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ABSTRACT

It is shown that for almost every system of n polynomial equations

S ] lna am ﬂ:‘;udbw "

in n complex variables, the number of solutionsAis equei:e&——qi n- ~qi,
S i=1
where q is the degree of equation i. The proof of this result is done
in such a way that all g solutions can be explicitly calculated for
almost all such systems. ’
~
It is further shown that if the polynomial system obtained by retain-

ing only the terms of degree qi in each equation i has only the trivial

solution, then the number of solutions is equal to q.
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SIGNIFICANCE AND EXPLANATION

The existence and uniqueness of the solution of systems of linear
algebraic equations Ax = b depends on the ranks of A and the augmented
matrix (A,b). The theory is particularly simple when A is & square
matrix: a unique solution exists in "most" cases, namely when Ax = 0
has the trivial solution x = 0.

Although of obvious practical and theoretical importance, analogous
questions for systems of n polynomial equations in n unknowns do not
seem to have been settled definitively, except for the case n =1, which

is the classical theorem that every polynomial equation of degree g has

exactly g complex roots. This paper shows (as one might expect) that
for "almost all" systems of n polynomials in n complex variables, the
number of solutions is equal to the product of the powers of the highest
ordered terms in each of the n equations. A sufficient condition is
given for this situation to occur. In this case the solutions can be

calculated by a path-following procedure.
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ON THE NUMBER OF SOLUTIONS TO POLYNOMIAL SYSTEMS OF EQUATIONS

* Y
C. B. Garcia and T. Y. Li

e INTRODUCT ION

The fundamental theorem of algebra states that every polynomial equation of one
complex variable has q roots, counting multiplicities, where q is the degree of
the polynomial. This paper generalizes this theorem to systems of n polynomial
equations in n complex variables. It is shown that for "almost all" systems, the

n
number of solutions is equal to q = 121 9 where q is the degree (the power of
the highest ordered term) of the ith equation. FEmphasis is made on being able to
calculate all solutions. Hence, the proof is written such that these g solutions
can be calculated if desired by the path-following method first described in [7].
(Extensions of this approach may be found in [3, 5, 8].) Moreover, the method of
proof can be used to furnish a new constructive and topological proof of the classical
algebraic theorems of Bezout [11], and Noether and van der Waerden [9].

By "almost all", we mean that the property is "typical" or "generic", although
there may be "exceptional" cases. However, this does not necessarily mean that the
exceptional cases are unimportant. For example, for linear systems, our theorem would
reduce to a statement that the solution is almost always unique. Yet, this does not
mean that one can ignore the special cases when there is no solution or an infinite
number of solutions. Hence, because the "exceptional" cases are important, we study
in section 3 conditions where one can state with certainty the number of solutions
to a particular problem. There, a sufficient condition is given for the number of

solutions to be exactly q.

* On leave from the University of Chicago. Research supported in part by
the National Science Foundation under Grant No. MCS877-15509 and the
United States Army under Contract No. DAAG29-78-G-0160.

** On leave from Michigan State University. This material 1s based upon
work supported by the National Science Foundation under Grant Nos.
MCS78=-09525 and MCS78-02420.
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§2. GENERICITY

n n IR 3
&L Py T = C be a polynomial system, where C is the n-dimensional complex

space. By a polynomial system, we mean that each term in every equation is of the form
Bk r
GRS n -
azl z2 ,...,zn (21)

where a 1is a complex number, =z, £ a complex variable, and ri a nonnegative integer.
i

We are interested in the number of solutions z = (zl,zz,...,zn) to

P(z) = O .
For each term (of the form (2.1)) in each equation i, consider the sum
r B o SO ro. Let 9 be the maximum sum in equation i. We assume q; > 0,

S 2 © 3 > deg . W f £
for a:l i We call ql the degree of Pi e show that for almost all P,

q® 'Hl q is the number of solutions to P(z) = 0.

