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Wend y C. L&mert and Ma rk H. Burstein
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ABSTRACT

Natural language processing techniques rely in part on

• the use of functional knowledge abuut physical objects, and

an associative memory structure. In this paper , a

representational system called Object Primitives is

• pr esented as an extension to the system of Conceptual

Dependency for the purpose of representing physical objects

and providing an organizing structure for associative

b memory. A computer program , OPUS, is described which

applies this representational system to the problem of

analyzing natural language sentences dealing with objects.

Infe rences deriv ed from Object Primitive descriptions are

mad e duri ng the conceptual analysis by a system of demons ,

providing a framework for an integrated understanding

system.

Topics and Key Words

Topics and key words relevant to this paper are
assoctative memory, memory organization , knowled ge
re presentation , inference generation , conceptual analysis ,
cognition , and natural language understanding .
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• The Role of Object Primitives

in Natural Language Processing*

by

Wendy C. Lehuert

and

• Mark H. Burstein

1. INTRODUCTION

It is widely recognized that the process of understanding

natural language texts cannot be accomplished without accessing

mundane knowledge about the world [Bobrow, et al. 1977, Charniak

1972, Norman, et a].. 1975, Minsky, M. 1975). That is, in order

to resolve ambiguities, build expectations, and make causal

• connections between events, we must make use of all sorts of

episodic, stereotypic and factual knowled ge of our world • In

this paper we will concentrate on knowledge about physical

~This work was supported in part by the Advanced Research
Projects Agency of the Department of Defense and monitored under
the Office of Naval Research under contrac t N00014—75—C—1111.
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objects. In particular, we will see how functional knowledge

about physical objects and associations between physical objects

can be exploited in an understanding system.

Consider the sentence

(1) John opened the bottle and poured the wine.

~nyone reading and understanding this sentence makes assumptions

about what nappened which go far beyond what is actually stated.

For example, we assum e without hesitation that the wine being

poured came from inside the bottle. Although this seems quite

obvious, in fact there are several other interpretations which

fit what is actually stated. First of all, there is no reason to

assume that the wine was initially in the bottle. John could be

filling the bottle from some other container rather than emptying

• 

~~
, 

it. Alternatively, the wine being poured could have nothing to

do with the bottle that was opened. John could be opening one

bottle and pouring wine from an entirely different bottle. There

is nothing in a literal reading of the sentence to prevent either

of these interpretations, but some cognitive inference mechanism

forces us (as human understanders) to connect these two events in

a causal construction.

In addition to the assumptions made about where the vine

comes from, we rely on our knowledge of bottles and what it means

for a bottle to be “open” • when interpreting the sentence. Only

by drawing on this knowledge of states are we able to conclude

________  ~:~~~~~~~~~~~Iu1 A
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that John had to open the bottle in order to pour the wine out of

the bottle. Strong associations are at work helping us to make

these connections. Even for the sentence

(2) John closed the bottle and poured the wine.

we are inclined to assume that the wine is in the bottle, before

we realize that this leads to a contradiction. The fact that we

recognize a contradiction here indicates that we are utilizing

knowledge about closed bottles and what cannot be done with

closed bottles. In fact, we will show how specific expectations

derived from our knowledge of open bottles are responsible for

the natural human interpretation of “John opened the bottle and

poured the wine.”

Now consider the sentence

(3) John turned on the faucet and filled his glass.

We know immediately on hearing this that John filled his glass

with water from the faucet. Yet, not only is water never

mentioned in the sentence, but there is nothing in the sentence

which explicitly relates turning on the faucet and filling the

glass . The glass could conceivably be filled with milk from a

carton . However , in the absence of some greater context which

forces a different interpretation on us, we immediately assume

that the glass is being filled with water from the faucet.

~~~~~~~~~~~~



r~ ~ 
-

