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- Abstract

- Given a planar straight line graph G with n vertices and a point P0,

locating P0 means to f ind the region of the planar subd ivision induced

- - 
by G which contains P0. Recent ly , Lipton and Tarjan presented a brilliant

but extremely complex point location algorithm which runs in t ime 0(logn)

- on a data structure using 0(n) storage. This paper presents a practical

algorithm which runs in less than 6 Ilog2nl comparisons on a data structure

which uses O(nlogn ) storage , in the worst case . The method rests crucially

on a simple partition of each edge of G into O(logn) segments .
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1. Introduction

Th. problem of locating a point in a planar subdivision - briefly

called “point location” - is quite important in computational geometry and

has received considerable attention in the recent past. It is stated as

follows ! Given a oônnected planar straight-line graph G on n vertices and a

point P0, f ind which region of the planar subdivision induced by C contains P0.

An early solution to this problem was proposed by Dobkin and Lipton [1] ,

whose location algorithm runs in time O(logn) on a data structure which uses

0(n2) space and can be built in 0(02) t ime. More recently Lee and

Preparata [2] [3] developed an 0(log2n)~~
) time location algorithm on a

data structure constructed in 0(nlogn) time and using 0(n) space . Observing

the trade-off between space4reprocessing on one side and search time on the

other, Shamos [
~
,] raised the question of whether 0(logn) search t ime was

achievable with less than quadratic storage. This issue was definitively

settled by Lipton and Tarjan [5] who showed that the point location problem -

called by them “triangle problem” - could be solved in O(logn) time on a

data structure which uses 0(n) space and can be constructed in time O(nlogn).

Their brilliant method, which is based on a theoretically far-reaching

planar separator theorem [ 6 ],  La , however, algorithmically extremely

complicated; to quote Lipton and TarJan themselves, “... this algorithm
[is not advocated] as a practical one, but its existence suggests that there

i 
I may be a practical algorithm with O(logn) time bound and 0(n) space bound”.

~~ A1l logarithms in this paper are to the base 2.
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Th. result presented in this paper comes very close to providing a

complet. substanti ation of the above conjecture; specifically, we shall exhibit

a practical poin t locati on algor ithm which runs in 0(logn) time on a data

structure, which can be const ruc ted in O(nlogn) time , but which uses

0(nlogn ) space rather than just 0(n). -ii
Our method could be viewed as an evolution of the original technique of

Dobkin and Lipton [1], which we nov briefly review. A horizontal line is

drawn through each vertex of G, thereby slicing the p lane into horizontal

strips called “slabs”; each slab contains no vertex of C and is subdivided by

the transversal edges into an ordered set of 0(n) regions. Point location is

accomplished by first searching the horizontal lines to locate a slab and by

ne~~ searching the segments crossing th. slab to locate a region. Clearly

this search is carried out in O(logn) comparisons, but since an edge is

partitioned by 0(n) horizontal lines, 0(n2) storage is used. In contrast, our

method interleaves tests against horizontal lines and test against edges; thus

it will not be necessa ry to decompose the edges in 0(n) portions. In particular , r

the method tests crucially on the observation that each edge of G can be

decomposed uniquely into O(Iogii) segments.

t
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2. Logarithmic segmentation of edges

Let a point v in the plane (x,y) be given as a pair of coordinates x(v) and

y(v) and let Cv0~....v~_1) be the vertex set of C, where the numbering is

such that y(v0) � y(v
1) � ... ~ y(v~_1). (In the sequel we shall assume for

simplicity that these ordinates are distinct; the details of the general

case are straightforward.) For additional simplification and without loss of

generality we may assume that y(v~) — i; so, when we say that the ordinate of

a point u is i we mean y(u) — y(v~).

Each edge is to be partitioned into a collection of segments; each of

j these segments will be simply denoted by the ordered pair of ordinates of its

- 
. - extremes. The set of pairs of ordinates delimiting segments is

- 
.. S — ( (2

k1,2k(j÷l))lj,k nonnegative-integers). We want to partition each edge

into a minimal number of such segments : for example, edge (9,21) will be

partitioned into (9 ,l0)(lO ,l2)(l2 ,16)(16 ,20)(20 ,2l).

JT For any given pair of nonnegative integers in and r we def ine the set

S(m ,r) — a subset of S - as follows:

S(m ,r) ~ ((2 kj  2k(J÷l ) ) lZ r~~< 2k~ 2k(j+l ) � 2t(m+l)3. The elements of

S(m ,r) are organized as the nodes of a full binary tree D(m,r) as shown in

figure La (a similar structure has been called range tree by Bentley [11]).

In f igure lb we show the complete tree D(0 ,3).

