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ABSTRACT

An introduction to quantization and to several important detection

problems is given in the initial sections . A detailed review follows of

most of the work done on quantization for detection. The equivalence of

the criterion of minimum mean-squared error between quantized data and

data transformed by the locally-optimum nonlinearity and the one of

maximum efficacy is shown for the general case of local decisions based

on independent samples. In addition , a suff icient  condition for opt imum

detection is derived for the above case. Finally , numerica l results are

obtained for the locally-optimum quantizer for the case of detecting

stochastic signals in generalized Gaussian noise (both additive-noise

and scale-change model.)
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• I 
INTRODUCTION

Desp ite the development of new cod ing schemes such as permutation

f codes , tree codes etc., simple quantization continues to be a very popular

method of analog-to-digital conversion. The conceptual simplicity of the

- quantizers , their near optimum performance and the fact that they can be

readily implemented in .tardware are the main reasons for their popularity.

Because of their divers ified use , quantizers have been opt imized based

on several different criteria. Before we attempt to give an overview of

the work done in the area of optimum quantization , we will rs t describe

the basic quantizer equations.

A quantizer Q with M levels can be represented as a pair ~~~~~~~~~~~~ where

~ € are the levels of Q; the breakpoints ~ ~ fl~
Mfl 

are such that

- — tØ t
1 

< .. < t~4~~ 
< t~4 ~~. We take Q(x) 

~~ 
when xE (tkl ,

• - tk
] for k 1, . . .  ,M. Let X be a scalar random variable with probability

density f(x). Two widely accepted criteria in terms of which the performance

of the quantizer is defined are the distort ion

D = k g(x_q~ )f(x)dx

- I

and the entropy

M
H(Q) — - £ (log2fk

) 
~kr ksl

where g is a non-negative weighting function and

t

St~ 1 f(x)dx.

!.. In the early l i terature , the parameters of an “optimum ” quantizer were

chosen to opt imize D or H or a comb ina t ion of the two.

- 
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Max [1] first considered the problem of designing an optimum quantizer

with minimum distortion as the criterion of performance. Note that for

g(x) = x2 the distortion function D becomes the mean-squared-error expres-

sion between the input and the output of the quantizer:

D = k~l f :k ...l 
(x_q~)

2f(x)dx .

When the criterion is minimum mean—squared error , Max showed that the

• parameters of the optimum quantizer satisfy the following equations :

rtkJ~ 
x f ( x ) d x

~
k_l 

; k 1,... ,M (1)
f(x)dx

+ q~~1) ; k I M-l. (2)

The analytical solution of these equations is impossible for all but

trivial cases. A numerical solution , however , is straightforward. Many

iteration techniques are feasible and one is given by Max.

In addition , Roe [2] has proposed an approximation , based on Max’s

equations which is of practical interest and yields near-opt imum results.

Further simplification of the structure of the optimum quantizer results

from Algas i’s [3] work. First , he derived approximate expressions for the

distortion for the ca se of unifortn* quantization . Then , by deriving

similar approximations for a non-uniform quantizer he concluded that ,

depending on the number of cuantization levels , a uniform quantizer may

perform equivalent ly to a non-uniform one.

*Equally spaced breakpoint and output levels.
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Although minimum distort ion is desirable , it is not the absolute

cri terion ~or the performance of a quancize r .  Several authors [4~ have

indicated that  the entropy H(Q ) of the output of *ISE quant izer  is high .

Since H, in general , is the minimum amount of information which must be

transmitted in order to achieve arbitrarily small probability of erroneous

detection , high H(Q) is undesirable. It was shown by Messerschmitt [5]

that , for certain input distributions , the minimum-distortion quantizer and

the maximum-output-entropy quantizer are approximately the same. These

results indicate that a trade-off between low distort ion and high output

entropy is unavoidable. One way to approach the prob lem would be to

minimize H(Q) for a fixed value of D. Therefore, in general, a combination

of D and H(Q) should be used to define the appropriate performance criterion

for optimum quantization.

In the work reviewed thus far, the quantizer is treated as a simple

coding scheme which is used to facilitate signa l transmission. However,

in the above discussion , no mention is given of how a quantizer can be

used for signal detection . Since the latter is our main interest here ,

we will proceed with a review of the detection problem to eventually

concentrate on quantization for optimum detection.

- ~~~~~,-.• - --~~ • • . •~~ • S.
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1. THE GENERAL DETECTION PROBLEM

The M-ary communication problem requires the design of a receiver

that will decide , with minimum probability of error , which of M possible

signals has been sent. In general , under hypothesis H , the receiver

obs erves

Y(t )  = Sm[t~~
1(t)i + N ( t )  ; 0 � t � T , 1 ~ rn ~ M

where N(t) is a noise process with arbitrary statistics and S [t ,e(t)]

is the mth signal. t~l(t) represents unknown channe l effects on the signal.

To simplify the ana lysis , assume that there is a discrete representation

of the problem , obtained through t ime samp ling . If the dimension of the

discrete representation is a, the receiver observes

Y = S m (~) + N ; m =  l ,2 , . . . ,M

where

• Y = (y~ ,. .. ,y 1~)

N =  (n1,...,n~)

~~~
=

Zn® = (S 1(~ ) , . . .

One of the M signals Sm~~
)
~ 

1 ~ m � M is sent . ~ represents a set of K

“nuisance ” parameters (e.g. unknown amplitude and/or unknown phase). The

additive noise has a multivariate density function f
N(N).

A. Binary Detection - Constant Signal Case

The simplest hypothesis testing problem represents the detection of

a constant signa l in additive white noise. The hypothesis pair is given

b y

H0 :

~~~~~~- -- • - • •~~~~~~ -~~~~~~=•~~~~~~~~~~ ~~~_
•:-

~~~~~~~~~~~~ •
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versus i = 1, . . .  ,N (3)

H1 : = e + n
i
.

A decision rule 6 will be of the type :

0 , if H0 is accepted
6 ~ (4)

1. 1 , if H 1 is accepted.

We assume that there exists a conditiona l p.d.f. f N (.Y.I ® )  where ® E (O ,e}.

A prior distribution of® and a cost function C~~ ,6) may or may not exist.

When they both exist , then minimum average cost can be used as the

criterion for optimum detection (Bayes rule). If the prior distribution

is unknown but a cost function is defined , then a Bayes rule under the

worst possible prior distribution (Minimax rule) can be applied. Finally,

if the prior distribution is unknown and no information is given about

the cost function , the Neylnan-Pearson decision rule can be used.

B. The Neytnan-Pearson Criterion

The following two types of errors can occur in binary detection

Type I error: Choose H
1 
when H

0 
is true (false alarm)

Type II error: Choose H
0 
when is true (miss).

Let:

= P(6(~) = 1 ~ = 0) = probability of false alarm

P
M(6) = P[6(~) = 0 ® = = probability of a miss

P
H(6) P(a(~) = 1 ! 8) probability of a hit .

Also , let

fN x I ® 0) fN(~ I H o)

I 
~~~~ 

I H1
).

The objective of the Neyman-Pearson criterion is to constrain 5 to be such

that P~ (6) � a0, where is a prescribed bound , and then find a decision

- 

~~~~~~~~~~~~~~~ •~~~~- • ‘ 
-

I’- - 
- __

~~~~~~~~~~~~— ~~.
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rule 6 = 6
Np which maximizes ~~~~ 

within the constraint . In general, 6NP
is given by:

~ ~ ~~ ~N~~ ’ H1) > 
~~~~~ 

H0)

6
NP~~~ 

= if ~~~~~~(~~i H
1

) = 
~o

fN(.~IHo
) (5)

L 0 ; if 
~~~~~~~ 

< 
~o

fN(.~
IR o)

where 6NP(X.) is the probability with which we accept H1 when £ is observed

and 0 ~ � 1; and are chosen such that  
~F~~

’
NP~ 

= a0 .

• The quanti ty L(~ ) = 
f
N~~!H l) is known as the “likelihood ratio” for

~N~~ 1 H0)

testing the hypothesis pair }L~ vs H1
.

C. Detection in Non-Gaussian Noise.

The s tat is t ics  of L(~ ) are vi tal  to optimum detection. The expression

for L(~) is greatly simplified if ~N~~
> is assumed to be Gaussian. This

assumption was made in most of the early literature on detection theory.

In many practical cases , however , more severe types of noise are encountered.

If the detector is based on Gaussian noise assumptions , performance

- . deteriorates. If, on the other hand , non-Gaussian p.d.f.’s are assumed ,

determination of the statistics of L(~) becomes extremely difficult.

Some simplification results from the assumption that the noise samples

i—l ,2,... ,N} are mutually statistically independent (i.e. time

samples spaced su f f i c ien t ly  apart)  and identically distr ibuted with a

common p.d.f . f(.). Then,

N f (yIH)i 1
i—l f(y ~ I H 0

)

N
~ log L(~ ) — z A i 

(6)
i—i

where A f(~~(H 1)A — log , i — l ,...,N .i 
~

y i I H o)

_

~~~~~~~~~~ :~~~— _ . — -----
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In this form , the test statistic log L(,~ ) is the sum of N independent

random variables and , although it is theore t ica l ly  possible to obtain its

p.d.f., actual analytical evaluation is very cumbersome except for

special cases.

