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A NEW APPROACH FOR SOLVING THE VORTICITY AND CONTINUITY

+
EQUATIONS IN TURBOMACHINERY DUCTS

*
A. Hamed and

*k
S. Abdallah

University of Cincinnati

Cincinnati,

Abstract

Repeated solutions to the continuity
and vorticity equations are frequently
required in computations of three dimen-
sional flows in turbomachinery passages.
When the two equations are nonhomogeneous
previous formulations resulted in two
second order differential equations. A
new approach is presented here, which is
applicable in a generalized two dimensional
domain or axisymmetric field. It is based
on the definition of a streamlike function
which is used to transform these nonhomo-
geneous first order partial differential
equations to a single second order equation
with Dirichlet boundary conditions over the
solid boundaries. Some applications are
presented to show how this new approach can
be used to save computer time in numerical
flow solutions.

Nomenclature

€. €S arbitrary constants in Egs.

(1) to (16).

3 parameter equal to zero for two
dimensional flow, and to one for
axisymmetric flow

(1)
velocity component in x-direction

S source/sink term in Eq.

velocity component in y-direction

value of the x coor-
the X1 formulation

reference
dinate in

Yy reference
dinate in

value of the y coor-
the X2 formulation

the nonhomogeneous terms in the
second order equations for the

streamlike functions, Egs. (5),
(6), (9) and (10)

streamlike functions defined in
Egs. (3), (4), (7) and (8)

W flow vorticity, FEq. (2)

9y and 9y

xl and Xy

Ohio 45221

Introduction

The simultaneous solution of the two
first order partial differential equations
representing the conservation of mass and
the vorticity, is required in many flow
studies.1~53 The authors interest in this
problem is connected to their internal
nonviscous subsonic flow investigationsl'2
in the various turbomachinery passages.
The need for the solution to the outlined
problem is also encountered in other
diversified flow fields such as_external
two dimensional transonic flows> and
internal viscous flows.?r In three
dimensional flow fields, the equation of
conservation of mass includes a derivative
of the third velocity component. There~-
fore, except for two dimensional incom-
pressible flow or for irrotational flow,
the two equations are generally nonhomo-
geneous. When at least one of the equations
is homogeneous, the traditional formulation
of flow problems has been in terms of a
potential function or a stream function.

In the absence of a source term in the
continuity equation, the stream function

is introduced into the rotationality equa-
tion to obtain the second order partial
differential equation for the stream
function. On the other hand, the irrota-
tional flow is usually studied in terms of
the potential function which is used into
the continuity eguation to obtain the
governing second order partial differential
equation. There has been no single unified
approach, however, for the mathematical
formulation of the problem when both the
continuity and the rotationality equations
are nonhomogeneous. In references 4, 5

and 6, two different mathematical approaches
were used for the solution of the con-
tinuity and rotationality equations. Rubin
and Khosla?4 formulated the problem in terms
of a stream function and a potential
function, resulting in two second order
partial differential equations in these
functions. The problems of handling the
Neumann boundary conditions for the poten-
tial function over irregular boundaries

are well known.’? There are additional
problems involved in the numerical solution
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using finite difference methods, when the
potential equation has a nonhomogeneous
term, with this type of boundary conditions
over all the boundaries of the solution
domain.<+%» A different approach was
followed in references 5 and 6. Cross
differentiation was used to obtain two
second order partial differential equations
in the two velocity components. In this
case, additional boundary conditions are
required which are obtained from the
original two first order equations.

The authors are proposing in this
paper a new unified approach for the mathe-
matical formulation of the nonhomoceneous
continuity and rotationality equations.

The approach is based on the definition

of a new dependent variable which will be
referred to as "a streamlike function".

The introduction of this new dependent
variable transforms the two first order
nonhomogeneous partial differential equa-
tions to a single second order egquation in
the new variable. This formulation is
clearly superior therefore to those used in
references 4, 5 and 6, which resulted in
two simultaneous second order equations.

