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ABSTRACT

f & An introduction to quantization and to several important detection g
| problems is given in the initial sections. A detailed review follows of E
most of the work done on quantization for detection. The equivalence of
i the criterion of minimum mean-squared error between quantized data and

data transformed by the locally-optimum nonlinearity and the one of

s —

maximum efficacy is shown for the general case of local decisions based
on independent samples. In addition, a sufficient condition for optimum

detection is derived for the above case. Finally, numerical results are

S —

obtained for the locally-optimum quantizer for the case of detecting

stochastic signals in generalized Gaussian noise (both additive~-noise

and scale-change model.)
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INTRODUCTION

Despite the development of new coding schemes such as permutation
codes, tree codes etc., simple quantization continues to be a very popular
method of analog-to-digital conversion. The conceptual simplicity of the
quantizers, their near optimum performance and the fact that they can be
readily implemented in aardware are the main reasons for their popularity.
Because of their diversified use, quantizers have been optimized based
on several different criteria. Before we attempt to give an overview of
the work done in the area of optimum quantization, we will ' rst describe
the basic quantizer equations.

A quantizer Q with M levels can be represented as a pair (—f,a) where
71 € ]:RM are the levels of Q; the breakpoints tT e IRMH‘ are such that
. -t < £, S

e a1 < ty = ®. We take Q(x) = q, vhen xe€(t, _»

tk] for k = 1,...,M. Let X be a scalar random variable with probability

density f(x). Two widely accepted criteria in terms of which the performance

of the quantizer is defined are the distortion
= t
D= & f k g(x-qk)f(x)dx
k=1 -1

and the entropy

M

1) = - (logyty) £

1

where g is a non-negative weighting function and

t
k
fk = Itk-l f (x)dx.

In the early literature, the parameters of an "optimum'" quantizer were

chosen to optimize D or H or a combination of the two.
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Max [ 1] first considered the problem of designing an optimum quantizer
with minimum distortion as the criterion of performance. Note that for
g(x) = x2 the distortion function D becomes the mean~squared-error expres-

sion between the input and the output of the quantizer:

-z % o
D b k‘l I (x-qk) (x)dx.
k-1

When the criterion is minimum mean-squared error, Max showed that the

parameters of the optimum quantizer satisfy the following equations:

t
Itk xf (x)dx

2 s k=1,...,M 1)
o = TE
I f(x)dx
k-1
te =¥ (q +q,,) 5 k=1,.... M1 )

The analytical solution of these equations is impossible for all but
trivial cases. A numerical solution, however, is straightforward. Many
iteration techniques are feasible and one is given by Max.

In addition, Roe (2] has proposed an approximation, based on Max's
equations which is of practical interest and yields near-optimum results.
Further simplification of the structure of the optimum quantizer results
from Algasi's [3] work. First, he derived approximate expressions for the
distortion for the case of uniform”™ quantization. Then, by deriving
similar approximations for a non-uniform quantizer he concluded that,
depending on the number of quantization levels, a uniform quantizer may

perform equivalently to a non-uniform one.

*Equally spaced breakpoint and output levels.
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Although minimum distortion is desirable, it is not the absolute

criterion .or the performance of a quantizer. Several authors (4] have
indicated that the entropy H(Q) of the output of MMSE quantizer is high.
Since H, in general, is the minimum amount of information which must be
transmitted in order to achieve arbitrarily small probability of erroneous
detection, high H(Q) is undesirable. It was shown by Messerschmitt (5]
that, for certain input distributions, the minimum-distortion quantizer and
the maximum-output-entropy quantizer are approximately the same. These
results indicate that a trade-off between low distortion and high output
entropy is unavoidable. One way to approach the problem would be to
minimize H(Q) for a fixed value of D. Therefore, in general, a combination
of D and H(Q) should be used to define the appropriate performance criterion
for optimum quantization.

In the work reviewed thus far, the quantizer is treated as a simple
coding scheme which is used to facilitate signal transmission. However,
in the above discussion, no mention is given of how a quantizer can be
used for signal detection. Since the latter is our main interest here,

we will proceed with a review of the detection problem to eventually

concentrate on quantization for optimum detection.




1. THE GENERAL DETECTION PROBLEM

The M-ary communication problem requires the design of a receiver
that will decide, with minimum probability of error, which of M possible
signals has been sent. In general, under hypothesis Hm, the receiver
observes

Y(t) = s [t,8(t)] + N(t) ; 0stsT, 1smsHM
where N(t) is a noise process with arbitrary statistics and SmFt,G(t)]
is the mth signal. ®(t) represents unknown channel effects on the signal.
To simplify the analysis, assume that there is a discrete representation
of the problem, obtained through time sampling. If the dimension of the
discrete representation is n, the receiver observes
Y=Sm@ +N;m=1,2,...,M

where

=<

= Qe s )

1z
]

(nl,...,nn)
oy @1""’6!‘)
8,® = 8,;®,....5 ®).

One of the M signals §m62), l1<ms<Mis sent. © represents a set of K

1®

"nuisance'" parameters (e.g. unknown amplitude and/or unknown phase). The
additive noise has a multivariate density function fN(g).
A. Binary Detection - Constant Signal Case

The simplest hypothesis testing problem represents the detection of
a constant signal in additive white noise. The hypothesis pair is given

by

s R

.
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5
versus =l ., N (3)
H1 : yi = Q + ni.
A decision rule 8§ will be of the type:
Q, 1if Ho is accepted
g )
AR | < Hl is accepted.

We assume that there exists a conditional p.d.f. fN(xJ®) where ® € {0,8}.
A prior distribution of ® and a cost function C@,5) may or may not exist.
When they both exist, then minimum average cost can be used as the
criterion for optimum detection (Bayes rule). If the prior distribution
is unknown but a cost function is defined, then a Bayes rule under the
worst possible prior distribution (Minimax rule) can be applied. Finally,
if the prior distribution is unknown and no information is given about
the cost function, the Neyman-Pearson decision rule can be used.
B. The Neyman-Pearson Criterion

The following two types of errors can occur in binary detection

Type 1 error: Choose H, when H, is true (false alarm)

1 0
Type II error: Choose HO when H1 is true (miss).
Let:
PL(6) = P{8(y) = 1| ® = 0} = probability of false alarm
Py(8) = P{6(y) =0 | ® =8} = probability of a miss
P (8) = P{6(y) = 1| ® =8} = probability of a hit:
Also, let

fN(z‘G'O)ng(ll H0)
fN(X|® =0) = fN(XI Hl).
The objective of the Neyman-Pearson criterion is to constrain & to be such

where @_ is a prescribed bound, and then find a decision

that PF(G) < Oto, 0

o e ————— T
Rt i '
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rule & = ’ENP which maximizes PH(é) within the constraint. In general, ENP
is given by:
1; 1f £ (rlHy) > Nof el Hy)
bp@ =4 Yoi Lf fy(lH) = Nof ulny) (5)
0 ; 1f £,@lH)) < N £l Hy)
where B'Np(y_) is the probability with which we accept lL!1 when y is observed

and 0 < YO < ls Yo and T\o are chosen such that PF('FNP) = ao.

The quantity L(y) = EN(XIHI) is known as the "likelihood ratio" for
fN(xlﬂo)

testing the hypothesis pair Ho Vs Hl.
C. Detection in Non-Gaussian Noise.