1;y “almost all", we mean that the property is generic. In other words, imagine a
class of problems

P(z,w) = 0 (2.2)
where w 1s a parameter vector ranging over some complex space Cm. To each poly-
nomial system is associated a parameter vector w, the correspondence to be made
precise in a moment. It is best to think of w as a random vector governed by some
probability measure on Cm. An “exceptional" set is then a set whose probability of
occurrence is 0. A condition holds generically if it holds with probability 1. The
theorem we show is
Theorem 2.1. For all w except in a set of measure zero in Cm, the system
n

P(z,w) = 0 has exactly q = '"1 q distinct solutions.

let P : Cn > Cn be qiv;;. We define the parameter w to be the vector of
coefficients that uniquely defines P. Given w, P is uniquely defined, and vice

m
versa. The vector w belongs to some complex space C , for some m. The integer

m is determined by the degrees q all i.

2
n

We also distinguish certain coefficients of P. First, let a = (aii) e C

be the entries of w such that
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a” 18 the coetficient of :1 in equation 1 .
Then, let b Dbe the entries of w such that b € ¢ is the constant term of P ,
1 1
L tor all 1. Finally, let ¢ be those entries of P which are the coefticients of
terms of Jeqree \l‘ in equation i, for all 1 (excepting the .a”'ed and d the
rest of w, Hence, w = (a,b,c,d) uniquely defines P(z2,w) = 0.
The proot is shown by following the paths described by the homotopy
nem n
tH Lo X R>C where H o 1s defined by
Y
lll(z,t,w\ o ) - t)(z‘ = 1) +#¢tP (z,w) = 0O (2.3)
1
i ® yRecvnelt o |
; m n |
g For a fixed we O, starting from the q = 1 9 trivial solutions when t = 0, |
- ‘-1 {
we follow the solutions as t  is gradually deformed to one (observe that the 4‘
3 |
© : 1
trivial solutions need not be as chosen, but could be chosen arbitrarily). It will :
be shown that for almost all w, the solution set |
3 -1 . . !
H (0) - {(z,t) [H(z,t,w) =0, 0 < ¢t <1 (2.4) i
i |
3 consists of g distinct paths, where each path starts at a trivial solution at t =« 0, :
i and ends at a solution to P(z,w) = 0 at t = 1. Hence, for almost all w, P(z,w) =0
. has g distinct solutions. i
¥ P S o " - :
b let F : DC K + R be a differentiable map. For any x € D, DF(x) will denote A
5
4 the Jacobian of F at x. If x = (u,v) say, D F(x) will denote the partial deriv-
'3 M u
¥
g ative of F  with respect to u. If rank OF(x) « s, then x 1is a critical point
&
b for F. Otherwise, X is a regular point for F. 1f y=F(x) for some critical point
¢
& X € D, y is said to be a critical value for F Otherwise, y is a l}m}l):)} value ot ¥, !
i . :
ﬁ In order that "\. (0)  be consisting of paths, we shall require a reqularvity con- %
5 . :
: i
i 5 dition on H and on P, For then we can use the tollowing theorem (shown in [7]) af i
E |
E a regularvity condition holds, ! '
3 i
3 m :
? Theorem 2.2, Given we ¢, let 0 be a regular value of P(*,w) and 0 a regular
L LK
& -1 . ; N
B value of H(*,*,w). Then H (0) consists of paths. Each solution in Nw (0)  at
¥ w

at ¢t O or t = 1 is an endpoint of the path. Moreover, t 1s monotonically l

nonincreasing (nondecreasing) on each path.
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The monotonicity of t in Theorem 2.2 implies that no path can be homeomorphic
to a circle. Therefore, each solution of H;I(O) starting at t =0 (or ¢t = 1)
R ol . i
will either go to infinity or go to a solution of Hw (0) .ax £ = 1 (€=10),