~~~

— ‘ “ -

~~~~~~~~~~~~~~~~~~~ 

-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~

Page 4

The question, then, is what knowledge of bottles, wine and

faucets enables us to interpret these sentences as we do? What

cognitive process~~ at the time of understanding cause us to

conclude without hestiation that the wine was poured from the

bottle and the glass was filled with water from the faucet? This

paper describes a computer program which processes sentences such

• as those above , to arrive at meaning representations which

• include those assumptions that a human understander would make.

To do this requires the use of stereotypic knowledge of physical

objects. This information is captured in OPUS (Object Primitive

Understanding System) by using a set of conceptual primitives

called Object Primitives [Lehnert 1978]. Object Primitives (OP)

were designed to act in conjunction with Schank’ s conceptual

• dependency system of representation [Schank 19751. The processed

developed to perform conceptua l analysis in OPUS involve the

integration of a conceptual analyzer similar to Riesbeck’s ELI

[Riesbeck and Schank 1976] with demon—like proced ures for memory

interaction and the introduction of object—related expectations.

2. Object Primitives

The primary focus in this research has been on the

developeent of processes which utilize information provided by

Object Primitives to facilitate the “comprehension” of natural

language texts by computer. That is, we were primar~1.y concerned

with the introduction of stereotypic knowledge of objects into

the conceptual analy sis of text. By using information stored in

~~~~
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OP descriptions, we were able to increase the interpretive power

of the analyzer in order to handle sentences of the sort

discussed earlier.

What follows is a brief description of the seven Object

Primitives. A more thorough discussion can be found in [Lehnert

1978]. For those unfamiliar with the primitive acts of Schank ’s

conceptual dependency representation, a discussion of tho se can

be found in [ Schank 1975).

The Object Primitive CONNECTOR is used to indicate what

actions (described in terms of Schank’s pr imitives ac~ts) are

normally enabled when an object is in a particular state. A

CONNECTOR enables a transfer between two spatial regions . For

example , a window and a door are both CONNECTORs which enable the

• 
• PTRANS1ng (physical transfer) of objects through them when they

are open. In addition , a window is a CONNECTOR which enables an

• ATTEND (of eyes) or an MTRANS (mental transfer) with instrument

ATTEND (of eyes) . These events are enabled regardless of whether

the window is open or closed . That is , one can see through a

window, and therefore read or observe things on the other side ,

even when the window is closed. In the examples discussed above,

the open bottle is given a CONNECTOR description. This will be

discussed further later.

A SEPARATOR disenables a transfer between two spatial

regions. A closed door and a closed window are both SEPARATORs

which disenable the act PTR.ANS from one region to another. In

addition , a closed door is a SEPARATOR which disenables the acts

- - • -— ~~~~~~~~~~ - --~~~~~
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MTR.ANS with instruments ATTEND eye s (unless the door is

transparent) or ears. That is, one is normally prevented from

seeing or hearing through a closed door. Similarly, a closed

• window is a SEPARATOR which disenables MTR ANS with instrument

ATTEND ears, although, as mentioned above, one can still see

through a closed window to the other side. A closed bottle is

• another example of an object with a SEPARATOR description.

It should be clear by now that objects described using

Object Primitives are not generally described by a single

primitive. In fact, not one but several sets of primitive

descriptions may be required . This is illustrated above by the

combination of CONNECTOR and SEPARATOR descriptions required for

a closed window, while a somewhat d i f ferent  set are required for

an open window. These sets of descriptions form a small set of

“states” which the obj ect may be in. This representational

system effectively treats open and closed windows as conceptually

distinct objects in spite of the fact that our lexical

expressions suggest that we have one fixed object assuming two

different states.

A SOURCE description indicates that a major function of the

object described is to provide the user of that object with some

other object. Thus a faucet is a SOURCE of water, a wine bottle

is a SOURCE of wine, and a lamp is a SOURCE of the phenomenon

called light . SOURCEs often require some sort of activation .