The statistics of L(y) are vital to optimum detection. The expression
for L(y) is greatly simplified if fN(-) is assumed to be Gaussian. This
assumption was made in most of the early literature on detection theory.

In many practical cases, however, more severe types of noise are encountered.
If the detector is based on Gaussian noise assumptions, performance
deteriorates. If, on the other hand, non-Gaussian p.d.f.'s are assumed,
determination of the statistics of L(y) becomes extremely difficult.

Some simplification results from the assumption that the noise samples
{ni s 1=1,2,...,N} are mutually statistically independent (i.e. time
samples spaced sufficiently apart) and identically distributed with a

common p.d.f. £(-). Then,

N . .f
nii 8 (v, 1))

i=1 £(y,|H,)
N

= log L(Y) = ¢ Ay 6)
i=1

where f@lH)
A ﬁ log ——t L L R . (A

L £0y,|Hy)




g O R A R A TR e a2 2013

In this form, the test statistic log L(y) is the sum of N independent
random variables and, although it is theoretically possible to obtain its
p.d.f., actual analytical evaluation is very cumbersome except for

special cases.

l Simulation techniques (e.g. Monte Carlo) can be used to determine the

p.d.f. of log L(y) for any given N and f (*). Another practice commonly

found in literature is the assumption that if the receiver integrates a
sufficiently large number of independent samples, the resulting distribution
of the test statistic will be Gaussian. If the variance of the noise is
large, however, the fundamental limit theorem cannot practically be invoked
unless there is some noise suppresion before integration (e.g. by clipping or
limiting the received signal), the usual justification being that this
will increase the signal-to-noise ratio (SNR). But then, this evaluation
of performance based on SNR may be of little value in indicating information
rate (or reliability) of the detection scheme (e6].

In general, the test statistic is simplified when the signal is very
weak compared to the noise (local detection). Several authors turned
their attention to the problem of detection in non-Gaussian interference !
under weak signal assumptions. Concentration on this problem is justified :

i

by real-life cases, where signals are frequently very weak compared to the §
noise. Also, it is obvious that a large signal would be easier to detect %
and the local detector will, in general, perform satisfactorily for larger !
signals as well.
D. Local Detection

As pointed out previously, "local" detection is an expression used

to describe the situation where the signals are very weak compared to the




noise. The expression "threshhold" detection is also used, mostly in the
early literature. Middleton [7] was the first author to consider the
local detection problem and he obtained a receiver that was, essentially,
a cross-correlator. Examining the same problem and using a technique
similar to Middleton's, Rudnick [8] showed that the optimum receiver must
be nonlinear. The discrepancy was solved by Algasi & Lerner [9] in
Rudnick's favor. They showed that, for arbitrary noise, Middleton failed
to include all of the necessary terms in his power series expansion of the
noise p.d.f. They also discussed the problem of actual implementation

of the receiver,and,more importantly, they showed that under certain
conditions the optimum receiver takes a canonical form. The canonical
receiver consists of a nonlinearity which depends on the additive noise,
followed by a receiver which is optimum for detection in Gaussian noise.
Antonov [ 10] derived the same receiver for a slightly more general class
of signals and he examined its asymptotic performance (number of samples
approaches infinity). Finally Ribin [11] showed that for infinite
observation time (or infinite number of samples) the local receiver
yields a probability of error no higher than any other receiver. That
is, it is asymptotically optimum.

The basic procedure followed by all authors mentioned above was the
following: the p.d.f. of the arbitrary noise process was expanded in a
power series (Taylor series expansion) and then the small signal assumption
was used to dispose of a number of terms that would, under this assumption,
be insignificant. Hence, simplification is achieved.

E. Locally-Optimum Detection
A different approach to the local problem that yields, essentially,

the same results is the following: the Neyman-Pearson criterion is applied,




-

as described before, with one modification. Instead of maximizing the

power function PH(G), the "locally-optimum" detector maximizes the slope

with respect to © of the power function at the origin while still keeping

a fixed false-alarm probability. That is, the locally-optimum detector

maximizes gg PH(G) sub ject to PF(G) s Q.

locally-optimum test is given by

St

A & eI 25 @)

58 (2
=0 <7=Ho

where
£5(:) = £C-|Hy) and £, (-) = £C-[H)) .
Example ~ Constant Signal in Additive Noise.

As before, the hypothesis pair is given by

HO Yy T ouy
vs i=1,...,N -
Irl1 P Yy -=9+n1
The noise samples are assumed to be a set of real-valued, mutually
independent, identically-distributed random variables with a common
p.d.f. fn(x). For simplicity, assume 6 > 0.
The optimum (Neyman-Pearson) test is given by
> ]
5130("1) >T' = H

N
L g (y,)<T'=sH
1_101 0

where

8o(x) = loglf (x-B)/f (x)]:

It can be shown [12], that the

&)

@)

. o S O TR 2 T st
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The locally optimum test, for the case at hand, reduces to
N
(1]
T g0y >T"=H
i=1
: €))
N
< L1}
1E1 81,7) < T"=

where
1
- 20 ;

o)
glo(x) o log fn(yi-8)|9.0 = o
n-i

It can be seen that the locally-optimum detector is, for this case
and in general, considerably simpler in structure than the Neyman-Pearson
optimum detector. For this reason and because of its practical importance,
the locally-optimum detector has been studied extensively.

F. Asymptotic Efficiency of the Locally-Optimum Detector

The question arises as to how does the locally-optimum detector's
performance compare with the performance of the strictly optimum detector.
Answering that question, Capon [13] showed that the locally-optimum
detector is, in some sense, as efficient asymptotically as the Neyman-
Pearson optimum detector. This comparison is based on the concept of
asymptotic relative efficiency (ARE).

Suppose that two detectors are designed to detect the same signal
and with the same probability of correct detection. Suppose, further,
that the two detectors require sample sizes ny and n, respectively to
achieve the prescribed error probabilities. If nf<n2, it is intuitively
justifiable to say that the first detector is more "efficient' than the
other. A rigorous definition of ARE follows.

Let N, ©,B8,0) denote the number of samples that a detector D

i
requires in order to achieve a false-alarm probability @, and a probability

e e et e ot AR S i

I —
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of correct detection at least equal to B with signal strength . Then the
asymptotic relative efficiency (ARE) of a detector D2 with respect to a

reference detector D1 is

ARE, . = lim N, @,8,8) / N, (@,B,9)
2 e 2 2 (10

N~
Ni*ﬁ
If the detectors D1 and 02 are based on the statistics Wl and w2 respectively

then Capon, based on a theorem by Pitman [14], showed that, subject to

some regularity conditions

ARE, , * ""wl / sz (11)

where

- {[3'59{"1}/3919,0]2/“ Varo(wi)} (12)

is the efficacy of detector Di’

Therefore, the test with the higher efficacy is the most efficient
asymptotically. Capon showed the efficacies of the Neyman-Pearson optimum
and the locally optimum detector to be equal. This means that, asymptotically,
the locally optimum detector is as efficient as the strictly optimum
(Neyman-Pearson) detector.

In addition, Miller and Thomas [15] examined the ARE of both the
optimum and locally optimum detectors using a linear detector as a reference.
The cases of a constant as well as a time varying signal were considered
for several general classes of noise p.d.f.'s. They also found that the
form of both go and glo depends in very critical ways on the exact noise
density. This type of annoying dependence led to efforts by many authors to

design a detector that would be insensitive to variations of the noise

statistics.