Simulation techniques (e.g. Monte Carlo) can be used to determine the

p . d . f .  of log L(~ ) for any given N and f ( s) .  Another practice commonly

found in literature is the assumption that if the receiver integrates a

sufficiently large number of independent samples , the resulting distribution

of the test statistic will be Gaussian. If the variance of the noise is

large , however , the fundamental limit theorem cannot practically be invoked

unless there is some noise suppresion before integration (e.g. by clipping or

limiting the received signal), the usual justification being that this

will increase the signal-to-noise ratio (SNR). But then, this evaluation

of performance based on SNR may be of little value in indicating information

rate (or reliability) of the detection scheme [6].

In general, the test statistic is simplified when the signal Is very

weak compared to the noise (local detection). Several authors turned

their attention to the problem of detection in non-Gaussian interference

under weak signal assumptions . Concentration on this problem is justified

by real-life cases , where signals are frequently very weak compared to the

noise. Also , it is obvious that a large signal would be easier to detect

and the local detector will, in general, perform satisfactorily for larger

signals as well.

D. Local Detection

As pointed out previously , “local” detection is an expression used

to describe the r ituation where the signals are very weak compared to the

— — —— —
~~~~~~._,. __•.• .-.. - • • •~~~~~~~‘. ~~~~~~~ -.—• - . • - •.•.•• • - ,• ---••-— —-—--——- •• • - -

~~~~
---- — • •-

~~~~
-— - -- -*

~~~~~~
—— -

~~~~~~~~~ 
- - -

~~~~~~
-- -

—~~ __•.~~~_•_• — - - - _ —•--- — -— • — —--- — - ___ •______ — — — — —  —- — — • S~~~~_’ •.S~~ • ~ —•~~~ - ‘-- —~~~•-~-~ d •_ . - -
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noise. The expression “threshhold” detection is also used , mostly in the

early literature. Middleton [7] was the first author to consider the

local detection problem and he obtained a receiver that was, essentially,

• a cross—correlator . Examining the same problem and using a technique

similar to Middleton’s, Rudnick [8] showed that the optimum receiver must

be nonlinear. The discrepancy was solved by Algasi & Lerner [9~ in

Rudnick’s favor. They showed that , for arb itrary noise , Middleton failed

to include all of the necessary terms in his power series expansion of the

noise p.d.f. They also discussed the problem of actual implementation

of the receiver,and,more importantly , they showed that under certain

conditions the optimum receiver takes a canonical form. The canonica l

receiver consists of a nonlinearity which depends on the additive noise ,

followed by a receiver which is optimum for detection in Gaussian noise.

Antonov [10] derived the same receiver for a slightly more general class

of signals and he examined its asymptotic performance (number of samples

approaches infinity). Finally Ribin [11] showed that for infinite

observation time (or infinite number of samples) the local receiver

yields a probability of error no higher than any other receiver. That j
is, it is asymptotically optimum.

The basic procedure followed by all authors mentioned above was the

following: the p.d.f. of the arbitrary noise process was expanded in a

power series (Taylor series expansion) and then the small signal assumption

was used to dispose of a number of terms that would , under this assumption ,

be insignificant . Hence, simplification is achieved .

E. Locally-Optimum Detection

A different approach to the local problem that yields , essentially,

the same results is the following: the Neyman-Pearson criterion is app lied , 

L ~~~~~~~~~~~~~~~~~ ~~~ - .--~ --~ -- — —
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as described before , with one modification . Instead of maximizing the

power function P
11
(6), the “locally-optimum” detector maximizes the slope

with respect to e of the power function at the origin while still keeping

a fixed false-alarm probability. That is, the locally-optimum detector

F maximizes 
~~ 

P~(6) subject to 
~~~~ ~~a0. It can be shown [123 , that the

locally-optimum test is given by

• 
A (~ ) A t f ( ~)3~~ ~f1(1,e) 1

L8=0
• •

0

• where

- f(.~H0) and f
(.) f ( .1H1)

Example - Constant Signal in Additive Noise.

As bef ore , the hypothesis pair is given by

vs i=l ,...,N .
H1 :

The noise samples are assumed to be a set of real-valued , mutually

independent, identically-distributed random variables with a common

p.d.f. f (x). For simplicity, assume $ ~ 0.n

The optimum (Neyman-Pearson) test is given by

N

i—i
(8)

• N

i—I

where

fl g0(x) — lo~(f~ (xJ)/f~ (x)].

1’

~~ 
-

• • ~
-

•~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •
-

~~~~~~~~~~ ~~_—.--— 
•
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The locally optimum test , for the case at hand , reduces to

N

~ 
~lo~ ’i~ 

) ‘ T” ~
i— 1

(9)
N
E < T” ~i— 1

where

f i
g10(x) ~~ log f~ (y

1
_e)I~~_0 — -

n

It can be seen that the locally—optimum detector is, for this case

and in genera l , considerably simpler in structure than the Neyman-Pearson

optimum detector. For this reason and because of its practical importance,

the locally—optimum detector has been studied extensively.

F. Asymptotic Efficiency of the Locally-Optimum Detector

The question arises as to how does the locally-optimum ~~~~~~~~~~~~~~~~~

performance compare with the performance of the strictly optimum detector.

Answering that question , Capon [13] showed that the locally-optimum

detector is, in some sense, as efficient asymptotically as the Neyman—

Pearson optimum detector. This comparison is based on the concept of

asymptotic relative efficiency (ARE).

Suppose that two detectors are designed to detect the same signal

and with the same probability of correct detection. Suppose , further ,

tha t the two detectors requ ire sample sizes n
1 

and n2 respectively to

achieve the prescribed error probabilities. If n~(n2, it is intuitively

justifiable to say that the first detector is more “efficient” than the

other. A rigorous definition of ARE follows.

Let N~ ~~~~~~ denote the number of samples tha t a detector Di
requires in order to achieve a false-alarm probability a, and a probab ility 

•
~

• 111

_ _ _  

[ii
— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — 

— 
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- 
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of correct detection at least equal to B with signal strength e. Then the

- 
asymptotic relative efficiency (ARE) of a detector D2 with respec t to a

referenc e detector D is1

~ 1. ARE2 1 — lim N
1~ 2 ,B ,e)  / N2 ex ,B,e)

9-0 (10)
• I

I
If the detectors D

1 
and D2 are based on the statistics and W2 respectively

then Capon , based on a theorem by Pitman [14], shoved tha t, subject to

some regularity cond itions

- 

ARE 12  E

~ i 
/ E~ (11)

where

lim {t~~0
tW i

)i’
~9t8,.0

]2/n Var0(Wj)} (12)
i ‘)-.~~

is the eff icacy of detector Di.

Therefore , the test with the higher efficacy is the most efficient

asymptotically . Capon showed the efficacies of the Neyman-Pearson optimum

• and the locally optimum detector to be equal. Th is means tha t, asymptotically ,

the locally optimum detector is as efficient as the strictly optimum

(Neyman-Pears on) detector.

In add ition , Miller and Thomas [15] examined the ARE of both the

optimum and locally optimum detectors using a linear detector as a reference.

