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A NEW APPROACH FOR SOLVING THE VORTICITY AND CONTINUITY -

EQUATIONS IN TURBOMACHINERY DUCTS
t

* **A. Ilamed and S. Abdallah

U n i v e r s i t y  of Cinc inna t i
Ci n c i n n a t i, Ohio 45221

Abstract Introduction

Repeated solutions to the continuity The simultaneous solution of the two
and vorticity equations are frequently first order partial differential equations
required in computations of three dimen- representing the conservation of mass and
sional flows in turbomachinery passages, the vorticity , is reouired in many flow
When the two equations are nonhomogeneous studies)- 5 The au thors  interest  in th i s
previous formulations resulted in two problem is connected to their internal
second order differential equations. A nonviscous subsonic flow investigations1’2

new approach is presented here , which is in the various turbomachinery passages.
applicable in a generalized two dimensional The need for the solution to the outlined
domain or axisymxnetric field. It is based problem is also encountered in other
on the definition of a streamlike function diversified flow fields such as external Iwhich is used to transform these nonhomo- two dimensional transonic flows3 and
geneous first order partial differential internal viscous f lows.4’5 In three
equations to a single second order equation dimensional flow fields , the equa tion of
with Dirichlet boundary conditions over the conservation of mass includes a derivative
solid boundaries. Some applications are of the third velocity component. There—
presented to show how this new approach can fore , except for two dimensional incom-
be used to save computer time in numerical pressible flow or for irrotational flow,
flow solutions. the two equations are generally nonhomo-

geneous . When at least one of the equations
is homogeneous , the tradi t ional  formula t ion

Nomenclature of flow problems has been in terms of a 

j
potential function or a stream function .

C
1 
to C6 arbitrary constants in Eqs. In the absence of a source term in the

(11) to (16). cont inui ty  equation , the stream function
is introduced into the rotationality equa—j parameter equal to sero for two tion to obtain the second order partialdimensional  f low , and to one for differential equation for the streamaxisymmetric flow function . On the other hand , the irrota-’

S source/sink term in Eq. (1) tional flow is usually studied in terms of
the motential function which is used intou velocity component in x-direction the continuity equation to obtain the

v velocity component in y—direction governing second order partial differential
equation. There has been no sing le un i f i edx reference value of the x coor-r approach , however , for the ma thematicaldinate in the formulation formulation of the problem when both the

reference value of the y coor— continuity and the rotationality equations
dinate in the x

2 
formulation are nonhomogeneous. In references 4, 5

and 6 , two different mathematical approaches
1 and 

~
‘2 the nonhomogeneous terms in the were used for the solution of the con-second order equations for the

streamlike functions, Eqs. (5) tinuity and rotationa].ity equations. Rubin
and Khosla4 formulated the problem in terms(6), (9) and (10) of a stream function and a potential

and streamlike functions defined in function , resulting in two second order
Eqs. (3), (4), (7) and (8) partial differential equations in these

functions. The problems of handling theflow vorticity, Eq. (2) Neumann boundary conditions for the poten-
tial function over irregular boundaries
are well known .7 There are additional
problems involved in the numerical solution
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using finite difference methods, when the follows:
potential equation has a nonhomogeneous
term , with this type of boundary conditions 1 ~~l 

1 X

over all the boundaries of the solution u = — — -
+ ~~ f x~ S(x ,y) dx (3)

domain.’’8 ’9 A different approach was X X Xr
followed in references 5 and 6. Cross
differentiation was used to obtain two and
second order partial differential eguations 1 ( 4 )in the two velocity components. In this V — - —

~
- 

~~

- 
- case, additional boundary conditions are X

required which are obtained from the
original two first order equations. Where the subscript r refers to a chosen

reference value .