——
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G. Robust Detection

Classical detection procedures, some of which were discussed here,
require exact knowledge of the statistical properties of the noise. Most
often, the functional form of the noise distribution is assumed to be
known, with only a finite number of unknown parameters. Much research
has been concentrated on these 'parametric'" detection problems. However,
in many practical cases of digital communication, no information is available
about the form of the noise distribution. 1In this case, the detection

problem is "non-parametric". Correspondingly, a detector designed without

the knowledge of the functional form of the noise distribution is a non-
parametric (or distribution-free) detector.

The main characteristic of the non-parametric detector is its
robustness, i.e. it guarantees a minimum performance level over large
classes of noise distributions. The robustness of the non-parametric

detectors is usually measured in terms of ARE using as a reference a

detector designed for Gaussian noise. A review of the more important
' non-parametric techniques can be found in [16].
Some of the best known non-parametric detectors are based on signs
or "ranks" of the received data samples. The 'rank'" detectors compare ]

very favorably to the optimum (parametric) detectors in many cases, but

they are considerably harder to implement. On the other hand, detectors
based only on the signs of the data are very easy to implement but they

f do not perform as well. Several attempts have been made to improve the

performance of the sign detector while retaining much of its simplicity.
Ching and Kurtz [17] proposed the "m-interval detector'. It was designed

on the basis of a finite set of parameters of the noise distribution
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rather than its functional form. It was shown to be robust with little

e

loss of efficiency. However, assumptions were made about some characteristics
of the noise distribution.
‘e Kassam and Thomas [ 18], on the other hand, derived generalizations of
the sign detector which are completely non-parametric. The only assumption 4
R made was that the noise p.d.f. is symmetric. They showed that these
detectors, based on the application of a conditional test, have much better
detection performance than the simple sign detector, with implementation
remaining relatively simple.

In general, non-parametric methods tend to be too conservative because
they fail to exploit some further information, even if incomplete, that
might be available about a particular class of noise statistics. 1In
these cases, it would be of interest to design robust detectors maximizing
the worst case performance over the whole class about which the information
is available. One such class was considered by Kassam and Thomas [19]

and the results were applied to obtain robust detector structures for

contaminated nominal densities in a specific class of density functions

which includes the Gaussian.

T—
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2. OPTIMUM QUANTIZATION FOR SIGNAL DETECTION

Not until very recently were quantizers considered as a possible
solution to detection problems, some of which were reviewed here.
Previously, most of the work on quantization had been based on mean-
squared-error or entropy-based optimality criteria.

Kassam [20] first approached the quantization problem with the
objective to use the quantized data to form a test of hypothesis for
signal detection. He studied the design of quantizers to be used in
place of the test function in the case of detection of known signals in
additive noise, based on independent samples and he showed that the
criteria of maximum ARE and maximum local power slope lead to the same
quantizer design. Based on Kassam's results, Poor and Thomas [21]
extended his work to the general problem of local decisions.

A careful analysis of both of these results will follow, since we
are going to rely heavily on then.

A. Known Signal, Additive Noise Case

N
Let [Xi] be a sequence of N independent samples, described by
i=1

x1=esi+ui,1sisn,ezo.

{81] is a known signal sequence and {Ni} : is a sequence of independent,
i=1 i=1

identically distributed noise samples with common density and distribution

functions f(-) and F(-) respectively. Also, assume that f(.) is symmetric

about its origin and absolutely continuous. For the local case, we

consider the limit as €-0.

The hypothesis pair to be tested is

: 6=0




- e

15 i
versus
H, : 8>0.
For the case at hand, the locally optimum test is given by
N
R 82 Sy 2me By
i=1
13
N (13)
L g ,(x) 8, <T=H,y
i=1
-f'(.2

where, as before, gl°(~) = )

In his paper, Kassam considered the following problem. Given a
positive integer M, design an M-level quantizer QM(') such that, with

Y1 defined by
Y, = Qulx),

the statistic
N
s= ZYS
iml 2 il §

is optimum for deciding between H, and H,. In essence, the objective is

0 1
to replace the locally-optimum nonlinearity 810(')’ with the output of an

M-level quantizer. The problem then is to find a quantizer that, when
used in this way, will produce a test statistic that will result in
maximum detection performance from among all M-level quantizers.

Kassam assumes that the optimum quantizer is symmetric and later he
shows that the symmetric quantizer does indeed maximize performance from
among all M-level quantizers for symmetric noise densities. He defines the
symmetric 2m-level quantizer as follows:

The positive input values are partitioned into m intervals TI""’Tm

and {t is a decreasing sequence of non-negative

where Tj = [tj,t

m
3-1) 3 30
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numbers with to = ® and tm = 0. The output level corresponding to Tj is
denoted by qy- For negative input values, T_j = (-tj-l,-tj] and q_y = -4
for 1 £ j £ m. Therefore, the symmetric 2m-level quantizer is completely
defined in terms of the parameter vectors t = (tl,tz,...,tm_l) and
a4 = (9;,9;,+-4,9,).
I. The Quantizer for Maximum Detection Efficacy

The efficacy G of a local test for HO vs H1 based on test statistic
S, for the constant signal, additive noise case is defined (see Eq. (12)) by

4 5 ]2
. lm 1 tag %Sm0l

= 14
Mo N Varo{s} e

As noted in a previous section, the efficacy is an asymptotic measure of
performance of the local test. Using efficacy as a measure of performance,
Kassam first looked for the optimum 2m-level quantizer maximizing efficacy.

In terms of the quantizer parameters the efficacy becomes

(z I3
2 I qylfep-£eey ]} .

N \ fm
caumézsi d=l (15)
sy z 2[pee, )-F(t,)]
P S i e
Maximizing G is equivalent to maximizing E, where
m
( 2
Z qf(e)-f(t,_,)]
i oo i S
E = - (16)
2
j=1
1 8§ 2
with the mild assumption that lim N z Si exists and is finite.
., men RS £ |

The author proceeds to maximize E with respect to g for a given

vector t. By taking the partial derivatives dE/dq, and setting them equal
= j q

to zero, he finds that the elements of the optimum vector g* are given by




-

e

*

e |
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e )-f(tj 1)
1y = e ” e F(t Fale , 9% ST AR (17)

Substituting the values defined by (17) for qj’ the normalized efficacy

expression (16) becomes

m (f(t y-£(t 1)]2
Pt [F(t D- F(tJYT* e

E* can now be maximized with respect to t in order to complete the
specification of the optimum quantizer.
II. The Optimum Quantizer as an Approximation to the Locally-Optimum
Nonlinearity
Another performance criterion considered by Kassam is the one of

minimum-squared-error between the locally optimum nonlinearity

£
1o(x) = %?ﬁ?l and the output of the optimum quantizer qzm(x). The
squared-error expression is given by
i £'(x,)~2
¢ = By * o, e} (19)

In term of the quantizer parameters this expression becomes

t
f i- 1f(x)dx + 4 r q F 3= 1f'(x)dx + 1

e = 2 2 q
=1 1"
J J

0)
=1

f

where
o ) [

Obviously, € is finite only if I, is finite and this assumption is made

f
by Kassam.