Faucets mus t be turned on , wine bottles mus t be opened , and lamps

are eithe r turned on or lit dep ending on whether or not they are

- ~~~~~~~~~~~~~~~~~~~~~ -- -~~
-
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electric .

The Object Primitive CONSUMER is used to describe objects

• whose primary function is to consume other objects. A trash can

is a CONSUMER of waste paper , a drain is a CON SUMER of liquids ,

and a mailbox is a CONSUMER of mail. Some objects are both

SOURCEs and CONSUMERs. A pipe is a CONSUMER of tobacco and a

SOURCE of smoke. An ice cube tray is a CONSUME R of water and a

SOURCE of ice cubes.

Many objects can be described in part by relationships that

they assume with some other objects. These relations are

described using the Object Primitive RELATIONAL. Containers,

such as bottles, rooms, cars, etc., have as part of their

descriptions a containment relation, which may specify defaults

for the type of object contained . Objects, such as tables and

chairs, which are commonly used to support other objects will be

described with a support relation .

Objects such as building s, cars , airplanes , stores , etc.,

are all things which can contain people . As such , they are often

distinguished by the activities which people in those places

engage in. One important way of encoding those activities is by

referring to the scripts which describe them. The Object

• Primitive SETTING is used to capture the associations between a

place and any script—like activities that nor mally occur there .

It can also be used to indicate othe r , related SETTINGs which the

object may be a part of. For example, a dining car will have

both a restaurant script and an associated SETTING of passenger

-- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - •
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train. This information is important for the establishment of

possible contexts , and the man y domain specific expectations

which will therefore be available to guide processing at both the

conceptual analysis or word definitional level and when making

inferences at higher levels of cognitive processing.

The final Object Primitive, GESTALT, is used to characterize

objects which have recognizable, and separable, subparts.

Trains, hi—fi systems, and kitchens, all evoke images of objects

characterizable by describing their subparts, and the way that

those subparts relate to form the whole. The Object Primitive

GESTALT is used to capture this type of description .

Using this set of primitives as the foundation for a memory

representation, we can construct an associative memory by

introducing associative links external to object primitive

decompositions [Lehnert 19781. We have already achieved a class

• of associations within object primitive decompositions. For

example, the conceptua l description of a wine bottle will include

a SOURCE description for a bottle in which the SOURCE output is

specified as wine. This amounts to an associative link from the

concept of a wine bottle to the concept of wine. But how can we

construct an associative link from wine back to wine bottles?

Wine does not have an object primitive decomposition which

involves wine bottles, so we must resort to some construction

which is external to object pr imitive decompositions.

_ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Four associative links have been propo sed [L.hmert 1978],

eac h of which points to a particular objec t pr imitive

description . For the proble m of wine and vine bottles , an

associative OUTPUTFROM link is directed frau vine to the SOURCE

description of a wine bottle. This external link provides us

with an associative link from wine to wine bottles.

3. The Program

I will now describe the processing of two sentences very

similar to those discussed earlier . The computer program (OPUS)

which performs the following analyses was developed using a

conceptual analyzer written by Larry Birnbaum [Birubaum and

Selfridge 19781. OPUS was then extended to include a capacity

for setting up and firing “demons” or “triggers” as they are

called in KRL [Bobrow and Winograd 19771. The functioning of

• these demons will be illustrated below.

3.1 The Initial Analysis

We will first look at the processing for “John opened the

bottle so he could pour the wine ,” in detail . The phrase “John

opened the bottle ,” is anal ysed to produce the following

representation :



_ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~ -
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*Johj~~ (.> *~~~~~*

resul t
•bottle5 ~~~ CONNECTOR

ENABLE S
• > ? X

?EUMO <—> PTRANS <— ?OBJ <
< (INSIDE PART SELF)

(or ) ENABLES
r-> (INSIDE PART SELF)

?HUMO <—> PTRANS <— ?OBJ <-4
• L< ,y

(or) ENABLES
i—> ?OBJ is inside SELF

?HUMO <—> ATTEND <— ?SENSE <— ~

Where SELF refers to the objec t being desc r ibed ( the bottle)
and ?—— ind icates an unfilled slot.

*Jo hn* rep resents an internal memory repres entation for a per son

with the name John, and *bot tle* points to a memory token

constructed for the bottle mentioned • These memory tokens for

John and the bottle are constructed by a general demon which is

triggered during conceptual analysis whenever a PP (the internal

• representation for an object) is introduced .

The above diagram represents the assertion that John did

something which caused the bottle to assume a state where its

CONNECTOR description applies. The CONNECTOR description

indicates that somethi ng can be removed from the bottle ( PTRANS

FROM ( INSIDE PART SELF)), put into the bottle ( PTRANS TO ( INSIDE

PART SELF)), or its contents can be smelled, looked at , or

generally examined by some sense modality ( ATTEND) . Thu

CONNECTOR description is not part of the definition of the word

‘open’ . It is specific knowledge that people have about what it

means to say that a bottle is open. It is not even the case that

.

~ 

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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opening something always builds a CONNECTOR descripti on . For

example, an open umbrella is described using the Object Pr imitive

SEPARATOR since an ope n umbrella disenables rain from falling on

the person holding the umbrella.

In arriving at the above representation, the program must

retrieve from memory the OP description of what it means for a

bottle to be open. This information is stored beneath its

prototype for bottles, *BOTTLE*S Presumably, there is also

script—like information about the different methods for opening

bottles, the different types of caps (corks, twist—off, ...), and

which method is appropriate for which cap. However, for the

purp ose of understandi ng a text which does not refe r to a

specific type of bottle, cap, or opening procedure, what is

important is the information about how the bottle can then be

used once it is opened . This is the kind of knowledge that

Objec t Pri mitives were designed to capture .

When the analyzer builds the state description of the

bottle , a general demon associated with new state descriptions is

triggered . This demon is responsible for updating memory by

adding the new state information to the token in the ACTOR slot

of the state descript ion . Thus the bottle token is updated to

include the given CONNECTOR description . For the purp oses of

this program , the bottle is the n considered to be an “open”

bottle. A second function of this demon is to set up

expectations for futur e actions based on the new infor mation. In

this case , templates for three actions the program might expect