The authors are proposing in this
paper a new unified approach for the mathe- When equations (3) and (4) are sub-
matical formulation of the nonhomoceneous stituted into equation (2), we obtain :
continuity and rotationality ecuations. 2 2The approach is based on the definition a x 1 a x 1 

- 
~~ a x 1of a new dependent variable which w i l l  be + —

~~

—- 

~~ ~~~~~

— - ~~~~~~ (5)
referred to as “a streamlike function ’ , ax ay
The introduction of this new dependent
variable transforms the two f i r s t  order
nonhomogeneous partial differential equa- where
tions to a single second order equation in
the new variable. This formulation is X

clearly superior therefore to those used in 01 (x ,y) = x~ w(x ,y) +~~~ — f x~ S(x,y) dxxreferences 4, 5 and 6, which resulted in r
two simultaneous second order equations. (6)

The advantage of the new formulation in
terms of computer time savings are obvious , The deviation from the standard definition
since only half the number of the dif- of the stream funct ion  in this case is
ference eQuations need to be solved , in the x-velocitv component u, given by
Another advantage of the formulation is equation (3). Another streamlike func t ion ,

that the boundary conditions for the strea~n— 
x2~ that satisfies equation (1) automati-cally , could also be defined as follows :like function are of the Di r ichle t type -

over the solid boundaries.  This can
particularly be very helpful in the nurneri— 1 ax 2
cal solution of flow problems with irreqular U = 

~~ 
~~-~~-- (7)

boundaries, using finite difference methods.
Some applications of the streamlike and
function formulation to the flow in turbo-
machine passages will be presented to show 1 ~~2 + 

~~
-
~~

- j x~ S( x ,y ) dy ( 8 )the diversity and flexibility of this new V — -

approach. x X Yr

When this definition is substituted intoMathematical Formula tion equation (2), the following equation is
obtained for the streamlike function x 2:The continuity and rotationality

equations can generally be written in the 2 2following form: a a x 2 — 
~~ a x~

—

~~

— + r- 
~ 
ii— = - o2 (x ,y) (9)

a ~ ~ ~~~~~ (x
3v) = x3 S(x,y) (1) ax

— (x uax ay
where

y
x,y) — x  f S (x ,y) dy(u) — (v) = — w (x,y) (2) 02 (x ,y) = x~ w ( :~ x

(10)
Where u, v are the velocity components in
the x and y directions respectively, S is In th~.s case , the deviation from the
the source/sink term, and w is the vorti— traditional stream function appears in
city in the direction normal to olane x ,y. equation (8), which defines v , the velocity
The value of j is zero for two dimensional component in the v direction .
flow and j is one for the axisymmetric
case. It can be seen from eouations (6) and

(10) that the nonhomogeneous terms 0
~~ 

and
The Streamlike Function 02 in the resulting second order equations

are not only dependent on the vorticity . ,

A new streamlike function is intro— but are also dependent on the source term
duced , such that the continuity equation S in the original continuity equation , and
is automatically satisfied. The velocity on the choice of the reference coordinate
components are defined in terms of the x or y
streamlike function and the source term as r r

2

I ~~~~ - - -
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The Boundary Conditions rates contributes to the variation in the
streaznlike function over a boundar~’. In

Two types of boundary conditions will addition , the area integrals of the source
be discussed , namely that involving a terms S(x,y) in equations (11), (14), (15)
specified velocity component in the di- and (16) can account for streamlike function
rection perpendicular to a boundary , and variation over a boundary , throuqh which
the other involving a specified velocity there is no flux .
component in the direction tangent to a
boundary

Specified Tangential Velocity :

In this case the boundary conditions
Specified Normal Velocity : are of the Neumann typr. when expressed in
This type of boundary condition is terms of the streamlike function .