It will now be shown that for almost all w, no path of H;I(O) diverges to

infinity on ((z,t)lO o 1}. Hence, for almost all w, H;I(O) consists of g
paths. Each path connects a trivial solution at t = 0 to a solution of P(z,w) =0
at t = 1. Hence P(z,w) = 0 has g solutions.
We recall the Transversality Theorem [1].
Theorem 2.3. For D C Rp. Jet F s D X Rk > Rg be r-continuously differentiable,
where r > max{0,p - s}. Suppose vy € R® is a regular value of F. Then for all
u € Rk except in a set of measure zero in Rk, y is a regular value of F(-,u).
Let us apply this theorem to P(z,w) = 0. Recall that w 1s partitioned into
w = (a,b,c,d).
Lemma 2.4. For all a,c, and d, and for all b except in a set of measure zero,
0 is a regular value of P(-,w) and O is a regular value of H(:,-,w).
Proof: Clearly, O 1is a regular value of P(-,a,*,c,d) since DbP = I is of full
rank. Hence, by Theorem 2.3, 0 is a reqgular value of P(-,a,b,c,d) for almost all
b. Similarly, O is a regular value of H(-,-,a,-,c,d). Hence for almost all b,
0 is a regular value of H(-,-,a,b,c,d). L
Next, given w let Qi consist of the terms of Pitz,w) with degree qi'

Observe that the entries (a,c) of w wuniquely identifies (. 1In fact, we write

as Q(z,a,c) = 0. Now define

q.
G, (z,t,a,0) = (1 - t)zil + tQ, (z,a,0) = 0 (2.5)
p A T PR,
n2
Lemma 2.5. For arbitrary c¢ and for all a € C except in a set of measure zero in
2

M , 0 is a regular value of G(+,:,a,c) on the domain set ((z,t)lz ¥ 0}.
Proof: I1f t =0, then 2z =0 is the only solution for G(-,0,a,c) = 0. So, let

t#0 and z ¥ 0. Choose 3 such that zj # 0. Then, differentiating G with

respect to a . = (a,  ,a

*J 1j

2j,...,anj) we get Ud )G equal to a diagonal matrix with

-
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‘ 1
dragonals tr’ N i = 1,...,n. Hence DG has full rank and 0 18 a regular value

of G(+,+,a,¢) for almost all a.

We are now ready to prove Theorem 2.1,
Proof of Theorem 2.1

By Lemmas 2.4 and 2.5, for all w e o except in a set of measure zero in O
Piz,w) =0 1is such that O isaregular valueot P(+,w) and Hi+,,w) and O isa
value of G(*,*,a,c) on {(2,t)|2 # 0}, (In fact only the entries a,b need be
perturbed). let w be outside this set of measure gero. Clearly the conclusions ot
Theorem 2.2 are applicable. 1o complete the proof of Theorem 2.1, we need only show

that none of the paths diverge to infinity.

-
Hence, suppose for contradiction that a path (z@),t@)) in B " (0) diverges to infin-
w

: - . p 2 (a)

ity as a approaches some a. Consider, for any 1 G ~mtere, £ (Q) 4 A \‘) « Since .
y Approache ome \ ' any ’ '\tn’;“‘\” oy . \‘

1s homogeneous in 2 of Jdegree q:

-\

N = () . = 1 y ! i ~ - ")
\~ilmm,tm).-\.\\ [l 2 || G @)t an

-q
- || =) || ‘l\:l(xm\,t(\\\..\,c) - lli(zm\,(m\.w\‘,

-4

n o4
=) ] (1 - (@) + T Q, (2 (@) a,e) = P ozia) W)
1

gl =1, 0 <t < 1. Since G is homogeneous, G(lz t,a,c) = O for all ~omplex

numbers A\, The solution to G(*,*,a,¢) = 0 18 not a path 1n a neiohborhood of

(z,t) =0 that 0 is not a regular value of G(*,*,a,¢) on the set {(z.t) |2 # 0},

a contradiction. s
bserve that the method of proof shows a constructive way of generating all the
q  solutiong for almost any w.  Simply use the method described an [7) to follow any

{

of the q paths starting at a trivial solution at t = QO Without tail, this path

would lead us to a solution to P(z,w) = 0 at ¢t = 1,

regular




§3. SUFFICIENCY CONDITIONS.

