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FOREWORD : 1

An understanding of the mathematical theory of finite elements
becomes necessary when conducting research into advanced techniques for
finite element application. Such an area of research exists in the
development of contact/impact, finite element formulations presently ‘
being pursued at the Civil Engineering Laboratory (CEL). The work
reported herein supports that project.

Much of the work presented was accomplished while the author was on

leave for one academic year at the University of California, Santa

T S . e AT

Barbara, under the auspices of the CEL Fellowship Program. There,

i

research was begun on the development of contact/impact, finite element

formulation, but soon it became evident that a study of the mathematical

theory of finite element was first necessary for a greater appreciation
of element performance, convergence, and, in general, understanding why
the finite element method works as it does.

i An important outcome of the study is the belief that some important
; concepts of the mathematical theory of finite element can be presented
to many practitioners without necessity for reference to higher
mathematics because these concepts can be cast in the familiar
geometrical notions of Euclidean space. This report was written and

presented with that belief foremost in mind.
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INTRODUCTION

The purpose of this report is to provide an explicative in*roduction
to the mathematical theory of the finite element method. To really
understand the finite element method today, it is necessary to know
something of its mathematical foundations as they relate to accuracy,
convergence, valid shape functions, and other mathematically based
aspects which are associated with the method. Results from research
into these questions are beginning to emerge and will soon impact the
practitioner with greater frequency. The mathematical theory that has
been established to date is not complete, but it is sufficient to under-
stand both why the finite element method works and why it is efficient
in the numerical solution of engineering boundary value problems.

The major obstacle in understanding is that the language must of
necessity involve a minimum of functional analysis. This is a branch of
mathematics with which most engineers are unfamiliar. To that end, the
report begins with a section on prerequisite functional analysis. The
intent is to present only enough information to enable most engineers to
interpret the necessary functional analysis concepts within familiar,
geometrical frameworks. These concepts are simple when viewed as gener-
alizations of the ordinary three-dimensional Euclidian space notions of
distance, dot products, Pythagorean theorem, orthogonal projection, and
other concepts.

Mathematical respectability began to come to the finite element
method when the unknown nodal point variables were recognized as the
unknown coefficients of the classical Rayleigh-Ritz method. Thereafter,
many of the initial attempts at clarifying the mathematical theory were
presented in the framework of the Rayleigh-Ritz procedure. But soon it

was realized that problems were being routinely solved by the finite




element method that could not also be formulated in a classical Rayleigh-~
Ritz way. The Rayleigh-Ritz method requires the existence of a varia- |
tional formulation of a problem prior to its use in the problem's solu-
tion. Yet, many problems being solved had no such corresponding formu-

lation.

For example, in structrral mechanics most problems were being "
formulated on the basis of the principle of virtual work which is in
fact more general than variational formulations. Therefore, the mathe-
matical theory could not be completely developed from a classical
Rayleigh-Ritz viewpoint.
From then on, the method's development was no longer the sole
province of engineers who had originally developed the method and who
indeed coined the phrase "finite element." Investigators who were
familiar with variational methods and who also knew of a more general
method - the classical Galerkin method — soon saw the advantage of

thinking in terms of that method when seeking fundamental knowledge on

the finite element method. Today, the finite element method is thought
to be founded in an extension of the classical Ritz-Galerkin theory.

The finite element method, as a result, is now applicable to problems

A e e

in fluid mechanics, heat conduction, electrostatics, and other areas,
besides the traditional problems in elasticity and structural mechanics.
In general, whenever the solution of a differential equation is sought
within a region bounded by geometrically complex or '"real'" shapes, the
finite element method is often more advantageous than other methods.

The principal alternative method for the numerical solution of boundary

value problems is the finite difference method.

SOME PREREQUISITES FROM FUNCTIONAL ANALYSIS

* I ! Functional analysis is the study of vector spaces resulting from a
merger of geometry, linear algebra, and analysis. It serves as a basis

for aspects of several important branches of applied mathematics, including
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Fourier series, integral and differential equations, numerical analysis,
and any field where linearity plays a key role. [Its appeal as a unifying l
discipline stems primarily from its geometric character. Most of the
principal results in functional analysis are expressed as abstractions
of intuitive geometric preperties of ordinary three-dimensional space.

Within the last 10 years, the finite element method, which is about
20 years old, has been given mathematical respectability. Gradually the
method has been recognized as an extension of the Rayleigh-Ritz-Galerkin
technique. To stucdy the mathematical foundation of finite element it is
first necessary to become comfortable with a certain number of concepts
from functional analysis. Examples would include the concept of a norm
and its interpretation as a natural measure of strain energy, and the
identification of a Hilbert space as the collection of admissible func-
tions in a physically derived variational principle. |

The aim here is to present a minimum amount of functional analysis
believed necessary to comprehend the mathematical foundations of the
finite element method. We begin essentially from '"ground zero," i.e.,
with the definition of a vector space and proceed up to the definition
of a Hilbert space. Each succeeding definition builds upon the preceding
definitions. Examples are given freely to aid the comprehension of the
definition.

