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FOREWORD

An understanding of the mathem atical theory of finite elements

becomes necessary when conducting research into advanced techniques for

finite element application . Such an area of research exists in the

F development of contact/impact , finite element formulations presently

being pursued at the Civil Eng i neering Laboratory (CEL). The work

reported herein supports that project.

Much of the work presented was accom plished while the author was on

leave for one academic yea r at the University of California , Santa

Barba ra , under the auspices of the CEL Fellowship Program. There ,

p resea rch was begun on the development of contact/impact , finite element

formulation , but soon it became evident that a study of the mathematica l

theory of finite element was first necessary for a greater appreciation

of element performance , convergence , and , in general , understanding why

the finite element method works as it does .

An important outcome of the study is the belief that some important

concepts of the mathematica l theory of finite element can be presented

to many practitioners without necessity for reference to higher

mathematics because these concepts can be cast in the familiar

geometrical notions of Euclidean space . This report was written and

presented with that belief foremost in mind .
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INTRODUCTI ON

The purpose of this report is to provide an explicative in roduction

to the mathematical theory of the finite element method . To really

understand the finite element method today, it is necessary to know

something of its mathematica l foundations as they relate to accuracy ,

convergence , valid shape functions , and other mathematically based

aspects which are associated with the method . Results from research

into these questions are beginning to emerge and will soon impact the

practitioner with greater frequency. The mathematical theory that has

been established to date is not complete , but it is sufficient to under-

stand both why the finite element method works and why it is efficient

in the numerical solution of engineering boundary value proble m s.

The major obstacle in understanding is that the language must of

necessity invo lve a minimum of functional analysis. This is a branch of

mathematics with which most eng i neers are unfamiliar. To that end , the

report begins with a section on prerequisite functional analysis. The

intent is to present only enough information to enable most engineers to

interpret the necessary functional analysis concepts within familiar ,

geometrical frameworks . These concepts are simple when viewed as gener-

alizations of the ordinary three-dimensional Euclidian space notions of

• distance , dot products , Pythagorean theorem , orthogonal projection , and

other concepts.

Mathematica l respectability began to come to the finite element
• 

‘ method when the unknown noda l point variables were recognized as the

unknown coefficients of the classical Rayleigh-Ritz method . Thereafter ,

many of the initial attempts at clarifying the mathematica l theory were

presented in the framework of the Raylei gh-Ritz procedure . But soon it

was realized that problems were being routinely solved by the finite

• -



element method that could not also he formulated in  a classica l Raylei gh-

Ritz way. The Ray lei gh-Ritz method requires the existence of a varia-

tiona l formii ul at ion of a problem prior to its use in  the problem ’s solu-

tio n . Yet , many proble m s be i ng solved had no such corresponding formu-

tat ion .

For example , in struct ’ ra l mechanics most problems were being

formulated on the basis of the principle of virtual work which is i n

fact more genera l tha im variational formulations. Therefore , the mathe-

matica l theory could not be comp letel y developed from a classica l

Rayleigh-Ritz viewpoint.

From then on , the m ethod ’s development was no longer the sole

province of e n g i n e e r s  who had originall y developed the niethod and who

indeed coined the phrase “finite element. ” I nvestigators who were

fa m i l i a r  with variationa l methods and who also knew of a more genera l

method — the classica l Galerki n method — soon saw the advantage of

thinking in terms of that method when seeking fundamental knowled ge on

the finite element method . Today, the finite element method is thoug ht

to be founded in an extension of the classica l Ritz-Ga lerkin theory .

The finite element method , as a result , is now applicable to problems

in fluid mechanics , heat conduction , electrostatics , and other areas ,

besides the traditional problems in elasticity and structura l mechanics.

In genera l , wheneve r the solution of a differential equation is sought

within a region hounded by geometrically comp l ex or “real” shapes , the

finite element method is often more advantageous than other methods.

The princi pal alternative method for the numerica l solution of bounda ry

value problems is the finite difference method . (

SOME PREREQUISITES FROM FUNCTI ONAL ANALYSIS

Functiona l ana l ysis is the study of vector spaces resulting from a

merge r of geometry , linear algebra , and ana lysis. It serves as a basis

for aspects of severa l important branches of app lied mathematics , including

2
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Fourier series , integra l and differential equations , numerical ana l ysis ,

and any field where linearity plays a key role. Its appeal as a unifying

discipline stems primarily from its geometric character. Most of the

principa l results in functiona l analysis G ,e expressed as abstractions

of intuitive geometric properties of ordina ry three-dimensiona l space .

W ithin the last 10 years , the finite ele,nenmt method , wh i ch is about

20 years old , has been given mathematica l respectability. Graduall y th e

method has been recogn i zed as an extension of the Rayleigh-Ritz-Ga lerkin

technique . To stuc y the mathem atical foundation of finite element it is

first necessary to become comfortable with a certain number of concepts

from functional analysis. Examples would include the concept of a norm

and its interpretation as a natural measure of strain energy , and the

identification of a Hu bert space as the collection of adm issible func-

tions in a physically derived variationa l principle.

The aimmi here is to present a minimum amount of functional anal ysis

believed necessary to comprehend the m athem atical foundations of the

finite element method . We beg in essentially from “ground zero ,” i.e.,

with the definition of a vector space and proceed up to the definition

of a Hu bert space. Each succeeding definition builds upon the preceding

definitions. Examples are given freel y to aid the comprehension of the

definition .

