
AD A069 bSI NAVAL RESEARCH LAS WASHINGToN 0 C F/S J2/jCOIPUTER—AIDED DISCOVERY OF A FAST MATRIX—MULTIPLICATION ALGQRI....ETC(U)MAY 79 RWJOI *450N . AMMCLOUSHLIN
UNCLASSIFIED ~~Lte 3994 NL

ENJD
DflF

FILMED

I 1~ ~~~

;.~ ~ DDI~2

I ‘.‘
HIH~~11111’ .25 IIIII~. w11 o .

4 4

MICROCOPY RESOLUTION TEST CI-I*T
NAT IOf’&AL BUREAU or STA NDAR DS-1963-~

—
~~~~~~~

• r

NRL Memorandum Report 3994

Computer-Aided Discovery of a
Fast Matrix—Multi plication Algorithm

RODN EY W. JOHNSON

Information Systems Staff
Communications Sciences Division - 

~~~ / 1,1

and

AILEEN M MCLOUGHLIN
~~

Tnmty College, Dublin, Ireland

May 7, 1979

S .
-
’•~-~-~- !~1, r~i~ \

NAVAL RESEARCH LABORATOR Y
Washington, D.C.

Approved fo, pub lic releur, disir~bution unlimited.

4~~i (~
‘
~

‘~~, J~~) ~~~

SEC UrnTY C L A S S I F I C AT I O N or TH IS PACE (~~,., D~A• ~~~~~~~

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. ~ IPO~~T NuMSE~ ,....._
- 12. GOVT A CC ESSIO N NO. S. R ECIPIENT S CAT AI.OG NUMSEA

NRL Memorandum Report 3994
.L T~~.e~~~~~Rt,oRT S PERIOD COVERED4. TITI.E (..d S,.bNtl.j

~ 9MPUTER4~DED~~~SC0VERY OF A,~~ ST /
Final repst1ø4~ an NRL problem.

MATRIX-MI~~TIPLI TION~~~~ ORITITh1 ~~~~ I. PERFORMING ORG. REPORT NUMSEN

~1

5. CONTRACT OR GRA NT NUMSCRI.)

(:.!~~~~d

~~~~ iey W.liohnson ~~*Aileen M.~dcLoughlin~~~~~

5. PERFORMING ORGANIZATION NAM E AND ADOIt E~~~ 
10. PROGRAM ELEMENT. PROJECT . T A SK

NRL Problem B02.35Naval Research Laboratory 

~~~~ 
A RE A S WOR K UNIT Nu MSERI

Washington, DC 20375 61153N, RRO14-09.41

I I CONTROLL ING o rrsc r NAM E AND ADDRESS IS . REPORT OATS

II. NU M S E R OF PA G E S— ,~ ~~

May 7. 1979

12

4. MOIfrIORING AGENCY NAME S AOD$555(II dlil.,.p t IM ~U Conl,.Slait Oft IS. SECURITY CLASS. (of dIe. ~s e$J

UNCLASSIFIED
(S..

SCHEDULE

1$. DISTRISUTION STATEMENT (OS lAb RSPOU)

Approved for public release; distribution unlimited .

I

IT. DIS~~R~eUTION STAT EM ENT (o(lb. .b.U.cl .&.,. d In SlecA 20. If ditf.rwl fr. RIpen)

~~~~T1~~1A~~~
JiL 

_ _ _ _ _ _ _ _

IS. SUPPLEMENTARY NOTES

IS. (CV WOROS (Conslnu. on rover.. aId. If  n.c...aT ond I d o n t if y  by block nus*slI

Matrix multiplicetion
Strassen ’s algorithm

-

~~~~~~~ 

Computational complexity

~~~~~~~~~~~~ (Continua on r.v.r•. .Sd. ii n.c ...ay a,d bd.nlify by block .~u SSl)

A computer program was written that searches for fast nsetrlx-muj tlplicetlon algorithms by seeking
I roots of a certain muitivariate polynomial. An algorithm was discovered that , like the one discovered

by Laderman , uses 23 noncommutative multipiit~tions in multiplying 3.by.3 matrices. The new algorithm
is demonstrably inequivalent to Laderman’s in a sense that is made precise.

