"binds" the free variables of a FUNCTION to current values

COND ("ARGS" CLAUSES) \
#DECL ((VALUL) ANY

(CLAUSES) <LIST CLIST (OR FALSE ANY>> [REST <LIST <OR FALSE ANY>>]>)
evaluates coaditions and selected expression

ez

i CONS (NEW-ELEMCNT LIST) 3
#DECL ((VALUE) LIS |

(NEW-ELLMENT) ANY (LIST) LIST) ?
adds aun clewent to the front of a LIST

COS (NUMBER)
#DECL ((VALUC) FLOAY

(NUMBER) <OR FIX FLOAT>)
returns cosine of a number (arithmetic)

CRLF ("OPTIONAL" (CHANNEL .OUTCHAN))
#DECL ((VALUE) 'T
(CHANNEL) CHANNEL)
prints a carriage-return and line-feed via an output CHANNEL

DECL-CHECK ("OPTIONAL" SWITCH)
#DECL ((VAILUE) <OR 'T '#FALSE ()>
(SWITCH) <OR FALSE ANY>)
enables or disables type-declaration checking

DECL? (OBJECT PATIERN)
#DECL ((VALUE) <OR 'T '#FALSE ()
(OBJLCT) ANY (PATTERN) <OR ATOM FORM>)
tells whether an ob ject matches a type declaration (predicate)

DEFINE ('NANME "ARGS" ARGS)
#DECL ((VALUE) ATON

(HANME) ANY {(ARSS) CLYST [OPT ATOM) LIST [OPT DECL] ANY>)
sets the global value of an ATOM tu a FUNCTION

DEFMAC ("NAML. "ARGS" ARGS)
#DECL ((VALUEL) ATOM

(NAME) ANY (ARGS) <LIST [OPT ATOM] LIST [QPT DECL] ANYD)
sets the global value of an ATOM to a MACRO

Appendix 2

232

DEMSIG (NAMI)
#DECL ((VALUL) COR 'T '#FALSE ()>
(NAME) STRING)
signals an ITS dacwmon

DISABLE (INIERRUPT)

#DECL ((VALUE INIERRUPT) IHEADER)
disables an interrupt

DISMISS (VAL "OPTIONAL" ACTIVATION INT-LEVEL)
#DECL ((VALUE VAL) ANY

(ACYIVATION) ACTIVATION (INT-LEVEL) FIX)
dismisses an interrupt occurrence

ECHOPAIR (IN OUT)
#OECL ((VALUL IN) CHANNCL
(OUT) CHANNIL)
coordinates 1/0) CHANNELs for echoing characters on rubout

EMPTY? (0OBOLCT)
#DECL {(VAMUT) COR T "#EALSE ()
(OBJECT) STRUCTURED)
tells whether a structure has zero elements (predicate)

ENABLE (INTERRUPT)

#DECL ((VALUE INIERRUPT) IHEADER)
enables an intertups

ENDBLOCK ()

#DECL ((VALUE) <OR OBLIST <LIST [REST <OR OBLIST 'DEFAULT>]>>)
restores the .OBLIST that existed before corresponding call to BLOCK

ENTRY=-LOC (INIRY)
#DECL ((VALUL) FIX
(ENTRY) RSUBR-ENTRY)
returns the offset in the code vector of an RSUBR-ENTRY

EQVB ("TUPLE" WORDS)
P#OECL ((VALUL) WORD

(WORDS) <TUPLE [REST <PRIMTYPE WORD>])>)
computes bitwise “equivalence” of machine words

Appendix 2

The MDL Programming Language

|
|
|

e e a——

The MDL Programming Language 233

ERRET ("OPTIONAL" VAL (FRAME .LERR\ !'-INTERRUPTS))
#DECL ((VALUE) ANY
(VAL) ANY (FRAME) FRAME)
continues evaluation from the last ERROR or LISTEN or from a given FRAME

ERROR ("TUPLE"™ INFO)
#DECL ((VALUL) ANY
(INFO) TUPLE)
stops and informs user of an error

ERRORS ()
#DECL ((VALUL) OBLIST)
returns the OBLIST where error messages are located

EVAL (ANY "OPTTONAL" ENV)
#DECL ((VALUE) ANY
(ENV) <OR FRAME ENVIRONMENT ACTIVATION PROCESS))
evaluates an expression in a given environwent

EVALTYPE (TYPE "OPTIONAL" HOW)

#DECL ((VALUE) COR ATOM APPLICABLE '#FALSE ()
(TYPL) ATOM (HOW) <OR ATOM APPLICABLE)>)

specifies or returns how a data type is cvaluated

EVENT (NAME "OPTIONAL" PRIORITY WHICH)
#DECL ((VALUE) THEADCR

(NAME) <OR STRING ATOM IHEADER> (PRIORITY) FIX (WHICH) COR CHANNEL LOCATIVE>)
sets up an interrupt

EXP (NUMBER)
#DECL ((VALUE) FILOAT
(NUMBER) <OR FIX FLOAT>)

"o

returns "¢ to the power of a number (arithmetic)

EXPAND (ANY)
#DECL ((VALUE) ANY
(ANY) ANY)
evaluates its argunent (only once if a MACRO is involved) in the top-level environment

FILE-EXISTS? ("TUPLE" FILE-NAME)
#DECL ((VALUL) <OR 'T <FALSE STRING FIX>>
(FILE-NAME) TUPLE)
tests for existence of a file (predicate)

Appendix 2

234 The MDL Programming Language

FILE-LENGTH (INCH)
#DECL ((VALUE) F1TIX
(INCH) CHANNEL)
returns the system-provided length of a file open on an input CHANNEL

FILECOPY ("OPTIONAL"™ (INCH .INCHAN) (OUCH .QUTCHAN))
#DECL ((VALUE) FIX
(INCH OUCH) CHANNEL)
copics characters from one CHANNEL to another until end-of-file on the input CHANNEL

FIX (NUMBER)
#DECL ((VALUE) FIX
(NUMBLR) <OR FLOAT FIX>)
returns integer part of a number (arithmetic)

FLATSIZE (ANY MAX "OPTIONAL" (RADIX 10))
#DECL ((VALUL) <OR FIX '#FALSE ()>
(ANY) ANY (MAX RADIX) FIX)
returns number of characters needed to PRINI an ob ject, if not greater than given maximum

FLOAD ("TUPLE" FILE-NAME-AND-LOOK-UP)
#DECL ((VALUE) '“DONE"
(FILE-NAME-AND-LOOK-UP) TUPLE)
reads and cvaluates all objects in a file

FLOAT (NUMBLR)
#DECL ((VALUE) FLOAT
(NUMBER) <OR FIX FLOATY)
returns floating-point value of a number (arithmetic)

FORM ("TUPLE"™ ELEMENTS)
#DECL ((VALUL) TORM
(ELEMENTS) TUPLE)
creates a FORM from explicit arguments

FRAME ("OPTIONAL" (FRAMC .LERR\ !-INTERRUPTS))
#DECL ((VALUL) | RAME
(FRAME) <OR FRAME ENVIRONMENT ACTIVATION PROCESS>)
returns a previous Subroutine call

é FREE-RUN (PROCISS)
' #DECL ((VALUE) <OR PROCESS '#FALSE ()>
(PROCESS) PROCESS)
causes a PROCLSS to leave single-step mode

Appendix 2

NE——

The MDL Programming Language 235

FREEZE (STRUCTURE)

#DECL ((VALUE) <OR VECTOR UVECTOR STRING BYTES>
b (STRUCTURE) <OR <PRIMTYPE VECTOR> <PRIMTYPE TUPLE> <PRIMTYPE UVECTOR>
; <PRIMTYPE STRING> <PRIMTYPE BYTES>>)
makes capy of argument in non-moving garbage-collected space

FUNCT (FRANC)
#DECL ((VALUL) ATOM
(FRAME) <OR FRAME ENVIRONMENT ACTIVATION PROCESS>)
returns Subroutine name of a given previous Subroutine call

FUNCTION ("ARGS" ARGS)
#DECL ((VALUE) FUNCTION
(ARGS) <LIST [OPV ATOM] LIST [OPT DECL] ANY>)
creates a FUNCTION

G=? (NUMBER-1 NUMBER-2)
#DECL ((VALUE) <OR 'T '#FALSE ()>
(NUMBER-1 NUMBER-2) <OR FIX FLOAT>)
tells whether first argument is greater than or equal to second (predicate)

G? (NUMBLER-1 HUMBER-2)
#DECL ((VALUF) <OR 'T '"#FALSE ()>
(NUHMBLR-1 NUMBER-2) <OR FIX FLOAT>)
tells whether first argument is greater than second (predicate)

GASSIGNID? (ATOM)
#DECL ((VALUE) <OR 'T '#FALSE ()>
(ATOM) ATOM)
tells whether an ATOHM has a global value (predicate)

GBOUND? (A1OM)
#DECL ((VALUE) <OR 'T '#FALSE () |
(ATOM) ATOM) I
tells whether an ATOM ever had a global value (predicate)]

GC ("OPTIONAL"™ MIN (EXHAUSTIVE? <>) MS-FREQ) | %
#OECL ((VALUE) FIX |
(MIN MS-FREQ) FIX (EXHAUSTIVE?) <OR FALSE ANY)) l h

causes a garbage collection and changes garbage-collection parameters

GC-DUMP (ANY PRINTB) g
#DECL ((VAILUE) <OR ANY CUVLCTOR <PRIMTYPE WORD>>)> |
(ANY) ANY (PRINTB) <OR CHANNEL FALSE>)

dumps an ob ject so that it can be reproduced exactly

Appendix 2 %

236

The MDL Programming Language

GC-MON (“OPTIOHAL" SWITCH)
#DECL ((VALUL) <OR 'T '#FALSE ()>
(SWIICH) <OR FALSE ANY>)
turns garbage-collection monitoring off or on

GC-READ (RCADB "OPTIONAL" (EOF-ROUTINE '<ERROR ...>))
#DECL ((VALUE) ANY

(READG) CHANNEL (EOF-ROUTINE) ANY)
inputs an object that was previously GC-DUMPed

GDECL ("ARGS" ARGS)
#DECL ((VALUE) ANY

(ARGS) <LIST [REST CLIST [REST ATOM]> <OR ATOM FORM>]>)
declares the type/structure of the global value of ATOMs

GET (ITEM INDICATOR "OPTIONAL" (IF-NONE <>))
#DECL ((VALUU) ANY

(TTEM) <OR STRUCTURED ANY> (INDICATOR) <OR FIX OFFSET ANY> (IF-NONE) ANY)
does NTH or GETPROP

GET-DECL (ATONM-OR-OFFSET)
#DECL ((VALUE) <OR ATOM FORM '#FALSE ()>
(ATON-OR-OFFSET) <OR LOCD OFFSET))
gets the type declaration for an ATOM's value or an OFFSET

GETBITS (FROM FIELD)
#DECL ((VALUL) WORD

(FROM) <OR <PRIMTYPE WORD> <PRIMTYPE STORAGE>> (FIELD) BITS)
returns a bit ficld of a machine word or STORAGE address

GETL (ITEM INDICATOR "OPTIONAL"™ (IF-NONE <>))
#DECL ((VALUEL) <OR LOCATIVE LOCAS ANY>

(11CM) <OR STRUCTURED ANY> (INDICATOR) <OR FIX OFFSET ANY> (IF-NONE) ANY)
does AT or GETPL

GETPL (ITCM INDICATOR "OPTIONAL" (IF-NONE <>))
#DECL ((VALUE) <OR 10CAS ANY>

(TTEM INDICATOR 1F-NONE) ANY)
returns a locative to an association

GETPROP (LTEM INDICATOR "OPTIONAL"™ (IF-NONE <>))
#DECL ((VALUE) ANY

(ITEM INDICATOR IF-NONE) ANY)
returns the value associated with an item under an indicator

Appendix 2

e ———

The MDL Programming Language : 237

GLOC (ATOM "OPTIONAL®" (MAKE-SLOT <)) _ 1

~ #DECL ((VALUE) LOCO
(ATOM) ATOM (MAKE-SLOT) <OR FALSE ANY>)
returns a locative to the global-value cell of an ATOM .'