Many of the following definitions have been extracted from Luenberger.*
Though the author does not address the subject of finite element, its
treatment of functional analysis is well-suited to an introduction to

the mathematical theory of finite element.

Linear Vector Space

A linear vector space X is a set of elements called vectors together

with two operations

(1) Addition: given x,y € X
then x tyEX

*David G. Luenberger. Optimization by vector space methods. New York,
N.Y., John Wiley and Sons, Inc., 1969.




(2) Scalar Multiplication:
given x € X and o any scalar J‘
then ax & X

3 The set X and the above two operations are assumed to satisfy the following

seven axioms.

() xty = vtz

(2) (x thy)etia <ty b 2) 1
} 3) x +' & = % (all x € X where O is defined as a null vector)

(4) o(x +y) = ox tay :

(5) (@ + B)x = ax + Bx -
(6) (aB)x = a(Bx)

(7)) o = 6

Some examples of vector spaces are:

.
A. Set of real numbers. Addition and multiplication are defined
| in the usual way. The real number zero plays the role of the null
: vector. This space is denoted as Rl. It is the one-dimensional real
i coordinate line.
| B. An n-dimensional real coordinate space R
] X = (clv 22’ . » s Cn)
‘ @ = (6,0, .. .,0)
y s (n]’ 02! b s .y nn)
| ey ahy b oGty
(ax)k = ack
. ' C. Collection of all real-valued continuous functions on the

interval [a,b] of the real line, Cla,b].

bl e W i e a8
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s g = for all t on {a,b]
(x + y)(t) = x(v) + y(v)
(o)t = ox(t)

Example C illustrates that a vector space may be composed of a set
of continuous functions and therefore should not be thought of as being
composed of "vectors per se" in all cases. Indeed, the vector spaces
pertaining to finite element theory are composed of elements that are

continuous functions.

Cartesian Product

Let X and Y be vector spaces over the same field of scalars. Then

the Cartesian Product of X and Y, denoted X x Y, consists of the collec-

tion of ordered pairs (x,y) with x € X and y € Y. The Cartesian product

is a vector space with addition and multiplication defined as follows:

(1) Addition: (x,,y,) + (x5,y,) = (x; + x,,y, *+y,)

(2) Multiplication: a(x,y) = (ox,ay)
These definitions satisfy the seven axioms of a linear vector space.

Subspace

A nonempty subset M of a vector space X is called a subspace of X
if every vector of the form ox + By is in M whenever x and y are both in

M. Some examples of subspaces and subsets are shown in Figure 1 with

respect to the R2 vector space.




defined on it, it becomes a normed vector space.

} Only examples (c) and (d) are subspaces of R2.
A subspace is itself a vector space.

Examples of proper subspaces in R3

Norm
q

0
¢ b2
(a) 2 M (c)
£
M
i)
(d) A% (c) 2 () §2
M
7 &8
— Tl Laite
T\ 31 1 1
origin, M
0

Figure 1. Subspaces and subsets.

The others are merely

subsets of R2.

If it is not equal to the

entire space, as in the above two examples, then it is a proper subspace.

include both a plane and a line

running through the origin.

A norm is a measure of the size of an element belonging to a vector
i space or the distance between two elements in the space and is denoted

i by (Ixn or llx - yll, respectively. If the vector space X has a norm

This means that there
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is a real valued function which maps each element x in X into a real

number ||x|| called the norm of x. The norm is assumed to satisfy the

following three axioms:

(1) “x” 50 for all xR, Hx” =0 ifx = B
(2) ||0x|| =« ”xll for all scalars o and all x € X
(3) le + y‘l < llx I & i|y|' for each x,y € X

The first axiom forces all elements, save the null element, to have
positive measure. If the measure of something is zero (“ xll = 0) then
that something must be zero (x = @) and conversely if something is zero
(x = ©) then its measure should be zero (||xl| = 0).

The second axiom states that x and its negative -x have the same
measure, and that, for example, the measure of 3x is three times the
measure of x.

The third axiom is the triangular inequality, so-called since the
sum of the lengths of two sides of a triangle is never smaller than the
length of the third side.

A norm is merely an abstraction of our usual concept of length.
Some examples of norms follow. Some of the following real valued func-

tions satisfy the three axioms, and some do not.

1f X = R™:
n
(a) llxll = 2 Qi cannot be used, violates axiom (1)
i=1
n
(b) llxll D 'Ci, is a valid norm
i=1
g
(c) llxl' = Ci cannot be used, violates axioms (2) and (3)
i=1
(d) llxll = max Cil is a valid norm
i=1l,n




o 21/2
(e) llxl‘ = 2 ‘Qil is a valid and very useful norm
i=1] called the Euclidean norm.

