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t4ultivariate Classes I n  Reliability Theory1

by

Henry V. Block and Thomas H. Savits

Four classes of lifetim s which have been u~efu1 in describing situations

where systems are assumed to have independent univariate component lifetimes

are: 1)’ the increasing failure rate (IFR) class; ~2)~ the increasing failure rate
average (1PM) class; the new better than used (NBU) class; end 4~i:he new
better than used in expectation (NBUB) class. These classes are reviewed end
also aultivarjate analogs of the IFR and 1PM cases are discussed. New

niu1ti~arjste definitions of NBU and NBUE are introduced .

N
ANS 1970 subject classification. Primary: 62N05 Secondary: 60K10

Key Vordp. Monotone and coherent systems and life functions; 1FR~, I~ RA , NBIJ ,
NBUE; uultivarjse. IFR etc.
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1. IntroductIon. In many situations where the lifetimes of systems and components

are considered , these lifetimes do not have exponential distributions. Rather,

these lifettmes reflect the effect of vearout. Four alternative classes of

lifetimes which describe various types of wearout and have been extensively

studied are: 1) the increasing failure rate (IFR) class; 2) the increasing

failure rate average (1PM) class; 3) the new better than used (NBU) class; and

4) the new be tter than used in expectation (NBUE) class , In the case where the

component lifetimes can be assumed to be independent these classes have proven

to be very useful. Recently in an attempt to describe the more realistic

situations where this independence assumption cannot be made, various multi—

variate versions of the above classes have been proposed.

In Section 2 we shall discuss the univariate classes and their properties.

Then we shall discuss the most important multivariate analogs of the IFR (Section

3) and the IFRA (Section 4) classes. Properties of these classes as well as

their relation to other proposed classes will be given. In Section 5, new

multivariate def initions of NBU and NBUE classes will be given and these will be

discussed.

Throughout the paper, the terminology and notation of Barlow and Proschan

[3] will be used with the exception that a structure function •(x) will be

called monotone if it is nondecreasing in each of its components and in addi tion

+ (2.) 0 and • (1) 1.

2. Univariate Classes. The most important and most studied class of lifetimes

which describe wearout is the class of distributions with increasing fa ilure

rate. This concept has been used in actuarial science, in statistics, and in

engineering reliability where it is sometimes called “increasing hazard rate”.

Let T be a random lifetime with distribution function F(x) — P{T c x) and
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F(0) - 0*. surviva l function V(x) - I - F(x) and dens i ty 1(x) (if It exists). 
2

Then T (or F) is said to have increasing failure r~it c (IFR) if

P(x ’- T ~~~x + t }
-- 

Pix TI increases in x 0 for t 0. (2.1)

This means that , given that I has survived beyond time x, the probability that

it fails within the next t units of time increases as x increases , i.e. the older

the lifetime , the more Likely It is to fail. A lifetime is said to have

decreas~j~g, ~nilure rate (DFR) if the quantity In (2.1) decreases in x ~ 0 for

t 0. The definition of IFR I more often encountered , which is an instantaneous

version of (2.1) and is equivalent to it if the density exists, is that the

failure rate function

r ( x )  — .L(,!)~ increases in x 0. (2.2)
—

A corresponding statement holds for DFR. Another way of writing (2.1), which

is useful in the inultivariate cases to he described , is that

‘F(x + t) P(T ” x + t} P (x < T~~~x + t}— —-- — 1— - decreases in x 0 for t 0.
PIT xl P(x < TI 

— 

(2.3)

This amounts to saying that the surviva l rate decreases as the age of the

component increases. Similarly an increasing version of (2.1) (i.e. Increasing

survival rate) is equivalent to DFR. Still another version of IFR (DFR) is that

the function

log F(t) is concave (convex). (2.4)

The classes of IFR and DFR lifetimes satisfy the following properties:

*The usual assumption is that F(0 ) 0. We make the simplifying assumption

F(0) — 0 here for the purpose of this exposition . It lends to slightly slntpl.r

definitions .
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I) the only lifetimes which are both 1FR and DFR are the exponential lifetimes ;

ii) convolutions of IFR lifetimes are IFR (this means tha t for independent IFR

lifetimes , if a failed component is replaced by :i spare, then the accumulated

lifetime is IFR). See Barlow and Proachan [3) for additional properties and

discussion.

