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COMPUTER-AIDED DISCOVERY OF A
FAST MATRIX-MULTIPLICATION ALGORITHM

I. INTRODUCTION

Multiplying two n-by-n matrices by straightforward evaluation of
the usual definition,

n
Zeo Wi X ¢
i=1

involves multiplying n3 pairs of numbers and performing a
proportionate number of other elementary operations, such as additions;
the total number of operations is O(n3) as n increases. A celebrated
algorithm of Strassen's [1] requires only 0(n?) operations, where the
exponent a is logg7, or about 2.807. Strassen's is one of a class of
similar algorithms. Each algorithm of the class is based on a method
for reducing the problem of multiplying two n-by-n matrices to that of
multiplying M pairs of 'n/N7-by-"n/N' matrices,” where n is arbitrary
and M and N are fixed integers characteristic of the algorithm. The
total number of operations used by the algorithm is 0(n?), where

a = logyM (provided logyM > 2).

For Strassen, N = 2 and M = 7. Winograd [2] has shown that when
N = 2, the best attainable M is 7.

An algorithm due to Laderman [3] has N = 3 and M = 23. With N = 3,
it is an open question whether smaller values of M are attainable;
improvement over the best known value of a would require M < 21. When
N = 4, Strassen's algorithm achieves M = 49, with M < 48 needed for
improvement. With N = 5, Schachtel [4] has given an algorithm with
M = 103, and M < 89 is needed for improvement over known results.
Strassen's result has so far been surpassed only by Pan [5], who
recently described a family of algorithms one of which has N = 70 and
M = 143640. The corresponding exponent a is logygl43640, or about
2.795.

*The upper half-brackets denote the “ceiling function” — the least integer not less than n/N.
Note: Manuscript submitted March 12, 1979,




The algorithms mentioned appear to be products of unaided human
ingenuity; Laderman, at least, explicitly denies having used a computer
in obtaining his result. We report here some results of using a
computer to search for such matrix-multiplication schemes. We wrote a
short APL version of the proposed search procedure to gain some
experience before deciding whether to devote substantial effort to
writing a more efficient version; we set ourselves the goal of
reproducing the known results for N = 2 and 3. The search with N = 2
and M = 7 was successful; the algorithm discovered is equivalent to
Strassen's in a sense that will be made explicit further down. The
search with N = 3 and M = 23 neither failed ncr rediscovered Laderman's
algorithm; it turned up an algorithm that, in the sense mentioned, is
inequivalent to Laderman's. This algorithm lacks certain desirable
properties that Laderman's has, but is presented here for the sake of
any clues it may offer to the structure of the class of algorithms it
belongs to. We have not yet improved on previously known values of N
and M.

In the next section, partly to establish some notation, we give a
brief background discussion of the form of the algorithms we are
considering. In the third section we make explicit, as promised, a
notion of equivalence of two such algorithms. In the fourth section,
we describe the search procedure, and in the fifth we present the
algorithm discovered.

II. FORM OF THE ALGORITHMS

Each of the algorithms uses a scheme for multiplying N-by-N
matrices that is of the form

M N N
e (r) (r) (r)
b Zon = 2 O | 2 A3 R )| 2 Bl V)
r=l i,3=1 k,1=1

where A(r), B(r), and ¢(r) are fixed N-by-N matrices of real

numbers. Such a scheme does not depend on commutativity of the
elements Xj; and Yg) of the matrices being multiplied--it works

even when Xj; and Yy belong to some noncommutative algebra over

the real numbers. In particular, X;j and Yy) may be matrices: if

X and Y are n-by-n matrices of real numbers, and n is a multiple of N,
then we may, by partitioning, regard X and Y as N-by-N matrices whose
elements Xjj and Yi) are (n/N)-by-(n/N) matrices. If n is not
originally a multiple of N, we may pad X and Y with rows and columns of
zeros until their size becomes a multiple of N. In any case, (1) gives
us a method for computing the product Z of X and Y by multiplying M
pairs of smaller matrices, of the size of Xjj and Yi). We compute

each of the products of smaller matrices by applying the same method

-




recursively; ultimately the problem reduces to one of multiplying
1-by-1 matrices.