Again, by taking the partials with respect to g, for a given vector

t and setting them equal to zero, he finds that € is minimized when the

s 3 : - i . §
i i ca e it  ———Cn ) e ik 02
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output levels are given by
s f(tj)-f(ti_l) 21)

F(tj_l)-F(tj)
Note that (21) is identical to Equation (17). Substituting for qj into
Equation (20), the minimized value of ¢ is given by

m [£(e)-£e, )]

et =102 L I-'(tj )-Fj(tl)
3=l )l j
(22)
= If-E*-
Equation (22) is an important result because it clearly indicates that
continuing the minimization of €* with respect to t is equivalent to
maximizing % Therefore, Kassam concludes, the quantizer minimizing the
mean-squared-error between quantized data and data transformed by the
locally optimum nonlinearity is the same as the quantizer maximizing the
detection efficacy. From Equation (22), setting the partial derivatives
of ¢* with respect to t equal to zero, Kassam obtains
+ £
qJ“Z .- S f(t(j)L) = 8oty L2, (e D), 23)

The solutions of the set of Equations (21) and (23) give the parameter
values of the optimum quantizer.

It is important to note that the conditions for optimality derived

by Kassam are only necessary conditions. He does not examine the sufficiency
of either (21) or (23).

B. The General Problem of Local Decisions

Poor and Thomas [21] extended Kassam's results to the general problem

of local decisions. The general problem is formulated as follows.
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Assume that we observe a sequence {xi}1§1 = x of independent real
samples and that we have a corresponding sequence {Pe(i);es®:R}£21 of

indexed classes of distributions on the real line. For a particular 90
in a right-open set of ® we wish to test

& % @A) 412, .0
0 0

Vs (24)
i)
T A T e
l% &y Pb s dm] 2 ,n
where 6 > 90. For the local case, consider the limit ase-Oo
Subject to some regularity conditions, a locally optimum test for

(24) is given by

1 ’GQ)>"’
010@® = v » 3@ =~ (25)
0, <r
where
o 26
a@—aﬁe(g)/ae‘e*o. (26)

.% is the likelihood ratio between}% and}b . It follows from the independence
0

assumption that

n
e = LS

i=1
where @7)
1w Gy B et
0

Therefore, the locally-optimum test statistic is given by

s (i)

Jx)=2 T (xi)

i=1

where (28)

T(i) B 6[.9(1)/69|9_9 A 3 S | (g
0
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(1)} nl
i=

to replace the nonlinearities T(i) of Equation (28). Then, the new test

The objective is to choose a sequence {Q = Q of M-level quantizers

will be the following

l,ﬂ (£)>‘T’

Q
cog(is) ={ v 39(5) =5’ (29)

0, GQQ‘.) < !

where
n
G (1)
Bg(x) 121 Q (xi).

(€))

For each i, Q has M levels and can be represented as a pair (g(i),g(i)),

where g(i) GIR]yl are the levels of Q(i). The breakpoints g(i) are such
that -= = to(i) < tl(i) € e S tM-l(i) < tM(i) = o, and we take Q(i)(x) =
qk(l) when xe(téfi,téi)], k=1,:. . ;M-

Note that the notation here is different than Kassam's.

I. Fixed Breakpoints = Locally Optimum Quantization

The first step taken by Poor and Thomas is the same taken by Kassam.

That is the optimum sequence of level vectors {g(i)} 1:1 was derived for

a fixed sequence of breakpoint vectors (E(i)}izl. For fixed {E(i)}izl’

the post-quantization likelihood ratio is given by

n
L = 0pM e ((D/pM) ( () téi)]}
i

Pl B 0 R ol W R (30)

for X

{ € (t(i) téi)] Ry ) reapa , i
i

Sy
ki 1

The locally-optimum (post-~quantization) statistic is given by

Q v (1), (1) (i) (1) (1)
3L (x) /26 o« BLORYR, TR L Yl G0t 4 £N0N LN
0 o IR B T St 6=8,’""0, "k -1 * Tk,

PSPy
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On the other hand, the test statistic to be used is of the form
n
3,@ = £ W) (32)
Q i=1
The authors note that
ase(_)/aele.e 3q@-
if the level vectors are chosen to be
) = eV el | {1170 g6 ]/Péi)(t(i) i (33)

for k=1,...,M and i=1,...,n .
Thus, the choice of Equation (33) allows the post-quantization test to be
represented optimally in the form of Equation (29). Under a regularity

condition, (33) becomes

(1) (i)

k éi) te D) p(‘) (f ae{t) ; ke=1,...M and i=1,...,0. (36)
(i) (1) 0
el -1

1 ¥ Therefore, the problem of locally-optimum quantization is again reduced
- to that of optimally selecting the breakpoint vectors {5(1)1121.
Note that Equation (34) is a necessary and sufficient condition, because

its validity is based only on the generalized Neyman-Pearson lemma and ]

not on the existence of a stationary point. (The latter was true in
Kassam's approach).

II. Asymptotically Optimum Choice of Breakpoints

] For the asymptotic case (m*®), and under some further regularity
conditions, Poor and Thomas show that for the sequence Q to be optimum,

S.“)

must be chosen to maximize Var, (o(i)) for each i,
0

e
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1)

M

(1) k (1) 4p(1) (i)

where Var 0(o ) = kEl jt( T de //I (1) (35)
k-1

To search for the maxima of Equation (35), grad Varg (o(i)) is set
t

equal to zero. This yields necessary conditions to be satisfied by

(i),

the optimum t""“; namely

@ M) = @+ o2 w1, 00

where (from eq. (34)) (36)
) (i)
. k
®) qéi) = dP(1),I P(i) s k=l,... M.
(1) (1) ®o
Pk

The condition 36(b) is sufficient as explained above, but the same cannot
be claimed about condition 36 (a). The sufficiency of the latter must be
checked by examining the definiteness of the matrix of second partial
derivatives (Hessian matrix).
III. The Maximum-Efficacy Quantizer

The efficacy of the test @Q based on the sequence Q of quantizers is

calculated to be (see [21])

Q- :1:3 @ (37)
where
ﬁ ) & (1)
W@ L E 0, OI/LE L w0
k-l

(1)
n M

-fx £ g ) dFy (1))]

i=1 k=1 0

I T T e
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Equation (38) can be rewritten as

1@ = cov @y n(t™)  ))/a var, @)
" 0~ i=1 o 2
where
n n
CRR Chats LR
ind 4%l
with
éi) (1)
@y, . () (1) / (1)
MY (x) f (i) T dP J (i) dP
k-1
for
%t (c(ii : t(i)] T S

From Equation (39), by employing the Schwartz inequality, the authors
proceed to show that

Tln(g) < Vareo(m({_t_(i)} 1:1))/"

with equality if and only if
ag@ = an(x ; {_g(i)}ifl) +b Yxe ®r" and
for some numbers a # 0 and b.
Thus, if the choice
B = mlx ; {_t_(i)}i:l)
(1)} n

is made, for {t i=1 given, the maximum efficacy will be achieved.
Equations (40) and (43) imply that, for fixed g( ), the optimum
choice of level vectors is given by

(i) (1)
(1) g, = ®
f (1) dP /J’ (1) dP S Y S
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(39)

(40)

(41)

(42)

(43)

(44)

B e Do)




Equation (44) is identical to Equation (34). Therefore, the authors

T i=1?
optimum and asymptotically-most-efficient.