EfEXo=Ne g ]t

(£) llxl' = max [x(t)‘ is a valid norm and is the largest value
ast<b of the function x(t) on the interval [a,b].
b |
(g) ‘lx'l = |x(t)|dt is a valid norm
a
l i b 2 1/2
(h) ||xlio = £ x(t)| dt

This is a valid norm and very useful in finite element theory. We give
: : . h o . .
it the special designation H norm. This norm can be generalized to

. .0 . ) ; 2
include the H norms of the functions and its derivatives. For example:

R s ||x

, = ( fhllx(t)|2 ALHOE ‘x"(t)‘zldt> g
\ 4

This norm is also referred to as the energy norm.

Convergence

In a normed linear vector space an infinite sequence of vectors
{xn} is said to be convergent to a vector x if the sequence of real

numbers i,x = xn” converges to zero. In this case we write X, X

Transformation

Let X and Y be linear vector spaces, and let D be a subset of X. A
rule, which associates with every element x € D a corresponding element

y € Y, is called a transformation from X to Y with domain D. This




transformation is illustrated in Figure 2. We write y = T(x). The
collection of all vectors y € Y for which there is an x € D with y = Tx)

is called the range R of T.

T(x)

D

— — — — —— | — — — —

Figure 2. Transformation between two vector spaces.

3 Functional

A transformation from X into the space of real numbers (scalars) R1

is called a functional of X, usually denoted f(x), g(x), etc. Examples

of functionals include the following:

(a) f£(x)

1]

b
(b)  f(x) J x(t)de

} a

The idea of a functional is central to the Rayleigh-Ritz technique and

| : variational principles.

Cauchy Sequence

"

A sequence {xn} in a normed space is said to be a Cauchy sequence

L ||xn = xm” > 0 as myn > ®. In a normed space every convergent

sequence is a Cauchy sequence since,

A g e
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However, a Cauchy sequence is not necessarily convergent. For

A

>0

example, {1/n} is a Cauchy sequence in the space X = R - 0 which is the
real line R minus the origin. But this Cauchy sequence is not convergent
in X since {1/n} converges to 0 which is outside the space X.

More generally, if we take any sequence of points in a vector space
which converges to a limit that is not one of the terms in the sequence,
and then delete the limit from the vector space, we get a Cauchy sequence

which is not convergent.

Complete

A normed linear vector space is complete if every Cauchy sequence
from X has a limit in X. That is, X must contain the limit as well as e |
the members of the sequence. A complete normed linear vector space
defines a Banach space.

Generally, it is advantageous to formulate problems in such a space
because we can easily test sequences for convergence by asking whether
they are Cauchy or not. |If they are, we have assurance that the sequence

is convergent since the space is a completed space. We do not have to

know, a priori, what the limit is, and fortunately so, because its value
is often the object of the problem.

Consider the space of rational numbers R'. Let {xn} be a sequence
of rational numbers converging to V2. This sequence is Cauchy, but R’

does not contain the limit element ¥ 2 (¥ 2 is an irrational number).

Therefore R’ is not complete.
While the space of rational numbers is not complete, the space of
real numbers R is complete. Note Y2 is a real number, and thus R

contains the sequence {xn} and the limit.

10
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It is apparent by now that there may be more than one normed space
of continuous functions. It depends only on the definition of the norm.
To see this, consider the space of continuous functions on [0,1]. We

can define two different normed spaces as follows:

(a) Let X be the space of continuous functions on [0,1] with norm

defined as
[l = g lxco]a

(b) Let X be as in (a) above except that the norm is defined as

=l = amx]x)]

These are two different normed vector spaces, but the first is not
complete while the second is.
The first is not complete because a sequence of functions in X is

defined as follows

0 0S¢t S 1/2= V/n
xn(t) = nt - n/2 + 1 1/2 = 1/a £ ¢t S 1/2
1 t 2 1/2

A graphical portrayal of this sequence and its convergence (lack of) is

shown in Figure 3.




Xp(t)

Continuous funcrions $x § converging to
discontinuous function { x-}

discontinuous at ¢ = 172

l*x.,(r)

A |
1 O\ e 1 i
x3(1) x40

Figure 3. Convergence of a sequence of functions.

First it can be verified that {xn} is Cauchy since

|lxn = xmll = ]/2|l/n - l/ml > 0

However, this sequence converges to a discontinuous function as shown,
and therefore does not converge to a member of X. As a result, the
normed vector space is not complete.

