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SIGNIFICANCE AND EXPLANATION

This paper presents abstract error estimates for mixed methods for the

approximate solution of elliptic boundary value problems. In a mixed method,

one introduces an auxiliary variable, usually representing another physically
important quantity, in order to write the differential equation as a lower
order system. One then considers Ritz-Galerkin approximation schemes based on
a variational formulation of this lower order system. The abstract estimates
are then applied to obtain quasi-optimal error estimates in the usual Sobolev
norms for four examples: three mixed methods for the biharmonic problem and

a mixed method for second order elliptic problems. In the biharmonic problem,
for example, one obtains by these mixed methods direct approximations to the
stream function and vorticity in hydrodynamical problems or to the displace-

ments and forces (or moments) in elasticity problems.
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ERROR ESTIMATES FOR MIXED METHODS

'
R, S. Falk and J, E, \‘al\nn\‘

1. Introduction
In [5] Brezzi studied Ritz-Galerkin approximation of saddle-point probloms arising
in connection with Lagrange multipliers. These problems have the {orm:
Given f . V' and g « W', find (u,y) « V « W satisfying
J.\(n,v) Vbh(v, ) = (E,v) W v v
XX}
\ blu, = (g, ¥ e W,
where Voand W are real Hilbert spaces,and a(*,+*) and bis, )  are bounded
bilinear forms on vV~ vV and \ x W, respectively.
Given finite dimensional spaces \‘h « vV ooand Nh c W, O =xNh 1 , the Ritz-Galerkin
approximat ion (uh,q-h) to (u,¥)  is the solution of the following problem:
“ind ) v W satisfyi
Fang (“h W) oo vy N h sty ing
’ a(u ,v) + b(v,p) = (f£,v) V v ¢ \
h h

1:3)
\ Nuh.»'\ = (Q,w) ¥V ¢ ¢ W

The major assumptions in Brezzi's resultsare

h

h

a(u,v) 4
$1:3) sup 1‘(~ ! J » vy o full? v u ¢ 2 and v 4y
s vl 0 \ h
Vel \
h
where \‘\ > 0 18 a constant independent of b and a, i\ V. h(v,e)
! 1§}
O ¥ v ewWl, and
h
H(v,v) I
+i) . I b . | Il e
(1.4 ap Tl Ky '»'N v oy W, and w
vV A
h
whetr e k“ 0 s independent of b
Using (1.3 and (1.4) Brezzi proves the following ervor estimate  for the pproximat ton

met hod determined by (1,2):
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(1.%) Hn-uhll\_ ¢ fty=¢ 8., «~ Clinf fu=xll_ + inf llu'-nllw) voh .

hw v I
X ¢ new
h L

In [1,2] Rabufka studied Kitz-cGalerkin approximation of general variationally posed
problems.  The main result of [1,2], applied to (1.1) and (1.2), is that (1.5) holds
prov ided

(1.0) sup Py + bivg) « by

o el > 1 (hall . ® Iyll, ) v (u,y*)- V. x and ¥ h,
(v dov, swy vlly, + delly L. 3 T

w

where 1. » 0 is independent of h

It is clear from (1,2,5] that (1.3) and (1.4) hold if and only if (1.6) holds. (1.3)-
(1.4)  or, equivalently, (1.6) is referrved to as the stability condition for this approxi-
mat ion method.

The results of [1,2,5) can be viewed as a strategy for analyzing these approximation
methods:  the approximation method is characterized by certain bilinear forms, norms (spaces),
and families of finite dimensional approximating spaces, and if the method can be shown to
be stable with respect to the chosen nomms, then the error estimates in these nomms follow
in a simple manner provided the bilinear forms are bounded and the approximation properties
of \‘h and W, are Known in these nomms.  These results can be used to analyze, for
example, ceortain hybrid methods for the hiharmonic problem (5,0] and the stationary Stokes
problem [10).  The results of [1,2] have also been used to analyze a variety of variation-
ally posed problems that ave not of form (1.1).

There are other problems  of a similar nature, however, where attempts at using the
tdeas of [1,2,5] were not entively successful since not all of the abstract hypotheses
were satisfied: specifically the Rrezzi condition (1.3) or, equivalently, the Babu¥ka
condition (1.0), is pot satisfied with the usual choice of norms, i.e., the approximation
methods for these problems are not stable with respect to the usual nomms.  This is the
case, for example, in the analysis in [7] of the Hermann-Miyoshi [13,14,17] mixed method
for the biharmonic problem,  In the analysis of this methad a natural choice for both
II-II\' and H-":w is the l.;' arder Sobolev norm; however this method is not stable with

respect to this choice. As a result of this difficulty, the ervor estimates obtained in




(7] are not quasi-optimal. A similar difficulty arises in the analysis of the Hermann-
Johnson [13,14,15] and Ciarlet-Raviart [9] mixed methods for the biharmonic problem. In
later work of Scholz [21] and Rannacher [19] quasi-optimal error estimates were obtained
for the mixed methods of Ciarlet-Raviart and Hermann-Miyoshi, although the systematic
approach of Brezzi and Babu¥ka was abandoned.

In a forthcoming paper of Babu¥ka, Osborn, and PitkAranta [3] quasi-optimal error
estimates for mixed methods for the biharmonic problem are derived by an application of
the results of Rrezzi and Babu¥ka. 1In this work a new family of (mesh dependent) norms are
introduced with respect to which the above mentioned mixed methods (Ciarlet-Raviart,
Hermann-Miyoshi, Hermann-Johnson) are stable. Error estimates in these norms then follow
directly from the results of Brezzi and Babu¥ka, once the approximation properties of the
subspaces vh and wh have been determined in these new norms. Error estimates in the
more standard norms are then obtained by using the usual duality argument.

It is the intent of this paper to provide an abstract approach to the analysis of

mixed methods which leads to quasi-optimal error estimates, uses only standard nomms,

and is systematic. We shall assume that existence and uniqueness for the continuous
(infinite dimensional) problem has been established and develop an abstract framework under
which quasi-optimal error estimates can be derived for a variety of examples which do not
fit within the convergence theory of Brezzi and Babu¥ka using the usual norms.

Section 2 contains the abstract convergence results of the paper. In Section 3 we
present four examples previously analyzed in the literature and show how error estimates
can be derived from the theorems in Section 2. Three of these methods are mixed methods
for the biharmonic problem and the fourth is a mixed method for a second order problem
analyzed by Raviart-Thomas [20].

1t is interesting to note that in this last example the results of Brezzi and Babu¥ka
apply with the choice of spaces used by Raviart-Thomas, but fail to yield quasi-optimal error
estimates in all cases due to the way in which the variables are tied together in the error esti-
mates. In our analysis the error estimates for the two variables are separated and quasi-
optimal error estimates are obtained. For the three mixed methods for the biharmonic

problem that are analyzed in Section 3 the results of the present paper and those obtained

aje




in [3), using different techniques, are the same. For addit 1onal results on mixed met hod:
see Oden ([18].