- ~~~~~~~~~~~~~~~~
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to see described can be constructed from the three partially

specified conceptualizations shown above in the CONNECTOR

description of the open bottle. These templates are attached to

the state description as possible consequences of that state , for

use when attempt ing to infe r the causal connections between

events.

*bottle* ~~ CONNECTOR

• 1

~ (possible enabled actions)

?HUMO <—> PTR.ANS <— ?OBJ <—4
1~ < (INSIDE PART *bottle*)

r> (INSIDE PART *bottle*)
?HUM O <—> PTRANS <— ?OBJ

‘—< fl

> ?OBJ is inside *bottle*
?HUMO <—> ATTEND <— ? SENSE <_..[

The remainder of the sentence read s “so he could pour the

wine.” The “so...could” indicates that there should be some

direct or indirect enabling relationship between the action

described in the first part of the sentence and the one currently

being described. This is captured in the program by setting up a

special procedure to verify a causal connection . This procedure

will onl y be activated when the sentence is completed . It

attempt s to find the connection between the two

conceptualizations pointed to by the ENABLE link form ed when the

analyzer saw the “so ... could” ; the state of the bottle being

open , and the act of pouring the wine.

- :L~~~T~~~~- - - - - 
-
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3.2 Concept Driven Inferences

The phrase “so he could pour the wine .” is analyzed as

enable r> ‘X
*John* <~> PTRANS <— *~ j~~~* <.1

L< (INSIDE PART ? CONTAINER)

When this representation is built by the analyzer , some

slots remain as yet unfilled . For example , we do not know that

the the wine being poured is coming from the previously mentioned

bottle. This inference is made in the program by a slot—filling

demon called the CONTAINER—FINDER, attached to the primitive act

PTRANS. The demon is triggered when a PTRANS is built whose

conceptual object is some substance being described as coming

from inside an unspecified container. When this occurs, a

request is generated which looks on the list of active tokens (a

part of short term memory) for any containers that might contain

the given substance. A suitable container is one in which we

might normally expect to find the particular substance, in this

case wine.

There are two ways to recognize a possible container : [11

via the DEFAULT—CONTAINMENT test , or ( 2 ) via the C~ O1ON—SOURCE

test. The DEFAULT—CONTAINMENT test relies on an associative link

from the RELATIONAL description of a container to a defaul t

substance within that description. The CCKMON—S~ JRCE test relies

on an associative CUTPUTF R~ 4 link from the substance to the

-i - - - - -~~ —.-_---,.—,.- — -- - — 
.• •- - -- --- -- ----~——-— -- - - j-- . —.~~~ —~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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SOURCE description of a container for that substance .

At dif fe rent times , eithe r the DEFAULT—CONTAINMENT test or

the COMMON—SOURCE test may be necessary in order to establish

probable containment . For exampl e , it is reasonable to expect a

vase to contain water since the RELATIONAL description of a vase

has default contai sment slots for water and flowers. But we do

not always expect water to come from vases since there is no

OUT PUTFROM link from water to a SOURCE description of a vase. If

we heard “Water spilled when John bumped the vase ,“ containment

would be established by the DEFAULT—CONTAINMENT test .

Associati ve links are not always bi—direction al (vase —> water ,

but water —I—> vase) and we need separate mechanisms to trace

links with different orientations. In our wine example , the

COMMON—SOURCE test is responsible for establishing containment,

since wine is known to be OUTPUTFROM bottles but bottles are not

always assumed to hold wine.

