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The Role of Object Primitives
in Natural Language Processing

Wendy G. Lehnert and Mark H. Burstein
Computer Science Department
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ABSTRACT

Natural language processing techniques rely in part on
the use of functional knowledge about physical objects, and
an associative memory structure. In this paper, a
representational system called Object Primitives 1is
presented as an extension to the system of Conceptual
Dependency for the purpose of representing physical objects
and providing an organizing structure for associative
memory. A computer program, OPUS, is described which
applies this representational system to the problem of
analyzing natural 1language sentences dealing with objects.
Inferences derived from Object Primitive descriptions are
made during the conceptual analysis by a system of demons,
providing a framework for an integrated wunderstanding

system.

Topics and Key Words

Topics and key words relevant to this paper are
associative memory, memory organization, knowledge
representation, inference generation, conceptual analysis,
cognition, and natural language understanding.




The Role of Object Primitives

in Natural Language Processing*
by
Wendy G. Lehnert
and

" Mark H. Burstein

1. INTRODUCTION

It is widely recognized that the process of understanding
natural language texts cannot be accomplished without accessing
mundane knowledge about the world [Bobrow, et al. 1977, Charniak
1972, Norman, et al. 1975, Minsky, M. 1975]. That is, in order
to resolve ambiguities, build expectations, and make causal
connections between events, we must make use of all sorts of
episodic, stereotypic and factual knowledge of our world. In

this paper we will concentrate on knowledge about physical

*This work was supported in part by the Advanced Research
Projects Agency of the Department of Defense and monitored under
the Office of Naval Research under contract N00014-75-C-1111.
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objects. In particular, we will see how functional knowledge
about physical objects and associations between physical objects

can be exploited in an understanding system.

Consider the sentence

(1) John opened the bottle and poured the wine.

Anyone reading and understanding this sentence makes assumptions
about what happened which go far beyond what is actually stated.
For example, we assume without hesitation that the wine being
poured came from inside the bottle. Although this seems quite
obvious, in fact there are several other interpretations which
fit what is actually stated. First of all, there is no reason to
assume that the wine was initially in the bottle. John could be
filling the bottle from some other container rather than emptying
it. Alternatively, the wine being poured could have nothing to
do with the bottle that was opened. John could be opening one
bottle and pouring wine from an entirely different bottle. There
is nothing in a literal reading of the sentence to prevent either
of these interpretations, but some cognitive inference mechanism
forces us (as human understanders) to connect these two events in

a causal construction.

In addition to the assumptions made about where the wine
comes from, we rely on our knowledge of bottles and what it means

for a bottle to be "open", when interpreting the sentence. Only

by drawing on this knowledge of states are we able to conclude

T W
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that John -had to open the bottle in order to pour the wine out of
the bottle. Strong associations are at work helping us to make

these connections. Even for the sentence
(2) John closed the bottle and poured the wine.

i we are inclined to assume that the wine is in the bottle, before

we realize that this leads to a contradiction. The fact that we
i recognize a contradiction here indicates that we are utilizing
3 knowledge about closed bottles and what cannot be done with
closed bottles. In fact, we will shaw how specific expectations
derived from our knowledge of open bottles are responsible for
1 the natural human interpretation of "John opened the bottle and

poured the wine."

Now consider the sentence

(3) John turned on the faucet and filled his glass.

e

We know immediately on hearing this that John filled his glass ;

with water from the faucet. Yet, not only is water never i

mentioned in the sentence, but there is nothing in the sentence :

e e

which explicitly relates turning on the faucet and filling the §
glass. The glass could conceivably be filled with milk from a

carton. However, in the absence of some greater context which

i

forces a different interpretation on us, we immediately assume

e

that the glass is being filled with water from the faucet.

