s/ AD=AO70 218 WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER F/6 9/2
‘ CHEOPS. A PROJECT FOR EVALUATING ANSI/SPARC ARCHITECTURE. (U)
MAY 79 A KLU6 DAAG29=T5=C=0024

UNCLASSIFIED MRC-TSR=1959




MRC Technical Summary Report #1959

CHEOPS
A PROJECT FOR EVALUATING
ANSI/SPARC ARCHITECTURE

=3
: A. Klug
Lf
'E.

! Mathematics Research Center v

' University of Wisconsin—Madison

; 610 Walnut Street

Madison, Wisconsin 53706

o’- )
(o May 1979 D D C 3
S U (rennare,
3 (Received May 1, 1979) JUN 21197

o LOLUU G
D Q*;f = :
=

=2

Approved for public release
Distribution unlimited
Sponsored by
Q U.S. Army Research Office

P.O. Box 12211
Research Triangle Park
North Carolina 27709

P G o v




UNIVERSITY OF WISCONSIN - MADISON

MATH CS RESEARCH CENTER
=
CHEOPS.

A PROJECT FOR EVALUATlNG ANbI/SPARC ARCHITECTURE ,

: (o) R

( ’4) Technlcal,Summagy,Repett #1959
: (/ May W79

\JNT apstract ([ AMAC - TS/ L7

This paper describes a project for evaluating the ANSI/SPARC frame-
work. This framework proposes a three schema-level architecture in
which the outermost level supports different user views through differ-
ent data models; the central level provides an unbiased description of
the overall database, and the innermost level supports efficiency-
oriented concepts. The three levels are connected by mappings.

This architecture is currently being studied by a study group of
the American National Standards Institute as a possible model for data-
base standardization. This project will test the feasibility and
appropriateness of the architecture by actually building a database
system conforming to the architecture. The system will test a number
of potential problem areas and possible solutions. This paper discusses

these potential problems and some of the project's approaches to them.

AN

AMS (MOS) Svbject Classifications - 68-02

Key Words - Database architecture, multiple views,
multiple data models, mappings

Work Unit Number 8 - Computer Science

1Cheops, Egyptian king of the 4th dynasty (°2900 B.C.), builder of the
Great Pyramid at Giza. We chose this name because of the "double
pyramid" structure of an ANSI/SPARC database management system|[SeAl].

"Computer Sciences Department, University of Wisconsin, Madison, WI 53706

Ee W,
:\’-

Sponsorel by the United States Army under Contract No. DAAG29 15=C= 00‘4[

}'Mjc = ‘ , (5
224 a0




i

R o

R e hat Eek e S

R N SRR .

gk o

Table of Contents

1. Introduction
2. The DMBS Framework
2.1 Description of the Framework
2.2 Issues
2.2.1 Conceptual Level Constructs
2.2.2 Access Control
2.2.3 Mapping Languages
2.2.4 Schema and Mapping Processors
2.2.5 Data Independence - Schema Changes
2.2.6 Efficiency Considerations
2.2.7 Other Data Models
2.2.8 Error Handling
3. The Cheops Project
3.1 Language Descriptions
3.1.1 The Hierarchical External Model

3.1.2 The Network External Model

3.1.3 The Relational External and Canonical Model

3.1.4 External-Conceptual Mapping Model
3.1.5 The Internal Model
3.2 Processing Functions
3.3 Human Interfaces
4. Summary and Conclusions
5. References

6. Appendix

11
12
12

—————— L




Lehd il i s i e T i e i ain i as

e AT

1
CHEOPS
A PROJECT FOR EVALUATING ANSI/SPARC ARCHITECTURE

2
A. Klug

1. Introduction

The standardization of database management systems is no
longer a topic for idle speculation. Already subcommittees of
the American National Standards Committee on Computers and 1

Information Processing (ANSI/X3) are proceeding with standardi-

zation efforts for Codasyl database facilities. Back in 1975,

the Standards Planning and Requirements Committee (SPARC) of
ANSI/X3 established a study group to investigate the overall
standardization problem for database management systems. This

study group proposed a framework for database management systems

within which the standardization of specific DBMS components
could be discussed precisely[ANSI75,ANSI77]1. In August of 1978,
ANSI/X3/SPARC established a new database study group in response
to the continued pressure for some gquidelines and direction for
database standards. One of the main responsibilities of this
currently active study group is to ‘develop further the concepts
of the former SPARC Study Group Report". That is, the framework
for database management systems will again be a focal point of

interest. 1In view of this clear interest in the so-called

lCheops, Egyptian king of the 4th dynasty (72900 B.C.), builder of the
Great Pyramid at Giza. We chose this name because of the "double
pyramid" structure of an ANSI’LPARC database management system{SeAl].

2
Computer Sciences Department, University of Wisconsin, Madison, WI 53706

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.




B e T ‘,q?wm

L A

e T e

O

g*

ANSI/SPARC framework, it is important to understand the techni-
cal implications of basing DBMSs and standards for them on this
framework. Up to the present time, there has been research only
on isolated aspects of the framework an overall, comprehen-
sive investigation including an implementation has been lacking.
The Cheops project described in this document has as its goal
the understanding of the unique technical implications of having

DBMSs conform to the ANSI/SPARC framework.

This document consists of four parts. The first is this
introduction which briefly motivates the need for the research.
Section 2 gives a description of the DBMS framework as defined
by the first study group. The third section discusses the
Cheops project. Subsections include statements of overall pro-
ject goals, necessary theoretical work completed and to be done,
and a description of the interfaces and languages in Cheops.

Section 4 will give a summary and conclusions.