Besides the M multiplications of pairs of ('smaller") matricee, (1)
x?vglvez geveral ?ugtiplicationa of matrices by scalar coefficients
r r

A j° Bkl , and C . For Strassen's, Laderman's, and Schachtel's

algorlthms, but not for the one we will present here, the scalar
coefficients are all either 0, +1, or -1, and the corresponding
multiplications consequently becone trivial. This simple form for the
coefficients reduces the cost of an algorithm by a considerable
constant factor and is therefore important practically; however, the
asymptotic exponent a is not affected: in the bound 0(n®) on the

cost of the algorithm, we still have a = logyM whether the
coefficients are 0's, 1's, and -1's or are arbitrary floating-point
numbers.

III. EQUIVALENCE

A necessary and sufficient condition for (1) to define Z as the
matrix product of X and Y, as opposed to some other bilinear function,
is that

(r) (r) (r)
(2 ZAU k1 S * Ynifptie ¢

r=1

A number of simple transformations on the families A, B, and C of
coefficients carry solutions of (2) into other solutions of (2). Such
transformations may be considered as elementary equivalences between
the matrix-product algorithms corresponding to the families of
coefficients. Two of the simplest are the replacement

(3) AP () o) ) e )

for some permutation r * r' of the indices 1,...,M, and cyclic
permutation of A, B, C:

(4) A, By 8 * 8, A B .

A third such transformation is t gsposition together with rgversal of
the order of A, B, C (we write A(r) for the transpose of A'T/)

(5) A(r), B(r), c(r) e E(r), i(r), K(r)




A fourth is to choose real numbers a,, b,., and c, such that
agbpcy, =1 for r = 1,...,M, and to map

(6) A(r)’ 3(r) c(r) g A(r)’ b B(t), b c(r) ]
r r r

The fifth and last such transformation we will list is to choose three
nonsingular N-by-N matrices P, Q, and R and make the replacement

(r) (r)

N A, g0 ¢ i QA(r)R'l, RB(r)P-I, Pc(r)Q--l j

We will call two solutions of (2), or the corresponding algorithms,
equivalent if one can be turned into the other by a combination of
transformations of the types (3)--(7).

To illustrate the fifth type of transformation, we display the
coefficients of Strassen's original algorithm [1] (Table 1) and those
of a version due to Winograd [6], which uses the same number of
multiplications but fewer additions (Table 2). Strassen's algorithm is

Table 1 Table 2
Coefficients for Coefficients for
Strassen's Algorithm Winograd's Algorithm
3 A(r) B(f7' c(r) ¥ A(r) ﬁ(f) c(r)
1 1 0 1 0 1 0 1 -1 0 1 -1 01

01 0 1 0 1 } A 01 i [ |
2 0 o0 1 0 01 5 0 0 1 -1 0 -1
1 1 0 0 0 -1 01 -1 1 0 0
3 1 0 0 1 00 3 -1 0 -1 0 1 I
00 0 - ek 0 0 00 1 1
4 0 -1 0 1 1 4 0 0 -1 1 0 0
0 1 1 0 0 0 Vs k 0 0 ) |
5 1 1 0 0 -10 5 01 0 0 1 0
00 0 1 1 0 0 0 1 0 00
6 -1 0 1 1 0 o0 6 1 0 0 -1 0 1
1 0 0 0 0 1 -1 0 0 1 01
7 0 1 0 0 1 0 ; I 14 0 0 00
0 -1 1 1 0 0 -1 -1 01 1 0
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transformed by (7) into Winograd's if we set

¢ o) Ml geaibllly i frl B

The two algorithms are thus equivalent in the sense we have defined.