Throughout this paper, we shall use the Sobolev spaces H"-l‘(“)' where | is a
convex polygon in the plane, m is a honnegative integer,and 1 < p. w . On thes spaces

we have the seminorms and norms

[v] = f F oo lo™N|P axy /P
WePelh 2 |a|wm
and
il .t Toop P ax) /P .
e 2 lal<a

m m .
When p = 2, we denote W ' () by H () and write

and

vl = vl
m

12,8 m, 5
1, l.p g
We will further denote by w‘ p(x:) the subspace of W ‘(m of functions that vanish
(

A hl
on I = 30 and by H:‘().‘) the subspace of H (1) of functions that vanish together with

their normal derivatives on I . For m = 1 and 2 we will also use the spaces

-m m m -m

H () = (H ,(x.‘)l' (the dual space of Hoh:)) with the norm on H (1) taken to be the
U

usual dual nomm. To further simplify notation we often drop the use of the subscript .

in the norm when the context is clear.

1@




2 Abstract Kesults
let V, W, and H Dbe threoe real Banach spaces with norms | lt\., «\“. and i
respectively. We assume V ¢ H with a continuous imbedding. Let a(:*,*) and b(+, *)
bo continuous bilinear forms on B v H  and V' N W, respectively:
(2.1) atu, )| < Ball fal . vl vV u,Vv e« N,
: - N R
(2.2) Iblu, ) | < Il Pall, vueV, Voew,

We consider the following problem, which we refer to as problem v

Given € « V' and g « W', find  (u,y) « V N W satisfying:

{(2.3) a(u,v) @+ biv,y) = (£,v) v v € R,
(2.4) blu,¢) = (g,») v Ve W,
whaere (+, ) denotes the pairing between V. and V' or W and W'
We shall be anterested in this problam for a subcelass of data, i.e., for (t,q9)

where D is a sulclass of V' v~ W', wWe shall assume the

H1)  For (€,Q) ¢« D, P has a unique solution,

-

In the analysis of Problem P we will also consider the adioint prodhlam

Given d ¢« G' , where G ix a Ranach space satistying W o« 0 with a cont inuou

wbedding, tin 7sd) = : ; g
ding tnd (v, ygedy) VN W satistving
(2.%) alv,y) * b(v,\) = 0 v vaev,
(2.06) blyw) = (d,¢) , ¥ ¢ ew .,

We shall assume that
(M Problem (2.5)-(2.6) has a unique solution for each d ¢ o',
Throughout this paper we shall be concerned with the problam of approximating the
solution  (u,¢)  of ¥ . Toward this end, we suppose we are given fintte dimensional
spaces \'}_ vV and h‘h © Woo We then consider the following approximat o problem, which

we refer to as problem P oo

h

Find m?\"!\‘ [ \'h . wh satisfying:
(2. 7) .\\uh.\‘\ 0 !\\\~,;,!“ - (f,v) v vV e \'h v
(2.8) b\uh.»" - (q.v) v ¢ h’h N

We will then view “h AFan approxumation to uooand g as an approxamation too

In this section we (Dtain estimates for u-u . and -
0

-8




We now state several further assumptions which we will require in the proofs of our

main results.

- e

(H3) There is a constant a > 0 ( a independent of h ) such that
afv,v) > ﬂ\v\‘.;‘ v v o Zh -
where L'}‘ {v \'h : blv,g) =0 v ¥ o« wh}.
(HQ) S(h) is a number satisfying
livll,, < 8 [AY €V
Nl (h) IIH v v \h
(HS) There is an operator Ty f Y » Vh satisfying
b(y - 7,2) = 0O v ;o vV ¢
> (y vh) ¥ ( y ¥ and ¥ e wh
where Y = SPﬂn(ﬁYd)d U u) , (u,y) is the solution of problem P , and

('.'1,‘-1) is the solution of (2.5)-(2.6) corresponding to d ¢ G'
=K [§

For the examples treated in Section 3 the existence and uniqueness of the approximate

solution (uh,;h) can be established in various ways. We now give a proof based on the

assumpt ions made above.

Theorem 1. Assume that hypotheses (H2), (H3), and (H5) are valid. Then problem P

h
has a unique solution.

Proof , Since Vh and wh are finite dimensional, it suffices to show that if

u .Y €V, xW satisfies
¢ h""h ) h

h
2.9) a(uh,v) + b(v,wh) =0 v Vv ¢ vh’
(2.10) b(uh,;) =0 v ' wh ¥

then W G =0 Choosing v = uy, in (2.9) and ¢ = —wh in (2.10) and adding the

equations, we get a(uh,uh) =0 .
Noting from (2.10) that uy ¢ zh and using (H3) we have lluhllH = 0. lence uy, = 0
Setting w, = 0 in (2.9) we obtain
(2.11) blv,y.) = 0 v eV s
h h
Now (‘!"‘*h)
(2.12) Wy, Il = GUP e
1 > I
h( deG"' ia G'

-h=-




By (H2), for each d ¢ G', there exists Yd ¢« V such that for all v ¢ w

(d,v) = b(yd.»‘) >

Thus (d,;h) - b()’dm’h)
= b(nhyd,wh) (applying HS)
= 0 (using (2.11)\

Equation (2.12) then implies wh =0 .

Our main result in this section are Theorems 2 and 3 which present abstract estimates

for the errors u-uh and y —vh

Theorem 2. Suppose hypotheses (H1)-(HS5) are valid and that (u,y) and (uh,u.h) are the

respective solutions of problems P and Ph. Then (with " defined by (HS5)),

) ]
2.13 - ¢ = " = ,
(2.13) lha “h"u S [Ilb&ls(h)llu-\cllw + (lall + a) llua nhuIIH] for all ¢ « wh
and
(2.14) Numu B < Hu=moull, + SO0 pe gl + lalllu-n ull] for all ¢ € W
hv — v a w h H n