Li The cases of a constant as well as a time varying signal were considered

for several general classes of noise p.d.f.’s. They also found that the
4.

form of both g and g
1 

depends in very critical ways on the exact noise

I density. This type of annoying dependence led to effor ts by many authors to

design a detector that would be insensitive to variations of the noise

statistics.

It — -_-_1z.~~~~~~~~~~~ ___ _ - —— - 
— -~

~~~~~~~~~~~~ ~~~
• •

~~~~~~~~~~~~
— • .~~~~~~~~~~~
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G. Robust Detection

Classical detection procedures , some of which were discussed here ,

require exact knowledge of the statistica l properties of the noise. Most

often, the functional form of the noise distribution is assumed to be

known , with only a finite number of unknown parameters . Much research

has been concentrated on these “parametric ” detection problems. However,

in many practical cases of digital communication , no information is available

about the form of the noise distribution . In this case, the detection

problem is “non-parametric”. Correspondingly , a detector designed without

the knowledge of the functional form of the noise distribution is a non-

parametric (or distribution-free) detector.

The main characteristic of the non-parametric detector is its

robustness, i.e. it guarantees a minimum performance level over large

classes of noise distributions. The robustness of the non-parametric

detectors is usually measured in terms of ARE using as a reference a

detector designed for Gaussian noise. A review of the more important

non-parametric techniques can be found in [16].

Some of the best known non-parametric detectors are based on signs

or “ranks ” of the received data samples. The “rank” detectors compare

very favorably to the optimum (parametric) detectors in many cases , but

they are considerably harder to implement . On the other hand , detectors

based only on the signs of the data are very easy to implement but they

do not perform as well. Several attempts have been made to improve the

performance of the sign detector while retaining much of its simplicity.

Ching and Kurtz [17] propos ed the “tn-interval detector”. It was designed

on the basis of a f inite set of parameters of the noise distribu tion

S.

~_A• — — —  - — - — - . ---- —- -a- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -•
~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~ - -  -
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rather than its functional form. It was shown to be robust with little

loss of efficiency. However, assumptions were made about some characteristics

of the noise distribution.

Kassam and Thomas [183, on the other hand, der ived genera lizations of

the sign detector which are completely non-parametric. The only assumption

made was that the noise p.d.f. is symmetric . They shoved that these

detectors , based on the application of a conditional test, have much better

detection performance than the simple sign detector , with implementation

remaining relatively simple.

In genera l , non—parametric methods tend to be too conservative because

they fail to exploit some further information, even if incomplete, that

might be available about a particular class of noise statistics. In

these cases , it would be of interest to design robust detectors maximizing

the worst case performance over the whole class about which the information

is available. One such class was considered by Kassam and Thomas [19]

and the results were applied to obtain robust detector structures for

contaminated nominal densities in a specific class of density func tions

which includes the Gaussian.

: ~~~
.

— - - T •  — _— • -

~ 

-
~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ -“:
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2. OPTIMUM QUANTIZATION FOR SIGNA L DETECTION

Not until very recently were quantizers considered as a possible

solution to detection problems , some of which were reviewed here.

• Prev iously , most of the work on quantization had been based on mean-

squared-error or entropy-based optimality criteria.

Kassam [20) first approached the quantization problem with the

objective to use the quantized data to form a test of hypothesis for

signal detection. He studied the design of quantizers to be used in

place of the test function in the case of detection of known signals in

additive noise, based on independent samples and he showed that the

criteria of maximum ARE and maximum local power slope lead to the same

quantizer design. Based on Kassatn’s results , Poor and Thomas [21]

extended his work to the general problem of local decisions.

A careful analysis of both of these results will follow , since we

are going to rely heavily on them.

A. Known Signal, Additive Noise Case
N

Let (X
~
} be a sequence of N independent samples, described by
i—i

x~ = e s ~ + N 1 , i~~ i~~~N , e �  0 .

N N
I~ s~) is a known signal sequence and [N~3 is a sequence of independent ,

i—l ial

identically distributed noise samples with common density and distribution

functions f(.) and F(.) respectively . Also , assume that f(.) is symmetric

about its origin and absolutely continuous . For the local case , we

consider the limit as &~‘0.

The hypothes is pa ir to be tested is

9—0

_ _ _ _  

•

________________________________ - 

S.
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versus

H1 : 8 ~ O .

- For the case at hand, the locally optimum test is given by

1. N
E g10(~c~) S

~ 
> H1

• i—i:. 
N 

(13)

• r 
E g10(x~ ) S~ < ~ = H0

L 1—1

where, as before, g1
(.) 

_ f ;j

In his paper , Kassam considered the following problem. Given a

positive integer M, design an M-level quantizer 
~~~~ 

such that , with

• defined by

= QM(~
c
i
) ,

the statistic
Ii

s =  E y ~~
i—i

is optimum for deciding between H
0 

and M
l
. In essence , the objective is

H I to replace the locally—optimum nonlinearity g10(.), with the output of an

- • 
M-level quantizer. The problem then is to find a quantizer that , when

used in this way, will produce a test statistic that will result in

maximum detection performance from among all N—level quantizers.

Kassam assumes that the optimum quantizer is symmetric and later he

shows that the syuinetric quantizer does indeed maximize performance from

among all N-level quantizers for symmetric noise densities. He defines the

L symmetric 2w-level quan tizer as follows :

The positive input values are partitioned into m intervals

where T~ ttj~
tj..i) and Ct ~ }~~

5t
~ is a decreasing sequence of non—negative

i i’
,
1 

_ _— 
— •—

• •~~~~~~~~~~~~~~~ — • ~~~~~ - • • • _.  •—•



TI
numbers with to = ~ and t~, — 0. The output level corresponding to T~ is

denoted by qj
. For negative input values , T~~ = (_ t~ _ 1~ _t~~] and q j

for 1 � j ~ m. Therefore, the symmetric 2m-level quantizer is completely

defined in terms of the parameter vectors t = (t1, t2,... ,t 1) and

~~~~
= 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I. The Quantizer for Maximum Detection Efficacy

The efficacy G of a local test for H
0 vs H1 

based on test statistic

S , for the constant signal , additive noise case is defined (see Eq. (12)) by

[d ~~~lim i de~~ 9~~~~9=O
Var

0[ S}

As noted in a previous section , the efficacy is an asymptotic measure of

performance of the local test. Using efficacy as a measure of performance ,

Kassam first looked for the optimum 2m-level quantizer maximizing efficacy.

In terms of the quantizer parameters the efficacy becomes

2.[ E q [f(t )-f(t 
— 

)J 2

1 2 ~j=1 ~G —  limp Z5i (15)
• . W~ i=l 

~ q~[F~ t 
1
)_F(t~ )J

i_ i

Maximizing G is equivalent to maximizing E, where

2{ E
1 (16)
~ 2
E q4[F(t , 1)—F(t 4)]
i—I ~ J

1 N 2
with the mild assumption that lim E Si exists and is finite.

N-~ i—l

The author proceeds to maximize E with respect to ~ for a given

vector t .  By taking the partial derivatives 2~E/~q~ and setting them equal

to zero , he finds that the elements of the optimum vector ~ * are given by

- - - ~~~~ - , • .~ - - — --- .-- - S.

_ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _
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* 
f ( t

1
) — f ( t

1~~1)
— F(t

1 1
) — F ( t

1
) , j  — 1,2 , . . .  ,m . (17)

Substituting the values defined by (17) for q1, the normalized efficacy

expression (16) becomes

m [ f (t 1) - f ( t  )12
= 2E LF(t~~1)-F(t1

)] 
. (18)

E* can now be maximized with respect to t in order to complete the

specification of the optimum quantizer.

II. The Optimum Ouantizer as an Approximation to the Locally-Optimum

Nonlinearity

Another performance criterion considered b y Kassain is the one of

minimum—squared-error between the locally optimum nonlinearity

— and the output of the optimum quantizer q2 (x). The

squared-error expression is given by

C = 
E{[~2~~

(xj) + 
f’(x~)

]

2

} 
. (19)

In term of the quantizer parameters this expression becomes

= 2 ~~ 
j 1_l f (X )dX + 4~~ q

1 
I
t j _ l f ,  (x) dx + I~ (20)

where

If — ~~[f~
(x
)]
2

} 
= 

[
~ 

I ( ,~)]2 
dx

U Obviously , e is finite only if I
~ 

is finite and this assumption is made

~ L by Kassatn.

