AD-A070 076 FEDERAL AVIATION ADMINISTRATION WASHINGTON DC OFFICE --ETC F/6 1/5 INSTALLATION CRITERIA FOR THE APPROACH LIGHTING SYSTEM IMPROVEM--ETC(U) NOV 78 S ZAIDMAN FAA-ASP-78-5 NL I OF I AD70076 I OF I AD70076 I OF I AD70076 I OF I AD70076 I OF I AD700776 I OF I AD700777 Report No. FAA-ASP-78-5 # INSTALLATION CRITERIA FOR THE APPROACH LIGHTING SYSTEM IMPROVEMENT PROGRAM (ALSIP) November 1978 This document has been approved for public release and sale; its distribution is unlimited. U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION OFFICE OF AVIATION SYSTEM PLANS Washington, D.C. 20001 # **Technical Report Documentation Page** 2. Government Accession No. 3. Recipient's Catalog No. Installation Criteria for the Approach Lighting System Improvement Program (ALSIP). 8. Performing Organization Report No. my Organization Name and Address 10. Work Unit No. (TRAIS) U.S. Department of Transportation Federal Aviation Administration 11. Contract or Grant No. Office of Aviation System Plans Washington, D.C. 20591 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Final Report. 15. Supplementary Notes FAA-ASP-78-5 Steven Zaidman Title and Subtitle 7. Author(s) This report develops investment criteria for retrofit of runway approach lighting systems under the Approach Lighting System Improvement Program (ALSIP). A major component of this program is the retrofit of existing rigid light support structures with frangible mountings. Other aspects include conversion of high-intensity lighting systems to more energy-efficient configurations. There are 397 approach lighting systems eligible for retrofit under the ALSI Program. The cost of modifying these systems is \$77.7 million. Criteria are developed by benefit-versus-cost analysis. Each lighting system under ALSIP will be evaluated using the appropriate benefit/cost (B/C) formula. All systems will be ranked by order of B/C ratio. Implementation of the program will continue within approved funding levels in accordance with the criteria ranking. 17. Key Words Approach lighting system, low-impact resistant structures, benefit/cost criteria tion to Sate Sponsoring Agency Code 19. Security Classif. (of this report) Unclassified 20. Security Classif. (of this page) Unclassified 21. No. of Pages 22. Price 44 None Form DOT F 1700.7 (8-72) Reproduction of completed page authorized 409689 # TABLE OF CONTENTS | | | Page | |--------|---------------------------------------------------|----------------------| | | Executive Summary | i | | I. | Introduction and Purpose | -1 | | II. | ALSIP Costs and Program Description | 1 | | III. | ALSIP Payoffs | 3 | | | A. Hazard Reduction | 3<br>3<br>4 | | IV. | Safety Analysis | 4 | | | A. Review of Accidents | 4<br>5<br>8 | | v. | Maintenance Savings Quantification | 13 | | VI. | Energy Conservation Quantification | 13 | | VII. | Derivation of Investment Guidelines | 14 | | | A. Subprogram I | 16<br>17<br>18<br>19 | | VIII. | Impact Assessment - FY 1978 Proposed Locations | 20 | | IX. | Economic Assessment - Complete ALSI Program | 21 | | Append | ix A. Resumes of Air Carrier and General Aviation | on | Accidents Distribution: A-WYZ-2; A-X(AF/AS/AT/FS/PL)-3; A-FAS-1; A-FAF-2/3; A-FAT-1/2/3/5/6 (Ltd) # LIST OF TABLES | | | Page | |----------|----------------------------------------------------------|------| | Table 1. | Air Carrier Accidents | 6 | | Table 2. | General Aviation Accidents | 7 | | Table 3. | Operations on ALS Runways | 9 | | Table 4. | Discounted Growth Factors | 12 | | Table 5. | Validated ALSIP Projects - FY 1980 Budget<br>Proposal | 22 | | Table 6. | Validated ALSIP Projects - Moved to FY 1979 Budget | 25 | | Table 7. | ALSIP Projects Cut Due to Funding Limitations | 26 | | Table 8. | Nonvalidated ALSIP Projects - FY 1980<br>Budget Proposal | 30 | ### EXECUTIVE SUMMARY For right MALSE retreits to low-impact MALSE. This report develops economic investment criteria for frangible approach light structures installed as part of the Approach Lighting System Improvement Program (ALSIP). Criteria are empirically derived from a benefit-versus-cost (B/C) evaluation of each of three ALSIP subprogram elements: - . Convert existing ALSF-2 (and ALSF-1's designated for ALSF-2 conversion) to low-impact resistant switchable ALSF-2. - . Convert ALSF-1 (not designated for ALSF-2 conversion) to low-impact resistant MALSR. - Convert rigid MALSR to low-impact resistant MALSR. Benefits considered are enhanced safety due to frangibility of new light support structures, reduction in maintenance requirements, and savings due to energy conservation where appropriate. All rigid approach lighting systems are to be ranked for system implementation according to benefit/cost ratio by using the appropriate formula, below. For rigid ALSF-2 retrofit to switchable low-impact ALSF-2: Annual Air Carrier Operations on Candidate Runway x 14.59 + 52,700 Washington + Region Cost = B/C Ratio Value For rigid ALSF-1 retrofit to low-impact MALSR: Annual Air Carrier Operations on Candidate Runway x 14.59 + 132,900 Washington + Region Cost = B/C Ratio Value For rigid MALSR retrofit to low-impact MALSR: Annual Air Carrier Operations on Candidate Runway x 14.59 Washington + Region Cost B/C Ratio Value Convert extering ALST-2 (and ALST-1's designated for EXECUTIVE SUNGERY This report develops accoomic investment criteria for Benefit/cost criteria will be used to determine the priority of specific locations for retrofit of frangible approach lighting towers, subject to hardware and personnel constraints. Implementation of the program will continue within approved funding levels in accordance with the application of the criteria. When completed, all 397 rigid light towers will be retrofitted at a cost of \$77.7 million. Benefite considered are enhanced safety due to frangibility of new light support structures, reduction in maintenance requirements and savings due to energy conservation where, All right approved lighting systems are to be tanked for system in firstending eccording to benefit/cost ratio by using this appropriate formula, below. For rigid ALSF-2 retrofit to switchable low-impact ALSF-2: Operations on Cartie 2 | St. 700 | B/C Earlo Value | Submitted + Region Cost For rigid ALSF-1 centrofit to low-impact MALER: Operations on Candidate Punsary x 14.59 + 132,900 = B/C Racio Value Unantagen + Region Cost # I. INTRODUCTION AND PURPOSE The purpose of this study is to provide F&E investment criteria for the Approach Lighting System Improvement Program (ALSIP), previously known as the Low-Impact Resistant (LIR) Retrofit Program. Criteria are developed from a survey of the costs of providing the improved light system, a detailed analysis of aircraft accidents involving non-frangible approach light structures, and examination of maintenance requirement reductions and energy savings. The investment standards, which are empirically derived from a benefit-versus-cost analysis, will determine the priority of all locations for retrofit of frangible approach light towers. FAA Order 6850.9, Revised Approach Lighting Criteria, dated 4/9/75, calls for the installation of frangible structures with all new systems. The order goes on to state that a frangible retrofit program will be considered in future budgets for all presently commissioned facilities when standards and criteria have been developed. In 1976 when the FAA's Agency Review Board (ARB) was reviewing the FY 1978 Facilities and Equipment budget, they approved a retrofit program for \$5.2 million. (The funding was later cut to \$4.0 million.) Consistent with the requirement in Order 6850.9 for criteria development, the ARB directed that benefit/cost criteria be developed for the frangible tower retrofit program prior to inclusion in future budgets. ALSIP criteria developed in the study will provide the guidance mandated by the agency for future F&E budget considerations. In June 1978 the Department of Transportation's Transportation System Acquisition Review Council (TSARC) approved funding of the entire ALSI Program. Under the program, 397 rigid approach light systems will be retrofitted at a cost of \$77.7 million. Funding will be approved within each