It can be shown that every Cauchy sequence in the second normed
vector space does have a limit in the space. The main difference here
is that the example sequence is not Cauchy with respect to the norm

defining the space.
Inner Product

On the Cartesian product space X x X an inner product is defined as
follows. Corresponding to each pair of vectors (x,y) in X the inner
product {x,y> of x and y is a scalar. The inner product must satisfy

the following four axioms in a real vector space X.

% & =
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(1) <&y =y 1
2 Ge 'y y,2> = dxyz> vz
(3) x,y> = adx,y) ;
(4) 2. 2 0 and G = 0 ifx = ©
The inner product is a generalization of the dot product in two- or :
three-dimensional Euclidean space. !
Hilbert Space
As we have seen, a Banach space is a complete normed vector space.
A Hilbert space is a Banach space plus an inner product which defines
the norm; i.e., “x" = (x,x)l/z.
The key concept involved with a Hilbert space is orthogonality. 1

This concept is not generally available in other spaces. Two vectors in
a Hilbert space are defined as orthogonal if their inner product is
zero. The methods of Ritz, Galerkin, and, of course, finite element
have natural settings in the framework of Hilbert spaces, as do the

concepts of optimization, Fourier series, least-squares minimization,

and ortho-normal bases. Hilbert spaces then provide a unifying foundation

for many areas of engineering.

‘ Projection Theorem

The shortest distance from a point to a plane is a line given by
the perpendicular from the point to the plane. This obvious and intuitive
result can be generalized to the problem in any higher space (n-dimensional
Euclidean space or a continuous function space) of finding the "shortest
vector," as measured by a valid norm, from a point to a subspace. The

approach seeks to find that vector which is orthogonal to the subspace

%‘ ; This is a brief introduction to the projection theorem.

Mmool el




Let H be a Hilbert space and M a closed subspace of H. Corresponding
to any vector x € H, there is a unique vectorlm)e M such that
||x = mo" s ||x = mll for all m € M. Furthermore, a necessary and
sufficient condition that m be the unique minimizing vector is that
x - m be orthogonal to M. The three-dimensional version of the projec-

tion theorem is shown below in Figure 4.

} m, is that unique vector in subspace M
| which is closest to the vector x in the
| sence of the norm, i.c.

lix -mgl < 1% = mil

forallm # m, inM.

Figure 4. Projection theorem concept.

SOME FINITE ELEMENT CONCEPTS FROM MATHEMATICAL THEORY

If one is not interested in the mathematical questions of what
constitutes valid shape functions, accuracy, convergence, and, in general,
why the method is efficient in many problems, it would not be necessary
to know little beyond the basic principles of virtual work and/or equi-
librium to enable successful application of the method. Further, the
basic reason that the finite element method is successful and efficient
is that the polynomial shape functions which it employs are both compu-
tationally efficient and good mathematical approximations. The method

does not owe its success to physical principles, though this sometimes

e ot et




appears to be the case since these principles are the source of the
all-important governing differential or integral equation. However, the
finite element method allows an efficient discretization and numerical
solution of the governing equations after they have been established.
Before the ingenious application of the shape functions that are attrib-
uted to the finite element method, the discretization was often accom-
plished with classical Ritz functions. The discretization, however,
remains fundamentally a Ritz process, and to understand the finite
element method and the reason for its success, it is necessary to follow

through the development of the Ritz method.

Approximate Method of Rayleigh-Ritz

There are a number of references on the Rayleigh-Ritz method, but a
book by Mikhlin* is frequently noted in the literature of finite element.
This reference was used in the preparation of the following material,
and though it covers a good deal more than Rayleigh-Ritz it still is
very complete on the subject.

Consider solving the time-independent differential equation
Le = § (1)

in some domain Q where L is some differential operator which acts upon
an unknown function u to yield a known function f. On the boundary I of
Q, u must satisfy certain boundary conditions. The differential operator
L is linear and defined for a subspace M of a real Hilbert space H. 1If

; ) L contains derivatives up to the mth order, then M is the space of all

continuous functions having continuous mth order derivatives. The
larger space H is taken as the space of all functions which are square

summable and have the inner product

S

uy,vd = [ uvdQ u,v € H
i Q
Eéf‘é. Mikhlin. Variational methods in mathematical physics. Oxford,
England, Pergamon Press, 1964.

P e
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This merely means that {u,v)> < ® and therefore the inner product will
exist. (This is not a very restrictive definition at all, and therefore
it is useful to think of H as being very large.) Let f also be a member

of H so that Equation 1 defines a linear transformation or mapping as

7

Figure 5. Linear transformation from subspace M to space H.

shown below in Figure 5.

Let DL be a subspace of M such that in addition to the requirements of

being a member of M, the functions u € D, must also satisfy the boundary

L

conditions. The term DL is called the field of definition of operator
L. For the time being let it be stated that operator L must be positive

definite; that is, (Lu,u)> 2 0 for all u € D, where the equality holds

if, and only if, u = 6 (6 being the null vegtor).