~~~ g~i~
DO ~~~~~ 1473 EDITION 01 I NOV IS IS OUSOLETE

SS’N ~~t 0 2 ~ O I 4 4.4O l
SECURI TY CLAISIFICATION Or TNI$ PAGE (~~.so 0.,. l.. ,.~..g)

L ~~

—

.-w -..——---. ..— — - - -
~~~~~ -----.-

~~ —.--.-
~~~~~~~~~— -‘--5, 

i-~~~~=~~--- .~~
.-. -

~~~~~~~~~~

I

CONTENTS

1. INTRODUCTION . • . . i

II. FORI.! OF THE ALGORITHMS 2

III. EQUIVALENCE. • • t •  •  3

IV. SEARCH PROCEDURE 
5

V. THE NEW ALGORITHM  a 6
REFERENCES 

10

. . _ ±

~

T.:T1

~ 

_ 
_ _ _



_ _ _ _ _ _ _

I

COMPUTER-AIDED DISCOVERY OF A
FAST MATRIX-MULTIPLICATION ALGORITHM

I. INTRODUCTION

Multiplying two n—by—n matrices by straightforward evaluation of
the usual definition ,

Zik — 
~~~~~ 

X..Y.k
j 1

involves multiplying n3 pairs of numbers and performing a
proportionate number of other elementary operations, such as additions;
the total number of operations is 0(n3) as n increases. A celebrated
algorithm of Strassen ’s El] requires only Ø(~a) opera t ions , where the
exponent a is 1og27, or about 2.807. Strassen ’s is one of a class of
similar algorithms. Each algorithm of the class is based on a method
for reducing the problem of multiplying two n—by—n matrices to that of
multiplying M pairs of rn/N~

_by_rn,/N~ matrices,*vhere n is arbitrary
and M and N are fixed integers characteristic of the algorithm. The
total number of operations used by the algorithm is 0(n5), where
a = logNM (provided log~M > 2).

For Strassen , N 2 and M 7. Winograd [2] has shown Lhat when
N 2 , the best attainable M is 7.

An algorithm due to Laderinan [3] has N 3 and M 23. With N 3,
it is an open question whether smaller values of N are attainable;
improvement over the best known value of a would require M < 21. When
N 4, Strassen ’s algori thm achieves M 49, wi th N � 48 needed for
improvement. With N 5, Schachtel [4] has given an algori thm wi th
M — 103, and M � 89 is needed for improvement over known results.
Strassen ’s result has so far been surpassed only by Pan [5], who

C recently described a family of algorithms one of which has N 70 and
M 143640. The corresponding exponent a is log7~143640, or about
2.795.

The upper half-brackets denote the “ceiling function” — the least integer not less than n/N .
Note: Manuscript submitted March 12, 1979.

1

1TT~~~ .~~~~~~~~~~~~ -

The algorithms mentioned appear to be products of unaided human
ingenuity; Laderman, at least , explicitly denies having used a computer
in obtaining his result. We report here some results of using a
computer to search for such matrix—multiplication schemes. We wrote a
short APL version of the proposed search procedure to gain some
experience before deciding whether to devote substantial effort to
writing a more efficient version ; we set ourselves the goal of
reproducing the known results for N = 2 and 3. The search with N — 2
and N = 7 was successful ; the algorithm discovered is equivalent to
Strassen ’s in a sense that will be made explicit further down. The
search with N 3 and M 23 neither failed ner rediscovered Laderman ’s
algorithm ; it turned up an algorithm that, in the sense mentioned , is
inequivalent to Laderinan ’s. This algorithm lacks certain desirable
properties that Laderman ’s has, but is presented here for the sake of
any clues it may offer to the structure of the class of algorithms it
belongs to. We have not yet improved on previously known values of N
and N.

In the next section , partly to establish some notation, we give a
brief background discussion of the form of the algorithms we are
considering. In the third section we make explicit , as promised, a
notion of equivalence of two such algorithms. In tb~ fourth section,
we describe the search procedure, and in the fifth we present the
algorithm discovered.

II. FORM OF THE ALGORITHMS

Each of the algor ithms uses a scheme for mul tiplying N—by—N
matrices that is of the form

(1) — ~ ~(r)(j A~~
)
X..

