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Preface

This thesis is intended as a source document for further
research in system identification processes. Specifically,
this research concentrated on efficiently finding the inverse
of confluent (i.e., repeated eigenvalue) Vandermonde matrices,
which is an important part of the component matrix approach
tc system identification. However, in order to provide a
broader understanding of system identification in generai,
and the component matrix approach in particular, the back-
ground and theory sections are more comprehensive than might
otherwise be needed. Several supplementary mathematical
developments and some example problems are included to aid
this broad understanding, but they are placed in appendices to
preserve the continuity of the text, and referenced as appro-
priate. A list of special symbols and abbreviations is also
included, to give the reader a ready reference for those that
may be unfamiliarx,

I wish to give special thanks to Maj. J. Gary Reid, my
thesis advisor, for his support and encouragement in this
endeavor. Professor Charles W. Richard and Dr. Peter S.
Maybeck, who read the manuscript, gave many helpful sugges-
tions. For their patient consultation regarding the computer
programming and example problems used in the course of the
fesearch, I wish to thank Maj. Edward Reeves and Lt. Paul

Vergez. I am also deeply indebted to a close personal friend

of mine, Rev. Roy Dorsett, for his understanding support

NG




throughout the entire project. There are many others like
him who "cheered from the sidelines," but are too numerous
to mention. Finally I want to thank Mrs. Evelyn Shaw for
her perseverance in'the final days while she was typing the

final draft. 4

Donald P. Seyler
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Abstract

Ef“icient inversion of a 2n x 2n Vandermonde matrix is
a key requirement of a new algorithm developed by J. Gary
Reid (Ref 10, 11) for parameter identification in linear
time-invariant systems. It has features very desirable for
application to large systems with many unknown parameters,
such as adaptive flight control systems.

A generalized algorithm for inverting the Vandermonde
matrix was proposed- by F. G. Cs8ki (Ref 1). It was chosen
for study because its structure parallels that of Reid's
algorithm. Csaki's algorithm was coded into a computer sub-
routine called "VANINV," and 43 eigensystems were used to
test its computational accuracy and efficiency. Four po-
tential problem areas tested were: (1) large system orders,
(2) eigenvalues near each other, (3) eigenvalues near zero,
and (4) eigenvalues with large magnitude differences. For
a comparison, the Vandermonde matrix for each system was
also inverted using routines from the International Mathe-
matical & Statistical Library (IMSL).

Test results indicated that VANINV is not quite as fast
or as accurate as the IMSL routines. However, the tests were
limited to systems with real distinct eigenvalues because the
IMSL_roﬁéines cannot handle other types. VANINV in its
present form can handle systems having any combination of
complex and/or repeated eigenvalues. Therefore, recommen-
dations for further research and several possible means of

improving VANINV are outlined.
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INVESTIGATION OF INVERSE VANDERMONDE MATRIX
CALCULATION FOR LINEAR SYSTEM APPLICATIONS

I Introduction

Fundamental quantities needed for iterative computation
of a quasi-linear estimate of unknown parameters in a linear
dynamic system are the "parameter sensitivity variables."
Finding these variables is a basic part of a "system
identification process," as is shown in the background sub-

section on system identification.

Section II develops the process for finding the parameter

sensitivity variables and shows that a basic part of the
process is the inversion of a 2n x 2n Vandermonde matrix.
The development of an efficient computer program to invert
the Vandermonde matrix, the major emphasis of this thesis
effort, is presented in Section III. Section 1V explains
some test procedures used for determining the accuracy and
efficiency of the program. The concluding two sections give
the results of the research and recommendations for further
research.

As an aid in understanding the concepts and processes
presented in the theory sections of the thesis, several
example problems and supplementary mathematical develop-
ments are worked out. However, because of their length
they are placed in appendices and referenced as appropriate.

The computer program developed to invert the Vandermonde
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matrix and the programs used to test its computational

speed and accuracy are also placed in appendices.

Motivational Background

If all systems were linear and time-invariant, the

linear system model (noise-free):

X = AX + Bu (la)
y = Cx + Du (1b)

would suffice. However, control systems for other than
very simple applications are not linear or time-invariant:
depending on operating conditions,1 the control laws must
change to maintain adequate system control. For 9xample,
the Wright Brothers didn't have to concern themselves with
large changes in operating conditions. Their first powered
flight, 120 feet in 12 seconds (Ref 2:Vol 29:557; 14:Vol 7:
388), was not even as fast as a man can run, and didn't
last long enough for the environment to change much.

On the other hand, engineers designing flight control
systems for modern high performance aircraft do need to
concern themselves with large changes in operating condi-
tions. As aircraft flight envelopes are extended over

broader operating ranges (for example, a high performance

lxn this study, "operating conditions" is used to

encompass both system configuration and environment.

Each has definite effects on system response, and may

also affect the other. For convenience however, the term
"operating conditions" is used to refer to both when it is
not necessary to distinguish between them.




aircraft may be required to have a Vertical or Short Take-
off and Landing (V/STOL) capability), more and alternate
loops must be added to the flight control system to handle
all the various operating conditions. The increased re-
gquirement for control system flexibility often results in
an overall system that is nonlinear and/or time-varying,
and to maintain adequate control, some means of adjusting
the control system parameters is necessary. This capacity
to change the modes of the control system according to the
aircraft flight operating conditions is the essence of an
"adaptive" flight control system. Of course every time
the operating conditions change, the control system vari-
ables must change accordingly. Thus the control problem
becomes one of identifying the system parameters (the
process is called "system identification") in order to
determine the proper system model and match an appropriate
control law to it.

The flight control system design engineer could try
to think of a collection of representative types of oper-
ating conditions which would, hopefully, cover the con-
tinuum of possible operating conditions. A control loop
could then be designed to handle each different represen-
tative operating condition. That would require an apriori
identification of the system model #znd parameter values
and a corresponding collection of hardware to implement

the design. Then some type of master controller would be

needed to choose which model and parameter values to use




for the given operating conditions.

In terms of an entirely analog flight control system,
the increased flexibility required to handle the adaptive
part of the control function results in a confusing mass
of hardware and interconnecting links. Also, each new
piece of hardware poses a possible reliability problem.
These are some of the reasons for the trend toward digital
flight control systems. Instead of having a discrete
piece of hardware for each required control function, a
digital controller need be simply reprogrammed to accom-
modate the new control system parameters. These parameters
provide the relation between the system inputs, states,
and outputs for the control variable calculations.

The overall control system can be wvisualized as shown
in Figure 1. Upon starting the system, some nominal system
model and control are used. However, as shown, the model
must change to account for significant variations in the
system operating conditions. Referring back to the high
performance aircraft mentioned before, an example of a
change in the system configuration is the change from a
vertical takeoff to "conventional" horizontal flight. An
example of an environmental change affecting the system
model is the change in air density with altitude (eg: the
air at 40,000 feet is much less dense than at sea level,
so the control surface actuator gains must be changed ac-
cordingly to maintain the same performance relative to

pilot inputs). The digital control system can be given




*wa3siAs [oajuod yoeqpaal saridepe ue jo yapow Tenjidsouo) 1 2anbrd

TERIIN TE Rigse - T U RPN o7

ey,

MeT TOI3UOD °Z
T9POW wa3sis 71
Sy3TM

ISTTOIUO0D Hoeqpasd

S0 D0 Iy BRI

[reern g

sajels
Ter3rTulr
juerd ( n
INdINO & ws38As & INANI
1 WED AN D Ghn GES N WEn GED GED AN W . - -— e o - G aEn e oue = -— amw e o= J
]
H ]
I |
‘, I |
f ! |
i uotyeInbTIU0) JUSWUOITAUF |
| wa3sis 03 ang [}
“ ut sabueyp : sabuey) wazsis ]
|
]
y SNOILIANOD ONILWNAJO NI SIONVHO* - .“
e e cn s e S D G G EE P G CEP S G S > GE- . - S Gmp =B W G S e

Sl e SO - v oo




E————

the task of identifying the present system parameters,
updating the system model with them, and then deter-
mining what adaptations must be made in the control to
achieve the desired overall performance. The first two
steps are what distinguish an adaptive control system

from a fixed control system.

System Identification Process Background
A conceptually simple method for the system identifi-

cation process is the use of a first order Taylor series
approximation to update the system model according to:
g (£) = $(t) + 2qLE) 49 (2)

a priori .
model

where:
y(t) = physically measured system output

¥(t) = calculated output based on an a priori
model (or in an iterative process, the
last updated model)

gzét = system output "sensitivity" with respect

to the system parameters

A8 = change in the system parameters from those
of the a priori model (or the change since
the last model update, for an iterative
process)

Notice that since Ay = %% A8, Eq (2) is equivalent to

y(t) = §(t) + Ay(t) (3)
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which appeals to the intuitive relation "new output equals
old output plus the change in the output."

It is seen, then, that finding these sensitivity variables
is a significant part of the system identification process.
Therefore, real-time adaptive control applications, such as
the adaptive flight control system mentioned earlier, require

an efficient means of computing the sensitivity variables.

However, even when using minimal order sensitivity models,

the computational requirements can be quite large for even
modest size systems. For example, the complete soiution of
a sensitivity system of order n, with p unknown parameters,

may require the solution of n(p+l) coupled linear differential

ey A o P TR A G

equations (Ref 8:124). The basis for this number is pre-

sented in Section II.

R

An alternate method has been proposed by J. G. Reid
in his dissertation (Ref ll:Section III) which may have

} significant computational advantages because it avoids the

' ' need to solve a collection of coupled linear differential
‘ equations (CLDE). This method is explained in more detail
in Section II.

However, this alternate method also involves the in-
version of a 2n x 2n Vandermonde matrix, as is shown in
Section II. (Vandermonde matrices are defined in Appendix C,
Egs (C2-2 through C2-6)). This process can be computationally
quite costly (Ref 5:817). Therefore, a critical part of the

proposed alternate method is the efficient inversion of the

Vandermonde matrix. Thus the effort of this investigation




concentrates on implementing and evaluating a proposed

method (Ref 1:154-157) of efficiently computing the in-
verse Vandermonde matrix. The inversion method used forms
polynomials from the system eigenvalues and uses the poly-
nomials to determine the elements of the inverse Vander-
monde matrix. Section III amplifies this method and shows
its parallel computation structure. The significance of
this parallel structure is explained in terms of its poten-
tial application to on-line flight controllers. Section.IV
explains the tests used to evaluate the computation time
and accuracy of the computer subroutine written to implement
the method. The subroutine was called VANINV. Sections V
and VI give the test results and resulting conclusions and

resulting recommendations for further research.




II Parameter Sensitivity Calculations

Section I showed that calculation of the parameter
sensitivities is an essential part of the system identifi-
cation process. In this section, a theoretical comparison
is made between the coupled linear differential equations
(CLDE) approach to finding parameter sensitivities and the
alternate component method (CM) approach proposed by Reid.
Since the CLDE approach is already developed and documented
(ég: Ref 13), it is merely outlined here to serve as a
reference base for the CM approach.

Although the CLDE method is more straightforward, it
has several drawbacks (Ref 8:124). Perhaps the most
obvious difficulty is the computational burden. As is
illustrated later in this section, the solution of the
sensitivity system requires solving as many as n(p+l)
coupled linear differential equations, where n is the sys-
tem dimension and p is the number of parameters whose

sensitivities are to be found.1

Attempts to reduce this
computational burden with low-order sensitivity models

have resulted in some other problems, such as: (1) require-
ment for special forms of the plant matrix, (2) numerical

sensitivity of calculations performed with the reduced

lThis task grows increasingly formidable as n and p

increase. Each new variable not only adds another CLDE,
it may contribute to the complexity of any or all of the
other equations.




order models, and (3) difficulty of obtaining the oriéinal
state variable sensitivities from the calculated low-order
sensitivities. In addition, physical insight is impaired
when using the transformed coordinate systems resulting
from the low-order models.

Among the advantages of the CM method are: (1) poten-
tial reduction in computational burden, (2) retention of
physical system insight (the modes are visible throughout
the calculation procedure), and essentially "free" avail-
ability of the eigenvalue sensitivities themselves
(Ref 11:79-80). The entire set of parameter sensitivities
may be found from, at most, 2nr "quadrature integrals"
(where n is the system dimension and r is the number of
control inputs]), plus some matrix operations (Ref 8:133).
The last part of this section shows that the CM method
requires the inversion of a 2n x 2n Vandermonde matrix.
Since this inversion is potentially very costly, Section
III is devoted to investigating the possible method that
was referenced in the introduction for efficiently computing
the inverse. At this point, some system definitions are
needed.

Most control systems other than very simple ones are
not time-invariant. However, assuming that the variations
are slow w.r.t. the identification process (as would be the
case for flight control systems), the system @ay be considered
to be pseudo time-invariant (or "quasi-static'); Thus, for

this discussion, the linear time-invariant state system is

used:
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x(t) = A(8) x (t) + B(8)u(t) (4a)

ik 2

y(t) = C(8) x (t) + D(8)u(t) (4b)

The relation of the initial conditions to the parameter

sensitivities is defined by the vector

; x(0) = ¢(9) (3)

This shows that the system matrices and the initial states

are a function of the "parameter vector," 6, of which

there are p elements, designated ei, i=1,2, «c. P. The
nominal value, eo, of the parameter vector is used for all
evaluations. Furthermore, it is assumed that A, B, C, D

and ¢ are real, bounded and continuously differentiable

w.r.t. the parameter component ei at its nominal value.