With the above definitions established we state, without proof, the
following equivalent variational formulation of the boundary value
problem. Finding the function u* which yields the minimum of the quadratic

functional
F(u) = <{Lu,uy - 2{u,f) (2)

is the same as solving the governing differential Equation 1 for u. A

specific example of a variational formulation, common to structural

16




engineers, is the solution of the partial differential equation of
static elasticity theory by, instead of integrating the differential
equation, finding the minimum of the potential energy functional for the
elastic body. A more concise statement of the equivalency is as fol-

lows. If, in addition to being positive definite, L is a symmetric

({Lu,v> = (Lv,u)) operator, then if Lu = f is to have a solution in M,
this solution is also the minimizing function for Equation 2. Con-
versely, if u®* minimizes F(u) then u* = u and is the solution to Lu = f.
In solving the linear differential equation of Equation 1 it should
be noted that while the given function f can be any function so long as
it is a member of the Hilbert space H, the sought-after function u must
be a member of the field of definition of the linear operator L as well |
as a member of H. Thus if L is a fourth order operator, u must be a k

continuous function having a continuous fourth order derivative and must

satisfy certain boundary conditions to be a member of the field of
definition DL'

It can therefore occur that for some functions f € H there will not
exist a function u in the field of definition that will satisfy the
differential equation. As an example of this case, consider the problem

of finding the deflection of a uniform cantilever beam under the action

of a uniformly distributed load q(x). The appropriate equations are .

BL ¢ " = q(x) % € [0 L]

y(o) = y'(e) = y''(L) = y'''(L) = O

The differential equation is derived by considering the equilibrium of

B

an infinitesimal length of the beam under the assumption that the loading

is continuous across the infinitesimal length.

In this case the operator is

I «
i xa

| ' ; d

s B

v — A
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L

l Its field of definition D, is defined as the totality of those functions
defined over [0,L] which possess continuous fourth derivatives and which :

satisfy the boundary conditions of the problem. If q(x) is continuous

SUNPI SPPE

everywhere in [0,L] there will exist a solution y in D But if q(x) is

L
since y would have to

ol aldme

discontinuous, no solution can be found in DL
possess a discontinuous fourth derivative to satisfy the governing
equation. It should be noted that a discontinuous q(x) is an entirely
legitimate possibility because it would be square summable and therefore |
a member of H. In a practical sense a discontinuous q(x) is very common.

This difficulty can be overcome by considering limits of functions
that lie in DL' Just as a discontinuous load q(x) may be considered as
the !imit of a sequence of continuous loads, so functions with discon-
tinuous fourth derivatives are introduced that are the limits of sequences
of functions with continuous fourth derivatives. Extending the field of
definition DL in this manner can always be accomplished if L is a posi-
tive bounded below operator in addition to being symmetric and positive
definite. The criterion for being positive bounded below is {Lu,u) 2 y2<u,u>
where u € DL and y2 is any positive constant. It can then be asserted
that among this new set of functions lies the solution of the differen-
tial equation for any f € H.

| This spatial extension creates a new Hilbert space H, with an inner

L

product [u,v] where u,v € H , and this inner product is sometimes called

L’
the energy product. It is defined as follows,

' [u,v] = Llim <Lun,vn> = {Lu,v)

n->o

! where u and v, are sequences and UV (= DL' Note that through an

integration by parts we get a new operator R as follows,

L | Clug v > = ({(Lun ; vn>d0 - (f) (Run : Rvn)dQ.




e R = g b

Y e

Thus,
lu,v) = lim [ (Run . Rvn) dQ = lim [ (Rvn . Run) dQ
n>© Q n>© Q
= lim (Rvn,Run> = (v,u],
n-=>m

and the energy product is shown to be symmetrical.
The Hilbert space HL is important in the theory of finite element.

The norm in HL is the energy norm and is defined as

" ul' = lu,u]”2 = ( J (Ru + Ru) dQ)llz.
Q

The set of admissible functions in HL is given by considering sequences

of functions, say uos that satisfy

lim llu =y II = 0.
n m

n'm—Nb

This implies the existence of an element u with finite norm to which the
sequence u_ converges in the mean. This set of functions constitutes

H. .
L
Those functions constituting DL must satisfy all the boundary

conditions. But some functions in HL which contains DL often do not

satisfy all the boundary conditions. Those boundary conditions which

are satisfied by functions in D, , but which are not satisfied by functions

L)
in HL are called natural boundary conditions. Those boundary conditions

which remain, or those boundary conditions which are satisfied by func-

tions only in H are the essential (forced, principal) boundary conditions.

L
The latter are required to assure that the energy norm is positive

definite; i.e., IIuI' = yYlu,u) 2 0.
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Now we return to the problem of minimizing F(u) where
F(u) = fu,u} - 240, (2a)

and where the candidate funclions u are now members of HL' The central
result in going from Equation 2 to 2a is that now the trial functions u
need satisfy a fewer number of boundary conditions i.e., the essential
boundary conditions.