’\(~~ B~~~Yrim mn ij i j i
~

kl kI;
r 1 \i,jl / \k,1 1 /

where A(r), B(r), and c(r) are fixed N—by—N matrices of real
numbers. Such a scheme does not depend on coimnutativity of the
elements X~ j and Tkl of the matrices being multiplied——it works
even when Xj~ and Ykl belong to some nonconmiutative algebra over
the real nuiii5ers. In particular, X1~ and ~k1 may be matrices: if
X and Y are n—by-n matrices of real numbers, and n is a multiple of N,
then we may, by partitioning, regard X and Y as N—by—N matrices whose
elements X3~ and

~kl
are (nfN)—by—(nfN) matrices. If n is not

originally a multiple of N, we may pad X and Y with rows and columns of
zeros until their size becomes a multiple of N. In any case, (1) gives
us a method for computing the product Z of X and Y by multiplying M
pairs of smaller matrices, of the size of X~ j and ~kl•

We compute
each of the products of smaller matrices by applying the same method

2

5,

recursively; ultimately the problem reduces to one of multiplying
1—by—i matrices.

Besides the N multiplications of pairs of (“smaller”) matrices, (1)
i!)vQlve9 several ~4tiplications of matrices by scalar coefficients

~~~~ ~~~~ and C~~~. For Strassen’s, Laderinan’s, and Schachtel’s

algorithms, but not for the one we will present here, the scalar
coefficients are all either 0, +1, or —1 , and the corresponding
multiplications consequently become trivial. This simple form for the
coefficients reduces the cost of an algorithm by a considerable
constant fac tor and is therefore important prac tically; however, the
asymptotic exponent a [s not affected : in the bound ~(~a) on the
cos t of the algor ithm, we still have a — loge whether the
coefficients are 0’s, l’s, and —i’ s or are arbi trary floating—point
numbers.

III. EQUIVALENCE

A necessary and sufficient condition for (1) to define Z as the
matrix product of X and Y, as opposed to some other bilinear function,
is that

N

(2) v’ ~~~~~~~~~~~ — ~ .6.  ~ij  ki mu ni jk lm
r 1

A number of simple transformations on the families A, B, and C of
coefficients carry solutions of (2) into other solutions of (2). Such
transformations may be considered as elementary equivalences between
the matrix—product algorithms corresponding to the families of
coefficients. Two of the simplest are the replacement

(3) A(r), B
(r)

, C
(r) ÷ A

(r)
, B

(r)
, ~~~~~~~~

for some permutation r + r ’ of the indices 1,...,M, and cyclic
permutation of A, B, C:

(4) A, B, C 4 C, A, B

A third such transformation is tçar~sposition together with rçversal of
the order of A, B, C (we write A~r) for the transpose of

(5) A(r), B
(r)

, ~~~ ÷ ~(r )
, ~(r), ~(r)

3 

_ _ _ _



—

A fourth is to choose real numbers ar, br, and cr such that
arbrcr = 1 for r = 1,...,M, and to map

(6) A(r), 8(r) ~
(r) 

~ a A (t
~~, b

rB
(r)

, c
rC
(r)

The f i f th and last such transformation we wil l  list is to choose three
nonsingular N—by—N matrices P, Q, and R and make the replacement

(7) A(r), B
(t)

, ~
(r) ÷ QA(r)R

_l
, ~~

(r)p—l , PC~
’
~Q

1 
.

We will call two solutions of (2), or the correspond ing algorithms,
equivalent if one can be turned into the other by a combination of
transformations of the types (3)——(7).

To illustrate the fifth type of transformation, we display the
coefficients of Strassen’s original algorithm [1] (Table 1) and those