Mother expectation which is fulfilled during initial

analysis is a request looking for the contents of the bottle

mentioned in the first clause of the sentence. This expectation

was set up by a demon called the CONTENTS—FINDER when the

description of the open *bottl e* was built, and is independent

• from the CONTAINER—F INDER demon activated by pouri ng . This demon

is activated by a state descript ion for an open container where

the container is a common SOURCE objec t for which no known output

exists. The presence of the SOURCE object can be explained if

its output is subsequently used in the text. Here again, the

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4



Page 15

list of active tokens is searched for an object which could be

OUTPUT—FROM a bottle , and the token for this particular bottle is

then marked as being a SOURCE of that object. The description of

this particular bottle as a SOURCE of wine is equival ent , in

Objec t Primitive terms, to saying that the bottle is a wine

bottle.

3.3 Causal Verification

Once the requests trying to fill slots not filled during the

initial analysis have been considered, the process set up by

“so.. .could” which attempts to make causal connections between

conceptualizations is activated.

*bottle* ~~ CONNECTOR

enable?...(demon) ‘...—> [activate verifier)

III
*John* <~—> PTRANS <— *i~~j~~~~* <.4

L.< (INSIDE PART *bottle*)

This process first looks for a match between the conceptual

representation for the enabled action (pouring the wine), and one

of the potentially enabled acts under the state description

resulting from John opening the bottle. In this case , the

potentially enabled acts resul t from the description of the open

bottle as a CONNECTOR. In other cases , the Object Primitives

SEPARATOR, SOURCE, and CONSUMER may be responsible for similar

kind s of expectations. In thi, example, a match is immediately

found between the action of pouri ng from the bottle ( the PTRANS

t. 
I 

______
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built by the analyzer , with FROM slot filled in CONTAINER—FINDER

demon) and the expected action generated from the CONNECTOR

description of an open bottle (PTRANS FROM (INSIDE PART SELF)).

When a match is found , further conceptual checks are made on

the enabled act to ensure that the objects found in the slots of

that act fit criteria not relating to their positions in the

conceptual dependency representation. When the match is based on

expectations derived from the CONNECTOR description of a
r

container, the check is a “container/contents check,” which

attempts to ensure that the object found in the container may

reasonably be expected to be found there. The sentence “John

opened the bottle so he could pull out the elephant”, is peculiar

because we have no expectations that elephants are found in

bottles, even if the bottle was big enough. The strangeness of

this sentence can only be explained by the application of

stereotypic knowledge about what we expect and don’ t expect to

find inside a bottle.

The container/contents check is very similar to the test

described above in connection with the CONTAINER—FINDER demon

which was used to find the bottle John poured fran . That is , the

bottle is checked by both the DEFAULT—CONTAINMENT test and the

COMMON—SOURCE test for any known defaul t links relating wine and

bottles . When this check succeed s, the the enable link has been

verified by matching an expected action , and by checking

restrictions on related objects appearing in the slot, of that

action . The two CD acts that matched are the n merged .