D(2~~~D~EI,~l) 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(a) (b )

Figure 1. Definition of tree D(m,r) and illustra tion of D(0,3).
— —— _______
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Given an edge (vi~vj)~ 
with O~~ i < j � n-i, we can now produce the desired

logarithmic segmentation of it with the aid of the tree D(O, Ilog(n ’l) l) ,

simply referred to as D. This is accomplished by the following algorithm

SEC~t((i j ) ,D) (here 
~~~~~~~~~~ 

and £2 are Lists , and “o” denotes list concatenation) .

The segmentation is performed on the vertical projection (i ,j) of (vi~vj )•

SEGM ((L ,j),D)

beam v ~~~ ROOT(D )
(p ,q) ~

- (L(V),R(V)).
If (i ,J) (p,q) tj~~ £ 4- (p ,q)
else ~~ 

j � (p+q)/2 then L .- SEGM((i , j ) ,  LEPTSUBTREE(V))
elie ~~ i � (p4q)/2 then £ ~ SEGM((t ,j),RIGRTSUBTREE(V))

else begin Li 4- SEGM ((i,(p#q)12), LEFTSUBTREE (V))

£2 4- SEGM(((p.$.q)/2,j), RIGHTSUBTREE(V))

£ 4- £
i 

~~ £2

return £

4 For example , SEGN((l ,7), D ) produces £ — (],2),( 2,4),(4,6),(6 ,7). The

action of SE~( can be viewed as tracing two paths - possibly with a coamon

initial subpath - from the root of D to two of its leaves. The number of

recursive calls is therefore at most twice the depth of D, and since each

new call takes t ime bounded by a constan t , SEGM runs in t ime O(logn).

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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We now state without proof properties which follow directly from the

algorithm SEGM:

- 
Proposition 1.

An edge (i,j) with 0� i < j � n-l is partitioned by SEGM in at most

2rlog(n—l)1—2 segments;

Proposition 2.

Let (h,k) be a segment, with h < k (h and k are the ordinates of the —

two extremes of the segment). If h — 2r.hI with h’ odd, then

kE C2r .hI + 2~( i—0,1,.. ,rj.

3. Construction of the point location tree

• We shall now construct the data structure .7 - a binary search tree -
to be used by the point location algorithm.

- 
Without loss of generality we may assume that the given planar straight-line

graph C with n vertices be a triangulation; if not, C can be transformed into one

- .- in time O(nlogn) by adding edges,according to the algorithm of Carey et al. [7].

- - The graph C is also assumed to be given as a collection of ordered edge

lists; specifically, we let — [(j,i)~(j,i) is an edge of G and i > J) and

we assume that -the members of are ordered clockwise around v
j.

This representation is obtainable in t ime O(nlogn) fr om the more

- conventional representation (Edges incident on v~~j — 0,...,n-l).

_ _ _ _ _ _ _ _ _ _  
_ _  _

-

~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _  ____  I
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A preliminary task is the logarithmic segmentation of the edges of C.

Let C have m edges. Each edge e of C is partitioned into a string of segments

by means of the algorithm SZGM ouciinad in the previous section. With each

segment t we associate an integer, height(t), which is the ordinate of its

upper extreme. The string of segments of e is stored as an ordered list

(tl)t2)~ •*~
tr)~ 

where the order is such that height(t1) < height(t2) <

< height(t~): t1 and tr are respectively the initial and terminal segments

in the list. Since each edge can be partitioned in time O(logn) and

m � 3n-6, the entire edge segmentation task runs in time O(nlogn) and uses

0(nlogn) space. -

The procedure which constructs the data structure .7 is called ORGANIZE

and has access both to the set of lists [e~J IJ — O,...,n-23 and to the m ordered

lists of segments. Specifically, it starts with the initial segments of the

edges issuing from v0, processes them and proceeds by acquiring the “upward

continuation(s)” of each of the processed segments. This is easily done as

follows, where we assume that segment t is contained in some list 0. We also

denote by L(t) a list of segments which are the upward continuations of t L(t)

is -referred to by a pointer b(t) associated with t.:

IL t is terminal in 0 (C~~~ent: t reaches vertex vheight(t) of C) ~~~
begin 

~ ~
-
~~height(t)

beight(t)

If e ~ t~ then L(t) 4- string of initial segments of edges in e

ej~ge L (t)-A

else L(t) 4- successor of t in a

~
2
~~ere and hereafter, A denotes the empty sequence.

—5- — -——•--- 5--5~--5--~-55-5- -- ’~—5 - •--—5-— -—~-- -5——-—- — — 5 ’  — ——- —- — -—-•- 5-- - - - • --——•-5--—--—~~ - . - 5 -~-.~—-- •’~ -5•—— - —-— 5 •~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~_ 5 • . __ 5-5-_
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The procedure also makes use of two auxiliary functions, JOIN and BALANCE ,

to be discussed in detail later: presently, suffice it to say that JOIN

joins together two binary trees by providing a cocimon root, while

BALANCE struct’.~es a forest of binary trees into a single binary tree.

We shall now informally describe, and illustrate with an example, the