Applying Eq. (44) to the expression for ﬂn(g) (Eq. 38) one has

n
1@ = = var, @V)/n.
B i=1 %

0

as well.

Again, note that Equation (44) is sufficient since it follows
f from the Schwartz inequality. Recall that in Kassam's problem, he
of his corresponding equation is not guaranteed.

Nonlinearity - General Case

In their treatment of the general case, Poor and Thomas did not

consider the MMSE between quantized data and data transformed by the

We have seen previously that Kassam, examining the above criterion,

showed that it leads to the same set of necessary conditions for the
We will now extend Kassam's findings to the general case.

test statistic, in the general case, is given by

n
3@ = = W,
i=1

conclude, for fixed {E(i)} ®_, this choice of levels is both locally-

IV. The Optimum Quantizer as an Approximation to the Locally Optimum

24

(45)

Hence, the maximum-efficacy quantizer Q(i) maximizes Vare (O(i)) and the

set of Equations (10)(a),(b) gives the necessary conditions for this case

based his results on the existence of stationary points and the suficiency

locally-optimum nonlinearity as a criterion for optimum quantization.

parameters of the optimum quantizer as the criterion of maximum efficacy.

Adhering to the same notation as in the previous section, the optimum
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! The post-quantization test statistic is given by
n
“ 3. @= 2 o).
Q 1=1 i
Let ‘(1) denote the mean-squared-error between the two quantities of
interest
@ g (@ - 1N (46)
%0
e g {(Q(i));’}+ E {(T(i))zl - 28 {110
- o, £, 1@ - 28 (1MW 4 1:1) (47)
0 % 0
vhere 1) = gy (e @) - gy (2P0 o 13
0 0 0 0
Obviously, ‘(i) will not be finite unless Iéi) is finite and we assume
0
the latter to be the case.
(1) (1)
(1) " (1) LR .« S
). 2 qk( )I o 21:1 % r:“) dpeo + 190 ; i=1,...,n. (48)
k-1
Assuming, for the moment, that the vectors {3(1)} 121 are fixed we have
Bc(i)/Bq(i) =0=
j e J (i)
k k
(i) (1) (i)
=2 z q dPg Dap 0
=1 k (1) (1) 90
(1) (1)
| (1) ;p (1)
9 J‘ (1)'1‘ dPg /I (1) 49)
-‘ ! for =l,...;M ; 1=]1,...,n.
l‘ This is the same condition (eq.(44)) that the maximum~efficacy quantizer
g must satisfy. Kassam showed this for the additive noise, constant signal

2 S i, N S——
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case but he did not prove this condition to be sufficient. We will now
show that equation (49) is actually a sufficient condition for the general
case.

Let 6(1) be a quantizer whose level vector g(i) satisfies eq. (49)

1)

for a given breakpoint vector t and let Q(i) be any other quantizer

with the same breakpoint vector. Consider the expression
) - g ([eW.rNY
0
oy ,_,90{m(i)_/bu)@u)_Tu)]z} g
- £y {[o™)-g ‘“sze (W22, (0@ QMIGD-r D13
0

O

Since Eb {ro(‘)18<1)] 1§ 0, it would suffice to show
0

g ([0WARINBD Wy .o
0

1)

in order to prove that Q is the quantizer yielding the lowest MMSE
between the quantities considered, from among all M-level quantizers with

the same fixed breakpoints. We have

B {[Q(i)_’(\?(i)J[Ao(i)_T(i)]} =
0

: %0{"“)6(1)}'Eeof'b(i)r(i)}‘%O{Q“)Tm}*%ofm’m]z}

(i) (1) (i) t(1)
(1)’\(1) 1) A(i) (1) ;5(1)_ (1) (1) (1),2 (i)
.r[ LN .‘ (1) P o 9 r (1)'1' dpy o f (1) dP +(Qk _f (1) Pe
k-1 t-1

Substituting for Qé ) from equation (49) we have

By {[o(i)_lb(l)][/b(i)_r(i)p 5
0
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; L) e ()
] M
b, (1) (1) ¢S (1) I ) S
% ju) arg U W’ e /u)‘“’
{1 e 1)
<1>r" eY <1) (1) (1) / (1)
& v )T 9P [f <1) B ') fu)‘“’eo
L] k-1
= 0.
Hence, we conclude that 6(1) yields the lowest value for e(i) from
among all M-level quantizers for a fixed £(1) and, in essence, that
Equation (49) is sufficient for minimum e(i).

Now, substituting for qéi) as defined by Eq. (49) into the expression

for c(i) given by Eq. (48) we have

(1) (1) (i) (i)
CON (1) / (1) (1) P 4 o
Z{U (1) f(i)dp ZL (1) Darg ]/ (1) o, }”
D , e
B ; W T (1)
r[ (1)T ary. r (UdPe

= Iéi) - Vare (Q(i)) DO ¢ U, g (50)
0 0
(1)

It is clear now that minimizing ¢ is equivalent to maximizing

Varg (0(1)), which is exactly the same condition that must be satisfied
by the maximum-efficacy quantizer, when the choice of Eq. (49) for the
elements of the level vectors g(i) is made. Since Equation (49) was

proven to be sufficient and pquation (44) was shown by Poor and Thomas also
to be sufficient, it is safe to claim that the criterion of MMSE

between quantized data and data transformed by the locally optimum non-

linearity and the one of maximum efficacy are completely equivalent.
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1)

That is, every time ¢ is at a minimum for each i, T, achieves a

Q
maximum.
V. A Condition for Sufficiency

We have noted that the sufficiency of Equation (36) (a) remained to
be tested. The straightforward way to test its sufficiency would be by
examining the definiteness of the matrix of the second partial derivatives
of either the efficacy or the MSE expression. We have attempted here to
carry out this procedure for the additive noise, constant signal case
(Kassam's case). The resulting expressions for the matrix elements,
however, were not strictly positive or negative and obviously, not every
noise distribution will lead to the sufficiency of the equation in
. question. We were unable to find a condition on the noise density which
would guarantee its sufficiency. The expressions for the matrix elements
can be found in the Appendix.

Another approach, based on Fleischer's [22] work, led us to a
condition on the noise statistics which, when satisfied, leads to
sufficiency.

(a). Sufficient Conditions for Minimum Distortion

In the opening section we stated that a criterion of quantizer

performance widely accepted is the one of minimum distortion D, where

M rtk 2
D= %) (x-qk) f(x)dx . (51)

k=t

We have also pointed-out that Max (1] derived the following necessary

conditions that the parameters of the minimum-distortion quantizer must

satisfy.

J'-' PET A g T . T ; v B Vi A m_
~ ‘ S S . y - R

L T -
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K
J xf (x)dx :
t
9 * tk'l 3 k=l,.00,M (52)
k
f f(x)dx
k-1
tk = %(qk + qu) 5 k‘I:""(M'l) . (53)

By examining the matrix of the second partials, Fleischer showed that
this set of conditions is sufficient, if the noise p.d.f. f(x) obeys the

relation

d2
e [Inf(x)] < O (54)
dx

This is equivalent to

% %;[lnf(x)] g %?i%l = increasing

or
-1lnf(x) = convex .