GO (LABEL)
#DECL ((VALUE) ANY |
(LABEL) <OR ATOM TAG)) ; ’
goes to a label and continues evaluation from there |

GROW (U/VECTOR END BEG) £
#DECL ((VALUE) <OR <PRIMTYPE VECTOR> <PRIMTYPE UVECTOR>>

(U/VECTOR) <OR (PRIMTYPE VECTOR> <PRIMTYPE UVECTOR>> (END BEG) FIX)

increases the size of a vector or uniform vector i

GUNASSIGN (ATOM)
#DECL ((VALUE ATOM) ATOM)
causes an ATOM to have no global value

GVAL (ATOM)
#DECL ((VALUE) ANY
(ATOM) ATOM)
returns the global value of an ATOM

HANDLER (IHEADER HANDLER "OPTIONAL" (PROCESS #PROCESS 0))
#DECL ((VALUE) HANDLER

(THEADER) INEADER (HANDLER) <OR HANDLER APPLICABLE> (PROCESS) PROCESS)
creates an interrupt HANDLER

HANG ("OPTIONAL"™ (UNHANG <>))
#DECL ((VALUE) ANY
(UNHANG) ANY)
does nothing. interruptibly, potentially forever

IBYTES (SIZE LENGTH “OPTIONAL" (ELEMENT 0))
#DECL ((VALUE) BYTES

(SIZE LENGTH) FIX (ELEMENT) ANY)
creates a byte-string from implicit arguments §

IFORM (LENGTH *OPTIONAL" (ELEMENT #LOSE 0))
#DECL ((VALUE) FORM
(LENGTH) FIX (ELEMENT) ANY)
creates a FORM from implicit arguments

Appendix 2 . |

238 The MDL Programming Language

ILIST (LENGTH “"OPTIONAL" (ELEMENT #LOSE 0))
#DECL ((VALUE) LIST
(LENGTH) FIX (ELEMENT) ANY)
creates a LIST from implicit arguments '

IMAGE (CODE “OPTIONAL®™ (CHANNEL .OUTCHAN))
#DECL ((VALUE CODE) FIX
(CHANNEL) CHANNEL)
sends an image-mode character via an output CHANNEL

IN (POINTER)
#DECL ((VALUE) ANY
) (POINTER) LOCATIVE) |4
returns the ob ject pointed to by a locative 9

INDEX (OFFSET)
#DECL ((VALUE) FIX !

(OFFSET) OFFSET) i

fetches the integral part of an OFFSET

E—_—

INDICATOR (ASSOCIATION)
#DECL ((VALUE) ANY
(ASSOCIATION) ASOC)
returns the “indicator” field of an association

INSERT (PNAME OBLIST)
#DECL ((VALUE) ATOM »
(PNAME) <OR ATOM STRING> (OBLIST) OBLIST) :

~adds an ATOM to an OBLIST

T T o R A

INT-LEVEL (“"OPTIONAL®™ NEW-INT-LEVEL)
#DECL ((VALUE) FIX
(NEW-INT-LEVEL) FIX)
returns and/or sets current interrupt level

INTERRUPT (NAME "TUPLE®™ HANDLER-ARGS)

#DECL ((VALUE) <OR 'T '#FALSE () r
(NAME) <OR STRING ATOM IHEADER> (HANDLER-ARES) TUPLE)

causes an interrupt to occur

INTERRUPTS ()
#DECL ((VALUE) OBLIST)
returns the OBLIST on which interrupt names are kept

Appendix 2

SO i

The MDL Programming Language 239

IPC-HANDIER (BODY TYPE OTHER-NAME-1 OTHER-NAME-2

"OPTIONAL"™ (MY-NAME-1 CUNAME>) (MY-NAME-2 <JINAMEY))
#DECL ((VALUE) 'T

(BODY) <OR STRING UVECTOR> (TYPE) FIX
(OTHER-NAME =1 OTHER=-NAME-2 MY-NAME-1 MY-NAME-2) STRING)
is the built-in handler for "IPC* (ITS version only)

IPC-OrF ()
#DECL ((VALUL) *'1)
stops all listening on the IPC device (ITS version only)

et e e

IPC-ON ("OPTTONAL"™ (MY-NAMC-1 CUNAME>) (MY-NAME-2 CJNAMED))
#DECL ((vALUL) *1T

l
(MY-NANME-1 MY-NAME-2) STRING) “
listens on the 1'C device (UFS version only) i

ISTORAGE (LENGTH “OPT1IONAL" (ELEMENT #LOSE 0))

#DECL ((VALUE) STOP\GE i

(LENGTI) i (CLEMENT) ANY) 4

creates a non-garbage-callected STORAGE from implicit arguments (archaic) ¢

i

ISTRING (LENGTH "OPTIONAL" (ELEMENT !*@)) i

#0CCL ((VALUL) STRING i

' (LENGTH) FIX (ELEMENT) ANY) i

creates a character-string from implicit arguments

' ITEM (ASSOCIATION)
#DECL ((VALUE) ANY
(ASSOCIATION) ASOC) :
returns the “item” ficld of an association

ITUPLE (LENGTIH “OPITONAL" (ELEMENT #LOSE 0))
#DECL ((VALUE) TUPLE
(LENGTH) FIX (ELEMENT) ANY)
creates a TUPLE from implicit arguments

IUVECTOR (LENGTH "OPTIONAL"™ (ELEMENT #LOSE 0))
#DECL ((VALUE) UVLCTOR

(LENGTH) §IX (ELEMENT) ANY)
creates a UVECTOR from implicit arguments

IVECTOR (LENGTH "OPTIONAL" (CLEMENT #LOSE 0)) ;
#DECL ((VALUL) VECIOR i
(LENGTH) FIX (ELEMENT) ANY) i

creates a VECTOR from implicit arguments i

Appendix 2

240 The MDL Programming Language

JINAME ()
#DECL ((VALUL) SIRING)
returns the “joh name” of MDL's process

L=? (NUMBER-1 NUMBER-2)
#DECL ((VALUL) <OR 'T '#FALSE ()
(NUMBER-1 NUMBER-2) <OR FIX FLOAT>)
tells whether first argument is less than or equal to second (predicate)

L? (NUMBIR-1 NUMBIR-2)
#DECL ((VALUEL) <OR 'T '#FALSE ()
(NUMBER-1 NUMBER-2) <OR FIX FLOAT)>)
tells whether first argument is less than second (predicate)

LEGAL? (STACK-0BJIECY)
#DECL ((VALUE) <OR 'T ‘#FALSE ()
(STACK-OBJECT) ANY)
tells whether argument (which might live on the control stack) is still legal (predicate)

LENGTH (OBJECT)
FDECL ((VALUL) F1IX
(OBM CT) STRUCTURED)
returns the number of elements in a structure

LENGTH? (OBJECT MAX)
#DECL ((VALUL) COR FIX '"4FALSE () £
(OBJECT) STRUCTURED (MAX) FIX)
tells whether length of structure is less than or equal to an integer (predicate) t
|
LINK (EXPR PNAME "OPTIONAL* (OBLISY <1 .OBLISTY)) ﬁ
#DECL ((VALUE EXPR) ANY :
(PNAME) STRING (OBLIST) OBLIST) |
creates a symbolic LINK 10 any expression for READing '
LIST ("TUPLE"™ ELEMENIS)
#DECL ((VALUE) LIST {
(ELEMENTS) TUPLE) |
creates a L1S1 from explicit arguments
LISTEN (“TURPLE" INFO)
#DECL ((VALUL) ANY
(INFO) TUPLE)
stops and informs user that MDL is listening
Appendix 2
—
' - - . DU

The MDL Programming Language 241

LLOC (ATOM “OPTIONAL"™ ENV)
#DECL ((VALUE) LOCD
(ENV) <OR FRAME ENVIRONMENT ACTIVATION PROCESS>)
returns a locative to the local-value cell of an ATON

SEESIEPRSE SRR

LOAD (CHANNEL "OPTIONAL"™ (LOOK-UP .OBLIST))
#DECL ((VALUE) '"DONE"

(LOOK-UP) <OR OBLIST <LIST [REST <OR OBLIST 'DEFAULT>]>>)
reads and evaluates all ob jects via an input CHANNEL

LOCATIVE? (OBJECT)
#DECL ((VALUE) <OR 'T '#FALSE ()>]
(OBJECT) ANY) 1
tells whether an ob ject is a locative (predicate) i

LOG (NUMBCR) i

#DECL ((VALUE) FLOAT -'
(NUMBER) <OR FIX FLOAT>)

returns natural logarithm of a number (arithmetic)

LOGOUT ()
#DECL ((VALUE) '#FALSE ())
logs out of the operating system (useful for background processes)

LOOKUP (PNAME OBLIST)

#DECL ((VALUE) <OR ATOM '#FALSE ()>
(PNAME) STRING (OBLIST) OBLIST)

returns an ATOM found on a given OBLIST

LPARSE ("OPTIONAL"
(STRING .PARSE-STRING) (RADIX 10) (LOOK-UP .OBLIST) PARSE-TABLE LOOK-AHEAD)
#DECL ((VALLL) LIST
“ (STRING) STRING (RADIX) FIX (PARSE-TABLE) VECTOR (LOOK-AHEAD) CHARACTER
(LOOK-UP) <OR OBLIST <LIST [REST <OR OBLIST 'DEFAULT>]>>)
returns a LIST of the objects parsed from a STRING (sections 7.6.6.8, 15.7.2, 17.1.3)

LSH (WORD AMOUNT) }

#DECL ((VALUE) WORD i
(WORD) <PRIMTYPE WORD> (AMOUNT) FIX)

shifts bits in a machine word

LVAL (ATOM "OPTIONAL"™ ENV)
#DECL ((VALUE) ANY

(ENV) <OR FRAME ENVIRONMENT ACTIVATION PROCESS>) {
returns the local value of an ATOM

Appendix 2

mm—— p — i i, Sadincalicia i

242 The MDL Programming Language

MAIN ()
#DECL ((VALUE) PROCESS)
returns #PROCESS 1 (the main PROCESS)

MANIFEST ("TUPLE®" ATOMS)
#OECL ((VALUE) T
(ATOMS) <TUPLE [REST ATOM]>)
declares the global values of ATOMs to be constant

MANIFEST? (ATOM)
#OECL ((VALUC) <OR 'T '#FALSE ()>
(ATOM) ATOM)
tells whether the global value of an ATOM is constant (predicate)