R
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The question, then, is what knowledge of bottles, wine and
faucets enables us to interpret these sentences as we do? What
cognitive process<~ at the time of understanding cause us to
conclude without hesication that the wine was poured from the
bottle and the glass was filled with water from the faucet? This
paper describes a computer program which processes sentences such
as those above, to arrive at meaning representations which
include those assumptions that a human understander would make.
To do this requires the use of stereotypic knowledge of physical
objects. This information is captured in OPUS (Object Primitive
Understanding System) by using a set of conceptual primitives
called Object Primitives [Lehnert 1978]. Object Primitives (OP)
were designed to act in conjunction with Schank’s conceptual
dependency system of representation [Schank 1975]. The processes
developed to perform conceptual analysis 1in OPUS involve the
integration of a conceptual analyzer similar to Riesbeck’s ELI
[Riesbeck and Schank 1976] with demon-like procedures for memory

interaction and the introduction of object-related expectations.

2. Object Primitives

The primary focus in this research has been on the
development of processes which utilize information provided by
Object Primitives to facilitate the '"comprehension" of mnatural
language texts by computer. That is, we were primarjly concerned
with the introduction of stereotypic knowledge of objects into

the conceptual analysis of text. By using information stored in
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OP descriptions, we were able to increase the interpretive power
of the analyzer in order to handle sentences of the sort

discussed earlier.

What follows is a brief description of the seven Object
Primitives. A more thorough discussion can be found in [Lehnert
1978]. For those unfamiliar with the primitive acts of Schank’s
conceptual dependency representation, a discussion of those can

be found in [Schank 1975].

The Object Primitive CONNECTOR is used to indicate what
actions (described in terms of Schank’s primitives acts) are
normally enabled when an object is in a particular state. A
CONNECTOR enables a transfer between two spatial regions. For
example, a window and a door are both CONNECTORs which enable the
PTRANSing (physical transfer) of objects through them when they
are open. In addition, a window is a CONNECTOR which enables an
ATTEND (of eyes) or an MTRANS (mental transfer) with instrument
ATTEND (of eyes). These events are enabled regardless of whether
the window is open or closed. That is, one can see through a
window, and therefore read or observe things on the other side,
even when the window is closed. In the examples discussed above,
the open bottle is given a CONNECTOR description. This will be

discussed further later.

A SEPARATOR disenables a transfer between two spatial
regions. A closed door and a closed window are both SEPARATORs

which disenable the act PTRANS from one region to another. 1In

addition, a closed door is a SEPARATOR which disenables the acts
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MTRANS with instruments ATTEND eyes (unless the door 1is
transparent) or ears. That is, one is normally prevented from
seeing or hearing through a closed door. Similarly, a closed
window is a SEPARATOR which disenables MTRANS with instrument
ATTEND ears, although, as mentioned above, one can still see
through a closed window to the other side. A closed bottle is

another example of an object with a SEPARATOR description.

It should be clear by now that objects described using
Object Primitives are not generally described by a single
primitive. In fact, not ome but several sets of primitive
descriptions may be required. This is illustrated above by the
combination of CONNECTOR and SEPARATOR descriptions required for
a closed window, while a somewhat different set are required for
an open window. These sets of descriptions form a small set of
"states" which the object may be in. This representational
system effectively treats open and closed windows as conceptually

distinct objects in spite of the fact that our 1lexical

expressions suggest that we have one fixed object assuming two

different states.

A SOURCE description indicates that a major function of the
object described is to provide the user of that object with some
other object. Thus a faucet is a SOURCE of water, a wine bottle
! is a SOURCE of wine, and a lamp is a SOURCE of the phenomenon

called light. SOURCEs often require some sort of activation.

Faucets must be turned on, wine bottles must be opened, and lamps

are either turned on or 1it depending on whether or not they are
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electric.

The Object Primitive CbNSUMER is used to describe objects
whose primary function is to consume other objects. A trash can
is a CONSUMER of waste paper, a drain is a CONSUMER of 1liquids,
and a mailbox is a CONSUMER of mail. Some objects are both
SOURCEs and CONSUMERs. A pipe is a CONSUMER of tobacco and a
SOURCE of smoke. An ice cube tray is a CONSUMER of water and a

SOURCE of ice cubes.