procedure ORGANIZE (C ,h ,k),  where h and k are integers (h � k) and:

(i) £ is a string of segments, which have the properties that the

ordinates of their lower extremes are identical and equal to h,

while the ordinates of their upper extremes are no greater than k

(descriptively we say that the segments in £ are contained in the

horizontal slab Ch ,k]).

(ii) Either k — n-l or , letting h = h’ • 2r (odd h’), k — h +

for som eO�L�r.

Notationally, for some terms a11...,a , (ai,...,ar) denotes a string,

~ I while (a i, ..., ar) denotes a b inary tree so that the string (a1..., ar ) is obtained

when the tree is traversed in inorder ([8] ,p. ). If A1 and A2 are two strings,

(A1,A2) is their concatenation. The procedure also makes convenient use of

stacks £ ,S ,U , ~ ; following [ 8 ] ,  for a stack s, “x e S” denotes that x

is the element which has been “popped”, while “S ~ x” denotes that x has

been “pushed” into the stack. When a string is stored in a stack, its left-

H .. most term is at the top of the stack.
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ORGAN IZE (L, h ,k)(see Comment 1, below)

5- 

1. begin S ‘- A, j  - k, j~ ~

2. If. h ~ k then (see Comment 2)

3. While j 0 ~ k do (see Comment 2)

4. ~~g~n While £ ~ A and height(TOP(L)) :� J 4~

5. begin x~~~L

6. j  — height( x) ,

7. Form L(x) and b(x) (see Comment 3)

8. S ~ (x ,b(x))

end (see Comment 4)

9. While height(TOP(S)) — j  ~~
10. begin (x,b (x)) ~ S

11. U~~~x

12. 8~ ~~x)
— end (see Comment 5)

13. a1 
— BALANCE(U) (See Comment 6)

14. (a2,b(a 2 )) — ~~GANIZE (&,j,min(2J-h,k)) (see Comment )

15. 
~~ ~2 ~ 

A then a ‘- JOIN (a1,a2),b(a) — b(s2)

else a - a1, L(a) ‘— i! (see Comment 8)

16. S e (a,b(a))

17. j0— j

18. j - m m  (2j-h ,k) (see Comment 9)

19. return S

end

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~~~~~~~~ -~~~- ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ • a—— -•
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Connnent 1. [Referring to the graph in Figure 2, we consider CRGANIZE(L,4,8);

segments are indicated by means of integers and £ — (15 , 16,

17 , 18 , 19 , 20 , 21, 22 , 35); TOP(L) is segment 15.]

Comment 2. The major controls of the algorithm are embodied by Steps 2

and 3. Obviously, if h — k, the horizontal slab is empty and the empty

tree is returned (Steps 2 and 19). Moreover - as we shall see (Comments

8 and 9) - processing is completed when the control variable j0 becomes

equal to k.

Comment 3. The string L(x) of the upward continuations of segment x is

constructed and referred to via b(x), as previously outlined.

Comment 4. Loop 4-8 finds the longest prefix £* of string £ so that the

terms of (S,L*) have nonmncreasing heights; £* is removed from £ and

concatenated with S. Specifically two-field records (x,b(x)) are entered

into S. [In our example, S becomes (19,18,17,16,15).3

Comment 5. Loop 9-12 finds the longest suffix of S of elements with constant

heights, removes it from S and places it into a stack U. Also for each

x transferred from S to U the list L(x) (pointed to by b(x)) of the

upward continuations of x is p’aced into a stack 8. [In our example,

at this point we have S — (16,15), U — (17,18,19) and 8 — (26,25,24).]

Comment 6. The function BALANCE - to be described in Section 4 - structures
the terms of U into a binary tree to be denoted as RT1(U). Each of

these terms is stored as a node in the search data structure 7; a1

refers to the node storing the root of RT1(U), and is itself treated

as a “term”.

-ill

— —   ~~~— — — — ~~~~~~~~~~~~ a ~~~~~~~ 
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Comment 7. This recursive call obtains a tree HT2 (U),  again referred to

through its root in 
~~ 

b(s2 ) points to the string of segments which

are the upward continuations of HT2(U). [In our example ,

— (24,25,26> and b(a2) points to the string (28,29,30).]

Comment 8. If both RT1(U) and HT2 (U) are nonempty , they are joined together
1

into a new b inary tree VT(U) - referred to via its root a - and the

upward continuations of HT2(U) become the upward continuations of VT(U)

[in our example, VT(U) — < (17,18,19) * (24,25,26))]; otherwise, when

HT2(U) is empty, the string 8 itself gives the upward continuations. 
•

Notice that lit (U) is empty only when in Step 14 we have a call

~~GANIZE(&,k,k), i.e., when j — k.

Comment 9. A new “term” (a,b(a)) is formed in Step 16 and pushed into S

[in our example, S becomes (((17,18,19) * (24,25,26)),l6,l5)J . Notice

that the major loop 4-18 is repeated until j0 is set equal to k in

Step 17, which occurs exactly just after Step 14 returns the empty tree.

¶5-;
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In our example, CI~GANIZE ((15 16,l7 ,18,l9,20,21,22,35),4,8) produces the tree

a — (15((16 ,((17 ,18,19)*( 24,25,26)),20)*(((27,28)*( 32,33,34)), 29,30)),2l ,22 ,35);

b(a) points to the string (36,37,38,39,40,41).

height

10

8~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 7
<