encountered when the volume flux rate is
specified over a given portion of the i. v = q(y) on x = constant , can be
boundary . Zero normal velocity comPonents expressed in terms of -

~~~ 
as

are usually associated with stationary 
—impermeable solid walls. - - x~ g(y) (18)

i. u f(y) on x = constant , can be
expressed in terms of x 1 as and can be expressed in terms of 

~2 
as

x V

~ 
= f x ~ f(y) dy - If x~S(x ,y) dxdy+C 1 

2 — - x~ g(y) + x3S (x,y) dy (19)
xr y

(11) r

and can be expressed in terms of *2 as
~i. u = f(x) on y = constant , can be

=1 x 3 f(y) dy + (12) 
expressed in terms of as

a x 1 x -

x~ f(x) — I x3S(x ,y) dx (20)
ii. V = g(x) on y = constant , can aY —

be expressed in terms of x 1 as 
r

and can be expressed in terms of *2 55

=1 x~ g(x) dx + C
3 

(13)
ax

2 — x~ f(x) (21)
and can be expressed in terms of *2 as 

-

y
fx3 q (x) dx+ .1 x~S(x ,y) dydx+C 4 

This type of boundary conditions will not
be formulated over a general boundary shape ,

(14) Since it is generally associated with the
boundary conditions at infinity. Equations

iii. More qenerally , when the normal (18) through (21) are sufficient for this
velocity component ‘I

~ 
is specified over a purpose.

general irregular boundary t , the boundary
conditions, in terms of the streamlike
function , *1, can be expressed as: 

Numerical Methods

The rest of this paper is mainly
= 1 x~~V d~ - If x3S(x,y) dxdy + C intended for showing how the new streamlike

5 function formulation can be used in con-n
r (15) junction with already existina numerical

methods for second order equations to
and in terms of the streamlike function obtain solutions to flow problems . A

brief review of the available numerica las methods for solving nonhomogeneous second
Y ~ order differential equations is appropriate

*2 ~~~~v~~dt + If x~S(x ,y) dydx + C6 therefore at this point. Before proceedinq
with this review however, we will describe

(16) very breiflv the numerical methods which
are available for solvinq the two first

where C1 to C6 in equations (11) to (16) order equations directly for the velocity
represent arbitrary constants. components. These methods are based on

writing the finite difference form of these
it is clear from equations (11) eauations at staqaered e n d  points rather

through (16) that, Dirichiet type boundary than at the same arid point. This idea
conditions for the streamlike function , was first introduced by Gates and Von
result when the flow velocity norma l to Rosenbergl0 who used centered difference
the boundary is specified. As expected , schemes for expreasina the first order
the line intearal of the volume flux derivatives of the flux components in

( 3

----‘--~~~-‘.- - -  -- ---~~~~- - -



poten t i a l  flow. They developed a direct horizontal direction , with a mean value of
numerical method and various implicit line zero and maximum and minimum values of +1
iterative methods for solving the resulting and -l .-~t the walls. The vortex distribu-
sets of equations in the flux components. tion changes linearly in the vertical
Using different grid sizes, they evaluated direction with a maximum value of 1.5 at
the accuracy and the approximate total the bottom wall and a minimum value of 0.5
numbe r of arithmetic operations involved at the upper wall. The results for this
in each of their methods of solution in a case are presented in Figures 1 and 2 for
given regular domain. Martin and Lomax~-

1 the first and second streamlike function
employed the sane difference scheme over a formulations , 

~l 
and ‘2’ respectively.staggered grid in their solution of the When Xr is taken outside the solutionnonhomogeneous continuity and rotationalitv domain , the xl contours are symmetric aboutequations. In their procedure , they ~~~~~~~~~~~ the vertical centerline as shown in Fig . 1pulated the resulting finite difference and do not change whether Xr is taken toequations , to obtain a set of algebraic the right or to the left hand side. Withequations in only one of the velocity corn- u = 0 over the boundaries x = constant andponents which they solved using the cyclic v = 0 over the boundaries y = constant,reduction method , equations (11) and (13) give constant

values of x~ over all the solid boundariesRelaxation methods have been used for as shown in Fig. 1. Furthermore , thea long time and are still in great ~~e for streamlike lines , x1 = constant, constitutethe solution of elliptic equations. closed contours inside the solution domainRecently, several investigators became in this case. In the second formulation,interested , however , in the development of 
x2 is also constant over the two solidfast direct methods for solvinc’ the cen- boundaries x = constant and the *2 contourstered difference form of Poisson ’s equa— are symmetric about the vertical centerline . Ftion . The first two of these investiqa- The streamlike function x2 is not neces—tions which were reported by Bunernanl and sarily constant however over the twoHockney14 use the cyclic reduction method , boundaries, y = constant. When Yr isand the finite Fourier transform method , chosen outside of the solution domain , *2respectively, for the numerical solution remains constant over the wall facinq theof Poisson equations with Dirichlet bound- reference line , but varies along theary conditions. Several other investiga- opposite wall. This means that the stream— ptors12~

13 have contributed since then to like lines will intersect that boundaryreducing the limitations to the application opposite to the side where Yr is chosen.of these two methods. The improvements This is seen in Fig. 2, in which y wasincluded generalizing Buneman ’s cyclic chosen on the lower side. Althoug~ thereduction method to Neumann and periodic streai’&like lines are dependent on theboundary conditions on regular boundaries formulation and the choice of the referenceand to be used with arbitrary number of line , the actual flow velocities are inde-grids by Sweet.’5 Hockney ’s finite Fourier pendent of these choices. The arrows intransform method was applied to problems Fig. 3 show the magnitude and direction ofwith Dinichiet boundary conditions on irreg— the resulting secondary flow. While theulas boundaries, and with Neumann boundary previous results were for a domain withconditions on regular boundaries by Buzbee regular boundary, the rest of the appli-’et al.16 In cases involving complicated cations are for a flow problem with anboundary conditions, the relaxation methods irregular boundary .have remained to be the alternative method
of solution .’7’18 Although these methods The second set of results are pre—are generally much simpler to program , it sented for the nonviscous incompressiblehas been found that the boundary conditions irrotational flow in the cross—sectionalhave to be carefully handled in the case planes of a radial inflow turbine scroll.of nonhomogeneous elliptic equations with In this case, the vorticity w in theNeumann boundary conditions convergent rotationality equation is equal to zeroj solution is to be obtained .2’ everywhere in the flow field , and the

source term S, in the continutiy equation
is dependent on th~ throuqh flow velocityApplications profile variation . The boundary conditions
for this case consist of specified normalTwo example problems are presented to velocity component, over all the boundaries4 illustrate the use of the streamlike func— of the solution domain shown in Fig. 4.tion in the solution of flow problems in The velocities normal to the solid boundaryturbomachinery passages. The first set of ABCD and to the axis of symmetry EA areresults simulate the secondary flow in the equal to zero, and the velocity normal toplanes perpendicular to the through flow the scroll exit D~ is uniform and differentdirection for the nonviscous rotational from zero. In reference 2 this problemI low in a curved duct. The numerical pro- was formulated in the traditional way,cedure for determining this three dimension- using the potential function , which re-al flow field was described in reference 1; suited in a Poisson equation with Neumannhere we only present the results, using boundary conditions . Because of thethe present formulation for a given vorti- irregular boundary shape, the numericalcity and source distribution. The case solution was obtained using relaxationunder investigation represents a source methods, A large number of iterations weredistribution with linear variation in the

4
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1 e~~u & e,i [let ore the sol Ut Ion c& ’nverue d in does not p lace  any  r e s t r ic t  ion , h~ w cvv
s p it e  ~- t  t h e sp ec i a l  c a r e  in  handi in~& the on p l a c i ng  t h e  re ference  I ne i n s i d e  t h e
[‘~‘~& & h t i t v  conll it ions .  The same problem is s o l u t i o n  d o m a i n .  The choices f o r  t h e
i. e f o r m u l a t e d  here in terms of the s t r e am —  loca t ion  of the reference line in an yu k . - f u n c ti o n s  with t h e  r e s u l t s  shown in s i t u a t i o n  a re  i n f i n i t e  and should be d e ter -
F t - i s . S t h i o u o h  8 [or  the ca&~e w i t h  the mined  by the user depending on the type of
~~~~ t ’ r r ~ s-urce distributio n . ’- in all his problem .
case s , the v a l u e  o t  the streamli ke function -