• Many of the following definitions ha~’~’ been extracted from Luenberger .*

Though the author does not address the subject of finite element , its

t reatment of functional analysis is well-suited to an introduction to

the mathem atical theory of finite element.

Linear Vector Space

A linear vector space X is a set of elements called vectors together

with two operations

H 
. .(1) Add ition . given x ,y E X

then x + y E X

~David G. Luenberger. Optimization by vector space methods. New York ,
N .Y., John Wiley and Sons , Inc., 1969.

3
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• (2) Scalar Multip lication :
given x E X and a aciy scalar
then ax E X

The set X and the above two operations are assumed to satisfy the following a

seven a x i o m s .

( 1 )  x + y = y + x

(2) (x * y) + z = x ~ (y * z)

(3) x $ 0 x (all x ~ X where 0 is defined as a null vector)

(4) a(x + y) ax s ay

(5) (a + ~)x ax *

( 6)  (a~ )x =

(7) Ox = 0

Some examples of vector spaces are :

A. Set of rea l numbers . Addition and multiplication are defined

in the usual way. The real number zero plays the role of the null

vector. This space is denoted as R 1 . I t  is the one—dimensiona l rea l

coordinate line.

B. An n-dimensional real coordinate space R~ .

x (C 1 ,  C 2~ •

0 = (0, 0, . . . ,  0)

1” ~~l ’  q2 , . . . , q )

H 
(x + y )~ =

(ox )
k ~~k

• C. Collection of all real-v~alued continuous functions on the

interval Ia ,bJ of the real line , CIa ,b l .

I
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€1 = f ( t )  = 0 fo r a l l  t on

( x + y ) ( t )  x ( t )  $ y ( t )

( a x ) t  o ’x ( t )

Examp le C illustrates t h a t  a vector  space may be composed of a set
of cont i nuous  fu n c t i o n s  am i d t h e r e f o r e  should ri ot be thoug ht of as being

composed of “vec to rs pe r Se ” in  a l l  cases. Indeed , the vector spaces

pe r t a i n i n g  to  f i n i t e  e lement  theory  are  coiiiposed of e lements  t h a t  are

cont i nuou s f un c t  ions

C a r t e s i a n  Product

Let X dni d Y be vec tor  spaces over the  same f i e l d  of s c a l a r s . Then

the Cartesian Product of X an d V . de n oted X x Y , co n s i s t s  of the co l lec-

tion of ordered pa i rs (x,y) with x E X and y E V. The Cartesian product

is a vec tor  space w i t h  a d d i t i o n  and i m i m il tip l icat ion defined as follows :

( 1 )  A d d i t i o n :  (x 1, y 1 ) + (x 2 1y ~~) (x 1 + x 2 , y 1 + y 2 )

( 2) M m i t t i p l i c a t i o n :  a (x ,y)  = (ax ,ay )

These d e f i n i t i o n s  s a t i s f y  the seven ax ioms  of a l i n e a r  vector space.

Subs pace

A nonempty subset H of a vector space X is called a subspace of X

if every vector of the form ax + ~y is in M wheneve r x and y are both in

• 11. Some examp les of subspaces and subsets are shown in Figure 1 with
2respect to the R vector space.
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Fi gure 1. Subspaces and subsets.

Only examp l es (c) and (d) are subspaces of R2. The others are merely
2• subsets of R

A subspace is itself a vector space . If it is not equal to the

entire space , as in the above two examples , then it is a proper subspace .

Examples of prope r subspaces in R3 include both a plane and a line

running through the origin.

Norm

A norm is a measure of the size of an element belonging to a vector

space or the distance between two elements in the space and is denoted

• by fJ x l( or lix - , respectively. If the vector space X has a norm

defined on it , it becomes a normed vector space . This means that there

1
- 6
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is a rea l va l ued function which maps each element x in X into a real

number ii x~ called the norm of x . The normn is assumed to satisfy the

fo l l o w i n g  th ree  axioms :

( I )  li x ~ 
� 0 f o r a l l  x E X , l i x  ii = 0 i f  x = 0

• ( 2) ikxIl a lix II for  a l l  s ca l a r s  a and a l l

~ lix y~ 
~ 

x~ f 
+ y for each x ,y

The f i r s t  ax i o im i forces  a l l  e lements , save the n u l l  e lement , to ha ve
p o s i t i v e  measu re. I f  the  measure  of someth ing  is zero ( ({ x f f  = 0) then
t h a t  som e t h i n g  m us t  be zero (x = 0) and converse ly  i f  some th i n g is zero

( x = 0) then  i t s  measure  should  be ze ro ( l i x i l  = 0) .

The second axiom states that x and its negative -x have the same

measure , and that , for example , the measure of 3x is three times the

measure of x.

The third axiom is the t r i a n g u l a r  i n e q u a l i t y ,  so- ca l led  s ince  the

sum of the lengths of two sides of a t r i a n g le is never s m a l l e r  than the
leng th  of the third side.

A no rm is me re ly a n a b s t r a c t i on of our usua l concept of length.

