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Multivariate Classes In Reliabilicy Thcoryl

by

\\\\\\ Henry W. Block and Thomas H. Savits

Four classes of lifetimes which have been useful in describing situations
where systems are assumed to have independent univariate component lifetimes
are: ‘1)‘th¢ increasing failure rate (IFR) class; i)che increasing failure rate
average (IFRA) cla:a;'ﬂ)gthe new better than used (NBU) class; and ii’ihc new
better than used in expectation (NBUE) class. These classes are reviewed and
also multivariate analogs of the IFR and IFRA cases are discussed. New

multivariate definitions of NBU and NBUE are introduced.
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1. Introduction. In many situations where the lifetimes of systems and components

are consiéerea, éaese lifetimes do not have exponential distributions. Rather,
these lifetimes reflect the effect of wearout. Four alternative classes of
lifetimes which describe various types of wearout and have been extensively
studied are: 1) the increasing failure rate (IFR) class; 2) the increasing
failure rate average (IFRA) class; 3) the new better than used (NBU) class; and
4) the new better than used in expectation (NBUE) class, In the case where the
component lifetimes can be assumed to be independent these classes have proven
to be very useful. Recently in an attempt to describe the more realistic
situations where this independence assumption cannot be made, various multi-
variate versions of the above classes have been proposed.

In Section 2 we shall discuss the univariate classes and their properties,
Then we shall discuss the most important multivariate analogs of the IFR (Section
3) and the IFRA (Section 4) classes. Properties of these classes as well as
their relation to other proposed classes will be given, In Section 5, new
multivariate definitions of NBU and NBUE classes will be given and these will be
discussed.

Throughout the paper, the terminology and notation of Barlow and Proschan
[3] will be used with the exception that a structure function ¢(x) will be
called monotone if it is nondecreasing in each of its components and in addition

$(0) = 0 and ¢(1) = 1.

2. Univariate Classes. The most important and most studied class of lifetimes

which describe wearout is the class of distributions with increasing failure
rate. This concept has been used in actuarial science, in statistics, and in
engineering reliability where it is sometimes called "increasing hazard rate'.

Let T be a random lifetime with distribution function F(x) = P{T < x} and
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t
E - B F(0) = O*, survival function F(x) = 1 - F(x) and density f(x) (if it exists).
| Then T (or F) is said to have increasing failure rate (IFR) if
P +
(xp;xTééT?' t) increases in x > 0 for t > 0. (2.1)

This means that, given that T has survived beyond time x, the probability that
it fails within the next t units of time increases as x increases, i.e. the older

the lifetime, the more likely it is to fail. A lifetime is said to have

decreasing “ailure rate (DFR) if the quantity in (2.1) decreases in x > 0 for

t > 0. The definition of IFR, more often encountered, which is an instantaneous
version of (2.1) and is equivalent to it if the density exists, is that the

failure rate function

r(x) = £(x) increases in x > 0, (2.2)
F(x)

A corresponding statement holds for DFR. Another way of writing (2.1), which

is useful in the multivariate cases to be described, is that

F(§:+ t) = HI>x+ o) = ]~ Px <Tsx+t) decreases in x 3 0 for t & 0.
F(x) P{T > x} P{x < T} (2.3)

This amounts to saying that the survival rate decreases as the age of the

component increases. Similarly an increasing version of (2.3) (i.e. increasing

survival rate) is equivalent to DFR. Still another version of IFR (DFR) is that

the function

log F(t) is concave (convex). (2.4)

The classes of IFR and DFR lifetimes satisfy the following properties:

*
The usual assumption is that F(0~) = 0. We make the simplifying assumption

F(0) = 0 here for the purpose of this exposition. It leads to slightly simpler

definitions.




1) the only lifetimes which are both IFR and DFR are the exponential lifetimes;
ii) convolutions of IFR lifetimes are IFR (this means that for independent IFR
lifetimes, if a failed component is replaced by a spare, then the accumulated
lifetime is IFR). See Barlow and Proschan [3] for additional properties and
discussion.

The second major class of lifetimes we will discuss is the class whose

lifetimes have increasing failure rate average (IFRA). These are the lifetimes

whose survival function satisfies
Fat) > F'(t) for all 0 < a < 1 and all t > Q. (2.5)

If the density exists it is not hard to show that this is equivalent to the

more intuitive condition that

increases in t > 0 (2.6)

where r(x) is the failure rate function of (2.2), and so (2.6) gives that the
average failure rate increases. Another equivalent form of IFRA, which was used
by Block and Savits :ﬁ] to establish that the convolution of IFRA lifetimes

is IFRA, 1is that
h“(x/u) dF(x) > { & h(x) dF(x)}u. all 0 < a < 1 (2.7)
0 -~ O -

and all nonnegative nondecreasing functions h.