budget year for locations on a priority basis. The implementation priority will be decided by ordering on benefit/cost values. # II. ALSIP COSTS AND PROGRAM DESCRIPTION The ALSI Program can be segmented into three independent subprograms. It is the intent of this study to develop criteria for each. A comprehensive description of each ALS and associated procurement costs can be found in an Airway Facilities Service Acquisition Paper entitled "Acquisition Paper for the Retrofit of Approach Lighting Systems with Low-Impact Resistant Light Support Structures." The total ALSIP cost is \$77.7 million. The funding breakdown is currently planned as follows: | FY 77 (assigned) | \$ 3.3 million | |-----------------------------------------|----------------| | FY 78 (assigned) | 4.0 | | FY 79 ENGLISH CATALO ME AND ADDITION | 6.0 | | FY 80-86 (\$8.0 million/year) | 56.0 | | FY 87 clay and without the little store | 8.4 | | | \$77.7 million | The description and funding requirements for each subprogram are outlined below. A. Subprogram I. Convert existing ALSF-2 (and ALSF-1's designated for ALSF-2 conversion) to low-impact resistant (LIR) switchable ALSF-2. The switching feature could convert an ALSF-2 configuration to an SSALR configuration (Simplified Short Approach Lighting System with Runway Alignment Indicator Lights) when weather ceiling and visibility permit. Program cost for 70 systems = \$35.3 million @ \$503,900/unit | Washington office furnished equipment | \$288,900 | |---------------------------------------|-----------| | Regional engineering and construction | 175,000 | | Removal of old equipment | 40,000 | | Total Unit Cost | \$503.900 | B. Subprogram II. Convert ALSF-1 (not designated for ALSF-2 conversion) to LIR MALSR. Program cost for 197 systems = \$28.5 million @ \$144,700/unit | Washington office furnished equipment | \$ 32,200 | |---------------------------------------|-----------| | Regional engineering and construction | 72,500 | | Removal of old equipment | 40,000 | | Total Unit Cost | \$144 700 | # C. Subprogram III. Convert nonfrangible MALSR to LIR MALSR. Program cost for 130 systems = \$13.9 million @ \$107,100/unit | Washington office furnished equipment | \$ 25,900 | |---------------------------------------|-----------| | Regional engineering and construction | 68,700 | | Removal of old equipment | 12,500 | Total Unit Cost \$107,100 # III. ALSIP PAYOFFS The ALSI Program is designed to reduce hazards to aircraft departing and arriving the airport approach area, reduce energy consumption, and reduce maintenance requirements at selected ALS runways. Hazard reduction is the primary payoff or benefit while maintenance and energy savings are of secondary importance. The following material is principally taken from the Airway Facilities Service Acquisition Paper on the LIR Program. - A. Hazard Reduction. In terms of the overall program, the reduction of hazards to arriving and departing aircraft is solely attributable to the frangible nature of the ALS. If struck by an aircraft, the light structure is designed to yield without causing major structural damage or loss of aircraft control. The structure is designed not to yield or break when subject to high winds, ice, or other normal meteorological or environmental conditions. Hazard reduction (i.e., safety enhancement) is a common element to all three ALSIP subprogram elements. - B. Energy Conservation. Besides being the lowest cost system in the ALS inventory, medium-intensity approach light systems (MALS) are the least energy-intensive. Coupled with RAILS (or Runway Alignment Indicator Lights), an MALS forms an MALSR configuration. The MALSR is required to provide the basic approach guidance for Category I landing minimums. Replacing ALSF-1 systems on Category I runways with MALSR systems provides a potential energy saving of 89 percent, or 190,000 kilowatt hours per year per system. Accrued benefits here are directly attributable to Subprogram II, as identified on page 2. There are also energy conservation savings attributable to Subprogram I elements. The latest standard design of the ALSF-2 is more energy-efficient. While a full panoply of lights is required for landings conducted in weather with ceilings below 200 feet or visibility of less than 1/2 mile (Category II), the SSALR configuration using less than half the lights is perfectly adequate for all higher visibility conditions that predominate. The decision to replace existing ALSF-2 (and ALSF-1's designated for ALSF-2 conversion) with switchable ALSF-2 configuration will produce an energy saving of approximately 43 percent, or 138,700 kilowatt hours per year per system. C. Maintenance Savings. While a saving in staffing is not, by Itself, an objective of the program, a saving will result from the conversion of existing ALSF-1 facilities to the MALSR configuration. An ALSF-1 requires approximately 0.77 man-years for maintenance, while an MALSR requires only 0.35. Thus, a saving of 0.42 man-years/year is realized for each conversion of an ALSF-1 to MALSR (Subprogram II). It is not anticipated that any separation of personnel would result from these savings, but the effort saved could avoid staffing increases that might otherwise be required. The possibility of a long-term reduction in Airway Facilities Service staffing is not considered in the analysis. # IV. SAFETY ANALYSIS # Statistical Data on Aircraft Striking ALS Structures An Office of Aviation Systems Plans report entitled "Retrofit Frangible Towers Program Study," dated July 19, 1977, documented the historical costs associated with aircraft damage and injury to occupants for air carrier and general aviation aircraft which struck approach light structures. The following material is taken primarily from that report: A. Review of Accidents. Based on a review of (1) NTS briefs of U.S. air carrier accidents for the years 1966-1975. (2) FAA accident/incident reports, and (3) NTSB accident investigation files and reports, it has been established that 12 air carrier accidents involving aircraft striking ALS structures occurred in the United States during the period 1966-1976. However, three of these accidents involved the aircraft first striking the ILS localizer, and consequently these accidents were not included in this study. A number of incidents (i.e., an aircraft occurrence which is not classified as an accident and in which a hazard or potential hazard to safety is involved) were identified in which the air carrier aircraft struck ALS structures, but these also were not included in this study. FAA and NTSB records were also reviewed to determine general aviation accidents which involved aircraft striking nonfrangible ALS structures. This review, which only covered a five-year period, identified 10 such general aviation accidents that occurred during 1972 to 1976. The accidents considered in this study are listed in Tables 1 and 2 along with data on the type of aircraft, extent and costs of damage, and the number and imputed costs of fatalities and injuries. Also, a brief resume of each accident is set forth in Appendix A. B. Cost Factors. The cost of the accidents identified in this study was quantified in dollars consistent with previous studies conducted by the Office of Aviation System Plans to determine the effectiveness of FAA National Aviation System safety programs. The values used are as follows: # 1. Air carrier aircraft - a. Destroyed The average selling price of an identical make and model used aircraft in the year of the accident. - b. <u>Substantial damage</u> One-third of the cost of a replacement aircraft. - c. Minor damage No monetary value assigned # 2. General aviation aircraft - a. <u>Destroyed</u> General aviation aircraft were first categorized by size, and through a computer process, the average age of destroyed aircraft in each category was determined annually and a representative value assigned. - b. Substantial damage One-third of the cost of a replacement aircraft. - c. Minor damage No monetary value assigned. TABLE 1 TABLE 1 | Total | Cost (Millions) | 3.48 | 0.18 | 3.29 | 9.87 | 3.11 | 5.45 | 8.61 | 40.75 | 4.15 | 78.89 | |---------------|--------------------|------------------------------|---------------------|---------------------|-----------------------|---------------------|-----------------------------|---------------|---------------------|---------------|-------------------------------------------------------------------------------| | 23 | Cost<br>(Millions) | l Ma<br>cod<br>tril | adl<br>a g | 90.0 | 0.56 | 00 | 0.41 | 0.21 | 34.14 | 0.05 | an girdraft occu. 32 dent and in which 32 truck A.S. strucky | | Injuries | z | 75 | 16 | 86 | 180 | 6 | 37 | 151 | 1 | 76 | this study, egg | | Inj | × | J. | 1 | 3 | 19 | 1 | 38 | 13 | 1 | 6 | FAA S | | 9 | S | 1 | | 14 | 10 | ala<br>ndb | 4 | m | 12 | 11 | e aldigharinon gr | | | 1 | 1 | 1 | 1 | T | Th | 1 | T | 112 | | tion anothernes 15 | | 10 | Cost<br>(Millions) | 3.48 | 0.18 | 3.23 | 9.31 | 3.11 | 5.04 | 8.40 | 6.61 | 4.10 | The ace in Tables 1 and 1 73 for ace extent and consts for accident is set to | | Afreraft Data | Damage | Substantial | Substantial | Substantial | Substantial | Substantial | Demolished | Substantial | Demolished | Demolished | In this entire to talk to determine the a | | ul f | Type | B-727 | CV-340 | B-727 | B-747-121 | B-707-331 | DC-9-32 | DC-10-30 | B-727-225 | DC-9-10 | an identical make accident. | | | Location | 11/02/66 Jamaica, N.Y. (LGA) | New Cumberland, Pa. | Jamaica, N.Y. (LGA) | San Francisco, Calif. | Jamaica, N.Y. (JFK) | 11/27/73 Chattanooga, Tenn. | Boston, Mass. | Jamaica, N.Y. (JFK) | Denver, Colo. | of a replacement a c. 2. Sen first categorized | | | Date | 11/02/66 | 11/29/66 | . 89/20/90 | 07/30/11 | 12/12/72 | | 12/11/73 | 06/24/75 | 11/16/76 | | | | No. | A-1 | A-2 | A-3 | A-4 | A-5 | 9-V | A-7 | 8-A | 4-9 | | TABLE 2 General Aviation Accidents | Total | Cost (Millions) | 0.098 | 0.007 | 0.009 | 0.003 | 0.002 | 0.022 | 0.458 | 0.067 | 0.007 | 0.940 | 1.613 | | |---------------|--------------------|-------------|------------------|----------------|----------------|---------------------------|--------------------|-----------------|------------------------------|----------------------------|----------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | Cost (Millions) | 0.090 | | dir. | | | | 0.135 | 0.045 | | 0.900 | 1.170 | | | Injuries | × | 1 | 1 | 1 | 2 | 1 | 1 | 9 | 1 | н | 1 | 10 | | | Infi | × | 1 | 1 | 1 | 1 | 1 | 1 | | , I | 1 | | 1 | | | | S | 2 | | v A<br>Lev | 1 | | | س | - | İ | 11 | 9 | used Yoz each | | | 4 | 3 91 | | | | gö: | | 1 | 1 | | 6) | 3 | a projection o | | | 3.8 | 10 | au | fsv | A | | CIE. | | - | | i l | | | | | Cost<br>(Millions) | 0.008 | 0.007 | 0.009 | 0.003 | 0.002 | 0.022 | 0.323 | 0.022 | 0.007 | 0.040 | 0.443 | Bas<br>cost/of/the sc<br>lien. Of this | | Aircraft Data | Damage | Substantial Demolished | Substantial | Demolished | Totals | J. F. (eno-de accounced for accounted ac | | | Type | C-172 | AA-1A | BD-5J | PA-20 | C-150 | BE-88-55 | NA-265-80 | PA-28-140 | PA-28-140 | BE-95-A55 | | The reason is economic when determining the fit becomes ad Maximum ALSIP | | | | Greer, S.C. | Ft. Benning, Ga. | Oshkosh, Wisc. | Cheyenne, Wyo. | 10/22/73 Anchorage, Alas. | Lake Jackson, Tex. | Watertown, S.D. | 06/29/75 New Cumberland, Pa. | G-9 09/03/75 Orlando, Fla. | Hyannis, Mass. | | | | | Date | 01/12/72 | 09/06/72 | 08/01/73 | 10/19/73 | | 08/19/74 | 06/14/75 | | 09/03/75 | 51/90/60 | | | | | <u>%</u> | 7 | 6-5 | 6-3 | 1 | S. | 9-9 | 6.7 | 8 | 6-9 | 6-10 | | | 3. Value of human life - The economic loss of human life was selected to be \$300,000. This value was arrived at by projection of five years of non-Warsaw actual settlements. This figure has also been previously used by the agency in its facility criteria studies. # 4. Cost of injury - a. Serious injury A value of \$45,000 was used for each serious injury. This value was also based on a projection of five years of non-Warsaw actual settlements. - b. Minor injury A value of \$6,000 was used for each minor injury. Based on the above figures, the total historical cost of the accidents considered in this study is \$80.5 million. Of this amount, approximately half was accounted for by one accident (the Eastern Airlines Flight 66 accident at J. F. Kennedy in 1975), while two other air carrier accidents accounted for another 23 percent of the total. The complete ALSIP retrofit program costs \$77.7 million. Although accident costs exceed ALS retrofit costs, this alone is not a sufficient basis for program approval. The reason is that not all ALSI Program elements may prove economic when considered separately. The problem reduces to determining the crossover point—the point at which ALS retrofit becomes advantageous for the Federal Government to fund. Maximum ALSIP cost-effectiveness can be achieved by retrofitting only those structures which satisfy economic criteria on a site-by-site basis. C. Benefit Quantification. FAA's National Flight Data Center (NFDC) provided most of the data required for the ALS safety analysis. Using the NFDC computer file, runways having rigid ALS structures were isolated. Air carrier and general aviation (including air taxi) operations on the subset of ALS runways were computed by applying the runway activity distribution factors published in Order 7031.2B, Airway Planning Standard Number One, paragraph 16. Base-year activity data was FY 1976. Historical (1966-1976) aviation activity data were obtained from the FAA's Aviation Forecast series. The data, appearing in Table 3, are used to determine accident rate statistics. -man ris 2 erow erad; TABLE 3 to botton edit revo. Lairnaradus colide ni administration svincial out to retr # Operations on ALS Runways (in millions) | Fiscal Year | Air Carrier | General Aviation Including Air Taxi* | |-------------------|--------------|--------------------------------------| | 1966 | 2.5 | | | 1967 | 2 0 | ila decident tati | | 1968 | | ryib yd bautrob are o | | 1969 | 4.9 | perations conducted t | | 1970 | 5.1 | | | 1971 | 5.0 | | | 1972 | 4.9 | 12.6 | | 1973 | 5.3 | 13.7 | | 1974 | 5.3 | 16.1 | | 1975 | 5.6 | 18.0 | | 1976 | x 1.08 5.7 | 20.3 | | punta como ano se | 51.2 million | 80.7 million | \*1966-71 activity data not required for general aviation accident analysis Pre-1976 activity on ALS runways was adjusted downward because only half of the current ALS inventory was operational in 1966. The accident rate, as defined in this study, is the number of accidents in which an aircraft struck a rigid ALS resulting in either significant structural damage or injury to occupants divided by the total operations at runways having nonfrangible ALS's. The accident rate is simply the probability of an aircraft striking a rigid ALS. Because of the nature of and availability of data, two discrete probability figures can be discerned--one for air carrier and one for general aviation including air taxi accidents. The average or expected accident value per aircraft operation can then be computed by multiplying the probability of an accident (i.e., accident rate) by the average damage sustained by impacting rigid approach light structures. Over the period of study, there were 9 air carrier and 10 general aviation accidents in which substantial damage resulted by the aircraft striking rigid ALS's. As documented in Tables 1 and 2, the total accident costs are \$78.89 million and \$1.61 million, respectively. The average cost per air carrier accident is then \$78.89 million divided by 9, or \$8.77 million/accident. The average cost for a typical general aviation accident is \$1.61 million divided by 10, or \$0.16 million/accident. The accident rates for air carrier and general aviation are derived by dividing the number of accidents by total operations conducted on ALS runways (Table 3). For air carrier: 9 accidents in $51.2 \times 10^6$ operations or .18 x $10^{-6}$ accidents/operation For general aviation: 10 accidents in $80.7 \times 10^6$ operations or .12 x $10^{-6}$ accidents/operation Section invested and and required for general aviation The average safety benefit per operation is as follows: Pre-1976 activity on ALS runnaus was adjusted For air carrier: $.18 \times 10^{-6}$ accident/operation $\times$ me rate is simply the probability