Some examples of norms follow . Some of the following real valued func-

tions satisfy the three axioms , and some do not.

l f X = R n :

(a) = 

~ 
~~~

. cannot  be used , v i o l a t e s  a x iom ( I )  -

•

(b)  ~~~ = 
~ ~C~~f 

is a v a l i d  norm

(c) JJ x I J = 

i~~l 
~ 1 cannot be used , violates axioms (2) and (3) -

•

(d) lix 
~ 

= max IC il 
is a valid norm

i l , n

I
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~~~~~(e)  x~ ( = 

~ 
) is a valid and  very useful norm

\ j=~ / c a l l ed the Euclidea n norm .

If X = C J a ,b J :

( f )  x~ = max x ( t ) l  is a valid norm and  is the largest value
a~ t~ b of ihe  f u n c t i o n  x ( t )  on the  i n t e r v a l  Ia ,b I .

(g )  x~~ = f I x ( t ) ~
dt  i s  a va l i d nor m

( h )  
~ 
x~~ = 

( 
b

1
1 2

)l/2

This is a valid norm and very useful in finite element theory . We give

i t the special designation H° norm . Th is norm can be generalized to

incl ude the H° norms of the functions and its derivatives. For example:

( i )  H2 Hi2 = 
~~~h

1 1 2  + 1 2 + i2~~~~ 

1/2

This no rm is also referred to as the

Conve rg ence

I n  a nor med l i n e a r  vec to r  space an i n f i n i te  s equence  of vec to r s

x l  is s a i d  to be convergent to a vector x i f  the sequence of real

numbers  x - x converges to zero . In this ca~ e we w r i t e  x ~ x .
I n n

T r a n s f o r m a t ion

Let X and V be linear vector spaces , and let D be a subset of X. A

r u l e , w h i c h  associa tes  w i t h  eve ry e lement  x E D a co r respond ing  element

y € Y , is c a l l e d  a transformation from X to V w i t h  domain  D. Th is

8
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transforma tion is illustrated i n  F i gure 2. We w r i t e  y = T ( x ) .  The

c o l l e c t i o n  of a l l vec tors  y E V for which there is an x E D with y = 1(x)

is ca l l e d  the  range R of T .

Fi gure  2.  T r a n s f o r m a t i o n  between two vector spaces.

F u n c t i o n a l

A t r a n s f o r m a t i o n  from X i n t o  the space of real numbers ( sca l a r s ) R ’

is ca l led a fu n c t i o n a l  of X , usua l l y de n oted f ( x ) , g(x), etc. Examples

of fu n c t i o n a l s  i nc lude  the f o l l o w i n g :

( a )  1( x ) = lIx

( h ) f (x) = f  x ( t ) d t
a

The idea of a functiona l is centra l to the Rayleig h-Ritz technique and

variational princi p les .