The second major class of lifetimes we will discuss is the class whose

lifetimes have increasing failure rate average (IFRA). These are the lifetimes

whose survival function satisfies

F(czt) “~~~
‘ (t )  for all 0 < a < 1 and all t 0. (2.5)

If the density exists it Is not hard to show that this is equivalent to the

more intuitive condition that

r (x)dx
increases in t 0 (2.6)

where r(x) is the failure rate function of (2.2), and so (2.6) gives that the

average failure rate increases. Another equivalent form of IFRA, which was used

by Block and Savits ‘5) to establish that the convolution of IFRA Lifetimes

is IFRA, is that

h°(x/ct ) dF(x) ~ { f ~ h(x) dF(X)}a, all (1 a < 1 (2.7)

and all nonnegative nondecreaslng functions h.

The class of IFRA lifetimes which is wider than (i.e. contains) the class

of IFR lifetimes satisfies the following properties: i) for monotone systems

with independen t IFRA l ife times , the system lifetime is IFRA ; ii) the IFRA class

is the smallest class containing the exponential distributions which Is closed

under the formation of coheren t systems and limits in distribution (see Ross (241

for an extension to IFRA processes); iii) the lifetime of a device arising as a

consequence of a natural nonfatal shock model is IFRA (See Theorem 3.8, p. 94, 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Bar low anti Prosrhnn I -~ 1 ‘I ; iv) ronvo In  t Ions I I ERA l i t  et [mrs tt ’ I ERA ( st’ t’

B lock and Say i t s  I ‘~ 1) . For ot her prop er  t t ’s of t his r I.~ss I ne I ud tug st :i t I s t Ira

proce dures see Bar low and Marsha IL ( .! , Bar low (11 . and Doksum 1 1 1 . II ~ 1

St Ill wider ,‘ I asst ’s ot l i f t ’ t I mrs a i t ’ those whi eh :1 re new bet t r t  t han t,~ t’tl

(N8U) ~tn~t new hot (or t han ust ’d in rx pt ’c t a t  Ion (NBUE) . A l it  t ’t  Ink’ T Is N 1M~ 11

t he prohab 111 tv tha t It w i l l  stirv I vt ’ w hen now is great t’r than the prohahi lit v hat

I t wi l l  survive given hat f t  I any other a gi’ , .

j P(T x + t I xl — ~~~~
1
t)  

~~F(t)  rIT t i for all x~ t 0. ~ ‘J~
)

A l ifetime Is NBUE if an Integrated version of U~~
.7 )  is sat  is f ied , i.e.

I F(x ) dx u r(t ) for t 0
t — — —

where t’ — I F(x) dx is assumed t o  he t inite.

Another way of expressing that a l i f e t i m e  I Is NBUE is that

E(T — t I rI ~i for t 0 ( ) .1fl)

which means that given any f t  xed age the rest dun 1 mean lit  .‘t I me’ is sma 11. ’ r t ha t i

the mean l i fetIme .

Both the NBU and t he’ NR1t F~ e’ I asses have’ been shown to  he ’ useful in the’

so lution of certain maintenance problems . In part ieet l . i t , I i fe t imos  are NBU if

rep lacement po ili ’ I es arc to  he hone C I cia 1 in a c e r ta i n  sonsi’ . The NBI1E l i lt ’

t imes are the largest c lass  for which the number of f a t  1 tir,’~ ~~h~~e’ r v cd  in a

“replace at fa il  sire only ” po I t  cv Is larger st ochas t f rai l  v in t hr 1 rug run t hon

when the process s ta r t s .  Sec Chapter (
~ of Barlow and Prose ’han [11 for dot a ( i s .