of a version due to Winograd [6] , which uses the name number of
multiplications but fewer additions (Table 2). Strassen ’s algorithm is

Table 1 Table 2
Coefficients for Coefficients for

Strassen ’s Algorithm Winograd ’s Algorithm

r A
(r) 

B
(r) 

~
(r) 

r A
(r ) 

B(r) c(t)

1 0 1 0 1 0 —1 0 1 — 1  0 11 0 1  0 1  0 1  1 1 1  0 1  1 1

O 0 1 0 0 1 0 0 1 — 1  0 — 12 i i  0 0  0 — 1  2 0 1  — 1 1  0 0

1 0  0 1  0 0  3
_ l O _ l O 1 1

0 0 0 — 1  1 1 0 0 0 0 1 1

0 0 — 1 0 1 1  0 0 — 1 1 0 0
0 1  1 0  0 0  1 1  0 0  1 1

1 1  0 0 — 1 0 0 1  0 0  1 0
0 0  0 1  1 0  0 0  1 0  0 0

6 1 0  1 1  0 0  6 1 0  0 — 1  0 1
1 0  0 0  0 1  — 1 0  0 1  0 1

0 1  0 0  1 0  1 1  0 0  0 0
0 — 1  1 1  0 0  ~~~~ 0 1  1 0

4



transformed by (7) into Winograd ’s if we set

p — ~ 
0 ii 

~ — f 1 ol R — 
[— 1 0

L i i i ’  L °  1 J ’  [ 1 1

The two algorithms are thus equivalent in the sense we have defined .

IV. SEARCH PROCEDURE

Solutions of (2) correspond to zeros of

(8) (
~ A B(r)C(r) - 6 .6.  6

ij  kl mn ni jk lm
\ r 1

which is a nonnegative function of the A’s, the B’s, and the C’s. We
sought solutions of (2) by try ing to minimize (8). Although (8) is a
sixth—degree polynomial , it is only quadratic in the A ’s when the B’s
and C ’s are held fixed ; likewise it is quadratic as a function of the
B’s alone or of the C’s alone. The APL program minimizes (8) with
respect to the C’s while holding the A’s and B’s fixed , then minimizes
with respect to the B’s with fixed A’s and C’s, and continues thus
cyclically. The reason for so constructing the program was mainly
prograumiing convenience. One of the APL primitive functions, written
as ~~~, produces solutions to sets of linear equations , including
least—squares solutions to overdetermined sets. It is quite
straightforward to express in terms of this function the solution to
quadratic minimization problems such as minimizing (8) with respect to
the A’s. In addition to the cyclic program just described , a simple
straight—line search program was written. The two programs used in
alternation frequently proved to be more effective than either used
alone.

One disadvantage to seeking solutions of (2) by minimizing (8) is
that negative results are inconclusive: if the computation happens to
converge to a nonzero local minimum of (8), that is no proof that (8)
does not have a zero elsewhere. Another difficulty was more
troublesome in practice than nonzero local minima: “zeros at
infinity.” It is possible for certain of the A ’s, B’s, and C’s to tend
to infinity in such a way that (8) tends to zero. This difficulty was
countered with a modification of the expression the programs were
attempting to minimize ; a tet~m

~ ~ 
+ (3~~~)2 + (c~~~) 2)

r 
i j 5



was added to (8). The coefficient E was adjusted by trial and error,
interactively, so that, if possible, the magnitudes of the A’s, B’s,
and C’s would stay bounded or decrease at the same time that the value
of (8) was decreasing. If a suitable value for c could not be found,
new random starting values were chosen for the A’s, B’s, and C’s, and
the search was begun again.

The procedure just described is unlikely to lead to a solu tion of
(2) in small integers, even if one exists; with any integer solution,
transformations (6) and (7) associate a whole family of equivalent
solutions , most of which do not consist of integers. Functions for