~~~

- .  N
3

2
4 5 6

1 a
a

0

F
Figure 2. Illustration f or the procedure ORGANIZE

Once the function ORGANIZE is availab le ,denoting by £
o 
the string of the

initial segments of the edge string e.g, the construction of the search

structure .7 for graph C is trivially done by the single call

ORGANIZE(Z0,O,n-l). In our example, Lo — (1,2,3).

The construction of subtrees occurs in Steps 14, 15, and 16. As we noted

the —b are two types of subtrees - H-trees and V-trees - , depend ing upon the way

they are generated. The root of a V-tree is said to be a V-node , while all

others are referred to as H-nodes.

5- _~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- 

~~~~~~~~~~~~~~~~~~~~~~~~~ 5- -
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A subtree is said to contain a seament t if t has been assigned to one

of it. nodes; a subtree is said to contain a vertex v of G if v is in the

interior of the trapezoid which is the convex span of the points of the

segments contained in the sub tree; for each subtree we define it. slab as

the smallest horizontal planar str ip where all of the tree ’s segments lie.

We begin by discussing V-trees. Subtr.e VT(U) is obtained by “Joining”

together two H-trees, HT1(U) and HT2(U). Notice that slab (RT1(U)) — [Li ,j]

and slab (RT2(U)) — [j,tain(2j-h,k)] are adjacent; HT1(U) and RT2 (U) are Joined

by means of a V-node, which is assigned, as a discriminant , the ord inate of

the horizontal line separating the two adjacent slabs (for ample , in

Figure 2, (27,28) and (32,33,34) are separated by the horizontal line y — 7).

Notice that in executing C3RGAN IZE(.t0,0,n-l), the condition k < 2j-h in a

recursive call (Step 15) may occur only for k — n—l; since j—h — (2j-h)-j,
for the two adjacent slabs we have:

proposition 3. width(s].ab(HT1(U))) 
� vidth(slab(HT2(TJ ))) .  If the inequality

is strict, then slab(HT2(U)) is upper bounded by the line y — n-i.

We define the level of VT(U) as log max (width(slab ET~ (U))) + 1. Since
i.l,2

a slab of width w (an integer) contains exactly v-i vertices of G in its

interior, we obviously have that a V-tree of level i contains at most

vertice, of G. On the other hand any V-tree - except possibly one whose slab

is upper bounded by y — n—i - contains at least one vertex of G. Thus we have:

proposition 4. All V-trees - except possibly one - contain at least one
vertex of G; if level (T) — 1., then T contains at most Z~~l vertices of C.

The number of V-nodes is obtained as follows. Let PI4TIT is a V-tree and there

is no other V-tree T’ which is a proper subtree of T). The root of any T E P is

1~~~~~

- 
— - -~~~~~~~~ -

— - - —--~~~
—. - — —---5-— - -5-— —----~~~- —~~~~ ~~~~~~~~~~~~~~~~
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the only V-node in T , othe rwise there would be V-tree T’ which ii a subtrss of T.

The car dtnality of P is at most (n-2), since v0 and v~ are not contained in

any V- tree . For each T E P , suppose to trac e the path from its root V to the

root of 7 and let V2,V3 , . . . ,V be the sequence of the V-nodes encountered ;

V~ is th. root of some V-tree and obvi.ualy level (T) < Level (T1) < ...
< level (T

v
). Since the level of any V-tree is upper-bounded by riovil , and

I~ I ~ n-2 , we conclude that the numb er if V-nodes ii upper-bounded by

O(nl ogn).

We now consider the other type of subtree s , the H-trees. They are formed

by struc turi ng (Step 14) into a binary tree a mixed sequence U of segments and

V— trees, all spanning the same horizont al slab (e.g.,  16 , ((17 ,18 ,19)*( 24 ,25 , 2 ,

and 20 in F igure 2). In general U is the form r 0Ti~
r iT2 .. .r r .iTrr r , where the

T
i
’s are V-trees of identical level and rO.....rr are each a string of

segments ; we claim that none of the string s Tl,... ,r
~~..l 

is empty. To

prove thi s , notice that each T~ ii the jo in of two H-trees and R2~;
• if is empty, for l� i ~ r- l , the procedure OR GANIZE would combine

the members of and H1,~~ 1 into a single tree , before examining the

members of H2~ and H2 j+L’ thus contrad icting the existence of Ti and Ti+l .

- - The nodes created in structuring U are H-nodes and to each one of them we

assign one of the segments in U 
~l 

u ... U ~~~ and a (discriminant)

linear function f(x ,y), so that f(x ,y) — 0 is the equation of the line

containing that segment . The details of the cons truction of RT1(U) and

- by the subroutine BALANCE - will be discussed in the next section

in connection with the performance analysis of the method ; pr esently , we just

note that the number of V-nodes (i.e. of V-trees) involved in the structuring

process is jus t 0(n), ra ther than O(nlogn). 

- -  _
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To see this , we reduce the tree .7 to a tree which contains only V-node s

and is constructed as follows: delete and bypass aU the H-nodes of .7 one at a

t ime , i.e., for each non-leaf H-node V replace th, thre e arcs (FATHER(V), V),

(V,LEFTSaI(V)), and (V,RIGHTSa!(V)) with the two arcs (FAT~~R(V), LEFTSOt~(V)) and

(YATHER(V), RIGHTSON(V)); a Leaf H-node is just suppressed. Clearly 7V has at most

(n-2) leaves . The nodes of are of three types: the regular ones with

two or more “children”, the singular ones with exactly one chitd,and the

leavea, it is clear that only the children of regular nodes take par t in the

balanc ing pr ocess. Therefo re suppose now to fur ther dele te and bypass every

singular node ; the resulti ng tree is such that its non-leaf nodes have at

least two children and , since there are at most (n-2) leave s , there are at

most 2n-5 nodes altogether. This prove s the claim.

If we represent H-nodes by the symbol Q , where t is the number of

the segment assigned to the node, and V-nodes by the symbol ~~~~~~
‘ , where y is

the ord inate assigned to the node , the structure .7 for the graph of Figure 2

is shown in Figure 3.

16 7~~~~~~

28 33

18 25 27 32 34 3 ’

17 19 24 26

Figure 3. The binary search tree .7 for the graph of Figure 2.