Many objects can be described in part by relationships that
they assume with some other objects. These relations are
described using the Object Primitive RELATIONAL. Containers,
such as bottles, rooms, cars, etc., have as part of their
descriptions a contaimment relation, which may specify defaults
for the ¢type of object contained. Objects, such as tables and
chairs, which are commonly used to support other objects will be

described with a support relation.

Objects such as buildings, cars, airplanes, stores, etc.,
are all things which can contain people. As such, they are often
distinguished by the activities which people in those places
engage in. One important way of encoding those activities is by
referring to the scripts which describe them. The Object
Primitive SETTING 1s used to capture the associations between a
place and any script-like activities that normally occur there.
It can also be used to indicate other, related SETTINGs which the
object may be a part of. For example, a dining car will have

both a restaurant script and an associated SETTING of passenger

B P T W W Ry
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train. This information is important for the establishment of
possible contexts, and the many domain specific expectations
which will therefore be available to guide processing at both the
conceptual analysis or word definitional level and when making

inferences at higher levels of cognitive processing.

The final Object Primitive, GESTALT, is used to characterize
objects which have recognizable, and separable, subparts.
Trains, hi-fi systems, and kitchens, all evoke images of objects
characterizable by describing their subparts, and the way that
those subparts relate to form the whole. The Object Primitive

GESTALT is used to capture this type of description.

Using this set of primitives as the foundation for a memory
representation, we can construct an associative memory by
introducing associative 1links external to object primitive
decompositions [Lehnert 1978]. We have already achieved a class
of associations within object primitive decompositiomns. For
example, the conceptual description of a wine bottle will include

a SOURCE description for a bottle in which the SOURCE output is

specified as wine. This amounts to an associative link from the
concept of a wine bottle to the concept of wine. But how can we
1 construct an associative 1link from wine back to wine bottles?
‘ Wine does not have an object primitive decomposition which
|

i involves wine bottles, 8o we must resort to some construction
3

which is external to object primitive decompositions.
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Four associative links have been proposed [Lehnert 1978]),
each of which points to a particular object primitive
description. For the problem of wine and wine bottles, an
associative OUTPUTFROM 1link is directed from wine to the SOURCE
description of a wine bottle. This external 1link provides us

with an associative link from wine to wine bottles.

3. The Program

I will now describe the processing of two sentences very
similar té those discussed earlier. The computer program (OPUS)
which performs the following analyses was developed using a
conceptual analyzer written by Larry Birnbaum [Birnbaum and
Selfridge 1978). OPUS was then extended to include a capacity
for setting up and firing "demons" or "triggers" as they are
called in KRL [Bobrow and Winograd 1977]. The functioning of

these demons will be illustrated below.

3.1 The Initial Analysis

We will first look at the processing for "John opened the
bottle so he could pour the wine," in detail. The phrase "John

opened the bottle," is analyzed to produce the following

representation:
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*John* (=) #DO*

result
*hottle* @ CONNECTOR
ENABLES
> X
THUMO <=> PTRANS <- ?0BJ <-{: |
< (INSIDE PART SELF)
(or) ENABLES
> (INSIDE PART SELF)
7HUMO <=> PTRANS <- ?0BJ <—[
<Y
(or) ENABLES
> ?70BJ is inside SELF
7HUMO <=> ATTEND <- ?SENSE <—{:
<

Where SELF refers to the object being described (the bottle)
and ?--- indicates an unfilled slot.

*John* represents an internal memory representation for a person
with the name John, and *bottle* points to a memory token
constructed for the bottle mentioned. These memory tokens for
John and the bottle are constructed by a general demon which is

triggered during conceptual analysis whenever a PP (the internal

representation for an object) is introduced.