A density satisfying eq. (54) is known as strongly unimodal. We will

apply this result to derive a condition for the sufficiency of the remaining
necessary condition (eq. (36),(a)) for the optimum detection quantizer.

(b). A Sufficient Condition for Optimum Detection

Consider the expression
i)

p®) o Ey {(e® ) - 14 (55)
0

where

Y = 1 (x)
and Q(i) is an M-level quantizer. The notation is again the same used in

the treatment of the general case. Recall that minimization of D(i), as

defined here, results in optimum detection. We have




(1)
2

@ o
f (@ m -0 ey et
tr-1

Let h(Y) denote the p.d.f. of Y, assuming this p.d.f. exists. Then, a

change of variables leads to

/(1)
tx

o - j (1)(°'(1)(Y) -9)2 h(y)dy ; k=1,...,M
ol %

L O G TR A
t X = G i (tk Yoo k=l oM e

Then, Max's necessary conditions for minimum D(i) become

ey

f X yhyay
<o (1)
k-1
(1)
o
J * hyay

¢ @
k-1

iy %(q'<i) By e, o), (57)
and Fleischer's condition for sufficiency of the above equations is
=lnh(y) = convex- (58)
If T(i)(-) is invertible, then the parameters of the optimum quantizer

Q(i)(x) can be defined by n
TS NS

k=1,...,M
(i) ’ ’ ’
o) = L (' @),

In general, if Xpseee,X are all the real roots of the equation
y - T(i)(x)

then the p.d.f. h(y) is given by




A TSR R AU M s S e

where

' M xy « ar® (x)/0x.

1)

For the case at hand (T (x) invertible), only one real root exists and

we have (59)

f(x
;- b)) | ) )
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3. APPLICATIONS TO SIGNAL DETECTION
In this section we will examine the optimum-quantizer structure for

several cases of practical interest resulting from the general case of

local decisions. These examples can be found in f211.

A. Known Signals in Additive Noise (Kassam's Case)
For this case, the hypothesis pair reduces to

He I TS e RO 3 R )
i

0

vs

HB H xi | f(x‘esi) > i=1,...,n.
s.}." is a known signal sequence and § is assumed to be positive.
i’i=1 q
Again, for the local case, consider g~0%.

The £ Tikelthood ratio s

Léi)(x) = E(x-85)/£(x).

By differentiating, we obtain
T () = -5, ) /Ex) -
From Eq. (36), the optimum quantizer sequence is given by
o™ ) = 5,000
where O=(t,q) is the solution to
(@) £ )/E(t) = (qtq,)/2 5 k=1,..., (1)
(60)
[
(b) qy = [f(tk-l)-f(tk)]/‘J tk-lf(X)dx : k=l o0 M.
The above, is exactly the same set of conditions derived by Kassam. One

important difference is the fact that Eq. (16)(b) is now a sufficient

condition and only the sufficiency of Eq. (16)(a) remains to be tested.

et e e A A G 1 o ¢
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B. Stochastic Signals in Noise (Additive-Noise Model)
For this case, the hypotheses pair is given by
He PoXy =SEGx) 2 el R 1
0
vs
s "rf-gdc()°i-1 n
He.xi p (x98) 15 ’ pe e slie
-0
{Gi} 121 is a sequence of zero-mean distribution functions corresponding
to a sequence of independent samples from a stochastic signal. Again
assume 8>0 and 6~0. The 1th likelihood ratio is
@©
A <! £ (x-6 75)dG, (s)/£ (x)
h -0
and it locally-optimum nonlinearity is
1 ) = o2 /2600
where
02 = ir s 2dG )
it 1(s .
-0
For this case, the optimum quantizer sequence is given by
i 2
oY ¢ = o012
where 0= (t,g) is the solution to
" S s ‘Tean -
(a) £ (tk)/f(tk) (qk + qu)/Z s k=1,...,M-1)
rtk (61)
- (£ (t,)-£' | s kelyoo. Mo 4
®)  q = [£(t)-f (:k_l)J/‘Jt f(x)dx ; k=1,...,M i
k-1

C. Stochastic Signals in Noise (Scale-Change Model)
For this case, we have

I'b s Xi < Elwy s i=l o0
0
vs

LD f(x/vi)/vi L) R

e R e - -




where
2,.2.%
= o SeclE .
Ui [1 + 6 i /9°] s
2 2y n

f is a differentiable p.d.f. with variance 9" and pi ]131 a sequence of
signal variances. Once more,6>0 and 6~0 . We have

AR IR VIR
and

%:1)(x) - (012/202)(-xf'(x)/f(x) = 5.

The optimum quantizer sequence is

oMo = 229"
where Q=(t,q) is the solution to
@) (-t £ (e )/E(e) - 1) = (q + QUpp)/2 5 k=1,..., (M-1)
(62)

o
k

®) q = le,_ £ ) - tkf(tk)]<ft £(x)dx .
k-1
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4. NUMERICAL RESULTS

The set of simultaneous equations for the optimum parameters can
be solved by several different numerical methods. One such iterative
numerical technique is described by Max [1]. Using a technique similar
to that, Kassam [20] obtained the optimum quancizer parameters for the
additive noise, known signal case and for noise densities in the class
of generalized Gaussian noise densities which contains a wide range of
non-Gaussisn p.d.f's, parametrized by their rates of exponential decay.

A generalized Gaussian density fp(x) is defined by

5 P i p |

£, = Ty oPt-UxlA@I®), o (63) |

|

where A) = [o7T amramt. |

I'(-) is the gamma function and 02 the variance of the density.

2
Note that p=2 produces the Gaussian density with variance 9 , For the

rest of this discussion unit variance is assumed, that is c’2=1.
Kassam evaluated the optimum quantizer parameters under the locally

optimum detection criterion as well as under the minimum squared-error

distortion criterion (Max's quantizer) for densities of the general class
described above. This procedure was carried out for the cases of four-
level and eight-level quantization (m=2 and m=4 respectively in Kassam's
(2m)-level symmetric quantizer). The results show, as it might be
expected, that the locally-optimum quantizer produces high efficacy and
high distortion while the minimum-distortion quantizer results in both
low distortion and low detection efficacy.

By using a different numerical method we have exactly duplicated
Kassam's results for m=4. This was done basically in order to test our -v

program. We will now produce analogous results for the stochastic signal




case (both additive-noise and scale-change models)

A. General Procedure

It was shown by Kassam that for symmetric noise densities the optimum
quantizer (for his case) is odd symmetric. For stochastic signals, the
optimum nonlinearities are even Symmetric and the corresponding optimum
quantizers will also be even symmetric. Since the generalized Gaussian
is a symmetric density, we will be looking for (even) symmetric quantizers.
The notation to be used in this section is the following.

The positive input values are partitioned into m intervals T s

B A |
where Tk-(tk_l,tk] and {tk]kfo is an increasing sequence of non-negative
numbers with to-O and tm-m . The output level corresponding to Tk is
denoted by 9 - The definitions T_k-[-tk,-tk_l) and 9_3 =9 for 1<ksm
complete the specification of the symmetric quantizer.

The basis of our procedure is a program that uses the Davidon-Fletcher-
Powell [23] (DFP) algorithm to minimize a function of n variables. The
program produces the minimum value of the function as well as the values
of the variables that lead to the minimum value. An individual subroutine
is needed to provide the value of the function at hand as well as the gradient
vector for each input vector.