Cauchy Sequence

A sequence {x} in a normed space is said to be a Cauchy sequence

if - X
ml1 

-~ 0 as m ,n -, 
~~~ . In a normed space every convergent

sequence is a Cauchy sequence since ,

I
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x - x = x - x $ x - xn m n m

x - x  $ x - x  -~~0n ill

However , a Cauchy sequence is not necessaril y convergent. For

example , { l / n l  is a Cauchy sequence in the space X = R - 0 which is the

rea l l i n e  R m i n u s  the o r i g i n .  But t h i s  Cauchy sequence is not conveL-gent

in X since I l / n I  converges to 0 wh i ch is outside the space X.

More generally, if we take any sequence of poin ts in a vector space

which converges to a li im m it that is not one of the termm is in the sequence ,

and theit delete the l imit from the vector space , we get a Cat i chy sequence
which is not convergent.

Comp l e t e

A no rmed l i n e a r  vec to r  space i s  complete  if every Cauchy sequence

f rom X has a l i m i t in  X.  That  is , X must c o n t a i n  the l i m i t  as w e l l  as

the  members of the sequence . A comp le te  no rnmed l i n e a r vec tor  space

d e f i n es a Ba n ach space .

Gene r a l l y ,  i t  is advantageous  to fo r m u l a t e  p rob lems  in  such a space

because we ca n e a s i l y lest sequences for convergence by asking whether

they  are Cauchy or n o t .  I f  they a re , we have assurance  t h a t  the sequence

is convergent since the space is a comp leted space . We do not have to

know , a priori , what the limit is , and fortunately so , because its value

is often the object of the problem .

Conside r the space of rationa l numbers R ’. Let I x }  be a sequen ce

of rational numbers converging to This sequence is Cauchy, but R’

does not contain the limit element {~~({~~is an irrationa l number).

Therefore B ’ is not complete.

While the space of rational numbers is not complete , the space of

real numbers R is complete. Note a real number , and thus R

contains the sequence {x} and the limit.

p
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t t is appa rent by now that there may be more than one normed space

- • of c o n t i n u o u s  fun d  i o n s .  I t  depends o n l y  on the  de l i  n i L i  on of the norm .

To see t h i s , cons ider  the  space of c o n t i n u o u s  f u n c t i o r m s  on 10 , 1 1 .  We

- • • 
can d e f i n e  two d i f f e r e n t . norm u ed spaces as f o l l o w s :

( a )  Let X be the  space of c o n t i n u o u s  f u m i c t  ions  on 10 , I I wi t h norm

d e f i n e d  as

II x~~ = 
~

(h) Let X be as in (a) above except that the norm is defined as

x mnax x(t)
0~ t~~1

These are two different normued vector spaces , hut the first is not

romp ie t e w h i l e  t he second m s .

The f i r s t  is  not comple t e  because a sequence of f u n c t  ions  in  X is

de f i ned as f ol  l ows

0 0 < t < 1/2 - 1/n

- 
x ( t )  = u t  - n / 2  + 1 1/2 - I / n  ~ t ~ 1/2

H 
I t~~~~l / 2

A graphical portray a l of this sequence and its convergence (lack of) is

shown in Fi gure 3.

‘ I
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( I )  X 4 0)

Fi gure 3. Convergence of a sequence of functions.

First it can be verified that IX n~ 
is Cauchy  s ince

- x l i  = 1/2~~l/n - I/mi 0

Howeve r , this sequence converges to a d isco n t i n uous f u n c t i o n  as show n ,
and there fore does not converge to a member of X . As a result , the

nor med vector  space is  not comp le t e .

It can be shown that every Cauchy sequence in the second normed

vector space does have a limit in the space. The main difference here

is that the example sequence is not Cauchy with respect to the norm

defining the space .

Inner Product

On the Cartesian product space X x X an inner product is defined as

follows . Corresponding to each pair of vectors (x,y) in X the inner

product <x,y> of x and y is a scalar. The inner product must satisfy

the following four axioms in a real vector space X .

12 
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( I )  <x ,y> = <y , x>

(2 )  <x + y, z> = <x ,2> +

(3) ~ax ,y> a~x ,y>

(4) <x ,x> > 0 and <x ,x> = 0 i f x  = 0

The i n n e r  p r o d u c t  i s  a generalization of the dot product in two- or

th r e e - d i m e n s i o n a l  E u c l i d e a n  space.

Hu bert Space

As we have seen , a Banach space is a comp le te normed vec tor space .

A Hu ber t space is a Banach space plus an inner product which defines
1/2the norm ; i .e., x = (x,x>

The key concept involved with a Hilbert space is orthogonality.

This concep t is not generally available in other spaces. Two vectors i n

a Hilbe rt space are defined as orthogonal if their inner product is

zero . The miiethods of Ritz , Galerkin , and , of course , finite element

have natural settings in the framework of Hilbert spaces , as do the

concepts of optimization , Fourier series , least-squares minimization ,
and ortho-norma l bases. Hu bert spaces then provide a unifying foundation

for many areas of eng i neering .

4 Projection Theorem

The shortest distance from a point to a plane is a line given by

the perpendicular from the point to the plane. This obvious and intuitive

result can be generalized to the problem in any higher space (n-dimensional

Euclidean space or a continuous function space) of finding the “shortest

vector ,” as measured by a valid norm , from a point to a subspace . The

approach seeks to find that vector which is orthogona l to the subspace

• I This is a brief introduction to the projection theorem.

•

13
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Let H be a Hu bert space and H a closed subspace of H. Corresponding

to any vector x € H , the re  is a unique vector m E  H such that

li x - 
~~ f(x - m u for a l l  iu ~ M. Furthermore , a necessary and

sufficient condition that m
0 be the unique minimizing vector is that

x - m be o r thogo n al  to 11. The three-dimensional version of the projec-

tion theorem is shown below in  F igu re  4 .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure 4. Projection theorem concept.

SOME FINITE ELEMENT CONCEPTS FROM MATHEMATICAL THEORY

If one is not interested in the mathematica l questions of what

constitutes valid shape functions , accuracy , convergence , and , in genera l ,