The "state sensitivities" of this system are defined

as the partial cGerivative of the system state fector w.r.t.

the parameter components ei, and are written as

ox(t;6)

6-90

Coupled Linear Differential Equations Method

With the assumptions made in the introduction for
this section, the system parameter sensitivities may be
found by augmenting the original system with the desired
state sensitivities (from Eq (6)) as follows (Ref 8:124):
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where q is the system output dimension and r is the system

input (control) dimension. This augmentation gives a
"sensitivity system" which contains all the original states |4
f plus the desired parameter sensitivities expressed as |
states. From Eq (7) it is evident that the complete :1
solution of this sensitivity system involves solving up g

to n(p+l) coupled linear differential equations. 3




Component Matrix Method
The CM method of finding the parameter sensitivities

seems at first to be much more indirect than the CLDE method.
However, after all the development of the theory is complete,
it turns out that some steps can be eliminated because they
serve only as convenient dividing points for the problem
when solved manually. In a computer solution process, once
the inverse Vandermonde matrix is found, all the sensi-
tivities of the parameters and the original system can be
determined using the elements of the matrix.

Eq (4b), the system output equation, has a time domain
solution (Ref 12:373)

Alt-tg) Cace-1)

y(t)=Ce x(ty)+ Bu (t)dt+Du (t) (10)
to

For simplicity of discussion, the initial time, ty, and
the feed forward matrix, D, may be set to zero. Since the
system is time-invariant, the output matrix, C, can be

taken outside of the integral. Thus Eq (1) becomes

; t
y(t) = certx(o) + c [Pt T
o

Bu (t)dt (11)
The state transition matrix (STM), eAE is not a function
of the variable of integration, so it may be removed from

the integral. Therefore
A t
y(t) = cex(o) + CeAtfe ATBu (1) ar (12)
o

Notice that the integral is now only a function of one

variable and is therefore simple to compute. Such single
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variable integrals are called "quadrature integrals."

Notice that there are a total of nr quadrature integrals

At

since e *! is an n x n matrix and B is an n x r matrix.

Eq (2) established the .:ed to find the system out-

put parameter sensitivities, so differentiating Eq (12) w.r.t.

the parameter vector, 6, yields

Y _ ~ At 3x(0) 5 __At 2 At
3%; Ce 361 + C ggze x(o) + aei C e x(0)

B u(r)dr (13)

Note that none of the parameter sensitivity deriva-
tives in Eg (13) are functions of time except that of the
state transition matrix:

At _ 9 e

At
e =
(1) * 385

(14)
The sensitivity derivative of the state transition matrix
is potentially very costly to obtain because, in the form
shown in Eq (14), it must be reevaluated for each desired
point in time.

It can be shown (see Appendix C, Section 1), that the
sensitivity derivative of the original state transition

matrix, °?§)’ is contained in the evaluation of the state

transition matrix of the augmented sensitivity system, i.e:
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By an application of the Cayley-Hamilton theorem (see

Appendix C, section 2) the state transition matrix of the }
augmented sensitivity system is found to be a summation

of products of the remainder polynomial coefficients and

powers of the sensitivity system matrix:

E___}___S t i |a | of?

Bt A P Z O o , 16}

- (i . : aJ(t) :
I JAgy, A

However

- (17)

that is: the power of a matrix can be brought inside and

applied to each element (Ref 11:64; 3:241-248). There-

fore applying Egs (15) and (17) to Eq (16) results in

; ! A1 ©

|
‘ | T AR R | R | t b o §
| e | © A(i' A 2n A : o
At At e - = i 1

Eq (18) shows that the scalar multiplication and sum-

mation operations can be applied separately to each section
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of the partitioned state transition matrix of the aug-
mented sensitivity system. So the partial derivative
of the original state transition matrix, which is needed
to find the parameter sensitivities according to Eq (13),

can be evaluated simply as

2n
R W
e(i) ?e—le < A(i) aj (t) (19)

At this point, it is still necessary to find the partial deri-
vative of 2n powers of the original system matrix, A, and
solve 2n differential equations to find the remainder poly-
nomial coefficients, aj(t). The sensitivity problem ap-
pears to have become even more complicated.

However, Reid shows (Ref 11:70) that the partial deri-
vative of the system state transition matrix can be found
from a summation of products of partial derivatives of the

system "component matrices" and the system modes:

n n

At Ast Ast

5y = Doy 0 e +Z(zj,o)t(>\j)(i)e it (20
j=1 j=1

Eq (20) is a simplification of Reid's formulation and

applies for the case of distinct eigenvalues. It is used

here for clarity.

Eq (20) can be extended to the augmented system:
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= | J(4i)
- I
Zj'o | (0]
S e
It is evident from Eq (21) that for every mode, exjt, in
the original system, there is an additional mode, te)‘jt

in the augmented system. However, the additional modes
occur only in the sensitivity derivative of the STM. Thus
the STM of the original matrix is preserved by the CM
method. Only the original modes appear in the STM for

the original system, e.g.:

Z(z yel (22)

3=1

Thus the CM method is seen to have a physical insight ad-
vantage in comparison to the CLDE method: the modes of
the system are clearly visible throughout the CM solution
process, whereas usually they are not in the CLDE process.
But there is now a total of 2n modes, so the Vandermonde
matrix which must be inverted to find the component

matrices for the sensitivity system is 2n x 2n. .(See




Appendix C, Section 3 for a discussion of how the com-
ponent matrices are formed.) And, a total of 2nr gquad-
rature integrals must be found.

This section theoretically compared the CLDE method
of computing system parameter sensitivities to the al-
ternate CM method proposed by Reid. It showed that when
the state system is augmented to include the parameter
sensitivities, the CLDE method requires the solution of
up to n(p+l) coupled linear differential equations. To
reduce this computational burden, reduced order models
are sometimes used, but the required coordinate transfor-
mations often impair physical insight into the system and
make it difficult to obtain the original system sensi-
tivities from the reduced order sensitivities. The alter-
nate procedure, the CM method, was shown to retain the
physical significance of the system variables throughout
the calculation process, and to exchange the formidable
task of solving n(p+l) coupled linear differential
equations for 2nr much simpler quadrature integrals, plus
some matrix operations. However, the potentially costly
process of inverting a 2n x 2n Vandermonde matrix was
also shown to be part of the CM method. Thus Section III
deals with the subject of efficiently inverting the Vander-

monde matrix.
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III Vandermonde Matrix Inversion

Preceding sections established the need to calculate
parameter sensitivities as part of a system identification
process. Two methods for finding those parameter sensi-
tivities were compared: the CLDE method and the CM method.
The latter was chosen for further study based on theoretical
comparisons in Section II. However, a key issue associated
with this method is the need to invert a 2n x 2n Vandermonde
m#trix. This section addresses a number of problems
associated with inverting the Vandermonde matrix, and
investigates a generalized method of Vandermonde inversion
proposed by F. G. Csdki (Ref 1:154-157). A special feature
of Cséki's generalized algorithm is also discussed. That
feature is that the algorithm can be imélemented on a
parallel architecture processor, which for a real-time

flight control system in particular, is significant.

Potential Problem Sources

There are basically five sources of problems asso-
ciated with computing the inverse of the Vandermonde matrix,
all of them related to the characteristics of the eigenvalues.
They are:

(1) Complex eigenvalues

(2) Repeated eigenvalues

(3) Eigenvalues close to each other

19
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(4) Eigenvalues close to the origin

(5) Combinations of very large and very small
eigenvalues

Each of these potential problems is addressed in turn.

Complex Eigenvalues. Vandermonde matrices formed

from complex variables may be handled three ways: (1)
conversion of the complex matrix to a real one (Ref 9:
Problem 6.8), (2) use of two separate sets of real vari-
ables for all calculations--one set for the real parts

and the other for the imaginary parts of the complex
variables, and (3) use of complex variables directly.
Investigation of Cs&ki's generalized algorithm was de-
sirable because of its parallel implementation capability,
as is discussed later in this section. The algorithm has
an inherent capability for handling complex eigenvalues,
so conversion of the complex Vandermonde to a real one was
unnecessary. Few control systems have entirely complex
eigenvalues, so with this in mind the second method of
handling complex variables was chosen. In this way, tests
for complexity can be performed, and for calculations
involving only real quantities, the complex part of the

calculations can be omitted to save computation time.

Repeated Eigenvalues. For systems with repeated eigen-

values, the derivative equations (Egs (C2-4, C2-5)) must be
used in the formation of the Vandermonde matrix. If the
Vandermonde matrix was not defined this way, any system

having repeated eigenvalue would have a singular, and thus

20




uninvertable, Vandermonde matrix. Csédki's generalized al-

gorithm never forms the Vandermonde matrix, but incorporates
the derivative feature directly in the formation of the
inverse Vandermonde matrix.

Nearly Identical or Nearly Zero Eigenvalues. Eigen-

values that are close to each other or close to the origin
may cause numerical instability because of the finite word
length of digital computers. Algorithms using differences
of eigenvalues, which Caski's generalized algorithm does,
are especially susceptible to this problem. The accuracy
tests of this thesis therefore include some systems with

close eigenvalues and some nearly zero eigenvalues.

Eigenvalues With Large Magnitude Differences. Combi-
nations of eigenvalues with large differences in magnitude
may cause scaling problems in the calculations. Some
tests to investigate this problem are also included in
the thesis.

Cséki's Generalized Algorithm

F. G. Cs&ki proposed (Ref 1:154-157) an algorithm for
finding the inverse of a Vandermonde matrix directly from
a collection of eigenvalues and their multiplicities. The

Vandermonde matrix itself is never formed by the algorithm.

Since the algorithm finds each element of the inverse Vander-

monde matrix independently, it may be implemented on a

parallel architecture computer to increase the real-time

computation speed. This is discussed in more detail in the
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next part of this section. Many inversion techniques can-
not be implemented in parallel fashion because they do
simple row or volumn operations rather than operations
involving individual elements.

Cséki's generalized algorithm partitions the inverse
Vandermonde matrix into m blocks, Wi, (s 1, 2, 240 W)y
with one block for each distinct eigenvalue. Each block
is dimensioned k; rows by n columns, where ki is the eigen-
value multiplicity and n is the system order. The Vander-

monde inverse may thus be represented by

b |
Wy
L
o (23)
e Wm ._J.nxn
— .
wl'r(i)
T(i)
Wy
where Wi = ; (24)
W rmﬂ

in which ij(i) (3=1, 2, « ¢« <« ki’ are the row vectors

of the block Wi.
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With this formulation and nomenclature, each element

of the inverse Vandermonde matrix may be determined from

(ks=3)
i Na(s)
(k=31 4 (k;=7) D;(s)

(1) 1
L

(25)
s-Ai

in which wjgi) represents the element in the j'th row and

2'th column of the i'th block, W The fraction terms are

i.
defined as follows:

Dy(s) = —EL_;i=1,2, ..o m (26)
and
n=1 n-%-1
N (s} = s “+a _;s + ... tag g8 +oag; (27)

o= L, 2; e )

D(s) is the system characteristic equation, which may be

represented as

n-1

m
D(s) = s" + a, .18 T+ ... + a5 +a= 11;(s-xi)ki

(28)

Eq (26), the i'th "denominator polynomial," is therefore
the characteristic equation with the i'th eigenvalue
divided out completely. The terms defined by Eq (27) are
called "truncated polynomials" and are formed by itera-
tively reducing by one the power of each term of the

characteristic equation, Eq (28), and deleting the right-




most term until a total of n truncated polynomials are found.
For example, suppose a third order system has the charac-

teristic polynomial

A A S S

2

D(s) = 33 + 48 - s + 3 (29)

The n = 3 truncated polynomials are

Nl(s) = 52 + 48 - 1 (30a)

!
Nz(s) =35 + 4 (30b)
N3(S) =1 (30c)

llote that the final truncated polynomial is alﬁays the
integer one because of the form of D(s) used. Also
| notice from Eq (25) that the derivative procedure which
| is part of the definition of the Vandermonde matrix

(see Appendix C, Section 2) is included in the formula

i for the elements of the inverse matrix.

In order to draw the foregoing together, suppose a

sixth order system has three eigenvalues, having multi-
plicities of three, two, and one, respectively. Substi-
tuting Eq (25) into Eq (24), and the result into Eq (23)
yields the following structure for the inverse Vandermonde

matrix: "
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A simple numerical example of the application of this

algorithm is in Appendix D, Example 3.

Parallel Architecture Processors and Csdki's
Generalized Algorithm

If a large problem can be broken up into a number of

smaller independent ones, parallel processing can be used
to reduce the real process time. No computational ad-
vantage is realized, but since several calculations can
be done simultaneously, the clock time from start to
finish of the large problem is less than if each calcu-

lation were done serially. This is particularly impor-

tant for flight control applications where real processing
time may be critical.

For a comparison between serial and parallel process

times, suppose a third order system has two eigenvalues,

( one with a multiplicity of two. A serial processor would

perform the Vandermonde inversion with Cs&ki's algorithm




as shown in Figure 2a. If each calculation takes p seconds
of processing time, the minimum total time is 15p because
a calculation cannot begin until the preceding one is
finished. Figure 2b shows the same calculations as a
parallel processor could perform them. Notice that the
total time from start to finish of the group of calculations
is a third of the amount of time the serial processing took
because the parallel processing system has three times as
many processors to do the job. More information on parallel
processing is found in Ref 4.