________

— —----- -
~~~--- -- p — — —-- — - -~ - —k-



- ______________-• • - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~_ - -

Page 17

The merging process accomplishes several things. First , it

completes the linking of the causal chain between the events

described in the sentence. Secondly, it can cause the filling of

empty slots appearing in either the enabled act or in the

enabling act, wherever one left a slot unspecified, and the other

had that slot filled. An example of this is found in the next

section.

3.4 Causal Chain Construction

In the last example, a causal connection was made as a

result of a direct match between one of the expected actions

resulting f rom the opening of the bottle , and what actually

occurred. Rovever, making causal connections between events is

• seldom that simple. In our next example, further inferences must

• be mad e to complete the causal chain between the

conceptualizations derived from the input.

The sentence

(4) John turned on the faucet so he could drink.

has several interesting differences f rom the one whose processing

was described above . First , turning on a faucet does not build a

CONNECTOR description at all. Rather , a faucet is described as a

SOURCE of water.  In general , things which mus t be “turned on” to

be used have a SOURCE description as part of their OP

• .- -~~~~~
.,. ~~~~~~~~~~~~~~~~~~~~ — - —~-~~~- —em
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decomposition.

The representation produced by the conceptual analyzer for

“John turned on the faucet ,” is

*John* <_> *~ Ø*

111 result
*faucet* ~~~ (SOURCE with OUTPUT — *water*)

As with the bottle in the previous example , the desc ription

of the faucet as an act ive SOURCE of water is based on

information found beneath the prototype for faucet , describ ing

the “on” state for that object.

The demon triggered by new state descriptions is activated

again here , this time setting up expectations based on the new

SOURCE description of the object , rather than a CONNECTOR

description. The principle expectation for SOURCE objects is

that the person who “turned on” the SOURCE objec t wants to take

control of ( and ultimately make use of) whatever it is that is

output from that SOURCE. In CD, this is expressed by a template

for an ATRANS (abstract transfer) of the output object, in this

case, water.

*faucet* ~~ (SOURCE with OUTPUT —
4¼

~ (possible enabled action)

I’
?HUNO <.~> ATRANS <— *water* <

<

An important side effect of the construction of this expectation

is tha t a token for some water is created . A. . we shall soon see ,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~
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the demon that fills in the object slot of the INGEST act depends

on the presence of a token for water in STM to be able to fill

that slot .

The representation for “he could .:ink” is simply

i.—> (INSIDE PART *John*)
*Jo~~* <—) INCEST <— ?LIQUID <—i

L-< (*mout h* PART *Joh,j*)

I inst r> (*mouth* PART *John *)
*John* <—> PTRANS <— ?LIQUID <—1

L<~~y

Here again, there are some alots left unfilled when the

conceptual analysis is completed . A special request to look for

the missing liquid is set up by a demon on the act INCEST,

similar to the one on the PTRANS in the previous example. This

request finds the token for water placed in the short term memory

when the expectation that someone would take control of some

• 
• water was generated . The ability to make this inference is,

therefore , ind irectly dependent on the active , for ward

expectation tha t water will be used when someone turns on a

faucet.

The causal chain completion that occurs for this sentence is

somewhat more complicated than it was for the previous case . As

we have seen, the only expectation set up by the SOURCE

description of the faucet was for an ATRANS of water from the

faucet. However , the action that is described here is an INGEST

with instrumental PTRANS . When the chain connector fails to find

a match between the ATRANS and either the INGEST or the

-‘ ~~~~~ —— —— • ——• -. ~~ _~~~0 ~~‘_ _• —~~~~- •~~~~--~~~~~~— - • — —~~~ —~~~
.—~~~_ ‘  — ~~~u•__ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~ —
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instrumental PTRANS, inference procedures are called in order to

generate any obvious intermediate states that might connect these

two acts.

*faucet* ~~ SOURCE with OUTPUT *water*
I,
‘I

~ (possible enabled act)
• . 9WJ~4Q <“> ATRANS <— *water*

forward
inference resul t

(no match)
~~~ (POSS—BY ?RUMO)

match?
~~*John* <—> INCEST <— ?LIQUID

inst
*John* <—> PTR.ANS <— ?LIQUID

The fi rst inference rule that is applied is the resultative

inference (Rieger 19751 tha t an ATRANS of an object TO someone

results in a state where the object is possessed by (POSS—BY)

that person. Once this state has been generated , it is matched

against the INGEST in the same way the ATRANS was. When this

match fails, no further forward inferences are generated , since

simple possession of water can lead to a wide range of new

actions , but no single specific one is strongly expected .

The backward chaining inferencer is then called to generate

• any known preconditions for the INGEST which was the final act

mentioned in the Sentence. The primary precondition (by

causative inference) for being able to drink is, of course, that

the person doing the drinking has the liquid which he or she i.

about to drink. Thus, a CD representation of the possession of

L ___
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the water by John is inferred as an enabling state for his

drinki ng , and this state is found to match the state ( someone

possesses water) inferred going forward from the ATRANS . This

match causes the causal chain to be completed , and permits

further slot specification in our memory representation. Due to

the match of ( someone) against (*John*), the program deduces tha t

it was probably John who took ( ATRANSed) the water from the

faucet , in addition to turning it on. If the sentence bad been

“John t urned on the faueet so Mary could drink .” , then the

assumption would have been that Mary took the water , not John.

*faucet* ~~~ (SOURCE with OUTPUT — *water*)

11 enable ~—) ?RU?10?HUMO ~~~ ATRANS <— *water* <....J

result
~~~ (POSS—BY ThUMO)~~

match?
7’ yes...infer ?HUMO —

~~~ (POSS—BY *John*)~’

baclZward
inference ifi enable

III r> (INSIDE PART *John*)
‘... *JO~j~* <.1’> INGEST <— ?LIQUID <—1

L< (*mouth* PART *John*)

(Lu st r> (*moutb* PART *John*)
*John* <—> PTRANS <— ?LIQIJ ID <_L

One should note here that the additional inferences used to

complete the causal chain were very basic. The primary

connections came directly from object—specific expectations

• derived from the Object Primitive descriptions of the objects

involv ed .