The class of IFRA lifetimes which is wider than (i.e. contains) the class
of IFR lifetimes satisfies the following properties: 1) for monotone systems
with independent IFRA lifetimes, the system lifetime is IFRA; ii) the IFRA class
is the smallest class containing the exponential distributions which is closed
under the formation of coherent systems and limits in distribution (see Ross [24]
for an extension to IFRA processes); iii) the lifetime of a device arising as a

consequence of a natural nonfatal shock model is IFRA (see Theorem 3.8, p. 94,




e N 3T <A A B 1 e

Barlow and Proschan [3]); iv) convolutions of IFRA lifetimes are IFRA (see
Rlock and Savits [5]). For other properties of this class including statistical
procedures see Barlow and Marshall [2], Barlow [1], and Doksum [13], [14].

Still wider classes of lifetimes are those which are new better than used
(NBU) and new better than used in expectation (NBUE). A lifetime T is NRU if
the probability that it will survive when new is greater than the probahility that
it will survive given that it is any other age, i.c.

Px+t) =
PIT>x+t | T>x) = ”(§Y;T~) < F(t) = P{T > t} for all x, t > 0. (2.8)

A lifetime is NBUE {f an integrated version of (2.7) is satistied, i.e.

o~ e

f: F(x) dx < u F(t) for t > 0 (2.9)

where u = IO F(x) dx is assumed to be finite.

Another way of expressing that a lifetime T is NRUE is that
ECT -t | T>¢t) <u for t >0 (2.10)

which means that given any fixed age the residual mean lifetime is smaller than
the mean lifetime.

Both the NBU and the NBUE c¢lasses have been shown to be useful in the
solution of certain maintenance problems. In particular, lifetimes are NBU if
replacement policies are to be beneficial in a certain sense. The NRUE life-
times are the largest class for which the number of failures observed in a
"replace at failure only" policy is larger stochastically in the long run then
when the process starts. See Chapter 6 of Barlow and Proschan [3] for details.
Another situation where NBU arises is given by Ross [23] who shows that for a
monotone system with independent, exponential components and expunential repair

times, the time until first system failure is NBU. Furthermore, monotone svstems




with independent NBU components have NBRU lifetimes and convolutions of NRBRU
(NBUE) lifetimes are NBU (NBUE). Tests for NBU and NBUE have been given by j

Hollander and Proschan [18], [19].

3. Multivariate IFR. There have been several different multivariate extensions
of the concept of increasing failure rate. Most of these have been based on one
of two notions. The first of these arises from a generalization of (2.3) and a
second from a generalization of (2.4).

Let T = (T},..., Tn) be a multivariate lifetime and let F(t) = F(t

P tn)

= P(Tl > tl..... Tn > tn} be the survival function. Also assume that
F(g) = 1 where 0 = (0,..., 0). Since (2.3) is interpreted as a device being

less likely to survive as it ages, a multivariate generalization of this is that

El%iiTLl decreases in x > 0 for all t > 0. 3.1

This condition, however, is ambiguous since X can increase in various ways and
t can be restricted in certain ways. Several versions of (3.1) will now be
given. It is also assumed that similar conditions hold for all marginal

distributions. Here 1 = (1,..., 1).

(a) Fxx + tl) gdecreases in x

oD > 0 for all t > 0.

X

) EXL* L) decreases in x > 0 for all t > 0. :
(x1) ]

(c) z tx§ ) decreases in x > 0 for all t > 0.

v
v

(d) E%(i)ﬂ decreases in x > 0 for all t > 0.
X
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Another version in a similar spirit, although not exactly in the same form

as (3.1) is

F((x; + )5 %)
(e) for £ = Y,..., 0, — decreases in X > 0 for all t > 0
F(x) i
and all X 2 0, J # 1.

Here the notation ((xi + t)i' X) means (xl,..., X 10 xi + t, xi+1,..., xn).
Version (c) is due to Harris [17] and to Brindley and Thompson [11]; (a), (b)
and (d) are due to Marshall [21]; and (e) (in another form) is due to Johnson
and Kotz [20]. Many other versions are possible, but it appears that of all of
these (c) is perhaps the most important. One reason for this is that (c)

captures the idea of the original model, in that time for the components runs

at the same rate (i.e. t = t, = osee = tn). Furthermore the different x

1 12rres X

allows for the possibility that the components are of different ages, as is
often the case in practice. Concept (c) is designated MIFR and is entensively
discussed in Barlow and Proschan [3]. A dual concept with increasing replacing
decreasing is called MDFR. Other reasons for the importance of MIFR are the

following properties.

