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1. INTRODUCTION

This report considers a problem of selecting from a set
of objects a subset of maximum value where there are sequence
dependent constraints which restrict the choices available.
There is a natural ordering among the objects which dictates
the order in which they must be considered. It is assumed
that the decision maker has complete knowledge of the opportu-
nities which will arise so that the problem is one of determining
which opportunities to select and which to forego in preparation
for later gain. The problem in which the opportunities have
some probability of vanishing without notice is considered
briefly, but the solution method is the same as long as these
probabilities are known.

The problem can be cast in several forms. Reference 1
describes the problem in the context of an "investigator" pass-
ing through a region in which there is a number of points to
be examined. -It can also be viewed as a "delivery" problem
in which a delivery truck has a list of locations and delivery
times. If a delivery is made, it must be done at the given
time and the specified location. Knowing the transit times
from point to point and the value of each customer, the problem
is to select the most valuable subset of customers to serve.

The problem can be viewed as a job shop scheduling
problem in which the production manager has a set of possible

jobs to perform. Each job has a required starting time and




known set-up and processing time. The problem is to select

the most valuable subset for processing. Reference 2 deals

with the application of dynamic programming to a similar problem
in which each job has an availability interval within which it
must be processed if selected.

The problem is viewed here as one in which a defender is
guarding some region against attack from a set of attackers
whose times and points of arrival at the region are known. The
defender is constrained to remain on the boundary of the region
and must move to the point of intrusion at the time the attacker
arrives in order to destroy the attacker. This is equivalent
to saying that the defender can not engage the target until it
crosses some threshold but it must be engaged immediately there-
after. The selection problem arises because the defender is
limited in the rate at which he can move along the boundary.

For convenience the boundary is assumed to be a straight
line segment Slong which the defender moves. Other configurations
are possible. For example, some problems in point defense can
be formulated in the same way. In that case the boundary can
be thought of as a circle (of zero radius) and the position of
the defensive system is represented by its angular rotation
or orientation. Figure 1 illustrates a problem of this type
when the region defined is the portion of the x-axis from

0 to B.
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FIGURE 1. Illustration of Basic Problem




It is convenient to think of all the attackers as
having the same speed and travelling on parallel courses
directly toward the boundary, but it is not necessary to do so.
In fact, all that is required is the time and point of arrival
on the boundary for each attacker. It is assumed hereafter
that the attackers are numbered in order of arrival at the
boundary and that the times and points of arrival are known.
Let t. be the time of arrival of attacker j and p.

] ]
be the point of arrival where 0 ¢ pj < B. The value of

attacker j is represented by Vj' It is also convenient
to define a dummy point Py to with value e 0 representing
the initial location of the defender.

For visual presentation of the problem a slight trans-
formation is convenient. This problem is equivalent to one in
which the attackers are stationary and the boundary moves in
time through the attackers. As an example, the defender's
position in the two-dimensional space (x,t) is shown in
Figure 2.

The problem remains one of determining the optimal set
of targets for the defenders to engage subject to limitations
on his ability to reposition his defensive system.

This report deals primarily with the problem in which
there are two identical defenders although the ideas are
applicable for the M-defender problem. A straightforward
dynamic programming approach for the M-defender problem is
discussed first. See also Reference 1. Next an efficient
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solution method for the problem with a single defender is

considered. Then an improved formulation for the two-defender
problem is presented and it is shown how that problem can be
solved with a greatly reduced computational burden. A computer
problem was written to test the method and the solution to a
sample problem with N = 50 attackers is included.

Several generalizations are discussed in Section 5.

2. DYNAMIC PROGRAMMING SOLUTION FOR M-DEFENDERS

The M investigator problem can be solved with a
standard dynamic programming approach using M state variables.
Define the stages such that stage n corresponds to the
time t_, and let in = (X, r-+s Xg) be the state variable
describing the location along the boundary of each investigator

at stage n. The return function for stage n is

. = i
Vi By =B, » @ny 1

rn(xn) =
0 otherwise.

The stage transformation functions can be written as

Xn+l = tn(xn,Dn)
where Bn is the vector of decisions prescribing the heading

of all investigators as they move from stage n to n+l and

t is the function which describes the resulting locations

6




at stage n+l. The decisions Bn are restricted to lie in

some set K . An alternative formulation simply defines D,

as the set of points to which the investigators move so that
§n¢1 -t (x,B) = B, but still D, is constrained to lie
in some set of feasible sclutions, say Kn‘

The complete problem can be written as

N
maximize r (x ,D
n-E-O n(X ¢ o}
subject to iml = En(in,b'n). neO,..., N
Dn < xn 3 ns=0,..., N

and can be solved using a standard dynamic programming approach

with tabular computations once a suitable grid has been

astablished for the state and decision variables. The solution

reguires the g@valuation of the following recursive equations

beginning with stage N

SLRULE

:n(in) = max

f - = \ -
8 c K \tn(%pon) + fn+1(xn*l)-o n 0,-..'N:

where




This method is very general and can be used to solve
several variations of the basic problem, except that it
becomes computationally unwieldy as M increases. The amount
of computation required rises exponentially with M but
linearly in N.