If in addition
(He) T
where

-

2= {veV:Dblvyw) =0 V ¢ € W},

on
= Ilall
Y. 15%) - < ——— -
! lha uh”H < L\ + = ] lla "hu"H
and
S (h) llall
2. 16) - . -1 St ha-
(2.1¢ lha "h"\' < lla h“"v + = lha "hu"H
Proof . Using (2.3) we see that
(2.17} d("hu.\') + blv,¥) = a(u,v) + b(v,y) + a(nhu*u,v)
= (f,v) + a(whu-u,v) N UGl \'h i
| and from (2.4) and (HS) we see that
| (2.18) blr u,¢) = (g,v) v v ew .
| h h
| Subtracting (2.7) from (2.17) we find
(2.19) a(-vhu-uh,v) + b(v,u--u'h) = n(nhu-u,v) v v € \'h '
| and subtracting (2.8) from (2.18) we obtain
| =P




| (2.20) b(w‘\u-u“,-‘) - 0 v Voo W

Choosing v L u—u“ in (2.19) we have
n ‘
T ou- -u, ) s(n u- v =« a(n u-u,n u- "
al B uh.whu uh‘ + b hu uh., 'h) al hl u N uh)
| Applying (2.20) we get
(2.21) .u"vhu-uh,whu-uh) - a(whu—u,whu-uh) + b(uh—-»hu,v.s' } for all w):
Using (2.1), (2.2), (H3), (H4), and noting from (2.20) that = u=u . ¢ 2, , we then obtain
1 141 141
e u=u 7 < lalll =ull fin u=- IS (W) la, =« ull 1l oli
MmN 2 b U R, e N b S i
and hence
(2.22) e u=u ll < - [(Halllu=x ull .+ IbIS(M)lg=ll 1 for all ¢ ¢ W
h NH~ o Qi W h
Thus
la=u_ i < tu=n ull_ + lr u-u ll < }-IIINIS()\HI;-\‘II + (lall+a)fu=n_ull )
RH - h H h h#l— a w h H
] for all ¢ e W, . This proves (2.13).
h

In order to prove (2.14) we first note that

!!ll-\l!\|i\‘ . Hu-vehul!\_ + Ir—-hu-uhll\_ < Nu-nhul!\' + S(h)l!nhu-uhllu

(2.14) now follows from (2.22).

To prove (2.15) we observe that (2.20) together with "h ¢ 2 implies that

(2.23) l\(-‘“u-uh,.‘\ = 0 v ¥ oo W,

Hence (2.21) simplifies to

(2.24) .1('-hu—uh,w

s h

Applying (2.1) and (H3) to (2.24) vields

u-u, ) = a(n u-u,n u-u ).
\ h “h h

llall
2.25%) ] - @t -
( whu uh!! H = i whu ull H

(2.15) follows by the triangle inequality.

To establish (2.16) we write

ha= < Jlu=n_ull nou=
lu uhil\. < llu hu! T I 'h“ uhll\.

< I u—nhuu\' + s nhu-uhllu (by HJA)

llall
< "u-~huil\_ + 8(h) T ”““'),“"H (using (2.2%)).




\::5_\_\_‘1_!41\-_ Inequality (2.15) holds without assumption (H4).

Theorem J,
a) Suppose hypotheses (H1l), (H2), (H3), and (HS5) are valid and that (u,y) and (u ,u )
are the respective solutions of problems P and }‘} . Then (with (yi,\i) and v as

1 < 8 n

defined in (H2) and (H5), respectively),

{2.26) H,-;hi! . = sup “b(yd_,,

Y.ou~) + alu -u,m y -y ) + blu-u ,\ -n) iz0dl
h h'd G

h"d d h d

deG

for all ¥ , ne W .
h

b) If in addition (H6) holds ('.fr ¢ Z), then
1

(2.27) b(u-u, ,A.-n) = b(u=n u,i. =-n) v w
e ' Wk e Aan by
¢) If we further have tlat
(H7) There is an operator )'h y B wh satisfying b{v,I A-1) = 0 for all v V., and
all )\ A\, where A = span (-.\i"i ewd, (u,) is the solution of problem P ,
d deG
and  (y 3 \1) is the solution of (2.5)-(2.6) corresponding to d G' , then
(2.20) bly . ,-n y ,¥¢-L §) = ~Z. ¥)
e Th¥ae ¥V Wty
and
(2.29) blu-u A =L A.) = iNa=E X )
h'"d “h'a Hida ™ *h e
Proof. From (2.6) we have
(2.30) Fy=¥ Il . = sup (d,yp=¢ ) /ldl , = sup bly.,v=-¢ ) /ldl
G N 3!
h deG* h u a.G' d h \
Subtraction of (2.7) fram (2.3) and (2.8) from (2.4) yields
(2.31) a(u=u_,v) + blv,p=¢.) = 0 v Vv eV
h h h
and
(2.32) bu=u ,n) = 0 ¥ n W
h h
Now, combining (2.5), (HS5), (2.31), and (2.32) we obtain
bly o¥=%) = bly.=n vy ., v=%) *+ b PR |
1q: V"%, Wa™Tniq vy, * Playaeimi,
bly.=n. v.,v=) + al -u,n y
“d h\'d b ‘(uh = h\d)
= by . ~m Y.i¥=) + & o 0 SR alu -u,y )
(\d war vy uuh UMy atYg) boaly mu,y,
= by, ~m ¥y, 0) + alu =u,n y.=y.) s(u-u ,\ )
(¥q=mp¥qr¥¥ BN Natplg Tl ¢ BuS gy
= Bl T Yae V) ¢ alu cum yasyg) 4 Blumw i Aon) for all vonew

-0




o e i ST

substitution of this identity in (2.30) yields (2.26).

If 2 c 2 then
h("tu-uh'v) =0 ¥ ¢ W (see (2.23) above)
1
and so (2.27) follows immediately.

Now, if in addition (H7) holds, then

- -L oY) = = = =g
b(yd MY gV “hu) b(yd,w ‘hW) (a,y lhw) (by (2.6)).
and
= =9 = =% = =y
b(u uh,Kd hhkd) b(u,xd )hkd) (g,)\d thd)
Thus (2.28) and (2.29) are established.
Remark. Note that inequality (2.15) in Theorem 2 and all the results of Theorem 3 hold

without assumption (2.2). This observation is used in subsection 3c.

We end this section with several remarks on the hypotheses (H3)-(H7). We assume here
that v and W are Hilbert spaces.

1) It is clear that if

2

(2.33) a(v,v) > Yo IleIV for all v ¢ Zh v
then hypotheses (1.3) in Brezzi's theorem is valid. In the applications we consider in
section 3, (2.33) is not true (with g independent of h ) but is valid when ”V"v
is replaced by HvHH. This accounts for (H3) (and (H4)).

2) In hypotheses (HS)-(H7) it appears that we are not making use of conditions
similar to (1.4). In fact, in applications the operator LN described in (HS) is often
constructed in order to verify (1.4). A more precise relationship is given below in

Propositions 1 and 2. For further ideas in this direction, consult the work of Fortin

[I1]).