Another si rust ion where NBLI .ir I st’s i ~ g iven by Ross ( .‘ 1 who shows t lii t for ~

monotone system w it h  Independent , exponent in 1 components afl~l t’Xp nent Ia! ‘‘r’ It

times, the time until first system failure is 141W. Furthermore , monotone systems

1
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with Independent NBU cumponents have NB(! l if o t imes  and (‘onvolel t Ions of NBI~

(NHUE) lifetimes are NBII (NBUE) . Tests for NBtI and NBUE have been given by

Hollander and Prose’han [181. 1 1 91 .

3. Multivariate IFR . There h~vt’ been several di f fe rent multivar iate extensions

of the concept of increasing failure rate’. Most of these have been based on one

of two notions. The first of these arises f rom a generalization of (2.3) and a

second freit a generalization of (2.4).

Let T — (T 1,. .., T )  be a multivariate lifetime and let F(t) — F(t 1,,. . , t )

— P{ T t ,..., I ~
‘ t I be the surviva l function. Also assume that1 1 it

F(O) — I where 0 (0,..., 0). Since (2.3) Is interpreted as a device being

less likely to survive as it ages, a mult iva rlate generalization of this is tha t

decreases in x > 0 for all t 0. (3.1)
~(x )

This condition , however, is ambiguous since x can increase in various ways and

t can be restricted in certain ways. Several versions of ((.1) will now he

given. It is also assumed that simi tar conditions hold for all marginal

distributions. Here 1 — (1...., 1).

(a)  ‘V
~~X 4 t L1  decreases in x ~ 0 for all t 0.

V ( xl )  —

(h) ~~~~~~ decreases In x > 0 for all t > o .
F(xl)

(c) F~~fl~ decreases In x 0 for all t 0.

(d) !~~_±_L~ decreases in x ~ 0 for a l l  t 0.

_____ ~~~~~~~ 4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - • ~~_ . -  - -~-—---- .---~ •—~~~~~~~~



Another version in a similar spirit , although not exactly in the same form

as (3.1) is

F((x + t)1, x)(e) for i — 1,..., n, decreases in x1 > 0 for all t > 0

and all x. > 0, j ,~ I.

Here the notation ((x
1 
+ t)

1
, x) means (x

1
,,.., x11 , x1 

+ t, x
i

,..., x).

Version (c) is due to Harris [171 and to Brindley and Thompson [11]; (a), (b)

and (d) are due to Marshall [211; and (e) (in another form) is due to Johnson

and Kotz [201. Many other versions are possible, but it appears that of all of

these (c) is perhaps the most important. One reason f or this is that (c)

captures the idea of the original model , in that time for the components runs

at the same rate (i.e. t = t1 = 
~~~~~ 

= ta). Furthermore the different x1,..., x

allows for the possibility that the components are of different ages, as is

often the case in practice. Concept (c) is designated MIFR and is entensively

discussed in Barlow and Proschan [3]. A dual concept with Increasing replacing

decreasing is called MDFR. Other reasons for the Importance of MIFR are the

following properties .

(i) A univariate MIFR lifetime is IFR.

(Ii) The union of independent sets of MIFR lifetimes is MIFR.

(iii) The marginal lifetimes of MIFR lifetimes are MIFR.

(Iv) Series systems formed with MIFR lifetimes are MTFR.

(v) A lifetime Is MIFR and MDFR if and only if it has the imiltivariate 
-‘

exponential distribution known as the lIVE (see Chapter 5 of Barlow and

Proachan [3]).

The second notion upon which other versions of multlvarlate IFR has been

based is a generalized form of (2.4). These versions were given by Marshall (211

and involve the idea that log F (x
1
,..., x~) is concave In some sense. This

~~~~~~~~~~~ - 
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concavity can be taken in the usual sense or along various curves and lines In

R°. The properties of the various classes which emerge have been briefl y

discussed by Marshall f211

4. Multivarlate_IFRA. The centra l theoretical role played by the un-i variate

IFRA class derives from the properties satinfier! by this class (see fl iv)

following (2.7)) rather than from the fact that it has ;‘-‘ increasing aver~p.e

failure rate. It Is not surprising then, that various mnltivar iat - e versionn of

IFRA have been defined using a generalization of one of these basic properties.