B. The Minimum Distortion Quantizer

Max's quantizer is designed to minimize the distortion D which, in

terms of the quantization parameters, is
Mo,k g S x 5
De I [qlJ fdax+ [ xPEGodx - 2q [ fo)ex], (64)
k=1l ¢ . ke
k-1 k-1 k-1

The optimum level values are given by




orm—

37
t
f k xf (x)dx
* fke1
Gy W et (65)
k
It f(x)dx
k-1
and the gradient vector is defined by
2552
Sk = Ztkf(tk) (qk,'_l-qk) + f(tk) (qk'qk_’_l) 3 k=l,...,(M~1). (66)
The DFP program is used to minimize D, after the optimum values for 9
are substituted in (from eq. (65)). Then the algorithm produces the
optimum values for the breakpoint vector t.
C. Stochastic Signal -~ Additive Noise
After substituting for qk'inthe efficacy expression (Eq. (38)) by
means of BEq. (61)(b), the following expression must be maximized
M 2 I'tk
- ’ - /
Var,@) = I [£'(t)-£'(e, ()] /": £(x)dx. (67)

k=1 k-1

Then the minimizing program is used to minimize -Varo(Q) and to produce
the optimum breakpcints. Eq. (61)(b) will then produce the optimum levels.

In order to determine the efficacy value produced by Max's quantizer,
the parameters (t,gq) determined as described in the previous section, must
be substituted directly into the general efficacy expression given by

(see Eq. (38))

tk tk

M e af M E
. ; 2 2| 3 2
v(o)-[ E ol (6 f )] /[kglqku | (kflq ; )], (68)
k-1 k-1

D. Stochastic Signal - Scale Change

The same basic procedure is followed in this case as in the previous

sectiorn. Here, the efficacy expression is given by




W .

M M k
“(Q)-f T ogle . £(e )=t f£(e )] 2/ z qzr
Rpos B ded el RN ] [k-lk-‘:

t

k-1

and substituting for 9 from Eq. (62)(b), Eq. (69) becomes

M

NQ)=Var, (@)= t, ,£(
0 k=1 k-1

E. Tables - Graphs - Discussion

TABLE I

Parameters of MMSE quantizer (Max's

Gaussian density, m=4.

t

.
t )t £(E)) /It £ (x)dx .
k-1

quantizer) generalized

b S Ry ) R ) e i 0 I A A B A R o el L s
9 0.233 0.239 0.243 0.244 0.245 0.245 0.245 0.244 0.243 0.242 0.241
9, 0.833 0.807 0.789 0.775 0.765 0.756 0.749 0.742 0.737 0.732 0.728
95 1.673 1.557 1.478 1.422 1.378 1.344 1.317 1.294 1.275 1.260 1.246
q, 3.087 2.751 2.526 2.366 2.246 2.152 2.077 2.017 1.966 1.923 1.887
t 0.533 0.523 0.516 0.510 0.505 0.501 0.497 0.493 0.490 0.487 0.485
ty 1.253 1.182 1.134 1.099 1.071 1.050 1.033 1.018 1.006 0.996 0.987
ty 2.380 2.154 2.002 1.894 1.812 1.748 1.697 1.656 1.621 1.591 1.566

T — e g

M Sk e
f(x)dx - (kilqkrt f(x)dx) J 69)
k-1

(70)
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| TABLE II
Parameters of locally-optimum quantizer (stochastic signal-
additive noise).
3 P 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
9, -6.369 -1.035 -0.731 -0.617 -0.560 -0.530 -0.514 -0.507
q, -1.262 0.087 0.557 0.950 1.355 1.797 2.289 2.835
95 0.288 1.653 2.562 3.527 4.631 5.895 7.345 8.983
q, 2.319 4.265 6.136 8.325 10.930 13.976 17.518 21.568
t) 0.014 0.581 0.956 1.194 1.362 1.483 1.574 1.643
ty 0.430 1.268 1.600 1.790 1.911 1.991 2.044 2.080
4 t, 1.355 2.070 2.313 2.428 2.486 2.511 2.519 2.515
TABLE III
Parameters of locally-optimum quantizér (stochastic signal -
scale change).
P 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
q, -0.670 -0.688 -0.703 -0.714 -0.723 ~0.731 -0.737 -0.743 -0.748 -0.752 -0.756
1, 0.178 0.251 0.326 0.403 0.481 0.558 0.637 0.715 0.795 0.874 0.954
q, 1.365 1.606 1.846 2.085 2.326 2.563 2.804 3.040 3.279 3.517 3.756
q, 3.365 3.925 4.481 5.035 5.585 6.137 6.689 7.234 7.782 8.330 8.877
t 0.533 0.645 0.740 0.823 0.894 0.956 1.010 1.058 1.100 1.137 1.171
t, 1.253 1.368 1.453 1.515 1.564 1.600 1.630 1.652 1.671 1.686 1.699
ty 2,380 2.390 2.380 2.360 2.337 2.313 2.289 2.266 2.243 2.223 2.203




In the tables to fullow, Q;(-) will denote a quantizer with the same
breakpoints as Max's (MMSE) quantizer but with level vectors equal to the

square of the corresponding levels of the MMSE quantizer. The efficacy

produced by Q:(-) has also been calculated for both cases of interest.

In addition, the efficacy of the locally-optimum (unquantized) detector
has been calculated. The expressions for the optimum efficacies for the
additive noise and scale-change models respectively and for generalized

Gaussian noise densities are given by [28]

4 4
_ BN (p)r (2-3/p) (1-1/p) (3-4/p)
Var, (g,,) r(1/p) (713
p> 1.5
where T (p) = [ M3/p)/T (1/p)1Y
and
Varo(glo) = p ; pO. (72)
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TABLE IV
Comparison of MMSE and efficacy of locally-optimum and MMSE
quantizers. Efficacies of locally-optimum detector and Q;(»)

quantizer. Stochastic signal-additive noise model.

LOCALLY OPTIMUM MINIMUM DISTORTION 02(_) LOCALLY-OPTIMUM
P UANTIZATION SE) QUANTIZATION M DETECTOR
EFFICACY _MSE EFFICACY MSE EFFICACY EFFICACY
1.6 2.018 1.524 1.767 0.040 1.505 2.851
1.8 1.680 1.178 1.645 0.037 1.605 1.932
2.0 1.788 1.370 1.526 0.035 1.667 2.000
2.2 2.044 1.680 1.414 0.033 1.698 2.282
{ 2.4 2,408 2.076 1.311 0.031 1.705 2.698
2.6 2.874 2.558 1.215 0.030 1.691 3.234
2.8 3.446  3.028 1.125 0.029 1.659 3.893

3.0 4.128 3.680 1.044 0.028 1.616 4.681




42

TABLE V
Comparison of MMSE and efficacy of locally-optimum and MMSE

quantizers. Efficacies of locally-optimum detector and Q2(-)

et 0

quantizer. Stochastic signal-scale change model.