Following the classical Ritz method to approximate the minimizing

function of F(u) we select a solution of the form
M
u = E ay ¢k, (3)

where or are the Ritz functions, and a, are the unknown Ritz coefficients

which are to be determined. 1If the fuzctions ¢g, k=1,2,...,M, are com-
plete in HL then convergence to the correct answer u is assured in the
sense of convergence of the energy norm. The Qz are complete in HL if
for any v € HL it is possible to choose € > 0 and find an integer N and

constants a‘, a a,, such that

gr sre Ay
||v - u“‘l < ¢ for M >N

Substituting Equation 3 into Equation 2a, the quadratic functional

becomes

M
F™) = |2 a o, I a 0] -2C 3 a 0,1 (4)




M M
polly 2 fLd T ¢:) Ie a: 0 (4a)
Q k=1 k=1
M M
-2 (2 a 0) fdQ
Q k=1
To find the a k=1,2,...,M, corresponding to the minimum of F(uM), we

k,
differentiate Equation 4a with respect to aj and set the result to zero.

M M
%E— = (¢ﬂ> 2 s, ¢2 +L(E a ot) o] do (5)
i Q I3/ k=1 k=1 J
-3 felfan = ©
QJ
or
M M
1o, 2 a ¢t] v 13 oa o # ~2¢e 8> = (5a)
L k=1 e .

Because the energy product is symmetrical, this equation reduces to

(o™,
J

(T, 8= <

M M -
a, 0] - <oy, 00 = 0 (6)

k=1

Finally, Equation 6 is rearranged as follows,

M
JLeh 5 a o d-<Cole> = o
Q J J

k=1 E




or, .

M
MMy M el
kil ak IQJ) ’»kl = <¢Jy{> = I,2|---,M (7)

Thus, the end result of the Ritz process is Equation 7 which is a linear
system of M algebraic equations from which we can solve for the a, of
Equation 3.

Advantage of Finite Element Shape Functions

Strang and Fix provides an excellent discussion on the subject of
the mathematical theory of finite element.* The authors, who are mathe-
maticians, have learned the '"language of finite element," and it is
evident in their narrative. However, their treatment does assume that
readers are comfortable with many of the functional analysis concepts
presented earlier in this report. Most engineers who practice finite
element may not, however, be knowledgeable in this area of mathematics.
Nevertheless, the purpose of this section and a main point of this
report can be satisfactorily understood without thoroughly understanding
functional analysis. The authors contend that shape functions are a |

root-cause of the success of the finite element method. This contention

is developed here in the context of the earlier introductions to functional i
analysis and the Rayleigh-Ritz method. |

It was stated earlier that the main reason for the success of the

finite element method was its computational ease and accuracy and that
this was a result of using certain kinds of functions called shape
functions for the 0: in the Ritz process. This will be shown in the
following examples by using three different kinds of functions for the
solution of 2 boundary value problem, and, in each case, taking the

computation as far as Equation 7.

*G. Strang and G. J. Fix. An analysis of the finite element method.
Englewood Cliffs, N.J., Prentice-Hall, Inc., 1973.
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The statement of the illustrative problem is as follows: .
Euw = £
where
2
L = ELE o
dx
and
f = x

{0,1]-

The boundary conditions are u(0) = u(1) = 0, and the domain is Q

We assume a solution of the form

e

Case 1. Let the Ritz functions be the eigenfunctions for the given

differential equation; i.e.,

L | M ;
¢k = sin knx.

F These functions are shown in Figure 6 and are seen to satisfy the given

b boundary conditions.

TS = S

-
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Figure 6. Eigenfunctions used as Ritz functions.

Substituting L, f, and QE into Equation 7, we get

M 1 d2

I oa I |——§ (sin jnx) + sin jnax| sin knx dx = L. X3
k=1 0 dx J
i = 1L,2,...,0

This equation reduces successively as follows,

M 1
St (jN)zl sin jnx sin knx dx = COei, XD
g J
k=1 0
SR T e M 8
or
2 M 1
nh-0gm7 2 a f sin jAax sin knx dx = <))
- J
k=1 0
TR W I TONE X




Invoking orthogonality of the eigenfunctions,<(¢j,0k >= 6j the above

k'
equation reduces to

(- (jm?)

R
o
o

"
A
o

e

x
v

—

"
»
=

or

= (jn)2| 3, = (d)j,x) e i e it

That is, Equation 7 reduces to the following system of equations in the

unknown aj

1= n2 a <0],x>
2
1 - 4n , a, <¢2,x>
1 - 9n a3 = <03,x>
@, e R z
i | P~ B R ay <0M,x>

Thus, the use of eigenfunctions for the shape functions results in
a diagonal coefficient matrix. The computational ease of solving for aj

is optimal in this case. But the eigenfunctions are not, of course,

. A A i PN W SR 8

generally available a priori.