The classes of lifetimes which result from these generalizations , however , a l l

fail to satisfy some basic property . Block and Savits [8] have proposed a class

of multivarlate IFRA lifetimes which is based on a mathematical property of

univariate IFRA lifetimes. This class contains a rich variety of multivariate

lifetimes and also satisfies all of the fundamental properties which ~rne would

expect for a multivariate TFRA class.

The class of multivariate lifetimes proposed by Block and Savits is given

in the following definition which is a generalization of the univariate property

(2.7) .

Definition 4.1. let T (I , T0) he a nonne~~rx t- ive random l i fet- im.-’ . The

random vector T is said to he MIFRA if

Ea [h(T) 1 < E [h C (T/cx) 1 ( 4 .1 )

for all continuous nonnegative nondecreasing functionsh and all 0 cx 1.

Other conditions which have been proposed for mul t ivariate TFPA ;‘re g1’~en

in the next definition. As in the previous mat ’-’rial , we rely heavily nu the

notation and terminology of Barlow and Proschan [3 ]  wi th i-he on,’

vientioned In Sect ion 1. The l i fe function T cor1-espon~~~ n~ N- - t r - ~~-~~1i’o cnnct ion

H • is called monotone (coherent) if $ Is monotone (coherent). See Esary and

Lr
- . 
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—
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Marshall [15 ) for a discussion of life functions.

Definition 4.2. Let T — (T1,..., T) be a nonnegative random lifetime with

survival function i~(~) — P{T >> t } where “>> “ means strict inequality holds

for each component. The vector T is said to satisfy condition if the

condition following letter — is satisfied :

-G -

A: F (t) < F(at) for all 0 < a < 1 and all 0 < t.

B: T is such that each monotone system formed from T is univariate IFRA .

C: T is such that there exist independent IFRA random variables X1,~ .., X~

and monotone life functions r~ , 1 1,..., m such that T~ — T
1 

(X 1, ..., X.K)

for i — 1,..., in.

T Is such that there exist independent IFRA random variables X1,..., X
k

and nonempty sets S1 of {1,..., k} such that T1 — ~ X~ for i 1,..., in.
j cS1

1): T is such that there exist independent IFRA random variables X1,..., Xk

and nonempty subsets S~ of (1,..., k} such that T~ — mm X for I — 1,..., in.
JCS1 

:1

E: I is such that the minimum of any subfamily of I ,... , T is IFRA,
— — 1 in

F: T is such that mm a1T is IFRA for all a~ > 0 , 1 1,..., in.
i

* Conditions A ,B,C,D,E,F have been given by Esary and Marshall [16) and condition ~

was given by Block and Savits [91.

The following relationships hold between M1FRA and the seven conditions

(see Block and Savits [10) for proofs and examples) . 

- - --
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A( )F  B

Figure’ 1

With the exception of the implication ~~#C (which is conjectured to be false),

Block and Savits [10) have shown tha t no other implications are possible.

The following properties are basic for a class of multivariate IFRA

distributions.

(P1): Closure under the formation of monotone systems.

(P2): Closure under limits in distribution .

(P3) : Margina ls are in the same class.

(P4): Clos ure underco njunct ion of independent lifetimes .

(PS) :  Closure under scaling .

(P6): Closure under convolution .

It has been s hown by Block and Savits (81 t hat the MIFRA class satisfies all

six of these . Fur thermore in a subseque nt paper , Block and Savi ts 1101 have

demonstrated that each of the seven conditions in Definition 4 .2  fail to satisfy

at least one of these properties . Specifically A ,~~, E and F fail to sati s fy

(P1); B and C fail to satisfy (P5); and D fails to satisfy (P6) .

5. Multivariate NBU and NBUE

Unlike the previou s two mu lt ivaria te classes discussed , only prel iminary

wor k has been done in the situation of multiva riate NBU and NBUE classes . We

shall presen t 12 possible definitions of NBU and a similar group for NBUE .