~~~~~~~~~~
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4. performance ana lysis of the method -

- - We begin by evaluating the dept ~ of the search tree .7. Clearly .7 has

O(nlogn) nodes. In fact the H-nodes are in a one-to-one correspondence with

the set of segments, and the latter has card inality 0(nlogn); as to the

V-nodes , we have just shown that their number is also O(nl ogn).

If 7 were balanced , it would have depth 0(logn). However there is no

explicit provis ion in the ORGAN IZE a1goritkm~ to achieve such property; as a

matter of fact , the depth of .7 critically depends on the subrou tine BALANCE

used for structuring H-trees . Indeed, suppose that in- Step 14 of ORGANIZE , the

set U contains 0(n) V-trees . The - increase in depth produced by BALANCE(U)

could be 0(logn), thereb y resulting in an O(log2n) depth for .7. However ,

we shall now describ e a procedure BALANCE which produces a global 0(logn)

depth for .7. The procedure is based on the following lesmas (the first of wh~~’-

is a variant of another iesma presented in [9 ) ) :

Lenina 1. Let a’ a1a2...a~ be a string with p > 1. and let the positive

integer 1a 11 denote the weight of aj; also, let 101 — E ~~ *~j and H max 1* I. 
—

j J — l
Then for any number 14 ~ m < ~~~ the stri ng C can be algorithmically

partition ed as a’ — a’~a’~~3a’4 so that 102 1 ~ m , 1013 � m, and 102 1 + 103 1 > m.