- • why the method is efficient in many problems , it would not be necessary

to know little beyond the basic princip les of virtual work and/or equi-

libr ium to enable successful app lication of the method . Furthe r , the

basic reason that the finite element method is successful and efficient

is that the polynomial shape functions which it employs are both compu-
• • tationally efficient and good mathematical approximations. The method

does not owe its success to physica l principles , though this sometimes

. ~~T ;
~~



appears to be the case since these principles are the source of the

all-important governing differential or integra l equation . However , the

finite element method allows am efficient discretization and numerical

solution of the governing equations after they have been established .

Before the ingenious application of the shape functions that are attrib-

uted to the finite element method , the discretization was often accom-

plished with classica l Ritz functions. The discretization , however ,

remains fundamentally a Ritz process , and to understand the finite

element method and the reason for its success , it is necessary to follow

through the development of the Ritz method .

Approximate Method of Rayleig h-R itz

There are a number of references on the Rayleigh-Ritz method , but a

book by Hikhlin~ is frequently noted in the literature of finite element.

This reference was used in the preparation of the following material ,

• and though it covers a good deal mo re than Raylei gh-Ritz it still is

very complete on the subject.

Consider solving the time-independent differential equation

L u  = f (1)

in some domain Q where L is some differential operator which acts upon

an unknown function u to yield a known function f. On the boundary r of
u must satisfy certain boundary conditions. The differential o~- rator

L is linear and defined for a subspace 11 of a real Hu bert space H. If

L containb derivatives up to the mth order , then H is the space of all

• continuous functions having continuous mth order derivatives. The

larger space H is taken as the space of all functions which are squa re

sunvoable and have the inner  product

<u ,v> = f u v d Q u ,v € H
Q

*S. C. M i k h l i n  Variationa l methods in mathematical phys ics. Oxford ,
• England , Pergamon Press , 1964.
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This merely means that <u ,v> < ~ and therefore t h e  i n n e r  p r o d u c t  w i l l

exist. (This is not a very restrictive definition at all , and therefore

it is useful to think of H as being very large.) Let f also be a member

of H so that Equation I de f i nes a linear transformation or mapping as

shown below in Figure 5.

I I  

~~I u  

I I

Figure 5. Linea r transformation from subspace H to space H.

Let 0L 
be a subspace of H such that in addition to the requirements of

being a member o~ H, the functions u E DL 
must also satisfy the boundary

conditions. The terni DL 
is called the field of definition of operator

L. For the time being let it be stated that operator L must be positive

definite; that is , <Lu ,u> > 0 for all u E DL 
where the equality holds

if , and only if , u 0 (0 being the null vector).

With the above definitions established we state , without proof , the

fol lowing equivalent variationa l formulation of the boundary value

problem . Finding the function u* which yields the minimum of the quadratic

fu n c t i o n a l

F(u) = <Lu ,u> - 2<u ,f> (2)

is the same as solving the governing differ ential Equation I for u. A

specific example of a variational formulation , common to structura l

16
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engineers , is the solution of t he  p a r t i a l d i f f e ren t i a l  e q u a t i o n o f

s t a t i c  e l a s t i c i t y  theory  by ,  i n s t ead  of integrating the differential

equation , finding the minimum of the potential energy functiona l for the

elastic body. A more concise statement of the equivalency is as fol-

lows . If , in addition to being positive definite , L is a symmetric
• (<Lu ,v> = <Lv ,u)’) operator , then if Lu = f is to have a solution in H ,

this solution is also the minimizing function for Equation 2. Con-
• versely, if u~ minimizes F(u) then u~ = u and is the solution to Lu = f .

In solving the linea r diffe rential equation of Equation I it should

be noted that while the given function f can be any function so long as

it. is a member of the Hu bert space H , the sought-after function u must

be a member of the field of definition of the linear operator L as well

as a membe r of H. Thus if L is a fourth order operator , u must be a

continuous function having a continuous fourth order derivative and must

satisf y certain boundary conditions to be a member of the field of

definition D
L
.

It can therefore occur that for some functions f E H there will not

exist a function u in the field of definition that will satisfy the

differential equation. As an example of this case , consider the problem

of find i ng the deflection of a uniform cantilever beam under the action

of a uniformly distributed load q(x). The appropriate equations are

E I y ’’’’ = q(x) x E I O , L 1

y( o ) y ’(c) = y ’’(L) = y ’’’(L) = 0

The differential equation is derived by considering the equilibrium of

an infinitesima l length of the beam under the assumption that the loading

• is continuous across the infinitesima l length.

In this case the operator is

¶ 4
L

dx

_ _ _ _ _  
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Its field of definition D
L 

is defined as the totality of those functions

defined over (O ,LI which possess continuous fourth derivatives and which

satisfy the bounda ry conditions of the problem . If q(x) is continuous

everywhere in I0 ,L1 there will exist a solution y in DL. But if q(x) is

discontinuous , no solution can be found in D
L 

since y would have to

possess a discontinuous fourth derivative to satisfy the governing

equation. It should he noted that a discontinuous q(x) is an entirely

• legitimate possibility because it would be square summable and therefore

a member of H. In a practical sense a discontinuous q(x) is very common .