- ---U- 
~~~~~~~~ __—,~~~~~~~~#.~~~~~ —
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The only verim -tons of multivariate NBU of which we -are aware In the

literature have been discussed by Buchanan and Singpurwalla [121 and Marshall

and Shaked 122). These generalize (2.7), have a similar interpretation, and

are related to condition (3.1). They specify that for the random lifetime

T (T1,..., T5).

P(T >> + .c~ I I 
>> — 

F( t.) < F(t) — P{T >> 1) (5.1)

for various choices of x and t. Conditions 1) — 3) in the following are the

ones given by Buchanan and Singpurwalla. Condition 4) is of the same type and

was given by Marshall and Shaked [221 and Condition 5) is similar in spirit to

e) of Section 3.

1) ~ ((x + t)1.) < ~(xi) F(tl) for all x > 0, t > 0.

2) F(xl + r) < ~(x1) F(t) for all. x > 0, t > 0.

3) ~(x + t) < ~~(x) F( t) for all x > 0, t > 0.

4) F(x + t) < ~ (x) F( t) f or all x > 0, t > 0 which satisfy (x
1 

— x~)(t 1 — t
1
) > 0

for all I, j.

5) F(x + tc1) < F(x) F(c1) for all x >  0 and 1 1,..., n where

c~ — (0,..., 0, 1, 0,..., 0) and 1 appears in the ith position.

The next condition is a variant of these and actually specifies several conditio- s

depending on the class of life functions chosen . ‘

6) P{r (T — x) > t > x} -~ 
P {r (T) > t} for all t > 0, x > 0 and all T In

a class of life functions (e.g. for all minimums).

If the class of life functions specified is the class of minimums (i.e. series

systems) then 6) can be interpreted as the probability of survival for more than

t units of any series system formed from a set of components of age at least x

_ _  

:~~
- - 

~~;7_W~
_ 

~~~~~~~~~~~~~~~~~
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being less than the probability that the corresponding new series system

survives more than t units.

Conditions 7) — 9),  to be given, are similar in spirit to the conditions

B) — F) in Section 4.

7) r (T ,..., I) NB1J for all r in a certain class of life functions (e.g. for

all monotone functions, all minimums, all sums).

8) There exist independent NBU ~~~~~~ X.~ and monotone life functions Ti,

I = 1,..., n such that T
1 t1(X) for i — 1,..., n.

9) r (aiTi
) NBU for all a

1 > 0 and all t in a certain class of life functions.

Again each of 7) — 9) represent several conditions depending on the specification

of the -r1 or -r.

The following condit ion is the generalization of a characterization of NBL’

given in Block and Savits [71.

10) E(h(T — & I I > x) < E(h(T) ) for all nonnegative , nondecreasing and

continuous h

Another possible generalization of NBU is through the concept of multivariate

shock models of a type discussed in the univariate case by Barlow and Proschan

[31. Several multivariate shock models have been discussed by Marshall and

Shaked [22] and by Block [4). Using the notation of Section 3.0 of the latter

paper we have

N N
11) T — ( 

~~ X~~..., ~

‘ 
X15) where (X11,...., X~ 

) has independen t exponential
-~~~ i_ —i i_ —i n

marginals and these vectors are Independent for I — 1,2,... and N is

univariate NBU and independent of the X
1~
.

There are many variants of this.

V V_~~~__ - _____

IL ~~~~~~ ——. ~~~ — .~~~ ,. .-_ ~ ~.



rw V -

12

A final version of multivartate NBU can be given by generalizing a

characterization of NBU given by Block and Savits [6) and using the Laplace

transform. This involves giving a discrete condition analogous to 1) — 5)

on coefficients related to the Laplace transform of a random lifetime T. Since

this is notationally involved we will omit details.

Comments on various possible NBUE definitions can similarly be made . Various

integrated versions of 1) — 6) can be given . Four versions of 1) — 3) are

given by Buchanan and Singpurwalla [12). Versions of 7) — 9) can’ be given where

the -r and -r
1 are specifically taken to be sums. Since a characterization of

NBUE is given in Block and Savits [7) a multivariate version analogous to 10) can

be given. If in 11) N is assumed to be NBUE instead of NBU a multivariate NBUE

definition is obtained. Furthermore the comments in the paragraph following 11)

apply as well to the NBUE case.