Not only does Cséki's method for finding the inverse
of the Vandermonde matrix lend itself to parallel processing,
so does the component matrix approach itself, as Figure 3
shows. At the top of the figure is §, the current estimate
of the system parameter vector. From that estimate, the
system plant model, o(A), can be found, and from it, the

current eigenvalues, Al' A vy An, can be determined.

27
As shown, each eigenvalue can be used in parallel to com-
pute the 1 x 2nr vector, F, of quadrature integrals, while
at the same time computing the elements of the inverse
Vandermonde matrix which correspond to that eigenvalue.

At this point, the value of the parallel computation struc-
ture of Csédki's algorithm is readily visible. If the
algorithm to find the inverse Vandermonde matrix did not
have a parallel structure, none of the calculations using

the elements of the inverse Vandermonde matrix could pro-

ceed until the entire matrix was computed in serial form.
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Serial Processing Steps

Parallel Processing Steps
with n P&ocessors

Clock Time (pl
1-
R v !
D(s) D(s) Dl(s) D (s)
¥ " ) s
DlLs) 2. NJ.(S) Nz(s) Nl(s)
! Wiy S
D,(s) 4 wy, U w21( 1 "11( )
! .
N, (s) o W, | Wy, w12(2)}
1 »,
N, (sl 5 Wy 51 Wyttt Wiy
! K’ v v
N3(sl
6 -
W .
lj'{ 7 4
w. (1)
5% R
w QL
11 gl
w (1)
21 10 -
w (11
A
w1
12 4
W.. 21
11& 13 4
W. . (21
12
W, . ()
13 15 qv
(a) (b}
Figure 2. Processing time comparison:

a) Serial Processor,
b) Parallel Processor.
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That could stretch out the overall computation cycle time
considerably, as Figure 2 showed. However, with the
parallel structure of Csdki's algorithm, each eigenvalue
branch of Figure 2 may find the elements of the inverse
Vandermonde matrix pertaining to that eigenvalue and
continue with the next calculations immediately. From

the calculated inverse Vandermonde matrix elements, the
vector of component matrices, Y, and matrix of component
sensitivities, G, can be computed. A change in the system
parameters, A8, can then be computed from (Ref 10)

¥ =[r)-[6] a8 (32)
where Y, [F], and [G] are defined as in Figure 3.

It is now possible to use Af to update the estimate of the
parameter vector, §. This closes the computational loop,
making the system identification process iterative, and
thereby capable of applications in on-line flight controllers.
All of this sounds nice in theory. The immediate
question that arises concerns whether or not the method
actually works when implemented on a computer with a prac-
tical problem like limited word length which causes
truncation and round off errors in the calculations per-
formed. Therefore Cséki's algorithm was encoded in Fortram
‘and some tests were run to evaluate its accuracy and
efficiency. Those tests are the subject of the next

section.
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IV Tests Run on the Coded Version of

Csédki's Algorithm

Previous sections of this thesis dealt with the theory
behind a system identification process. The CM method for

system identifications was shown to have theoretical compu-

tational advantages over the more straightforward CLDE
method. However, part of the CM method is the inversion
of a 2n x 2n Vandermonde matrix, which can be computa-

tionally costly. Csdki's generalized algorithm for finding

the inverse Vandermonde matrix was chosen for its parallel
computation structure. This structure gives the algorithm
the capability of operating much faster in real time than
algorithﬁs which must perform all the calculations in serial
form. Also, the particular parallel structure of Cséki's
algorithm is very compatible with the parallel structure

of the CM method of system identification.

Csédki's generalized algorithm was coded in Fortran in

a subroutine called "VANINV", and is hereafter referred to
as such. Appendix A contains descriptions and flowcharts
of VANINV and the subroutines associated with it. Part I
of Appendix B contains source listings of all the sub-
routines in Appendix.A. This section describes tests done i

subroutines. Source listings of the test programs, though |

not flowcharted, are found in Appendix B, Part II.




~

Types of Tests

Two types of tests were performed on VANINV. The first
was actually a combination of four separate tests to deter-
mine VANINV's computational accuracy. The second type of
test measured how long it took VANINV to find the total
inverse Vandermonde matrix for a given system. These two
types of tests were run on a number of different systems
to determine what happens to the computation time and
accuracy when: (1) the system order increases, (2) two
eigenvalues become very close, causing the Vandermonde matrix
to become more nearly singular and therefore harder to in-
vert, (3) one eigenvalue approaches zero, which also makes
the Vandermonde matrix more nearly singular, and (4) the
difference between the magnitudes of the largest and smallest
eigenvalue increases. The ratio, C = |;§§§ . in (4) is
called the "condition index."

In order to obtain a relative measure of VANINV's
performance, the same tests with the same systems were run
using a standard matrix inversion routine contained in the
International Mathematical & Statistical Library (IMSL).
Early tests were done with IMSL subroutine LINV1F, but it
did not have sufficient accuracy, so the final tests were
done using IMSL subroutine LINV2F, which has a capability

for iterative improvement of the solution.

Accuracy Tests

The first accuracy test is actually only a test of the

IMSL routine. It simply involves feeding the inverse
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Vandermonde matrix back into the routine, and comparing

the reinverted matrix to the original Vandermonde matrix. E
It is unlikely that the accuracy of the reinverted matrix
is better than that of the first inversion. Thus a lower
accuracy bound on the inversion is the minimum number of !
decimal places in the reinverted matrix that are identical
to the original matrix.
Originally a second accuracy test was set up to

multiply the Vandermonde matrix by the calculated inverse

and subtract the identity matrix:

v v;1 -I1==E (33)

in which the subscript "c" means "calculated." Theo-

retically, E should always be a null matrix. The extent
to which it is not zero gives an indication of the ac-

curacy of the calculation of the inverse, V;l.
E is typically composed of numbers so small that the errors

However,

caused by the computational characteristics of ‘the algo-
rithm cannot be distinguished from the truncation and
round off errors resulting from the finite word length of
the computer.

The following analysis may be made of the problem

(Ref 6:61-64). What is really desired is the error
between the true inverse and the actual inverse, defined

! as:
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A" -A }ow Error (34)

Now

1 1

o g VRO TR SR N
A(ACA )-AAC AA —AACI E (35)

from Eq (33). Then Eq (34) can be expressed
(A;;-A-l) = Error = A-l(AAzl-I) = a"lg (36)

Tests with matrices having known inverses show that the abso-

lute value of the smallest negative exponent in the elements

of A”lE approximates the minimum number of decimal places

1

in A; that are accurate. For example, if the elements in

A"lE are .xxxxxE-10, the elements of Agl may be considered

accurate to at least ten decimal places. This may be ex-

pressed as follows:

let %4 4 be the elements of A~ L

eij be the elements of E

Bij be the elements of A LE

n

Therefore Bij = :E: %4k ekj (37)
k=1

and a bound on the error of aij is given by

n
HWES D R (38)
k=1

1

However, Ok © A" " is not available; so use Yik € A;1 and

use the following approximation for the error bound:

33




n
logsl <01 viplleyyl (39) |
k=1 |

hoping that the actual error of the element is bounded by

pij:

| agpe = Yyl < | "ijl (40)

When this test was applied to systems with known solutions,
Eq (40) predicted inversion accuracy to within three
decimal places for systems whose condition index was less
than about 100, unless there were two eigenvalues closer
than .2 units to each other.

The third test used was simply a summation of the
elements, Bij' of the check matrix, A'IE, from test two.
It was an attempt to quantify in a single number the ac-
curacy of the inversion method being tested. In this thesis

it is referred to as an "Accuracy Merit Figure" (AMF). The

problem with it is that it is very dependent on how many

elements of A;l are nonzero. It tends, therefore, to be a

cumulative, rather than an absolute (i.e.: "decimal place") |

accuracy test. Note, however, that the AMF can be used in
conjunction with the largest element of the check matrix to
carry the information contained in the matrix in two numbers

rather than the n2

elements of the matrix. Tests showed
that if the AMF is much larger than the largest element of
the check matrix (i.e.: AMF >>(Bij)max)' it indicates that

many elements of the matrix are nearly the same size as

(Bij)max and probably all the elements of the inverse matrix, ?

v'l, are accurate to the same number of decimal places.
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However, if AMF = (sij)max' one element of the check matrix
is dominant, and most of the other elements of V"1 are more
accurate than (Bij)max indicates. In this situation,
(Bij)max is definitely a worst case error indicator.

Fourth and final of the accuracy tests used was a
subjective comparison of the inverse Vandermonde matrix
calculated by VANINV and the IMSL routine. A number of
the systems used in the tests had known solutions, or had
repeating decimals in the solution. The decimal place
accuracy of each inversion was therefore estimated on the
basis of these characteristics of the solutions.

A total of 43 different systems were designed in
order to test VANINV and the IMSL routines. The tests were
run on a CDC 6600 computer using single precision arithme-

tic. Results of the tests are given in the next section.
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v Results of Tests

The total of 43 test systems (see Table I) which were
run were divided among the following five application
categories:

l. Computation time as a functioﬁ of system order

(Tests 1 through 43).

2. Accuracy as a function of system order (Tests 1
through 11).

3. Accuracy as a function of the distance between
the closest two eigenvalues of the system,
|xx-xy|min (Tests 12 through 20).

4. Accuracy as a function of the condition index,

max
C = TT;;;T (Tests 21 through 27).

5. Accuracy as a function of increasing condition
index, C, as the smallest eigenvalue, |xmin|,
of the system approaches zero (Tests 28 through
43).

Table II contains all the data from the tests, and

the results are explained according to the categories above.

Computation Time

Tests 1 through 11 indicate that the computation time

for finding the inverse Vandermonde matrix is proportional

to a number between n2 and n3. This is to be expected

2 and some

since the number of elements to be computed is n
elements take more calculations than others. Figure 4

shows this relation (computation time between n = 8 and
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j A Table I

Test Systems

Test No. System Order Eigenvalues

A,=  .5+30.
1

: 2 xz- -.5+30.
M= .5+30.

2 3 Ag=  .S+30.
XJ- 0.

% p A= 1. +30. Ay = .5+30.

A= 1. +j0. Ay = .5e+j0.

* 5 A= 1.5+30. Ay = 1. +j0. xs = .S+j0.

Ap==1.5+30. Ay ==1. +j0. Ag = =.S+30.

% 8 A = 2. +j0. Ay = 1.5+j0. Ag = 1. +j0. Ay = .5+30.

Ay==2. +30. Ay ==1.5+30. Ag ==l. +30. Ag = =.5+30.

A= 2.5+30. Ay ==2. +j0. A = 1. +30. A\g = =.5+30.

6 1o Ap=~2.5+30. Ag = 1.5+30. Ay ==1. +30.
A= 2. +10. g ==1.5+30. Ag = .5+30.
A = 3. +j0. Ay = 2.5+30. Ay = 1.5+j0. Ao==l. +30.
7 12 A,=~3. +30. A\g = 2. +30. Ag ==1.5+30. A= -5+30.
Ay 2.5+30. Ag ==2. +j0. Ag = 1. +j0. A1= -.5+j0.
*1' 3.5+j0. xs = 2.5+30. x, = 1.5+30. *13' .5+30.
8 14 A ==3.5+30. Ag ==2.5+j0. Xlo--1.5030. Ayq= =-5+30.

x,- 3. +jo0. x, = 2, +j0. 111- 1. +j0.

Ag==3. +j0. Ag ==2. +j0. A1a==1. +j0.

A = 4. +30. Ag = 3. +j0. A’ = 2. +30. Apg= 1. +j0.

9 16 Ap==4. +30. Ag ==3. +j0. Alon-z. +30. Aiq==1. +j0.

Ag= 3.5+30. A, = 2.5+30. A11= 1.5+j0. A1¢® -5+j0.

Ag==3.5+30. Ag ==2.5+30. Alznol.s+jo. \6® -.5+30.

ze- 4.5+30. Ag ==3.5+j0. A 2. +30. 11‘--1. +30.

az-c.s+3o. Ay = 3. +30. xlz-z. +3j0. 117- .5+30.
10 18 Ay 4. +30. Ag ==3. +j0. xla- 1.5+30. \e” ~.5+30.

A==, +30. Ag = 2.5+30. kl‘--1.5+jo.

Ag® 3.5+30. xlo- 2.5+30. *15' 1. +j0.