This difficulty ‘an be overcome by considering limits of functions

that lie in DL. Just as a discontinuous load q(x) may be considered as

the l imni t of a sequence of continuous loads , so functions with discon-

tinuous fourth derivatives are introduced that are the limits of sequences

of functions with continuous fourth derivatives. Extending the field of

definition D
L 

in this manner can always be accomplished if L is a posi-

tive bounded below operator in addition to being symmetric and positive

definite. The criterion for being positive bounded below is <Lu ,u> ~ y
2
<u ,u>

where u E D
L 

and is any positive constant. It can then be asserted

that among this new set of functions lies the solution of the differen-

tial equation for any f E H.

This spatial extension creates a new Hilbert space HL 
with an inner

product Iu ,vl where u ,v E HL. and this inner product is sometimes called

the energy product. It is defined as follows ,

• Iu ,v I = limo <Lu ,v >  = <Lu ,v>

• where u and v are sequences and u ,v € D . Note that through ann n n n L
• integration by parts we get a new operator R as follows ,

<Lu ,v > = 5 Lu v dO = 5 Ru Rv dO.n n n n/ n n/

•

18
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Thus ,

Iu ,v) = lim 5 (Ru Rv) dO lim 5 (Rv . R u )  dO
n-’~~Q n-~~ O

= 1im<Rv ~~R u >  
= (v ,uj,

and the energy product is shown to be symmetrical.

The Hu bert space M
L 

is important in the theory of finite element.

The norm in M
L 

is the energy norm and is defined as

II u~ = Iu ,ul h h’2 
= cc (Ru Ru) dQ)hI

’2
.

The set of admissible functions in HL 
is given by considering sequences

of functions , say un~ 
tha t satisf y

• u r n  u - u = 0.
n m

This imp lies the existence of an element u with finite norm to which the

sequence u~ converges in the mean. This set of functions constitutes

M L.
Those functions constituting D

L 
must satisfy all the bounda ry

conditions. But some functions in HL 
which contains D

L 
often do not

satisf y all the boundary conditions. Those bounda ry conditions which

are satisfied by functions in DL, but which are not satisfied by functions

in HL 
are called natural boundary conditions. Those boundary conditions

which remain , or those boundary conditions which are satisfied by func-

tions only in H
L 

are the essential (forced , principal) boundary conditions .

The latter are required to assure that the energy norm is positive

definite; i.e., j
~ 
u~ = )nlu,uJ ~

I
19
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• Now we return to the problem of minimizing F(u) where

F(u) = lu ,u I - 2(u,1> (2a)

and where the  c a n d i d a t e  f u n c t i o n s  u a r e  now members of M L. The cen tra l

result in going from Equation 2 to 2a is that now the trial functions u

need satisf y a fewer number of boundary conditions i.e., the essential

boundary conditions.

Following the classica l Ritz mm iethod to approximate the minimizing

function of F(u) we select. a s o l u t i o n  of the  f o r m

M
u — 

~
. a

k ~k’ 
(~ )

k=l

where are the Ritz functions , and ak 
are the unknown Ritz coefficients

which are to be determined. If the functions q~~, k=l ,2,. . . ,M , are corn-

p l ete in  M L then convergence to the correct answe r u is assured in the

sense of convergence of the energy norm . The are complete in HL if

for any v E M
L 

it is possible to choose C > 0 and find an integer N and

constants a 1, a2 , . . . , a~ such that

l i v — H 11 < C  f o r M >  N

Substituting Equation 3 into Equation 2a , the quadratic functional

becomes

H H• 
F(UM) = I ~ ak 4~ , 

~ 
ak III~~1 

- 2< 
~ 

ak ~~
,f> (4)

k l k=1 k=I

20
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or ,

H M
F( M ) = 5 L ( 

~ 
a~ ~ 

ak Gk 
dO (4a)

O k 1  k=l

H H- 2 5 ( 
~ 

ak ~~ 
f dO

0 k=l

To find the ak, k 1 ,2,. . . ,M , corresponding to the m ir i i iiium of F(U
M
), we

differentiate Equation 4a with respect to a. and set the result to zero .

= f IL (
~~

) k l  
ak (t~ 

+ L 
k 1  

a k G~
) I dO (5)

- 2 J a t ~~fdO 
= 0

O J

or

a I ~ 
a~ ~

M
, 4~~1 

- 2<~~~,f> 
= 0 (Sa)

k 1  k 1

Because the energy product is symmetrica l , this equation reduces to

t4 !~, ~~ 
ak 

- < I~~~~,f> 0 (6)
-~ k I

F i n a l l y ,  E q u a t i o n  6 is rearranged as follows ,

11 H5 L (Ø~) a1 dO - <4 .,f> = 0
Q -~ k 1  -1

I

•
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or ,

ak lØ ~ , ~~I = <~~~,f> j = 1 ,2,... ,H ( 7 )
k 1  -~ -~

Thus , the end result of the Ritz process is Equation 7 which is a linea r

system of H al gebraic equations from which we can solve for the a
k 

of

Equation 3.

Advantage of Finite Element Shape Functions

Strang and Fix provides an excellent discussion on the subject of

the unathemnatical theory of finite element.~ The authors , who are mathe-

maticians , have learned the “language of finite element ,” and it is

evident in their narrative . However , their t reatment does assume that

readers are comfortable with many of the functional analysis concepts

presented earlier in this report. Most engineers who practice finite

element may not , however , be knowledgeable in this area of mathematics.

Nevertheless , the purpose of this section and a main point of this

report can be satisfactoril y understood without thoroughl y understanding

functional analysis. The authors contend tha t. shape functions are a

root-cause of the success of the finite element method . This contention

is developed here in the context of the earlier introductions to functional

analysis and the Rayleigh-Ritz method .

It was stated earlier that the main reason for the success of the

finite element method was its computational ease and accuracy and that

this was a result of using certain kinds of functions called shape

functions for the in the Ritz process. This will be shown in the

following examp les by using three different kinds of functions for the

solution of a boundary value problem , and , in each case , taking the

computation as far as Equation 7.

~G. Strang and G. J. Fix. ~\n analysis of the finit~’ element method .
Englewood Cliffs , N .J. , Prentice-Hall , Inc., 1973.
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The statement of the illustrati ve problem is as follows :