Proposition 1. guppose

(2.34) sup lEﬂLdﬂll >k llell V ¢ €W and vV h ,
vl - 0w h
veV v
h
where kO » 0 . Then there is an operator ! v = Vh that satisfies
b(v-nhv,w) = v v eV and v ¥ ¢ wh
and

=10~

=

MR I R S SR S
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L] "‘\'M € g vl v vV eV

1 1 ,
Proof . consider biv,y¢) on ‘.‘.h X Nh, where "'.h - {Vv ¢ Vhy v is  Veorthogonal to L

We immediately see that

{btv,ed |
suy i ]rvﬂ k(‘"v’"w v ¥« "h
ved Y
h
and
sup lh(v.\«‘)l > 0 v Q¥ v o« 7-‘
h
vieW
h
It thus follows from [1,2] that for each v ¢ V  there is a unigue uhv « '.'ll satinfying
\
bin v, = b(v,y) V ¢ ¢« W .
h h
Fur t hermore,
il
. vl < S22k fel
'|h\"\' == ll\ll\.
0

This proves Proposition 1.
We also note that it follows from (1,2) that for each ¢ ¢ W there exists a

unique Ny« Nh satisfying

h
1
biv, Y. ¢} = biv,v) v v e D
h h
Furthermore ,
I bl
Iy, « ‘ oll
" Ilw X lly W
Q
Proposition M. Suppose
b(v,v) l
2.135) sup l b s kel v " w )
( u)' vl ki W ¥ '
Ve \ i
1
wheve kK O, and suppose there is an operator nh:\' * Yy, satistying

b{v=n v,¢) = O ¥V v W
h h

ind

o vl < Clivll v v \Y
hov v !

hen (2. 34) holds,




Proot Vlearly we have

|1~snhv,,~\ |

!‘\‘\'l‘.‘l

sap I}y aup w, vl
vV \“\' VeVl “h Y
h
el
biv,e) | v X
- aup Tl il ~ llv'llw v v N' ;
Wl \l\' ““h v \ \
i.o., (2.34) holds with k= K/C
Q
Phus we see that (M%) s clomely velated to (2.34), which (s the =ame as (1.4).

Vo Hypothenes

.
-

Proposftion 1, b W, o as deftned in Remark

(1.36)

f and only (€ & « &
i v iy h

oot suppose (2. W) haolds, Lot v e '.‘.‘ . Then
\

« bilv,Ei ¢) = 0

biv, v
95, h

Thua ¥ ¢ 8

h

we have

suppose 0 o @ Then, {f v ¢ &

Now
n h

and, it v ’.'«' we have (2. 10) since both terms are
1

ohtain (O W) tor all v

(HOY and (1) are also closed related as we nee by the following tesult

, satinfieon

(2.0) by the definition of

foto,. Sinve \" 2 &%
\

amass -,\mm“_.ﬂm

it




3. Applications

In this section we apply the results of Section 2 to several examplos,

a) Ciarlet-Raviart method

Consider the biharmonic problem

P
Ay=g in 0

(3.1) ay
G- v =0 on I = 3Q,

where @ is a convex polygon and g is a given function. If g ¢ H () then thove |

)
a unique solution ¢ « H:‘(\I) of (3.1). 1In addition the following regularity result g

)

-1 3 2
known for this problem: If geH (Q) , then ¥ ¢ H (Q) n Hn(\.') and there 15 a

constant ¢ such that

(3.2) lhylly < cligh_ Voog ool ().

Using the well-known correspondence between the biharmonic problem and the Stokes problom,

this regularity result can be deduced from the reqularity result for the Stokes problem
proved in [16] (cf. also [12]).
We now seek an approximation to the solution ¢  of (3.1) by a mixed mothod, 1.0,

we introduce an auxiliary variable (u =0y for the method of this subsection) write (3

as a lower order system, cast this system in variational form, and then consider the Kite

Galerkin method corresponding to this variational formulation. 1In particular, the mixed
method we study will be based on the following variational formulation of (3.1), iyt
considered by Ciarlet and Raviart [9]:

] -1 . 1 1 S
Given g ¢ H (R), find (u,y) ¢ H (D) x ll“(.\.‘) satisfying

2

fuv dx - f VweVy dx = 0 | lll(x.‘)
Q Q
(3.3)
- f VusVy dx = ~|’ gy dx ¥ v o H“{\,‘\.
Y \ \
A \

Using the regularity result (3.2) it is not difficult to show (sce Theorvem 1 of [9))

that if ¢ is the solution to (3.1) and u = =AY, then (u,y) is a solution ot (3.13),
and if (u,y) is a solution of (3.3), then ¢ is a solution of (3.1} and u Y
1
It is clear that (3.3) is an example of problem P of Section & with V no«,
1 »
W= n“(m, H LG, a(u,v) = [ uv dx, and b(u,y) -/ Wievg dx, (and with g rveplace
b 2 P

by -g). Here the subclass D of data for which (H1) is satisfied is given ty

=1 %=

X)




D=0 % W. Since the form a is symmetric, the adjoint problem (2.5), (2.6), with
G = W= Hz(;), is the same as problem P and thus is uniquely solvable for all d  W'.

Hence (H2) is satisfied. Using (3.2) we also have

(3.4) gy + Waghy < cal

Next we discuss the finite dimensional subspaces used in the approximation scheme.
For 0 <h<1l, let = be a triangulation of 0 with triangles T of diameter less
than or equal to h . We assume the family {1h} satisfies the minimal angle condition,

i.e., there is a constant o > 0 such that
hT
max == < g v h ,
Tety S

where h,r is the diameter of T and Py is the diameter of the largest circle contained
in T, and is quasi-uniform, i.e., there is a constant 1t > 0 such that

max h

T
L
—eien & h .
min hT =T ¥
T

For k > 1 a fixed integer we define
(3.5) s, ~vec’@wvl e, Vv T 5}
where Pk is the space of polynomials of degree k or less in the variables X and X,
We then consider the approximate problem Ph with vh = Sh and wh = Sh n Hé(u). Note
that this scheme yields direct approximations to ¢ and u = -Ay (the stream function and
vorticity in hydrodynamical problems).

To apply our theorems we must check that hypotheses (H3)-(H5) are valid. (H3) is

clearly valid with a=1 and since our family of triangulations is quasi-uniform, (H4) is

satisfied with S(h) = c/h for some constant C . It remains to check (H5). For

1
v ¢ H (Q) define nhv by:

ﬂhV(V

h’
[ Vinv) evp dx = [ vveve ax Voo v,
Q Q

and

f whv dx = f V% ; Le@ay
Q Q

e P N R

LN




let «,v be the Neumann projection of v into \'h. Then (HY) 18 satisfied, and in
1

=2,
addition standard approximability results imply that if v « H (), ¥ > 3 , then
’ t-3
(3.6) v = ",Vl" < Ch v, , 3=0,1 and 1 < £ < min(kel,r-2).
1 . -
1
We are now ready to apply Theorems 2 and 3. Suppose ¢ « H (), 1 1 and that

k * 2. Then, using (2.13), (1.6), and standard approximability results, we have

(3. 7) Ha=u il \‘\h_l tnf ly=¢ll -+ lu=n ull )
h 0 €W h 0
b )|
W T L s-2
C(h 'h Iyl 2 + h hall 8=2
=2
Ch Il = (since u = =Ay)

where min(r,k+l) |

From (2.14) we find in a similar fashion that

s=~3
) - < C "
(3.8) I uhll1 < Ch llulls ¥
where s min(r,kel) .
Finally, from (2.1), (2.2), (2.26), (3.4), (3.7) and (3.8), we have