of an \$8.77 x 10<sup>6</sup>/accident = \$1.58/operation For general aviation: .12 x 10-6 accident/operation x the number of accidence in which an aircraft struck a rigid $$0.16 \times 10^6/\text{accident} = $0.02/\text{operation}$ Values used in the computation of present worth costs and benefits are based upon a 10 percent annual rate of return over a 15-year economic life. These parameters are consistent with OMB guidelines and with previous economic studies published by the Office of Aviation System Plans. A discount factor of 7.605 is used to compute aviation payoffs and recurring 0&M costs over the 15-year frame. This factor is increased in proportion to expected aviation growth for benefits that vary with activity levels-i.e., safety. For expected safety payoffs, discounted growth factors of 9.237 and 10.833 are used for air carrier and general aviation, respectively. These factors are derived in Table 4. The 15-year discounted values can be applied to the average air carrier and general aviation safety benefits per operation to compute the discounted safety benefits per operation, as follows: For air carrier: $$1.58/operation \times 9.237 =$ \$14.59/operation (discounted) For general aviation $$0.02/\text{operation} \times 10.833 = (\text{including air taxi}):$ \$0.22/operation (discounted) Accident costs are assumed totally attributable to the lack of frangible light structures. This assumption allows all possible consideration to the safety benefit of retrofitting rigid ALS with low-impact resistant supports-the classic risk avoidance argument for benefit assessment. This approach typically overstates ALSIP safety payoffs; however, there are two conclusions that can be inferred: - No additional safety benefit enhancement is possible as all accidents have already been included in the analysis. - Investment guidelines, empirically derived from the economic analysis, describe the "worst-case situation." Discounted Growth Factors | Year After | Discount | Grow | Growth Factor | Discounter | Discounted Growth Factor | |------------|----------|-------------|-----------------------------------------------------------------------------------------------------------|-------------|--------------------------| | Funding | Factor | Air Carrier | General Aviation | Air Carrier | General Aviation | | 1 | 0.9091 | 1.04 | nes<br>per<br>per<br>per | 0.945 | 0.982 | | 2 | 0.8264 | 1.06 | 2 2 2 1.14 eq. | 0.876 | 0.942 | | 3 | 0.7513 | 1.10 | ount<br>ount<br>ount<br>ount<br>fety<br>fety<br>tenn<br>tenn<br>tenn<br>tenn<br>tenn<br>tenn<br>tenn<br>t | 0.826 | 0.894 | | 4 | 0.6830 | 1.13 | 10.1<br>17.2<br>17.2<br>17.3<br>18.0<br>19.0<br>19.0<br>19.0<br>19.0<br>19.0<br>19.0<br>19.0<br>19 | 0.772 | 0.820 | | 2 | 0.6209 | 1.17 | 1.35 | 0.726 | 0.838 | | 9 | 0.5645 | 1.19 | 1.45 | 0.672 | 0.819 | | 7 | 0.5132 | 1.23 | 1.21<br>1.21<br>1.21<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.631 | 0.775 | | 80 | 0.4665 | 1.26 | 1.58 | 0.588 | 0.737 | | 6 | 0.4241 | 1.30 | 1.64 | 0.551 | 969.0 | | 10 | 0.3855 | 1.34 | 1.69 | 0.517 | 0.651 | | п | 0.3505 | 1.38 | 2 3 3 1 2 2 3 3 1 3 3 3 3 3 3 3 3 3 3 3 | 0.484 | 0.613 | | 12 | 0.3186 | 1.42 | 1.82 | 0.452 | 0.580 | | 13 | 0.2897 | 1.47 | pod 1,85 | 0.426 | 0.536 | | 14 | 0.2633 | 1.52 | 1.88 | 007.0 | 0.495 | | 31 | 0.2394 | 1.55 | 1.90 | 0.371 | 0.455 | | | 7.605 | | | 9.237 | 10.833 | # V. MAINTENANCE SAVINGS QUANTIFICATION A potential saving in maintenance expenses can be realized from conversion of each existing ALSF light system to the MALSR configuration. An ALSF-1 requires approximately 0.77 man-years for maintenance, while an MALSR requires only 0.35. This means that a net saving of 0.42 man-years is possible for each ALSF-1 to MALSR conversion. While reductions in personnel are not expected, existing staff might become increasingly available for other Airway Facilities Service requirements without hiring additional personnel. Costed at \$19,000 per year, each 0.42 man-year saving per system amounts to \$19,000 x .42, or \$7,980 annual savings per system; 15-year discounted savings are then: $$7,980 \times 7.605 = $60,688 \text{ per system}$ Remember that this maintenance saving refers only to high-intensity to medium-intensity system retrofit. There are no maintenance savings anticipated under the remaining two portions of the ALSI Program (MALSR to MALSR and ALSF-2 to ALSF-2). # VI. ENERGY CONSERVATION QUANTIFICATION This benefit category applies to high-intensity (ALSF-1) retrofit to medium-intensity (MALSR) and to modification of existing ALSF-2 systems to switchable SSALR. The medium-intensity approach light system has inherent virtues. Besides being the lowest cost system in the approach light inventory, it also consumes the least amount of energy, while still providing the basis approach guidance required for Category I landing minimums. Replacing ALSF-1 systems on Category I runways with MALSR systems provides a potential energy saving of 84 percent or 190,000 kilowatt hours per year per system. At 5¢ per kilowatt hour, the annual saving is \$9,500. This estimate is based upon 12-hour/day operation at the medium-intensity setting. The latest standard design of the ALSF-2 is more energy-efficient than former systems. While a full panoply of lights is required for landings conducted in weather with ceilings below 200 feet and visibility less than 1/2 mile (Category II, the SSALR configuration, using less than half the lights, is adequate for all higher visibility conditions. Thus the decision to replace existing ALSF-2's and ALSF-1's designated for ALSF-2 conversion with switchable ALSF-2 configuration will produce an energy saving of approximately 43 percent or 138,700 kilowatt hour per year. Again, this assumes 12-hour/day operation at the middle step intensity setting. Annual savings per system amount to \$6,935. Recapping, per-site annual energy benefits are: elscounced savings are then For ALSF-1 to MALSR: $$0.05/kwh \times 190,000 kwh =$ $$9,500 \times 7.605 = $72,248 (discounted)$ 100 ser sear, each 0.42 man-year saying feir ayatan amounts For ALSF-2 to switchable ALSF-2 (SSALR): \$0.05/kwh x 138,700 kwh = $$6,935 \times 7.605 = $52,741 (discounted)$ # VII. DERIVATION OF INVESTMENT GUIDELINES The development of investment guidelines for replacement of existing approach light systems involve assessing the relative costs and benefits of each of the three ALSIP subprograms: . ALSF-2 to switchable ALSF-2/SSALR . ALSF-1 to frangible MALSR . MALSR to frangible MALSR The approach will be to consider nonactivity-related maintenance and energy savings apart from safety benefits which are activity-dependent. A benefit-versus-cost relationship can then be developed based upon air traffic counts. The benefit/cost formulae use air carrier activity for safety benefit computations. Each operation is costed at \$14.59 (discounted dollars) for benefit computations. Payoffs attributable to general aviation activity are considered negligible and are not addressed in the benefit/cost calculation. Evaluation of the potential safety benefits of general aviation results in a 22-cent per operation payoff, or 1.5 percent of the value of an air carrier operation. There may be isolated circumstances, however, where the level of general aviation activity is significant to influence the benefit/cost computation. The following expression, when added to the numerator of the benefit/cost ratio, will enable calculation of total safety benefits for air carrier and general aviation aircraft: Annual general aviation x general aviation usage on x 0.22 candidate runway It will be evident from discussion following that general aviation safety payoffs provide little impact on benefit/cost ratio values. For this reason, and to keep computation complexity to a minimum, general aviation benefits have been deleted from formulae appearing in Airway Planning Standard Number One. It is emphasized, however, that the user does have the option of inserting and computing the above expression if the volume and type of traffic warrant general aviation consideration. The remainder of the section describes both benefit/ cost and activity