L u  f ,

where

2
L = + I2dx

and

f = x.

The boundary conditions are u(O) = u ( I )  = 0 , a nd the domain is 0 = 10 , 11.

We assume a solution of the form

=

Case I. Let the Ritz functions be the eigenfunctions for the given

differential equation ; i.e .,

H -
= sin knx .

These functions are shown in Figure 6 and are seen to satisfy the given 1 i

bounda ry conditions.

a. 

• ~~•—~~~ 
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Figure 6. Eigenf - : r’ct iOIIs used as Ritz functions .

substit uting L , f , a n d  into Equation 7 , we get

H 1 2

~ 
a
k .1 I~ —~ 

(si n jnx) ~ sin jflxJ sin knx dx =

k 1  0 dx 
-~

j = 1 ,2 ,.. . ,H.

This equation reduces successively as follows ,

H

~ 
a~ 5 I l - (jn)2 1 sin jnx sin knx dx =

k 1  0 
J

j = 1 ,2 ,.. .

or

M I
Ii - (jn)2 1 ~

. ak 5 sin jflx sin kTIx dx < 4 ,x>
k = I  0 -~

j = 1 ,2,... ,M.

24
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I n v o k i n g  o r t h o g o n a l i t y  of the  el ge nf u n c t i o n s , <4 J 10 k > 6
~ k~ 

the above

e q u a t i o n  reduces to

I I  - ( in ) ~ I 
k= 1 

a k 6j k  = K~~. , x > j = I ,2 ,..., M

or

I I  - (jn)
2

1 a. = <~~~,x> j 1 ,2 ,... ,M.

That is , Equation 7 reduces to the followin g system of equations i n  t h ~
unknown a -

-I

- a 1
1 - 4 r~ 

2 
a
2

1 -  9ri a
3 

=

i - M~ ~
2 

<ØH,X ’I

Thus , the use of eigenfunctio ns for the shape functions results in

a diagonal coefficient matrix. The computational ease of solving for a.

is o p t i m a l in this case. But the eigenfunctions are not , of co u rse ,

g e n e r a l l y av a i l a b l e a p r i o r i .

Note also that the appro x i m a t e  s o l u t i o n

M H <~ k~X>u = 

2 2 sin knx
k= l I - k it

can be thought of as the projection of the true solution ,

~~

U 2 2 
sin knx ,

k 1 I - k it

onto the subspace H spanned by the first N e i g e n f u n c t i o n s .

25
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Case 2. Let the Ritz functions be the polynomials ,

= x~ (1 - x)

and note that they , too , satisf y the boundary conditions.

The first three of these polynomial functions are shown in Figure 7.

0250 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
I

1) 14 k = 2  

I

0 105 k~~~3 _______— ~~~~~~~~~~~~ ________

Figure 7. Polynomials used as Ritz functions .

Substit uting these polynomials into Equation 7 we get

M 1 2 .
~ a

k ~ 1-~~-x~(l-x) 
+ x~(1-x)J x

k(l_x )dx
k I  0 dx

= <x~ (J-x),x> j  = 1 ,2 , . . .  ,M

26
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or

k=l 
ak f Ij (j-l)x~~

2(l-x) 2jx~~~ + x~ O-x )~ x
k(l~ x)dx

= <x 3 (l-x), x> j 1 ,2, . . . , H

Entries in the first row of the coefficient matrix , obtained by setting

j  = I , are

5 J - 2 + x(i-xfl x(1-x) dx
0

f 1-2 + x(I-x )jx 2 (i-x)dx ,. . -
0

5 1-2 + x (l~ x)Ix H (l-x)dx
0

Elements of the second row , obtained by setting j = 2, are ;

5 12( 1 x) - 4x + ,c2(I- x )Jx (1-x)dx
0 I

2 2I 5 I2(1-x) - 4x + x (1-x )Jx (1-x)dx ,.
-

f (2(I-x) - 4x + x2(l~ x)Ix
M (1-x)dx

Thus , the coefficient matrix is not diagona l , and with a little more

stud y it becomes appa rent that it is full. For example , if we take

M = 2 and write out the linear system we get

27
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0 3/20 1 a

1 — 

jl/ 12

L3~
’20 13/lOSj a

2 11/2 0

Solving this system y i e ld s , a 1 
7 1/ 3 69 , and a

2 
= 7/41. Therefore , the

approximnat e solution for M 2 is ,

u = 71/369 x( 1-x) + 7/41 x2(l-x).

Case 3. Let he the finite element hat-shaped functions defined

as follows ,

0 0 ~ x 
< (k - 1) h

M 
1/h x - (k - 1 ) ( k  — 1)  h < x ~ kh

=

- I/li x~~ ( k  + I) kh < x ~ (k t 1) h

0 (k  + I )  h < x < I

Three consecutive ’shape functions are grap hed in Figure 8, where  i t can

be seen that they satisfy the boundary cond itions. Further , t hey a re

continuous functions over the entire reg ion 10 ,1 1 . They do not differ

in this respect from the ei genfunct ions and pol ynomial functions wh i ch

were emnployed in the previous two cases.

28
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Figure 8. Finite elemnent shape functions used
as Ritz functions.

They do differ in that at x = kh , for examp le , one function equals

unity, while all others equa l zero . Such points are termed node points ,

and there the undetermined coefficients become the value of the dependent

variable u(kh). Substi tuting the shape functions into Equation 7 we

get ,

11 1 ,,

~ 
ak I f (4~ ~ 41’) ~ dxl = K41’,x> j = 1 ,2,... ,M.

k l  0

In this case , howeve r , = 0, and therefore this equation reduces to ,

~ 
ak (5 

dxJ = <~~~,x >  j  = 1 ,2,... ,M.
k I  0

We note that the product 41! $~~ 
will be zero unless )j  - k~ ~ 1. This

can best be seen from the above sketches of the shape functions. For

4 1 
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example , the product of and 
~~+l 

is nonzero , but the product of 4~
and •k+2 is zero . Thus the system of equations for Case 3 is tridiagonal

as follows ,

H M H M~- a 1

a
2

- 

a
3 

= <~~~,x>

The prima ry observation is that the system is almost diagonal; or ,

alternatively, orthogonality almost exists. Computationall y, the system

of equations resulting from the use of finite element shape functions is

pre ferable to the system resulting from the use of Ritz functions (smooth

polynomials). Surprisingly, the only difference between the Ritz and

the finite element method is in the choice of the continuous functions

for use in the approximate solution

= 

k=I 
ak 4~

In each of the three cases the 4~ 
are defined continuously over

the entire region 0 (0 ,11 and 4~ 
E H

L
. However , the differences are

important and are summarized as follows :

(a) The finite element functions 4~ (Case 3) are zero everywhere
except over a subdomain or element. This reduces the coupling

in the linear system given by Equation 7.
‘

I

30



— --~~~~- -

(b) The finite element functions 4~ 
are defined such that they are - 

S

unity at x = jh , j  1 ,2,... ,M , that is at the node points. This

assigns physical significance to the ak. That is , ak 
= uM (kh),

and these are the values of the dependent variable at the kth

node points.

SUMMARY

The prob lem at hand is generally one of finding an approximate