I r Again , by taking the partials with respect to ~~, for a given vector

~ and settin3 them equal to zero, he finds that £ is minimized when the

• • - - • -  —• •—-- --- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - • -. •

_ _ _ _ _ _• --..-. ,--—-- --,- •
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output levels are given by

q* = 
f (t

1
) — f ( t

1 1
) 

. (21)j F(t1..1
)_F(t~)

Note that (21) is identical to Equation (17). Substituting for q
1 

Into

• Equation (20), the minimized value of C is given by

m [f(t )—f(t — )]
2

= 1f 
j—l F(t

1 1
)—F(t

1
)

(22)

= I
~ 

E .

• Equation (22) is an important result because it clearly indicates that

continuing the minimization of €* with respect to t is equivalent to

• maximizing E*. Therefore, Kassam concludes , the quantizer minimizing the

mean—squared—error between quantized data and data transformed by the

locally optimum nonlinearity is the same as the quantizer maximizing the

detection efficacy. From Equation (22), setting the partial derivatives

• of £ * with respect to t equal to zero, Kassatn obtains

+ f’(t )q~~ 1 q
1 = - 

1(t
1

) = 510(t1
) , j=l ,2 ,. .. , (m-l).  (23)

The solutions of the set of Equations (21) and (23) give the parameter

values of the optimum quantizer.

It is important to note that the conditions for optimality derived

by Kassarn are only necessary conditions. He does not examine the sufficiency

of either (21) or (23).

B. The General Problem of Local Decisions

Poor and Thomas [211 extended Kassam ’s results to the general problem

of local decisions. The genera l problem is formulated as follows.

- - -—--—----— —-.— -•~ ~~~~~~~~~~~~~~~~~~~~~~ 
- -

~~~ - -~~~~~--- •• - — ~~~~~~~~~~~ 
—

•
-- ----

~~~~~~ 
-
~~~~

-----—--- — — —
~
--

~~~
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Assume that we observe a sequence (x j)1
N
1 

x of independent real

samples and that we have a corresponding sequence [P8 
;9s€tR)1 1  of

indexed classes of distribut ions on the real line. For a particular O~

in a right-open set of ~ we wish to test

~~~ 
p
8
(i) ; i 1 ,2,...,n

vs (24)

X ’ .. P~ ; i 1 ,2 , . . .  ,n

where 8 > 8~~. For the local case , consider the limit as

Subject to some regularity conditions , a locally opt imum test for

(24) is given by

11 ~(& >~~

~~~~~ 
=

~~ v ~~ (~~ ) = - (25)

L 
0 , ~ (~) < r

where

~ (& = 
~ e (&/~ ~~~ 

(26)

is the likelihood ratio between and . It follows from the independence
0

assumption that

= 
~~~ 

L~~~~~~(X~~)

where 
(27)

= dP8
U) / dP9~~~

1
~ ; i=l , . . .  ,n

Therefore, the locally—optimum test statistic is given by
n (i)E T (x i )
i—i

where (28)

TW = ~~~~(i) ,?~~ ; i=1 , . . .  ,n .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . ‘~~~b’~~-~~ ‘ ‘  
• •

:::-~_~ i~~~~
_ _ _  
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The objective is to choose a sequence {Q~~
)
}~

fl
1 Q of M-level quantizers

to replace the nonlinearities T~
t
~ of Equation (28) Then, the new test

will be the following

w~~~
) = ~~ 3 (x) (29)

where

— 
i=l 

Q
(i)( x )

For each i, Q~~ 
has M levels and can be represented as a pair

where ~ ~
M are the levels of Q~~~~~)

• The breakpoints are such

that -~~ tØ~~~ < ... < ~~~_ 1 ”~ < tM(i) — ~~~, and we take Q~
1
~ (x) =

when xc (t~ ~~~~~ 
)~~~, k 1 ,...,M.

Note that the notation here is different than Kassam ’s.

I. Fixed Breakpoints - Locally Optimum Quantization

The first step taken by Poor and Thomas is the same taken by Kassam .

That is the optimum sequence of level vectors [~~~.~~~~~
)
) 

~~

‘
1 
was derived for

a fixed sequence of breakpoint vectors (~~~
“

~~}~~~
“
1
. For fixed

the post-quantization likelihood ratio is given by

= 
.
~~[p

(i)(t
(i) 

, ~~~~~~~~~~~~~~~ (30)

for x~ e (t~
1
~ 1 , t~~~J ; i’l ,...,n.

The locally—optimum (post—quantization) statistic is given by

- 
~!1

t 9”~~~~~~1 t~
1 /~e J 9 9 ) I P 9 (t~

1
~1 , t~~~~ ] ) .  (31)

•~~~~~ •
-
•~~~~~~~~ - ~~~~~~~~~~~~~~~~ ~~~~~

-
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~~~~
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~ 
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On the other hand , the test statistic to be used is of the form

= Q
(i)

( )  (32)

The authors note that

—

if the level vectors are chosen to be

q
(i) 

= ~~~~~~~~~~ , ~~~~~~~~~~~~~~~~~~ , (33)

for k— i ,... ,M and i— i ,... ,f l

Thus, the choice of Equation (33) allows the post-quantization test to be

represented optimally in the form of Equation (29). Under a regularity

condition , (33) becomes

q
(i) 

- s~ 
T d P ~~ /J’tk ~~~~ ; k=l ,... ,M and i-I,... ,n. (34)

Therefore the problem of locally-opt imum quantization is again reduced

to that of optimally selecting the breakpoint vectors

Note that Equation (34) is a necessary and sufficient condition , because

its validity is based only on the generalized Neyman-Pearson lemma and

not on the existence of a stationary point. (The atter was true in

Kassam ’s approach).

II. Asymptotically Optimum Choice of Breakpoint s

For the asymptotic case (1r~~) ,  and under some fu r the r  regular i ty

conditions , Poor and Thomas show that for the sequence Q to be optimum ,
(i) (I)

t must be chosen to maximize VarA (0 ) for each I,

~~~~~~~~~~~~~~ ~~~~~~~~~ 1~III ~I1 
S.,
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(i) (i)

where Var
9 (Q~~~) — 

k—i ‘:~ 
T(i)dP(i) /J’~ ) dP~t~. (35)

To search for the max ima of Equation (35), grad Vat9 (Q
0)) is set

~
(i) 0

equal to zero. This yields necessary conditions to be satisfied by

(I)
the optimum t ; namely

(a) T~
1
~~(t1~~~) = (q(i) + q~~~)/2 ; k— i,... ,04—l)

where (from eq. (34)) (36)

~
(i)

F (b) q(i) = 
~ Ic 

T(1)dP8”}/J’ 
k 

dP~
1
~ ; k=i ,. ..

~~(i) 0 (i) 0tk_l t
k•l

The condition 36(b) is sufficient as explained above , but the same cannot

be claimed about condition 36(a). The sufficiency of the latter must be

checked by examining the definiteness of the matrix of second part ial

derivatives (Hessian matrix).

III. The Maximum-Efficacy Quantizer

The efficacy of the test based on the sequence 
9 

of quantizers is

calculated to be (see [21])

fi = u r n  11 (9) (37)
9 xf~~

where

(i) (i)

~~~~ ~~ I~~l 
q )S

~~t
T ~9

(1)]
/~{~~ 1 k—l 

(q~i))2J’
(
~
) 

dP
9~~

t
~ -

(i)

- ( 
~ 

~ q1~j )S k
j dP9 

(i))
2

] 
. (38)

i=l k—i tk_] 0

- -
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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Equation (38) can be rewritten as

= Cov~~~~9, m([t~~~) ))/n Var9 ~ 9
) (39)

where

m(~ ; [t m) ) E MW (xi) (40)
i—i i=l

• 
with

MW (x) = J k  T (i) dp (i) ~~(i) (41)

for

x € (t~~
t
~ , t~~

1
~~ 3 , i=l ,. .. ,M.

From Equation (39), by employing the Schwartz inequality, the authors

proceed to show that

1 1 (9 )  � Var
8
(m([t~~~~1~1

) ) /n  (42)

with equality if and only if

= am~~ ; [~~~~
)
~=~ 

+ b ~
‘ x€ IR~ and

for some numbers a ~ 0 and b.

Thus, if the choice

— m(,~ ; (t
(i)}~~~ ) (43)

is made , for given , the maximum efficacy will be achieved.

• Equations (40) and (43) imply that , for f ixed ~~~~~~~~ the optimum

choice of level vectors is given by

• t(i) ~
(i)

q~U) =f
~~~~~~~~ 

T U) dP
8
(
~ )/J’ 

~~ 
dP
9~~~

; k—l ,...,M; ~~~~~~~~~ (44)

r

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~‘~~~~~~~~

_
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Equation (44) is identical to Equation (34). Therefore, the authors

conclude , for f ixed (~~~
1
~) 1 1,  this choice of levels is both locally—

optimum and asymptotically-most-efficient .