The above diagram represents the assertion that John did

something which caused the bottle to assume a state where its

CONNECTOR description applies. The CONNECTOR description

indicates that something can be removed from the bottle (PTRANS

1 FROM (INSIDE PART SELF)), put into the bottle (PTRANS TO (INSIDE
PART SELF)), or 1its contents can be smelled, looked at, or

generally examined by some sense modality (ATTEND). This

CONNECTOR description 1is not part of the definition of the word

‘open’. It is specific knowledge that people have about what it

means to say that a bottle is open. It is not even the case that

Lane o an i ol g il
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opening something always builds a CONNECTOR description. For
‘example, an open umbrella is described using the Object Primitive
SEPARATOR since an open umbrella disenables rain from falling on

the person holding the umbrella.

In arriving at the above representation, the program must
retrieve from memory the OP description of what it means for a
bottle to be open. Tihis information is stored beneath 1its
prototype for bottles, *BOTTLE*. Presumably, there 1is also
script-like information about the different methods for opening
bottles, the different types of caps (corks, twist-off, ...), and
which method is appropriate for which cap. However, for the
purpose of understanding a text which does not refer to a
specific type of bottle, cap, or opening procedure, what is
important is the information about how the bottle can then be
used once it is opened. This 1is the kind of knowledge that

Object Primitives were designed to capture.

When the analyzer builds the state description of the
bottle, a general demon associated with new state descriptions is
triggered. This demon is responsible for updating memory by
adding the new state information to the token in the ACTOR slot
of the state description. Thus the bottle token is updated to
include the given CONNECTOR description. For the purposes of
this program, the bottle is then considered to be an "open"
bottle. A second function of this demon is to set wup
expectations for future actions based on the new information. In

this case, templates for three actions the program might expect
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to see described can be constructed from the three partially
specified conceptualizations shown above in the CONNECTOR !
description of the open bottle. These templates are attached to
the state description as possible consequences of that state, for
use when attempting to infer the causal connections between

events.

*bottle* ? CONNECTOR
(]

]
|
)
)
'

(possible enabled actions)

]
1]
]
]
'
)
'

B ‘ > X .1
THUMO <=> PTRANS <- ?0BJ <—{:
< (INSIDE PART *bottle*)

> (INSIDE PART *bottle*)
7HUMO <=> PTRANS <- ?0BJ <—{:

< 7Y
> ?70BJ is inside *bottle*
L?HUMO <=> ATTEND <~ ?SENSE <—{:
< o

The remainder of the sentence reads '"so he could pour the

wine." The "80...could" indicates that there should be some

direct or indirect enabling relationship between the action
described in the first part of the sentence and the one currently
being described. This is captured in the program by setting up a

special procedure to verify a causal connection. This procedure

will only be activated when the sentence is completed. It
attempts to find the connection between the two
conceptualizations pointed to by the ENABLE link formed when the

analyzer saw the "so ... could"; the state of the bottle being

open, and the act of pouring the wine.

i S SR PN ST VSR ARG ST I SR A PIATIN SHP . T S
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3.2 Concept Driven Inferences

The phrase "so he could pour the wine." is analyzed as

enable > X
*John* <{=> PTRANS <- *wine¥* <-{:
< (INSIDE PART ?CONTAINER)

When this representation is built by the analyzer, some
slots remain as yet unfilled. For example, we do not know that
the the wine being poured is coming from the previously mentioned
bottle. This inference is made in the program by a slot-filling
demon called the CONTAINER-FINDER, attached to the primitive act
PTRANS. The demon 1is triggered when a PTRANS is built whose

conceptual object is some substance being described as coming

from inside an unspecified container. When this occurs, a

request is generated which looks on the 1ist of active tokens (a

part of short term memory) for any containers that might contain
the given substance. A suitable container is one in which we

might normally expect to find the particular substance, in this

case wine.