Note also that the approximate solution

M (Opx>
| . uM = 2 —kn sin knx
{ k=11 - k'n

can be thought of as the projection of the true solution,

| R
| u = 2 -—27sin knx,
k=11 - k™n

onto the subspace M spanned by the first M eigenfunctions.




Case 2. Let the Ritz functions be the polynomials,

o = X -x

and note that they, too, satisfy the boundary conditions.

The first three of these polynomial functions are shown in Figure 7.

0250 — — — ——

A :
(019 T i S .. (e

0 >

Figure 7. Polynomials used as Ritz functions.

Substituting these polynomials into Equation 7 we get

M 1 d2 . : K
2 a, J l—irxj(l-x) + xJ(1-x)] x (1-x)dx .
k=1 0 dx

= xI-x), x>  j=1,2,...,M




or

a, I lj(j-l)xj-z(l-x) - 2jxj-]
0

f M . K
! s + x3(1-x)) x"(1-x)dx
I k=1

= (xj(l-x),x> el

Entries in the first row of the coefficient matrix, obtained by setting

j =1, are

1
Jo1-2 + x(1-x)) x(1-x) dx

' 0

1
12 * st-2)12 C1-xidx,.
0

: M
J o1-2 + x(1-x)Ix " (1-x)dx
0

Elements of the second row, obtained by setting j = 2, are;

1
| [ 12(1-x) - bx + x2(l~x)]x (1-x)dx

f 0
k , : 2 2
: J 12Q1=x) = &x + x"(1=x)]|x" (1-x)dx,...
¥ '5 0 -
t
; g 2 M
Bi N - S [2(1-x) - 4x + x“(1-x)]x (1-x)dx
F! P 0
{ .
‘ F Thus, the coefficient matrix is not diagonal, and with a little more
' study it becomes apparent that it is full. For example, if we take
7 M = 2 and write out the linear system we get

‘j 27




3/10 3/20 a [l/l2

3/20 13/105]| |a ]l/20

Solving this system yields, a = 71/369, and a, = 7/61.

approximate solution for M = 2 is,

o = 714369 x(1=x) & PO 2 L1-%).

Therefore, the

Case 3. Let ¢: be the finite element hat-shaped functions defined

as follows,

0 0/ s xR (k= 1) h

1/h x = (k - 1) (k 1) h £ x £ kh

= 1/hx+(k+1) kh<x<(k+1)h

0 (k1) hsSx =1

Three conseculive'&hape functions are graphed in Figure 8, where it can

be seen that they satisfy the boundary conditions. Further, they are

continuous functions over the entire region [0,1]. They do not differ

in this respect from the eigenfunctions and polynomial functions which

were employed in the previous two cases.

o
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Figure 8. Finite element shape functions used
as Ritz functions.

They do differ in that at x = kh, for example, one function equals
unity, while all others equal zero. Such points are termed node points,
and there the undetermined coefficients become the value of the dependent

variable u(kh). Substituting the shape functions into Equation 7 we

get,
|
. M L — M. M M
3 a IS (0, +6) 6 dx] = {o6.,x) j=1,2,...,M
.y K J . J
k=1 0
f In this case, however, ¢? = 0, and therefore this equation reduces to,
! M 1
M M M g
! . 3 a f . Qk dx] = {(¢.,x)> i E0 AN
k=1 g4 J
4 L N . 5
We note that the product ¢j Qk will be zero unless IJ - kl € 1. This

can best be seen from the above sketches of the shape functions. For




example, the product of ¢k and ¢k+l is nonzero, but the product of ¢k .

and ¢k +2 is zero. Thus the system of equations for Case 3 is tridiagonal

as follows,

M _M M
[¢l)¢l] []v¢ ] \\ a] <¢],X>
MM | M
[¢2,¢,] [ ] E"z’%] i, W0 a, <0, %> ,1
= M M M M o M
= S = @37¢2] @3’¢3] [¢3)¢4] 33 = <¢3 ’x>
S NS
\\ \\
L ~ S
e -
S

The primary observation is that the system is almost diagonal; or,
alternatively, orthogonality almost exists. Computationally, the system
of equations resulting from the use of finite element shape functions is
preferable to the system resulting from the use of Ritz functions (smooth
polynomials). Surprisingly, the only difference between the Ritz and

the finite element method is in the choice of the continuous functions

¢: for use in the approximate solution

In each of the three cases the ¢k are defined continuously over
the entire region Q = [0,1] and ¢k € HL However, the differences are
important and are summarized as follows:

(a) The finite element functions ¢: (Case 3) are zero everywhere
except over a subdomain or element. This reduces the coupling

in the linear system given by Equation 7.
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(b) The finite element functions ¢E are defined such that they are

unity at x = jh, j = 1,2,...,M, that is at the node points. This
: e e

K That is, a, =u (kn),

and these are the values of the dependent variable at the kth

assigns physical significance to the a

node points.