Applying Eq. (44) to the expression for 11~ (9) (Eq. 38) one has

11 (9) = Z Var
9 

(Q~
t
~ )/n . (45)

(i) (i)
Hence, the maximum-efficacy quantizer Q maximizes Var

9 
(0 ) and the
0

set of Equations (lO)(a),(b ) gives the necessary conditions for this case

as well.

Again , note that Equation (44) is sufficient since it follows

from the Schwartz inequality. Recall that in Kassam ’s problem , he

based his results on the existence of stationary points and the su ficiency

of his corresponding equation is not guaranteed.

IV. The Optimum Quantizer as an Approximation to the Locally Optimum

Nonlinearity - General Case

In their treatment of the general case , Poor and Thomas did not

consider the MMSE between quantized data and data transformed by the

locally-optimum nonlinearity as a criterion for optimum quantization.

We have seen previously that Kassam, examining the above criterion ,

showed that it leads to the same set of necessary conditions for the

parameters of the optimum quantizer as the criterion of maximum efficacy.

We will now extend ~~~555~~~5 findings to the general case.

Adhering to the same notation as in the previous section, the optimum

test statistic , in the general case , is given by

= 
~~

i— 1

- .
_
~~ 

,. • -
~~

_ •Y.-. - rr~ 
- _

— 

~~~~~~~~~~~~~~~~~~~~~~~~



The post-quantization test statistic is given by

n
— E Q’ ‘(x i

) .
• i—i

Let (1) denote the mean-squared-error between the two quantities of

interest

~ 
(i) 

= E [[0 (i) 
— T~

1
~~I

2
I (46 )

- 
• 5 (i) - E [(Q

(i))
2
}~~ E [(TW)~ - 2E9 

[TWQW)

~0 ~0 0

~ c 
(i) — ~~C(Q~’~

)2} — 2E
9 

IT
(I)

Q
U)) + 1

(i) (47)

where I(i) = E8 [(T~~~)~) ~~~~~~~~~~~~~~~~~~~

Obviously, €
(1) will not be finite unless is finite and we assume

the latter to be the case.

= 
k~ l ~~~~~~~ 

- 2E q~~~I (j)T dP
9 

+ 1
9

(j )  
; i—l ,...,n. (48)

Assuming , for the moment, that the vectors ~~~~~~~~~~~~~ are fixed we have

=

2 ~ [q~i)S 
(i)~ ”e - $ 

(i)
T
~~~~~e ]  

—

k— i tk_ l 0 t k_ u  0

(i) (i)

q
~

i)_ 
1
:~~~

T i dp
~~~/ 

s~~~~~eO
’

• I for k—l ,...,M ; i.l,...,n.

This is the same condition (eq.(44)) that the maximum—efficacy quantize~

• I must satisfy. ICassam showed this for the sdd4tive noise , constant signa l

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •
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case but he did not prove this condition to be sufficient . We will now

show that equation (49) is actually a sufficient condition for the general

case.

Let ‘~(1) be a quantizer whose level vector ~~1) 
satisfies eq. (49)

for a given breakpoint vector and let Q
W  be any other quantizer

with the same breakpoint vector. Consider the expression

• 
(i) 

— ~~
0

— F9 [tQ
(i)4(i)4(i)_T(i)]

2
) —

0

- ~~( [Q (i)
~~~

(i) 12
)+F8 ([~~

(i) T (i) J 2 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Since F8 Cr Q~~-~ 1’]2 ) � 0, it would s u f f i c e  to show

— ~

in order to prove that  Q
( l)  

is the quantizer yielding the lowest HMSE

between the quant i t ies  considered , from among all H-level quantizers with

the same fixed breakpoints. We have

— ~~~~0
(i)~ (i)

3 _E9 [~~~
)
T~~
)}_E

8
[Q

(t)
T
(i)

)+E
9
g~~

(i)
]
2
)

~(I)

Substi tut ing for ,~~L )  
from equation (49) we have

- 
• _ -— - -~~~~

~~~~~~~ii
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(i) (i) (i)

— E {q
(i)J’ T W dP~

L) 
- [J~ ~ T 

)~ 2/5 k~~~~~~ ) 
-

(i) (i) (i)

_q~ i)i~~j)T
(i)dP~

t) 
+ 

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—

— 0 .
A (j )  (I)Hence , we conclude that Q yields the lowest value for C from

among all H-level quantizers for a fixed and , in essence , that

• Equation (49) is sufficient for minimum

Now, substituting for q~
i) as defined by Eq. (49) into the expression

for £ given by Eq. (48) we have

~
(i)

~
(i) 

~
(i)

— -

— ~j i) - Var8 (Q(i)) i—l ,...,n . (50)
0 0

It is clear now that minimizing is equivalent to maximizing

Var9 (0 (i) ) which is exactly the same condition that must be satisfied
0

by the maximum-efficacy quantizer , when the choice of Eq. (49) for the

(i)elements of the level vectors £ is made. Since Equation (49) was

proven to be suff ic ient  and ~~uat ion (44) wa s shown by Poor and Thomas al so

to be suf f ic ien t , it is safe to claim that the criterion of MMSE

between quantized data and data transformed by the locally optimum non-

l inear i ty  and the one of maximum e f f i cacy  are completely equivalent .

- —

- - - ~~--, ---— ~~-—------.-- • - - •
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That is, every time is at a minimum for each i, 11
9 

achieves a

maximum.

V. A Condition for Sufficiency

We have noted that the sufficiency of Equation (36) (a) remained to

be tested. The straightforward way to test its sufficiency would be by

examining the definiteness of the matrix of the second partial derivatives

of either the efficacy or the MSE expression. We have attempted here to

carry out this procedure for the additive noise , constant signal case

(Kassam ’s case). The resulting expressions for the matrix elements ,

however , were not strictly positive or negative and obviously , not every

noise distribution will lead to the sufficiency of the equation in

question. We were unable to find a condition on the noise density which

would guarantee its sufficiency . The expressions for the matrix elements

can be found in the Appendix.

Another approach , based on Fleischer ’s 1221 work, led us to a

condition on the noise statistics which , when satisfied , leads to

sufficiency.

(a). Sufficient Conditions for Minimum Distortion

In the opening section we stated that a criterion of quantizer

performance widely accepted is the one of minimum distort ion D, where

M r tk 2D — J (x_q~ ) f (x )dx . (51)
k—i tk_l

We have also pointed-out that Max 1I1 derived the following necessary

conditions thatthe parameters of the minimum-distortion quantizer must

satisfy .

L 
• - _ _ _  

S.



tk
xf(x)dx

— 
t
k_l 

; k=l, ..,M (52)
r k
J f (x)dx

tk_ l

t
k = + q~~ 1) ; k 1 ,... ,(M—l) . (53)

By examining the matrix of the second partials , Fleischer showed that

- -  
this set of conditions is sufficient , if the noise p.d.f. f(x) obeys the

relation

2
~~~~~ 

[lnf(x)J < 0 (54)
dx

This is equivalent to

- f[lnf(x)TT = - = increasing

or

-inf(x) = convex •

A density satisfying eq. (54) is known as strongly unimoda l. We will

• apply this result to derive a condition for the sufficiency of the remaining

necessary condition (eq. (36),(a)) for the optimum detection quantizer.

(b). A Sufficient Condition for Optimum Detection

Cons ider the expr ess ion

D(i) — E
9 

CC q ’1’ (x) - Y] 2 ) (55)
• 0

where

Y = T~
t
~~(x)

and Q
W  is an H-level quantizer. The notation is again the same used in

the treatment of the genera l case. Recall that minimization of D”’~ , as

• defined here , results in optimum detection. We have

[ 1
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • • • • 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I

• ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
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- f
k 

(Q
(i) (x) - ~)

2 
dP
9 

; k=l ,... ,M.