There are two ways to recognize a possible container: (1]
via the DEFAULT-CONTAINMENT test, or [2] via the COMMON-SOURCE
test. The DEFAULT-CONTAINMENT test relies on an associative link
from the RELATIONAL description of a container to a default
substance within that description. The COMMON-SOURCE test relies

on an associative OUTPUTFROM 1link from the substance to the

FOTE T ST LT S 2 SRR
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SOURCE description of a container for that substance.

At different times, either the DEFAULT-CONTAINMENT test or
the COMMON-SOURCE test may be necessary in order to establish
probable containment. For example, it is reasonable to expect a
vase to contain water since the RELATIONAL description of a vase
has default contaimment slots for water and flowers. But we do
not always expect water to come from vases since there is no
OUTPUTFROM link from water to a SOURCE description of a vase. If
we heard "Water spilled when John bumped the vase," containmment
would be established by the DEFAULT-CONTAINMENT test.
Associative links are not always bi-directional (vase ---> water,
but water -/-> vase) and we need separate mechanisms to trace
links with different orientations. In our wine example, the
COMMON-SOURCE test is responsible for establishing containment,
since wine is known to be OUTPUTFROM bottles but bottles are not

always assumed to hold wine.

Another expectation which 1s fulfilled during d{nitial
analysis 1is a request 1looking for the contents of the bottle
mentioned in the first clause of the sentence. This expectation
was set up by a demon called the CONTENTS-FINDER when the
description of the open *bottle* was built, and 1is independent
from the CONTAINER-FINDER demon activated by pouring. This demon
is activated by a state description for an open container where
the container is a common SOURCE object for which no known output

exists. The presence of the SOURCE object can be explained if

its output 1is subsequently wused in the text. Here again, the
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1list of active tokens is searched for an object which could be
OUTPUT-FROM a bottle, and the token for this particular bottle is
then marked as being a SOURCE of that object. The description of
this particular bottle as a SOURCE of wine is equivalent, in
Object Primitive terms, to saying that the bottle is a wine

bottle.

3.3 Causal Verification

Once the requests trying to fill slcts not filled during the
initial analysis have been considered, the process set up by
"80...could" which attempts to make causal connections between

conceptualizations is activated.

*bottle* & CONNECTOR
enable?...(demon) m===)> [activate verifier]
> X
*John* <{=)> PTRANS <- *wine* <-{:
< (INSIDE PART *bottle*)
This process first looks for a match between the conceptual
representation for the enabled action (pouring the wine), and one
of the potentially enabled acts under the state description
resulting from John opening the bottle. In this case, the
potentially enabled acts result from the description of the open
bottle as a CONNECTOR. In other cases, the Object Primitives
SEPARATOR, SOURCE, and CONSUMER may be responsible for similar

kinds of expectations. In this example, a match is immediately

found between the action of pouring from the bottle (the PTRANS

L P A T T AP




Page 16

built by the analyzer, with FROM slot filled in CONTAINER-FINDER
demon) and the expected action generated from the CONNECTOR

description of an open bottle (PTRANS FROM (INSIDE PART SELF)).

When a match is found, further conceptual checks are made on
the enabled act to ensure that the objects found in the slots of
that act fit criteria not relating to their positions 1in the
conceptual dependency representation. When the match is based on
expectations derived from the CONNECTOR description of a
container, the check 1is a '"container/contents check," which
attempts to ensure that the object found in the container may
reasonably be expected to be found there. fhe sentence "John
opened the bottle so he could pull out the elephant", is peculiar
because we have no expectations that elephants are found in
bottles, even if the bottle was big enough. The strangeness of
this sentence can only be explained by the application of
stereotypic knowledge about what we expect and don’t expect to

find inside a bottle.