Fr oof: Arra nge the terms of a’ as the leaves of a balanced binary tree

t(0) and for each node V of this tree t(0) compute the weight lvi as
ILEFTSON(V)L + IRIGRTsCN(V)I; obviously IPOOT(r(t2))i — Ial. If we trace a

- - 

path from the root of t(0) following at each node the branch of larger weight,

the weights of the traversed nodes form a decreasing sequence whose minimum

is guaranteed to be no larger than 14. Thua there is a unique node V~ on this

- - path such that ~~~ > m, I LEPTS0N(V*)l � m ,lRIGHTS~~(V*)( ~ m. We then let

Q’
2:— string of leaves of LEPTSCN (V*), 03:~ string of leaves of RIGHTSCt4(V*) ,

while a 1 and 04 are the (possibly empty) prefix and suffix of a’. 0

_ _  
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For a V-tree T we define its weight TI as the number of vertices of G

contai ned in T (rec all that , by Proposition 4, (level (T ) — 1) 
~~ ( I T I  — 1)).

An i-string has the form U — rOTI~
r L...1r_lTrTr. where the T

1
s are V-trees of

identical leve l .L > 1 and the ?~ ‘s are (possib ly empty) strings of segments.
We define the weight IUI of U as E 1T 11 .

3—I -‘
Lamem 2. Let VT — JOIN Orr 1,HT2 ) .  The trees NT

1 
and NT2 can be algo-

rithmically constructed so that depth(VT ) < iogtil + 21og~VT~ + 3level(VT) - 1.

Proof: For simplicity, let 6(T) ~ depth(T) - I1o gi~1. We make the

following inductive hypotheses:

P1. II U is a i-string with 0< lul < K 1 <K , then 6(U) < 2logI UI +3j+1;

P2. If T is a V-tree , ‘with I T I  < K and level(T) — j < 2 , then

6(T) < 2 1og~TJ + 3j  — 1.

The induction can be started with j — 1. In fact leveliT) — I implies

I T I  — 1, i.e., if T — JOIN(H1,H2) ,  H1 and K2 are each trees of 
- 

-

0(n) segments, so that ó (I(~) < 0 (i — 1,2) and 6(T) < 1 < 2. Also, if U

is a 1-string, its corresponding slab has width 2. It follows that j ul < 1

-
~ and either U — ¶‘T’y” or U — r, where r ’.,~r”,r are strings of segments and

Ievel(T) — 1; in either case 6(U) < 4.

Proof of P1. Let U — 1
0T1r1...1 1TT and j U l  — Notice that

depth (i’
~~~) < riogni (i.e. 6(r~) < 0 , for every 0 < i < r) and let

j T J  m ax f T f .
~ 3—1 1

(1) JT,J > K1/2. We express U as U1t1T t 2U2, where both U1 and U2 are

i- strings (with j U
1~ Iu

2
j < K1/2) and t

1 
and t

2 
are segments. Since

< K1 < K and level(T ) — 3, by P2 we have 6(T 8) < 21og)T5~ +33 
- 1

< 2log K1 +3j -1. With regard to U~(i—l ,2), either Iu~l — 0 (in which case

_ _ _ _ _ _ _  
- ----~~~~
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U

~ 

consists of se~~~nts and 6(U~) < 0 )  or by P1 6(U~) < 21ogjU~I +3j+1

~ 21og 1(i +3j -1. Clearly the tree in Figure 4a structures U so that

&(U)< 2log~~~+3J+l.

U2 U3 174

(a) - (b)

Figure 4.

- -  (2) 1T 81 < We apply Le~~a 1 to the string U with m—K1/2. We

obtain the decomposition U1t1U2t2U3t3U4, where t1, t2, t3 are segments and

the U
3
’s are i—strings with 1u21 ,1u3I < K1’2 ’ and 11721 + 11731 >

The latter implies ‘p 1’ + 1u41 < K1’2 ’ i.e., IU~I , f i i 4~ < 1(1/2. By P1

< 2log(K~/2) + 3j + 1 — 2logK1 + 3j—1. Then clearly,

the tree in Figure 4(b) structures U so that 6(17) < 2log~~ + 3j + 1.

Proof of P2. Let ~VTI — K and Level(VT) — 2, with VT — JOIN(HT1,HT2),

( 1NT11 - 

~l’ 
IHT2I - K2, (K1+K2 - K).

We must now distinguish two cases:

(1) the root of ~rr is a regular V-node. In this case, 0 < ICI~
KZ < K.

Consider NT1 (an analogous argument holds for NT2
). The set U is an

-~~ 5- ---~~~~5-- -- _  ---___
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(2-1)-string 1•
0Ti~

T i•sS
Tr_ 1Tr1~r~ 

with lu l  — K~ < K and level(U) — 1-1. Then,

by P1, we have 6(17) < 2logjU) + 3(2-1) - 1 — 2log
~~

+3L - 2. It follows

that 6(VT) — inax(6(HT 1) , 6(}fl~)) +1< 2max (1ogK1,1og~~)+3L_ 2+l < 2logK+32-l.

(2) The root of VT is a singular V-node. In 7, there is a sequence of

V-trees T0(— VT), T1 ...,T , such that T~ is a subtree of Ti_i (for i—1,...,p),

the roots of T0,...,T 1 are singular V-nodes, while the root of T~ is regular,

and I T~j < K. Clearly level (T
v
) — .t-p, whence, by the proof of case (1),

6(T~) < 2logIT I + 3(L-p)-l. Now, notice that T3
(l < j  < p) is contained in

an (2-1)-string of the form 1 ‘T
J~
”, whence 6 (T

3
) 
~ 

8(Tj+i) + 3. It follows that

6 (VT) < 6(T~) + 3p < 21o8IT~I + 3(2-p)-1 + 3p < 2logI( + 32-1, since lT~I < I VT I K.

The proof is thus completed. 0

In conclusion we have:

Theorem. The depth of the binary tree .7 is less than 6rl08~1.

Proof: If the root of .7 is a V-node, then .7 is a V-tree of level Ilogni

and, by lenmia 2, depth (.7) < Ilogn] + log(n-2) + 3rlo~n]-1 < 6 rlo~n] -1. If

the root of .7 is an H-node, then there is one edge in C between V
0 
and v •1,

and (n-l) is a power of 2. In this case G appears as G1tG2 where both C1
and C2 are graphs with no more than n vertices; C1 and C2 can be structured

into binary trees and ‘
~2’ respectively, whose roots are V-nodes and heights

• are less than 6rlogiil -1. It follows that the tree structuring C has depth less

than6rlogn]. 0

We shall now estimate the running time of the procedure. First we

consider the global work performed by the BALANCE subroutine, described in

the proof of Lemea 2. If U contains r V-trees Tl~
T2~•••~

Tr~ 
then, using a

result of [10), the balancing runs in time O(rlogr). As we have shown, the

total number of V-trees involved in balancing operations is 0(n), whence

0(nlogn) is the overall running time of BALANCE.

— 
- 5 - -