2. The DMBS Framework

2.1 Description of the Framework
The framework proposed by the ANSI/X3/SPARC Database Study
Group consists of a number human roles, processing functions and

interfaces. The most important of these are represented in the

following diagram:

i

DA b s

e T r———

S o A ) A g WS W 8

S




enterprise
administrator

—

3
conceptual e, S—
database % schema - application
administrator processor administrator
i - -4
4 S
internal <1 l external
schema ===th DBt schema
processor processor
T34 —38
internal conceptual external
storage internal conceptual
transform transform transform
1 0
12
external
database
applica-
tion
program
—+—7
application
proqrammer

The main components of the framework are a set of persons in

roles, (enterprise administrator, database administrator, appli-

cation adninistrator are the major ones)

a set of processing




s . v . s,
R, n A AT PN TN P A B

Pl V@t

EEN

functions and a set of interfaces among elements of these sets.
The framework is partitioned into three realms or levels: the
internal, the conceptual and the external. At each of the
internal and conceptual levels there is one schema describing
the database. At the external level there are any number of

external schemas, each describing some part of the database.

The internal schema contains performance and other computer-

oriented information. For example, an internal schema may have

as objects direct access files, indices and pointer arrays. It
is sometimes said that the internal database is what is stored
on the computer. This may or may not be true, depending on
one's point of view and also on the system architecture. For
example direct access files may be implemented as B-trees which

in turn reside on a paged data set which, on the disc, contains

error checking bits. The framework draws the line (which is
expected to move with time) between database system concerns and
computer system concerns. In any case, the internal level is
the lowest "abstract machine" level directly involved in data-
base management. The database administrator, who manages the
internal schema, can view the conceptual schema through inter-
face 3 and manipulates the internal schema and the conceptual-

internal mapping (for tuning) through interface 13.

If one considers the framework as describing an "onion" of
nested machines, then the conceptual level will be the next
layer out from the internal level. The objects declared in the
conceptual schema model the entities of interest to the enter-
prise (the defined environment in which the database system will

operate). These objects are not oriented towards efficiency or




T

e

A

towards user requirements. The objects declared in the concep-
tual schema are to give an overall, unbiased description of the
enterprise. The imposition of the conceptual level between the
external and internal levels also allows both of these latter
levels to evolve, for their own reasons, without one unneces-
sarily affecting the other. The conceptual level provides a
mechanism for the centralized control over the use and content
of the database. The enterprise administrator manages the con-

ceptual schema through interface 1.

The outermost, external level provides application-oriented
views of the database. The role of this level is to provide
each application (e.g., payroll, marketing, research and
development) or application family with the portion of the data-
base it needs in a form nost suitable to it. The most suitable
form, that is, data model, may in principle consist of Fortran
arrays or complicated semantic networks or any other structure
class. An application administrator manages external schemas
and external-conceptual mappings through interface 4 and views

parts of the conceptual schema through interface 3.

The proposed framework provides a structure within which mul-
tiple views and multiple data models can be supported. It
allows a high degree of data independence and control over the
database and facilitates dynamic reorganization (data transla-

tion). It also can form a basis for well-structured distributed

databases.




g
®
S
+

B s T

It is hoped that the framework described above can provide a
sound basis for DBMS standardization, for data independence and
tor DBMS control. However, numerous technical issues must be
understood before the framework can be fully applied. This sec-
tion describes some of these issues and notes what our research

program will contribute towards their understanding.

2.2.1 Conceptual Level Constructs

The conceptual schema and conceptual level constructs in gen-
eral have been the subject of numerous research reports and even
an entire ISO committee (ISO/TC97/SC5/WG3). There has been
debate on whether the objects>defined in the conceptual schema
should be binary relations[BrPP], irreducible relations[HaOT],
n-ary relations, entities[Chen], roles[Bach] and so on. The
Cheops project will show that this debate is irrelevant, just as
the debate on which of the hierarchical, network and relational
models is best for users is irrelevant. We will show that the
only real requirement for a conceptual model is that it is pre-
cisely defined and that it has sufficient power to model the
referenced subset of the real world. The Cheops conceptual data
model will be relational. A conceptual schema will contain
declarations of (normal form) n-ary relations, relation keys and
foreign key constraints, 1If it is necessary, this model can be

extended to include more constraint types. However, the con-

structs from the entity-relationship model, the role-model and




from other proposals will not be added directly to the model and
will not be needed. If an enterprise administrator prefers to
work with these concepts, it will be a simple matter to attach
an interface to the conceptual schema processor which will
present the conceptual schema in the desired format. We do not
need to use binary or irreducible relations because by allowing
null values in the ranges of the domains, our model will be
mathematically equivalent to models with only binary relations

or irreducible relations.

Another issue which has attracted attention is the question of
what data manipulation operations need to be provided at the
conceptual level. First of all, we note that there must be some
data manipulation language at the conceptual level, since
dynamic data independence[Melt] requires mapping through this
level. We will show that a simple relational language consist-
ing of retrieves, inserts, deletes and updates will be suffi-

cient for a conceptual level data manipulation language.

Locking and access control at the conceptual level is also
necessary. A predicate lock mechanism[EGLT) can operate using
information in the structure mappings. That is, each applica-
tion expresses the locks it needs in terms of its external view,
and the schema mapping is used to translate these locks into

locks on conceptual level objects. Deciding what access control

primitives are necessary is a more involved problem (see next

section).