The container/contents check is very similar to the test
described above in connection with the CONTAINER-FINDER demon
which was used to find the bottle John poured from. That is, the
bottle is checked by both the DEFAULT-CONTAINMENT test and the
COMMON-SOURCE test for any known default links relating wine and
bottles. When this check succeeds, the the cnnblé 1ink has been
verified by matching an expected action, and by checking

restrictions on related objects appearing in the slots of that

action. The two CD acts that matched are then merged.
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The merging process accomplishes several things. First, 1{t
completes the 1linking of the causal chain between the events
described in the sentence. Secondly, it can cause the filling of
empty slots appearing in either the enabled act or in the
enabling act, wherever one left a slot unspecified, and the other

had that slot filled. An example of this is found in the next

section.

3.4 Causal Chain Construction

In the last example, a causal connection was made as a
result of a direct match between one of the expected actions
resulting from the opening of the bottle, and what actually
occurred. However, making causal connections between events is
seldom that simple. In our next example, further inferences must
be made to complete the causal chain between the

conceptualizations derived from the input.

The sentence

(4) John turned on the faucet so he could drink.

has several interesting differences from the one whose processing
was described above. First, turning on a faucet does not build a
CONNECTOR description at all. Rather, a faucet is described as a

SOURCE of water. In general, things which must be "turned on" to

be used have a SOURCE description as part of their OP
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decomposition.

The representation produced by the conceptual analyzer for

"John turned on the faucet," is

*John* (=) *DO*
ﬂresult
*faucet* (SOURCE with OUTPUT = *water*)

As with the bottle in the previous example, the description
of the faucet as an active SOURCE of water is based on
information found beneath the prototype for faucet, describing

the "on" state for that object.

The demon triggered by new state descriptions is activated
again here, this time setting up expectations based on the new
SOURCE description of the object, rather than a CONNECTOR
description. The principle expectation for SOURCE objects is
that the person who '"turned on" the SOURCE object wants to take
control of (and ultimately make use of) whatever it is that is
output from that SOURCE. In CD, this is expressed by a template
for an ATRANS (abstract transfer) of the output object, in this

case, water.

*faucet* fﬁ? (SOURCE with OUTPUT = #®yater*)

F (possible enabled action)
1)
"

” > 7HUMO
7HUMO <{=> ATRANS <- *water* <—{:
<

An important side effect of the comstruction of this expectation

is that a token for some water is created. As we shall soon see,
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the demon that fills in the object slot of the INGEST act depends
on the presence of a token for water in STM to be able to fill

that slot.

The representation for "he could .:ink" is simply

> (INSIDE PART *John*)
*John* <=> INGEST <- ?LIQUID <-{:

]\ < (*mouth* PART #*Johu*)
inst > (*mouth* PART *John¥*)
*John* <=> PTRANS <- ?7LIQUID (-{:

< 7Y

Here again, there are some slots left wunfilled when the
conceptual analysis is completed. A special request to look for
the missing liquid is set up by a demon on the act INGEST,
similar to the one on the PTRANS in the previous example. This
request finds the token for water placed in the short term memory
when the expectation that someone would take control of some
water was generated. The ability to make this inference is,
therefore, indirectly dependent on the active, forward
expectation that water will be used when someone turns on a

faucet.

The causal chain completion that occurs for this sentence is
somewhat more complicated than it was for the previous case. As
we have seen, the only expectation set up by the SOURCE
description of the faucet was for an ATRANS of water from the
faucet. However, the action that is described here is an INGEST

with instrumental PTRANS. When the chain connector fails to find

a match between the ATRANS and either the INGEST or the
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instrumental PTRANS, inference procedures are called in order to

generate any obvious intermediate states that might comnect these

two acts.