formulae for each ALSIP subprogram. Activity formulae may be used in lieu of the benefit/cost equations when per-site installation costs are not available. These formulae will yield ratio values nearly identical to the benefit/cost values when ALS retrofit costs are close to those listed in this report. As per-site costs diverge from average values, the correlation of ratio values between activity and benefit/cost formulae decreases. Nevertheless, activity formulae are useful for purposes of long-range budget planning. Activity formulae are derived by subtracting discounted maintenance savings and energy conservation benefits whenever applicable from nonrecurring ALS installation costs (discounted using a 1.0 factor). The difference yields the amount of safety payoffs necessary to be commensurate with facility costs. Since the safety payoff per operation has been computed previously, the requisite operations for ALS retrofit can then be calculated by simple arithmetic. A. Subprogram I (ALSF-2 to switchable ALSF-2/SSALR) (70 systems). | Program cost/system Energy savings (discounted) | \$503,900<br>-52,700 | |-------------------------------------------------|----------------------| | Maintenance savings | 0 | | Net cost of avoid to collected a side | \$451 200 | Safety benefits (discounted) = \$14.59/air carrier operation = \$0.22/general aviation operation Runway operations required to justify net costs: For air carrier: 30,925 For general aviation (including air taxi): 2,050,000 In the absence of air carrier activity, general aviation activity requirements are clearly infeasible for this subprogram. Activity Criteria (to be used when per-site retrofit costs have not yet been determined) Annual airport Fraction air carrier air carrier operations x usage on = Ratio value 31,000 candidate runway\* \*See Part D of this section on recommended runway usage factors in absence of specific data. applicable from nonrequering als installation costs (discounted nating a 1.5 factor). The difference yields the amount of safety covoits necessary to be commensurate with facility # Benefit/Cost Criteria Air carrier safety + ALS energy benefits = B/C ratio or 3800 E31 Safety + ALS Energy + Sansfits - BJC retio Air carrier Fraction airport air carrier usage operations x on candidate runway x 14.59 + 52,700 Washington + regional F&E cost B/C ratio B. Subprogram II (ALSF-1 to MALSR) (197 systems). Program cost/system \$144,700 Energy savings (discounted) -72,200 Maintenance savings -60,700 Net cost Safety benefits (discounted) = \$14.59/air carrier operation = \$0.22/general aviation operation Por all carrier: this subprogram, Runway operations required to justify net costs: Safety benefitte (Alacousted) a \$14.59 air carrier operation For air carrier: 809 For general aviation: 53,636 Activity Criteria (to be used when per-site retrofit costs have not yet been determined). Annual airport Fraction air carrier air carrier operations x usage on = Ratio value candidate runway # Benefit/Cost Criteria ALS Maintenance Safety + ALS Energy + Benefits = B/C ratio or Fraction atr carrier wased Air carrier Fraction airport air carrier usage operations x on candidate runway x 14.59 + 132,900 Washington + regional F&E cost = 80.22/general aviation operation C. Subprogram III (MALSR to low-impact resistant MALSR) (130 systems). Program cost/system \$107,100 Energy savings 0 Maintenance savings 0 Net cost \$107,000 Safety benefits (discounted) = \$14.59/air carrier operation = \$0.22/general aviation operation For air carrier: Jon avan alson 111 Runway operations required to justify average net costs: For air carrier: 7,341 For general aviation and design aviation (includes air taxi): 486,818 In the absence of air carrier activity, general aviation activity requirements are judged infeasible for this subprogram. Activity Criteria (to be used when per-site retrofit costs have not yet been determined). Annual airport Fraction air carrier air carrier operations x usage on = Ratio value 7,300 candidate runway # Benefit/Cost Criteria Air carrier safety benefits = B/C ratio or Fraction air carrier Air carrier usage on airport operations x candidate runway x 14.59 Washington + regional F&E cost = B/C ratio D. Note on Runway Utilization. Air carrier usage on the candidate runway is the fraction of current activity which departs or lands over the particular rigid approach lighting system. For runways having rigid ALS's at each end, runway usage fraction should include all air carrier activity at both arrival and departure ends. If runway utilization is not known or cannot be otherwise estimated, it is suggested that the following values (consistent with previous ILS criteria studies) be used: Primary ALS runway 60% air carrier usage Secondary ALS runway 30% air carrier usage Tertiary and subsequent ALS runways 15% air carrier usage # VIII. IMPACT ASSESSMENT - FY 1978 PROPOSED LOCATIONS The preliminary FY 1980 budget originally contained 178 proposed runways for possible approach lighting system retrofit under ALSIP. Three ALSIP budget blocks are listed: - Provide frangible towers ALS/ALSF (25 sites) - . Provide frangible towers MALSR (149 sites) - Provide frangible towers MALS (4 sites) The latest FY 1980 budget proposal, using ALSIP criteria evaluation and ranking, is as follows: ## Validated Projects | | - | | | V. RESIDEN | 170 | _ | |------------------------------|---|-------|----|------------|------|---| | Provide frangible MALSR 5 | 1 | sites | at | \$<br>7,34 | 1,10 | 0 | | Provide frangible ALS/ALSF 1 | 1 | sites | at | \$<br>5,20 | 4,10 | 0 | # Validated Projects Moved to FY 1979 Totals its air carrier usage | at eac | frangible MALSR | 11<br>YEW 71 (1) | sites | at | \$ 1,727,800 | |---------|------------------------|------------------|-------|----|--------------| | | to Funding Limitations | | | | | | Provide | frangible ALS/ALSF | 14 | sites | at | \$ 6,425,700 | | Provide | frangible MALSR | V920 6 77 | sites | at | \$11,926,300 | | Provide | frangible MALS | 2 | sites | at | \$ 151,200 | 93 sites at \$18,503,200 ## Nonvalidated Projects\* Provide frangible MALSR 10 sites at \$ 1,987,200 Provide frangible MALS 2 sites at \$ 158,000 Totals 12 sites at \$ 2,145,200 \*Nonvalidated due to U.S. Air Force objections. The Air Force recommends that only full-length ALS's be employed at all joint-use fields used by high-performance military aircraft. As a result, LIR retrofit of ALSF systems to MALSR or MALS is a nonvalidated budget item in FY 1980. All runways budgeted in FY 1980 for ALSI retrofit have benefit/cost ratios of 1.0 or greater. Full descriptions of place names and associated costs for the proposed FY 1980 ALSI Program are found in Tables 5 through 8. Locations are listed by priority order within each region as determined by FAA's Flight Standards Service and the Office of Aviation System Plans. # IX. ECONOMIC ASSESSMENT - COMPLETE ALSI PROGRAM The previous section described the effects of applying ALSIP criteria to the FY 1980 FAA budget proposal. This section illustrates the economic impact for the total ALSI Program. Runways listed for frangible retrofit in the initial FY 1978 and FY 1979 FAA budget proposals were also evaluated using the criteria developed in this study. It was found that many duplicate runways appeared in subsequent budget submissions. For these cases, only the last year of request was retained, eliminating the possibility of double counting identical ALSIP requests. In all, some 400 ALS runways were assessed for retrofit using FY 1977 air traffic activity and current cost estimates. ALSIP economic assessment was obtained by merging the results of each budget request, 1978 to 1980. The results of applying benefit/cost evaluation to all potential ALS retrofit projects are as follows: # TABLE 5 Validated ALSIP Projects FY 1980 Budget Proposal # Airport/Runway # Provide Frangible ALS/ALSF Dallas/Ft. Worth R/W 17L ALSF-2 TX Indianapolis R/W 04L ALSF-1 IN San Antonio R/W 12R ALSF-2 TX Salt Lake City R/W 34L UT San Francisco R/W 28R CA San Francisco R/W 28L CA New York JFK R/W 13L NY Los Angeles R/W 24R CA Nashville R/W 02L TN Buffalo R/W 23 NY Houston R/W 