11- 5. +j0. Ag = 4. +30. Ayy™ 2.5+30. 116-1.S¢jo.
| Ay==5. +j0. A, = 3.5+j0. A a==2.5+30. Ap9= 1. +30.
! 11 20 Ay= 4.5+30. Ag ==3.5+j0. Ay3= 2. +30. xl.-l. +30.
l: X‘-A.SOjO. X’ = 3, Q'jo. xl‘.“2~ 0’0. xl’- .5010.
‘ Ag= 4. +j0. xlo--z. +j0. A\is® 1.5+30. A\g® «.5+30.
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Table I--continued

Test No. System Order Eigenvalues
13 2 Ay==10.+30. Ay==5.+30.
Ay= =9.+j0. Ag==4.+j0.
13 4 Al--zo.qo. 4\3--5.¢j0.
A= =9.+j0. A ==4.2+j0.
‘ % 4 Ap==10.+30. Ay=~5.+30.
“ A= =9.+30. A =~4.4+30.
. - F Ay ==10.+30. Ay==5.+30.
A= =9.+30. A =~4.6+30.
14 s A ==10.+30. Ay==5.+30.
A= =9.+30. A ==4.8+30.
19 £ A;==10.+j0. Ay==5.+30.
A= =-9,+30. Ag==4.9+30.
18 4 Ay==10.+j0. Aqy==5.+30.
Ag= =9.+30. A ==4.99+30.
1 . A;==10.+30. A3==5.+30.
A= =9.+30. Ag==4.999+30.
2 F Ay=-10.+30. Ag==5.+30.
xz- =9.+30. A‘-4.9999+10.
2 " A1=-100.+30. Ag==5.+j0.
A= =9.430. Ag==4.+30.
33 3 A1 ==1000.+j0. Ay==5.+30.
A= =9.4j0. A ==4.+30.
! - p A, ==10000.+30. Ay==5.+30.
A= -9.+30. Ag=-4.+30.
{ 2 . A,==100000.+30. Ag==5.+30.
Ay" -9.+30. Ag=-4.+30.
- " 11=-1000000.+30. Ag=-5.+30. 3
Ay =9.+30. A ==4.+30.
26 4 xlo-looooooo.ojo. x,-—s.o:o.
A= -9.+50. A ==4.+30.
27 4 11-100000000.030. x,-—s.ﬂo.
Ay ~9.+30. A ==4.+30.
: 18 p A ==10.+30. Agm=5.+30.
| A= =9.4+30. Ago=1.+30.
| 29 ‘ A ==10.+30. A q==5.+30.
‘ 13- -9.+30. x‘--.aojo.
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Table I--continued
Test No. System Order Eigenvalues
10 4 xl--xo.q»jo. xa--s»jo.
A= =9.+30. A ==.6+30.
1 4 xl--lo.o-jo. xsns.ojo.
A= =9.+j0. A== 4+30.
32 . A;=-10.430. Ag==5.+30.
xz- -9.+30. x‘--.zﬁo.
33 4 xl-l.o.ojo. 13--5.030.
Ap= =9.+30. A ==.1450.
34 . A,==10.+30. Ay==5.+30.
A= =9.+30. A ==-01+30.
35 4 Aj==10.+j0. Aqy==5.+j0.
le -9.+30. x‘-.ooujo.
16 . Ay=-10.+30. Ay==5.+30.
A= =9.+30. A 4==.0001+30.
37 4 Ay=-10.+j0. Ay==5.+30.
A= =9.+30. A= 0.+30.
18 s A1=-1000.+30. Ay==5.+30.
xz- =9.+30. x‘-l.tjo.
19 4 xl--looo. +30. Ay==5.+j0.
xz- -9.+30. x‘--.lojo.
40 4 xlc-xooo.ojo. AJ--S.ojo.
A= -9.430. Ag==.01+30.
a 4 xl--xooo.ojo. x;-s.a-jo.
xz- -9.+30. x‘--.oolojo.
42 4 x,_--looo.«vao. Ay==5.+30.
A= =9.430. A4==.0001+30.
43 ‘4 A,=-1000.+30. Ag==3.+30. .
A= =9.+j0. X‘- 0.+30.
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of system order (30 iterations
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n = 16 is proportional to about n ‘5) and also shows that
the IMSL routines tended to run only slightly faster than
VANINV. The remaining tests were all done with fourth order
systems, and computation times remained nearly constant in

every case for VANINV,.

Accuracy as a Function of System Order

{ Figure 5 shows graphically what the results of Tests 1
through 11 indicate--accuracy is essentially constant at the
maximum machine capability (14 decimal places for a CDC 6600
machine) over the range of system orders tested.

The second accuracy bound test indicates that although
the full 14 decimal place accuracy is present up through
the 1l4th order system, the probability of this being so is
diminished as the system order increases. This may be ex-
plained as follows. The number of calculations done to find
each element of the inverse Vandermonde matrix increases

2 3

approximately to the n® to n” power with system order, as

was shown in the preceding result. With the increase in
the number of calculations, truncation and round off errors
from the calculations may accumulate sufficiently to ap-
pear to propagate into the more significant decimal places.
Since the second accuracy test uses absolute values of
error quantities in determining a lower found on the ac-
curacy, the test is actually a calculation of the worst
possible accuracy, not the most probable accuracy. This
hypothesis would be supported if these tests were run in

double precision arithmetic and the accuracy tracked along
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at the higher level. The reason for the sudden drop in the
minimum bound for VANINV beginning with the 18th order
system is not intuitively obvious, but it is interesting to
note that it seems to be indicative of a trend as the sys-

tem order continues to increase.

Accuracy as a Function of Jxx'kylmin

From Piguré 6 it can be seen that the accuracy for both
VANINV and the IMSL routine drops off as the minimum distance
between two eigenvalues goes to zero. Neither routine is
significantly better than the other, as the results of
Tests 12 through 20 show.

Apparently the second accuracy bound test does not work
very well for systems having two eigenvalues close to each
other. The closer the eigenvalues become, the less realistic
the accuracy bound is.

It is interesting to note that although the accuracy
of the IMSL routine decreases as ka'ky|min decreases, the
resulting inverse is stable. 1In each test the inverse and
the inverse of the inverse have about the same accuracy, so
the solution of the inverse matrix is termed "stable" for

this discussion.

Accuracy as a Function of Condition Index

Tests 21 through 27 hold the minimum eigenvalue,

lxmin" and the closest distance, lkx-kylmin' between two
eigenvalues constant as the condition index, C = ]-—5E£[,
X
““min
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increased. The reinversion of the inverse by the IMSL
routine indicates that the inversion accuracy decreases as
the condition index increases. The actual inversion ac-
curacy could not be determined by inspection of the data,

though VANINV and the IMSL routine gave identical results

up through a condition index of twenty-five thousand. ‘Be- é
yong that point both inversion routines became unstable,

as indicated by the large fluctuations in the elements of
the check matrix and the Accuracy Merit Figure. Plots were

not made of this test series because of the small amount of

plotable data.

Accurag% as a Function of Increasing Condition Index
Caused by an Eigenvalue Approaching Zero

These tests were run in two series. The first series,
Tests 28 through 37, allowed one eigenvalue to go to zero,
thereby causing the ejigenvalue condition index, C, to in-
crease. The minimum distance between any two eigenvalues
was held constant. As seen in Figure 7, the accuracy of
both inversion routines dropped as the condition nuyber
increased.

In the second series of tests, numbers 38 through 43,
the minimum distance between any two eigenvalues was again
held constant, but at a larger value in order to determine
if it has any effect on the inversion accuracy. The ‘accuracy
could not be determined by inspecting the inverse matrices

! . found. However, based on the accuracy of the reipverted
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matrix, the accuracy and stability of the IMSL routines
dropped as the condition index grew in each series.

From the results of both series of tests, a high con-
dition index resulting from an eigenvalue near zero is not
as detrimental to inversion accuracy or stability as a high

condition index caused by a large eigenvalue. In addition,

! % the combination of close eigenvalues and a high condition
index has more of a degrading effect on accuracy than either
of the two by themselves. It may also be observed that when

the eigenvalue actually reaches zero, thereby driving the

condition index to infinity, the accuracy rises sharply back
to the level realized for small condition indices. This is
F probably because the computer can represent zero exactly,

whereas numbers near zero can only be approximated.

All of the findings of the tests are summarized in the

several conclusions of the next section. 1In addition,

% : recommendations are given for possible improvements to
VANINV and for its use in further research regarding system

identification processes.
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VI Conclusions and Recommendations

Several conclusions were drawn from the results
reported in Section V. Based on those conclusions it is
recommended that subroutine VANINV, which implements
Csdki's generalized algorithm for finding the inverse of
a Vandermonde matrix, be refined for computational speed
and tested in its intended application, that of finding
component matrices for a system identification process.
The conclusions and the recommendations are explained
further in the remainder of this section. The method of
presentation is a listing of the conclusions/recommendations,

followed by some comments regarding them.

Conclusions

The following conclusions were made:

1. The IMSL routines are generally slightly faster,
and about as accurate or somewhat more accurate
than VANINV is in its present form.

2. The accuracy of both routines is reduced by high
condition indices, particularly if the high con-
dition indices are caused by large eigenvalues,
as opposed to being caused by one eigenvalue near
zero.

In regard to computation speed, it should be noted

that VANINV is compiled to optimization level two, whereas

the IMSL routines are only compiled to optimization level




ARSI
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one. This means that IMSL could possibly run significantly

faster than VANINV. However, these tests were restricted
to real distinct eigensystems. VANINV has the capability
of computing the inverse of Vandermonde matrices with com-
binations of repeated and/or complex eigenvalues. A fair
test of this property would necessitate special conversions
to turn the Vandermonde matrix into a purely real matrix
that the IMSL routines could handle. This conversion time
would then be considered part of the IMSL computation time.
It would be interesting fo determine VANINV's accuracy
if double precision arithmetic was used. Of course, for
any intended application a trade-off analysis should be per-
formed between any increase in accuracy and the cost in

terms of additional memory requirements.

Recommendations

It is recommended that VANINV be developed further and
implemented in a component matrix approach for system iden-
tification. In this way, VANINV's accuracy can be checked
in the more meaningful environment of its intended appli-
cation. An accuracy check is built right into the component
matrix approach to system identification: all of the com-
ponent matrices of the pseudo modes should be null. Also,
the computational accuracy should be testeq on computers
with shorter word length than possessed by the CDC 6600
computer used for these tests. Computers used for on-line
control applications probably wouldn't have word lengths
with 48 bits of data storage like the CDC 6600 has.
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The following procedures are therefore recommended for

VANINV itself:

1.

3.

Test VANINV with repeated and/or complex eigen-
values to determine their effect on computation
time and accuracy.

Determine where most of the computation time is
used on VANINV and improve the efficiency where
practical.

Eliminate the calls to subroutines that are made
only one or two places in VANINV and replace them
with the coded subroutines, since all the sub-
routines have been debugged.

Streamline VANINV by using vector array addressing
to reduce array index computation time.
Incorporate a row jumping capability into VANINV
to eliminate duplicated calculations for repeated
and/or complex eigenvalues. This is illustrated
in Figure 8, which shows a very common occurrence
for the component matrix approach. Every complex
conjugate pair of eigenvalues in the original
system will be repeated in the 2n x 2n Vandermonde
matrix of the augmented system. The resulting
calculations that VANINV would perform for these
eigenvalues is shown by Figure 8. Note that the
lower half of the matrix shown in Figure 8 is

simply the complex conjugate of the upper half.

Thus considerable computation time could be saved




2 N, (S) d N,(s) d N,(s) d N, (s)
ds D—l () ds Dl'(§i ds D‘IZ§)' ds Dl'z.'S)
i, Ay Ay A
| 3
N, (S) N, (S) N, (S) N, ()
B, (51 D, (51 b, BT b, (5T
A A1 A1 A1
d N (s) d N,(s) d Ny(S) d N, (s)
ds D, (5] ds D, (8) ds D, (8] ds D, (8)
‘A A2 A2 Ay
N, (S) N, (S) N. (S) N, (S)
1 2 3 4
D, (51 D, (s1 b, 51 B, (51
A A A \
- 2 ‘A 2 2
—
Figure 8. Example of VANINV calculations

applied to a fourth order
system with a repeated complex
conjugate pair of eigenvalues.

53




by incorporating a row jumper which would simply

store the complex conjugate of

(1) _ g Ny(8)

1 Wi1g T ds D (8)
i 170,
: 1
]
i directly into
; 12 ds Dzisi
i A
: 2

and thus eliminate half the calculations. Also
note- that a repeated eigenvalue in the original
system would occur four times in the 2n x 2n Vander-
monde matrix, as Figure 9 shows. Each column is
composed of identical elements except for the

number of derivatives that must be taken for
evaluation. If a row jumper with some memory were
added to the routine, successive derivatives could
be taken to evaluate the elements of each column.
This would require only 1l+l+l = 3 derivatives for

each column shown rather than 3+2+1 = 6 derivatives

as VANINV must do presently. (Without the row
jumper, VANINV simply evaluates each element as i
it comes to it, without regard for any calculations
done previously.)
In addition to the recommended procedures for VANINV
described above, two comments are made regarding the com-

{ ponent matrix approach to system identification:
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@ mei| @ ne| @ mysi| @ s
;:3’ D, (81 . 4s3 D (81 . 4s3 D, (8 . ds D, (8) :
1 ST 1 1
a?wns1| @ ns| @ nys| @ ngs)
as? D (8T . ds? D1 (5] . &’ H& : as? D, (8 X
1 1 1 1
a N8 4 Ny(8) a MaBLl , @
‘a;'rrsrl ’Hs-B"'CTl S 'a?B'TTls ‘cl's'_(n1 3]
A A A A
1 1 1 g
N, (8) N, (S) N4 (S) N, (S)
D, (81 b, B b, Gl B, (8
A A A A
1 1 1 "1
Figure 9. Example of VANINV calcula-

e et e e

tions applied to a fourth
order system with like
eigenvalues.
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1. Many of the matrices resulting from the com-

3 ponent matrix approach are very sparse (eg: Egs
(D2-13), (D2-~14)), and thus the method lends
itself readily to sparse matrix operations such
as those available with SOFE (Ref 7).