~~~~~~~
- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- 

~~~~~~~~~~~~~~~~~~~~ ~~
5-
~~ T ’ ~~

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

19

We shall now evaluate the running time of the procedure ORGANIZE. We

have just shown that BALANCE uses O(nlogn) steps altogether; analogously

JOIN runs in time proportional to the number of V-nodes, i.e., in time O(nlogn).

The remaining work is conveniently charged to the individual segments. Specif i-

cally, each segment is transferred from .~ to S (Steps 5 and 8), and then

from S to U (Steps 11 and 12); clearly, the work expended in these transfers

is bounded by a constant. When a segment x is transferred from £ to S we

associate with it a pointer b(x) (Step 8) to the string L(x) of its upward

continuations . The construction of L(x)(Step 1) takes time proportional to

its size, so that the global work which is done in Step 7 is proportional

to the number O(nlogn) of segments ; the construction of b(x) takes cons tant

time. In s~.=ary, a segment x is transferred from an original segment lis t

to some list L(t) of “upward continuations” of some other segment t and from

here to a stack 8; from ~ it is next transferred to S and finally to U:

clearly the total work involved per segment is bounded by a constant, and

- - 
since there are O(nlogn) segments, also this portion of the work is O(nlogn).

We conclude therefore that the running time of ORGANIZE (~0,O,n-l) is O(nlogn);

- - that the space used is also O(nlogn ) is straightforward .

5. point location

To locate a point P0 — (x0,y 0) in the planar subdivision induced by C, we

use .7 as a binary search tree. With each H-node of 7 which has one or no des-

cendant we append one or two leaves, respectively, and with each such leaf we

associate the identifier of a planar region (bordering with the edge associated

with the parent H-node). The point location proceeds as follows: at each node

V of 7 we choose a branch: if V is a V-node, by comparing y0 with y(V); if V 

%- . -—- - - --
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is an H-node, by testing the sign of f(x0
,y0), where f(x y) is the discriminant

function of V. Thus we trace a unique path from the root to a leaf at which

point the point location is completed. By the preceding discussion this

process uses a number of comparisons bounded by the depth of 7, i.e., 6rlogxil

6. C~tmex~ts and Applications

As the previous analysis indicates, planar point location is simply

done in time O(logn) using a search structure ‘which can be stored in

O(nlogn) space. Specifically, less than 6llognl comparisons are ever

needed, although the analysis which establishes the upper-bound on the

depth of 7 is overly generous and a r uttiplieat,ive constant for riognl

substantially lower than 6 can be expected.

As to the storage requirement, the analysis refers to the case in

which each of 0(n) edges is partitioned into O(logn) segments; this

intuitively corresponds to a large fraction of long edges, which

presumably is not the average case; however, graphs can be constructed

for which this situation occurs. It is conceivable that the simple

approach presented in this paper could be further refined to achieve

-~ 0(n) storage while maintaining O(logn) search time.

Notice that the described point location method is not restricted

to triangulations, nor to planar subdivisions induced by straight-line

graphs. Indeed the straight-line segments may be replaced by other curves

if the following two properties hold : (i) the curves are single-valued

in one selected coordinate (say, y),and (ii) the discrimination of a point

with respect to any of the curves can be done in constant time. For example

these conditions are clearly met by arcs of circle or of other conics if

- ——----— - - -  - —
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they have no horizontal tangent, except possibly at their extremes. We

can now mention two applications of the given method. Both problems have

recently received consideration in the literature [11,12].

1. Fixed-radius near neighbor searching. This problem involved finding

all points of a set F in the plane which are within some fixed radius r of a

“query point”[ll]. Bentley and Maurer have recently proposed - among

other methods - a locus approach, which consists in subdividing the plane

into regions each of which is the locus of the points within distance r

from a given subset F’ of F (this region is clearly the intersection of

all the circles with radius r centered at the points in F’). Let

F — 