As mentioned prev iously, little work has been done on multivariate NBU and

NBUE classes. Determining which definitions are most fundamental and how these

concepts are related to one another still remains to be done. This problem is

currently being studied by the authors.

- 
- 

----—---—-—--V 

~~:-“~~~~~~~~~~ ~L

~~ ~~~~~~~~



_ - V

References

1. Barlow, R.E. (1968) . Likelihood Ratio Tests for Restricted Families of
Probability Distributions . Ann. Math. Statist. 39, 547— 560 .

2. Barlow, R.E. and Marshall , A.W. (1967). Bounds on Interval Probabilities
for Restricted Families of Probability Distributions . Proc. Fifth
Berkeley ~~~~ Math. Statist. Prob . 3. Univ. of California Press.

3. Barlow, R.E. and Prosehan , F. (1975) . Statistical Theory of Reliability and
Life Testing: Probabi1ity~ Models. Holt , Rinehart and Winston, New Yo rk.

4. Block, H.W. (1977). A Family of Bivariate Life Distributions . The~~~~~~~
and ~~~jjcations of Re1iabi1~~y,~ Vol. 1 (F.ds., C.P. Tsokos and I. Shimi).Academic Press, New York , 349—371..

5. Block, H.W. and Savits, T.H. (1976). The IFRA Closure Problem. Ann . Prob.
4, 1030—1032.

6. Block, H.W. and Savits , 1.11. (1977) . Laplace Transforms for Classes of L i fe
Distributions . University of Pittsburgh Research Report # 77— 03 .

7. Block, H.W. and Savits, T.H. (1978). Shock Models with NBUF~ Survival.
.1. ~~~~ Prob . 15, to appear.

8. Block, H.W. and Savits, T.H. (1979). Multivariate IFRA Distributions . Ann.
Prob., to appear.

9. Block, N.W. and Savita , T.H. (1979). Rel iabilIty Systems with Exponential
System Life . Ann. Stat., to appear.

10. Block , H.W. and Savita , T.LL (1978). The Class of NIFRA Lifetimes and its
Relation to Other Classes . University of Pittsburgh Research Report #78— ni .

11. Brindley E.C. and Thompson, V.A., Jr. (1.972). Dependence and Aging
Aspects of Nultivariate Survival. J. Amer. Statist. Assoc. , 67 , 822—830 .

12. Buchanan, W .B. and Singpurwa lla, M.D. (1977) . Some Stochastic Characterizations
of Multivariate Survival. The Theory and ~~plications of Reliability, Vol 1
(Eda ., C.P. Tsokos and I. Shftsi). Academic Press , New York , 329-348.