Suppose we are given a particular polynomial system P(z,w) = 0. How many solutions
will there be to this polynomial system?

The answer, as shown in section 2, is: "q, with probability one" where q is
the product of the degrees of the equations. The problem with this answer, however,
1s that oftentimes, when faced with a particular polynomial system, we need an uncon-
ditional answer.

This section shows a sufficient condition for a given polynomial system to have
exactly g solutions. Then, we show how the condition can be applied to certain
nontrivial polynomial systems.

The theorem we show is
Theorem 3.1. Let P(z,;) = 0 be given, and let Q(z,a,E) = 0 be its corresponding
highest ordered system of equations. If Q(z,S,E) = 0 has only the trivial solution

n
z =0, then P(z,w) = 0 has q = .ﬂl 9 solutions, where 9 is the degree of Pi.

Our method of proof of Theoremlg.l can be used to prove the classical theorem of
Bezout [11] and the theorem of Noether and van der Waerden [9]. The first theorem
states that an arbitrary P(z,;) = 0 has at most gq isolated solutions. The second
theorem states that under the hypothesis of Theorem 3.1, P(z,w) = 0 has at most q

distinct solutions. (This theorem was rediscovered by S. Friedland [6]). These classi-

cal theorems were proved by algebraic approaches.

Let us introduce a definition for multiplicity. Consider an isolated solution
z0 of P(z,w) = 0. Let N be an open neighborhood of zO containing no other
solution of P(z,w) = 0. Let deg(P(-,w),N,0) be the Brouwer degree, where P(-,w)
is regarded on the space Rzn, the space induced by c" in a natural fashion. [2]
states that deg(P,N,0) 1is always a positive integer. We say z0 is a solution of
multiplicity k if deg(P,N,0) = k. Thus in Theorem 3.1, every solution is counted

k > 1 times.

To prove Theorem 3.1, we need a couple of lemmas.

5
¥
¥
L
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Lemma 3.2. Let P(z,w) = 0 be given. If Q(z,a,g) = 0 has only the trivial solution,

then there is a finite, nonzero number of solutions to P(z,w) = O.
Proof: By Theorem 2.1, for almost all e € Cm, P(z,w + €) = 0 has exactly g
solutions. Let z(e) be a solution of P(z,; + e) = 0. We show that the sequence

{z(e)} remains in a bounded set as e approaches 0.

For contradiction, suppose ||z(e)” +® a8 e =+ 0. Then

(e) - - ~9; AR
Qi(”fTETﬂ',a,c] = |lz(e) || 1Qi(z(e)’alC)
94 s .
=||z(e)|l [Qi(z(e),a,c) = pi(z(e),w +e)]

-q. Ao -
[|zte) || 1[Qi(z(e),a,c) - P, (z(e),w) - P (z(e),e)]

=0 as e >0 .

Hence, if 2z 1is a cluster point of TTE%&%WT, we have Q(z,;,E) =0, Hz||= A

contradiction.

Thus, each z(e) remains bounded as e approaches zero. By continuity, all
cluster points of the sequence {z(e)} are solutions of P(z,w) = O.

Hence, the solution set of P(z,;) = 0 is nonempty and bounded. But from [10,

Corollary 2.2], this implies that each solution is isolated. Therefore, there must be

a finite, nonzero number of solutions for P(z,w) = O. L/
0 fecale o
Lemma 3.3. Let z be an isolated solution of P(z,w) = 0 of multiplicity k. Let

N be an open neighborhood of zo containing no other solution of P(z,;) = 0. Then,
for all sufficiently small e € Cm such that 0 is a regular value of P(-,; + e),
P(z,w + e) = 0 has k distinct solutions in N.