~~~~~~~~~~ 
and let C~ be the circle of radius r with center in

piEF. For each C1, let u~ and LI. be the two points on the circle C~ with

largest and smallest ordinates, respectively, and let I denote the set of

intersections nf pairs of circtes Lu Cc 1j t ” l ,...,n ~. If we define

V ~ IU(u~Ii ” l 1...,n)UCL~ii.’ 1,...~n)~ the circumference of each c. is

partitioned into a set of arcs which have properties (i) and (ii) given

r above. Therefore V is the vertex set of a planar graph C whose edges are
~

the arcs just described. To this planar graph the method of this paper is

applicable. Since lv i  — I I I + iCh~ I i — l 3.. ., n)i + l[LiIi~~
1,...,n)l =

2(~’) + n + a = n(n+l), graph G is planar with 0(n2) vertices. Thus fixed-

radius near-neighbor searching can be solved in O(logn ) t ime -with a data

structure using O(n2logn) space and constructible in O(n2logn) time; in [11]

the latter two quantities are both 0(n3).

2. Maxima testing in three dimensions. For points u and v in three-

dimensional Euclidean space , u is said to dominate v if x1(u] 
> x~ (v]

(1—1 ,2,3). Given a finite set F of points in , uEF is a maximum of F

—~~~ ~ --5-  -~~~~~~~~ —~~~--- 5- —-~~~~~~~~— - —  ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ — 5- -~~~~~~~~~ -~~~~~~~~ 
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if it is not dominated by any other point in F. Suppose now that F is a set

of maxima of F; testing a target point p for maximum in F means to determine

if there is at least a point uEF which dominates p.

Letting I F I —  n, Bentley [12) solves this problem in 0(log2n) time

on a search data structure that is stored in 0(nlogn) space and is

constructed in O(nlogn) time. We now show that the same storage and

preprocessing time can be maintained while reducing the test time to

0(logn).
- n

- Let F = Cu 1,..., u 3. Let v be the point such that x.[vJ = mm x,[u11n LI
(j—l ,2,3); for convenience we may assume that v be the origin of R” , so that ~~

points of F lie in the positive orthant R~. Let be the domain of points

of 1~ dominated by u~EF 3 and let M = U M~. Consider now the surface of M
1—1

and suppose to project it on one of the coordinate planes, say (x1, x2 ) .  This

projection appears as a planar straight-line graph G, each finite region

of which is the projection of a portion of the surface of M1, for some i

(Figure 5); it follows that if the (x1,x2)-projection of the target point

x2

—

— 1
T i  -

-- I _

Figure 5. Typical projection of the surface of M on the plane (x1, x2 ).
The vertical edges are shown as thick lines. - - 

= I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _~-_ ~~~~~~~~~~~~~~~~~~~ _  _
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p falls in the region of C associated with u~EF~ then the maxima testing

reduces to comparing x
3[p] with x3[u~]. Thus maxima testing is done via

point-location in G. Notice now that C has two edges - respectively parallel

to the x1 and x2 axes - issuing from the (x1,x2)-projectiou of each U~EF.

It is easy to realize that the point-location procedure can be applied to

the graph consisting of the n edges parallel to, say, the x2-axis, and the

positive x2-axis itself (see Figure 5). Obviously the search data structure

can be stored in O(nlogn) space and is constructible in O(nlogn ) time.

Referring to the arguments of Bentley (12], the time for worst-case maxima

testing in k dimensions can be reduced from O(log 1n) to O(log~~
2n) for

k > 3.

— — -5 - - -
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