was taken equal to . e ro  at the  corner  The other asoect to be discussed is
i’oint ~\ .  I t ot h  Fia s. 5 and t r epr e s e n t  the  the consequence of u s i ng  t h i s  new f o r m u l a —
- e s u l t ~ f a t  t h e  j r s t  st r e a n t l i k e  f un c t i o n  t i o n  on the computer  t im e  fo r  the n u m e r i —
: r r r u l . i t i ( -’n , 

~~
. The d i f f e r e n c e  between cal solutions. Unlike the previous for—

t h e  re sul tin a stream like lines in the  two m u l a t i o n s , in r e f e r ences  4 , 5 and 6 ,
t i - n O e s  is due to the different choices of which result in two second order equations ,
the , t e r , ’nce x”~’ ( h i d i  ite , x r. In the there is only a single second order

l r st  c & s e , x~ was taken e x t e r n a l to the  equ a t i o n  to be solved fo r  the  s t rea ml i k e
s o lu t i on  d o m a i n  t o  the right hand side , and f u n c t i o n .  This  f a c t  by i t s e l f  w i l l  r e s u l t
in the second case , X r was taken external in computer t ime  savinos  of not less than
t - - th e  s o l u t i o n  d o m ain  t o  the l e f t  hand fifty percent , whether relaxation or direct
SI d e ,  A c c o , d  m a  t~~ equation ( 1 5 )  , when methods a re  used in so lv ing  the  r e s u l t i ng
x, is  on t h e  r i g h t  hand  side , the s t r e a m —  f i n i t e  d i f f e r e n c e  e q u a t i o n s .  The t ime
l i k e  f u n c t i o n  remains c o n s tan t  ove r  the sav ings  w i l l  be more than  tha t  in compar i son
p ar t  fiC of  t h e  ~ urved b o u n d a r y  as shown to the  s t ream f u n c t i o n  and p o t e n t i a l
i n  F m ’ . 5 , and when x r is to the  r i gh t , 