The advantage of the new formulation in
terms of computer time savings are obvious,
since only half the number of the dif-
ference equations need to be solved.

Another advantage of the formulation is

that the boundarv conditions for the streain-
like function are of the Dirichlet type
over the solid boundaries. This can
particularly be very helpful in the numeri-
cal solution of flow problems with irreqular
boundaries, using finite difference methods.
Some applications of the streamlike
function formulation to the flow in turbo-
machine passages will be presented to show
the diversity and flexibility of this new
approach.

Mathematical Formulation

The continuity and rotationality
equations can generally be written in the
following form:

% (x u)+ay (xX'v) x

I s(x,y) (1)

(u) (v) = - w(x,y) (2)

g =
Yy IxX

Where u, v are the velocity components in
the x and y directions respectively, S is
the source/sink term, and w is the vorti-
city in the direction normal to plane x,V.
The value of j is zero for two dimensional
flow and j is one for the axisymmetric
case.

The Streamlike Function

A new streamlike function is intro-
duced, such that the continuity equation
is automatically satisfied. The velocity
components are defined in terms of the
streamlike function and the source term as

follows:
Iy X o
o | 3
ur= 3w + = [ xJ s(x,y) ax (3)
X X
r
and
X
stemalrsise]
S (4)
X

There the subscript r refers to a chosen
reference value.

When equations (3) and (4) are sub-
stituted into equation (2), we obtain:

2 2
9 X 9 x SO
il 1 ap
+ = — = 0.(x,y) (5)
2’XZ Syz X 9x 1L
where
j Y
o, (x,y) = x w(x,y)*—sy [ x? s(x,y) dx
X
3 (6)

The deviation from the standard definition
of the stream function in this case is
in the x-velocity component u, given by
equation (3). Another streamlike function,

Xpr that satisfies equation (1) automati-
cally, could also be defined as follows:
aX
W = l_rg_z (7)
x] Ve
and
X v .
g 2 it D)
v —j' R + —Jr f x- S(x,y) dy (8)
X Xy

i

When this definition is substituted into
equation (2), the following equation is
obtained for the streamlike function Xpt

2 2
37X 37X . OX
g b s s 4 ﬁ = =0y xy) (9)
ax ay
where
. ya %
o,(x,y) = xlulx,y) - x° o= [ si(x,y) dy
¥
5 (10)

In this case, the deviation from the
traditional stream function appears in
equation (8), which defines v, the velocity
component in the v direction.

It can be seen from eauations (6) and
(10) that the nonhomogeneous terms o; and
0y in the resulting second order equations
are not only dependent on the vorticity w,
but are also dependent on the source term
S in the original continuity equation, and
on the choice of the reference coordinate

X, Oor .
4 yr




The Boundary Conditions

Two types of boundary conditions will
be discussed, namely that involving a
specified velocity component in the di-
rection perpendicular to a boundary, and
the other involving a specified velocity
component in the direction tangent to a
boundary.

Specified Normal Velocity:

This type of boundary condition is
encountered when the volume flux rate is
specified over a given portion of the
boundary. Zero normal velocity components
are usually associated with stationary
impermeable solid walls.

i. u = f(y) on x = constant, can be
expressed in terms of X1 as

3 AL
=rx) £(y) dy - /7 xIs(x,y) dxdy+cC,
Xy

(11)
and can be expressed in terms of Xp as

%1

xp =/ x) £(y) dy + ¢, (12)
ii. v = g(x) on y = constant, can
be expressed in terms of x, as
=/x) g(x) dx + C (13)

X3 3

and can be expressed in terms of X, as

4
(14)

j )
== /x" g(x)dx+ // x'S(x,y) dydx+C

X
2
Yr

iii. More generally, when the normal
velocity component V, is specified over a
general irregqular boundary ¢, the boundary
conditions, in terms of the streamlike
function, Xpr can be expressed as:

2 X "
=/xIv_dr - s xIs(x,y) axdy + Cqg
n x

A
5 (15)
and in terms of the streamlike function
)(2 as
! 2
X =[x Vndi + /J x's(x,y) dydx + C6

e (16)

where C1 to Cg in equations (11) to (16)
represent arbitrary constants.