2. The calculation structure of both the component
matrix approach and VANINV lend themselves to
parallel calculations. An implementation of
these methods on a parallel architecture com-

t ’ puter has the potential for being very fast in
real time.

Thus it may be seen that a refinement of VANINV may §

; well have a plsce in future system identification processes.
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Preface for Appendix A i

This appendix contains the subroutines written to implement the 1
generalized method for finding an inverse Vandermonde matrix that is E J

described in the body of the report. The appendix is formatted to

serve as a combination user/programmer guide for further investigation ]
of the proposed alternate method of system identification which is |

outlined in the main text.




Contents and Subroutine Cross-reference

Subroutines Called
=

Subroutine ° *

| Q B 8 <) m L; =

o L] - =] > ol =
A THEHEHEHHE IR IHEHERIT
SISIBEIX|EIEIBIZIE|ICIR|5I2|E[8| 88 (=8
CGAIN a-4 | a-5
COPYPOL a-6 | A-7
+ a-8 | a-10
S a-9 | a-11
EVAL X a-12| a-13
EXPANDC X a-14| a-15
FRACDIF x| x|x ::ig A-18
NFACT A-19| a-19
our2c T A-20| a-21
POLYADD X X A-22 ::;i
POLYDIF X A~25| A-26
POLYMC X aA-27| a-28
POLYSUR X a-22| a-30
RAT A-31| a-32
ROOTAY A-33| A-34
UNITY A-35| A-36
A-37| A-40
VANINV X x| x| x|x lx X thru| thru
A-39 | A-46

+ Not used by any of the subroutines listed, but pertinent to the

use of VANINV.
I Punction subprogram.
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{ Subroutine CGAIN
Subroutine CGAIN multiplies each coefficient of a polynomial by a

specified gain. The coefficients and the gain may be complex. ]

i
Subroutine statement: SUBROUTINE CGAIN (AR,AI,NSA,AKR,AKI) j*

Subroutines called: None
Variables:

! ARl _ Arrays containing the real and imaginary parts of
! AI) the polynomial coefficients

NSA = Number of storage locations required for the
polynomial coefficients

AKR]
AKI)

= Real and imaginary parts of the polynomial gain -




Gubroutine CGAIN (AR,AI ,NSA,AKR,AKI)_)

o AT R S

Is the gain real?

NS ———

Is the GAIN
unity?

No'... Multiply by
complex gain.

] : 1o+

I=1
-
] v No ...Multiply
TR = AR(I) by real GAIN.
TI = AI(I) ‘
AR(I) = TR*AKR-TI*AKI %
AI(I) = TR*AKI+TI*AKR I=1
ﬁ
I = I+l

R(I) = AR(I)*AKR
I(I) = AI(I)*AKR

{

! AKR = 1.
AKI = 0.

30

Return

Flowchart for subroutine CGAIN.




Subroutine COPYPOL

Subroutine COPYPOL copies the coefficients of the input polynomial
into the storage locations for the coefficients of the output polynomial.
Also, the input gain is copied into the output gain storage. The coef~

ficients and gains may be complex.

Subroutine statement: SUBROUTINE COPYPOL (PIR,PII,GIR,GII,N,POR,POI,
GOR, GOI]

Subroutines called: None
Variables:

PIR)

PII) - Arrays containing the real and imaginary parts of the

POR) coefficients of the input (PIx] and output (POx) polynomials
POI)

N = Number of storage locations needed for the polynomial
coefficients. (Note that N is one integer value larger
than the polynomial order.)

GIRL
GIIl _ Real and imaginary parts of the gains of the input (GIx)
GOR) and output (GOx) polynomials




K

T ———

(Subroutine COPYPOL (PIR,PII,GIR,GII,N,POR,POI,GOR,GOID

Copy the Coefficients.

=
=

POR(I)=PIR(I)
POI(I)=PII(I)

I=I+1

Yes

Copy the gain.

GOR=GIR
GOI=GII

Return

Figure A-2. Flowchart for subroutine COPYPOL.
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Subroutine ESORT

Subroutine ESORT sorts a collection of real and complex eigenvalues
according to the following specifications:

1. Put in order of decreasing complexness; i.e., complex before
real.

2. Order each section in decreasing order of multiplicity.

3. Order complex conjugates with the eigenvalue having the
positive imaginary part.

4. For equal multiplicities, order in terms of decreasing
magnitude of the real part; or if equal, place eigenvalues
with positive real parts before those with negative real
parts, and order in terms of the imaginary part.

Subroutine ESQRT sweeps through the collection and compares each pair
of adjacent eigenvalues to determine whether or not they need to be
swapped to get them in the proper relative order. Each time a swap is
performed, a "swap counter" is incremented. At the end of each sweep
through the eigenvalue array, the swap counter is tested to see if any
swaps were made on that sweep. If there were swaps, the counter is
reset to zero and another sweep through the array is started. 2ero
swaps during any sweep through the array indicates that all the eigen-

values are in the proper order, so the subroutine returns the rearranged

eigenvalue array.

Subroutine statement: SUBROUTINE ESORT (EIGR,EIGI,KI,M)
Subhroutines called: None
Variables:

EIGR) « Arrays containing the real and imaginary parts of
EIGI) the collection of eigenvalues

KI = Array containing the corresponding eigenvalue
multiplicities

P — ” R TR S I O B, T el B et Doy




MDIS

Number of different eigenvalues in the array (complex
conjugates are considered to be different)

"Message DISable" flag, passed in blank common. ESORT
normally prints an informative diagnostic if two identical
eigenvalues are encountered. If the user doesn't want the
message printed, setting MDIS equal to any positive integer
will disable the printer. Setting MDIS to zero or a
negative integer enables the printer.




=
|

|

|
Li

£y e — A

! ; \ Iéégfoutine ESORT (EIGR,EIGI,KI,M) )

1 Zero the Swap Counter ;

ISWAP=0
Point to the I'th Eigenvalue

I=1

Point to ‘the next Eigenvalue

IN=I+1

Are there Two Eigenvalues
to Compare?

No

Any Swaps performed
this Sweep?

Yes...Make another Sweeg.

Test I'th and In'th
Eigenvalues to

T determine if they
should be swapped.*

‘ Return ’

EIGRT=EIGR(I)
EIGIT=EIGI(I)
KIT=KI(I)
EIGR(I)=EIGR(IN)
EIGI (I)=EIGI (IN)
KI (I)=KI (IN)

EIGR(IN)=EIGRT
EIGI (IN)=EIGIT

KI(IN)=KIT

: | 1swaP=1swap+1 | :

]
<
140 J Look at Next Eigenvalue Pair

+S¢0 page A-1ll for flowchart.

Figure A-3, Flowchart for subroutine ESORT.
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No

Signs differ-
ent, order OK.

Signs differ-
ent, order OK.

Begin ESORT
Test Logic

20 I'th eigenvalue complex?

ose No

|EIGI(I) |
?

Yes ... IN'th eigenvalue complex?
30

/Close
|ezGT ()
?

Yes ... Compare multiplicities
of I'th and Di'th eigenvalues.

ompare the real magnitudes
the I'th and IN'th eigenvalues.

3

so
"rzamizn >
T, ‘ el
jszaR(n)
=
Compare the imaginary sagnitudes
of the I'th and Di'th eigenvalues
60 120
\ >
i3 {3
l.l.‘f..“ o
1833 ;

Possible complex pair has been
found. Make sure signs of the
P real parts are the same.

EIGR(IN >
AT, i
I Signs different, wrong

order.

Signs are the same. Check signs
80y ©f imaginary parts.

X

>

) o
Bty Signs different, wrong
order.

-
Two identical eigenvilues have
been found. An error message
is appropriate.

Printer disabled?

IN‘th eigenvaiue complex?

No ... Compare multiplicities of
I'th and IN‘th eigenvalues.

Compare the real magnitudes of
the I'th and IN‘'th eigenvalues.

-

Equal magnitude pair of real
eigenvaluss has been found. Make
sure positive one is first.

Yes

-
10 ﬂl

AT
Cd e

End ESORT Test Logic

Firure A~4.

A TS AN

Flowchart for test logic of subroutine ESORT.
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Subroutine EVAL

Subroutine EVAL finds the value of the input polynomial at the
specified value of the variable. The input polynomial coefficients and

the value of the variable may be complex.

Subroutine statement: SUBROUTINE EVAL (AR,AI,AKR,AKI,EIGR,EIGI,
NS,BR,BI)

Subroutines called: CGAIN

Variables:
AR) _ Arrays containing the real and imaginary parts
AI) of the coefficients of the input polynomial
AKR) _ Real and imaginary parts of the gain of the input
AKI) polynomial
EIGR) _ Real and imaginary parts of the value at which the poly-
EIGI) nomial is to be evaluated (must be chosen by the

calling routine)

NS = Number of storage locations required for the input
polynomial; NS=N+1, where N is the order of the
polynomial

BR)

BI) Real and imaginary parts of the returned value

A-12




;

B ]

ST ——

Gubroutin. EVAL(AR,AI,AKR, AKI,EIGR,EIGI,NS,BR, BID i
|

Find Polynomial order.

No

More terms found ... Continue
evaluation.

No ... Use real i
evaluation. i

Yes ... Use complex 20
evaluation.
J= 1

(rr———t
Add next higher
order term to output.
Y
BR=BR+AR(N) *ER
A\dd next higher BI=BI+AI(N)*ER

order term to output,
\IN

Update evaluation
term.

J = Jel

1 Multiply by complex gain.

Figure A-5. Flowchart for subroutine EVAL.
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Ky Subroutine EXPANDC |

Subroutine EXPANDC finds the coefficients for the polynomial expan- |
sion of a collection of root factors. EXPANDC reads the roots from a |
root array and returns the coefficients in a polynomial coefficient
array. The coefficient for the highest power of the variable is the first
element;. in the coefficient array. The routine handles both real and
complex roots and does not require that complex roots have conjugate
pairs. The maximum size of the polynomial found is limited only by the

storage allocated for CR and CI in the calling program.

Subroutine statement: SUBROUTINE EXPANDC (ROOTR,ROOTI,NS,BR,BI,CR,CI,
CKR,CKI)

Subroutines called: POLYMC {

Variables:

ROOTR) Arrays containing the real and imaginary parts of the
= roots whose factors are to be expanded into a

ROOTI) solysenial

NS = The number of storage locations required for the output
polynomial; equal to NF+l1 where NF is the number of

1 factors
BR) _ NS-dimensioned temporary storage for intermediate
BT) results of the polynomial expansion
CR] _ NS-dimensioned arrays containing the real and imaginary
CcI) parts of the coefficients of the output polynomial
CKR) _ Real and imaginary parts of the output polynomial gain
CKI) multiplier; always equal to 1. and 0., respectively

CLOSE = User specified value used as a null tester. If the
iy magnitude of any value tested is less than CLOSE, that
f | value is set to zero. CLOSE is stored in blank
1 common and must be specified in the main program.

e i e
| R,

{

i

i

|

i
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e B

ks

————
F.proutine IXPANDC (ROOTN, ROCTI,.a.3R.81,0R,II.0VR. KT

S

Frint Irgot
Message for
No Facsars

Teat for Tactors.

If thefe are no fac"ors, FFANC +rror "essaqge and stap.
If chere is only Jne facter,
If zhefe are two or 20re LACTOrs, SONTLNUE Wilh €XPANSLON.

regurn Jmediscely .

Only “ne Factor

* lajtialize qains.

8 imaqinary part of the root significanc?
3ot up BPOLY accordingly.

(Liel.
CRiL)=0.
CR(3) ®=ROOTR( L
CR(3) »=ROOTT (L)
e
CXIw0.

up
the isaginary

Significant ... Set up BPOLY,
using the imeginary part of
the root.
11
B2(3) *=ROOTT (L1}

ti)e
[BL(1)=0.
BR(2) *=ROOTR (L)

Is imsginaty part of the next root
significent? Set up APOLY eccordingly.

If nex, cepy CROLY iate BPOLY and loop arcund again.

cES

Figure A-6.

Flowchart for subroutine EXPANDC.
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Subroutine FRACDIF
Subroutine FRACDIF accepts a polynomial fraction and finds its

derivative using the quotient rule:

dv_ du
d u udx vdx
_() =
dx v v2

The coefficients of the input numerator and/or denominator polynomial

may be complex.

Subrputim statement: FRACDIF (PUR,PUI,PVR,PVI, NUS,NVS,PNR,PNI,PDR,
PDI,NNS,NDS,NT,UR,UI,VR,VI,RNR,RNI,DR,DI,
TEMP1R, TEMP1I,TEMP2R, TEMP2I, TEMP 3R, TEMP31I)

Subroutines called: POLYDIF, POLYMC, POLYSUB

Variables:
PUR,PUI) _ Arrays containing the real and imaginary parts of the
PVR,PVI) coefficients of the input polynomials, U and V
NUS) _ Number of storage locations needed to store the
NVS) coefficients of the input polynomials
PNR, PNI) Arrays containing the real and imaginary parts of

PDR,PDI) the coefficients of the output numerator polynomial
(PNx) and denominator polynomial (PDx)

NNS) Number of storage locations needed to store the
NDS) coefficients of the output numerator and denominator
polynomials, where:

NNS = NUS + NVS
NDS = 2NVS - 1

NT = Number of temporary storage locations needed for the
numerator calculations

NT = NON(L) + NOD(I)

where: NON(L) is storage required for Lth numerator
polynomial
NOD(I) is storage required for I'th demoninator
polynomial

A-16
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UR, UI)
VR, VI)
RNR, RNI)
DR, DI)

. TEMPLR,TEMP1I)

TEMP2R, TEMP2I)
TEMP 3R, TEMP31I)

Real and imaginary parts of the gains associated with
polynomials U, V, PNx, PDx

Temporary storage locations for numerator calculations




Subroutine FRACDIF (PUR,PUI,PVR,PVI,NUS,NVS,PNR,PNI,PDR,PDI,
NNS,NDS,NT,UR,UI, VR, VI,RNR,RNI,DR,DI,
TEMP1R, TEMP1I,TEMP2R, TEMP2I , TEMP3R, TEMP3I)

Find the derivative of V.
Initialize the gain for V.