There has been some concern expressed that multiple external

data models will interfere with each other [PaPe]l, the problem

nilliilil‘iﬂi

" il . " Ank e



e
1
|

being called "cross data model interference". Some responsibil-

A

ity for this has been laid to the conceptual level constructs.
Cheops will demonstrate that there is no such problem. In fact,

since the different external data models are all defined by a

AN 0 < S .0

translation to a canonical relational model (see Section 3.1.3),

all models essentially look the same. There may be problems in

E'f verifying the correctness of external-conceptual and
conceptual-internal mappings, but after this has been done, we

need only maintain consistency through traditional locking pro-

tocols.

2.2.2 Access Control
Another class of problems within the framework relates to the

use of mappings for database control.

Consider the following conceptual schema in which employees
are assigned to projects which are associated with departments:
Emp (E# ,Name ,J#)
Proj(J# ,Name,Security# , D#)
Dept (D# ,Name ,Mgr)
An external schema might contain the relation:
Employee (E# ,Name ,Mgr) ,
and users of this schema might be given read access tc the E#

and Name fields of the Emp conceptual relation and to the Mgr

field of the Dept conceptual relation. Now consider the follow-

ing mapping:

el & . - S i walii - 2




10

‘ Employee <~ select Emp.E#,Emp.Name,Dept.Mgr
where Emp.J# = Proj.J# and
Proj.D# = Dept.D#

According to this mapping, the query
select Employee.Mgr where Employee.Name='Wong'
would be translated as:
select Dept.Mgr
where Emp.Name = 'Wong' and

Emp.J# = Proj.J# and
Proj.D# = Dept.D#

This query requires access to the Proj relation. Yet as long as
the external queries are translated by the above mapping, the
user will never see any part of the Proj relation. There is a
problem, then, to devise the appropriate access control formal-
ism which will allow properly translated queries and updates
access to conceptual objects to which the user nominally has no

access.

Access control in Cheops is based on the idea of a conceptual
subschema. The enterprise administrator defines a conceptual
subschema by specifying which domains of which relations are to
appear. In addition, horizontal subsetting can be specifiedﬂby
restriction clauses. Everything visible in a conceptual

subschema has retrieval access. Modify access must be expli-

citly declared. Providing access to conceptual level objects
‘ only through conceptual subschemas yields some access control,

but in some cases there must be access for mappings but not for

the external application programs. This may require a general
! mapping capability from the conceptual schema to a conceptual

subschema.



11

2.2.3 Mapping Languages

A mapping consists of two parts: a structure or schema mapping
and an operation mapping. Structure mappings define the
correspondence between database states, whether conceptual-
external, internal-conceptual or internal-external. They pro-
vide the information needed for translating queries, that is,
retrieval requests and for translating lock requests. Opera-
tion mappings define the interpretation of operations at one
level in terms of operations at a lower level (external as con-
ceptual, conceptual as internal, external as internal). Experi-
ence is needed in designing and implementing mapping languages.
For external-conceptual structure mappings, the mapping lanquage
is similar to a query language. We intend to show further that
there only needs to be one structure mapping language no matter
how many external data models there may be. We need only one
external-conceptual mapping language because we are defining the
semantics of the three external data models being used in terms
of a single "canonical" relational mcdel. More details are
given in Section 3.1.3. Our single structure mapping language
will be based on relational algebra. For operation mappings,
the situation should be much the same. As with structure map-
pings, we intend to define only one operation mapping language
which will be used with all external data models. 1Inserts,
deletes and updates based on relational algebra are the only
operations that will be needed, but the language constructs
needed to combine these operations with sufficient flexibility

to support the various data model operations is not decided.




L W TR e

e dee Lor 2 ok o s i

e i R

i

Our language will at least have conditional statements using
some test on the database state or the operation to be

translated. More details are given in Section 3.1.4.

2.2.4 Schema and Mapping Processors

Key elements in the framework are the processors whose input
consists of schemas at the three levels and mappings between
them. These processors must be able to tell when schemas are
self-consistent. They must be able to tell when schema mappings
will ensure that the constraints in the base schema will imply
all constraints in the other schema. They must recognize when
operations will be correctly interpreted by the operation map-
pings. These requirements imply that the processors must incor-
porate some sophisticated algorithms to make the necessary
checks. The algorithms must be both sound and complete. Sound-
ness is necessary, since otherwise incorrect results would
ensue. Completeness is also necessary because we do not want
correct mappings to be rejected by the system. As part of the
Cheops project, algorithms are being developed for use in the

schema and mapping processors. More details are given in Sec-

tion 3.2,

2

2.5 Data Independence - Schema Changes

There are very interesting problems involved in providing data
independence and in managing schema changes. An administration
protocol must be developed for locking schemas, moditying sche-

mas, locking and modifying mappings and for repopulating data

PU




objects. For example, one question whiqh must be considered is
whether there is any difference between schema changes being
effected by permutations to a single schema or by always defin-
ing a new schema. After a schema change there should be a pro-
cessor which can decide which mappings do not need to be
changed, which mappings can absorb the change with a suitable

o Egdefiﬁfg?;&.;nd which mappings cannot absorb the change,
requiring the associated schema and/or application program also
to be changed. There are several kinds of data independence a
system can support[Melt]: static with early binding, static
with late binding and dynamic. With Cheops' conceptual data
language, even dynamic data independence can be provided.
Although work has been done on how to modify application pro-
grams to accommodate a schema chanqe[NaSu], the goal of the
ANSI/SPARC framework is to avoid these changes whenever possi-
ble.