*faucet* & SOURCE with OUTPUT *water*
AN
"

"
! (possible enabled act)
* e ¢« THUMO <=> ATRANS {- *water*

.

forward

inference result
> (no match)
,.)*water* & (POSS-BY ?HUMO) ‘

match?
TS #John* <=> INGEST <- ?LIQUID

T inst

*John* <=> PTRANS <- ?LIQUID

The first inference rule that is applied is the resultative
inference [Rieger 1975] that an ATRANS of an object TO someone
results in a state where the object is possessed by (POSS-BY)
that person. Once this state has been generated, it is matched
against the INGEST in the same way the ATRANS was. When this
match fails, no further forward inferences are generated, since
simple possession of water can lead to a wide range of new

actions, but no single specific one is strongly expected.

The backward chaining inferencer is then called to generate
any known preconditions for the INGEST which was the final act
mentioned in the sentence. The primary precondition (by
causative inference) for being able to drink is, of course, that
the person doing the drinking has the liquid which he or she is

about to drink. Thus, a CD representation of the possession of




e B S e

the water by John is 1inferred as an enabling state for his

drinking, and this state 1is found to match the state (someone
possesses water) inferred going forward from the ATRANS. This
match causes the causal chain to be completed, and permits
further slot specification in our memory representation. Due to
the match of (someone) against (*John*), the program deduces that
it was probably John who took (ATRANSed) the water from the
faucet, in addition to turning it on. If the sentence had been
"John turned on the faucet so Mary could drink.", then the

assumption would have been that Mary took the water, not John.

*faucet* (SOURCE with OUTPUT = *water*)

L —J
ﬂ enable > THUMO
?7HUMO > ATRANS <- *water* <-{:

4
result
L3

*water* (POSS-BY 7HUMO)
match?

yes...infer 7HUMO = *John*
ced*kyatert & (POSS-BY *John*

backward
inference enable
= > (INSIDE PART *John*)
tece *John* INGEST <- ?LIQUID (—[:
< (*mouth* PART *John*)
inst > (*mouth* PART *John*)
*John* {=> PTRANS <- ?LIQUID <—{:
<Y

One should note here that the additional inferences used to
complete the causal chain were very basic. The primary
connections came directly from object-specific expectations
derived from the Object Primitive descriptions of the objects

ianvolved.
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IV. CONCLUSIONS

It is important to understand how OPUS differs from previous
inference strategies in natural language processing. To
emphasize the original contributions of OPUS we will compare it
to Rieger’'s early work on inference and causal chain
construction. Since Rieger’s research is closely related to
OPUS, a comparison of this system to Rieger’s program will
illustrate which aspects of OPUS are novel, and which aspects

have been inherited.

There is a great deal of similarity between the types of
inferences used in OPUS and those used by Rieger in his
description of MEMORY [Rieger 1975]. The causative and
resultative inferences used to complete the causal chain in our
last example came directly from that work. In addition, the
demons used by OPUS are similar in flavor to the forward
inferences and specification (slot-filling) inferences described
by Rieger. Expectations are explicitly represented here as they
were there, allowing them to be used in more than one way, as in
the case where water is inferred to be the INGESTed liquid solely

from its presence in a previous expectation.

There are, however, two ways in which OPUS departs from the
inference strategies of MEMORY in significant ways. [1] On one
the level of computer implementation there is a reorganization of
process control in OPUS, and (2] on a theoretical level OPUS

exploits an additional representational system which allows
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inference generation to be more strongly directed and controlled.

In terms of implementation, OPUS integrates the processes of
conceptual analysis and memory-based inference processing. By
using demons, inferences can be made during conceptual analysis,
as the conceptual memory representations are generated. This
eliminates much of the need for an inference discrimination
procedure acting on completely pre-analyzed conceptualizations
produced by a separate program module. In MEMORY, the processes
of conceptual analysis and inference generation were sharply
modularized for reasons which were more pragmatic than
theoretical. Enough is known about the interactions of analysis
and inference at this time for us to approach the two as
concurrent processes which share control and contribute to each
other in a very dynamic manner. Ideas from KRL [Bobrow and
Winograd 1977] were instrumental in designing an integration of

previously separate processing modules.