MAPF (FINAL-FCN LOOP-FCN “TUPLE" STRUCTURES)

#DECL ((VALUE) ANY
(FINAL-FCN) <OR APPLICABLE FALSE> (LOOP-FCN) APPLICABLE
(STRUCTURES) <TUPLE [REST STRUCTURED]}>)

maps function onto elements of structures

MAPLEAVE ("OPTIONAL" (VAL T))
#DECL (
(VAL) ANY)
leaves the most recent MAPF/R with a value

MAPR (FINAL-FCN LOOP-FCN "TUPLE®" STRUCTURES)

#DECL ((VALUE) ANY
(FINAL-FCN) <OR APPLICABLE FALSE> (LOOP-FCN) APPLICABLE
(STRUCTURES) <TUPLE [REST STRUCTURED]>)

maps function onto RESTs of structures

MAPRET (“TUPLE™ ELEMENTS)
#DECL (
(ELCMENTS) TUPLE)
returns a variable number of ob jects to the current MAPF/R

MAPSTOP ("TUPLE"™ ELEMENTS)
#DECL |
(ELEMENTS) TUPLE)
MAPRETS. then stops looping of MAPF/R and causes application

MAX ("TUPLE"™ NUMBERS)
#DECL ((VALUE) <OR FIX FLOAT>
(NUMBERS) <TUPLE [REST <OR FIX FLOAT>]>)
returns the greatest of its arguments (arithmetic)

Appendix 2

The MDL. Programming Language 243

ME ()
#DECL ((VALUF) PROCESS)
returns the current PROCESS

MEMBCR (OBJILCT STRUCTURE)
#OECL ((VALUE) <OR STRUCTURED '#FALSE ()>
(OBJECT) ANY (STRUCTURE) STRUCTURED)
tells whether an object is “structurally” equal to some element of a structure (predicate)

MEMQ (OB CT STRUCTURE)
#DECL ((VALUE) <OR STRUCTURED '#FALSE ()>
(OBJECT) ANY (STRUCTURE) STRUCTURED)
tells whether an ob ject is “exactly” equal to some element of a structure (predicate)

MIN ("TUPLE" NUMBERS)
#DECL ((VALUL) <OR FIX FLOAT)
(NUMBIRS) <TUPLE [RCST <OR FIX FLOAT>])
returns the least of its arguments (arithmetic)

MOBLIST (NANE "OPTIONAL"™ (LENGTH 13))
#DECL ((VALUL) OBL1ST
(NAME) ATOM (LENGTH) FIX)
creates or gets an OBLISY

MOD (NUMBER HODULUS)
#OECL ((VALUE) FIX
(NUNBER MODULUS) FIX)
returns number-theoretic remainder (fixed-point residue) (arithmetic)

MONAD? (OBJECT)
#DECL ((VALUEL) COR 'T ‘#FALSE ()
(OBJECT) ANY)
tells whether an ab ject is either unstructured or an empty structure (predicate)

N==? (OBJLCT-1 ORJCCT-2)
#DECL ((VALUP) <OR 'T '#FALSE ()
(OBJECT-1 OBJECT-2) ANY)
tells whether two objects are NOT “exactly” equal (predicate)

N=? (OBJICT-1 OBJICT-2)
#DECL ((VALUE) <OR 'T '#FALSE ()
(OBJECT-1 OBJECT-2) ANY)
tells whether two ob jects are NOT “structurally” equal (predicate)

Appendix 2

244 The MDL Programming Language

NETACC (CHANNEL)
#DECL ((VALUL) <OR CHANNEL ‘#FALSE ()>
(CHANNLL) CHANNEL)
accepts a network connection

NETS (CHANNEL)
#DECL (SVALUL CHANNEL) CHANNCL)
forces operating-system network-CHANNEL buffer to be sent

NETSTATE (CHANNEL)
#DECL ((VALUL) <UVICTOR FIX FIX FIX)
(CHANNE L) CHANNEL)
returns state information for a network CHANNEL

NEWTYPL (HEW-TYPE OLD=TYPE “OPTIONAL" PATTERN)
#DECL ((VALUL NEW-TYPE) ATOM

(OLD-TYPL) ATOM (PATTERN) COR ATOM FORM>)
defines a new data type

NEXT (ASSOCIATION)
#DECL ((VALUL) <OR ASOC '#FALSE ()>
(ASSOCIATION) ASOC)
returns the next object in the association chain

NEXTCHR ("OPTIONAL" (CHANNEL .INCHAN) (EOF-ROUTINE '<ERROR ...>))
#DECL ((VALUL) <OR CHARACTER +IX>
(CHANNEL) CHANNEL (EOF-ROUTINE) ANY)
returns the charvacter that will next be read via an input CHANNEL

NOT (O0BJICT)
#DECL ((VALUE) <COR 'T '#EALSE ()
(OBJIECT) <COR FALSE ANY))
computes logical "not” of a truth-value

NTH (STRUCTURLD "OPTIONAL" N)
#DECL ((VALUL) ANY
(N) <OR FIX OFFSET>)
fetches the Nih element of a structure

OBLIST? (ATON)
POECL ((VALUL) <OR OBLIST '#FALSE ()> ’i
(AT0M) ATON) ‘

returns an ATOM's OBLIST or false if none (predicate)

Appendix T I}

The MDI Programming Language 245

OFF (INTERRUPT "OPTIONAL" WHICH) |
#OECL ((VALUE) <OR HANDLER THEADER ‘#FALSE ()> |

(INTERRUPT) <OR HANDLER IHEADER STRING ATOM> (WHICH) <OR CHANNEL LOCATIVE>) '
removes an interrupt HANDLER or destroys an interrupt |

OFFSET (N PATIIRN) ,
#DECL ((VALUL) OFESED j
(N) FIX (PATTERN) <OR ATOM FORM>)

creates an integer with attached type declaration !

ON (NAME APPLICABLE PRIORITY "OPTIONAL" (PROCESS 0) WHICH)
#DECL ((VALUL) HANDLER
(NANE) COR STRING ATOM> (APPLICABLE) APPLICABLE (PRIORITY) FIX
(PROCESS) <OR ETIX PROCESS> (MHICH) <OR CHANNEL LOCATIVE)) i
tarns on an intercupt and creates an interrupt HANDLER

OPEN ("OPYIONAL" (NODL "READ") “TUPLE" FILC-NAME)

#DECL ((VALUL) <COR CHANNLL <EALSE STRING STRING FIXD>>
(MODE) STRING (FTLE-WNAME) TUPLE)

creates and opens an /O CHANNEL

OPEN-NR ("OPTIONAL"™ (MODE “READ") “TUPLE" FILE-NAME)

#DECL ((VALUE) <OR CHANNEL <FALSE STRING STRING FIX>>
(MODE) STRING (FILE-NAME) TUPLE)

creates and apens an 1/O CHANNEL without changing file's reference date

OR ("ARGS" ARGS)
#DECL ((VALUL) COR FALSE ANY)
; (ARGS) L1IS81)
computes logical inclusive “or” of truth-values, evaluated by the Subroutine

I T

R

OR? ("TUPLL™ TUPLE)
#OECE ((VALTIE) <OR FALSE ANY)
(TUPLE) TUPLE)
compites logical inclusive "or” of truth-values, evaluated at call time

PRI .

ORB ("TUPLL" WORDS)
#DECL ((VALUL) WORD

g (WORDS) <TUPLE [REST <PRIMTYPE WORD>)>)
computes hitwise inclusive "or™ of machine words

OVERFLOW ("OPTIONAL"™ SWITCH)

FDECL ((VALUTL) <COR 'T '"#EALSE ()
(SWIICH) <OR ANY FALSEY)

enables or disables overflow error (arithmetic)

Appendix 2

e

246

The MDL Programming Language

PARSE ("OPTIOHAL"

(STRING .PARSE-STRING) (RADIX 10) (LOOK-UP .OBLIST) PARSE-TABLE LOOK-AHEAD)
#DECL ((VALUC) ANY
(STRING) SIRING (RADIX) FIX (PARSE-TABLE) VECTOR (LOOK-AHEAD) CHARACTER
(LOOK-UP) <OR OBLIST <LIST [REST <OR OBLIST 'DEFAULT>]>>)
parses a STRING into an ob ject (sections 7.6.6.2, 15.7.2, 17.1.3)

PCODE (NAME OFFSET)
#DECL ((VALUL) PCODE
(NANE) STRING (OFFSET) FIX)
creates pointer to pure RSUBR code

PNAME (ATON)
#DECL ((VALUL) STRING
(A10M) AlOM)
returns the print-name of an ATOM as a distinct copy

PRIMTYPE (OBJLCT)
#DECL ((VALUL) ATOM
(OBJECT) ANY)
returns the primitive data type of an ob ject

PRIMIYPE-C (1YPE)
#DECL ((VALUE) PRIMTIYPE-C
(TYPL) ATOM)
gets a "storage allocation code” for a data type

PRINL (OBJECT "OPTIONAL" (CHANNEL .OUTCHAN))
#DECL ((VALUE OBJOECT) ANY
(CHANNEL) CHANNCL)
prints an object via an output CHANNEL

PRINC (OBJCCT "OPTIONAL™ (CIHANNEL .OUTCHAN))
#DECL ((VALLIE ORJECT) ANY
(CHANNEL) CHANNEL)

prints an objeet via an output CHANNEL without STRING or CHARACTER brackets or ATOM trailers

PRINT (OB.JECT "OPTIONAL" (CHANNEL .OUTCHAN))
#DECL ((VALUE OBJECT) ANY
(CHANNEL) CHANNEL)
prints an ob ject via an output CHANNEL between new-line and space

Appendix 2

|
'x
!
|
t

e ——————————

The MDL Programming Language

PRINTB (BUFFCR CIANNEL)

#DECL ((VALUE BUFFER) <<OR UVECTOR STORAGE> [REST <PRIMTYPE WORD>]>
(CHANNEL) CHANNEL)

writes binary information via an output CHANNEL

PRINTSTRING (BUFFER "OPTIONAL" (CHANNEL .OUTCHAN) (COUNT <LENGTH .BU"FER)))
#DECL ((VALUE COUNT) FIX

(BUFFER) STRING (CHANNEL) CHANNEL)
writes contents of a STRING via an output CHANNEL

PRINTTYPE (TYPE "OPTIONAL" HOW)

#DECL ((VALUL) <OR ATOM APPLICABLE ‘'#FALSE ()>
(TYPE) ATOM (HOW) <OR ATOM APPLICABLE>)

specifies or returns how a data type is printed

PROCESS (STARTUP)
#DECL ((VALUE) PROCESS
(STARTUP) APPLICABLE)
creates a new PROCESS with given startup function

PROG ("ARGS" ARGS)
#DECL ((VALUE) ANY

(ARGS) <LIST [OPT ATOM] LIST [OPT DECL] ANY>)
executes sequential expressions

PURIFY ("TUPLE" TUPLE)
#DECL ((VALUE) ANY
(TUPLE) TUPLE)
purifies ob jects for sharing by different operating-system processes

PUT (ITEM INDICATOR "OPTICNAL"™ VAL)
#DECL ((VALUE) ANY

(ITEM) <OR STRUCTURED ANY> (INDICATOR) <OR FIX OFFSET ANY)> (VAL) ANY)
stores into structure or does PUTPROP