LOCALLY OPTIMUM MINIMUM DISTORTION 02(.) LOCALLY-OPTIMUM

P _OQUANTIZATION (MMSE) QUANTIZATION M DETECTOR
_EFFICACY MSE EFFICACY MSE EFFICACY EFFICACY
1.0 0.892 0.632 0.891 0.054 0.783 1.000
u 1.2 1.070 0.754 1.058 0.048 0.996 1.200
1.4 1.250 0.896 1,172 0.043 1.191 1.400
1.6 1.430 1.048 1.328 0.040 1.368 1.600
1.8 1.608 1.206 1.434 0.037 1.526 1.800
2.0 1.788 1.370 1.526 0.035 1.667 2.000
2.2 1.968 1.538 1.605 0.033 15793 2.200
2.4 2.148 1.726 1.673 0.031 1.904 2.400
2.6 2.328 1.802 1.730 0.030 2.002 2.600
2.8 2.508 2.054 1.779 0.029 2.088 2.800

3.0 2.688 2.232 1.822 0.028 2.165 3.000
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It can be seen that the parameters of Qlo for the additive noise case

(Fig. 1,2) are more sensitive to variations of the noise density than the
parameters of Q10 for the scale-change model (Fig. 4,5). It is also
interesting to note that Qi performs consistently better (in terms of ARE)
than QMAX (Fig. 3,6). The asymptotic relative efficiency (ARE) between the
detectors based on the locally-optimum quantizer (Qlo) and the locally-
optimum nonlinearity (glo) respectively, is nearly constant over p and
approximately the same for the two cases of interest.

In general, the results indicate that the locally-optimum quantizer

produces high efficacy as well as high distortion while the opposite is

true for the MMSE quantizer (QMAX). Keeping in mind the design criteria

used for the two quantizers, these results are intuitively satisfying.
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5. FURTHER WORK ON QUANTIZATION FOR OPTIMUM DETECTION

In a relatively short period of time after their initial utilization
for detection purposes, quantizers heve been used to approach several
different detection problems.

One such problem, discussed previously here, is the one of robust
detection. A '"robust'" detector, in general, is designed to perform well
within a small neighborhood of a nominal model of the noise statistics.

The parameters of an optimum quantizer will, of course, also depend on the
noise statistics. It seems logical to assume that a quantizer will be
robust in some sense because of its inherent insensitivity, at least for a
small number of levels. However, a quantizer specifically designed for
robust detection would be, in a sense, optimally robust.

Poor and Thomas [24] designed such a quantizer for a class of noise
densities. Although they did not show that the obtained robust quantizer is
unique, or the best solution available, they showed that it can perform much
better than standard detectors in the case of highly contaminated Gaussian
noise.

The same authors [25] used quantization to approach the problem of
optimum detection in the presence of m-dependent noiseX Note that, in E
general, an optimal detection procedure for this situation will require a
memory of length m., Such systems are not easy to implement, except for
spherically invariant noise processes such as the Gaussian. Therefore, it

is of interest to derive the optimum detector for this situation from

among all memoryless detectors. Based on their earlier work [26] involving
the design of general (unquantized) memoryless detectors, Poor and Thomas

considered the following hypothesis testing problem for a sequence {xi}i:I

*Note that, here, m denotes the dependence parameter.
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of real observations

vs

H = N{+9 o SRR

 m
where {Ni}£21 is a zero-mean, second-order-stationary j.~dependent noise
process and @ is a known, positive, constant signal. For this case the
following class of detectors was considered:

s >

n
0(@Q:X) =y v T QX)) =r
i=1

0 ; <
where Q is an M-level quantizer. Note that m=0 (independent noise) leads
to the problem considered by Kassam. By following the same pattern of
thought as in previous cases reviewed here (that is by first assuming fixed
breakpoints and by considering the efficacy expression) the authors derived
two conditions for the parameters of the optimum quantizer, analogous to
the ones derived for the independent noise case. Actually, with the
assumption m=0, the two conditions reduce to exactly the same conditions
derived by Kassam. Finally, the authors use two examples (stationary
Gaussian and Cauchy noise) to show that the m-optimum quantizer performs
better than the m=0 quantizer (in terms of ARE) and increasingly so with
increasing m.

In most cases discussed here, the performance of decision tests based
on quantization was studied on an asymptotic, small signal basis using ARE
as a measure of performance. The general quantization problem for binary
decisions in the nonasymptotic case was also examined by Poor and Thomas

[27]. The main difficulty of this case arises from the fact that probability

of error (the natural performance criterion) does not lead to tractable

e p—— s PS4 N AR e
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design procedures. The authors chose to use members of the Ali-Silvey class
of distance measures as criteria of optimum detection for the non-asymptotic
case. They established necessary conditions for an optimal quantizer
design using the criterion of maximum distance as a measure of performance.
It was shown that the optimum quantizer for the local case is independent
of the choice of the distance measure. However, for the nonlocal case,
no single "best" design arises. Nevertheless, these techniques offer a
design procedure that can be solved by standard optimization methods.

From these examples, one can conclude that quantizers can be very effective
when used with optimum signal selection in mind. Their implementation leads
to practical solutions to detection problems for which standard detector

design procedures fail in the face of analytical difficulties.
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6. CONCLUSIONS

It has been shown that the criteria of maximum efficacy and MMSE
between quantized data and data transformed by the locally=-optimum nonlinearity
are completely equivalent for the general problem of local decisions. A
condition for the sufficiency of the (necessary) equations that must be
satisfied by the parameters of the optimum quantizer was also derived.
Finally, it was shown that for generalized Gaussian noise densities and for
the case of stochastic signals (additive noise and scale-change models)
a significant difference exists between the detection performance of a

locally-optimum quantizer and a minimum-distortion quantizer.
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7. APPENDIX
A. Elements of Matrix of Second Derivatives for the Known Signal -
Additive Noise Case.
The matrix of second partials, H, is a symmetric triagonal band

matrix; i.e.

b, » 1f J=ketl
azégg = hkj = hjk =4 a, » if j=k
. 0 , if |j-k| > L.

We have calculated the following values for a, and bk for Kassam's case.
2

Bliee ) F (E)
!ﬂé}g ol e 8[quf(tb>+f (t, )][F(f % '(f(r.? ) i
2t f(e,)
o Wl e e (1R (e, )-F(e,, )]
D‘(t:k 1)-F(t Y .LF(t )-F(tk"lw
St " Pk T TR(eF(E, )] [f Cpp1) Y ECE )28 (tk)f(t ) ]

B. Evaluation of Integrals of the Form

b
f xnfp(x)dx ; n=0,1,2,... ; b>a20
a

where fp(x) is the generalized Gaussian density of unit variance 032=1).

Recall that the above density is given by (for x0)

P
£ ) = T (ipacp) XL~ (/A())’)

kﬁ

where
A(p)=[r (1/p)/r (3/p)]

The integral to be evaluated is the following

b

Z (1/p)A(p) E

Pem (/AGNT
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Consider the following change of variables:

z = (x/a(P))P

2 x= A(p)z]'/p

- i % leyloys HP1) 4,

The integral of interest then becomes

(b/acp))P .
T (1/p)A(p) é;’(ﬂ . aenN” I /P, (/p-1) -z,
(a/A(p))p
L L®/AaE)?
_(A._(E).L r z(n/p-l)e.zdz

AP~ (o/a(p))P

2.I'(n I'(n/p; (b/A ¥ o«
_.(A.(.n.%‘).a_/.})l.el[(np(b ®)N")
T (n/p; (a/A(P))P)]

where ['(+) is the gamma function

and "' (-;+) is the incomplete gamma function.
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