Proof: Since the Brouwer degree is invariant under small perturbations, for all
sufficiently small e, deg(P(-,; + e),N,0) = k. Since DzP(-,; + e), regarded on
the space R2n, has nornegative determinant [4], and since O is a regular value of
P(-,; + e), we have that the number of solutions for P(z,; +e) =0 in N equals
the Brouwer degree, namely k. L

We are now ready to prove Theorem 3.1.

-
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Proof of Theorem 3.1.

From Lemma 3.2, the solutions for P(z,w) 0 are {21,22,...,zp}, for some
integer p > 1. Let zi have multiplicity ki’ for i = 1,2,...;p. By Theorem 2.1,
for almost all e, P(z,w +e) = 0 has q distinct solutions.

But as e approaches zero, these g solutions will tend towards solutions of
P(z,w) = O. Hence, we have from Lemma 3.3 that q = E k.. L]

i=1 *t
Remarks:

1. If 0 1is a regular value of P(-,;) in Theorem 3.1, then all gq solutions
will be distinct.

2. Given an arbitrary system P(z,;) = 0, by Lemma 3.3 and Theorem 2.1, the
number of isolated solutions of P(z,w) = O is at most g. This is the classical
theorem of Bezout.

3. If Q(z,S,E) = 0 has only the trivial solution, then by Lemma 3.2 and
Bezout's theorem above, there are at most q distinct solutions of P(z,w) ; 0.

This is the classical theorem of Noether and van der Waerden [9].

4. Given an arbitrary P(z,w) = 0, all isolated solutions can be generated by
the method in [7].

5. The hypothesis of Theorem 3.1 can be constructively verified. For there is
a classical procedure [11] for determining whether or not a homogeneous system @ = 0
has nontrivial solutions.

6. Note that the condition: Q(z,g,a) = 0 only has a trivial solution, is a

condition on the form in which P(z,w) = O is written. For example, the system

[
-

22122 + z1

+
5% " %

]
N

has only two solutions, so that Q = 0 must have nontrivial solutions, as indeed it

does. The equivalent system, however,

=8~
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Prcof: Consider any 2z satisfying Q(z,;,E) =0. If z # 0, then let 2z = (zI.O)

has only trivial solutions for Q = 0, so that this form of the equations reveals that
the system has only two solutions.

Finally, let us show some applications of Theorem 3.1 to certain systems.

Theorem 3.4. Let P(z,w) = 0 be such that Q(z,a,c) = 0 is of the form
n
e :
P oapums g = quan e (3.1)
jop 3379
where eij are complex numbers, and r a positive integer. Then, if e = (eij) is

4 - n :
nonsingular, P(z,w) = 0 has r solutions.

Proof: The system ey = 0 where y = (yl,...,yn) are complex variables has only the
n
trivial solution. Thus, the system Z eijz§ =0 all i, has only the trivial
j=1
solution. -
n2
let e = (eij) € C . A principal submatrix of e is a submatrix formed by

deleting row i and column i, for i € I, where I g 1 2evarnt (T =0, i
possikle).

Theorem 3.5. Let P(z,w) = 0 be such that 0(z,a,c) = 0 has the form

Sl n
o, (z,a0) =z " (]} eijz§) A (3.2)
j=1
o n
If e = (eij) has nonsingular principal submatrices, then P(z,w) = 0 has n (r+ si)
i=1

solutions.

where z, ¥ 0, all i€ I. Since Qi(z,E,E) 0, all ie€e I, we must have

Z e,.zf =0, &1 1¢ 3 1.8, e;¥r = 0 where err is the principal submatrix
je1 1] 3]

formed by deleting row i and column i, for i f I, and yi = zz, i€ 1. Since
eII is nonsingular, yI = 0, a contradiction.
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