On a more theoretical level, the inference processes used
for causal chain completion in OPUS are more highly constrained
than was possible in Rieger’s system. In MEMORY, all possible
inferences were made for each new conceptualization which was
input to the program. Initially, input consisted of concepts
coming from the parser. MEMORY then attempted to make inferences
from the conceptualizations which it 1itself had produced,
repeating this cycle until no new inferences could be generated.
Causal ﬁhains were connected when matches were found between

inferred concepts and concepts already stored in its memory.
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However, the inference mechanisms used were in no way directed
specifically to the task of making connections between concepts
found in its input text. This lead to a combinatorial explosion

in the number of inferences made from each new input.

In OPUS, forward expectations are based on specific
associations from the objects mentioned, and only when the
objects in the text are described in a manner that indicates they
are being used functionally. In addition, no more than one or
two levels of forward or backward inferences are made before the
procedure is exhausted. The system stops once a match is made or
it runs out of highly probable inferences to make. Thus, there
is no chance for the kinds of combinatorial explosion Rieger
experienced. By strengthening the representation, and exploiting
an integrated processing strategy, the combinatorial explosion

problem can be eliminated.

OPUS makes use of a well structured set of wmemory
associations for objects, the Object Primitives, to encode
information which can be used in a variety of Rieger’s general
inference classes. Because this information 1is directly
associated with memory representations for the objects, rather
than being embodied in disconnected inference rules elsewhere,

appropriate inferences for the objects mentioned can be found

" directly. By using this extended representational system, we can

begin to examine the kinde of associative memory required to
produce what appeared from Rieger’s model to be the “"tremendous

amount of ‘hidden’ computation” necessary for the processing of




any natural language text.

Ly At MG G M G RIS it MR




Page 26
REFERENCES
Birnbaum, L., and Selfridge M. (1978). On Conceptual
Analysis. (unpublished) Yale University, New Haven, CT.
Bobrow, D. G., Kaplan, R. M., Kay, M., Norman, D. A.,

Thompson, H., and Winograd, T. (1977). GUS, a frame driven
dialog system. Artificial Intelligence, Vol. 8, No. 1.

Bobrow, D. G., and Winograd, T. (1977). An overview of KRL, a
knowledge representation language. Cognitive Science 1, no. 1

Charniak, E. (1972). Toward a model of childrens story comprehension.
AITR-266, Artificial Intelligence Laboratory, MIT, Cambridge, MA.

e i

| Lehnert, W. C. (1978). Representing physical objects in memory.
| Technical Report #131. Dept. of Computer Science, Yale University,
New Haven, CT.

Minsky, M. (1975). A framework for representing knowledge. In
3 Winston, P. H., ed., The Psychology of Computer Visionm,
: McGraw-Hill, New York, NY.

Norman, D. A., and Rumelhart, D. E., and the LNR Research Group (1975)
Explorations in Cognition. W. H. Freeman and Co., San Fransisco.

Rieger, C. (1974). Conceptual memory. Ph.D. Thesis, Computer Science
Department, Stanford University, Stanford CA.

Rieger, C. (1975). Conceptual memory. In R. C. Schank, ed.,
Conceptual Information Processing. North Holland,
Amsterdam.

Riesbeck, C. and Schank, R. C. (1976). Comprehension by computer:
expectation-based analysis of sentences in context. Technical
Report #78. Dept. of Computer Science, Yale University,

New Haven, CT.

. Schank, R. C. (1975). Conceptual Information Processing.
! North Holland, Amsterdam.

Schank, R. C. and Abelson, R. P. (1977). Scripts, Plans, Goals,
and Understanding. Lawrence Erlbaum Press, Hillsdale, NJ.

Schank, R. C., (1973). Identification of conceptualizations

underlying natural language. In Schank, R. C. and Colby, K., eds.,
4 Computer Models of Thought and Language. W. H. Freeman and Co.,
San Fransisco.