Let h(Y) denote the p.d.f. of Y, assuming this p.d.f. exists. Then , a

cha nge of variables leads to

D W 
- h(y)dy ; k—i ,... ,M

where

= T~~~(t~~~) ; k—i ,... ,M

Then, Max ’s necessary conditions for minimum D(i) become

r k 
yh (y)dy

i ~~~~~~
= , (i) ; k—i , . . .  ,M (56 )

r
t k

j  
h(y)dy

‘( i)
k-i

= ~(q
S (i)+ q ’~~~) ; k 1 ,... ,(M—l). (57)

and Fieischer ’s condition for sufficiency of the above equations is

-lrih (y) = convex• (58)

If T~
1’(.) is invertible , then the parameters of the optimum quantizer

Q
(i)
(x) can be defined by

~
(i) 

=k
k—I ,... ,M

(i) 
= T~~~~ ( ~ (i)

In general , if x1,... ,x~ are all the real roots of the equation

y T~
t
~ (x)

then the p.d.f. h(y) is given by

••. - .—.•9• —— -- - - -

-~~
-
,
• -~ -~~~

.- “
.- • 

• • •, 
~~~~~~~~

J. .~~ - - - ~~~~~~
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_
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f(x 1) f (x )
+ • +

• ~~ . I T ’ ” ’ (x 1) I  I T ’~ ‘(X ) I
where

T’~~~(~) - ~~~~~~~~~~~

For the case at hand (~
(i

(X) invertible), only one real root exists and

we have 
(59)

- 
f (x )

h(y)  = t T ’~
1
~ (x) I

~ 
I.

I

—.~~~ _________
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3 APPLICATIONS TO SIGNAL DETECTION

In this section we will examine the optimum-quantizer structure for

severa l cases of practical interest resu1tin~ from the general case of

local decisions . These examples can be found in 1211 .

A. Known Signals in Additive Noise (Kassarn ’s Case)

For this case , the hypothesis pair reduces to

H8 
: x~ f(x) ; i=l ,. .

0
vs

11
8 

: x~ f(x—8S~) ; i=l ,...,n .

is a known signal sequence and 8 is assumed to be positive .

Again , for the local case , consider ~~~~~

The ~th likelihood ratio is

L~
t
~ (x) = f(x-9S1) / f ( x) .

By differentiating, we obtain

T~
t
~ (x) = —S 1

f’( x) / f ( x )

From Eq. (36), the optimum quantizer sequence is given by

= S~Q(x)

where O= (~,~) is the solution to -
•

(a) _ f ’(tk)/f(tk) — (~~+~~~~1) /2  ; k l ,. .. ,(M—1)
(60)

~
tk

(b) = i f (t k l
) _ f ( t

k )]/
~ tk_l

f (
~
)d
~
c ; k=l ,... ,M

The above , is exactly the same set of conditions derived by Kassam . One

important difference is the fact that Eq. (l6)(b) is now a sufficient

condition and only the sufficiency of Eq. (16)(a) remains to be tested.



r 

‘

~~~:

B. Stochastic Signals in Nois~ (Additive—Noise Model)

For this case , the hypotheses pair is given by

H
9 

: x~ 1(x) ; 1=1 ,.. • ,n
0

- vs

x . f(x—9 s)dci
(s) ; i—I , . ..  , n.

• (G 1)1~ 1 is a sequence of zero-mean distribut ion functions corresponding

• to a sequence of independent samples from a stochastic signal. Again

assume 9>0 and 8~ O+ . The i
th 

likelihood ratio is

L~
’
~(x) = $ f(x-9~ s)dG1 (s)/f(x)

and 1
th 

locally-optimum nonlinearity is

= C~~f ” ( x) / 2 f ( x )

where

s
2
dG~ (s) .

For this case , the optimum quantizer sequence is given by

- ~~Q(x ) /2

where~~~(~,~) is the solut ion to

(a)  f” ( t
k ) / f ( t k ) (q~ + q~~ 1) f2  ; k 1 ,. . . , ( M— l)

• (61)tk
(b) ~~ 

- 1f ’ (t
k

)
~~

f ’(t k I )3f
~ 

f(x)dx ; k=l ,... ,M .
- k-i

C. Stochastic Signals in Noise (Scale-Change Model)

- .  
For this case , we have

1(x) ; i=1 , . .  . ,n

— f (x I i~~) / t~ ; 1=1 , . . .  ,n

• — — —--—_•——•—•—.__—_. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ••—— ,• • • • - - , 

I
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where

— I i  + e~~
2,02ib

f is a differentiable p.d.f. with variance ~2 and a sequence of

signa l variances. Once more,8>O and 8—0 . We have

• (x) = f(x/V
i
)/U jf ( x)

and

~~~~~~ = (
~i

2
/2
~
2)(_ ’(x)1

~~~
) - 1).

The optimum quantizer sequence is

Q~
1
~ (x) = (cT~

2
/2cY

2)Q(x )

where Q=(
~
,
~
) is the solution to

(a) (_t
k
f’(tk)/f(tk

) — l) = + ~~÷1)/2 ; k=l ,...,(M—i)
(62)

= I t k i
f (t

k i
) - t

k
f(t

k)]/f
k f(x)dx.

• •~~~~~~~~~~~~~~~~~ •• -•  - •

~~~~~~~ ~~~~~ ~~~ - -
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4. NUMERICAL RESULTS

The set of simultaneous equations for the optimum parameters can

be solved by severa l different numerical methods. One such iterative

numerical technique is described by Max [1]. Using a technique similar

- - to that , Kassam [20] obtained the optimum quancizer parameters for the

additive noise , known signal case and for noise densities in the class

of generalized Gaussian noise densities which contains a wide range of

non-Gaussian p.d.f’s, parametrized by their rates of exponential decay.

A generalized Gaussian density 1 (x) is defined by

f (x) = 2r (1,P)A(P) exp[ - [lx I/A(p) ]} ’3  , r~
’O (63)

where A(p) = f~
2
r (l/p)/r (3/p) ]~~.

r () is the gamma function and the variance of the density.

Note that p—2 produces the Gaussian density with variance ~
2
• For the

rest of this discussion unit variance is assumed , that is o
2..i.

Kassam evaluated the optimum quantizer parameters under the locally

optimum detection criterion as well as under the minimum squared—error

distort ion criterion (Max’s quantizer) for densities of the genera l class

described above. This procedure was carried out for the cases of four-

level and eight-level quantization (m”2 and n~ 4 respectively in Kassam ’s

(2m)-level symmetric quantizer). The results show , as it t.iight be

expected , that the locally-optimum quantizer produces hi~~ efficacy and

high distortion while the minimum-distortion quantizer results in both

low distortion and low detection efficacy.

By using a different numerical method we have exactly duplicated

Kassam ’s results for n—4. This was done basically in order to test our

program . We will now produce analogous results for the stochastic signal

p 

• -—-—

~~~~~~

• • - 

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 

• - 
•

-

-~~~~~~~~~~~~~

- 

-~~~~T~~~~
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case (both additive-noise aiid scale-change models)

A. General Procedure

It was shown by Kassam that for syninetric noise densities the optimum

quantizer (for his case) is odd symmetric. For stochastic signals , the

opt imum rtonlinearities are even symmetric and the corresponding optimum

quantizers will also be even symmetric. Since the generalized Gaussian

is a symmetric density, we will be looking for (even) symmetric quantizers .

The nota t ion to be u sed in this section is the following.

The positive input va lues are par t i t i oned into ~ii intervals T1,... ,T

where Tk=(t k_ l , tk] and [tk)k
m
O is an increasing sequence of non-negative

numbers with t0—0 and t
=cc . The output level corresponding to T

k 
is

denoted by 
~~~ 

The def in i t ions  T_k= [_ t k , _t k_ l ) and 
~~~~~~~ 

for l�k�m

complete the specification of the symmetric quantizer .