VRD= VR
ViD= VI

"

N=NvVS-1
E Call POLYDIF(PVR,PVI,NVS,TEMP1R,TEMP1I ,N,VRD,VID)
i 1 Multiply by U.

: NSC=NUS+NVS-1

Call POLYMC(PUR,PUI,TEMPIR,TEMP1I , TEMP2R, TEMP2I ,NUS,N,NSC,

UR,UI,VRD,VID,T2R,T21)

Find the derivative of U.
Initialize the gain for U.

URD=UR
UID=UI

K

N = NUS-1

y

Call POLYDIF (PUR,PUI,NUS,TEMP1R,TEMP1I ,N,URD,UID)
& Multiply by V.

Call POLYMC(PVR,PVI,TEMP1R,TEMP1I,TEMP3R,TEMP3I, NVS,N;,NSC,
VR,VI,URD,UID, T3R,T3I)
Subtract VLU from UDV to get ]

4
numerator der xvat.we &

Call POLYSUB(TEMP3R,TEMP3I,TEMP2R, TEMP2I ,PNR,PNI,NSC,NSC,NSC,
T3R,T3I,T2R,T2I,RNR,RNI)

Square V to get denominator

derivative.
NV = 2*NVS-1
NNS = NSC

K

Call POLYMC (PVR,PVI,PVR,PVI,PDR,PDI,NVS,NVS,NV,VR,VI,VR,VI,DR,D
] NDS = NV
< Return )

Figure A-7. Flowchart for subroutine FRACDIF.
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Function NFACT

Function NFACT finds the factorial value of the argument, (IF),

entered. Negative arguments cause an error message to be printed and

cause the program to terminate.

Function statement: FUNCTION NFACT(IF)
Subroutine called: None
Variables:

IF = The integer for which the factorial value is desired.

Cl"unction NFACT (IF) ’

Test the sign of the argument.

Calculate (IF)!

Print
Error
Message

Done Calculating?

=

Figure A-8. Flowchart for function
subprogram NFACT.
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Subroutine QUT2C

Subroutine OUT2C prints out the elements of a two-dimensional

array and labels each element with the array name and its position in

the array.

The real and imaginary parts of the complex array are

treated separately.

Subroutine statement: SUBROUTINE OUT2C (NR,NC,AR,AI,IDR,IDI)

Subroutines called: None

Variables:

NR =
NC =

AR) _

AI)

IDR] _

IDI)

Number of rows to be printed out
Number of columns to be printed out

Arrays containing the real and imaginary parts of
the array to be printed

Hollerith labels for the real and imaginary parts of each

element printed; these must be specified in Hollerith
format by the calling program

A-20
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(E;broutine OUTZC(NR,NC,AR,AI,IDR,IDIl'

—3>

[ Print Label
and element

value

J= J+1 Done with row?

Yes ... Done with matrix?

I+l

No

Figure A-9. Flowchart for subroutine OUT2C.
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Subroutine POLYADD

Subroutine POLYADD adds two polynomials, POLYA and POLYB, and
stores the result in POLYC. The coefficients of the polynomials may
be complex. After the addition is complete, the first coefficient of
the output is tested to determine if it is unity. If it is not, subroutine

UNITY is called to unitize it.

Subroutine statement: SUBROUTINE POLYADD (AR,AI,BR,BI,CR,CI,NSA,NSB,NSC,
AKR,AKI,BKR,BKI,CKR,CKI)

Subroutines called: CGAIN, UNITY
Variables:

AR)

AI)

BR] Arrays containing the real and imaginary parts of
BI) the coefficients of PQLYA, POLYB, and PQLYC

CR)

CI}

NSA)
NSB) =
NSC).

Numher of storage locations required for the coefficients
of POLYA, POLYB, and POLYC

AKRL

AKI)

BKR) Real and imaginary parts of the gain terms for
BKI) POLYA, POLYB, and POLYC

CKR})

CKI)

A-22
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{ (smroutine POLYADD (AR, AI,BR,BI,CR,CI,NSA,NSB,NSC,
‘ AKR, AKI, BKR,BKI,CKR, CKI)

: Set output gain.
CKR= 1.
CKI= Q.

J& Multiply POLYA by its gain if not Unity.
|] call CGAIN(AR,AI,NSA,AKR,AKI)] |

| Multiply POLYB by its gain if not Unity.
! Call CGAIN (BR,BI,NSB,BKR,BKI)

Zero the output array.

oy,

- - - - - - -

1

Add POLYA to the
Qutput Array

Add POLYB to the
Output Array

-
|
\
!
|
|
!
|
!

- o, v

F
|
|
|
!
!
|

If first coefficient of output is not
Unity, unitize it.

Real part equal to one?

No

Yes ... Imaginary part eq
to zero?

No
E
eoi
IICall UNITY (CR,CI,NSC,CKR,CKI) ﬂ
| 70
| C Return ) +
See page A-24 for flowcharts.

Figure A-10. Flowchart for subroutine POLYADD.
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Add Polynomials to
the Output Array
P/O POLYADD)

Add POLYA to the Output Array.

Map first coefficient of POLYA to proper
location in Qutput Array.

L NSTART=NSC~NSA+1 ]

Point at the first coefficient of POLYA.

I=1
Add each coefficient of POLYA to its proper
location in the Output Array.
J=aNSTART
F'_———’
\
CR(J) =AR(I)
CI(J)=AI(I)

Done adding?

Map first coefficient of POLYB to proper
location in Output Array.

Add each coefficient of POLYB to its proper
location in the Output Array.

Done adding?

Yes.

End of Adding Po
nomials to the
Output Array

Figure A-1ll.

Flowchart for addition steps of subroutine POLYADD.




Subroutine POLYDIF

Subroutine POLYDIF accepts a polynomial input and returns the

derivative. The coefficients of the input polynomial may be complex.

Subroutine statement: SUBROUTINE POLYDIF (POLYR,POLYI,NS,DPOLYR,
DPOLYI,N,PKR,PKI)

Subroutines called: CGAIN

Variables:

POLYR) Arrays containing the real and imaginary parts of the
3 POLYI) coefficients of the input polynomial

‘DPOLYR) Arrays containing the real and imaginary parts of the
DPOLYTI) coefficients of the output (derivativ:® polynomial

NS) Number of storage locations required for the
N} coefficients of POLY and DPOLY (Note that:
NS = NI+l, N = NI; where NI is the order of the
input polynomial)

PKR)

PRI} Real and imaginary parts of the polynomial gain
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C Subroutine POLYDIF (POLYR,POLYI,NS,DPOLYR,DPOLYI,N,PKR,PKI] >

Is the gain Unity?

y

all CGAIN (POLYR,POLYI,NS,PKR,PKI] |

o :
5Y. |

5 NP =N

( w Differentiate term by temm.
I=1

!

DPOLYR (1] =POLYR(I)*NP
DPOLYI (I)=POLYI (I) *NP

Figure A-12. Flowchart for subroutine POLYDIF. ‘




AR)
AI)

BR)
| BI)

{ CR]
CI)

NSA)
NSB)
NSC)

S —

- AKR)
R AKI)
f BKR]
BKI)
CKR)
CKI)

4 Subroutine POLYMC

Subroutine POLYMC finds the coefficients of the product of two

polynomials.
input coefficients. The order of the polynomials involved is limited

only by the storage allocated for them by the calling program.

Subroutine statement: SUBROUTINE POLYMC (AR,AI,BR,BI,CR,CI,NSA,NSB,NSC,

Subroutines called: UNITY 4

Variables:

The routine handles all combinations of real and complex

AKR, AKI ,BKR,BKI,CKB,CKI)

Arrays containing the real and imaginary parts of the coef-
ficients of the first polynomial multiplicand, POLYA

Arrays containing the real and imaginary parts of the coef-
ficients of the second polynomial multiplicand, POLYB

Arrays containing the real and imaginary parts of the coef-
ficients of the polynomial product, POLYC

Number of storage locations required for the coefficients
of POLYA, POLYB, POLYC; each is one integer larger than
the corresponding polynomial order (Note: NSC = NSA+NSB-1)

Real and imaginary parts of the gains associated
with POLYA, POLYB, POLYC

“-!o; & ,w

"Q\%'v»- o



«oo NS sure jaina for POLYA and POLIB
afe csurrent.

Por POLYA ...
No

«es 8 imeginaczy parc -ﬂq

Neo

J

Sone wish first mefficient of POLYA?

Yes ... Dome with last coefficiert of POLYA?

Figure A-13.

Flowchart for subroutine POLYMC.
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Subroutine POLYSUB

Subroutine PQLYSUB subtracts POLYB from POLYA by changing the sign
of the gain of POLYB and calling subroutine POLYADD. The coefficients

of the polynomials may be complex.

Subroutine statement: SUBROUTINE POLYSUB (AR,AI,BR,BI,CR,CI,NSA,NSB,NSC,
; AKR,AKT,BKR, BKI, CKR,CKI)

Subroutines called: POLYADD
Variables:

AR)
AI)
BR)
BI)
CR)
CI1)

Arrays containing the real and imaginary parts of the
= coefficients of the polynomials operated upon according
to POLYC=POLYA-POLYB

NSA) Number of storage locations required for the coefficients
NSB) = of POLYA, POLYB, and PQLYC, respectively. Note that NSC
NSC] equals the larger of the two values NSA and NSB.

AKR)
AKI)

BKR) Real and imaginary parts of the gain multipliers for

BKI) POLYA, POLYB, and POLYC, respectively.
CKR)
CKI)




Subroutine POLYSUB (AR,AI,3R,BI,CR,CI,NSA,NSB,NSC,
AKR,AKI, BKR,BKI,CKR,CKI)

Change the sign of the gain
in POLYB.

Call POLYADD (AR,AI,BR,BI,CR,CI,NSA,NSB,NSC,
AKR,AKI,BKR,BKI,CKR,CKI)

Figure A-14. Flowchart for subroutine POLYSUB.
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Subroutine RAT

Subroutine RAT rationalizes a complex fraction by multiplying and

dividing the fraction by the complex conjugate of the denominator. The
denominator coefficients are tested for nullity prior to the last step
of rationalization, and if they are null, an error message is printed

and execution is terminated.

Subroutine statement: SUBROUTINE RAT(RNR,RNI,DR,DI,RR,RI)

Subroutines called: None

Variables:

INI)I = Real and imaginary parts of the input numerator
gg = Real and imaginary parts of the input denominator

z ::i = Real and imaginary parts of the rationalized output




ee——————

Subroutine RAT(RNR,RNI,

Find magnitude of denominator.

DSQ=DR*DR+DI*DI

Test for null denominator

No
Print termi-
nation message

Find real and imaginary parts of
‘L rationalized output.

RR= (RNR*DR+RNI*DI) /DSQ
RI=(RNI*DR-RNR*DI] /DSQ

Figure A-15. Flowchart for subroutine RAT.
A=-32

e T —

FERILTT 3 SRR X Sy

TARENRES T WRBTITE



O

Subroutine ROOTAY

Suyroutine ROOTAY expands a collection of eigenvalues with their
associated multiplicities into an array containing one root for each
occurrence of each eigenvalue. Both real and complex eigenvalues may
be used. The routine forms the root array beginning with the IB'th
eigenvalue in the input array and uses all the remaining eigenvalues
in the array. Thus the input array must have the eigenvalues arranged
so that any eigenvalues to be excluded from the expansion precede the

IB'th eigenvalue.

Subroutine statement: SUBROUTINE ROOTAY (EIGR,EIGI,K,M,IS,IB,
ROOTR, ROOTI)

Subroutines called: None
Variables:

EIGRl _ Arrays containing the real and imaginary parts of the
EIGI) input collectioi. of eigenvalues

K = An array containing the multiplicities of the eigenvalues
M = The number of different eigenvalues

IS = The number of storage locations needed to contain the
resulting array of roots;
note that IS = K(i), the summation of the eigenvalue
i=1
multiplicities

Arrays containing the real and imaginary parts of the *
ROOTI) roots in the output array

IB = The number of the eigenvalue with which to begin forming
the root array.




‘ Subroutine ROOTAY (EIGR,EIGI,K,M,IS,IB,ROOTR,ROOTI) ’

Point at the IR'th location of the
root array.

IR=1
; Start with the IB'th eigenvalue.

Determine the multiplicity of the
IE'th eigenvalue.

L=K (IE)
Copy the eigenvalue into the
; t array L times.
J=1
ROOTR (IR =EIGR (IEL
ROOTI (IR) =EIGI (IE)
i IR=IR+1
|
| Done with root?

