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1. INTRODUCTION

This report considers a problem of selecting from a set

of objects a subset of maximum value where there are sequence

dependent con straints which restrict the choices available .

There is a natural ordering among the objects which dictates

the order in which they must be considered. It is assumed

that the decision maker has complete knowledge of the opportu-

nities which will arise so that the problem is one of de termining

which opportunities to select and which to forego in preparation

for later gain . The problem in which the opportunities have

some probability of vanishing without notice is conside red

briefly,  but the solution method is the same as long as these

probabilities are known .

The problem can be cast in several forms . Re ference 1

describes the problem in the context of an “ investigator” pass-

ing through a region in which there is a number of points to

be examined. ‘It can also be Viewed as a “ delivery ” prob lem

in which a delivery truck has a list of locations and delivery

times. If a delivery is made, it must be done at the given

time and the specified location . Knowing the transit times

from point to point and the value of each customer , the problem

is to select the most valuable subset of customers to serve .

The problem can be viewed as a job shop scheduling

problem in which the production manager has a set of possible

jobs to perform. Each job has a required starting time and
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known set-up and pro cessing time . The problem is to select

the most val uable subset for processing. Reference 2 deals

with the application of dynamic programming to a similar prob lem

in which each job has an availability interval within which it

must be processed if selected.

The problem is viewed here as one in which a defender is

guarding some region against attack from a set of attackers

whose times and points of arrival at the region are known. The

defender is constrained to remain on the boundary of the region

and must move to the poin t of intrusion at the time the attacker

arrives in order to destroy the attacker. This is equivalent

to saying that the defender can not engage the target until it

crosses some threshold but it must be engaged immediately there-

af te r .  The selection prob lem arises because the defender is

limited in the rate at which he can move along the boundary.

For convenience the boundary is assumed to be a straight

line segment along which the defender moves. Other configurations

are possible. For example, some problems in point defense can

be formulated in the same way. In that case the boundary can

be thought of as a circle (of zero radius) and the position of

the defensive system is represented by its angular rotation

or orientation. Figure 1. illustrates a problem of this type

when the region defined is the portion of the x—axis from

Oto B.

2
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time

0 B position

FIGURE 1. Illustration of Basic- Problem
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It is convenient to think of all, the attackers as

having the same speed and travelling on parallel courses

directly toward the boundary, but it is not necessary to do so.

In fact, all that is required is the time and point of arrival

on the boundary for each attacker. It is assumed hereafter

that the attackers are numbered in order of arrival at the

boundary and that the times and points of arrival are known.

Let t~ be the time of arrival of attacker j and

be the point of arrival where 0 < p
~ 

< B. The va’ue of

attacker j is represented by v~. It is also convenient

to define a dununy point p0, t0 with value v0 - 0 representing

the initial location of the defender.

For vi3ual. presentation of the problem a slight trans-

formation is convenient. This problem is equivalent to one in

which the attackers are stationary and the boundary moves in

tine through the attackers. As an example, the defender’s

position in t~ie two—dimensional space (x , t) is shown in

Figure 2.

The problem remains one of determining the optimal set

of targets for the defendei~s to engage subject to limitations

on his ability to reposition his defensive system.

This report deals primarily with the problem in which

there are two identical defenders although the ideas are

applicable for the N—defender problem. A straightforward

dynamic programming approach for the M-de fender problem is

discussed first .  See also Re ference 1. Next an eff icient

4
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FIGURE 2. Space—Time Representation
of Defender’s Position
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solution method for the problem with a single defender is

considered. Then an improved formulation for the two-defende r

problem is presented and it is shown how that problem can be

solved with a greatly reduced computational burden. A computer

problem was written to test the method and the solution to a

sample problem with N — 50 attackers is included.

Several generalizations are discussed in Section 5.

2. DYNAMIC PROGRAMMING SOLUTION FOR M-DEFENDERS

The M investigator problem can be solved with a

standard dynamic programming approach using M state variables.