PUT-DECL (IDENTIFIER PATTERN)

#DECL ((VALUE IDENTIFIER) <OR LOCD OFFSET>
(PATTERN) COR ATOM FORM>)

changes the type declaration for an ATOM's value or an OFFSET

PUTBITS (TO FIELD "OPTIONAL" (FROM 0))
#DECL ((VALUE) <PRIMTYPE WORD)>

(7O FROM) <PRIMTYPE WORD> (FIELD) BITS)
sets a bit field in a machine word

Appendix 2

247

et il A e

- B Y PR e——

248 The MDL Programming Language

PUTPROP (ITEM INDICATOR "OPTIONAL®™ VAL)
#DECL ((VALUE) ANY
(ITEM INDICATOR VAL) ANY)
(dis)assaciates a value with an item under an indicator

PUTREST (HEAD TAIL)

#DECL ((VALUE HEAD) <PRIMTYPE LIST)
(TAIL) <PRIMTYPE LIST>)

replaces the rest of a list

©QUIT () H
#DECL ((VALUE) '#FALSE ()) ‘
exits from MDL graccfully

QUITTER (WAS-TYPED CHANNEL) t
#DECL ((VALUE WAS-TYPED) CHARACTER 3

(CHANNEL) CHANNEL) |

is the interrupt handler for “G and “S quit features i

QUOTE (“ARGS" ARGS) :
#DECL ((VALUE) ANY ' :
(ARGS) LIST) ,

returns the first argument unevaluated |

RANDOM ("OPTIONAL" SEED-1 SEED-2)
#DECL ((VALUF) FIX
(SEED-1 SEED-2) FIX)
generates a uniform psendo-random integer (arithmetic)

READ ("OPTIONAL"
(CHANNEL .INCHAN) (EOF-ROUTINE '<ERROR ...>) (LOOK-UP .OBLIST) READ-TABLE)
#DECL ((VALUE) ANY
(CHANNCL) CHANNEL (EOF-ROUTINE) ANY (READ-TABLE) VECTOR
(LOOK-UP) <OR OBLIST <LIST [REST <OR OBLIST ‘DEFAULT>]>>) i
reads one object via an input CHANNEL (sections ILLLIL, 113, 15.7.1, 17.1.8)

READB (BUFFER CHANNEL "OPTIONAL* (COF-ROUTINE '<ERROR ...>))
#DECL ((VALUE) FIX
(BUFFER) <<OR UVECTOR STORAGE> [REST <PRIMNTYPE WORD>]> '
(CHANNCL) CHANNEL (EOF-ROUTINE) ANY) f
reads binary information via an input CHANNEL

Appendix 2 ‘

The MDL Programming Language 249

READCHR ("OPTIONAL"™ (CHANNEL .INCHAN) (EOF-ROUTINE ‘CERROR ...>))
#DECL ((VALUE) <OR CHARACTER FIX>

(CHANNEL) CHANNEL (EOF-ROUTINE) ANY)
reads one character via an input CHANNEL

READSTRING (BUFFER “OPTIONAL" (CHANNEL .INCHAN) (STOP CLENGTH .BUFFER>)
(EOF-ROUTINE '<ERROR ...>))
#DECL ((VALUE) FIX

(BUFFER) STRING (CHANNEL) CHANNEL (STOP) <OR FIX STRING> (EOF-ROUTINE) ANY)
reads into a STRING via an input CHANNEL

REALTIMER ("OPTIONAL" INTCRVAL)
#DECL ((VALUE) <OR FIX FLOAT '#FALSE ()>
: (INTERVAL) <OR FIX FLOAT>)
sets or fetches interval for real-time interrupts (ITS version only)

REMOVE (PNAME "OPTIONAL" OBLIST)
#DECL ((VALUE) <OR ATOM ‘#FALSE ()>

(PNAME) <OR ATOM STRING> (OBLIST) OBLIST)
removes an ATOM from an OBLIST

RENAME ("TUPLE"™ FILE-NAME/S)
#DECL ((VALUE) <OR 'T <FALSE STRING FIX>>
(FILE-NAME/S) <TUPLE <OR STRING CHANNEL>>)
renames or deletes a disk file

REP ()
#DECL ((VALUE) ANY)
is the built-in function for READ-EVAL-PRINT loop

REPEAT ("ARGS" ARGS)
#DECL ((VALUE) ANY

(ARGS) <LIST [OPT ATOM] LIST [OPT DECL] ANY))
. executes sequential expressions repeatedly

RESET (CHANNEL)

#DECL ((VALUE) <OR CHANNEL <FALSE STRING STRING FIX>>
(CHANNCL) CHANNEL)
reopens an I/O CHANNEL at its beginning

REST (STRUCTURED "OPTIONAL" (N 1))
#DECL ((VALUL) STRUCTURED
(N) FIX)
removes the first N elements from a structure and changes to primitive data type

Appendix 2

250 The MDL Programming Language

RESTORE ("OPTIONAL" NAME-1 NAME-2 NAME-3 NAME-4)
#DECL ((VALUE) ‘'"RESTORED"
(NAME-1 NAME-2 NAME-3 NAME-4) STRING)
restores MDL's state from a file

RESUME (VAL “OPTIONAL®™ (PROCESS <RESUMER)))
#DECL ((VALUE) ANY

(VAL) ANY (PROCESS) PROCESS) .

transfers exccution to anothes PROCESS |4

RESUMER (“OPTIONAL" (PROCESS <ME)>)) §

#DECL ((VALUE) <OR PROCESS '#FALSE ()>
(PROCESS) PROCESS) j

returns the PROCESS that last resumed the given PROCESS -

RETRY ("OPTIONAL" FRAME)
#DECL (
(FRAME) FRAME)
retries a previous Subroutine call, usually from the error level

RETURN ("OPTIONAL®" (VAL T) (ACTIVATION .LPROG\ !'-INTERRUPTS)) %
#DECL ((VALUE) ANY f
(VAL) ANY (ACTIVATION) ACTIVATION)

leaves a PROG/REPEAT with a value

RGLOC (ATOM "OPTIONAL" (MAKE-SLOT <>))
#DECL ((VALUE) LOCR
(ATOM) ATOM (MAKE-SLOT) <OR FALSE ANY>)
returns a locative to the global-value cell of an ATOM for pure-program use

e S S

ROOT ()
#DECL ((VALUE) OBLIST)
returns the OBLIST containing names of primitives

ROT (WORD AMOUNT)
#DECL ((VALUE) WORD ‘

(WORD) <PRIMTYPE WORD> (AMOUNT) FIX) ,
rotates bits in a machine word

e T

RSUBR (CANDIDATE)
#DECL ((VALUE) RSUBR
(CANDIDATE) <VECTOR <OR CODE PCODE> ATOM DECL [REST ANY]>) 14
creates an RSUBR

Appendix 2

The MDL Programming Language 251

RSUBR-ENTRY (CANDIDATE OFFSET)
#DECL ((VALUE) RSUBR-ENTRY

(CANDIDATE) <VECTOR <OR ATOM RSUBR> ATOM DECL> (OFFSET) FIX)
adds an entry point to an RSUBR

RSUBR-LINN ("OPTIONAL" SWITCH)
#DECL ((VALUL) COR 'T '#FALSE ()>
(SW11CH) <OR FALSE ANY))
enables or disables the automatic RSUBR linking feature

RUNINT (“tupii® 1upig)
#DECL ((VALUL) ANY
(TUPLE) TUPLE)
applics interrupt handler (for internal use only)

RUNTIMER (“OPTIONAL"™ INTERVAL)
#DECL ((VALUE) <OR FIX FLOAT '#FALSE ()>
i (INTCRVAL) <OR FIX FLOATY>)
sets or fetches interval for run-time interrupt (ITS version only)

SAVE ("TUPLE"™ FILC-NAME-AND-GC?)
#DCCL ((VALUL) '"“SAvVED"
(F11LE-NAME-AND-GC?) <TUPLE [OPT STRING] [OPT STRING]
‘ [OPT STRING] [OPT STRING] [OPT <OR FALSE ANY>]>)
(writes the entire state of MDL to a file

4 SEND (OTHER-NAME=1 OTHER-NAME-? BODY
; "OPTIONAL™ (TYPE 0) (MY-NAME-1 CUNAME>) (MY-NAME-2 CINAME>))
#DECL ((VALUL) <OR 'T '#FALSE ()>
(OTHER-NAME -1 OTHER-NAME-2 MY-NAME-1 MY-NAME-2) STRING (TYPE) FIX
i (BODY) <OR STRING STORAGE <UVECTOR [REST <PRIMTYPE WORD>]>>)

sends an 1PC message (IS version only)

SEND-WATT (O1HI R-NAME -1 OTHER-NAMC-2 BODY
“OPTIONAL™ (TYPE 0) (MY-NAME-1 CUNAME>) (MY-NAME-2 CJINAME>))
» #DECL ((VALUE) "1
. (OTHER-NAME-1 OTHER-NAME-2 MY-NAME-1 MY-NAME-2) STRING (TYPE) FIX
(BODY) <OR STRING STORAGE <UVECTOR [REST <PRIMTYPE WORD>]>>)
sends an 1PC message and waits for it to be received (ITS version only)

SET (ATOM LVAL "OPTIONAL"™ ENV)
#DECL ((VALUE LVAL) ANY
(ATOM) ATOM (ENV) <OR FRAME ENVIRONMENT ACTIVATION PROCESS>)
changes the local value of an ATOM

! Appendix 2

252 The MDL Programming Language

| SETG (ATOM GVAL)

: #DECL ((VALUE GVAL) ANY
(AT0i1) ATON)

changes the global value of an ATOM

SETLOC (POINTER OBJECT)
#DECL ((VALUE OBJECT) ANY
(POINTER) LOCATIVE)
3 changes the contents pointed to by a locative

SIN (NUMBELR)
#DECL ((VALUL) FLOAT
(NUNBIER) <OR FIX FLOATY)
returns sine of a number (arithmetic)

SLEEP (<OR FIX FLOAT> "OPTIONAL"™ (UNHANG <>))
} #DECL ((VALUE) ANY
(UNHANG) ANY)
does nothing. interruptibly, the given number of seconds

SNAME ("OPTIONAL"™ DIRECTORY)
#DECL ((VALUE DIRECTORY) SIRING)
sets or returns the directory name used by default for new I/0 CHANNELs

SORT (PRED KEY-STRUC "OPTIONAL"™ (RECORD-LENGTH 1) (KEY-OFFSET 0)
"TUPLE" OTHER-STRUCS-AND-RECORD-LENGTHS)
#DECL ((VALULC KEY-STRUC) <OR <PRIMTYPE VECTOR> <PRIMTYPE TUPLE> <PRIMTYPE UVECTOR)>>
(PRED) <OR FALSE APPLICABLE> (RECORD-LENGTH KEY-OFFSET) FIX
(OTHER=STRUCS=AND-RE CORD-LENGTHS)
CTUPLE [REST <OR <PRIMTYPE VECTOR)> <PRIMTYPE TUPLE> <PRIMTYPE UVECTOR>> FIX]>)
sorts clements of a structure and rearranges other structures

SPECIAL-CHLCK ("OPTIONAL"™ SWITCH)
#DECL ((VALUE) <OR 'T '#FALSE ()>
(SWITCH) <OR ANY FTALSE>)
turns interpreter special-checking on or of f

SPECIAL-NODE ("OPTIONAL" SWITCH)

#DECL ((VALUEC) <OR 'SPECIAL 'UNSPECIAL)
(SWITCH) <OR 'SPECTAL 'UNSPECIALY)

sets specialty declaration used by default

Appendix 2

M«b.