It is clear from equations (11)
through (16) that, Dirichlet type boundary
conditions for the streamlike function,
result when the flow velocity normal to
the boundary is specified. As expected,
the line integral of the volume flux

7

rates contributes to the variation in the
streamlike function over a boundary. In
addition, the area integrals of the source
terms S(x,y) in equations (11), (14), (15)
and (16) can account for streamlike function
variation over a boundary, through which
there is no flux.

Specified Tangential Velocity:

In this case the boundary conditions
are of the Neumann typ~ when expressed in
terms of the streamlike function.

i. v = g(y) on x = constant, can be
expressed in termg of X, as
3
1

R

1 gy (18)

and can be expressed in terms of X, as

-
IxX

j R
aly) + [  xs(x,y) dy (19)
b g

= - x

: <

ii. u = f(x) on y = constant, can be

expressed in terms of X, as
dx s X i
371 =x) £(x) - / xs(x,y) dx (20)

X
r

and can be expressed in terms of X as

3)(2

)
v - X f(x) (21)

This type of boundary conditions will not
be formulated over a general boundary shape,
since it is cenerally associated with the
boundary conditions at infinity. Fquations
(18) through (21) are sufficient for this
purpose.

Numerical Methods

The rest of this paper is mainly
intended for showing how the new streamlike
function formulation can be used in con-
junction with already existinc numerical
methods for second order equations to
obtain solutions to flow problems. A
brief review of the available numerical
methods for solving nonhomogeneous second
order differential equations is appropriate
therefore at this point. Before proceeding
with this review however, we will describe
very breifly the numerical methods which
are available for solving the two first
order equations directly for the velocity
components. These methods are based on
writing the finite difference form of these
equations at staggered arid points rather
than at the same arid point. This idea
was first introduced by Gates and Von
Rosenbergl0 who used centered difference
schemes for expressina the first order
derivatives of the flux components in
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potential flow. They developed a direct
numerical method and various implicit line
iterative methods for solving the resulting
sets of equations in the flux components.
Using different grid sizes, they evaluated
the accuracy and the approximate total
number of arithmetic operations involved

in each of their methods of solution in_a
given regular domain. Martin and Lomax
employed the same difference scheme over a
staggered grid in their solution of the
nonhomogeneous continuity and rotationality
equations. In their procedure, they mani-
pulated the resulting finite difference
equations, to obtain a set of algebraic
equations in only one of the velocity com-
ponents which they solved using the cyclic
reduction method.

Relaxation methods have been used for
a long time and are still in great Y;e for
the solution of elliptic equations.**“
Recently, several investigators became
interested, however, in the development of
fast direct methods for solvinc the cen-
tered difference form of Poisson's equa-
tion. The first two of these investiga-
tions which were reported by Bunemanl3 and
Hockneyl4 use the cyclic reduction method,
and the finite Fourier transform method,
respectively, for the numerical solution
of Poisson equations with Dirichlet bound-
ary conditions. Several other investiga-
torsl2,13 have contributed since then to
reducing the limitations to the application
of these two methods. The improvements
included generalizing Buneman's cyclic
reduction method to Neumann and periodic
boundary conditions on regular boundaries
and to be used with arbitrary number of
grids by Sweet .12 Hockney's finite Fourier
transform method was applied to problems
with Dirichlet boundary conditions on irreg-
ular’ boundaries, and with Neumann boundary
conditions on regular boundaries by Buzbee
et al.16 1n cases involving complicated
boundary conditions, the relaxation methods
have remained_to be the alternative method
of solution.l7:18 Althouah these methods
are generally much simpler to program, it
has been found that the boundary conditions
have to be carefully handled in the case
of nonhomogeneous elliptic equations with
Neumann boundary conditionszi§ 3 convergent
solution is to be obtained.“’"r