solution to a given boundary value problem ; the solution must satisfy a

governing differential equation and its associated boundary conditions.

The process of finding an approximate solution can be discussed in a

heuristic way, by relying on geometrical notions. Though we actually

search for solutions within mathematically complex subspaces of continuous

functions , often from a practitioner ’s point of view , significant insight

is gained by limiting thought to Euclidian space . It is helpful to

imagine that the “true” solution is a vector imbedded in three-dimensional

space , but that the search for an approximate solution vector is unfor-

tunately limited to some lesser subspace (say, a plane). The projection

theorem provides the interpretation that the best approximate solution

within that restriction is an orthogona l projection of the true solution

vector onto the lesser subspace. The Ritz (or, more generally, the

Galerkin) method is the mechanism for finding that projection.

The error vector is the difference between the true and approximate

solution vectors and is norma l to the subspace when it is minimized . It

is measured by the energy norm . It is the business of theoreticians to

cbtain estimates of the energy norm of the error vector for formulations

so that the relative accuracy and convergence of alternatives can be

assessed . Accuracy criterion is based on the energy norm , and convergence

occurs , as is often written , “in the sense of the norm .” The energy

norm is a functional; as such , it is a particular type of transformation .

Its evaluation yields a real number when it is provided with an input ,
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continuous function. Thus , it transforms an element of continuous

function space into an element of rea l number space . In this context ,

the Continuous functions are finite element shape functions , and the

• energy norm can be rega rded as a mathematical “measuring stick” for such

functions .

The subspace of admissible functions in which an approximate solution

is sought is dictated by the differential operator ’s order and the

boundary conditions. It is constituted of functions having continuous

derivatives up to the .~rder of the operator and that also sa t i s f y a l l
the boundary conditions , plus some additiona l functions . These additional ,

admissible functions are defined by an extension of the field of definition

for the operator. They are all functions that are obtainable as limits

of sequences of admissible functions from the first group , the field of

definition . A significant practical benefit requires mentioning here .

Often , these limit functions possess lower order differentiation than

the functions constituting the field of definition. Because of this ,

they are easier to construct and simpler to use in subsequent computations .

Further , due to their reduced order of differentiation , they do not , and

need not , satisfy boundary conditions which generally involve higher

order derivatives on the dependent variable; boundary conditions tha t

they do not satisfy are the natural boundary conditions. Those boundary

conditions that they do satisfy are the essential boundary conditions .

Construction of functions from the field of definition is most often

prohibitive ly difficult and/or they may be too costly to compute with.

However , if they are available and economical , their use is preferable

and recommended on grounds of increased accuracy.

Finite element shape functions are continuous over the entire

region and are no different than classical Ritz functions in this regard .

They do differ in that they are piecewise continuous , each being defined

as zero everywhere except over a subdomain (element) of the region . On

the other hand , classical Ritz functions are generally more smooth and

nonzero everywhere over the region . A system of linear , algebraic

equations that results from using piecewise con t inuous  func t ions  is
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solved more easily than a system that results from Ritz functions. This

is because they are characteristically banded . The bandedness reflects

local  coupl ing  among the equations written for individua l subdomains in

p r o x i m i t y ,  whereas  globa l coup l ing  and f u l l  ma t r i ces  are inherent with

the Ritz functions . In either case , the undetermined coefficients in

the Ritz process are found from solution of the linear system of equations.

They have a more u s e f u l  i n t e r p r e t a t i o n , though , when finite element

shape functions are used . In this case , the coefficients are the values

of the dependent variable at node points , and are therefore directly

useable data. That • they are often discrete values of the solution

sought. In con t ra s t , the coefficients of classical Ritz functions

cannot be interpreted meaning fully. Useable data are obtainable only

with further manipulation of the coefficients after their numerical

values are found .

The finite element method , in large measure , owes its success to

piecewise continuous shape functions. It remains fundamentally a Ritz

(more g e n er a l l y ,  Ga le r ki n ) appro x ima t i o n p rocess , but because shape

functions are simple and a men ab le  w i t h  t he digital computer , the finite

element method has transcended the classical method of Ritz in app lication

and popularity. Nevertheless , it is instructive to understand the Ritz

process as a method for minimizing a functional. The function , within a

prescribed space of admissible functions , that minimizes  the f u n c t i o n a l
is found by the Ritz process and is also an approximate solution to the

boundary va lue problem . A certain amount of mathematics from functiona l

analysis is required to appreciate the Ritz process , and the finite

element method as well. It begins with the definition of linear vector

spaces and proceeds through to the definition of Hilbert spaces . The

-uathemat ics can be presented for practitioners by relying , where possible ,

on geometric interpretation in more familiar Euclidean space.
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