Yes

Done with array?

( Return J

Figure A-16. Flowchart for subroutine ROOTAY.




Subroutine UNITY

Subroutine UNITY operates on the input polynomial to unitize the
coefficient of the highest order variable. This is accomplished by
extracting the coefficient of the highest order term as a gain multi-
plier. The polynomial gain is then updated to reflect the extraction.
The input coefficients may be real or complex. In the event that the
first coefficient of the input polynomial is zero, it is ignored and
the next one is tested. If all the coefficients are zero, the gain
and constant term are set to zero, and a warning message is printed

if the printer has not been disabled.

Subroutine statement: SUBROUTINE UNITY(AR,AI,NS,AKR,AKI)
Subroutines called: None
Variables:

ARl _ Arrays containing the real and imaginary parts of the
AI) coefficients of the input polynomial

NS = Number of storage locations required for the coefficients
of the input polynomial

Ax;; = Real and imaginary parts of the polynomial gain

CLOSE = User specified magnitude used in testing the significance
of variables. If the magnitude of the tested variable is
less than CLOSE, it is assumed to be zero. CLOSE is stored
in blank common.

MDIS = User specified printer disable flag. If MDIS is greater
than zero all print steps using the flag are disabled.
MDIS is stored in blank common.
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TRPTTE

x=

@muu um(n.u.us.m.@

Check for zero first coefficiant of output.

Yes ... Use complex
calculations.

Yes ... Delete the first
cosfficient and update

Any more coefficiencs?

Yes ... Find magni-~
tude of first
coefficient.

AR(I) = (MR*TARSAAL*TAL) /COM
AZ(I) @ (=(AAR®TAI) $AAI*TAR) /CON

of first coeffici- |
nt.

PO S

Is it UNITY?

No ... Use real
calculation.

Any sore
coefficients?

Figure A-17.

Flowchart for subroutine UNITY.

A-36

e
il b WS

N 5 o ORI A 5 T Ay s -



Subroutine VANINV

Subroutine VANINV is an implementation of Csaki's generalized
algorithm for finding the inverse of the Vandermonde matrix. It accepts
an ordered array of real and complex eigenvalues and their multiplicities,
and returns the inverse Vandermonde matrix. Prior to calling VANINV, the

eigenvalues must be arranged in the order described for subroutine ESORT.

Subroutine statement: SUBROUTINE VANINV(EIGR,EIGI,KI,N,M,NS,MS,WR,WI,
Nwl,NW2 ,AR,AI,FR,FI,NR,NI,DR,DI,GR,GI, NOD,NON,
PNR,PNI,PDR,PDI,PUR,PUI,PVR,PVI,T1R,T1I,T2R,T2I,
T3R,T3I,DKR,DKI]

Subroutines called: COPYPOL,EVAL,EXPANDC, FRACDIF,RAT, ROOTAY

Function subprograms called: NFACT

Variables:

1) Formal parameters

EIGR) _ Arrays containing the real and imaginary parts of the M
EIGI) different eigenvalues of the N'th order system

KI = Array containing the multiplicities corresponding to the
system eigenvalues M
N = System order (note that N = E K(i)
i=1
M = Number of different eigenvalues (complex conjugates are
considered to be different)

NS) Storage size parameters, equal to N+l and M+l,
MS) respectively

WR) N XN arrays into which the real and imaginary parts of
WI) the inverse Vandermonde matrix are placed by VANINV

NW1) Storage size parameters, equal to
NW2) (2**(K1max-1))*(N-KImax)+1 and 2N, respectively

AR) N-dimensioned arrays used for intermediate polynomial
AI) calculations (short form of POLYA)
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FI)
GR)
GI)

NR)
NI)

DR)
DI)

NOD

NON

PNR,PNI)
PDR, PDI)
PUR, PUI)
PVR,PVI).

T1R,T1T)
T2R,T2I)
T3R,T3I]

AKR, AKI)
FKR, FKI)
GKR,GKI)

UR,UI )

VR,VI )
RNR, RNI)
RDR, RDI)

GNLR]}
GNLI)

NDIV

NDIVS

NS-dimensioned arrays used for intermediate polynomial
calculations (short forms for POLYF and POLYG)

(N X N) -dimensioned arrays used to store the real and
imaginary parts of the N truncated numerator polynomials

(M X MS) -dimensioned arrays used to store the real and
imaginary parts of the M denominator polynomials

M-dimensioned array used to store the polynomial order
associated with each of the M denominator polynomials

N-dimensioned array used to store the polynomial order
associated with each of the N numerator polynomials

Working storage for polynomials used in differentiating
a polynamial fraction by means of the quotient rule:

dv du
4 m V&Y & pouw
ax v - POLYD

Note that all of these must be dimensioned at least NW1l

NW2-dimensioned arrays used for temporary storage

Real and imaginary parts of the gains associated with
POLYA, POLYF, POLYG, POLYU, POLYV, POLYN, POLYD

Real and imaginary parts of the gains associated with
each of the M denominator polynomials. Since in all
cases: GNLR=1l. and GNLI=0., they are defined with a
data statement.

Number of derivatives that must be taken of the current
inverse vVandermonde element, W(J,L), before evaluation.

Storage for NDIV so initial value can be recalled

Row coefficient for J'th row of I'th block of the inverse
Vandermonde matrix

Note that RC = e b

(RKI(I) - N (NDIVS) !




NUS)

NVS].

NNS)
NDS)
NT)

RNUMR, RNUMI)
DENR, DENI )

ZR)
Z1)

Dummy variables used to pass between subroutines the cur-
rent size of the storage locations of POLYN and POLYD

Real and imaginary parts of the polynomial fraction for an
element of the inverse Vandermonde prior to rationalization

Real and imaginary parts of an element of the inverse

Vandermonde matrix after rationalization of the fraction
but prior to multiplication by the row coefficient
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Subroutine VANINV(EIGR,EIGI,KI,N,M,NS,MS,WR,WI, NW1l,NW2,AR,AI,FR,FI,

NR,NI,DR,DI,GR,GI,NOD,NON,PNR,PNI,PDR,PDI,PUR,PUI,
PVR,PVI,T1R,T1I,T2R,T2I,T3R,T3I,DKR,DKI)

Check for trivial solution (only
one eigenvalue).

Yes ... Trivial.

Set output
10 ¥ values.

WR(1,1)=1.
WI(l,1)=0.

No ... Non
trivial.

20
Set up M Denominator
Polynomials, D(I) *t
Print Warning
for only One
Set up N Numerator Eigenvalue
Polynomials, N(L) i

Solye for Inverse
Vandermonde
Elements; WR(J,L) ,WI(J,L)*

a

299y
C Return )

tSee page A-41 for flowchart.
Isee page A2 for flowchart.
*See page A3 for flowchart.

Figure A-18. Flowchart for subroutine VANINV.
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Set up M Denominator
Polynomials for Subroutine
VANINV; DR(I),DI(Il,NOD(I)
(P/O VANINV)

Set up root array for I'th polynomial.

I8 =2
IT"N-KI(I)

Jcall ROOTAY(EIGR,EIGI,KI,M,IT,IB,AR,AI) |

| _Find D polyno from root array.
= IT+
| Call EXPANDC (AR,AI,IS,FR.FI,GR,GI,GKR,GKI) ||
ore returned polynomial as D(I); and its gain.

19

DI(1.K)=GI(KX)

Yes ... Store gain.

DKI (I) =GKI
Store the order of the I'th polynomial.

te eigenvaluss to find next polynomial.

[YCRI=E10
RIGIT=EIGI(1)
E‘? = KI(1)
A
[ 3= w1 ]
L&R3
[ L= K¢l ]

£inding denominator polynomials?

Yes

et

Figure A-19. Flowchart for denominator polynomial
setup steps for subroutine VANINV.
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Setup N Numerator
Polynomials for Subroutine
(P/0 VANINV)

Find characteristics equation.

Call ROOTAY (EIGR,EIGI,KI,M,N,1,AR,AI)

_v

Call EXPANDC (AR,AI,NS,FR,FI,GR,GI,GKR,GKI)

Begin polynomial truncation.

NL=N

¥

L=1

NR(L,J)=GR(J)
NI(L,J)=0.

97 Done truncating L'th polynomial?

Jd = J+1

Yes ... Store polynomial order.

: s Al NON (L) =NL
1 ¥
NL = NL-1
98 Done with truncations?
No
L>N
?

Yes

End Setup of
Numerator
| olynomials

Figure A-20. Flowchart of numerator polynomial setup
steps for subroutine VANINV.




B ]

Solve for Elements; WR(J,L),
WI(J, L)) ot Invezse Vandermonde
Qutput muu.

(P/0 VANINV)

uls.
100
B tion Specify Storage Required for Evaluation and
cmmmmm'-'-"v' Proper Polynomials for Numsrator and
— to Working Arrays. + tor into Working Arrays. *

Lé

Yes ... Dane with matrix?

 / lowchares.
Yeos See page A-¢S for ¢

End Solving for Zlements; WR(J,L) ,WI(J,L): + See page A6 for flowshart.
of Inverse Vandermonds Output Matrix. -
\_

* See page A-i4 for flowchart.

Figure A-21. Flowchart for matrix element computation
steps for subroutine VANINV.
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Specify Storage Required for
Evaluation and Copy Proper
Polynomials for Numerator and

Denominator into Working Arrays.
(P/O VANINV)

100y Specify storage.
NNS=NON (L)
NDS=NOD (I)

* For Numerator ...
ICOPY = 1

PNR (ICOPY) =NR(L, ICOPY)
PNI (ICOPY)=NI (L, ICOPY)

Done?

ICOPY=ICOPY+1l

Yes ... For denominator ...

ICOPY=1

i/

PDR(ICOPY) =DR(I, ICOPY)
PDI (ICOPY)=DI(I,ICOPY)

Yes ... Set gains.

RDR=DKR(I)
RDI=DKI (I)

y

End of Storage Specification 7
and Polnomial Copying.

Figure A-22. Flowchart of polynomial transfer steps for
subroutine VANINV (if no differentiation required).




Specify Storage Required for Differentiation
and Copy Proper Polynomials for 'u' and 'v!'
into Working Arrays.

P

Done?

| zcopy=1coPY+1 | e

Yes ... FOT v oo

ICOPY=1

PVR (ICOPY) =DR(I, ICOPY)
PVI (ICOPY)=DI(I,ICOPY)

Done?

116

ICOPY=ICOPY+1l

Yes ... Set gains.

UR=1.
UI=0. 1

VR=DKR (I
VI=DKI (I

y

End Storage Specification
and Polynomial Copying.

Figure A-23. Flowchart of polynomial transfer steps for subroutine
VANINV (if differentiation required).
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P~

Find Derivative

(P/O VANINV

Call FRACDIF(PUR,PUI,PVR,PVI,NUS,NVS,PNR,PNI,PDR,
PDI,NNS,NDS,NT,UR,UI,VR,VI,RNR,RNI,
{ Z RDR,RDI,TI1R,T1I,T2R,T2I,T3R,T3I)

y

; NDIV=NDIV-1

More derivatives needed?

No
NDIV > 0

Yes ... Setup for
next derivative.

Specify new

125 storage.

NUS=NNS
' NVS=NDS
j NT =NUS+NVS Derivative
NNS=NT=-2

NDS=2 *NVS~-1

For new u ...

| y

Call COPYPOL (PNR,PNI,RNR,RNI,NUS,PUR,PUI,UR,UI)

For new v ... '
Y

Call COPYPOL (PDR,PDI,RDR,RDI,NVS,PVR,PVI,VR,VI)

Figure A-24. Flowchart of differentiation steps for
subroutine VANINV.
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) Preface for Appendix B

Two types of programs are contained in this appendix. Part I
contains all the subroutines described in Appendix A. They are

listed in alphabetical order and form a complete package of sub-

routines for implementing Csaki's generalized algorithm as described

in Section III of the main text. Part II contains programs and sub-

routines needed to dimension the arrays for the subroutines of Part I.

They also perform input and output operations, and the tests that

are described in Section IV of the main text. Since the programs in

Part II are not flowcharted, a word description of each is included

at the beginning of Part II.




Subroutine
Subroutine
Subroutine
Subroutine
Subroutine

Subroutine

CGAIN .

COPYPOL

ESORT .

EVAL .

EXPANDC

FRACDIF

Function NFACT . .

Subroutine

Subroutine

Subroutine

Subroutine

Subroutine

Subroutine

Subroutine

Subroutine

Subroutine

ouT2C .

POLYADD

POLYDIF

POLYMC

POLYSUB

mT - .

ROOTAY

UNITY .

VANINV

Part I

Contents

B-10
B-12
B-13
B-14
B-15
B-16
B-17
B-19
3;20
B~21
B-22

B-24
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Program READER contains the dimension statements needed to test

; . . subroutine VANINV's computational time and accuracy. After

| reading in the system eigenvalues, READER calls subroutine

E ; CATEST to perform the tests. 1In the form shown, READER works
; only with real, distinct eigenvalues. Some simple modifi-

* | cations would enable it to accommodate complex and/or repeated

eigenvalues.

Subroutine CATEST performs computation accuracy and time tests on

subroutine VANINV and the IMSL subroutine LINV2F.

Subroutine OUT2 prints out, in column form, a two dimensional array.

: It is similar to OUT2C shown in Part I.

Subroutine UERTST disables the warning messages from the IMSL routines.