(1) A univariate MIFR lifetime is IFR.

(ii) The union of independent sets of MIFR lifetimes is MIFR.

(iii1) The marginal lifetimes of MIFR lifetimes are MIFR.

(iv) Series systems formed with MIFR lifetimes are MIFR.

(v) A lifetime is MIFR and MDFR if and only if it has the multivariate
exponential distribution known as the MVE (see Chapter 5 of Barlow and
Proschan [3]).

The second notion upon which other versions of multivariate IFR has been

based is a generalized form of (2.4). These versions were given by Marshall [21]

and involve the idea that log F (x vy xn) is concave in some sense. This

: il
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concavity can be taken in the usual sense or along various curves and lines in

n

R". The properties of the various classes which emerge have been briefly

discussed by Marshall [?ﬂ -

4. Multivariate IFRA. The central theoretical role played bv the univariate

TFRA class derives from the properties satisfied bv this class (see i) - iv)
following (2.7)) rather than from the fact that it has an increasing average
failure rate. It is not surprising then, that various multivariate versions of
IFRA have been defined using a generalization of one of these basic properties.
The classes of lifetimes which result from these generalizations, however, all
fail to satisfy some basic property. Block and Savits [8] have proposed a class
of multivariate TFRA lifetimes which is based on a mathematical property of
univariate IFRA lifetimes. This class contains a rich variety of multivariate
lifetimes and also satisfies all of the fundamental properties which one would
expect for a multivariate IFRA class.

The class of multivariate lifetimes proposed by Block and Savits is given
in the following definition which is a generalization of the univariate property

(2.7).

Definition 4.1. Tet T = (T1...., Tn) be a nonnegative random lifetime. The

random vector T is said to be MIFRA if
EY [h(T)) < E[h%(T/a)] (4.1)

for all continuous nonnegative nondecreasing functionsh and all 0 < a < 1.

Other conditions which have been proposed for multivariate TFRA are given
in the next definition. As in the previous material, we rely heavily on the
notation and terminology of Barlow and Proschan [3] with the one exception
mentioned in Section 1. The life function T corresponding to a structure function

¢ is called monotone (coherent) if ¢ is monotone (coherent). See Esary and

— "
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Marshall (15] for a discussion of life functions.
Definition 4.2. Let T = (Tl""' Tn) be a nonnegative random lifetime with
survival function F(t) = P{T >> t} where ">>" means strict inequality holds
for each component. The vector T is said to satisfy condition __ 1if the ;
condition following letter _ is satisfied:
—0 —
A: F (t) < F(at) for all 0 < a < 1 and all 0 < t.
B: T is such that each monotone system formed from T is univariate IFRA.
C: T is such that there exist independent IFRA random variables xl,.... xk
and monotone life functions Ty i=1,..., m such that Ti | (xl,..., Xk)
for i =1,..., m.
Z: T is such that there exist independent IFRA random variables XI,..., xk
and nonempty sets S, of {1,..., k} such that e X xj for i =1,..., m.
jeSi
D: T is such that there exist independent IFRA random variables xl,..., xk
and nonempty subsets S, of {1,..., k} such that T, = min X, for 1 = 1,..., m.
jeSi
E: T is such that the minimum of any subfamily of Tl...., Tm is IFRA.
F: T is such that min airi is IFRA for all a, > 0, i=1,..., m,

o !

Conditions A,B,C,D,E,F have been given by Esary and Marshall (16] and condition Z

was given by Block and Savits [9].

The following relationships hold between MIFRA and the seven conditions

(see Block and Savits [10] for proofs and examples).
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With the exception of the implication X=¢(§(uh1ch is conjectured to be false),
Block and Savits [10] have shown that no other implications are possible.
The following properties are basic for a class of multivariate 1IFRA

distributions.

(P1): Closure under the formation of monotone systems.
(P2): Closure under limits in distribution.

(P3): Marginals are in the same class.

(P4): Closure underconjunction of independent lifetimes.
(P5): Closure under scaling.

(P6): Closure under convolution.