Define the stages such that stage n corresponds to the

time tn s and let X~ (x 1~ ~c~~ ) be the state variable

describing the location along the boundary of each investigator

at stage n . The return function for stage it is

v
ii ~~ — 

~~ 
, any i

r~~
(X

~
)

0 otherwise.

The stage transformation functions can be written as

t (X~~D )

where is the vector of decisions prescribing the heading

of all investigators as they move from stage ii to ri+l and

is the function which describes the resulting locations

6
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at stage n+l. The decision s are restri ct•d to lie in

some set An alternative formulation simply defines

as th. set of points to which the investigators move so that

— t (i ,~~ ) - but still is constrained to ii.

in cone set of feasible solutions , say K~ .

The complete problem can be written as

N
maximize r (x D

n—O ~ ~ a

subject to a t~~(x~ ,5~), a • 0,..., N

n — 0 ,..., N

and can be solved using a standard dynamic programming approach

with tabular computations once a suitable grid has been

established for th. state and decision variables. The solution

r quir s the evaluation of th. following recursive equations

beginning with stage N

~N+l~~’N+1)

f t x ~) — max .r~~(%. D~ ) + ~~~~~~~~~~~ n.- 0,...,N ,
D ~ Ka a

whe re

~n+l 
•

7
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This method is very general and can be used to solve

several variations of the basic problem, except that it

becomes contputationally unwieldy as N increases. The amount

of computation required rises exponentially with N but

linearly in N.

Two generalizations that can be solved using a similar

formulation are the problems in which there is a restriction

for each defender on the total number of attackers it can

engage or a restriction on the total lateral movement of

— the defender. In these problems the vector of state variables

must be enlarged to include a component for the number of

engagements remaining and a component for the amount of lateral

movement remaining.

The formulation above is not practical for large

values of N nor for problems with constraints which lead

to additional state variables, and the purpose of this report

is to present ‘a method which is more efficient than that just

given , but first an efficient method for the basic one—state—

variable problem is presented.

8



— - 
. -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - - - ~~~~~~~~~~~~~~~~~~~~~~~~

3. EFFICIENT SOLUTION FOR ONE )EF!NDER

For the prob lem wi th  a single de fender , as illustrated

in Figure 1, the algorithm shown in Figure 3 provides an

efficient solution procedure . That algorithm assumes a dummy

- 

-
~ point at p0 having val ue V0 • 0 representing the starting

location of the defender. The computation produces in reverse

order the sequence of optimal return functions ~~ a - 0,...

where the quantity f~ represents the optimal total return

that can be obtained from the remain un i stag es, not including

n , given that the position of the defende r is p~ at time t~ .

The sequence of optimal decisions is also produced and can be

used beginning at d0 to trace the optimal policy. The

al gori thm rel ies on the fact that the only relevan t value of

the state variable at any stage is the value corresponding to

- 
- the location of the attacker and that the return functions

need not be computed for any other values. For that reason

- 

V 
the state variable is suppressed in f~ .

This algorithm can easily be implemented in FORTRAN as

two nested DO loops.

4 .  IMP ROVED FORMULATION FOR THE TWO-DEFENDER PROBLEM

This section shows how an improved formulation for the

problem with two de fenders can be obtained. In this section the

U 
N—attac ker problem is still viewed as an N stage dynamic

programming problem where stage a corresponds to the time t~
at which the de fender departs from the target a. In this

9 

--~~~ — -- - - ----—- - —--—-- -- - - - - - - - - ---



• 0 , n — i , . . . , N

Set n — N

n — n—i

Yesn — - i ?  STOP -

No
- i _ a n

i — j +i

Yesi • N+2

No

Is it feasible for
No the investigator to go

from to Pj ? 
U

Yes

— Vj + f~

Set f~~~a F ~

Set decision d~ a j

FIGURE 3. Al gorithm for the problem with a single de fender.
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V formulation , as in the formulation of Section 3, passing through

stage n corresponds to engaging target a; and if target a is

not engaged, then stage a is bypassed.