Two generalizations that can be solved using a similar
formulation are the problems in which there is a restriction
for each defender on the total number of attackers it can
engage or a restriction on the total lateral movement of
the defender. In these problems the vector of state variables
must be enlarged to include a component for the number of
engagements remaining and a component for the amount of lateral
movement remaining.

The formulation above is not practical for large
values of M nor for problems with constraints which lead
to additional state variables, and the purpose of this report
is to present a method which is more efficient than that just
given, but first an efficient method for the basic cne-state-

variable problem is presented.
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3. EFFICIENT SOLUTION FOR ONE DEFENDER

For the problem with a single defender, as illustrated
in Figure 1, the algorithm shown in Figure 3 provides an
efficient solution procedure. That algorithm assumes a dummy
point at P having value ¥y = 0 representing the starting
location of the defender. The computation produces in reverse
order the sequence of optimal return functions fn' n=®0,cce,N
where the quantity fn represents the optimal total return
that can be obtained from the remaining stages, not including
n, given that the position of the defender is Py at time t-
The sequence of optimal decisions is also produced and can be
used beginning at do to trace the optimal policy. The
algorithm relies on the fact that the only relevant value of
the state variable at any stage is the value corresponding to
the location of the attacker and that the return functions
need not be computed for any other values. For that reason

-

the state variable is suppressed in fn‘
This algorithm can easily be implemented in FORTRAN as

two nested DO loops.

4. IMPROVED FORMULATION FOR THE TWO-DEFENDER PROBLEM
This section shows how an improved formulation for the
problem with two defenders can be obtained. 1In this section the
N-attacker problem is still viewed as an N stage dynamic
programming problem where stage n corresponds to the time t
at which the defender departs from the target n. In this
9
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- 0, n= l'o--,N

—iﬂ i = i+l

STOP -

Y

Is it feasible for
the investigator to go
from p, to pi?

Yes

Yes

Set fn = Fn

set decision dn = i

FIGURE 3. Algorithm for the problem with a single defender.
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formulation, as in the formulation of Section 3, passing through
stage n corresponds to engaging target n; and if target n is
not engaged, then stage n is bypassed.

At stage n the state variables Xn1' Xp2 Fepresent
the positions of defenders 1 and 2 along the boundary. For
computations it is assumed that a grid is established for the
state variables. For convenience this grid is assumed to be the
same at each stage, consisting of S+1 points equally spaced a
distance A4 apart. It is also convenient to assume that the
targets occur at the grid points, although this is not essential.
If they were located between grid points it could be assumed that
a target is engaged if the defender passes within a distance r
of the target, or the grid points could be redefined at each
stage to include the target location.

One observation which considerably reduces the amount
of computation is that if the defenders pass through stage n, then
one of the defenders must be located at P,+ the location of the
nth attacker. Thus instead of (s+1)2 possible values of
the state variables Xn1 and Xa2 we need to consider only
(S+1) + (S+l) - 1 = 28 + 1 values. The computational reduction
from this observation is roughly equivalent to reducing the
number of state variables by one.

A second observation can also be made. This is that
there is an optimal solution in which the two defenders do not
cross. This is similar to the observation in the travelling
salesman problem that for problems with Euclidean distance

11




the optimal tour need not cross itself. The validity of this
observation can be established by noting that if a point of
crossing occurs, the defenders could simply be renumbered

so that number 1 remains on the left and number 2 on the right.
This follows from the fact that the defenders are identical,

and it would not hold if they were able to move at different

rates along the boundary. It would also be invalid if a penalty
were assessed for changing the direction of motion from left

to right or vice-versa or if they had constraints on the number of

attackers handled.

With this second observation the number of possible

values of the state variables is reduced even further. The

possible values of the state variables at stage n, X1 and

X,y are given in Table 1 where Py is the x-coordinate of

the nth target. Since the targets were initially assumed to

lie on the grid points By KA for some K. The state variable
combinations Iisted in Table 1 have been numbered for reference,
but notice that knowing the state number is equivalent to

having the value of both state variables. For example, state

number K' implies that

x =
nl l pi " K'A ->- pi
and
‘ piA o K Py
Xh2
K'A , K'a > P

12
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T

State
Number Xn1 Xn2
0 0 Pn
1 A Pn
K-1 (K=1)4 Pn
K Pn (K+1)A
S Pp (s+1)A
TABLE 1

Possible values of the state variable
in the two defender problem.
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Thus all the state variable information is conveyed by the

~

state numbers and it is unnecessary to write both state
variables. For this reason it is adequate to let the single
state variable at sﬁage n be the state number sn so that

S, = 0,1,2,..., S. The result of this second observation is to
reduce the number of state variable combinations at each stage
from 2S+1 to S+l.