performing transformations of the forms (6) and (7) were written. When
the minimization procedure appeared to be converging to a zero of (8),
these functions were used in an attempt to assure that the solution
would be expressible in a simple form——if possible, in terms of l’s,
0’s, and —l’ s.

V. THE NEW ALGORITHM

The solution we obtained , after  simp lif ication, is shown in Table
3. We have not succeeded in transforming the solution to a form
consisting entirely of small in tegers: there remain several rational
numbers with 2’s and 3’s in their numerators and denominators. In this
respect, and in general lack of symmetry, this solution compares
distinctly unfavorably with the coefficients of Laderman’s algorithm,
which are given in Table 4. The algorithm resulting from the new
solution does, however , have the same exponent a = 1og323 as
Laderman ’s, and it is provably inequivalent to Laderinan’s.

To prove inequivalence, we point out that, except for permut~tions,
the trarisform~tions (3)——(7) leave the ranks of the matrices ~~~~
B(r), and C(r.~ unchanged. All the matrices ~,n Table 3 have rank 1
or 2. But six of the matrices in Table 4 (AU) , for instance) have
rank 3. Therefore, no combination of transformations (3)——(7) can
change the solution in Table 4 into that in Table 3. That is, the two
algorithms with coefficients in Tables 3 and 4 are inequivalent in th~
sense we have defined.

6



-~~ ~~~~-.. - .—-.—~~~ ~~ 5,~

Table 3——Coefficients for New Algorithm

(r) (r) Cr)
r A B C

1 0 —1 1 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0~~~ 0 0 0

0 0 0 0 0 0 0 0 0
2 1 1 — i 1 1 0 1 1 0

0 0 0 0 0 0 0 0 0

1 —i —l 0 1 —l 0 0 0
3 — i 1 1 0 0 0 1 0 0

1/3 1 1 0 0 0 0 0 0

0 1 0 0 0 0 1 1 0
4 0 0 0 1 0 0 —i —1 0

0 0 0 0 0 0 0 0 0

0 —i 0 0 —1 1 0 0 1
5 0 1 0 —l —1 0 1 0 —l

1/3 1 0 0 0 0 0 0 2

0 0 1 0 1 —i 0 1 0
• 6 0 0 — i 0 0 0 0 —l 0

0 0 — 1  0 1 1 3/2 3/2 0

0 0 0 0 0 0 0 0 2
7 0 0 0 0 1 1/2 0 0 —2

o —i 1 0 0 0 0 0 2

1 0 0 0 0 —i 0 0 0
8 —i 0 0 0 0 0 —1 0 0

o 0 0 0 0 0 — i 0 0

0 0 1 1 0 0 1 1 0
9 0 0 0 0 0 0 —l —i 0

0 0 0 1 0 0 1 1 0

0 1 0 0 0 0 0 0 0
10 0 0 0 0 0 —1 0 0 0

• 0 0 0 0 0 0 —1 —l 0

0 0 0 —1 —1/3 1/3 0 3/2 —l
Ii —1 0 1 —2 / 3 —2 / 3 0 —3/2 —3/2 0

0 0 1 -: — i 0 0 0 0

0 0 0 0 0 0 0 0 —2
12 0 0 0 1 1 0 —1 0 1

—1 / 3 —1 1 0 0 0 0 0 —2

7

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


-~~~~~
.. ,. - . —~~~~~~~~~~~~~~~~ .- - - - — - ~~~~~~~~

Table 3 (continued)——Coefficients for New Algorithm

r A
(r)

B~
’
~ ~

(r)

0 0 —2/3 1 1 — 1 0 3/2 0
13 —1/3 0 1 0 0 0 —3/2 —3/2 0

O 0 1 1 1 0 3 3 0

O 0 0 0 0 0 0 —l 1
14 1 0 —1 1 1 0 0 0 0

0 0 0 1 1 0 0 0 0

0 0 —1/2 1 1/2 —1/2 0 0 0
15 0 0 3/2 0 0 0 0 0 0

0 0 3/2 1 1/2 —1/2 —2 —2 0

0 0 0 —i —1/3 1/3 0 0 —1
16 1 0 —1 1/3 1/3 0 0 0 0

1 0 —1 0 0 0 0 0 0

O -1 0 0 0 0 0 —l —1
17 0 1 0 —1 0 1/2 0 1 1

0 0 1 0 0 —1/2 0 0 —2

0 0 0 —1 —1 0 0 0 0
18 1 0 0 0 0 0 —1 —l 0

0 0 0 —1 —1 0 — i —1 0

0 —1 0 0 0 0 0 —1/2 1/2
19 0 1 0 0 0 —1 0 1/2 —1/2

0 0 0 0 0 —l 0 —1 1

0 0 0 0 0 0 0 1 —1
20 0 0 0 0 —1 —1/2 0 —1 1

0 0 —1 0 —1 —1/2 0 0 0

0 0 0 0 —1 —1/2 0 0 0
21 0 0 0 0 0 0 0 0 —2/3

1 0 0 0 0 0 0 0 —2/3

0 1 —1 0 0 0 0 —1 0
22 0 —1 1 0 0 0 0 1 0

0 0 0 0 0 —i 0 — 1 0

0 1 0 0 — 1 1 0 0 1
23 0 —1 0 0 —l —1 0 0 —1

0 — 1 0 0 0 0 0 0 2

8

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ , --.,