The MDL Programming Language

SPNAME (ATOM)
#DECL ((VALUE) STRING
(ATOM) ATOM)
returns the print-name of an ATOM by sharing it

SQRT (NUMBLR)
#DECL ((VALUL) FLOAY

(NUMBER) <OR FIX FLOATY)
returns square root of a number (arithmetic)

SQUOTA (SYMBOL)
#DECL ((VALUE) <OR FIX '#FALSE ()>
(SYMBOL) <PRIMTYPE WORD>)

gets the addecss of an internal interpreter symbol (for internal use only)

STACKEORM ("ARGS" ARGS)
#DECL ((VALUE) ANY
(ARGS) LIST)
applies a function to stacked arguments (archaic)

STATE (PROCESS)

#DECL ((VALULC) ATOM
(PROCESS) PROCESS)

returns a PROCESS's current state

STRCOMP (STRING-1 SIRING-2)
#DECL ((VALUE) <COR '1 '0 '-D>

(STRING-1 STRING-2) <OR ATOM STRING>)
comparces two character-strings or two print-names

STRING ("TUPLE"™ ELEMENIS)
#DECL ((VALUE) STRING
(CLENCNTS) <TUPLE [REST <OR STRING CHARACTER>]>)
creates a character-string from explicit arguments

STRUCTURED? (OBJECT)

#OECL ((VALUC) <OR 'T '#FALSE ()
(OBJFCT) ANY)

tells whether an ob ject is structured (predicate)

SUBSTITUTE (NiW OLD)
#DECL ((VALUE O1D) ANY
(NEW) ANY)
substitutes one ob ject for another in the entire address space

Appendix 2

258

|

254 The MDL Programming Language

SUBSTRUC (FROM “OPTIONAL" (REST 0) (AMOUNT <- <LENGTH .OBJECT> .RESTY) TO)
#DECL ((VALUE 10) <OR I IST VECTOR UVECTOR STRING BYTES>
(FROM) <OR <PRIMTYPE LIST> <PRIMTYPE VECTOR> <PRIMTYPE TUPLE>

<PRIMTYPE UVECTOR> <PRIMTYPE STRING> <(PRIMTYPE BYTES»>
(REST AMOUNT) F1IX)

copies (part of) a structure into another

SUICIDE (VAL "OPTIONAL" (PROCESS <RESUMER>))
#DECL ((VALUL) ANY
(VAL) ANY (PROCESS) PROCESS)
causes the current PROCESS to die and resumes another

TAG (LABLL)
#DECL ((VALUL) 1AG
(LABEL) ATOM)
creates a TAG for use by GO

TERPRI ("OPTIONAL" (CHANNEL .QUTCHAN))
#DECL ((VALUL) '#FALSE ()
(CHANNTL) CHANNDL)
prints a carriage-return and line-feed via an output CHANNEL

TIME ("TUPLE" IGNORED)
#DECL ((VALUL) TLOAT
(1GNORED) TUPLE)
returns the clapsed execution time in seconds

TOP (STRUCTURE)
#DECL ((VALUL) <OR VECTOR TUPLE UVECTOR STORAGE STRING BYTES TEMPLATE)>
(STRUCTURE) <OR <PRIMTYPE VECTOR> <PRIMTYPE TUPLE>
CPRINTYPE UVECTOR> <PRIMTYPE STORAGE>
C(PRIMTYPE STRING> <PRIMTYPE BYTES> <PRIMTYPE TEMPLATE>>)

replaces all elements removed from a non-list structure by RESTing and changes to primitive data
|yp?

TTYECHO (CHANNEL SWIICH)
#DECL ((VALUE CHANNEL) CHANNEL
(SWITCH) <OR FALSE ANY))
turns echoing (of characters typed on a terminal) on or of f

TUPLE ("TUPLE"™ ELEMENTS)
#DECL ((VALUE) TUPLE
(ELTMENTS) TupLE)
creates a TUPLE from explicit arguments

Appendix 2

The MDL Programming Language

TYI ("OPTIONAL" CHANNEL)
#DECL ((VALUL) CHARACTER
(CHANNEL) CHANNEL)
inputs a CHARACTER from a terminal immediately

TYPE (0BJICT)
#DECL ((VALUE) ATOM
(OBJECT) ANY)
returns the data type of an object

TYPE-C (TYPF "OPTIONAL" PRIMTYPE)
#DECL ((VALUE) TYPE-C

(TYPE PRIMTYPE) ATOM)
makes a data-type code for pure-program use

TYPE-W (TYPE "OPTIONAL" PRIMTYPE RIGHT-HALF)
#DECL ((VALUL) TYPE-W

(TYPEC PRIMTYPL) ATOM (RIGHT-HALF) <PRIMTYPE WORD>)
makes a data-type machine word for pure-program use

TYPE? (OBJECT "TUPLE" TYPES)
#DECL ((VALUE) <OR ATOM '#FALSE ()>
(OBJECT) ANY (TYPES) <TUPLE ATOM [REST ATOMI>)
tells whether an object’s data type is one of the given types (predicate)

TYPEPRIM (TYPL)
#DECL ((VALUE) ATOH
(TYPE) ATOM)
returns a data type's primitive type

UNAME ()
#DECL ((VALUE) STRING)
returns the "user name” of MDL's process

UNASSIGN (ATON "OPTIONAL" ENV)
#DECL ((VALUE ATOM) ATOM

(ICNV) <OR FRAME CNVIRONMCNT ACTIVATION PROCESSY)
causes an ATOM to have no local value

UNMANIFEST ("TUPLE"™ ATOMS)
#DECL ((VALUL) 'T
(ATOMS) <TUPLE [REST ATOM]>)
declares the global values of ATOMs not to be constants

Appendix 2

255

256 The MDL Programming Language

UNPARSE (OBJECT “OPTIONAL" RADIX)
| #DECL ((VALUE) SIRING
F (OBJECT) ANY (RADIX) FIX)
;[creates a STRING representation of an ob ject

| UNWIND ('NORMAL ‘CLEAN-UP)
#DECL ((VALUE) ANY
(NORMAL CLEAN-UP) ANY)
specifies cleaning-up during non-local return

UTYPE (UVLCTOR)
#DECL ((VALUL) ATOM
(UVECTOR) <PRIMIYPE UVECTOR))
returns the data type of all clements of a uniform vector

UVECTOR ("TUPLL"™ LLEMENTS)
#DECL ((VALUE) UVECTIOR
(ELEMENTS) TUPLE)
creates a UVECTOR from explicit arguments

VALID-TYPE? (TYPE)
#DECL ((VALUE) <OR TYPE-C '#FALSE ()>
(TYPE) ATOM)
tells whether an ATOM is the name of a type (predicate)

VALRET (NESSAGL)
#DECL ((VALUL) '#TALSE ()
l (MESSAGE) <OR STRING FIX>)
passes a message (o the superior operating-system process

VALUE (ATOH "OPTIONAL"™ ERV)
#DECL ((VALUE) ANY

(ATOM) ATOM (ENV) <OR FRAME ENVIRONMENT ACTIVATION PROCESS>)
returns the lacal ar else the global value of an ATOM

VECTOR ("TUPLE"™ ELEMENTS)
#DECL ((VALUE) VECTOR
(CLEMENTS) TUPLE)
creates a VI CTOR from explicit arguments

XJINAME ()
#DECL ((VALUL) STRING)
returns the "intended job name” of MDL's process

Appendix 2

The MDL Programming Language

XORB ("TUPLE™ WORDS)
#DECL ((VALUE) WORD
(WORDS) <TUPLE [REST <PRIMTYPE WORD>]>)
computes bitwise exclusive "or” of machine words:

XUNAME ()
#DECL ((VALUE) STRING)
returns the “intended user name” of MDL's process

Appendix 2

257

i
i

258 The MDL Programming Language
Appendix 3. Predefined Types
On these two pages is a table showing cach of MDL's predefined TYPEs, its primitive type if

different, and vacious flags: S for STRUCTURED, E for EVALTYPE not QUOTE, and A for APPLICABLE.

X means that an object of that 1YPL cannot be CHIYPED to and hence cannot be READ in (if
attempted, a CAN'T=CHIYPE = INTO ercor is usual),

B means that an ohject of that 1YPE cannot be READ in (if attempted, a STORAGE-TYPES-DIFFER
error is usual), that instead it is built by the interpreter or CHTYPED to by a program, and that its
PRINTed representation makes it look as though its TYPEPRIM were different.

X means that an ob ject of that TYPE is PRINTed using X notation and can be READ in only that way.

TYPE TYPEPRIM S'E A comments

ACTIVATION | RAMNI X

ASOC B sictonly one §

ATOM

BITS WORD

BYTES S

CHANNE L VECIOR S X

CHARACTER WORD

CLOSURI LIS S A

CobE UVECTOR S

DECL LIST S

DISMISS ATON can be returned by interrupt handler
ENVIRONMENT | RANML 8

FALSE LIS S

FIX WORD A

FLOAT WORD

FORM LIS S

FRAME 8

I SUBR WORD A X

FUNCTION LIS R

HANDLER VECIOR S X

THEADE R VECTOR S X interrupt header”

TLLEGAL WORD X Garbage collector may put this on non-LEGAL? ob ject.
INTERNAL INTERNAL -TYPL X should not be seen by programs
LINK ATOM X for terminal shorthand

LIST St

LOCA 8 locative to TUPLE

Appendix 3

Ty "

The MDL Programming Language

LOCAS

LOCB

LOCD

LOCL

LOCR

LOCS

LOCT

Locu

Locv

LOSE

MACRO
OBLIST
OFFSET
PCODE
PRIMTYPE-C
PROCESS
QUICK-INITRY

QUICK-RSUBR
READA
RSUBR
RSUBR-f NIRY
SEGMENT
SPLICE
STORAGL
STRING

SUBR

TAG
TEMPLATE
TIME

TUPLE
TYPE-C
1YPE-W
UNBOUND
UVECTOR
VECTOR

WORD

WORD
L1SI
UVECTOR
OFFSET
WORD
WORD

VECTOR

VECTOR
FRANE
VECIOR
VECTOR
LIST
LIST

WORD
VECTOR
WORD
WORD

WORD
WORD

w

(7 R A B, 174

©w w»n

«w

T oo =

/8

%/8

= x

>x R xR =

locative to ASOC

locative to BYTES

locative to G/LVAL

locative to LIST

locative to GVAL in pure program
locative to STRING

locative to TEMPLATE

locative to UVECTOR

locative to VECTOR

a place holder

"pure code”
"primtype code”

259

an RSUBR-ENTRY that has been QCALLed and RSUBR-

LINKed

an RSUBR that has been QCAlLLed and RSUBR-LINKed
in eof slot during recursive READ via READ-TABLE
if code vector is pure/impure, respectively

- for returning many things via READ-TABLE
If possible, use FREEZE SUBR instead.

for non-local GOs

The interpreter itself can't build one. See Lebling (1979).

used internally to identify FRAMESs
vector on the control stack

"type code”

"type word"

value of unassigned but bound ATOM, as seen by locatives

"uniform vector”

Appendix 3

I ——

260

The MDL Programming Language

Appendix 4. Error Messages

This is a list of all crror-naming ATOMs initially in the ERRORS OBLIST, in the left-hand column,
and appropriate examples or elucidations, where necessary, in the right-hand column.