•
_• _ •~~~~~~~~~
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IV. CONCLUSIONS

It is important to understand bow OPUS d i f fers  from previous

inference strategies in natural language processing. To

emphasize the original contributions of OPUS we will compare it

to Rieger’ s early work on inference and causal chain

construction. Since Rieger’s research is closely related to

OPUS, a comparison of this system to Rieger’s program will

illustrate which aspects of OPUS are novel, and which aspects

have been inherited .

There is a great deal of similarity between the type s of

inferences used in OPUS and those used by Rieger in his

description of MEMORY [Rieger 19751. The causative and

resultative inferences used to complete the causal chain in our

last example came directly from that work. In addition, the

demons used by OPUS are similar in flavor to the forward

inferences and specification ( slot—fill ing) in ferences described

by Rieger. Expectations are explicitly represented here as they

were there , allowing them to be used in more than one way, as in

the case where water is inferred to be the INGESTed liquid solely

f rom its presence in a previous expectation.

There are , however , two ways in which OPUS departs from the

inference strategies of M~ (ORY in significant ways. [11 On one

the level of computer implementation there is a reorganization of

process control in OPUS, and [21 on a theoretical level OPUS

exploits an additional representational system which allows

1.5 -~ —— -• ,~~_ —_ ,-~~~~~-~— - —5—-- 5—rn-— -5-’— —..-~ 
.—-.----
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inference generation to be more strongly directed and controlled .

In terms of implementation , OPUS integrates the processes of

conceptual analysis and memory—based inference processing. By

using demons, inferences can be made during conceptual analysis,

as the conceptual memory representations are generated. This

eliminates much of the need for an inference discrimination

procedure acting on completely pre—analyzed conceptualizations

produced by a separate program module. In MEMORY, the processes

of conceptual analysis and infe rence generation were sharply

modularized for reasons which were more pragmatic than

theoretical. Enough is known about the interactions of analysis

and inference at this time for us to approach the two as

concurrent processes which share control and contribute to each

other in a very dynamic manner. Ideas from ~RL [Bobrow and

Winograd 1977] were instrumental in designing an integration of

previously separate processing modules.

H On a more theoretical level, the inference processes used

for causal chain completion in OPUS are more highly constrained

than was possible in Rieger ’s system. In MEMORY, all possible

inferences were mad e for each new conceptualization which was

input to the program. Initially, input consisted of concepts

coming from the parser. MEMORY then attempted to make inferences

from the conceptualizations which it itself had produãed ,

repeating this cycle until no new inferences could be generated .

Causal chains were connected when matche s were found between

inferred concepts a~d concepts alread y stored in its memory.

—5-- — .
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However , the inference mechanisms used were in no way directed

specifically to the task of maki ng connections between concepts

found in its input text. This lead to a combina torial explosion

in the number of inferences made from each new input .

In OPUS, forward expectations are based on specific

associations from the objects mentioned , and only when the

objects in the text are described in a manner that indicates they

are being used functionally. In addition, no more than one or

two levels of forward or backward inferences are mad e before the

procedure is exhausted . The system stops once a match is made or

it runs out of highly probable inferences to make . Thus , there

is no chance for the kinds of combinatorial explosion Rieger

experienced. 6y strengthening the representation, and exploiting

an integrated processing strategy, the combinatorial explosion

problem can be eliminated.

Opus make s use of a well structured set of memory

associations for objects , the Object Primitives , to encod e

information which can be used in a variety of Rteger’s general

inference classes. Because this information is directly

associated with memor y rep r esentations for the objects , rathe r

than being embodied in disconnected inference rules elsewhere ,

approp r iate inferences for the objects mentioned can be found

directly. By using this extended representational system , we can

begin to examine the kinds of associat ive memory requited to

produce what app eared from Rieger’ s model to be the “tremendous

amount of ‘hidden ’ computation” necessary for the processing of

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~
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any na tur al language text.

~~~~~~ T- - ~~~~~~~~~~~~~~~~~~~~~~ 
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