(3.9) I y=y, I ¢ sup, {ly =n y I, inf Iyl
h'1 d(“-l(\:) d hdl th 1

- f =Y = £ - A dll
+ lla uhllnu',d "h"d"(‘ + flu-u ll :‘nw 1 d nlll Mal
¢

h

—

1

s- g=2
C sup My Il W lIlwll o n

Nyl nolly I
am-1(yy 91 - a1

s=13 2
' /
t h Iyl & holl \d" "v Ihal 1

S T
where s min(r,k+1).
gince (3.7)-(1.9) are valid only for k > 2, the methods of this paper do not yield
error estimates for the case k = 1 in this example. For this case the reader is referved
to scholz [22].  The estimates (1.7)-(3.9) improve on those in Ciarlet and Raviart (9].
Seholz [21] obtained (3.7) under the assumption that ' is smooth, (1.7) and (3.9)

were obtained by Babu¥ka, Osborn, and Pitkaranta [1].

-15~-




We remark that Theorem 3} could also  be used to obtain an error estimate for

4
n‘-»]]\ , (by choosing G = L (M) when ¢ ¢ H (). However in order to get quasi-opt imal
v 2

results we would requite the reqularity vesult that d 1 LGN amplies \‘ « H (1)

e i i e T e e e e e e el

which 15 not valid on a convex polygon.

§
4

b)) Hermann-Miyoshi method
We consider in this subsection another mixed method for the approximate solution ot

(3.1). In this method the auxiliary variable is the vector of second part ial derivatives

(with the usual product norm, and
1
W= H (2
Q
Then the mixed method we study will be based on the following variational tommulation
of 13.X).

: et . Sk
Given g « B (Q), find (\\,u‘\ ¢ VN W osatistying

P 2 dv
“ 113 Iy
| ¥ fn v, dx b \ AL % gr w0 W VeV
o S & | o . ox, Ox, !
i,j=1 @ 1,i=1 & |
(3.10)
2 RIS § N
g 5 T - . H
X [ ol 2l [ g¢ax v ¢ W
i,d=1 @ i 1 e}

Using the regularity result (31.2) it is not difficult to show that ity is a solution

of (3.1)  and v (“‘\'\) is detined by u, , then (\\,\;-) is a solution of

i)

(3.10), and if (\l,v) is a solution of (3.10), then ¢ is a solution of (3.1) and

We easily observe that (31.10) is an example of problem P with and W as above,
) Bl s (v”), Ls i, 82 avamvy, Viy € !._‘(;:))

(with the usual product norm),

P < RIVEEN :
o Y , , Noa ) 5 L T
a(?,\\ i f u, \iidx , and h(“,u) . f T T ix .
i,=1 @ t,i=1 @ \ i
-16-




As in Subsection 3a the subclass D of data for which (H1) is satisfied 10 given !}

D=0 ~x W , and since a 18 again symmetric (H2) 18 satisfied with G W ()
Letting :i) be as defined in (3.5) , we then consider the approximate problas ¢
\ !
with
V. = {y= (v,,) : v - v i Wy & K
L ¢ i3 R R
and

3
= 8 1 3
Wh h R“(\ )

With this choice for the forms a and b and the spaces \'h and wh ¢ problem |
now describes the Hermann-Miyoshi method [13, 14, 17] for the approximationof the biharmony
problem. Note that with this method we obtain direct approximations to ( and
(the displacement and the moments in elasticity problems),

As in Subsection 3a we have hypothesis (H3) satisfied with a=1 and (Hd) satisfaied
with S(h) = C/h for some constant ¢ . (HS) for this example 18 contained in lLomma
in [7). Moreover, by a minor modification of the proof of Lemma 2 in [7] we obtain thy

existence of n,_ : V » V satisfying:
1

h !
bhv . Ve¥) ® 0 v v o W
A ha h
. =2, . 4
and for Y ¢V nlH (D17, r > 3, the estimate
3 e o . T t
€¢3..I1) v “‘.:\" y 2 Qh '1\"l ! = 0,1 and 1 U« min(kel,v=2).

We can now apply Theorems 2 and 3 in the same way as in Sabsection ta combinang
these theorems with (3.11) and standard approximability results, we obtain o m' ()

With r >3 and k > 2

(3.12) . < Ch “hul
ll\\\ \\\_hs oS h II‘HS '
=3
t3.13) e < OB Ui
Iy Wity = € h il o
and
g=1 '
(3.14) I "“““hul < Ch il g I ﬁ
i
where s = min(r,k+¢l). Estimates (3.12)-(3.14) improve those in Broszi-kaviart [0 i
Rannacher [19] recently proved these estimates for Xk = 2. RabuMka, oobeisn. an I

Pitkaranta (3] proved (2.12) and (3.14).




¢)  Hemann-Johnson method

We consider here a further mixed method for the solution of (3.1) in which the

auxiliary variable 15 the vector of second partial derivatives of ¢ , as in section 3b.

; 1 S
Given a trianale T , and a function b (vi.) with \'ii g Ry ;2 < 1,3 <2,
i — —

and Via v,y we th-!mv‘

M (y) YN

s b Sl A
i,j=1

and

M (y) ¥, .\

e s £379 4
i,j=1
where v (v, ,) is the unit outward normal and & (11,1‘) - (\",-\'l) is the unit
' 2 2 2

tangent along T. Let

v V(h) {y (v r V.2 € B (), ¥ -
(h Y (\”) i3 l:(\) 12 Vay
1 - i
Vool €« B(T) % 2 ¢ 1. , a0d M (y) Iz continuous
)y Bl h v

at the interelement boundaries}! with

Iyl y R & TR g
'y - - 0 A
i,3=1 1 '
1
and
L.y : )
W= W '), where p o is some number larger than 2
L

The mixed method we study in this subsection will be based on the following varia-
tional formulation of (3.1).

Given g H_l(x.‘), find (u,y) ¢ V x W satisfying

2 P v
] 2 5 4 2 i3 av 2
(3.15) \ I, e \ { \ ‘—‘-l —‘-}(- dx - f t~1"(Y) ‘-E-d:: } 0 ¥ 3V
f, ek g 24 'I‘v:h i,9=1 1 %5 i ar V' '
) .\u1 . " 5
y { ) =i 2 dx - | M (W ~ ds} = -f adx ¥y W
¢ ¢ Ix X FO AR

Te 1 i,1=1 T ) i aT : i

The correspondence between (3.1) and (3.15) is the same as the correspondence between (3.1)
)
3%y L )
and (3.10), i1.e., if ¢ is the solution of (3.1), then ([,;‘{*x 1.&‘) is a solution of
M
(3.1%), and if ((u, ),¢) is a solution of (3.15), then ¢ is the solution of (3.1) and
i




One easily sees that (3.15) 1s an example of problem P with Vv and W as above,
H as in Section 13b,

atp,y) = : f uijvij dax

=1 @
and
2 RIVIN n 8
gy = ¥ (Y ‘—x—-l—iq—}‘-dx—fum(?)%ds)
Ter, i,j=1 7 %%y % aT ¥

As 1in the previous subsections, a subclass D of data for which (H1l) is satisfied is

-1 : Ly e 1
given by D = 0 ~H (), and since a is again symmetric, (H2) is satisfied for G = No(..).
We note that an this example the space V = V(h) depends on h. For each h the form

bly,v) 1s bounded on V(h) ~x W (where W = Hé'p.