ACCESS-FATLURE

ALREADY-DEF INCO-ERRET-NON-FALSE-TO-REDEF INE

APPLY-0OR-STACKI ORM-OF -F SUBR

ARG-WRONG-TYPE
ARGUMENT-0UT-0F -RANGE

ATOM-ALREADY-THERE

ATOM-NOT-1YPE -NAML-OR-SPCCIAL-SYMBOL
ATOM-ON-DTFHERENI-OBLIST
ATTEMPT-TO-BREAK-OWN-SEQUENCE
ATTEMPT-TO-CHANGE -MANIFEST-VARIABLE
ATTEMPT-TO-CLOSE-1TY-CHANNEL

ATTEMPT=10-DEEER=UNDEFERABLE -INTERRUPT

ATTEMPT-TO-GROW-VLCTOR-TOO-MUCH
ATTEMPT-T0-MUNG-ATOMS-PNAME
ATTEMP1-10-MUNG-PURE-STRUCTURE
ATTEMPT-TO-SUICIDE-TO-SELF
BAD-ARGUMENT-LIST
BAD-ASCII-CHARACTER

BAD-BYTES-DECL
BAD-CHANNEL
BAD-CLAUSE

BAD-DCCI ARATION-LIST
BAD-DEFAUL 1-0BL IST-SPECTFICATION
BAD-ENTRY-BLOCK

BAD-ENVIRONMENT
BAD-FIXUPS
BAD-FUNARG
BAD-GC-READ-FILE

Appendix 4

ACCESS, RESTORE (Tenex and Tops-20
versions only)

First argument to APPLY, STACKFORM,
MAPF/R doesn't EVAL all its arguments.

CASCII 999> Second argument to NTH
or REST too big or small.

CINSERT "T" <ROQT>>$S <LINK 'T =T7*
<ROOT>>$

DECL problem

INSERT, LINK, REMOVE

{BREAK-SEQ T <ME>>$

<CLOSE , INCHAN>$

“Undeferable” interrupt (e.g. "ERROR®)
while INT-LEVEL is too high to handle it
GROW argument greater than <* 16 1024>
<PUT <SPNAME T> 1 !'\T>$

attempt to write into pure page

C(SUICIDE <ME>>$

CGDECL ("HI") STRING>$

A character with wrong byte size or
ASCII code more than 177 octal has been
read (how?).

Argument to COND is non-LIST or empty
LIST.

DECL in bad form

bad use of DEFAULT in LIST of OBLISTs
RSUBR-ENTRY does mnot point to good
RSUBR.

CLOSURE in bad form

"-.‘.!-.-.l!--lllllllllllllIllllllllllll&!!!ﬁ!!"’"'“

The MDL Programming Language

BAD-INPUT-BUFFER
BAD-LINK
BAD-MACRO-TABLE

BAD-OBLIST-OR-LIST-THEREOF

BAD-PARSE-STRING
BAD-PNAME

BAD-PRIMTYPEC
BAD-TEMPLATE-DATA
BAD-TYPE-~CODE
BAD-TYPE-NANE
BAD-TYPE~-SPLCIFICATION
BAD-USE -OF -BYTE-STRING
BAD-USE-OF -MACRO
BAD-USE-OF -SQUIGGLY-BRACKETS
BAD-VECTOR
BYTE-SIZE-BAD
CANT-CHTYPE-INTO
CANT-FIND-TEMPLATE

CANT-OPEN-OUTPUT-FILE
CANT-RETRY-ENTRY-GONE

CANT-SUBSTITUTE-WITH-STRING-OR-TUPLE-AND-OTHER
CAN\ ' T-PARSE

CHANNEL-CLOSED

CONTROL-G?
COUNT-GREATER-THAN-STRING-SIZE
DANGEROUS-INTERRUPT-NOT-HANDLED
DATA-CANT-GO-IN-UNIFORM-VECTOR
DATA-CAN\ ' T-GO-IN-STORAGE
DECL-ELEMENT-NOT-FORM-OR-ATOM
DECL-VIOLATION
DEVICE-OR-SNAMNE-DIFFERS
ELEMENT-TYPE-NOT-ATOM-FORM-OR-VECTOR
EMPTY-FORM-IN-DECL
EMPTY-OR/PRIMTYPE-FORM
EMPTY-STRING

END-OF -FILE

ERRET-TYPE-NAME-DESIRED
ERROR-IN-COMPILED-CODE
FILE-NOT-FOUND

FILE-SYSTEM-ERROR

Appendix 4

(for a CHANNEL)

C(GUNASSIGN <CHTYPE link ATOM>>
.READ-TABLE or .PARSE-TABLE is not a
vector.

Alleged look-up list is not of TYPE OBLIST
or LIST. '

non-STRING argument to PARSE

attempt to output ATOM with missing or
zero-length PNAME

ATOM purports to be a TYPE but isn't.
DECL problem
33

()

Bad argument to RSUBR-ENTRY

"NET® CHANNEL

CCHTYPE 1 SUBR>$

attempt to GC-READ a structure containing
a TEMPLATE whose TYPE does not exist
SAVE

attempt to RETRY a call to an RSUBR-
ENTRY whose RSUBR cannot be found
CSUBSTITUTE *T* T>§

<PARSE "">$ <PARSE ")">$

CREAD <CLOSE channel>>$

~6

CPRINTSTRING "" ,OUTCHAN 1>§

(See section 21.8.15.) (ITS version only)
{["STRING"]S ![<FRAME>)]S$

FREEZE ISTORAGE

RENANE
OECL problem

<OR> or <PRIMTYPE) in DECL
CREADSTRING "*>$

RESTORE

262

FIRST-ARG-WRONG-TYPE

FIRST-ELEMENT-OF -VECTOR-NOT-CODE
FIRST-VECTOR-ELEMENT-NOT-REST-OR-A-FIX
FRAME -NO-LONGER-EXISTS
HANDLER-ALREADY-IN-USE

HAS-EMPTY-BODY

ILLEGAL

ILLEGAL-ARGUMENT-BLOCK

ILLEGAL-FRANME
ILLEGAL-LOCATIVE
ILLEGAL -SEGHENT

ILLEGAL-TENEX-FILE-NAME
INT-DEVICE-WRONG-TYPE-EVALUATION-RESULY

INTERNAL-BACK-OR-TOP-OF -A-LIST
INTERNAL-INTERRUPT
INTERRUPT-UNAVAILABLE-ON-TENEX
ITS-CHANNF LS-FXHAUSTED

MEANINGLESS-PARAMETER-DECLARATION
MESSAGE-T00-BIG
MUDDLE-VERSIONS-DIFFER

NEGATIVE -ARGUMENT
NIL-LIST-OF-OBLISTS
NO-FIXUP-FILE

NO-ITS-CHANNELS-FREE
NO-MORE -PAGES
NO-PROCESS-TO-RESUME
NO-ROOM-AVATLABLE

NO-SAV-FILE

NO-STORAGE
NON-6-BIT-CHARACTER-IN-F ILE-NAME
NON-APPLICABLE-REP
NON-APPLICABLE-TYPE
NON-ATOMIC-ARGUMENT
NON-ATOMIC-0BLIST-NAME
NON-DSK-DEVICE
NON-EVALUATEABLE-TYPE
NON-EXISTENT-TAG

The MDL Programming Language

RSUBR in bad form.
#DECL ((X) <LIST [FOOD)
(unused)

<#FUNCTION | ((X)) 1>%

attempt to PRINT a TUPLE that no longer
exists

Third and later arguments to MAPF/R
not STRUCTURED.

(Tenex and Tops-20 versions only)
function for “INT" input CHANNEL
returned non-CHARACTER.

in compiled code

(unused)

(Tenex and Tops-20 versions only)
Interpreter couldn’t open an ITS 1/0
channel.

bad ob ject in argument LIST of Function
IPC (ITS version only)

RESTORE (version = release)

<SET OBLIST '()> 7§

MDL couldn't find fixup file (section
19.9).

IPC-ON (ITS version only)

for pure-code mapping

<OR <RESUMER> <RESUME>>$

MDL couldn't allocate a page to map in
pure code.

MDL couldn't find pure-code file (section
19.9).

No free storage available for GROW.

<VALUE REP> not APPLICABLE

Ti-3%

(unused)
(unused)
(unused)

NON-STRUCTURED-ARG-TO-INTERNAL-PUT-REST-NTH-TOP-OR-BACK in compiled code

Appendix 4

b

e —

e

ot

The MDL Programming Language

NON-TYPE-FOR-PRIMTYPE-ARG
NOT-A-TTY-TYPL -CHANNEL
NOT-HANDLED
NOT-IN-ARG-LIST

NOT-IN-MAP-FUNCTION

NOT-IN-PROG
NTH-BY-A-NCGATIVE-NUMBER
NTH-REST-PUT-0OUT-Or -RANGE
NULL-STRING

NUMBER-OUT-OF -RANGE
ON-AN-OBLIST-ALREADY

OUT-OF -BOUNDS

OVERFLOW

PDL-OVERF LOW-BUFFER-EXHAUSTED

PROCESS-NOT-RE SUMABLE
PROCESS-NOT-RUNABLE-OR~RESUMABLE
PURE-LOAD-FAILURE
READER-SYNTAX-LRROR-CRRET-ANYTHING-TO-GO-ON
RSUBR-ENTRY-UNLINKID

RSUBR-IN-BAD-FORMAT
RSUBR-LACKS-FIXUPS

SECOND-ARG~WRONG-TYPE
STORAGE-TYPES-DIFFER

STRUCTURE-CONTATNS-UNDUMPABLE-TYPE
SUBSTITUTE-TYPE-FOR-TYPE
TEMPLATE-TYPE-NAME-NOT-OF -TYPE-TEMPLATE

TEMPLATE-TYPE-VIOLATION
THIRD-ARG-WRONG-TYPE
TOO-FEW-ARGUHENTS-SUPPLIED
TOO-MANY-ARGS-TO-PRIMTYPE=-DECL
TOO-MANY-ARGS-TO-SPECIAL-UNSPECIAL-DECL
TOO-MANY-ARGIMENTS-SUPPLIED
TOP-LEVEL-FRAME
TYPE-ALREADY-EXISTS
TYPE-MISHATCH

TYPE-UNDLF INCD
TYPES-DIFFER-IN-STORAGE-OBJECT

Appendix 4

263

<PRIMTYPE not-type> in DECL

First argument to OFF not ONed.

TUPLE or ITUPLE called outside argument
LIST.

MAPRET, MAPLEAVE, MAPSTOP not within
MAPF/R

CRETURN>$ <AGAIN>$

in compiled code

in compiled code

zero-length STRING

2E38%

CINSERT T <ROOT>>$

<1 '()>% BLOAT argument too large

</ 1 0>% <* 1E30 1E30>%

Stack overflow while trying to expand
stack: use RETRY.

use of another PROCESS’s FRAME, etc.