13. Doksum, K . (1969). Starshaped Transformations and the Power of Rank Tests .
Ann. Math. Statist. 40, 1167—1176.

14. Doksum, K. (1969). Minimax Results for IFRA Sc- a le Al ternatives . Ann. Math.
Stat ist. 40, 1.778—1783.

15. Esary, J.D. and Marshall , A.W. (1970) . Coherent Life Functions . SIAN J.

~~~ 
Math. 18. 810—81.4.

16. Esary , LU. and Marshall , A.W. (1975) . Multivariate IRRA Distributions ,
t . appear.

17. Harris , R. (1970) . A Muttivariate Definition for Increasing ~azard Rate
Distribution Functions . Ann. Math. Statist. 31, 7 1.3— 7 1.7.

— - V - —~~T;’ 
‘

V. - - — - .
V - -

- 
- •~~,_• ,,~~~L,l.M

‘-V.’— .

— 
_ _a._ _ 

— ~~~~~~~~~~~~~~~ — - V— f l — .- —



— -VV V.~V — --- —V — V_Vfl_ p_
~~ ~

•___
~ ~~~•~_ ~~~~~ V~_ V _ _ _~~~~ V_ W_•V ~

V_V

r-i~~u-i•~
;

~ ~~~~~ - -

18. Hollander , H. and Proschan , F. (1972). Testing Whe ther New is Better
Than Used . Ann. Math. Statist. 43 , 1136—1146.

19. Hollander , M. and Proachan, F. (1975) . Tests for the Mean Residual Life.
Biometrika 62, 585—593.

20. Johnson, N.L. and Kots , S. (1975) . A Vector Multivariats Hazard Rite .
J. Mult. Anal. 5, 53—66 .

21. Marshall, A.W . (1975). Multivariate Distributions wi th Monotone Hazard
Rate . Reliability and Fault Tree Analysis (Eds., R.B. Barlow, J. Fussell
and N.D. Singpurwalla) . SUNI Philadelphia , 259—284 .

22. Marshall , A.W . and Shaked, M. (1976) . Multivariate INRA Distributions
from Shock Models, to appear .

23. Ross, S. (197-4): On Time to First Failure in Multicoaponent Exponential
Reliability Systems , Stochastic Processes 

~~p!•~ 
to appear.

24. Ross, S. (1976) . Multi—valued State Component Systems , to appear.

p ~

ft

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~



_ _ _  

- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SI’.Cu PITY CLASSIF ICATION OF T H I S  P A G E  (W7,.n Di,Si. Entered)

P!~POPT DOCII~ !EHTATIOPI PA( C 1P.FOR)~ COMP ET1N . FO!~M
____

l it r~~o uT NUMI3EI1 ~ (~OVT ACCESSION NO. S~ RECIPIEN T ’S C A T t . L O . NtII(&~~~~

- 

78—03 1 _______________________

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -—

~~~~
— - — TYPE nr u~~n~~nT a r ~~~ Ioo cov rsio

~~~tn1tivar iate Classes in Reliab ility Theory~ 7 
~ ~~~~sear ch ~e p s ~ /

-V- - - - - - - - - S P E RF O R~H~~~ ORG. RFPORT NUMPFfl

7- AUTHOj~~.L_  — 0. CONT RAC 9n~~J ,ANT PW$JER(’)

f~j~ ~ Henry W./Block ( NU0Ø14~ 76~C— 083Q~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ _ _ _ _ _9. PERFORMING ORGANIZATION NAME AND ADDRESS ~~~~—ns,c.n. ,.t ~Vrwi’~~ssjsp~. y*~i~~- -  - --A P I A  S V O flK U N IT N U M I I E R S

Department of Mathematics and Statistics
University of Pittsburgh
Pittsburgh ,_PA._ 15260 ____________________________

II - CONTROLLING OFF ICE N A M E  AND ADDRESS 
/

P !~. nursn~~~u~ ~~~~~~~~~~ -

Office of Naval Research 
~
j ,  )0ct~~or 1978

Department of Navy ~ br- -WU~~~~~~~~~~~~~ s~ 5 *-—.~

Arlington , VA 22217 14
14. MONITOnINO A OENCY N A M E  B AODRESS(SI dlft.r.n t tram Cun*rolIin4 Office) IS. SECURITY CLASS. (of (hi. r•por t)

Unclassif ied

~ DECLA SSIF ICATION 0OWN GRADIN (~ 
-- -

IS. DISTRIBUTION STATEMENT (.S tAle Nepott) 
4

Approved for public; distribution unlimited

I?. DISTRIBUTION STATEMENT (o f lb. abstract .nf,r.d fn Stock 20, ii fSll.u.n i from ll•pt ,rf )

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _

It. S U P P LEMENTARY NOTES

IL KEY WORDS (Conii,,ua . on rev.,., aid. ft  n.c.a.a~,’ and Id,nlth ’ 1w blocS n utnhcr)

(See abstract page)

20 A B S T R A C T  (Continu, on revere , aId. ft n.ceeaary SVfld identity 1w block numb.,)

(See abst ract)

lID “~ 1473 EDITION OF I NOV 63 IS OBSOLETE

SECURITY CIV A S~ IFICA7IO N ( It -  T H I 3  P A c ~ U (M)~~n Paea Enf~r~ f)

i .

~

J D -

~

-~ A — — — ~~~ — V 
~~~~~~~~~~~ 

____ - - ___________