2.2.6 Efficiency Considerations

There is no doubt that interpretation through the conceptual
level will adversely affect system performance. Whether or not
a system with the flexibility of Cheops is ever commercially
viable will depend on the ability to "compose" external-
conceptual and conceptual-internal mappings. That is, the sys-
tem will have to be able to take an external-conceptual mapping
and a conceptual-internal mapping and automatically produce an
efficient external-internal mapping. The processors for doing
this would use the techniques already known for access path

selection, but there would need to be development of ways to

13

_j------llIIIIlllllliiﬁiiﬁiziﬂzxﬂﬁ“~JEF*-’~~4nuﬁnn-.-.-....xiid




14

communicate the needs of the application program to the DBA, who t
controls the internal schema. A long range goal of the Cheops
project is to show that the only real additional cost in sup-

porting a multiple-view, multiple-data-model DBMS with three

schema levels is the cost of providing fast access

paths — a cost which is not new to database management.

2.2.7 Other Data Models

The data models used at the external level (see Section 3.1)
in Cheops were chosen as a result of a compromise: They faith-
fully represent the essential features of the three major
approaches to data modelling, yet they have compatible data
types and constraint types, and their query syntax is similar.
We want to investigate the problems arising in supporting dif-

ferent data models, but we do not want to make the initial task

any more difficult than necessary. However, the fact must be
recognized that the data models in use in today's database
management systems are not so compatible: There are disparate
data types; constraint types may not be consistent; data
languages are both record-oriented and set-oriented. Eventu-
ally, the Cheops system will be extended to accommodate more
diverse data models, and we will be able to study how incon-

sistencies can be minimized or neutralized.




2.2.8 Error Handling

It is generally recognized that external views should let the
user see the database in the form most useful to him/her. A
corollary of this, one which does not seem to have received much
attention, is that error messages from the conceptual or lower
levels should also be tailored to the particular view. For
example, suppose a user issued the following statement (which

uses a schema given in Section 3.1.3):

for each dept having name = 'comp sci'
and ancestor school (having name = "UW'):
insert course having num = 401 and descr = 'op sys'

The "meaning" of this statement is the relational algebra state-
ment:

insert course (school(l='UW'][l=1]course([2='comp sci'])

(1,4] @ {<401,'op sys'>}

which would probably be simplified to:

insert course <'UW',‘comp sci',401,'op sys'>
If there were no dept tuple with school-name = 'UW' and name =
'‘comp sci', then the system would return an error:

error -- violation of constraint:

subset conurse(school-name,dept-name) in
dept (school-name,name)

However, this message would not be meaningful to the user of the

hierarchical view. The message this user should get is:
error -- no such dept parent

Thus we must have a methodology for translating errors just as

we translate queries.




wm—_—'——-_ . e TR ——

DR S R A —

16

3. The Cheops Project

Having DBMSs conform to the ANSI/SPARC framework can provide

many benefits, but as we have seen, there are problems on which

we at least must have a hand-hold before these benefits accrue.
The goal of the Cheops project is to help understand the above

L .

problems.

3.1 Language Descriptions

In this section we discuss the data and mapping models used in

Cheops.

The external level in Cheops supports three different data

models: NDL, which is a network model, RDL which is a rela-

tional model and HDL, which is hierarchical. All three models

are set-oriented. The conceptual level supports a relational

model and the external-conceptual mapping model is relational.

A BNF syntax is given for these data models in the appendix.

3.1.1 The Hierarchical External Model

The hierarchical model is patterned after HQOL[Fehdl. A sample

schema is the following:

dept (dno:integer, name:string(20)) key dno
( course (cno:integer, name:string(25),
key c¢no
( instructor (name:string(25), office:string(10))
student (sno:integer,
key sno

credits:inteqger)

key name
name:string(2%5), maijor:string(4))

-




17

Fe ~:Q’?<4_ﬁ=}

This schema declares a hierarchy of four nodes with the struc-

ture:

{1 dept
4 course
{
E f instructor student
! A typical query against this schema is the following:

for each course having ancestor dept (having name='comp sci'):
list cno, name, (name for each student having major='med')

Modification commands, e.g., deletions, have a similar format:

for each course having < 5 student: delete

3.1.2 The Network External Model

The network model, NDL, has schemas such as the following one:




Tr————

18

record dept (dno:integer, name:string(20)) key dno

record course (cno:integer, name:string(20)) key cno
record employee (eno:integer, name:string(25), sal:integer)
key eno

record enrol ()

set d-c

owner dept

member course

mandatory

teacher

owner course

member employee

optional

c-enrol |
owner course
member enrol
mandatory
e-enrol

owner employee
member enrol
mandatory

data-structure diagram for this schema is the following:

dept
d-c

course

~——] c-enrol
Vv

teacher enrol

bt ’

e-enrol

v |
employee

A typical query using this schema would be:

for each employee having owner teacher (having > 35 c-enrol):
list name, dno of (teacher,d-c)

A modification command, for example, a deletion, has a similar

format:

for each course having < 30 c-enrol: delete permanent




TN ST e A

19

3.1.3 The Relational External Model and Canonical Model

The relational external model RDL contains relation declara-
tions, key declarations and subset constraints (foreign key con-
straints). This model is also the canonical relational model

used to “"define" HDL and NDL.