Pure-code file disappeared.

RSUBR-ENTRY whose RSUBR cannot be
found

KEEP-FIXUPS should have been true when
RSUBR was input.

CCHTYPE 1 LIST>$ <CHUTYPE '![1]
LIST>$

<{GC-DUMP <ME> <>>$

{SUBSTITUTE SUBR FSUBR>$

attempt to GC-READ a structure containing
a TEMPLATE whose TYPE is defined but is
not a TEMPLATE

{PRIMTYPE any ...>
(SPECIAL any ...>

CERRET> <FRAME <FRAME <FRAME>>>$
NEWTYPE =
attempt to make a value violate its DECL

ISTORAGE

264

TYPES-DIIFER-TN-UNTFORM-VECTOR
UNASSIGNE D-VARIABLE
UNATTACHED-PATH-MAME~SEPARATOR
UNBOUND-VARTABLLE

UNMATCHED
UVECTOR-PUT-TYPE-VIOLATION

VECTOR-LUSS-THAN-2-CLEMENTS
WRONG-DIRI CTION-CHANNE L

WRONG-NUMBER-~OF ~ARGUMENTS

Appendix 4

The MDL Programming Language

"y OJs
-3

ENDBLOCK with no matching BLOCK

PUT, SETLOC, SUBSTRUC in compiled
code

#DECL ((X) <LIST [REST])

COPEN "MYFILE">$ (Mode wmissing or
misspelt.)

W————-—-——m” —— PR

The MDL Programming Language 265
» Appendix 5. Initial Settings

The various switches and useful variables in MDL are initially set up with the following values:

CACTIVATE-CHARS <STRING <ASCII 7> <ASCII 19> <ASCII 15>
;"Tenex and Tops-20 versions only"

<DECL-CHECK T>

CUNASSIGN <GUNASSIGN DEV>>

CGC-MON <>

<SET INCHAN <SETG INCHAN <OPEN "READ" "TTY:">>>

CUNASSTIGN KEEP-FIXUPS)

CUNASSTGN <GUNASSIGN NM1>>

CUNASSTGN <GUNASSIGN NM2>>

KSET OBLIST <SETG OBLIST (<KMOBLIST INITIAL 151> <ROOT>)>»

CSET OQOUTCHAN <SETG QUTCHAN <OPEN "PRINT"™ "TTY:">>»

COVIRILOW T

CUNASSTGN REDET INED>

CRSUBR-LINK 1>

(SETG CUNASSIGN SNM> “working-directory">

CSPECTAL-CHECK <>>

<SPECTAL -MODE UNSPECTALD

{SET THIS-PROCESS <SETG THIS-PROCESS <MAIN>>>

CON "CHAR"™ ,QUITTER 8 0 , INCHAN)

<ON "IPC" ,IPC-HANDLER 1> ;"ITS version only"

Appendix 5

The MDL Programming Language

References

Hewitt. Carl. Planner: A Language for Manipulating Models and Proving Theorems in a Robot,
Proc. International Joint Conference on Artificial Intelligence, May 1969,

Lebling. P. David. The MDL_Programming Environment, Laboratory for Computer Science,
M.LT. 1979,

Moon. David A, MACLISP Reference Manual, Laboratory for Computer Science, M.L.T., April
1974.

References

The MDL Programming Language 267

Topic Index

Parenthesized words refer to other items in this index.

arguments

arithmetic

array
assignment
binding
bits

block
boolean
bugs

call
change

character

circular
comma
comments

comparison

conditional

"OPTIONAL" “TUPLE" "“ARGS" (parameter)

+ - % / ABS EXP LOG SIN COS ATAN MIN MAX RANDOM 0? 17 ==7 L? G? L=?
G=?7 N==?

VECTOR UVECTOR TUPLE STRING BYTES TEMPLATE

SET SETG DEFINE DEFMAC ENVIRONMENT (value parameter binding)

BOUND? GBOUND? ASSIGNED? GASSIGNED? LEGAL? (assignment value par.ameler)
WORD BITS PUTBITS GETBITS BYTES ANDB ORB XORB EQVB LSH ROT

BIND PROG REPEAT BLOCK ENDBLOCK OBLIST MOBLIST OBLIST? !-

FALSE COND AND AND? OR OR? NOT (comparison)

(crrors)

FORM APPLY APPLICABLE? EVAL SEGMENT

PUT-DECL PUTPROP SET SETG (side effect)

CHARACTER STRING ASCII PRINC READCHR NEXTCHR FLATSIZE LISTEN PARSE
LPARSE UNPARSE

PUTREST PUT LENGTH? FLATSIZE
GVAL SETG
; FUNCTION ASSOCIATION

=27 N==7? =7 N=? G? L=? L? G=? 07 17 MAX MIN STRCOMP FLATSIZE LENGTH?
(hoolean)

COND AND OR (boolean)

Topic Index

1}

B

S ———

268

concatcnation

coroutine

data type

decimal
do
dump
errors
escape
execute
exit

file system

goto
graphics

identifier

if
indexing

input

integer
interrupts
iteration

leave

The MDL Programming Language

SEGMENT STRING CONS
PROCESS STATE RESUME SUICIDE RESUMER ME MAIN BREAK-SEQ 1STEP FREE-RUN

TYPE TYPE? PRIMTYPE TYPEPRIM CHTYPE UTYPE CHUTYPE NEWTYPE PRINTTYPE
APPLYTYPE EVALTYPE ALLTYPES VALID-TYPE?

(loops execute call)

SAVE (output)

FRAME ARGS FUNCT ERROR ERRORS ERRET RETRY UNWIND
A 618 %0

EVAL APPLY QUOTE FSYBR “ARGS" (call)

RETURN ACTIVATION (goto)

FILECOPY FILE-LENGTH RENAME OPEN OPEN-NR CHANNEL FILE-EXISTS? NM1 NM2
DEV SNM SNAME

GO TAG UNWIND PROG REPEAT AGAIN RETURN ACTIVATION “ACT" (loops)
STORAGE IMAGE

ATOM PNAME SPNAME LINK LOOKUP INSERT REMOVE OBLIST SPECIAL (parameter
value)

(conditional)
NTH OFFSET GET PUT BACK TOP (Ioops)

READ RCADCHR NEXTCHR READB READSTRING READ-TABLE GC-READ ECHOPAIR
OPEN ACCESS LOAD FLOAD RESTORE RESET

FIX (arithwetic)
EVENT HANDLER ON OFF ENABLE DISABLE INT-LEVEL DISMISS INTERRUPT

(loops)

(quit)

Topic Index

e e e g

PO WS

e

—

The MDL Programming Language

loading
focation

loops

macro

monitor

multi-processing

octal

output

parameter
parentheses
parse
period
pointer
predicate
primitives
procedure
quit

real
recursion
search

sharing

side cffect

FLOAD SAVE RESTORE LOAD

(pointer)

REPEAT PROG RETURN

GO ACTIVATION AGAIN MAPF MAPR ILIST IVECTOR

IUVECTOR ISTRING IBYTES IFORM

% %% LINK READ-TABLE
"READ" "WRITE"

(coroutine)

PRINT PRIN1 PRINC PRINTB PRINTSTRING IMAGE GC-DUMP ECHOPAIR FLATSIZE
ACCESS RESET BUFOUT NETS

SAVE TERPRI CRLF OPEN
FUNCTION ATOM LVAL SE

LIST

PARSE-TABLE DEFMAC EXPAND MACRO

T SPECIAL UNSPECIAL (identifier value)

PARSE LPARSE PARSE-TABLE UNPARSE

LVAL SET READ
LOCATIVE AT IN SETLOC

(boolean)

LIST

SUBR FSUBR ROOT GVAL SETG

FUNCTION DEFINE DEFMAC GVAL CLOSURE

“G “S "0 QUIT VALRET

FLOAT (arithmetic)

LOGOUT RETURN (loops)

(always assumed and built in)

MEMQ MEMBER =7 ==?7 (comparison)

SEGMENT GROW SUBSTRUC

PUT PUTREST SETLOC SUBSTRUC (change)

Topic Index

270

sixbit
storage

structure

subroutine
temporary
terminal
text

! trailer

true

tty

unbinding

value

The MDL Programming Language

JNAME XJINAME SEND SEND-WAIT IPC-ON

6C BLOAT BLOAT-STAT FREEZE TUPLE "6C" (structure)

LIST VECTOR UVECTOR STRING BYTES TEMPLATE STRUCTURED? EMPTY? MONAD?
LENGTH LENGTH? (concatenation)

(procedure priwitive)
"AUX® BIND PROG REPEAT
(1ty)

(character)

!'- OBLIST

(boolean)

LISTEN “L ~6 ~e ~p rubout ECHOPAIR TTYECHO TYI “BLOCKED" "UNBLOCKED®
ACTIVATE-CHARS (character)

(binding)

LVAL GVAL VALUE IN SET SETG ENVIRONMENT ASSIGNED? GASSIGNED? BOUND?
6BOUND? “BIND" ACTIVATION *ACT® (parameter) RETURN (quit loops)

Topic Index

The MDL Programming Language

An underscored page number refers to a
primary description: an unadorned page
number refers to a secondary description.

'$
]

=

' -#FALSE ()
]

1<

"

'

\

']

"

ll)'l

"ACT"
"ARGS"
"AUX"
"BIND"
"BLOCKED"
*CALL"
"CHAR"
"CLOCK"
"DIVERT-AGC"
"DSK"
"ERROR"
"EXTRA"
IGCI‘
"ILOPR"
"INFERIOR"
"INPUT"
"INT"
"10C"
"IPC"
"MPV"
"MUD"
"MUDDLE"
"NAME"

Name Index

G4

17

67
110
113

67 206
66 206
66

51

64 100

54

1524

24 55 100
102

81 87
82 87
81 87 103 105
83 86
182 187
83 87
184
187
156 195
102 108
188

81 87
186
89
189
102

13

189

189 203
189
102
108

84 87

SNETE
"opT"
"OPTIONAL"
"PARITY"
"PRINT"
"PRINTB"
“PRINTO"
"PURE"
"QUOTE"
"READ"
"READB"
"REALT"
"RUNT"
"SAVE"
"STY"
"SYSDOWN"
"TUPLE"
"UNBLOCKED"
"VALUE"
"WRITE"

#

$

w4

Name Index

101 105 184 187 211

101

189

189
108

112

188

79 87 105 137
187

137

187 211

24 44 46 100

41698 113 184 185 187

24 152
152

24 57
24 54
24 54
93 28 151 159
28 151
24 31
28 151

23 24 32

271

272

0?

1?
ISTEP

<

2=?

=2?

>

ABS

ACCESS
ACTIVATE-CHARS
ACTIVATION
AGAIN
AGC-FLAG
ALLTYPES
AND

AND?

ANDB

ANY
APPLICABLE
APPLICABLE?
APPLY
APPLYTYPE
ARGS

ASCII

ASOC
ASSIGNED?
ASSOCIATIONS
AT

ATAN

ATOM

AVAL E

BACK
RINARY
LRl
LA

221

72 93
24

28 .