08 TX Rocky Mountain Great Lakes Southwest Southwest Southwest Southern # Provide Frangible MALSR Bakersfield R/W 30R CA Austin R/W 30L TX Boston R/W 33L MA Little Rock R/W 04 Seattle R/W 13R WA Beaumont R/W 11 TX Hyannis R/W 24 MA Yakima R/W 27WA New England Southwest destern Northwest Southwest New England Northwest Southwest Western 509.1 144.2 Cumulative 22 Western Eastern Western Western Eastern TABLE 5 (Continued) | Airport/Runway Nantucket R/W 24 MA Iouston R/W 04 TX Pendleton R/W 25R OR Los Angeles R/W 25R CA Surlington R/W 15 VT Salem R/W 31 OR Tulsa R/W 17L OK Marillo R/W 03 TX Medford R/W 17 LOR Nhtario R/W 14 OR Nhtario R/W 25 CA Shreveport R/W 13 LA St. Petersburg R/W 17 FL Lugene R/W 16 OR Nurbank R/W 07 CA Oses Lake R/W 32R WA Syler R/W 13 TX Corpus Christi R/W 33 TX Corpus R/W 11 TX Corpus R/W 11 TX Corpus R/W 13 T | | | 163.0 1,773.3 | 1 | 2, | 2, | 123.3 2,497 | 3 2. | 142.7 2.76 | 206.8 2.970. | 3. | 139.3 3,233 | 3, | 3. | 3. | 63 | 173.7 4,061. | 4 | 4. | 7 | 123.3 4,621. | 4 | Comp | | | • | | | | 117 P T C 113 113 113 114 117 117 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 113 117 117 | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------|----------------------|------------------------|----------------------|-----------------|------------------|--------------------|-------------------|-------------------|----------------------|--------------------------|------------------|-------------------|-----------------------|-----------------|-------------------------|--------------------------|------------------|------------------|--------------------------|--------------------|-------------------|--------------------------|-------------------|---|----------------------|--------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | Airport/Runway | Nantucket R/W 24 MA | Pendleton R/W 25R OR | Los Angeles R/W 25R CA | Burlington R/W 15 VT | Salem R/W 31 OR | Tulsa R/W 17L OK | Amarillo R/W 03 TX | Medford R/W 14 OR | Ontario R/W 25 CA | Shreveport R/W 13 LA | St. Petersburg R/W 17 FL | Eugene R/W 16 OR | Burbank R/W 07 CA | Moses Lake R/W 32R WA | Tyler R/W 13 TX | Klamath Falls R/W 32 OR | Corpus Christi R/W 13 TX | Monroe R/W 04 LA | Arcata R/W 31 CA | Wichita Falls R/W 33L TX | Monterey R/W 10 CA | Dallas R/W 13L TX | San Francisco R/W 19L CA | Dallas R/W 31L TX | | Long Beach R/W 30 CA | Long Beach R/W 30 CA<br>Longview R/W 13 TX | Long Beach R/W 30 CA Longview R/W 13 TX Lake Charles R/W 15 LA | | | * . C. S. k | 1,000,0 | |-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0.001 | の。特殊ないの | | 0.001 | 1,870,2 | | 133 3 | , ASS | | E. 381 | 3,066.2 | | | Cumulative | | Unit Cost | Cost | | 123.3 | 5,852.8 | | 123.3 | 5,976.1 | | 123.3 | 4.660,9 | | 123.3 | 6,222.7 | | 123.3 | 6,346.0 | | 123.3 | 6,469.3 | | 123.3 | 6,592.6 | | 85.8 | 6,678.4 | | 92.2 | 6,770.6 | | 157.2 | 6,927.8 | | 97.3 | 7,025.1 | | 221.4 | 7,246.5 | | 94.6 | 7,341.1 | | C AVE | | | 13379 | 132 C | | 2.883 | A STATE OF S | | 7,392 | , 080 t | | | 1,773 | | | 0.00 | | | Unit Cost 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 123.3 12 | Mantacket Bin 14 Ma | | 2 | | |------|---|---| | 14.4 | S | | | • | | | | | | | | | | | | | | | | | | | | | | è | | | | 9 | | | | 3 | | | | | TABLE 6 Validated ALSIP Projects Moved to FY 1979 Budget 6.061 6.061 8.061 8.061 | Region | Airport/Runway | Unit Cost | Cumulative | |-------------|---------------------------|-----------|------------| | | Provide Frangible MALSR | | | | Southern | Mobile R/W 32 AL | 105.3 | 105.3 | | Southwest | Corpus Christi R/W 35 TX | 115.6 | 220.9 | | Southwest | Alexandria R/W 26 LA | 115.6 | 336.5 | | Great Lakes | Rochester R/W 31 MM | 142.5 | 479.0 | | Central | Kansas City R/W 01 MO | 133.3 | 612.3 | | Great Lakes | Plint R/W 09 MI | 136.6 | 748.9 | | Eastern | New York JFK R/W 22L NY | 245.6 | 994.5 | | Eastern | Ithica R/W 32 NY | 152.3 | 1,146.8 | | Eastern | Lancaster R/W 08 PA | 179.0 | 1,325.8 | | Eastern | Charlottesville R/W 03 VA | 194.5 | 1,520.3 | | Eastern | Johnstown R/W 33 PA | 207.5 | 1,727.8 | INNER S Number = 11 CABLE 7 ALSIP Projects Cut Due to Funding Limitations BERLEID | Cumulative | 1,146.8 | 1,162.4<br>1,817.2<br>2,228.8 | 2,694.2<br>3,239.4<br>3,683.0<br>4,148.6 | 4,667.0<br>5,083.0<br>5,567.0<br>6,034.4<br>6,425.7 | Schall Coast | 212.5<br>441.4<br>695.6<br>957.9<br>1,108.7 | |--------------------------------------------------------------|-----------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------| | Unit Cost | 156.3 | 420.3<br>587.6<br>654.8<br>411.6 | 465.4<br>545.2<br>443.6<br>465.6 | 518.4<br>416.0<br>484.0<br>467.4<br>391.3 | 7800 1 toU | 212.5<br>228.9<br>254.2<br>262.3<br>150.8 | | Charrottesaille S\B G3 AV Airport/Runway PSDCB3564 B\M 08 BV | | Pittsburgh R/W 10L PA Fairbanks R/W 01L ALSF-2 AK Augusta R/W 35 GA | Sacramento R/W 16 ALSF-2 CA<br>Syracuse R/W 28 NY<br>Louisville R/W 01 KY<br>Huntsville R/W 18R AL | Chattanooga R/W 20 TN New Orleans R/W 10 LA Birmingham R/W 05 AL Oakland R/W 29 CA Oklahoma City R/W 35R ALSF-2 OK | Number = 14 orthe presentation with a standard water Provide Frangible WALSR | La Guardia R/W 04 NY Buffalo R/W 05 NY Baltimore R/W 15R MD La Guardia R/W 13 NY Westfield R/W 20 MA | | Esercial Region | Northwest | Southern<br>Eastern<br>Alaskan<br>Southern | Western Eastern Southern Southern | Southern<br>Southwest<br>Southern<br>Western<br>Southwest | TO Japan | Eastern<br>Eastern<br>Eastern<br>Eastern<br>New England | | Chart served by 31 IY Chart served by 32 Mg Technology 18 July 32 Mg Technology 18 July 32 Mg | TABLE 7 (Continued) | | | |-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------| | Alrport/Runway | | Unit Cost | Cumulative | | Montgomery R/W 27 AL | | 84.7 | 1,193.4 | | St. Louis R/W 30L MO | • | 85.8 | 1,279.2 | | Wichita R/W 01R KS | | 181.4 | 1.547.1 | | Oklahoma City R/W 17R OK | | 115.6 | 1,662.7 | | Oklahoma City R/W 17L OK | | 115.6 | 1,778.3 | | Cedar Rapids R/W 08 IA | | 133.3 | 1,911.6 | | Usterloo D/W 12 LA | | 133.3 | 2,027.2 | | Springfield R/W 01 M | | 133.3 | 2,293.8 | | Topeka R/W 13 KS | | 133.3 | 2,427.1 | | Kansas City R/W 09 MO | · · · · · · · · · · · · · · · · · · · | 85.8 | 2,512.9 | | Newark R/W 04L NJ | | 203.3 | 2,716.2 | | Ottumwa R/W 31 IA | | 85.8 | 2,802.0 | | Norfolk R/W 05 VA | | 200.1 | 3,002.1 | | Jamestown R/W 25 NY | | 391.9 | 3,394.0 | | Cape Girardeau R/W 10 MO | | 85.8 | 3,479.8 | | Wilmington R/W 01 DE | | 217.1 | 3,696.9 | | Middletown R/W 13 PA | | 192.9 | 3,889.8 | | Allegheny R/W 27 PA | | 263.9 | 4,153.7 | | Rochester R/W 28 NY | | 222.2 | 4,375.9 | | Erie R/W 06 PA | | 206.2 | 4,582.1 | | Roanoke R/W 33 VA | | 240.3 | 4,822.4 | | Harrisburg R/W 08 PA | | 219.0 | 5,041.4 | | Huntington R/W 12 WV | | 219.3 | 5,260.7 | | Utica R/W 33 NY | (Coetinged) | 188.5 | 5,449.2 | | Lynchburg R/W 03 VA | | 195.2 | 5,644.4 | | | The second secon | | | | 195.3 | た。 のもで、 C | 578"3 | E. A. TAO, & C. O. T. C. O. T. C. O. | STORY Cumulative | Unit Cost Cost | 8 076 S 7 506 | • | | 85.8 6.107.2 | | 9 | , | , | 6,579 | | | | 109.1 7,006.8 | | | | | | 115.6 7,685.6 | | | - | 8 | 8 | | 128.2 8,511.4 | 133 3 8 644 7 | |---------|------------|-------------|------------------------------------------------------|---------------------|----------------|-----------------------|-----------------------|-------------------|----------------------|--------------------|------------------------|----------------------|-------------------|------------------------------|----------------------|-----------------------|-------------------------|--------------------------|-----------------------|-------------------------|---------------------|------------------|---------------------------|------------------------|-----------------------|-----------------------|------------------|------------------|---------------------|--------------------|----------------------|------------------------| | 3 44 | Continued) | 13. MA | MAKETERITER BIR. 68 BY | AN CE WAR of ANNERS | Airport/Runway | Nemont Name B/W OK WA | Scottsbluff R/W 30 NR | Pubuque D/U 31 TA | Mason City R/W 35 IA | Columbia R/W 02 MO | Saranac Lake R/W 23 NY | Eau Claire R/W 22 WI | Augusta R/W 17 GA | North Philadelphia