P > 2) with a bound b that depends
on h . In the error estimates in this subsection we do not require that this bound be

independent of h . (Cf. the Remark following Theorem 3.

Letting S be as defined by (3.5), we then consider the approximate problem P

h h
with
et G Vx;"'r‘ Py ¥ T xh)
and
W, =5 n tht‘l.
h h 0

With this choice for the forms a and b and the spaces V and W we have the

h ne
method of Herrmann-Johnson (13, 14, 15].
As an the previous subsections, hypothesis (H3) is satisfied with &« = 1 . We now
consider (HS).
For YeV wve define v-h\' ¢ \'h as in [7, Section 4], i.e., nh\' is defined by the

conditions

’ g W - MUIBE=0 ¥ Gy,
|
|
} and for all sides T' of Y
(3.16) ) and
, - s ‘ = 0
| {[\ij (nh\,iilq Ax = 0 V geb .
k and ¥V T ¢ 1,
h

By Lemma 3 in (7], "h\\' is uniquely determined by (3.16). Since we can write

~19-




\ \
= w & 3"\ . 3
biv,u) = \ { = \ | N, Tt Ax + | M (v) ds }
\ ¢ & . 1) 3x, X y S R \
Te 1 1,3=} * i ) RB\

h

(3.16) easily implies (H5). We note that by Lemma 4 of |7) we also have

X
v \ [H Y], o ¥ 3, ehet
(3.17) fn v = vil
\ L0

-
Ch livll
\

Me next observe that by Lerwma S of

"heorems 2 and 3.

in order to apply (2.1%), so we shall not require Hh“

wish to apply Theorem 3, part ¢, we

the proof of Lemma 5 in [7), for v
\

In particular, by the Corollary to Theorvem 2

min(k,r=2).

, (Hd)

(7}, 2 ¢ 2 , so that we are in the special
need not be

to be quasi-uniform.

for all

now show that hypothesis (H7) 1s satisfied. As

) ) :
eV and W = W () we can write

h Q
2 N,
by, -} ) =l ax
L ; IX . OX
Ter, L:J=) T
h
(3.18)
) AT puds+ §  Bla,pula ,
b aed
l!\ e “n
where I 15 the set of all sides of the triangulation ' ..‘h is the
h \
of 1., and A\!",\\'\ 1s a polynamial of degree less than or equal to
For W we now choose Vo, o W s0 that
h h
«19) : - ‘h'.‘\qu = O v q ¢ Pk-‘ and v i g P
(3.20) J (x.—"\.\.l ds = 0 v q e I‘k_‘ and L R
T
and
(3.21) (X, u=u) (a) = 0 v a ¢ J
h h

The unique solvability of this system is easily checked.

ding theorem, | ¢ W

3

and A\T‘,\\’\ ¢« P

implies . ¢ (

(M. Since fo Yo« \'h we have

it follows fram (3,18) that

set

k=2 in the variable

wW!

Note that by the Sobolev

of all vertices

as detined

VA

since

Wer

\

in

ambed

LAY




(3.19)-(3.21), satisfies (H7). Furthermore, by a standard application of tix Bramble-

Hilbert lemma [4], we obtain for all . ¢ W H!(L.),

(3.22) il < ch M, , 5 =01 and 1< & < min(r,kel).

> S
We are now ready to apply Theorems 2 and 3. Suppose that k > 1 and y ¢ H (),

r > 3. From (2.15) and (3.17) we obtain
(3.23) "\'\i_}\{h"o e IIR-th"O
<c nlig Iy
s
£€h uw||5+2 %

where § = min(k,r-2).

To obtain estimates for w-wh we shall apply Theorem 3 in several different ways.

Choosing G = Hé(ﬂ), v = Ihw , and n = Ih)‘d (where Ih¢ denotes the standard Lagrange

interpolant of ¢ in Sh), we Get from Theorem 3(a)-(b) that

"w—whnl = sup (b(xd - mXgr V- ILW

h
d(H-l(Q)

*algy - Rem¥y

To estimate the terms in the above expression, we introduce the affine transformation

2R RN SV TN

X = F(x) = Bx + b

mapping the reference triangle T with vertices (0,0), (1,0) and (0,1) onto T, and set

v =8ty o roa7HT,
* v v v v
where y = ‘;11 o and X = R e , and
21 Vay Y21 Ya
¢(x) =¢ o F(x).
Using the standard change of variables argument, we have that if Y ¢ [l-'.'Q ('I')]4 and
t
¢ € H (T), where 1 <% and 2 <t , then
2 av,, 2 v
f Z -—lla";dx= |det B| f Z — X ax
fay OX, %, A ;o X, X,
T i,j=1 i o i,3=1 ) -
and

-21-




3
f M‘ (v) g:~ds < J g2
yp VT

2
S
= ) IB YN8 vy ]T;

v a7

| [ %7 v(x) 9 gids‘
i=] T T
i
where and | denote the unijt tangent and unjt¢ Outward normal to aT i respoctively,
T! are the sides of o ,and ;"ri"f = length of oAl
2 -
Since “Bl < ch, |ast i = Ch® , 87y SC/h,  ana !Ti'l =68 fo e o), 4 easily
follows that
2 v, | ; 5
(3.24) ) —=d el O ) £ g
Figmy % i T 31
2 By P o2 12,58 .
SCRTE L ] L 2 e . Lt T 32, T lasy
= S X, ax 5 %) T
T d,3=) j i 9T i,j=]
2, A 5
= Ch “‘{”1, ”'”2,'1"
Now from Lemma 4 of t77,
25) ¥ < =% 0o if \'rl\‘4 ('I;)=n-(\;)v P (’1:)\; =)
" 1o L1 k-1 \ Hpee ij k-1 "12 21
(3.26) Iy - o . C(T) Iyl
v " XY g V',
Using the standarqg Properties of the interpolant (e £. (8]) we also get
(3.27) I}:b"b: =0 if @ Pk(T)
B e B & B ™ .
(3.28) 17, ¥l 2 < i, 4
(3..?4)~(.‘.88) we €easily Obtain
3 3
| [ J e (v =1mv) 0, (B~ T ¢)ax
! 3 Vg
T ]"J_"l‘x:i \ h )
- ('M”(\\r T MY == (e < Lwas |
aT
< oh° inf g < oy inf R
& v . 2,7
R AN iy P, (%) :
< Ch: inf H\-: = pll inf e - qll
A | ' v ¢ > €,
¢ P
p pk_l(r) % & k('1‘)

pE———

;P .