Lt to

181

&1 150 183 193 205
&1 90 150 175
186

16

7% 76 185
7493

66 161

125

125

7w

18 88

9

148 176

6%

13 169 218
76 79 175 187
123

17

22 100 143 194 217
123

60 215
166
LR
10

The MDL Programming Language

BLOAT
BLOAT-STAT
BLOCK
BLOCKED
BOUND?
BREAK-SEQ
BREAKER
BUFOUT
BYTE-SIZE
BYTES

CALLER
CHANLIST
CHANNEL
CHARACTER
CHTYPE
CHUTYPE
CLOSE
CLOSURE
CODE
COMMENY
COND
CONS

(AN

CRLF

DEAD
DECL
DECL-CHECK
DECL?
DEFAULT
DEFINE
DEFMAC
DEMSIG
DEV
DISABLE
DISMISS

ECHOPAIR
EMPTY?
ENABLE
ENDBLOCK
ENTRY-LOC
ENVIRONMENT
EQve

Name Index

186 196
198

142 145

170

79 175 187
173

174

100 111 115
66

55 65 66 218

164
103

65 101 102 103 104 122
64 100 154

45 211

64 216

103

88

164

122

75

59

40

100 101

=4

170 170
124 223
3

Nﬂ

—
<o

I

e
3
ot

==
=
-

|

-
oo
m-
-
~

—— D
(—3
22|23
~N
-3
ot

C—
-3
L%
-
I3
o
z
-

-7 ===
2
-
=
e
-
3
a

=
P

-
e
N
—
b
ot

2

59
i
*

T ——

The MDL Programming Language

ERRET
ERROR
ERRORS
EVAL
EVALTYPE
EVENI
EVLIN
Evieour
EXp
EXPAND

FALSE

FBIN
FILE-LENGTH
FILE-EXISTS?
riLecory
FIX
FLATSIZE
FLOAD

FLOAT

FORM

FRAME
FREE-RUN
FRELZE
FSAVE

FSUBR

FUNCT

function
FUNCTION
Function

G/LVAL
G=7?

G?
GASSTGNED?
GBOUND?
GC
GC-DUMP
GC-MON
GC-READ
GDECL
GET
GET-DECIL
GETBITS

19 148175 222
I8 117 183 206
112 147 206

20 48 83 175

48
178 179 181
175
175
11
167

il

167

101 1o

103

0111

2022 23 28 53 135
100

I8 76 110 150
2223

27 33 58 71

147 148 176 193 213
175

164 186 194

108

28 31 39 39 56 7474 75 89 90
96 131 147 150

148 176

27

35 39 78 83 84
84

118

72

7

79 187
79132 193
186 195
101 107 199
199

101 107 186 199
131

U R

131 136
160

278
GETL 7
GETPL "7
GETPROP 121
6LOC 17 165
6O 96 175 205
GROW 60 186
GUNASSIGN 32
GVAL 31 39 41 117 169 193 194 208
HANDLER 178 179 179 180 185
HANG 191
IBYTES 66
IFORM 58
THEADER 177 180
ILIST 57 205
TLLEGAL 193
IMAGE 101 107 186
IN 116 118 119
INCHAN 103 146
INDEX 136
INDICATOR 123
INIT 18
INITIAL 141 265
INSERT 143 145
INT-LEVEL 183
INTERNAL 258
INTERNAL-TYPE 258
INTERRUPT 181 190
INTERRUPT-HANDLER 186
INTERRUPTS 142 177
IPC-HANDLER 203
IPC-OFF 203
IPC-ON 203
ISTORAGE 239
ISTRING 57 64
TTEN 123
IS 17 18 102 108 112 113 114 11§
166 167 184 184 187 188 189
189 189 195 202 202
ITUPLE 80
TUVECTOR 57
IVECTOR 57

Nawme Index

274

JNAME

KEEP-FIXUPS

L-INS
L-0uUTs
L=?

L?
LAST-0UT
LEGAL?
LENGTH
LENGTH? -
LERR\
LINK
LIST

LISTEN
LLOC
LMAP\
LOAD
LOCA
LOCAS
LOCATIVE
LOCATIVE?
LOCB
LOCD
LOCL
LOCR
LOCS
LOCT
LOCU
LOCV
LOG
LOGOUT
LooKup
LOSE
LPARSC
LPROG)\
LSH
LVAL

MACRO
MAIN
MANIFEST
MANIFEST?

201
167

116
16
70

7

116

80 85 97 116 118 176 193 214

e

h2 ¢
7
118
153

265

151

MAPF
MAPLEAVE
MAPR
MAPRET
MAPSTOP
MAX

ME

MEMBER
MEMQ
MIN
MOBLIST
MOD
MONAD?
MUDDLE

54 57 57 59 68 72 186 204 212

25

116 149 169 183

16
9%

101
17
17
125
17
17
116

175 193

109

214

17 193 214

58 61 64

6 1
20
162

52 37 116 119 169 175 193 208

43 153 156

20 156

174
131
132

.7

174 195

N=

OBLIST
OBLIST?
OFF
OFFSET

ON

OPEN
OPEN-NR
OPT
OPTIONAL

OR

PARSE

Nawme Index

N=?
NBI
NETACC
NETS
NETSTATE
NEWTYPE
NEXT
NEXTCHR
NM1

NM2

NOT

NTH

OR?

ORB
OUTCHAN
OVERFLOW

The MDL Programming Language

91 92
95

91 92
94

95

28

174 195
73

3

28

140 144
28

4

18 108 142

7

73

166

15

101 (s

15

46 138 165 186 193
123

96 99 101 187
102 265

102 265

3

52 88

100 139 141 146 169 194
140

179

135 214

181

101 105 114 118 114 184
102

5 143 143 158 156 157

The MDL Programming Language

PARSE-STRING
PARSE-TABLE
PCODE

PNAME
PRIMTYPE
PRIMTYPE-C
PRIN1

PRINC

PRINT
PRINTB
PRINTSTRING
PRINTTYPE
PROCESS
PROG

165
99 101 112

100 101 112

20 23 48 99 101 112 141
101 106

101 106

48

146 169 170 190 193 219
84 89 204

PURE -PAGE -LOADER 186

PURIFY
PUT
PUT-DECL
PUTBITS
PUTPROP
PUTREST

QUICK-ENTRY
QUICK-RSUBR
QUIT
QUITTER
QUOTE

RANDOM
READ

READ-TABLE
READA
READB
READCHR
READSTRING
REALTIMER
REDEF INE
REMOVE
RENAME

REP

REPEAT
RESET

REST
RESTORE

108 186 194 199
53 56 68 88 120
134 136

161

120

59 69

164 259
164 259
202
184
56 82 83

29

20 22 99 101 122 140 142 153

187
153

154

101 106

96 99 101 105 112 113 187

101 106 112

189

10 265

143 145

101 111

146

81 89 205

101 102 111 112
52 56 75 126 219
108 109

RESUMABLE
RESUME
RESUMER
RETRY
RETURN
RGLOC

ROOT

ROT

RSUBR
RSUBR-ENTRY
RSUBR-LINK
rubout
RUNABLE
RUNINT
RUNNING
RUNTIMER

SAVE
SEGMENT
SEND
SEND-WAIT
SET
SETG
SETLOC
SIN
SLEEP
SNAME
SNM
SORT
SORTX
SPECIAL

SPECIAL-CHECK

SPECIAL-MODE
SPLICE
SPNAME

SQRT

SQUOTA
STACKFORM
STATE
STORAGE
STRCOMP
STRING
STRUCTURED
STRUCTURED?
SUBR

Name Index

170

170 173 173 190
174

150 222

85 90 175

147 163 165 194
147 166

164 265

17 98 113

170

181

170

189

108 108 165 200
66 72 154

202

202

32 37 175 186 194
30 37 186 194
116 118 119

40

191

110

102 108 110 265
61 73

62

127 156 193 228
134

128 134

154

144

40

253

8

170

194

73

55 57 64 65 100 154 213

R

I&1

o
N

N

81 147

275

BT TT P W S LR P

N T 4 e, . T

276

Subroutine
SUBSTIIUIE
SUBSTRUC
SUICIDE

T

TAG
TEMPLATE
Tenex

TERPRI
THIS-PROCESS
TIME

TO

TopP

TOPLEVEL
Tops-20

TTYECHO
TUPLE
TYI

TYPE
TYPE-C
TYPE-W
TYPE?
TYPEPRIM

UNAME
UNASSIGN
UNBOUND
UNMANIFES]
UNPARSE
UNSPECIAL
UNWIND
UTYPE
UVECTOR

VALID-TYPE?
VALRET
VALUE
VECTOR

The MDL Programming Language

)3 l—,_!z.

199 XJINAME 201

5156 XORB 161

174 XUNANE 201

i [24 54

96 193

55 66 219 \ 25 55 100 154
17 18 102 108 113 114 114 115

I51 167 178 184 187 188 189) 24 54

189 189 189 227

76 100 101 % 4107

174 174 ~9 17 58 98 113
201 ~D 17 98 113
i G 17 150 184
60 215 N i798 113
118 0 17 151

17 18 102 108 113 114 114 115 s 17 146 151 184
IS 167 178 184 187 188 189

189 189 189 227 { 24 55

101 113 146

0 80 193 244) 24 55

L0 113 187 187

20 44 74 94 193 211 8
165

165

&)

201

33175

218 259

132

65 144

127 221 223

150 223

63

51 57 57 63 65 204 213 27

16

200

33 124 175

54 57 57 63 186 204 212 216

Name Index

OFFICIAL DISTRIBUTION LIST

Defense Documentation Center
Cameron Station
Alexandria, VA 22314

12 coples

Of fice of Naval Research
Information Systems Program
Code 437
Arlington, VA 22217

2 copies

Office of Naval Research
Branch Office/Boston
Building 114, Section D
666 Summer Street
Boston, MA 02210

1 copy

Office of Naval Research
Branch Office/Chicago
536 South Clark Street
Chicago, IL 60605

1 copy

Of fice of Naval Research
Branch Office/Pasadena
1030 East Green Street
Pasadena, CA 91106

1 copy

New York Area
715 Broadway - 5th floor
New York, N. Y. 10003

1 copy

Naval Research Laboratory
Technical Information Division
Code 2627
Washington, D. C. 20375

6 copies

Assistant Chief for Technology
Of fice of Naval Research
Code 200
Arlington, VA 22217
1 copy

Office of Naval Research
Code 455
Arlington, VA 22217

1 copy

Dr. A. L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps
(Code RD-1)
Washington, D. C. 20380
1 copy

Office of Naval Research
Code 458
Arlington, VA 22217

1 copy

—

Naval Ocean Systems Center Y
Advanced Software Techonolgy
Division - Code 5200
San Diego, CA 92152

1 copy

Mr. E. H. Gleissner
Naval Ship Research & Development Center
Computation & Math Department
Bethesda, MD 20084
1 copy

Captain Grace M. Hopper (008)
Naval Data Automation Command §
Washington Navy Yard :
Building 166 {
Washington, D. C. 20374

1 copy

Mr. Kin B. Thompson
Technical Director
Information Systems Division
(OP-91T)
Office of Chief of Naval Operations
Washington, D. C. 20350

1 copy

Captain Richard L. Martin, USN
Commanding Off icer
USS Francis Marion (LPA-249)
FPO New York, N. Y. 09501

1 copy