An example RDL schema is the following: i

employee (name:string(25), sal:integer, dept:integer)

dept (num:integer, mgr:string(25), floor:integer)

key of employee is name

key of dept is num

subset employee(dept) in dept (num)

subset dept(mgr) in employee(name)

The data manipulation language for RDL is base on relational

algebra(Codd]. Queries have the form:

retrieve ((employee(dept=num]dept) [mgr=name]employee)

delete from employee (employee([dept=name] (dept(floor='2']))(1,2,3]
As the canonical model, RDL is used to give a common semantics

to HDL and RDL. For example, the definition of the hierarchical

model HDL is embodied by three algorithms as follows:

[;ietarchical definitional equivalent
schema —*-"——'—> schema "'"“‘“‘“‘") relational
translator schema




hierarchical
dml
statement

hierarchical

20

lgggegg]

definitional

equivalent

g iy L query “*"‘*‘--—> rel. alg.
translator statement
schemaJ

definitional relational

state or €“~——- state s state
query translator query
result result

———— e e e U —— U —

The following examples will illustrate these procedures. The

languages used are HDL and RDL.

school (name,state) key name
( dept(name,chair) key name
( course(nun,descr) key num
)
i)

———— CHYOMA translator“““*"'“>

school (name,state)

dept (school-name,name,chair)

course (school-name,dept-name,name,descr)
key of school is name

key of dept is school-name, name

key of course is school-name, dept-name,
subset course(school-name,dept-name) in
dept (school-name,name)

dept (school-name) in school (name)

name

subset

and
(having state='calif'):
(descr for each course)

for each dept having name='comnp sci'
ancestor school
list chair,

PR e

el




21
———=dml translator—— ""}

retrieve (dept[2='comp sci'][1l=1]
(school(2='calif'])[1,2=1,2]
course) [3,9] order 3,9

for each school having state='wisc': delete
S 1) translator"———-—‘—>

delete from course course(l,2=1,2] (dept[1l=1] (school[2="'wisc']))
delete from dept dept([l=1](school[2='wisc'])
delete school (state='wisc'])

chair descr

smith artificial intelligence
smith data structures

smith programming languages
wong artificial intelligence
wong differential equations
wong programming languages
—————=rdsult translator——‘-“——>
chair descr

smith o

artificial intelligence

data structures

programming languages
wong

artificial intelligence

differential equations

programming languages

Similar examples can be given for NDL.

3.1.4 External-Conceptual Mapping Model

As the previous section has shown, we need only one external-
conceptual mapping model, and it is based on RDL. A schema map-
ping, which is similar to a collection of view definitions, is

specified by associating with each relation in the canonical

external schema a relational algebra expression over relations

&
'f
E
|
?




in the conceptual schema. A BNF syntax is given in the appen-

dix. Here we will give an example:

canonical external schema:

9 employee (emp#,name,addr,sal,mgr)

key of employee is emp#

subset employee(mgr) in employee (emp#)

conceptual schema:
emp (emp# ,name,sal,dept)
person(name,addr)
dept (dno,mgr)
key of emp is emp#
key of person is name
key of dept is dno

ﬁ mapping:
: employee = ((emp[name=name]person)

[dept=dno]dept) [emp#,name,addr,sal,mgr]
Operation mappings associate with each operation on each canoni-

cal view relation a compound operation on the conceptual schema.

Hence, an operation mapping will have at most 3*n entries if

there are n relations in the canonical external schema. The

syntax for operation mappings 1is given in the appendix. Here

we will give an example:

canonical external schema:
employee (enp#,addr,sal)
key of employee is emp#

conceptual schema:
emp (emp# ,addr ,sal,dept)
dept (dno, loc,mgr)
key of emp is emp#
key of dept is dno
subset emp(dept) in dept (dno)
subset dept(mgr) in emp(emp#)

schema mapping:
employee = (emp[dept=dnoldept[mgr='smith']) [emp#,addr,sal)

operation mapping:
delete employee x ‘~~>
if x.sal > 10k then delete emp x
else replace emp x dept=null

P b i, sl




T ———
N

23

3.1.5 The Internal Model

The internal model of Cheops will initially contain the basic
file types. Eventually, the internal level will be an impnrtant
focus of work, but for the present, we are concentrating efforts

on the external and conceptual levels.

3.2 Processing Functions

As we noted in Section 2.2.4, the schema/mapping processors
require algorithms to recognize ccnsistent schemas and correct
mappings. The conceptual level and the canonical form of the
externegl level will both be based on the relational model, and
the structure mappings will be defined by relational algebra.
The external-conceptual mapping processor will receive state-
ments identifying canonical external relations with relational
algebra expressions involving conceptual relations. For each
external relation and its associated relational algebra expres-
sion, the mapping processor must determine if the constraints on
the relation declared in the external schema will be conse-
quences of constraints in the conceptual schema over relations
appearing in the expression. A very simple example is the fol-
lowing:
external schema: emp(eno.addr,mgr)

key of emp is eno
conceptual schema: empl(eno,addr deptno)
dept (deptno,loc,mgr)
key of empl is eno
key of dept is deptno
mapping: emp = (empl[deptno=deptno]dept) [eno,addr,mgr]




The mapping processor must recognize that the key declaration in

the external schema is a consequence of the key declarations in

the conceptual schema the mapping.

The mapping processor must also be able to reject mappings

when they will not result in valid external constraints.

next example illustrates this:

external schema: part(pno,wt,price)

key of part is pﬁo

conceptual schema: car-part(cpno,wt,price)
boat-part (bpno,wt,price)
key of car-part is cpno

key of boat-part is bpno

mapping: part = car-part || boat-part

The

The key constraint in the external schema is not a consequence

of constraints in the conceptual schema, and it therefore will

not always hold.

We must not only have an algorithm for calculating the valid

constraints on a relational algebra expression, we must also

prove that the algorithm calculates exactly the valid con-

straints — that it misses none and that it does not calculate

any false ones.

For the case of constraints consisting of functional dependen-

cies we have developed an algorithm which does just this([Klug]

We are investiqgating extensions to include subset constraints.