- ~~~~~~ —.. .

Table 4——Coefficients f.ir Laderman ’s Algorithm

r A~
’
~ B

(r) r A
(r) 

BT!~
)

l i i  0 0 0  0 0 0  0 0 1  0 0 0  0 0 1
1 — 1 —1 0 0 1 0  1 0 0  1 3 0 0 0  0 1 0  0 0 1

0 — 1 —1 0 0 0  0 0 0  0 0 — 1  0 — 1 0 0 0 0

1 0 0  0 — 1 0 0 1 0  0 0 1  0 0 0  1 1 1
2 — 1 0 0  0 1 0  0 1 0  1 4 0 0 0  0 0 0  1 0 1

0 0 0  0 0 0  0 0 0  0 0 0  1 0 0  1 1 0

0 0 0 — 1 1 0  0 1 0  0 0 0  0 0 0  0 0 0
3 0 1 0  1 — 1 —1 0 0 0  1 5 0 0 0  0 0 0  1 0 1

0 0 0 — 1 0 1  0 0 0  0 1 1  — 1 1 0  0 0 0

— 1 0 0  1 — 1 0 0 1 0  0 0 — 1  0 0 0  0 1 0
4 1 1 0  0 1 0  1 1 0  1 6 0 1 1  0 0 1  0 0 0

0 0 0  0 0 0  0 0 0  0 0 0  1 0 — 1  1 1 0

0 0 0 — 1 1 0  0 0 0  0 0 1  0 0 0  0 1 0
5 1 1 0  0 0 0  1 1 0  1 7 0 0 — 1  0 0 1  0 0 0

0 0 0  0 0 0  0 0 0 0 0 0  0 0 - 1  0 1 0

1 0 0  1 0 0  1 1 1  0 0 0  0 0 0  0 0 0
6 0 0 0  0 0 0  1 1 0  1 8 0 1 1  0 0 0  0 0 0

0 0 0  0 0 0  1 0 1  0 0 0 — 1 0 1  1 1 0

— 1 0 0  1 0 — 1  0 0 1  0 1 0  0 0 0  1 0 0
7 0 0 0  0 0 1  0 0 0  1 9 0 0 0  1 0 0  0 0 0

1 1 0  0 0 0  1 0 1  0 0 0  0 0 0  0 0 0

— 1 0 0  0 0 1  0 0 1  0 0 0  0 0 0  0 0 0
8 0 0 0  0 0 — 1  0 0 0  2 0 0 0 1  0 0 0  0 1 0

1 0 0  0 0 0  0 0 1  0 0 0  0 1 0  0 0 0

0 0 0 - 1 0 1  0 0 0  0 0 0  0 0 1  0 0 0
9 0 0 0  0 0 0  0 0 0  21 1 0 0  0 0 0  0 0 0

1 1 0  0 0 0  1 0 1  0 0 0  0 0 0  0 1 0

1 1 1  0 0 0  0 0 0  0 0 0  0 1 0  0 z •’. O
10 0 — 1 —1 0 0 1 0 0 0 22 0 0 0 0 0 0 0 0 1

— 1 —1 0 0 0 0  1 0 0  1 0 0  0 0 0  0 0 0

0 0 0 — 1 0 1  0 0 1  0 0 0  0 0 0  0 0 0
1 1 0 0 0  1 — 1 —1 0 0 0  2 3 0 0 0  0 0 0  0 0 0

0 1 0  — 1 1 0  0 0 0  0 0 1  0 0 1  0 0 1

0 0—1 0 0 0 0 0 1
12 0 0 0 0 1 0 1 0 1

0 1 1 i — i  0 0 0 0

9

----~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ Ii .. . .——-,~~~~. 
~~~~~~~~~~~ . ,,-


____________ -~~ ~~-.-,-.
.-- ~~~~

. -. -
~~ --~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~—. -,•--——- — —~~~~~-~~ -

REFERENCES

1. V. Strassen , “Gaussian Elimination is not Optimal,” Numer. Math.
13, 354——356 (1969).

2. S. Wi nograd , “On Multiplication of 2 x 2 Matrices,” Linear Algebra
and Appl. 4, 38l——388.

3. 1. Laderman, “A Nonconunutative Algorithm for Multiplying 3 x 3
Matrices Using 23 Multi plications ,” Bull. Amer. Math. Soc . 82 ,
126—— 128 (1976) .

4. C. Schachte l , “A Noncoimnutative Algorithm for Multiplying 5 x 5
Matrices Using 103 Multiplications,” Information Processing Lett.
7 , 180——182 (1978) .

5. V. Ya. Pan, “Strassen ’s Algorithm is not Optimal. Trilinear
Technique of Aggregating, Uni ting and Canceling for Constructing
Fast Algorithms for Matrix Operations,” Proc. 19th Annual Symp. on
Foundations of Computer Science, Oct. 1978, pp. 166——176.

6. S. Winograd, “Some Remarks on Fast Multiplication of Polynomials,”
in Complexity of Sequential and Parallel Numerical Algorithms, J.
Traub (ed.), Academic Press, New York , 1973.

10

.

~

* : ~~~

-- .

~~~

--  