The basis of our procedure i~ a program that uses the Davidon-Fietcher-

Powell 123] (DFP) algorithm to minimize a function of n variables. The

program produces the minimum value of the function as well as the values

of the variables that lead to the minimum va lue. An individua l subrout ine

is needed to provide the value of the function at hand as well as the gradient

vector for each input vector .

3. The Minimum Distortion Quantizer

Max ’s quantizer is designed to minimize the distortion D which , in

terms of the quantization parameters , is

H 
tk t k 2 

tk 
—

D — ~ [~~j f (x )dx  + J x f (x)dx  - 2qj  f ( x ) d x  . (64)
k—i t t t J

k-i k-i k-i

The optimum level values are given by

i i

- ~~~ • • -- - - - - - - - -~~~~
- —-— - - •

& — • ~~~~ - - —-•-—-- .-  — _ —  — • —_-—•— ——-_ ••--•_- • •-~-•--— _—
~~~~——— — _ - -_ --I__~~~~_.••i ~~~~~ 

• 
•~~~~ •__ —



r 
- 

— -

~

-

~~~~

-

~~~

--- —- --- -- ---

~~~

- -

~~~

37

t
kI

~

k Pt k f(x)dx
k-i

and the gradient vector is defined by

= ~~~~~~~~~~~~~~~ + f(t~)(q~
_q
~~1) ; k=l , . . . , ( M — l ) .  (66)

The DFP program is used to minimize D, after the optimum values for

are substituted in (from eq. (65)). Then the algorithm produces the

optimum values for the breakpoint vector t.

C. Stochastic Signa l - Additive Noise

After substituting for in the efficacy expression (Eq. (38)) by

means of ~~ . (6l) (b) ,  the following expression must be maximized

M tk
Var

0
(Q) E [fI(tk

)_f (tk..l))
2
/i f ( x) d x .  (67)

k—I tk_l

Then the minimizing program is used to minimize -Va r0 (Q) and to produce

the optimum breakpoints. Eq. (6l)(b) will then produce the optimum levels.

In order to determine the efficacy value produced by Max’s quantizer ,

the parameters (~,2) 
determined as described in the previous section , must

be subst i tuted directly into the general efficacy expression given by

(see ~~ . (38)) -

tk tk

~~~~ E ~~~~~~~~~~~~~~~~~ E q~S f ( x ) d x  - ( Z qJ f(x)dx )
2
] . (68)

k—l 
- k— i tk_ l  k— i tk_ l

D. Stochastic Signa l - Scale Change

The same basic procedure is followed in this case as in the previous

sectior.. Here, the efficacy expression is given by

- —~~ --~~~- - •

_ _ _ _ _ _ _  —~~~~~~~~~ •~~~~~~~~~~~ •~~~~~~•. ~~- •,~~~~~~-
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H M t k H tk -

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ f (x)dx  - (E q
kJ 

f(x)dx)2] (69)

and substituting for from Eq. (62)(b), Eq. (69) becomes

M 2 
tk

11(Q)=Var O(Q)=~~~
1tk_lf(tk l )_t

k
f(t

k)1 

~~~~~~~~ 
(70)

E. Tables - Graphs - Discussion
TABLE I

Parameters of MMSE quantizer (Max’s quantizer) generalized

Gaussian density , m—4.

p 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

• q1 
0.233 0.239 0.243 0.244 0.245 0.245 0.245 0.244 0.243 0.242 0.241

q2 0.833 0.807 0.789 0 .775 0.76 5 0.756 0.749 0.742 0 .737 0.732 0 .728

q 3 1.673 1.557 1.47 8 1.422 1.378 1.344 1.317 1.294 1.275 1.260 1.246

q4 3.087 2.751 2.526 2.366 2.246 2.152 2 .077 2 .017 i.966 1.92 3 i.887

0.533 0.523 0.516 0.510 0.505 0.501 0.497 0.493 0.490 0.487 0.485

1.253 1.182 1.134 1.099 1.071 1.050 1.033 1.018 1.006 0.996 0.987

2.380 2.154 2.002 1.894 1.812 1.748 1.697 1.656 1.621 1.591 1.566

L 

__________ 

S.
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TABLE II

• Parameters of locally-optimum quantizer (stochastic signal-

additive noise).

p 1.6 1.8 2.0 2 .2  2 .4  2.6 2.8 3.0

-6 .369 -1.035 -0.731 -0.617 -0.560 0.530 -0.514 -0.507

q2 —1.262 0.087 0.557 0.950 1.355 1.797 2.289 2.835

q3 
0.288 1.653 2.562 3.527 4.631 5.895 7.345 8.983

q4 2.319 4.265 6.136 8.325 10.930 13.976 17.518 21.568

0.014 0.581 0.956 1.194 1.362 1.483 1.574 1.643

0.430 1.268 1.600 1.790 1.911 1.991 2.044 2.080

1.355 2.070 2.313 2.428 2.486 2.511 2.519 2.515

TABLE III

Parameters of locally-optimum quantizer (stochastic signa l -

scale change).

p 1.0 1.2 1.4 1.6 i.8 2.0 2.2 2.4 2.6 2.8 3.0

q1 
-0.670 -0.688 -0.703 -0.714 -0.723 -0.731 -0.737 —0.743 -0.748 -0.752 -0.756

q2 
0.178 0.251 0.326 0.403 0.481 0.558 0.637 0.715 0.795 0.874 0.954

q3 
1.365 1.606 1.846 2.085 2.326 2.563 2.804 3.040 3.279 3.517 3.756

q4 
3.365 3.925 4.481 5.035 5.585 6.137 6.689 7.234 7.782 8.330 8.877

0.533 0.645 0.740 0.823 0.894 0.956 1.010 1.058 1.100 1.137 1.171

1.253 1.368 1.453 1.515 1.564 1.600 1.630 1.652 1.671 1.686 1.699

2.380 2.390 2.380 2.360 2.337 2.313 2.289 2.266 2.243 2.223 2.203

• • - -— - ~~~~~~~~ - ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 
- —_- ~~~~~~~~~~~~~~~~ •~ ~~~~~
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In the tables to fullow , Q~~~
(’) will denote a quantizer with the same

breakpoints as ~~~~~~ OIISE) quantizer but with level vectors equal to the

square of the correspond ing levels of the MMSE quantizer. The efficacy

produced by Q~(.) has also been calculated for both cases of interest.

In addition , the efficacy of the locally—optimum (unquantized) detector

has been calculated . The expressions for the optimum efficacies for the

additive noise and scale-change models respectively and for generalized

Gaussian noise densities are given by [28]

— 
p
4
~
4(p)r(2 3/p)(l—u/p) (3—41p) 71ar

0(g10) 
— r ( l / p )  (

p > 1.5

where l1 (p) — t r(31p)/r ( l I p ) ] ~
and

Var0(g1
) = p ; p>0. (72)

1’

_ _

L. ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —
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TABLE IV

Comparison of ~ 1SE and ef f icacy of locally-optimum and !~4SE

quantizers. Efficacies of locally—optimum detector and Q~~~
( .)

quantizer. Stochastic signal-additive noise model.