A complete mapping also has an operation part, and the mapping

e m -

e v et R gt g e i Tl



B Saie | Sl " llacdaceis an o Gl i, e e i T R PR T
g Ba oo o b E QL Gra e £ 4 4+ B . ® = » g

25

processor must also test the correctness of operation mappings.
Given a structure mapping already shown to be correct, the map-
ping processor must test a given operation mapping to see if it
will always map inserts and deletes on the canonical external
relation to operations on the conceptual relations such that the
desired operation will appear to have occurred via the structure
mapping. As in the case of structure mappings, there needs to
be an algorithm which will recognize all and only those opera-
tion mappings which will correctly interpret the external opera-
tions according to the given structure mapping. We also have an

algorithm for a weak form of the problem.

3.3 Human Interfaces

There are five major interfaces between human roles and the
DBMS. Using any of these will, in general, require a password
or an authorized user id. This section describes these inter-

faces and the commands available at each3.

(0] Cheops <db-name>
This is the top-level command given to the operating system
(unix). After this command is entered, the user may request
access to any of the following six interfaces:
super
ea
dba

aa <appl>

3 The number in brackets "[ 1" indicates the level of
the command. Some commands have important parameters
explicitly given.

Sl

—— e

I PR s




(11

(1)

[2]

(2]

(2]

ap <es>

usr <ap>

super
This is a "super user" interface used to modify top-level

authorizations and passwords and to modify system routines.

ea
This is the enterprise administrator interface. The major
commands at this interface are the following:
define-cs (conceptual schema)
edit-cs
compile-cs
establish-cs
disestablish-cs
define-css (conceptual subschema)
edit-css
permit-css

permit-cs

define-cs, edit-cs
These commands manipulate the source forms of conceptual

schemas, including displaying the conceptual schema.

compile-cs
This command will produce the object form of a conceptual

schema. Tests for self-consistency are performed.

(dis)establish-cs
The establish-cs command makes the specified conceptual

schema the current conceptual schema for the database.




27

Disestablish-cs removes the currency. These commands provide
a tentative means for altering the current conceptual schema
for a database. To modify the schema the following procedure
caii-be used: Use the define-cs and edit-cs commands to pro-
duce a source form of the modified conceptual schema. Com-
pile the new schema. Disestablish the old schema, and estab-
: lish the new one. A more dynamic mechanism for modifying
conceptual schemas will be one of the issues investigated in

the Cheops project.

(2] define-css, edit-css, compile-css
These commands manipulate conceptual subschemas, which form
windows for application administrators to view the conceptual
schema. They also contain update access specifications.

There will be one conceptual subschema for each application.

[2] permit-css

This command is used to give and revoke access to conceptual

subschemas to specified application administrators.

[2]) permit-cs
This command will allow access to a conceptual schema by a

database administrator.

(1] dba
This is the database administrator interface. The major com-
mands at this interface are the following:
display-cs
define-is (internal schema)
edit-is

compile-is

i el ey ko R meR_———_— . T Ry T —" *‘m




reorganize

define-map

edit-map

compile-map
establish-map

disestablish-map

(2] define-is, edit-is, compile-is
These commands have the same functions as their analogs under

the ea interface.

[2] reorganize
This command essentially causes an internal application pro-
gram to be run. (An internal application program is a pro-
gram which references an internal schema.) For example, the
reorganize command might transpose a file, build an index or
compress a file. This command is used with the establish-map

and disestablish-map commands to tune the database.

(2] define-map, edit-map
These commands are for manipulating the source form of

conceptual-internal mappings.

[2] compile-map

This command involves several functions. First, the mapping

is checked for correct syntax. The mapping is checked for

consistency, that is, that every constraint in the conceptual

schema will be maintained by the internal schema constructs
according to the associations in the mapping. The mapping is
checked to ensure that every relation in the conceptual

schema which represents part of the computerized database is




(2] establish-map, disestablish-map

These commands make a mapping current and remove a current

actually mapped to some object or objects of the internal

schema.

mapping, respectively.

[1] aa <appl>

This is the interface through which an application adminis-
trator interacts with the database.
command specifies which application is desired.
this is the same as the name of a conceptual subschema.) An
application consists of a conceptual subschema, a number of
external schemas, a number of mappings and a number of appli-
cation programs along with necessary authorization informa-
tion.

ing:

The major commands at this interface are the follow-

display-css
define-cs <dm>
edit-cs
compile-cs
display-cs
define-map
edit-map
compile-map
establish-map
disestablish-map

pernmit-es

permit-ap

The parameter to the

(We assume

s it




30

(2] display-css
This command causes the conceptual subschema to be displayed
to the application administrator so that external schemas may

be written against it.

[2] define-es <dm>
This command is analogous to the define-cs and define-is com-
mands except that the parameter specifies which data model is

being used. The data model is RDL, NDL or HDL.

[2] edit-es
This command is analogous to the edit-cs and edit-is com-

mands.

[2) compile-es
This command translates the source form of the external
schema to an object form. This process includes checks for
consistency of the schema. In addition, this interface will
produce a canonical form of the external schema. For RDL
schemas, the canonical form is the same as the original. For
NDL and HDL schemas, the canonical form is a relational

schema with the same information content.

[2) display-es
This command will display the canonical form of the specified
external schema. This interface is needed when the applica-
tion administrator writes a mapping from the external schema

to the conceptual subschema.

[2] define-map, edit-map

These commands are used to manipulate the source form of

et




i L]

3
¢

5 A N AT

external-conceptual mappings.

(31 compile-map
This command translates the source form of a mapping to its
object form. Besides the usual checks for syntactic correct-
ness, this processor must ensure that all of the constraints
in the external schema can be derived from constraints in the

conceptual (sub)schema.