e

7 e

rOn J—

-

BN TS oA v T

Taan

R 6,00,




% Ch v <
= Vig,r ¥le p
for 1 <t <k and 2 * t < k+tl. Changing back to the original variables we further
obtair
| Chk-}; |
X £, = gy
and
1% t-1; |
N Ch ¥
v t,T £ ’vlt T

Hence if v « {H'(g)]4 and ¢ ¢ Ht(ﬂ) for 1 < <k and 2 <t < k+l , then

v hi’
(3.29) 2
2 Jol iy A (v = 7 v) -3—(¢ - I ¢)dx
s & . i 3 ’ i1
T Ti,jel \xj v hv'iji axi h

3
— (g = M) 5= (o - lhw‘)ds[

ap
-2
L Y t+e-2 7
2 ) ¢on ks il o
t+l-2
_ ch gl ol

Choosing v = Xar $= ¥ £ =1 and t = min(r,k+l) = s in (3.29) we get
Ibty, - = v- 1w < en® Nyl nl
19%q ~ "hiar ¥ h = ¥a'1"¥ g

If k > 2 we choose 76

o
*
]
b9
<
n
v
1
LS}
~
joN
(ag
"
w

in (3.29) to obtain

| - -
| bty - mu, Ay Ih\d)[

W S=1
Ch ”%”5-2 llkdll3

s-1 "
< Ch H',‘H5 II\dH3

If k=1 we choose =1 and t = 2 to obtain

.
Xb(l\: - mE, A, - Ih\d)( t

< ©Ch “%“l "\d“2

< Chluly gl

-23-




Finally if k > 2, from (2.1), (2.15), and (3.17) with 2 =1 and £ = s-2 we have
| [a(;\{h =R %ida X,d) < Cll;eh - }élloll ¥ Xd"o
cl L i k‘,"o Il LS P Kd"o

S=2
Ch Il )ell = hll X,d" 1

| A

A

s

=1
Ch Iyl . "X,d” 1

1A

If k=1 we choose 2 =1 in (3.17) to get

W, Yo =y} < Cch [lpl. hily.
Yo' = S B ]

%h ~ A "h ld
2
< e llully ly

Applying the regqularity result

(3.30) + |l \dll3 < cllall _

”Yd“l 1

and collecting terms, we get

(3.31) =gy < en® Nyl for k> 2 where s = min(r,k+l)
and
(3.32) =yl <chll w, for k=1
3§ 4
We now derive estimates in Lz(Q) . First consider the case when k =1 and ¢ ¢ H (Q).
Using Theorem 3(a)-(c) with G = LZ(Q), ¢ = Zhw, and p = Y‘h}‘d' and(2.1) we easily
obtain
o= ll < ¢ sup {lldl Hy=2 ¢l + llu = ull Ny, - m y.ll
h'o aeL, (@) 0 h* o " %%h 0 ad had 0
+ Ilgll0 II)\d - rr],]AdIIO}/IIdIIO

From (3.22) we get
2
- y‘h“’“o < ch'll whz
and
A, = £ A M < ch?® Al
d h"d"o — o,

Using (2.15) and (3.17) we have
‘; 1R = Rplo Mg = mfalo <O = mally Ny = myglo

2
< Cch™ Hull, Hy. i
> Rty fyghy

=24~




'.
4
3
1
Not ing hat lldll_l . ”d”tl and llg”o < cll “‘“d , using (3.30) and combining terms we :
obtain ]
E
1.3 y=y, I < chlyl y
( ) b=ty < L {
for k= 1.
Next we consider the case k > 2. Using Theorems 3(a)-(c) with G = L (), v = ‘h"
and n = I' \i' and (2.1) we have
3 &
ly=g ll - < ¢ sup {lal _ Hy= ¢ll -+ Hu=u ll ly, = noy .+ [blu - nu,\. = L) aan
hy=lly S € su iy Re=z, vl + g i Y4 nYa'o by i q h'a 0
deli, (2)
From (3.22) with ¢ = & = min(r-1,k+1) we get
S
g =X ol o < ch iyl -
A\ hl’l () 4l ¥ S
Using (2.15) and (3.17) with ¢ = s8-1 we see that
g - wft - cn“:" fiul -
\ Yh O st
and using (3.17) with ¢ = 1 and (3.30) we obtain
ho = " < C
"\\d “h‘d”(' < Ch IMNO
Finally from (3.29) with VEN, v \‘, L = :':-l, and t = 3, and (3.31) we sce that
- - )' < CK™ Il -
bt = oy = T [ < on® llyii= | oail
Combinang these estimates we have
1.34) el < Ch° Hill=
(3.34 Iy bh”\‘ Ch ”\‘“::"l y
where s = min(r-1,k¢1) and k ~ 2
Note that (3.3d) gives an improvement over (1.131) only for k1l r=1. Estimate
(3.31) improve estimates in [7]. Babu¥ka, Osborn, and Pitkaranta 13] have proved (.21,

(3.31}-(3.34).

d)  Raviart-Thomas met hod
In our final example we study a mixed method for second order elliptic problom:

introduced by Raviart and Thomas [20]. For g ¢ L (), & a convex polyvon in 1K'

Wt

consider the model problem

I Ay = q in Q
SRS
v =0 on T
Let  H(div:) - d\\~ o (L1 div gl LN with the norm

2 oy X
ol div vl
Iyl ot ldiv \\l l“

"\\'“\I (div; )




The mixed method we study 1s based on the following variational formulation of (3, 3%),

Find  (u, ) \!(\l|\-;~) v L (1) such that
N -
(SR N “\\ sy dx ¢ ¢ div Y odx 0 v K H(div;)
\? 0
and
(3.37) [e@iv oy v @ax = 0 ¥ ¢ el ()

In Theorem 1 of [20] it s shown that problem (3.36)-(3.37) has a unique solution

\\1,;,‘ [ l\l\d\\':u“ L, (), that ¢ is the solution of problem (3.3%), and y = \n.\ni V.