R/W 24 PA | Hagerstown R/W 27 MD | Glens Falls R/W 01 NY | Traverse City R/W 28 MI | Cleveland Cuy. R/W 23 OH | Bloomington R/W 35 IN | Crescent City R/W 11 CA | Bremerton R/W 19 WA | Temple R/W 15 TX | College Station R/W 34 TX | Brownsville R/W 13R TX | Fort Worth R/W 16L TX | Hot Springs R/W 05 OK | Lawton R/W 35 OK | McAllen R/W 13TX | Texarkana R/W 22 AR | Jackson R/W 33L MS | Twin Falls R/W 25 WA | Grand Taland D/W 35 NR | | Spatorn | Estrucia | ESECULAR LA | が という かんから 大きの かんかん かんかん かんかん かんかん かんかん かんかん かんかん かん | <b>经工作公司的</b> | Region | Restorn | Central | Central | Central | Central | Eastern | Great Lakes | Southern | Eastern | Eastern | Eastern | Great Lakes | Great Lakes | Great Lakes | Western | Northwest | Southwest Southern | Northwest | Central | TABLE 7 (Continued) | Region | Airport/Runway | Unit Cost | Cumulative | |-------------|------------------------|-----------|-------------| | Great Lakes | Dullish B/W 27 WW | 197 7 | 2 910 0 | | Fostom | Date 1 of 10 K wa | 13/.7 | 6,915.7 | | בפובווו | W ON M / ITTOM | 141.1 | 9,056.8 | | Eastern | Trenton R/W 06 NJ | 141.7 | 9,198.5 | | Great Lakes | Cincinnati R/W 20L OH | 150.7 | 9.349.2 | | New England | Keene R/W 02 NH | 170.8 | 9.520.0 | | New England | Presque Isle R/W 01 ME | 176.7 | 9.696.7 | | Eastern | Clarksburg R/W 21 WV | 180.7 | 9.877.4 | | New England | Rockland R/W 03 ME | 182.4 | 10,059,8 | | New England | Worcester R/W 11 MA | 193.1 | 10,252.9 | | Eastern | Staunton R/W 04 VA | 193.2 | 10,446.1 | | Alaskan | Ft. Yukon R/W 21 AK | 197.2 | 10.643.3 | | Alaskan | Yakutat R/W 11 AK | 203.0 | 10.846.3 | | Eastern | Morgantown R/W 18 WV | 213.0 | 11 059 3 | | New England | Manchester R/W 35 NH | 223.1 | 11 282 4 | | Alaskan | Nome R/W 27 AK | 272.4 | 11, 554. 8 | | Northwest | Walla Walla R/W 20 WA | 173.7 | 11 728 5 | | Eastern | Teterboro R/W 06 NJ | 197.8 | 11,926.3 | | | | | | | 100 P.C. | . Number = 77 | 1800 1754 | 1202 | | | | | Cumulatives | | | Provide Frangible MALS | | | | Southwest | San Antonio R/W 03 TX | 75.6 | 75.6 | | Southwest | Fayetteville R/W 16 AR | 75.6 | 151.2 | # TABLE 8 Nomber = 1 Separation Separate Nonvalidated ALSIP Projects FY 1980 Budget Proposal 15,6 | Region | Airport/Runway | Unit Cost | Cumulative | |------------------------|-------------------------------------------|--------------------------------------------------|-------------------------------------------| | 2381622 | Terespond fire of Provide Frangible MALSR | , , , , , , , , , , , , , , , , , , , | 1000 | | Rocky Mountain | Fargo R/W 35 ND | 0.707 | 11 636 8 | | Western | Fresno R/W 29R CA | 157.2 | 157.2 | | Northwest | Portland R/W 10R OR | 410.3 | 362.5 | | Southwest | Fort Smith D/u 25 Ap | 186.8 | 959.6 | | Rocky Mountain | Great Falls R/W 34 Wr | 123.3 | 1,082.9 | | Central | St. Louis R/W 24 M | 147.2 | 1,230.1 | | Central | Des Moines R/W 30R TA | 181.4 | 1,411.5 | | Eastern | Niagara Falls R/W 28P NV | 181.4 | 1,592.9 | | Eastern | Richmond R/W Of VA | 193,3 | 1,786.2 | | | EN LO BOR STATE SUBSECTION | 201.0 | 1,987.2 | | Charle forces | Number = 10 | 8.051 | 0.637,0 | | | Appendix No. Op. N.1 | 7.00 | 2 620 C | | Rantesa<br>Gasar rakes | Provide Frangible MALS | X pro- in<br>the con-<br>or flags of<br>the con- | 12 00 00 00 00 00 00 00 00 00 00 00 00 00 | | Central | St. Louis R/W 06 MO | | | | Central | Des Moines R/W 12L IA | 79.0 | 79.0 | | | | | | | Subprogram | Potential Number of Systems | Estimated Number<br>Having B/C Ratios<br>of 1.0 or Greater | |------------------------------------|-----------------------------|------------------------------------------------------------| | ALSF-2 to switchable<br>LIR ALSF-2 | . 70 | 30 | | ALSF-1 to LIR MALSR | 197 | 197 | | MALSR to LIR MALSR | <u>130</u> | 45 | | Total | 397 | 272 | Projects having benefit/cost ratios equalling or exceeding unity amount to \$48.4 million (which is some \$30 million below the total program cost of \$77.7 million). ### APPENDIX A # Resumes of Air Carrier and General Aviation Accidents The following resumes have been prepared on the basis of information contained in NTSB and FAA official accident reports and files. ## AIR CARRIER A-1 Date of Accident: November 2, 1966 Resume: During an ILS approach, the aircraft encountered heavy rain showers which obscured the airport. The aircraft struck the ALS pier located 120 feet (36m) short of the runway. The impact sheared the landing gear and the aircraft skidded down the runway. A-2 Date of Accident: November 29, 1966 Resume: The aircraft aborted takeoff and continued off the end of the runway approximately 580 feet (176m). After leaving the runway, the pilot purposely turned the aircraft slightly to the right to avoid the approach light stanchions "to keep from being washed out," but the left wing contacted a pole and the aircraft came to a stop. A-3 Date of Accident: June 3, 1968 Resume: During an instrument approach, the aircraft struck six approach light structures beginning approximately 700 feet (213m) from the runway threshold. Several of the 12"x10" timbers supporting the lights were broken off and punctured the cabin floor and were found embedded in the left wheel well and in two of the engines. The fuselage contained a 16"x8" (40cm x 20cm) piece of wood. The left main gear was torn off, and the right main gear separated on landing. # A-4 Date of Accident: July 30, 1971 Resume: During takeoff, the aircraft's right main body gear struck the lights of the first platform of the ALS. The left body gear struck each of the first three light platforms, and the underside of the fuselage came in contact with the handrail and walkway just past the third platform. Three pieces of angle iron (mainly the steel handrail sections) penetrated the passenger compartment. One section pierced the floor, passed through two seats (nearly severing the leg of one passenger and severely lacerating and crushing the upper arm of the other passenger), and then exited through the fuselage. A second piece of angle iron 17 feet (5.18m) in length penetrated the floor of the cabin and impaled four seats, but no injuries resulted as the seats were unoccupied. A third section penetrated the passenger cabin and passed through other unoccupied seats and lavatories. Other wood debris and metal pieces of the ALS struck the inboard section of the wing flaps, the horizontal stabilizer, and the elevators. Three of the four hydraulic systems failed immediately thereafter. The aircraft continued in flight for 1 hour and 45 minutes while the flight crew assessed the structural damage and dumped fuel. The aircraft returned for a landing at San Francisco, touched down hard on the runway, and subsequently veered off the runway. During the aircraft evacuation, 27 other passengers were injured with 8 of these suffering serious back injuries. # A-5 Date of Accident: December 12, 1972 Resume: The flight had been conducting an autocoupled landing approach under Category II procedures. During the transition from instrument to visual reference, the aircraft continued below the glide slope and increased its rate of descent. The pilot applied thrust and rotated the aircraft seconds before it struck approach light bars which were mounted on a wooden pier just short of the runway threshold area. The aircraft momentarily became airborne again and then crashed onto the runway and slid approximately 2,600 feet (792m). The main landing gear and all of the engines separated along the deceleration path. # A-6 Date of Accident: November 27, 1973 Resume: The aircraft initiated an excessive rate of descent after passing the decision height. Although the sink rate was reported at 900 feet (274m) per minute, it could have been corrected at a point before the landing flare. However, the pilot maintained the sink rate until at an altitude where the aircraft could not recover. While corrective actions were taken, before any reaction to the control inputs could be noted, the aircraft struck the approach lights 1,600 feet (487m) from the runway threshold and approximately 20 feet (6.1m) above the ground. After initial impact, the aircraft continued to descend, striking additional rigid-mounted ALS structures and