(2] establish-map, disestablish-map
These commands bind and unbind, respectively, an external

schema to the conceptual schema with different mappings.

[2] permit-es
This command will allow application programmers to have

access to an external schema in order to write application

programs.

(2) permit-ap

This command gives access to application programs to users.

[1] ap <es>

This is the interface application programmers use for
developing and testing application programs which run against
the specified external schema. The major commands at this
interface are:

define-ap

edit-ap

compile-~-ap

run-ap

These commands have the usual meaning.




(1] wusr <ap>

This is the interface through which users invoke canned"

application programs.
4. Summary and Conclusions

The ANSI/SPARC framework has potential for being a valuable

tool in the future of database managemen:t. Before this value
can be realized, we must understand the technological implica-
tions of the framework. This document has described some areas
relative to the framework which need to be investigated. We
have also described the Cheops project which will focus on these

areas.

The Cheops database system will support network, hierarchical
and relational external data models. The conceptual data model
will be relational, and the external-conceptual mappings will be
based on relational algebra. One of the functions of the exter-
nal schema processor will be to translate from network and
hierarchical external schemas to a relational form on which the
mappings will be defined. Other processors will check the
structure and operation mappings for correctness. If desired,
there will be other interfaces to the conceptual schema so that

it can be manipulated in terms of entities, roles and other con-

structs.




Be ReferggggE

[Bach] Bachman C.W. "The Role Conceptin Data Models" 3rd
International Conference on Very Large Databases, Tokyo, 1977

(BrPP] Bracchi G., Paolini P. and Pelagatti G. "“"Binary Logical
Associations in Data Modelling", IFIP Working Conference on
Modelling in Data Base Management Systems, North Holland,
1975

(Chen] Chen P.P.S. "The Entity-Relationship Model: Towards a
Unified view of Data", TODS 1, pp. 9-36

[Codd] Codd E.F. "Relational Completeness of Data Base Sub-
languages" Data Base Systems, R. Rustin (ed.), Prentice Hall,
1972

[EGLT] Eswaran K.P., Gray J.N., Lorie R.A. and Traiger I.L.
"The Notions of Consistency and Predicate Locks in a Database
System" CACM 19, 11, pp.524-A33

[Fehd] Fehder P.L. "HQL: A Set-Oriented Transaction Language
for Hierarchically-Structured Data Bases" ACM '74, Proceed-
ings of the Annual Conference, 1974

[HaOT] Hall P., Owlett J and Todd S. "Relations and Entities"
IFIP Working Conference on Modelling in Data Base Management
Systems, North Holland, 1976

[Klug] Klug A. "“Theory of Database Mappings", Ph.D. Thesis,
University of Toronto, 1978

[Melt] Meltzer H.S. "Structure and Redundancy in the Concep-
tual Schema in the Administration of Very Large Data Bases",
System for Large Data Bases (Lockeman and Neuhold, eds.),
North Holland, 1974

[NaSu] Nations J. and Su Y.W. "Some DML Instruction Sequences
for Application Program Analysis and Conversion", Proc.
ACM-SIGMOD 1978

[PaPe] Paolini P. and Pelagatti G. "Formal Definition of Map-
pings in a Data Base" Proc.ACM-SIGMOD Conf. 1977

[SeAl] Senko M.E. and Altman E.B. "DIAM II: The Physical Dev-
ice Level", System for Large Data Bases (Lockeman and Neu-
hold, eds.), North Holland, 1974




34

5. Appendix

Y i HDL BNF ¥

/* schema */

hdl-schema ~--> DEFINE HDL SCHEMA ID : sch-def

sch-def --> segq

seq --> 1ID (field-list) key-def desc

key-def --> KEY (name-list)

name-list --> ID | name-list, ID

desc --> (descl) | empty

descl --> seg | descl seg

field-list --> field-def | field-list, field-def

field-def --> 1ID type

type --> INTEGER null-opt | STRING (NUMBER) null-opt

null-opt --> * | empty

/* dml */

stmt ~--> for : action

for --> FOR EACH seg-name qual

qual --> HAVING quall

quall --> wval-qual | (quall and-or quall)

and-or =--> AND | OR

val-qual --> wval rel-op val | comp-val rel-op comp-val

comp-val --> (val-list) | (val-list OF seg-name)

val-list --> wval | val-list, val

val --> field-name | value | field-name OF seg-name
func ( val OF seg-name qual )

value =--> NUMBER | STRINGCONST

func =--> AVE | SUM | COUNT

action =--> 1list | insert | update | delete

list --> LIST [(val-list] [comp-val]

insert --> |INSERT seg-name qual

update --> UPDATE up-list

up-list --> up-el | up-list, up-el

up-el =-> field-name = up-expr

up-expr --> wval | (up-expr arith-op up-expr)

arith-op =-=> + | = | * | /

delete --> DELETE

rel-op ==> < | <= | > | >= | == | |=

seg-name --> ID

field-name --> 1ID

Vs NDL SYNTAX ' 4

/* schema */

ndl-schema --> name-part rec-part set-part
name-part --> NDL SCHEMA name:

rec-part --> RECORD SECTION rec-def-list
rec-def-list --> rec-def | rec-def-list, rec-def
rec-def --> name (dom-list) key-def