In the dynamic programming formulation fn(sn) denotes
the maximum total return from the‘remaining stages n+l,...,N
given that the defenders are at stage n in state Sp° The
general recursion can be written as

£g(Sy) =0
£ (S) = max (v * £, D)}
n'“n § S n
Gn,Dn n n
Gn > n' Dn € Ksn(sn), n= llooOlN-l

where Sn is a decision variable denoting the stage to which

the defender moves next and Dn is the decision variable which
determines the state number to which each defender moves at
stage §_ . The set of feasible states at stage 80 given

n
(s.).
Sn n

From state Sn it may not be possible to go to some

state S, at stage n is denoted by K

stages and, among those that are possible, the question of which to
enter must be resolved. The general computation proceeds as

shown in Figure 4 beginning at stage N-l1l. Figure 4 assumes
completion of the computation of fn(sn) for n = N-1, N=2,...,i+l
so that the next step is to evaluate fi(-).

14
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5. MODIFICATIONS TO THE BASIC PROBLEM

A similar problem in which each target j has some
probability 1 - pj of vanishing before it is engaged can
be solved by the same method. The objective becomes maximization
of expected value and the computation is modified by diminishing
the value of target 3j from vj to pjvj' After this change,
the remainder of the solution method is the same.

Several other modifications of the basic problem are of
interest. These include the problem in which there is a
limitation on the total motion of the defender as would be the
case where fuel or some other resource is consumed. Another
interesting problem arises when there is a constraint on the
total number of attackers which can be engaged by each defender.
Both of these modifications can be handled in the basic dynamic
programming formulation by the addition of another state vari-
able; but as mentioned previously large problems require that
more efficient methods be found.

In the computer program which implements this solution
method for the two-defender problem a further savings is
incorporated. If the difference between Gi and i is
large, or at least if the time difference between the stages is
large, it is almost certainly possible to engace some target
between i and Gi' say at stage j, and still move to any
desired state at stage Gi. In such a case it is unnecessary
for the recursive procedure to examine stages si, Si+l""’ N
as possible choices of the next stage following i. This is

16
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because those choices are dominated by another choice, namely,

moving to stage j from i. A test to this effect was incorporated
with a considerable reduction in computer time. The usefulness

of such a test depends on the particular rules of motion assumed

;
?

for the defender and will be pursued here.

Reference 3 considers the problem from the point of view
of two attackers moving through a région containing N targets.
Each attacker must select a subset of the targets and no target
can be selected by both attackers. The case in which the
attackers enter the region from different directions is considered.
That case is not covered here since the ordering of the stages

differs for the two attackers.

6. COMPUTER PROGRAM

A program was written in FORTRAN IV to implement the
procedure described in Section 4 for the two defender problem.
This program was used to solve several problems in which the
attacker's locations were generated randomly using a uniform
distribution to determine the coordinates x and vy, where
0 {x<1ll and 0 < t < 100. 1In order to make the x-coordinates
fall on a conveniently spaced grid, the x-values generated were
truncated to an integer before solving the problem.

Table 2 shows the x and t coordinates for a sample

problem involving 50 attackers. Also shown are the randomly

generated target values ranging from 1 to 5.

17




A graphical presentation of the sample problem is
given in Figure 5. The numbers beside each point are the
target values on the right and the point number (mod 10) on
the left. The two lines show the sets of attackers engaged

| by the two defenders. The roles of motion used in this sample
problem permitted the defenders to move left or right at the
'z rate of one unit per unit time. Th@ scale used in plotting

% Figure 5 is compressed in the t direction and it gives the
appearance that the defenders can move more rapidly than one
unit per unit time, but reference to the coordinates of each

point will confirm that the rules of motion are not violated.

18







1 5.00 0.10 1
2 6.00 2.3 4

3 6.00 5.20 1
4 4.00 5.53 2
5 7.00 7.74 2
6 6.00 8.96 3

7 6.00 9.31 1
8 4.00 16.18 3
9 3.00 17.18 4
10 4.00 20.88 4
11 2.00 20.80 5
12 6.00 21.37 1
13 4.00 22.19 4
14 9.00 22.81 5
15 1.00 26.16 2
16 9.00 26.91 3
17 6.00 31.96 1
18 1.00 32.69 5
19 7.00 42.18 4
20 7.00 43.04 3
21 3.00 44.45 2
22 4.00 45.69 2
23 5.00 49.25 5
24 7.00 50.33 3
25 8.00 53.22 5
26 2.00 55.22 2
27 7.00 59.42 1
28 3.00 59.88 5
29 2.00 60.38 3
30 9.00 60.63 4
31 8.00 65.35 2
32 6.00 65.54 5
33 8.00 66.17 3
34 3.00 65.79 2
35 3.00 66.89 2
36 2.00 69 .05 2
37 9.00 70.86 3
38 4.00 72.45 5
39 0.00 73.54 4
40 8.00 75.19 3
41 6.00 76.55 3
42 4.00 76.92 2
43 7.00 80 .05 2
44 0.00 81.85 2
45 4.00 84.41 1
46 9.00 85.02 3
47 6.00 90.00 1
48 7.00 90.34 5
49 8.00 92.90 1
50 4.00 99.97 5

Table 2. Data for Sample Problem Involving 50 Attackers
20
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