In addition the tollowing regqularity result is known for this problem:

: 1
1€ g ¢ LW then ¢ ¢« BT(D) o H (V) and
{

(3. 38) el - \'“\l““ v g ¢ L,(R)

One eastly sees that (3,30 =(3037) (s an example of problem P with v = \\\d\\‘:,\:\ '

W LR , W H;\\\Y’, .\\\\1,\\‘\ Jw sy dx ,  and \\\\\,\,‘\ = |y div \ dx

2 9
The subclass D of data for which (1) ig satisfied i{s given by D = O N W', Since
a s osymmetvic, the adjoint problem (2.5, (2.0) with ¢ = W = L ()  is the same as
probelm P and thus is uniquely solvable for all d ¢ W' . Hence (H2) is satisfied.
: < 2 s
Using (3.38) we also see that e & HETRY B tQ) . N grad \
d (8} d <

5 7 and

a) by M) i 9 Al
(.30 ?.\Jnl ' |3\‘[|" \”\N\‘

We now describe the tintte dimensional subspaces used in the approximat ion scheme,

Following [J0] we begin by antroducing the space \\ arzociated with the unit vight tri

angle T in the (&L,n) =plane whose vertices are .';‘ - (1,0), .‘\'\ - (0,1), "‘l + (0,0).
For K ~ 0 an even integer, define Q to be the space of all functions \\i of the form
. R S kel 3 “k i ; .k.“\n\ 2
< PO Eat o & &y Ny a & "
‘l ¥ ks 1 O 1 ) k/2
X+l K 2 21
q., pol (&L,n) ¢+ & n ¢ R o B S .‘,K n
Q 1 .
with
k/2 i
Y (=)« R =0,
i i
1w

where p‘-'l\(: 1) denotes any polynomial of degree K in the two variables  §,n,

,_‘(\,

-
v




ror k > 1 an odd integer, define Q to be the space of all functions u\; of the form

A k+1 k (k+1) /2 (k+1) /2
- PO £ aLt a.t . /
9, l&lk(.‘.n) +oagk tabnt.. m‘“lvz £ n
. k41 3 (k¢1) /2 (k+1) /2
d. = PO £ 3 d
l“ “lk("'") + ‘0“ + (Xll_n + e + ﬁ(k*\)/2 & n
with
3 (k+l) /2 i (k+1) /2
YD) e )

(-1)‘8 =0
. i
i=0

im0

Now consider any triangle T in the

(xl.x))—plann whose vertices are denoted by
o N X > 2
a, » 12423 Let F x - FT(x) =B, x+h,, B, ¢ £’y v by e R be the unique
invertible affine mapping such that }‘T(ii) - n‘, 1 <ix<3 With each vector-valued
function \\ - (\;1,\-‘\ defined on T , we associate the function y defined on T by

. -1
T M Xty
T
where
T det (nT)
For 0 <« h « 1 , assume that N is a triangulation of O made up of triangles T
whose diameters are less than or equal to

h  which satasfy the minimal angle condition
(see Subsection 3a).

We finally consider problem l‘\ with

> - > 1 “.; ) . u ) ‘
v (\\h o Pdiv ) L T ! Xhlm \T
where
Yy = {v ¢ H(div;T v oo
X s b
and
W= (¢ ¢ L, () ¢ T T p. }
h “h -\(\ ¢ |h vh T lk 5

To apply our theorems we must check that the appropriate hypotheses are satisfied.
Now (H1)  is trivially satisfied with a = 1. In the proof of Theorem 3} of [20] it is
i ) R ’ ; :
essentially shown that there is an operator "h r (H () » \h satisfying
b(v - wh\',v\ 0 ¥y o (W) and ¥ ¢ W

h

r-1 2
furthemmore, for v « (M 0] . 3
\

2, we have




Fie i
(3.40) lhy - nhxno < Ch ”X"Q‘ 1 < 2 <min(r-1, k+l),
and
: m 1 « « 1 -
(3.41) "dlv(x - nhx)ﬂo < Ch lldiv xﬂm ; 0 <m < min(r-2,k+1).
Using the regularity results (3.38) and (3.39) we easily see that Y lul(“)l:

that (HS5) is valid.

We next observe that for Yh Vh , div Ynlr ¢ Pk. Hence xh ¢ Zh easily implies

¢ Z. Thus 2 ¢ Z and so we are in the special cases of Theorems

div v. = 0 and so
A h

h Xh

2 and 3. Again by the Corollary to Theorem 2, (H4) need not be satisfied in order to

apply (2.15), so we shall not require {1,} to be quasi-uniform.

h

/ . r L
We are now ready to derive the error estimates. Assume that ¢ ¢ H (2), r > 2. From

(2.15) and (3.40) we obtain for k > 0 ,

(3.42) Hg - ghﬂo < CHQ - "hwio
t t
< Ch ku < Ch HM%+1.
where t = min(r~1,k+l).
Now applying Theorem 3(a)-(b) we get
(3.43) Hw—whﬂo = sup {b(yd - nhxd,u-¢)

deL, () o

+ a(}éh " Ref¥g - {d) Hibin = LY \a —n)}/"d"O
for all ¢,n ¢ Wh . Using (3.41) and standard approximatility properties of Wy

we have

(3.44) inflb(yd -
neWw 4

) o _ ; ,
"Ya =) | <l vlyy = my )l ;n:' Il g=vll

h h

0

d e F
< ldiv y o h" il

where y§ = min(r,k+1), and choosing m = y - 2° in (3.32),

|~

(3.45) inf  [b(y - TR Ay = n |

dev(& - "hg)" inf |1\
new

el
0 new d ¢
h h

u=2 i 2
< Ch ldiv &Hu_z h IIXdII2 '

provided k > 1.
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Using (2.1), (2.1%), and (3.40) (with € = ;-1) we obtain for K 1

- o -
(1.40) ]\\(\\xh u, 3 )\d)‘ < \\l"o Ihn

- r |
V' "WYa U Ya = ¥

hag W 0

€8 - ul | -
S oy = muk, ¥xda = Lalo

o =1
< Ch ||¥|lu_1 h le‘d"l

Now from (3.43), (3.44), (3.45), (3.46) and the reqularity result (3.39) we obtain for

k>1,

v

| Y= < n
(3.47) Iy ¥, < h ||5||“,

Il
0

where 1 = min(r,k+1).

To obtain an estimate when k = 0, we choose m = 0 in (3.41) to obtain
" | i
(3.48) inf by "h\’,'\

- < Ildiv(\l - wh\l)no inf |l \d - ""u
'\«Hh

new

\‘
h

<~ C lldiv yellU hil \d"l

and choose € = 1 in (3.40) to obtain in the same manner as in (4.306) that

L2 latgy, = Rempga = Xa? | < M = mlg Wmyy = Yoo

<chll \3!1‘ h Ily‘ll \
AL

Combining (31.43), (3.44) with k = 0 , (3.48), (3.49), and the regularity result (3.39)

we get
31.50 U=\ < C i = 0
(3.50) Iy uh"u Vuhllulls v R (
We note that estimate (13.42) was obtained in [23, IX - 3.22a] and that (3.47)
gives an improvement over the result in (23, IX - 3.22a) in the case where | n' ),
r=1

W H (), and 2 < r < k+l
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