35

key-def --> KEY (name-list) | empty
dom list =--> dom def | dom list, dom def
dom def --> name : type
type --> INTEGER null-opt | STRING(NUMBER) null-opt
null -=> * | empty
set-part --> SET SECTION set-def-list
set-def-list --> set-def | set-def-list set-def
set-def --> SET NAME : name owner-def member-def
mand-opt-def key-def
owner-def --> OWNER IS name
member-def --> MEMBER IS name
mand-opt-def --> MANDATORY | OPTIONAL | empty
key-def --> KEY IS name | empty
/* dml »/
stmt --> for : action
for --> forl rec-spec
forl --=> FOR EACH | FOR UNIQUE
rec-spec --> rec-name qual
qual =-> HAVING quall
quall --> wval-qual | ( quall and-or qual2)
path --> path-el | path, path-el
path-el =--> name | UP name | DOWN name
val-qual --> wval rel-op val | comp-val rel-op comp-val
comp-val --> (val-list) | (val-list OF path)
val --> field-name | value | field-name OF path
func(val OF path qual)
func ==> AVE | COUNT | SUM
action --> 1list | insert | update |
delete | add | remove
list --> LIST [(val-list] (comp-vall]
val-list --> wval | val-list, val
insert --> INSERT AND ADD add-list | INSERT
add-list --> add-el | add-list AND add-el
add-el --> IN set-name qual
update --> UPDATE up-list
up-list =-=-> up-el | up-list, up-el
up-el =--> field-name = up-expr
up-expr =-> val | (up-expr arith-op up-expr)
arith=op ==> + | = | * | /
delete --> DELETE (del-qual]
del-qual =-> PERMANENT | SELECTIVE | ALL
add =--> ADD IN set-name own-qual
remove --> REMOVE FROM set-name

" RDL SYNTAX o' 4

‘* schema %/

schema -=-> name-part rel-part constr-part
name-part --> RDL SCHEMA name :

rel-part =-> RELATION SECTION rel-def-list
rel-def-list --> rel-def | rel-def-list, rel-def
rel-det =--> RELATION name (dom-def-list)
dom-def-list --> dom-def | dom-def-list, dom-def
dom-def =-=> name : type

N T RO PP RIS, g g - ———————— S T S ¥




R

T P Wy T —T

34 5

type --> INTEGER null-opt | STRING (NUMBER) null-opt
null-opt --> * | empty §
constr-part --> CONSTRAINT SECTION constr-def-list :
constr-def-list =--> constr-def | constr-def-list, constr-def
constr-def --> key-def | subs-def | fd-def
key-def --> KEY rel-name (dom-list) i
subs-def --> SUBSET rel-name (dom-list) rel-name (dom-list) _
fd-def --> FD rel-name dom-def-1list §
/* dml */ ¥
stmt --> retrieve | insert | delete | update
retrieve --> RETRIEVE expr ;
insert --> [INSERT rel-name expr ;
delete --> DELETE rel-name expr ;
update --> REPLACE rel-name expr (update-list) ;
expr --> rel-name | expr {rs-list} | expr (dom-list) |

expr bin-op expr | agg-join | expr[dom-list = dom-list]expr
agg-join --> expr [dom-list; fn, dom-list; dom-list] expr
rs-list --> rs-item | rs-list, rs-item
rs-item --> dom relop val
dom-list --> dom | dom-list , dom
dom --=> ID | NUMBER
name --> ID
val-list --> wval | val-list, val
val --> sim-agg | dom | value
value -->
sim-agg --> fn ( dom-list , expr )
fn --> AVE | SUM | COUNT
bin-op =--> UNION | INTERSECT | DIFF
update-list =--> dom = up-expr | update-list , dom = up-expr
up-expr --> arith-expr | value
arith-expr --> expr | arith-expr arith-op arith-expr |

- arith-expr

arith-op =-=-> + | = | * | /
te~lop == % | = | ¢ | &= | == | =

:
i




W“m e o i 2 " ) T ST e

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
. REPORTY NUMBER 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
1959
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
CHEOPS Summary Report - no specific
; A PROJECT FOR EVALUATING reporting period
| ANSI/SPARC ARCHITECTURE 6. PERFORMING ORG. REPORT NUMBER
| 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
' A. Klug DAAG29-75-C-0024
r: 9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. '::22“;‘:0%.(““;' PROJEE‘(‘:ST, TASK
!t Mathematics Research Center, University of it
610 Walnut Street Wisconsin | Work Unit Number 8 -
‘ Madison, Wisconsin 53706 Computer Science
| 1t CONTROLLING OFFICE NAM! AND ADDRESS 12. REPORT DATE
i U. S. Arir  Research Office May 1979
P.O. Box 12211 13. NUMBER OF PAGES
Research Triangle Park, North Carolina 27709 36
. MONITORING \GENCY NAME & ADDRESS(if different from Controlling Oftice) 1S. SECURITY CLASS. (of thie report)
UNCLASSIFIED
TSa. DECLASSIFICATION DOWNGRADING
‘ SCHEDULE
' 16 DISTR BUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
18. SUPPLEMENTARY NOTES
F
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Database architecture, multiple views, multiple data models,
mappings
20. ABSTRACT (Continue on reverse aide If necessary and identify by block number)

. This paper describes a project for evaluating the ANSI/SPARC
framewor}.c. This framework proposes a three schema-level archi-
tecture in whicb the outermost level supports different user

t views through different data models; the central level provides
an unbiased description of the overall database, and the inner-
most level supports efficiency-oriented concepts. The three
levels are connected by mappings. (continued)

DD , 5™, 1473  €oiTioN OF 1 NOV 68 15 OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

é
i
i




This architecture is currently being studied by a study group of
the American National Standards Institute as a possible model for
database standardization. This project will test the feasibility and
appropriateness of the architecture by actually building a database
system conforming to the architecture. The system will test a number
of potential problem areas and possible solutions. This paper dis-
cusses these potential problems and some of the project's approaches

to them.

W
¥
‘
¥
b