Applications

Two example problems are presented to
illustrate the use of the streamlike func-
tion in the solution of flow problems in
turbomachinery passages. The first set of
results simulate the secondary flow in the
planes perpendicular to the through flow
direction for the nonviscous rotational
flow in a curved duct. The numerical pro-
cedure for determining this three dimension-
al flow field was described in reference 1;
here we only present the results, using
the present formulation for a given vorti-
city and source distribution. The case
under investigation represents a source
distribution with linear variation in the

horizontal direction, with a mean value of
zero and maximum and minimum values of +1
and -1 at the walls. The vortex distribu-
tion changes linearly in the vertical
direction with a maximum value of 1.5 at
the bottom wall and a minimum value of 0.5
at the upper wall. The results for this
case are presented in Figures 1 and 2 for
the first and second streamlike function
formulations, X1 and Xor respectively.

When x, is taken outside the sclution
domain, the x; contours are symmetric about
the vertical centerline as shown in Fig. 1
and do not change whether x, is taken to
the right or to the left hand side. With

u = 0 over the boundaries x = constant and
v = 0 over the boundaries y = constant,
equations (11) and (13) give constant
values of x; over all the solid boundaries
as shown in Fig. 1. Furthermore, the
streamlike lines, xy = constant, constitute
closed contours inside the solution domain
in this case. In the second formulation,
X is also constant over the two solid
boundaries x = constant and the x) contours
are symmetric about the vertical centerline.
The streamlike function x, is not neces-
sarily constant however over the two
boundaries, y = constant. When y, is
chosen outside of the solution domain, x;
remains constant over the wall facing the
reference line, but varies along the
opposite wall. This means that the stream-
like lines will intersect that boundary
opposite to the side where y, is chosen.
This is seen in Fig. 2, in which y, was
chosen on the lower side. Althougﬁ the
streamlike lines are dependent on the
formulation and the choice of the reference
line, the actual flow velocities are inde-
pendent of these choices. The arrows in
Fig. 3 show the magnitude and direction of
the resulting secondary flow. While the
previous results were for a domain with
regular boundary, the rest of the appli-
cations are for a flow problem with an
irregular boundary.

The second set of results are pre-
sented for the nonviscous incompressible
irrotational flow in the cross-sectional
planes of a radial inflow turbine scroll.
In this case, the vorticity w in the
rotationality equation is equal to zero
everywhere in the flow field, and the
source term S, in the continutiy equation
is dependent on th% through flow velocity
profile variation. The boundary conditions
for this case consist of specified normal
velocity component, over all the boundaries
of the solution domain shown in Fig. 4.

The velocities normal to the solid boundary
ABCD and to the axis of symmetry EA are
equal to zero, and the velocity normal to
the scroll exit DE is uniform and different
from zero. In reference 2 this problem

was formulated in the traditional way,
using the potential function, which re-
sulted in a Poisson equation with Neumann
boundary conditions. Because of the
irregular boundary shape, the numerical
solution was obtained using relaxation
methods. A large number of iterations were
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required before the solution converged in
spite of the special care in handling the
boundary conditions. The same problem is
reformulated here in terms of the stream-
like functions with the results shown in
Figs. 5 through 8 for the case with the
uniform source distribution. In all
cases, the value of the streamlike function
was taken equal to zero at the corner
point A. Both Fias. 5 and 6 represent the
results for the first streamlike function
formulation, x). The difference between
the resultinag streamlike lines in the two
figures 1s due to the different choices of
the reference x-coordinate, Xp. In the
first case, x, was taken external to the
solution domain to the right hand side, and
in the second case, x, was taken external
to the solution domain to the left hand
side. According to equation (15), when

X, 18 on the right hand side, the stream-
like function y, remains constant over the
part BC of the curved boundary as shown

in Fig. 5, and when x, is to the right, X1
remains constant over the part AB of the
curved boundary as shown in Fig. 6. In
both cases, the streamlike function xj
remains constant over the straight boundary
portions CD and AE according to equation
(13) since the flow velocity, v, is equal
to zero.