At stage a the state variables x~~ , 
~~2 represent

the positions of defenders 1. and 2 along th. boundary. For

computations it is assumed that a grid is established for the

state variables. For convenience this grid is assumed to be the

sane at each stage, consisting of S4.1 points equally spaced a

distance ~ apart. It is also convenien t to assume that the
U 

targets occur at the grid points, although this is not essential. -

If they were located be tween grid points it could be assume d that

a target is engaged if the defender passes within a distance r U

of the target, or the grid points could be redefined at each

stage to include the target location.

One observation which considerably reduces the amount

of computation is that if the defenders pass through stage n , then

one of the defenders must be located at p~ , the location of the

a attacker. Thus instead of (S+l)~ possible values of

the state variables x~1 and x~2 we need to consider only

(S+L) + (S+1) - 1 a 2S + 1 values . The computational reduction

from this observation is roughly equivalent to reducing the

n umber of state variables by one.

A second observation can also be made. This is that

there is an optimal solution in which the two defenders do not

- I cross . This is similar to th. observation in the travelling

salesman problem that for problems with Euclidean distance

1 
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the optimal tour need not cross i tself .  The validity of this

observation can be established by noting that if a point of

crossing occurs, the defenders could simply be renumbered

so that number 1 remains on the left and number 2 on the right. -

This follows from the fact that the defenders are identical,

and it would not hold if they were able to move at different

rates along the boundary. It would also be invalid if a penalty

were assessed for changing the direction of motion from left

to right or vice-versa or if they had constraints on the number of

attackers handled.

With this second observation the number of possible

values of the state variables is reduced even further. The

possible values of the state variables at stage a, x~1 and

Xn21 are given in Table 1 where p~ is the x-coordinate of

the ~th target. Since the targets were initially assumed to

liø on the grid points p~ - K.~ for some K. The state variable

combinations listed in Table 1 have been numbered for reference,

bt-t notice that knowing the state number is equivalent to

having the value of both state variables. For example, state

U 
number K’ implies that

, if K ’ .\ < p
~,

K’~~~> p~

and

~ 
p~~ , if K’ .\ 

~
xn2 -

( 
K’~ , K’~ >

12
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State
Number xflj x~ 2

0 0

1 .
~

K— i (K 1)~

K pa (K+l)~

(S+1).~

TABLE 1

Possible values of the state variable
in the two defender problem.

I
13
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Thus all the state variable information is conveyed by the

state numbers and it is unnecessary to write both state

variables. For this reason it is adequate to let the single

state variable at stage a be the state number Sn so that

S~ — 0,1,2 , . . . ,  S. The result of this second observation is to

reduce the number of state variable combinations at each stage

from 2S+1 to S+]..

In the dynamic programming formulation f~ (Sn) denotes

the maximum total return from the remaining stages n+l, .. . ,N

given that the defenders are at stage a in state S1~. The

general recursion can be written as

— 0

f (S ) — max (v 5 + (D ) }a Sn sDn a a

> n~ Dn i K 3 ( s ) ,  a l,...,N—i.

where is a decision variable denoting the stage to which

U the defender moves next and D~ is the decision variable which

determines the state number to which each defender moves at

stage 5n~ 
The set of feasible states at stage 5~ given

state S~ at stage a is denoted by Kd (Sn ) .

From state S~ it may not be possible to go to some

stages and, among those that are possible, the question of which to

enter must be resolved. The general computation proceeds as

shown in Figure 4 beginning at stage N-I. Figure 4 assumes

completion of the computation of f~ (S~) for n — N—l , N—2 ,...,i+l

so that the next step is to evaluate

14 
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5. MODIFICATIONS TO THE BASIC PROBLEM

A similar problem in which each target j has some

probability 1. — p~ of vanishing be fore it is engaged can

be solved by the sane method. The objective becomes maximization

of expected value and the computation is modified by diminishing

the value of target i from vj to PjVj. After this change,

the remainder of the solution method is the same.

Several other modifications of the basic problem are of

interest. These include the problem in which there is a

limitation on the total motion of the defender as would be the

case where fue l. or some other resource is consumed . Another

interesting problem arises when there is a constraint on the

total n umber of attackers which can be engaged by each defender.