• LOCALLY OPTIMUM MINIMUM DISTORTION 2 LOCALLY-OPTIMUM
QUANTI ZATION (?t1SE) QIJANTIZATI ON °M~~~ DETECTOR

EFFICACY MSE EFFICACY MSE EFFICACY EFFICACY

1.6 2.018 1.524 1.767 0.040 1.505 2.851

1.8 1.680 1.178 1.645 0.037 1.605 1.932

2.0 1.788 1.370 1.526 0.035 1.667 2.000

2.2 2.04.4 1.680 1.414 0.033 1.698 2.282

2.4 2,408 2.076 1.311 0.031 1.705 2.698

2.6 2.874 2.558 1.215 0.030 1.691 3.234

2.8 3.446 3.028 1.125 0.029 1.659 3.893

3.0 4.128 3.680 1.044 0.028 1.616 4.681

___________ —

• ~~~~~~~~~~~~~~~ 
~~~

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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TABLE V

Comparison of t44SE and efficacy of locally-optimum and MMSE

• quantizers. Efficacies of locally-optimum detector and Q
2 ( .)

quantizer. Stochastic signal-scale change model.

LOCALLY OPTIMUM MINIMUM DISTORT ION 2 .~ LOCALLY-OPTIMUM

QUANTIZATION (MMSE) QUANTIZATION °M~ 
/ DETECTOR

EFFICACY MSE EFFICACY MSE EFFICACY EFFICACY

1.0 0.892 0.632 0.891 0.054 0.783 1.000

1.2 1.070 0.754 1.058 0.048 0.996 1.200

1.4 1.250 0.896 1.172 0.043 1.191 1.400

1.6 1.430 1.048 1.328 0.040 1.368 1.600

1.8 1.608 1.206 1.434 0.037 1.526 1.800

2.0 1.788 1.370 1.526 0.035 1.667 2.000

2.2 1.968 1.538 1.605 0.033 1.793 2.200

2.4 2.148 1.726 1.673 0.031 1.904 2.400

2.o 2.328 1.802 1.730 0.030 2.002 2.600

2.8 2.508 2.054 1.779 0.029 2.088 2.800

3.0 2.688 2.232 1.822 0.028 2.165 3.000

L - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~
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It can be seen that the parameters of Q10 for the additive noise case

(Fig. 1,2) are more sensitive to variations of the noise density than the

parameters of Q
1 

for the scale-change model (Fig. 4,5). It is also
0 2

interesting to note that 
~M 

performs consistently better (in terms of ARE)

than (Fig. 3,6). The asymptotic relative efficiency (ARE) between the

detectors based on the locally—optimum quantizer (Q
1 
) and the locally-
0

optimum nonlinearity (g1 
) respectively, is nearly constant over p and
0

approximately the same for the two cases of interest.

In general, the results indicate that the locally-optimum quantizer

produces high efficacy as well as high distortion while the opposite is

true for the ~+1SE quantizer 
~~~~~ 

Keeping in mind the design criteria

used for the two quantizers , these results are intuitively satisfying.
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5. FURTHER WORK ON QUANTIZATION FOR OPTIMUM DETECTION

In a relatively short period of time after their initia l utilization

for detection purposes , quantizers heve been used to approach several

different detection problems.

One such problem, discussed previously here , is the one of robust

• detection . A “robust” detector , in genera l , is designed to perform well

within a small neighborhood of a nomina l model of the noise statistics.

The parameters of an optimum quantizer will , of course , also depend on the

noise statistics. It seems logical to assume that a quantizer will be

robust in some sense because of its inherent insensitivity, at least for a

small number of levels. However , a quantizer specifically designed for

robust detection would be , in a sense , optimall y robust.

Poor and Thomas ~24J designed such a quantiz’-’r for a class of noise

densities. Although they did not show that the obtained robust quantizer is

unique , or the best solution available , they showed that it can perform much

better than standard detectors in the case of high ly contaminated Gaussian

noise.

The same authors ~25~ used quantization to approach the problem of

optimum detection in the presence of rn-dependent noise~ Note that , in

general, an optima l detection procedure for this situation will require a

memory of length m~ Such systems are not easy to implement , except for

spherically invariant noise processes such as the Gaussian. Therefore, it

is of interest to derive the optimum detector for this situation from

among all memoryless detectors. Based on their earlier work r26J involving

the design of general (unquantized) memoryless detectors , Poor and Thomas

considered the following hypothesis testing problem for a sequence

*Note that , here , rn denotes the dependence parameter.

- t
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of real obs erva tions

H0 x~ a Ni ; 
ial,...,n

• vs

H1 : X~ = N~.4-8 ; ial ,...,n

where [N~)~~ 1 is a zero-mean, 
second-order-stationary ~4..dependent noise

process and B is a known , positive , constant signal. For this case the

following class of detectors was considered:

• 1 1 ;  >
~~~~~

n
• cp (Q X) ~~ v t Q(X 4) a ¶

i=l
L O ;

where Q is an M-level quantizer. Note that maO (independent noise) leads

to the problem considered by Kassam. By following the same pattern of

thought as in previous cases reviewed here (that is by first assuming fixed

breakpoints and by considering the efficacy expression) the authors derived

two conditions for the parameters of the optimum quantizer, analogous to

• the ones derived for the independent noise case. Actually , with the

assumption maO, the two conditions reduce to exactly the same conditions

derived by Kassarn. Finally, the authors use two examples (stationary

Gaussian and Cauchy noise) to show that the rn—optimum quantizer performs

better than the maO quantizer (in terms of ARE) and increasingly so with

increasing in.

In most cases discussed here , the performance of decision tests based

on quantization was studied on an asymptotic , small signal basis using ARE

as a measure of performance. The general quantization problem for binary

decisions in the nonasytuptotic case was also examined by Poor and Thomas

[27] - The main difficulty of this case arises from the fact that probability

of error (the natura l performance criterion) does not lead to tractable

p S.
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design procedures. The authors chose to use members of the Ali-Silvey class

of distance measures as criteria of optimum detection for the non-asymptotic

case. They established necessary conditions for an optimal quantizer

design using the criterion of maximum distance as a measure of performance.

It was shown that the optimum quantizer for the local case is independent

of the choice of the distance measure. However, for the nonlocal case ,

no single “best” design arises. Nevertheless , these techniques offer a

design procedure that can be solved by standard optimization methods .

From these examples , one can conclude that quantizers can be very effective

when used with optimum signal selection in mind . Their implementation leads

to practical solutions to detection problems for which standard detector

design procedures fail in the face of analytical difficulties.

I 
_ _ _ _ _
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6. CONCLUSIONS

It has been shown that the criteria of maximum efficacy and MMSE

between quantized data and data transformed by the locally-optimum nonlinearity

are comp letely equivalent for the general problem of local decisions . A

condition for the sufficiency of the (necessary) equations that must be

satisfied by the parameters of the optimum quantizer was also derived.

Finally , it was shown that for generalized Gaussian noise densities and for

the case of stochastic signals (additive noise and scale-change models)

- a significant difference exists between the detection performance of a

locally—optimum quantizer and a minimum-distortion quantizer.

1~
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7. APPENDIX

A. Elements of Matrix of Second Derivatives for the Known Signal -

Additive Noise Case.

The matrix of second partials , H, is a symmetric triagona l band

matrix; i.e.

I bk ~ if j—kfl
~ 
h14~ 

h
ik 

ak , if jk

0 , i f lj — k I > 1.
We have calculated the following values for a

k 
and bk for Kassam

’s case.
2

~ fl t) f(t )  f(t ) 1
= a~, = 8[q1,f(t1,)+f ’ (t

~4)J[~~t ~ ~ 
) +

~
tk ‘k ’  ‘ k ’

+ 
4[q~~~t~>~f

’ (tk)]
2 .[F(tk l

)_F(
~~~l

)]
• [F (tk_l)_F(tk)1.tF (tk

)_F (t~~1)J

an (~~) 
4[q~f(t~)+f

’ (tk
)] I / 

f ( t~~~1Y

at
k
atk+l 

= b
k = LF (tk

)_F(tk,.l
).I L~ 

(t~~1
)_q~ f(t~~1

)_2 f (tk)f ( t )

B. Evaluation of Integrals of the Form

jIb ‘1f()d ; rr’O ,l,2,... ; b>a~O

where f~ (x) is the generalized Gaussian density of unit variance ~~
2,l) -

Recall that the above density is given by (for ~ -O)

f~ (x) 
2F (l,;)A (p) 

expt-(x/A (p))~)

where

A(p)”[r (l/p)/r (3/p)J~~.

The integral to be evaluated is the following

rb 
~~~~~~~~~~~~ dx -

2r (l/p)A (p) ~

I
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Cons ider the f ollow ing change of var iables:

z = (x/A(p ))~’

a A(p)z~
’
~

- .  

~ dx = ~~~~~~~~~~~~~~~~~~~~~

The integral of interest then becomes

- - 
(b/A(p))~

• p - - (A (p ))~ j I ~~~~~~~~~~~~~~~~
2V(l/p)A(p) p

( aI A ( p ) )

(b/A (p))1’

(A(p)) ’t ~
‘ (nip—1) —z

= 2r~lIp) ‘
~ (a/A (p))~ 

z e dz

• (AJnU~
.F(fl/P) [r(n/p;(b/A(p))~5 -a 21 (l/p)

—r ( n i p ;  (a /A(p) )~)]

where r(-) is the gamma function

andr (-;- ) is the incomplete gamma function.

a 
- 

- - --~~~~~~~~ 
.
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