SUMMARY

The problem at hand is generally one of finding an approximate
solution to a given boundary value problem; the solution must satisfy a
governing differential equation and its associated boundary conditions.
The process of finding an approximate solution can be discussed in a
heuristic way, by relying on geometrical notions. Though we actually
search for solutions within mathematically complex subspaces of continuous
functions, often from a practitioner's point of view, significant insight
is gained by limiting thought to Euclidian space. It is helpful to
imagine that the "true'" solution is a vector imbedded in three-dimensional
space, but that the search for an approximate solution vector is unfor-
tunately limited to some lesser subspace (say, a plane). The projection
theorem provides the interpretation that the best approximate solution
within that restriction is an orthogonal projection of the true solution
vector onto the lesser subspace. The Ritz (or, more generally, the
Galerkin) method is the mechanism for finding that projection.

The error vector is the difference between the true and approximate
solution vectors and is normal to the subspace when it is minimized. It
is measured by the energy norm. It is the business of theoreticians to
cbtain estimates of the energy norm of the error vector for formulations
so that the relative accuracy and convergence of alternatives can be
assessed. Accuracy criterion is based on the energy norm, and convergence
occurs, as is often written, "in the sense of the norm." The energy
norm is a functional; as such, it is a particular type of transformation.

Its evaluation yields a real number when it is provided with an input,
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continuous function. Thus, it transforms an element of continuous
function space into an element of real number space. In this context,
the continuous functions are finite element shape functions, and the
energy norm can be regarded as a mathematical "measuring stick'" for such
functions.

The subspace of admissible functions in which an approximate solution
is sought is dictated by the differential operator's order and the
boundary conditions. It is constituted of functions having continuous
derivatives up to the order of the operator and that also satisfy all
the boundary conditions, plus some additional functions. These additional,
admissible functions are defined by an extension of the field of definition
for the operator. They are all functions that are obtainable as limits
of sequences of admissible functions from the first group, the field of
definition. A significant practical benefit requires mentioning here.
Often, these limit functions possess lower order differentiation than
the functions constituting the field of definition. Because of this,
they are easier to construct and simpler to use in subsequent computations.
Further, due to their reduced order of differentiation, they do not, and
need not, satisfy boundary conditions which generally involve higher
order derivatives on the dependent variable; boundary conditions that
they do not satisfy are the natural boundary conditions. Those boundary
conditions that they do satisfy are the essential boundary conditions.
Construction of functions from the field of definition is most often
prohibitively difficult and/or they may be too costly to compute with.
However, if they are available and economical, their use is preferable
and recommended on grounds of increased accuracy.

Finite element shape functions are continuous over the entire
region and are no different than classical Ritz functions in this regard.
They do differ in that they are piecewise continuous, each being defined
as zero everywhere except over a subdomain (element) of the region. On
the other hand, classical Ritz functions are generally more smooth and
nonzero everywhere over the region. A system of linear, algebraic

equations that results from using piecewise continuous functions is
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solved more easily than a system that results from Ritz functions. This :

is because they are characteristically banded. The bandedness reflects

local coupling among the equations written for individual subdomains in
% proximity, whereas global coupling and full matrices are inherent with

‘ the Ritz functions. In either case, the undetermined coefficients in
the Ritz process are found from solution of the linear system of equations.
They have a more useful interpretation, though, when finite element
shape functions are used. In this case, the coefficients are the values
of the dependent variable at node points, and are therefore directly
useable data. That -, they are often discrete values of the solution
sought. In contrast, the coefficients of classical Ritz functions
cannot be interpreted meaningfully. Useable data are obtainable only
with further manipulation of the coefficients after their numerical
values are found.

The finite element method, in large measure, owes its success to

piecewise continuous shape functions. It remains fundamentally a Ritz
(more generally, Galerkin) approximation process, but because shape
functions are simple and amenable with the digital computer, the finite | 1
element method has transcended the classical method of Ritz in application v
and popularity. Nevertheless, it is instructive to understand the Ritz

process as a method for minimizing a functional. The function, within a

prescribed space of admissible functions, that minimizes the functional

is found by the Ritz process and is also an approximate solution to the

boundary value problem. A certain amount of mathematics from functional
analysis is required to adppreciate the Ritz process, and the finite
element method as well. It begins with the definition of linear vector
spaces and proceeds through to the definition of Hilbert spaces. The
mathematics can be presented for practitioners by relying, where possible,

on geometric interpretation in more familiar Euclidean space.
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