Figures 7 and 8 represent the results
obtained using the second streamlike
function formulation, x»,, with vy, taken
above the solution domain in the first
case and below the solution domain in the
second case. It is interesting to notice
that when y,. is taken below AE, the right
hand side of equation (10) becomes identi-
cally equal to zero. As in the previous
formulation, the streamlike function, X2
remains constant over the solid boundaries
to the side on which y, is chosen outside
the domain.

Discussion

It has been shown through the results
presented that the choice of the type of
streamlike function formulation and the
reference line alter not only the boundary
conditions, but also the nonhomogeneous
term in the resulting differential equation
This choice can be used to obtain the
boundary condition which is easiest to
handle. This can usually be accomplished
by placing the reference line on the side
of the most irregular solid boundary to
have constant value of the streamlike
function over it. The numerical solution
itself can be sensitive to these choices,
as the authors found in the case of the
scroll where the flow velocities are very
small in the part opposite the exit neck.
Takina the reference line to the riaght,
with the y; formulation, was found to
result in the closest spaced stream-
like lines in this region. 1In all the
results presented here, the reference
lines were generally chosen external to
the solution domain for the purpose of
demonstration. The formulation itself

v

does not place any restriction, however,

on placing the reference line inside the
solution domain. The choices for the
location of the reference line in any
situation are infinite and should be deter-
mined by the user depending on the tvpe of
his problem.

The other asvect to be discussed is
the consequence of using this new formula-
tion on the computer time for the numeri-
cal solutions. Unlike the previous for-
mulations, in references 4, 5 and 6,
which result in two second order equations,
there is only a single second order
equation to be solved for the streamlike
function. This fact by itself will result
in computer time savinas of not less than
fifty percent, whether relaxation or direct
methods are used in solving the resulting
finite difference equations. The time
savings will be more than that in comparison
to the stream function and potential
function formulation of reference 4, in
which the boundary conditions are of the
Neumann tvpe over all the solid boundaries
for the potential function. This is true
whether relaxation methods or the fast
direct methods are used in the numerical
solution. The fast direct methods could
not be applied up till now to flow problems
with irreqular solid boundary when any of
the approaches in rererences 4, 5, 6, 11,
or 19 are used, since boundary conditions
of the Neumann or mixed type are involved.
On the other hand the fast direct methods
can be applied to the same flow problems
with irregular solid boundaries, when
thev are fermulated in terms of the new
streamlike function. This is possible
since the boundary conditions are of the
Dirichlet type over these irregular bound-
aries in the new formulation. 1In fact,
the second set of results for the turbine
scroll problem, illustrates another very
important application of the present
formulation. The streamlike function can
be introduced in the various problems
which are traditionally formulated in terms
of potential functions. This way the
boundary conditions are converted from
Neumann type in terms of the potential
function to Dirichlet type in terms of the
streamlike function. The new formulation
presented here, can therefore be used to
extend the applicability of the fast direct
methods for solvina elliptic equations,
to a new class of problems, with irregular
boundaries.
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2. Streamlike Function, \,, Contours.
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Fig. 3. Secondary Flow Velocity Vectors.

Fig. 7. Streamlike Function, y.,, Contours
Y, on the Upper Side.

Fig. 4. The Scroll-Cross Sectional Geometry.
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Fig. 8. Streamlike Function, y,, Contours
Fig. 5. Streamlike Function, x;, Contours vy on the Lower Side.

X, on the Right Hand Side.