It has been shown by Block and Savits [8] that the MIFRA class satisfies all

six of these. Furthermore in a subsequent paper, Block and Savits [10] have
demonstrated that each of the seven conditions in Definition 4.2 fail to satisfy
at least one of these properties. Specifically A.X. E and F fail to satisfy

(P1); B and C fail to satisfy (P5); and D fails to satisfy (P6).

5. Multivariate NBU and NBUE

Unlike the previous two multivariate classes discussed, only preliminary
work has been done in the situation of multivariate NBU and NBUE classes. We

shall present 12 possible definitions of NBU and a similar group for NBUE.
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The only veresions of multivariate NBU of which we ‘are aware in the
literature have been discussed by Buchanan and Singpurwalla [12] and Mirshall
and Shaked [22). These generalize (2.7), have a similar interpretation, and
are related to condition (3.1). They specify that for the random lifetime

I = Wlecus T

F(x + =
PIT> x+¢t|T> 5}-—%?1—)515?(9:-?{1» t} (5.1)
for various choices of x and t. Conditions 1) - 3) in the following are the
ones given by Buchanan and Singpurwalla. Condition 4) is of the same type and
was given by Marshall and Shaked [22] and Condition 5) is similar in spirit to

e) of Section 3.

1) F((x + t)1) < F(x1) F(tl) for all x > 0, t > O.
2) F(xl + t) < F(x1) F(t) for all x > 0, t > 0.

3) TF(x+ t) < F(x) F(t) for all x> 0, t

|v
(=}

4) TF(x+t) < F(x) F(t) for all x > 0, t > O which satisfy (=, - x)(t, -¢)>0

3 ]

for all 1, j.
5) F(x+ tey) < F(x) eri) for all x > 0 and 1 = 1,..., n where

L (0,..., 0, 1, 0,..., 0) and 1 appears in the ith position.

The next condition is a variant of these and actually specifies several conditio=s

depending on the class of life functions chosen.

6) P{t(T-x)>¢t|T>x}<P{r(T) >t} for all t >0, x > 0 and all 1 in

a class of 1ife functions (e.g. for all minimums).

If the class of life functions specified is the class of minimums (i.e. series
systems) then 6) can be interpreted as the probability of survival for more than

t units of any series system formed from a set of components of age at least x
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belng less than the probability that the corresponding new series system
survives more than t units.
Conditions 7) - 9), to be given, are similar in spirit to the conditions

B) - F) in Section 4.

7) r(Tl,..., Tn) NBU for all t in a certain class of life functions (e.g. for
all monotone functions, all minimums, all sums).

8) There exist independent NBU Xl,..., Xk and monotone life functions Ty

i=1,..., n such that 'I'i = 11(3) for i =1,..., n.

9) t(aiTi) NBU for all a; > 0 and all 1 in a certain class of life functions.

Again each of 7) - 9) represent several conditions depending oﬁ the specification
of the T4 Or T.
The following condition is the generalization of a characterization of NBU

given in Block and Savits [7].

10) E(h(T - x) | T > x) < E(h(T)) for all nonnegative, nondecreasing and

continuous h.

Another possible generalization of NBU is through the concept of multivariate
shock models of a type discussed in the univariate case by Barlow and Proschan
[3]. Several multivariate shock models have been discussed by Marshall and
Shaked [22] and by Block [4]. Using the notation of Section 3.0 of the latter
paper we have
N N

11) T = (121 xif“" 121 xin) where (Xn,..., xin) has independent exponential

marginals and these vectors are independent for 1 = 1,2,... and N is

univariate NBU and independent of the xij.

There are many variants of this.

o8 R 4
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A final version of multivariate NBU can be given by generalizing a

Lot bl i R i el =

characterization of NBU given by Block and Savits [6] and using the Laplace
transform. This involves giving a discrete condition analogous to 1) - 5)
on coefficients related to the Laplace transform of a random lifetime T. Since
this is notationally involved we will omit details.

Comments on various possible NBUE definitions can similarly be made. Various
integrated versions of 1) - 6) can be given. Four versions of 1) - 3) are

given by Buchanan and Singpurwalla [12]. Versions of 7) - 9) can be given where

the v and T, are specifically taken to be sums. Since a characterization of
NBUE is given in Block and Savits [7] a multivariate version analogous to 10) can
be given., If in 11) N is assumed to be NBUE instead of NBU a multivariate NBUE
definition is obtained. Furthermore the comments in the paragraph following 11)
apply as well to the NBUE case.

As mentioned previously, little work has been done on multivariate NBU and
NBUE classes. Determining which definitions are most fundamental and how these

concepts are related to one another still remains to be done. This problem is

currently being studied by the authors.

e
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