a flood control dike before coming to rest 450 feet (137m) beyond the threshold. # A-7 Date of Accident: December 17, 1973 Resume: While on an ILS approach an increased rate of descent was induced by an encounter with a lowaltitude wind shear at a critical point in the landing approach where the pilot was transitioning from instrument to visual flight. This increased rate of descent was not recognized in time to arrest it before the aircraft struck the approach lights located approximately 25 feet (7.6m) above mean water level on wooden piers in the harbor about 500 feet (152m) short of the runway. The aircraft then struck an embankment about 200 feet (60m) short of the runway and sheared its right main landing gear. The aircraft then became airborne for about 1,200 feet (365m), landed on the runway, slid down the runway, and veered off to the right. aircraft caught fire and sustained substantial damage. Two approach light piers were destroyed, and two others were heavily damaged. # A-8 Date of Accident: June 24, 1975 Resume: The aircraft encountered adverse winds which resulted in a high descent rate into the nonfrangible approach light towers. The aircraft's left wing first impacted the No. 7 ALS stanchion located 2,400 feet (731m) from the runway threshold at an elevation of 27 feet (8.2m) above the mean water level. Progressing in flight towards the runway, the aircraft struck towers 8 and 9, and the aircraft's left wing was damaged severely by impact with these towers. The aircraft then rolled into a steep left bank, impacted the ground, and skidded through a number of approach light towers whichtogether with large boulders along the latter portion of the path caused the fuselage to collapse and disintegrate. Fire erupted after the left wing failed and released fuel which was ignited by numerous friction sources. Destruction of the fuselage caused more fuel to be released and the fire continued to burn after the aircraft came to rest. The NTSB has stated that the adverse winds might have been too severe for a successful approach and landing. Also, NTSB concluded that the nonfrangible approach light towers were responsible for much of the severe destruction of the aircraft and that the accident was not survivable because the fuselage almost completely disintegrated, and the occupant restraint systems failed. NOTE: The NTSB Accident Investigation Report noted that the need for frangible approach light towers on the approach paths to runways has been recognized by the FAA (by issuance of Order 6850.9). During the public hearing held on this accident, an FAA Airway Facilities Service representative testified that funding for part of the retrofit program was expected in the FY 1977 budget. It was also stated that the towers currently being installed were designed to fracture at impact speeds of 80 knots or higher and that the towers would probably fracture at speeds well below 80 knots depending on the type of aircraft involved. # A-9 Date of Accident: November 16, 1976 Resume: The aircraft ran off the end of a runway during an aborted takeoff and struck some nonfrangible steel structures supporting the ALS. Pieces of the ALS structures severed the left outer wingtip which caused fuel to leak and feed the fire that erupted on the left side of the fuselage. As a result of the aircraft impacting the nonfrangible ALS structures, the concrete support structures of the ALS had been pulled out of the ground. In contrast, the first ALS structure, which had frangible fittings, broke off at the base and caused virtually no damage to the aircraft. NOTE: Based on correspondence on file in the NTSB accident files, the Denver Area Air Line Pilots Association Safety Coordinator cited the need for special attention to be focused on the provisions of having frangible mounted supporting structures. This correspondence also indicates that FAA has promised that the replacement of the destroyed ALS structures at the airport will be frangible mounted. ### GENERAL AVIATION G-1 Date of Accident: January 12, 1972 Resume: While making an instrument approach at night and in fog conditions, the aircraft struck a steel ALS tower 800 feet (243m) from the runway threshold. The left wing was sheared off. The aircraft continued forward approximately 40 feet (12m) to the ground. The ALS tower received extensive damage: the top section was demolished (platform, transformer enclosure, and light fixture). G-2 Date of Accident: September 6, 1972 Resume: During a night VFR landing, the aircraft struck an ALS structure (consisting of steel pipes 4 inches (10cm) to 5 inches(12.5cm) in diameter) 400 feet (121m) short of the runway threshold. G-3 Date of Accident: August 1, 1973 Resume: Following a local acrobatic demonstration flight, the aircraft's engine failed, and the aircraft landed 1,100 feet (335m) short of the runway and skidded 130 feet (39.6m), breaking off two ALS posts with the leading edge of the left wing. The pilot reported he touched down intentionally short of the runway to avoid hitting the ALS structures while airborne. # G-4 Date of Accident: October 19, 1973 Resume: During a night VFR approach, the pilot mistook the approach lights to be runway centerline lights and stated that the ALS supporting towers (approximately 25 feet (7.6m) in height) were not visible to either himself or his passenger. At the time of the accident, the runway lights were not lit. # G-5 Date of Accident: October 22, 1973 Resume: During a landing approach, the pilot became confused and struck the two ALS supporting structures nearest to the approach end of the runway. A go around was then initiated and a landing was made on another runway. # G-6 Date of Accident: August 19, 1974 Resume: During a night approach, the pilot descended into a shallow fog and struck the second ALS "T" bar located 400 feet (121m) from the threshold. The left main gear struck the "T" bar located 200 feet (60m) from the end of the runway and broke off the left side of the approach lights. The aircraft touched down on the left main landing gear and the nose gear, then veered off the runway, and came into contact with a ditch on the side of the runway. # G-7 Date of Accident: June 29, 1975 Resume: A student pilot making touch and go landings undershot the runway and struck the 1,000-foot (300m) ALS tower. The wreckage of the aircraft remained entangled in the tower which was substantially damaged. # G-8 Date of Accident: September 3, 1975 Resume: On a touch and go approach, a student pilot came in too low and struck the fourth bar of the ALS. The left wing and left landing gear were sheared off by the impact and remained with the light bar. The aircraft projected forward and struck the third light bar, veered off to the left, inverted, and skidded to a stop approximately 200 feet (60m) from the first impact. # G-9 Date of Accident: September 6, 1975 Resume The aircraft struck ALS towers at stations 27, 26, and 25. The aircraft continued for an approximate distance of 330 feet (100m) after the impact before coming to rest in an inverted position. The cabin, aft fuselage, and tail section of the aircraft were destroyed by fire which followed impact. All three occupants were killed. NOTE: Information pertaining to the height and damage of the ALS towers is as follows: | Station | | ght<br>und level) | Damage | |---------|---------|-------------------|---------------------------------------------------------------------------------| | 27 | 50 feet | (15.2m) | Lights knocked out of position.<br>Railings and flasher lights<br>destroyed. | | 26 | 47 feet | (14.3m) | Lights torn out from mountings.<br>Cable to transformer box pulled<br>out. | | 25 | 45 feet | (13.7m) | One light knocked out of posi-<br>tion. Flasher and front rail-<br>ing damaged. | # G-10 Date of Accident: June 14, 1976 Resume: The aircraft reportedly incurred a multiple bird strike immediately after rotation during takeoff and the pilot elected to land in an open field to the right of the runway. The aircraft's right wing tip contacted the 18-foot (5.4m) high ALS bar located 1,000 feet (300m) from the runway, and the aircraft then impacted into the field.