~l f u n c t i o n  f o r m u l a t i o n  of r e f e r ence  4 , in
r e m ain s  c o n s tan t  over the l’.Irt AU of the which  the boundary  c o n d i t i o n s  are  of t he
curved b o u n d a r y  as shown in F ig .  6.  In Neumann type over all the solid b o u n d a r i e s
both cases, the  s t r eam l i kt ’ f u n c t i o n  \ j  f o r  the p o t e n t i a l  f u n c t i o n .  Th is  is t ru e
renains constant over  the s t r a igh t  bounda ry  whe the r  r e l a x a t i o n  methods  or the  f a s t
:-~‘rtions CD and AE accordino to equation direct methods are used in the numerical
t. 13) since the flow velocity , v , is equal solution. The fast direct methods could
to .:ert . not be applied up till now to flow problems

with irregular solid boundary when any of
Ftaures 7 and 8 represent the results the approaches in references 4 , 5 , 6, 11 ,

obtained usinil the second streamlike or i~ are used , since boundary conditions
function formulation , k- , , with 

~~~~ 
taken of the Neumann or mixed type are involved.

above the solution domain in the first On the other hand the fast direct methods
case and below the solution domain in the ca n be appl ied  to the same f l o w  nroblems
second case. It is interesting to notice wi th irregular solid boundaries , when
tha t when Yr is taken below AE , the right they are formulated in terms of the new
hand side of equation (10) becomes identi— streamlike function. This is possible
call y eq ua l to zero . As in the p rev ious  since the boundary conditions are of the
formulation , the streanlike function , 

~2 ’  D i r i c h l e t  type over these i r r eou l a r  bound-
remains constant over the solid boundaries aries in the new formulation . In fact ,
to the side on which Yr is chosen ou tside the second set of results for the turbine
the domain, scroll problem , i l l u stra tes ano the r ve ry

important application of the present
formulation. The streamlike function can

~~scussion be introduced in the various problems
which are traditionall y formulated in terms

It has been shown through the results of potential functions. This way the
presented that the choice of the t~’pe of boundary  condi ti ons are conver ted f r o m
streamlike function formulation and the Neumann type in terms of the potential
re ference line alter not only the boundary function to Dirichiet type in terms of the
condi t io ns , but also the nonhomogeneous streamlike function. The new formulation
term in the resulting differential equation. presented here , can th e r e f o re be used to
This choice can be used to obtain the extend the applicability of the fast direct
bounda ry condi t ion whi ch is easiest to methods for solving ellip ti c equations ,
handle. This can usuall y be accomplished to a new class of problems , with irregular
by placing the reference line on the side boundaries.
of the most i r rc ~i u l a r  solid boundary to
have constant value of the streamlike - -

function over i t . The numer ica l  s ol u t i o n  Refe rences
itself can be sensitive to these choices ,

I -as the authors found  in the case of the 
~~~. flamed , A. and Ahdallah , S., “Three

scroll where the flow velocities are very Dimensiona l Rotational Flow in Highly
small in the part opposite the exit neck . Curved Ducts Due to Inlet Vortic itv ,
Taking the reference line to the ricrht , AIM Paper 7 8 — 1 4 6 , l~Y ’R .
with the 

~~ 
f o r m u l a tio n , was found  to

result in the closest spaced stream— 2. flamed , A . ,  Abd a l l ah , S. and Tabakof f

like lines in this region. In all the W., “Flow Study in the Cross Sectional

results presented here , the reference Planes of a Turb ine Scrol l , AIM Paper

lines were generally chosen externa l to 77-714 , l~~~7 .
the solution doi-’ain for the purpose of 3 ,  M a r t i n , 1- ’ . P . ,  “ A Split—ReCoupled—SC’mi—
demonstration. The formulation itself direct Computational Technioue App l i e d
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