Both of these modifications can be handled in the basic dynamic

programming formulation by the addition of another state vari-

able ; but as mentioned previously large problems require that

more efficient methods be found.

In the computer program which implements this solution

method for the two—defender problem a further savings is

incorporated. If the difference between and i is

large, or at least if the time difference between the stages is

large, it is almost certainly possible to engage some target

between i and 
~~~

, say at stage j ,  and still move to any

desired state at stage S In such a case it is unnecessary

for the recursive procedure to examine stages S~ , ~~~~~~~~~~~~~~~~~~~ N

as possible choices of the next stage following i. This isL 16 
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because those choices are dominated by another choice, namely,

moving to stage j  from i. A test to this effect  was incorporated

with a considerable reduction in computer tin.. The usefulness

of such a test depends on the particular rules of motion assumed
U 

for the defender and will be pursued here .

- 

- 
Reference 3 considers the problem from the point of view

- 

- of two attackers moving through a region containing N targets .

Each attacker mus t select a subset of the targets and no target

can be selected by both attackers. The case in which the

- attackers enter the region from different directions is considered .

That case is not covered here since the ordering of the stages

di f fers  for the two attackers.

6. COMP UTE R PROGRAM

A program was written in FORTRAN IV to implement the

procedure described in Section 4 for the two de fende r problem.

This program was used to solve several problems in which the

attacker ’ s locations were generated randomly using a uniform

distribution to determine the coordinates x and y , where

0 < x < 11 and 0 < t < 100 . In orde r to make the x—coordinates

fall on a conveniently spaced grid, the x-values generated were

• truncated to an integer be fore solving the problem.

Table 2 shows the x and t coordinates for a sample

prob lem involving 50 attackers . Also shown are the randomly

generated target values ranging from 1 to 5.

17
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A graphica l presentation of the sample problem is

given in Figure 5. The numbers besid. each point are the

target values on th. right and the point number (mod 10) on

the left. The two lines show the sets of attackers engaged

by the two d•fertders . The roles of motion used in this sample

problem permitted the defenders to move left or right at the

rate of one unit per unit time . The scale used in plotting

Figure 5 is comp ressed in the t direction and it gives the

appearance that the de fenders can move more rapidly than one

unit per unit time, but reference to the coordinates of each

poin t will confirm that the rules of motion are not violated.

18
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- .- fl~—~~ \ ~C •_V V~
U U~ V: V.~~~~~~~ V*U r - - V . ,  U~ - -

1 5.00 0. 10 1.
2 6.00 2.33 4
3 6.00 5.20 1
4 4.00 5.53 2
5 7.00 7.74 2
6 6.00 8.96 3
7 6.00 9.31 1
8 4 .00 16.18 3
9 3.00 17.18 4
10 4.00 20.88 4
Il 2.00 20.80 5
12 6.00 21.37 1
13 4.00 22.19 4
14 9.00 22.81 5
15 1.00 26.16 2
16 9.00 26.91 3
17 6.00 31.96 1.
18 1.00 32.69 5
19 7.00 42.18 4
20 7.00 43.04 3
21 3.00 44.45 2
22 4.00 45.69 2
23 5.00 49.25 5
24 7.00 50.33 3
25 8.00 53.22 5

U 

26 2.00 55.22 2
27 7.00 59.42 1
28 3.00 59.88 5
29 2.00 60.38 3
30 9 .00  60 .63  4
31 8.00 65.35 2
32 6.00 65.54 5
33 8.00 66.17 3
34 3.00 65. 79 2
35 3.00 66.89 2
36 2.00 69.05 2
37 9 .00 70 .86 3
38 4.00 72.45 5
39 0.00 73 .54 4
40 8.00 75.19 3
41 6.00 76.55 3
42 4.00 76.92 2
43 7.00 80.05 2
44 0.00 81.85 2
45 4.00 84.41 1
46 9 .00  85.02 3
47 6.00 90.00 1
48 7.00 90.34 5
49 8.00 92.90 1
50 4.00 99.97 5

Table 2 .  Data for Sample Problem Involving 50 Attackers

20
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