IV. SEARCH PROCEDURE

Solutions of (2) correspond to zeros of

)

y

i 2 ()

1j kl mn ni jk 1m

r=1

which is a nonnegative function of the A's, the B's, and the C's. We
sought solutions of (2) by trying to minimize (8). Although (8) is a
sixth-degree polynomial, it is only quadratic in the A's when the B's
and C's are held fixed; likewise it is quadratic as a function of the
B's alone or of the C's alone. The APL program minimizes (8) with
respect to the C's while holding the A's and B's fixed, then minimizes
with respect to the B's with fixed A's and C's, and continues thus
cyclically. The reason for so constructing the program was mainly
programming convenience. One of the APL primitive functions, written
as B, produces solutions to sets of linear equations, including
least-squares solutions to overdetermined sets. It is quite
straightforward to express in terms of this function the solution to
quadratic minimization problems such as minimizing (8) with respect to
the A's. In addition to the cyclic program just described, a simple
straight-line search program was written. The two programs used in
alternation frequently proved to be more effective than either used
alone.

One disadvantage to seeking solutions of (2) by minimizing (8) is
that negative results are inconclusive: if the computation happens to
converge to a nonzero local minimum of (8), that is no proof that (8)
does not have a zero elsewhere. Another difficulty was more
troublesome in practice than nonzero local minima: '"zeros at
infinity." It is possible for certain of the A's, B's, and C's to tend
to infinity in such a way that (8) tends to zero. This difficulty was
countered with a modification of the expression the programs were
attempting to minimize; a term

()42 , (g(0)42 , (o(r))2
DI RO NS R CHA
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was added to (8). The coefficient € was adjusted by trial and error,
interactively, so that, if possible, the magnitudes of the A's, B's,
and C's would stay bounded or decrease at the same time that the value
of (8) was decreasing. If a suitable value for € could not be found,
new random starting values were chosen for the A's, B's, and C's, and
the search was begun again.

The procedure just described is unlikely to lead to a solution of
(2) in small integers, even if one exists; with any integer solution,
transformations (56) and (7) associate a whole family of equivalent
solutions, most of which do not consist of integers. Functions for
per forming transformations of the forms (6) and (7) were written. When
the minimization procedure appeared to be converging to a zero of (8),
these functions were used in an attempt to assure that the solution
would be expressible in a simple form~-if possible, in terms of 1's,
0's, and ~1's.

V. THE NEW ALGORITHM

The solution we obtained, after simplification, is shown in Table
3. We have not succeeded in transforming the solution to a form
consisting entirely of small integers: there remain several rational
numbers with 2's and 3's in their numerators and denominators. In this
respect, and in general lack of symmetry, this solution compares
distinctly unfavorably with the coefficients of Laderman's algorithm,
which are given in Table 4. The algorithm resulting from the new
solution does, however, have the same exponent a = log323 as
Laderman's, and it is provably inequivalent to Laderman's.

To prove inequivalence, we point out that, except for permutgtiona,
the transformations (3)--(7) leave the ranks of the matrices A(T),
B(r), and cf(r unchanged. All the matrices in Table 3 have rank 1

or 2. But six of the matrices in Table 4 (A(l , for instance) have
rank 3. Therefore, no combination of transformations (3)--(7) can
change the solution in Table 4 into that in Table 3. That is, the two
algorithms with coefficients in Tables 3 and 4 are inequivalent in the
sense we have defined.




Table 3--Coefficients for New Algorithm

C(r)

B(r)

A(r)

O - O

oo

O -0

oo

~ OO0

T —__—__—

oo

— O -

- O O

- OO

3/2 -1
0

-3/2 -3/2 0
0

0
0

-1/3 1/3
0

-2/3 -2/3 0
=1

-1
-1




Table 3 (continued)--Coefficients for New Algorithm

c(r)

B(r)

A(r)

3/2 0
0

-3/2 -3/2 0
3

0
3

- OO

(==

14

1/2 -1/2

0
1/2 -1/2

1
0
1

1/3

=1/3
1/3 0
0 0

1/3

=1
0

0
=1
=1

0
=1
-1

-1 0
0 0
=1 0

=1
0
=1

-1/2 1/2
1/2 -1/2
-1 1

0
0
0

© oo

0
-1/2
-1/2

0
-1
=1
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