Terminal errors (IER > 128] are not suppressed.

Subroutine VANF forms the Vandermonde matrix from a collection of
eigenvalues. 1In its present form, it cannot handle complex

or repeated eigenvalues.
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APPENDIX C

SUPPLEMENTARY MATHEMATICAL DEVELOPMENTS
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Three mathematical developments are included here to aid in under-
standing some concepts which were stated in the text. They are placed
here in order to avoid long interruptions in the main text. The

concepts are:

Cl. Sensitivity Derivatives as Part of the
Augmented System State Transition

BRI o e A ek s R e e T e S R

C2. Determination of State Transition
Matrices Using the Cayley-Hamilton

R o e R s T R g T e L R N

C3. Definition and Construction of Component

R o e e e T R e A e e e

& R SRR R
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Cl. Sensitivity Derivatives as Part of the Augmented System
State Transition Matrix

Using Eq(8), the system plant matrix may be augmented to find the

sensitivities of the i'th parameter as

A : o)
T b st (C1-1)
A) : A

2n x 2n

Notice that the eigenvalues, and hence the system modes, have nqt
changed. The augmented system has n pseudo modes in addition to the
original n modes, but they are entirely independent of the original
modes in the component matrix approach, and the augmentation there-
fore does not actually change the system. This desirable feature of
the component matrix approach is illustrated in Appendix D, Example 3.
From Eq (Cl-1]) the state transition matrix for the augmented
system can be defined. For time-invariant systems, the exponential

can be applied to each section of the partitioned matrix. Thus

}
A : o " ol S
ceqe =] t= -———--- (€1-2)
" A ae
e & N, v o

e 2n X 2n

which shows that the sensitivity derivative of the original state
transition matrix is one of the partitioned sections of the state

transition matrix for the augmented system.
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C2. Determination of State Transition Matrices
Using the Cayley-Hamilton Theorem

This section shows how the Cayley-Hamilton theorem can be applied

in order to determine a state transition matrix (STM). The use of the
Vandermonde matrix and remainder polynomial coefficients is described
for this application. Finally, the method is extended to show how it
can be used to find the partitioned STM for system sensitivity calcu-
lations. Numerical examples of the concepts presented here are included
in Appendix D, Examples 1 and 2.
Basic Cayley-Hamilton Theorem Application. The Cayley-Hamilton

theorem states that any square matrix satisfies its own characteristic
equation. From it, the STM can be shown to be a summation of products

of the "remainder polynomial" coefficients, a,6(tl, and powers of the

3
system matrix, A, (Ref 9:V-110 through V-115Bb):

n
™ Z Al a ol (c2-1)
3=1

The remainder polynomial coefficients can be uniquely determined from

n linear "modal" equations (Ref 9:V-115b):

B J‘1"'_ —1 e e st 4.
e 1 1 al(t)
ALt
2 2 n-1
e 1 >‘2 )‘2 oo )‘2 aztt)

(c2-2)
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At
where e i are system "modes" and A j are system eigenvalues. Egq (C2-2)

is equivalent to

ALt

el =y a, () (€2-3)

where V is the "Vandermonde" matrix. Since !T must be inverted to find
the remainder polynomial coefficients, it must not be singular. There-
fore, if the system matrix does not have n distinct eigenvalues (ie:

if at least one eigenvalue, )\ 3¢ m 3
onel, v is not directly invertable if defined as shown in Eq (C2-2).

has a multiplicity, greater than
Thus for systems having repeated eigenvalues, the Vandermonde matrix
is defined by taking repeated derivatives, w.r.t. the eigenvalue, of
the modal equation for that eigenvalue until there is one independent
equation for each occurrence of the eigenvalue (Ref 9:V-116). For

example, in a system having an eigenvalue with multiplicity m 3-3, the
original modal equation must be differentiated twice to get three in-

dependent equations:

ALt Ast e
T T A R IO 2,,, 4001 la (8
3 b) az(tl
; (c2-4)
(t)
and
C=5
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. Aj“'zl a, (t]
az(tl
: (C2-5)
e

Assuming )‘1 is the repeated eigenvalue in the example, Eq (C2-2) is

then

1

P =
n-1
® o o Xl al (t)
R ST Y a, (t)
v o n aeadl Ot 2 a, (el
g ! 3"
n-1
e o o : xz a4 (tl
-1
cee - Fu a_(tl
X — —n e

(c2-6)

For simplicity, only systems with distinct eigenvalues are used in the

remainder of this discussion.

By defining v

ij

to be the element in the i'th row and j'th column

of the inverse of the transposed Vandermonde matrix, the remainder

polynomial coefficients may be determined by

C~-6
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At
a (t) v v o o 0 v e o

Eq (C2-1) may be expanded to

1

™ a, (£)1 + a (E1A + a3(tlA2 4ot a (@A (c2-8)

Applying the results of Eq (C2-7) to Eq (C2-8) results in

At ALt At
At et - n
e = (vn e " ]I + Lvu e )I + ... + (_vlne 1I
x].t Azt )\nt
+ ("21 e " ]JAa + (y22 e )a t e.e. + (vzn e ]A
+ " i s : %
At At Xt
1 n=-1 2 n-1 n n-1
+ (ynl e " ]A + Lvnz e A + .. + (vnn e  JA
(Cc2-9)

Notice that in Eq (C2-3) the state transition matrix is expressed in

terms of products of: (1] elements of the inverse transposed Vander-
monde matrix, (2) the system modes, and (3) powers of the original
system matrix. The remainder polynomial coefficients, though they
were used in the theoretical formulation of the solution, do not even
appear in it and thus it is never necessary to actually calculate

them. A very significant result of this formulation is that the




original system modes are completely separate and visihle, thus
physical insight into the system is preserved. This decoupling of
modes makes it possible to represent the state transition matrix in
terms of the modes, each with a "component matrix" multiplier. An
explanation of component matrix formation is given in section C3.

Extended Application of the Cayley-Hamilton Theorem. The pro-

cedure outlined in the preceding discussion can be very simply ex-
tended to the augmented system state transition matrix, Eq (16) ,
which is used in the sensitivity parameter calculations for the system
identification process. Eq (16) is repeated here for the reader's :'

benefit:

a |1 0O 2n X 170G
_._.:__c-z -.:....- a, (£l (€2-10)
i ) o [0 B

e

Note from Eq (C2-10] that the augmented system has the same eigenvalues

as the original system since the augmented system matrix is triangular.
The only difference is that the eigenvalue multiplicities of the aug- ﬂ
mented system are double those of the original system. This means H
that the Vandermonde matrix for the augmented system is 2n X 2n, there
are 2n remainder polynomial coefficients, and there are 2n modes.

However, half of the modes are simply derivative modes resulting from

the doubled eigenvalue multiplicity which came from augmenting the
system. These extra modes ultimately have null component matrices
(Ref 9:V-122) and may be thought of as placeholders or "pseudo" modes.
Thus it is seen how the Cayley~Hamilton theorem can be applied to
determine the state transition matrices of both the original and aug-

mented (sensitivity] systems. The next step is to determine how to




find the “"component matrices" which were revealed as part of Cayley-
Hamilton theorem application. That determination is the subject of

the next section.

c3. Definition and Construction of Component Matrices. Several
references have been made to "component matrices" in other sections of
this thesis. The purpose of this section is to show what component
matrices are and how they are formed.

A component matrix may be defined as a matrix which shows the
contribution of a given system mode to the state transition matrix
(Ref 15:610). Thus it can he seen from Eq (C2-9) that each column
of terms constitutes a component matrix, multiplied by its corres-
ponding mode.

Component matrices are commonly labeled with a double subscript,
e.g.: zm. The first subscript identifies which eigenvalue made the
mode with which the component matrix belongs. The second subscript
can be nonzero only when the system has repeated eigenvalues. It then
identifies the number of derivatives which must be taken of the
associated primary mode to obtain the pseudo mode with which the
component matrix belongs. (This derivative process is described in
Section C2.) Two examples should help clarify this. First consider
2. . This is the component matrix associated with the primary mode of

eigenvalue number one: e - . Next consider 2 This is the component

82°
matrix associated with one of the pseudo modes of eigenvalue number

eight. Specifically, it is for the pseudo mode found by taking two
g M st
time derivatives of the primary mode: 4% e = t%e

2
dat
Note that this implies eigenvalue eight has a multiplicity of at least

three.
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Applying the observations made and the subscript conventions just

described results in a component matrix formula:

n
AR - E \f) cAz-l; c:[ g mi] -mj+k+1 (Cc3-1)
v =1 : 1=l

where 0 < k < mj -1; mj being the multiplicity of the j'th eigenvalue.

The state transition matrix may then be found from
M m.-1 X &

At_ k "3 2
e Z ;czj'k)t e (C3-2)
JB =

in which M is the number of different eigenvalues. Some numerical
examples of the formation of component matrices are given in

Appendix D, Examples 1 and Z.
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EXAMPLE PROBLEMS
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Several numerical examples are provided here to help clarify the

application of concepts presented in the text. Examples 1 and 2 work

with systems whose eigenvalues were carefully selected for illustrative

purposes. Each starts with a set of eigenvalues, lt_ i

matrix, A, which contains a set of system parameters, 61. For the

, and a plant

R g

system identification process outlined in the text, the quantities

; sought are the output sensitivities, %{' as defined by Eq (13).

Example 4 illustrates the use of Csiki's generalized algorithm. This

is also the process used by subroutine VANINV.
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Example 1 - Distinct Eigenvalue System

Suppose n = 3, and

‘ A 9 1 r‘; %
E 1 = 4 1 = - 1 0 0
; Az = -3 02 ==-2 A= e1 xz 0 (D1-1)
i R ] Q A
% By o

The solution is presented in four steps:

1. Determination of inverse Vandermonde matrix and (n-1) powers
of the plant matrix.

2. Calculation of the state transition matrix, eAt.

3. Calculation of the parameter sensitivity derivatives, e

At
)’
of the state transition matrix.

t

4. Determination of et and e by means of component matrices

At
(il
rather than the solution of n linear equations as done for

steps 2 and 3.

Inverse Vandermonde Matrix. For distinct eigenvalues, no deriva-

tives need be taken to find the Vandermonde matrix:

N vy e s
2
S S
el 3 52t = 1 a9 (D1-2)
g "3
- 2 g g
| which has an inverse

=V A S |

W' = 2/21 -5/28 1712 (D1-3)

1/21 1/28 =-1/12
—

T

D=3

Rt




Powers of Plant Matrix. Since n=3, only powers of A through

o1 = 2 need be found. If A® is multiplied ocut, the element in the

-

i'th row and j'th column of the product may be represented by

n=3

2 s £5
Ia ]ij Z O °‘xj (D1~4)
k=1

where the a's represent the elements of the original matrix. For

this example:
v [ prm— —
A, @ a A Q :-1 Ai 0 0
2 2
A" = 91 Az (o] 91 Az Q = el(Alﬂz) Az 0
2
:?. 0 3‘3 Liz Q }\3 &(Alﬂ:,l Q Aa
(D1-5)
or
Q o} 0 0 16 Q 0
A2 = -3 a -3 0 = -1 9 0 | (D1-6)
(4} 1 Q 1 -10 0 1
State Transition Matrix. Egq (C2-8) for this example is
et - a (£1T + a,(t]A + a,(t1a’ (D1-7)

The remainder polynomial coefficients, ij(tl, may be found by applying

Eq (C2-7):
a, (el *u ‘i " .x A
| 2
| az(tl = |V v22 Vas .A s (D1-8)
3
a3(.t) Vi V1o v” e
D=4

N T T e+ "y e ety




This results in
a (8l = ~1/7 L ange, ot

a,(t) = 2/21 R 7 e AR, (D1-9)

a (] = 1721 o + 172007 - 1112¢°

Substituting into Eq (D2-7):

Mt rine® i [1 o 0
6 1
e ¢ A
v Qe s s s 12 Bl e o 0]
8, -3 0
B S g
/i 8T vamed a1 mehE o ol -‘
5, © o (ol-10]
e 1

(The parameter sensitivities, 01, are left in for the present so the

partials of the state transition matrix w.r.t. the parameter sensi-

tivities can be taken later.)

Adding everything up results in

r
(..41:

0
4
it . (-.71-e fs™ e e 0 (p1-11)

D-5
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Which when evaluated at the values of § i yields

o e
Lt ; :
ol PR R e R |
| 273 +2/3% o0 ot
e

Parameter Sensitivity Derivatives. The parameter sensitivity

derivatives, eﬁ) . of the state transition matrix can be found by
differentiating Eq (DPl-1l) w.r.t. the parsmeters, ei. For Bls
0 Q Q
f) = TV RS T W RN (D1-13)
Q 0 0
b P
And for 92:
r
o 5 0
At
e(z) 0 0 0 (D1-14)
/36t - 17305 a a
L ameed

Use of Component Matrices. There exists one component matrix

for each system mode or pseudo mode, therefore it is necessary to find
three component matrices for this system. Eq (C3-2), which is re-

peated here as Eq (D1-15) may be used to find the state transition

matrix.




For this example, there are M=3 distinct eigenvalues. There are no
pseudo modes, therefore k= 0 always. The three component matrices
to be found are zlo' 220
repeated here as (D1-16):

and z30' which are found by using Eq (C3-1),

n
zj,k = E vz'chz-ly c ‘[iélm.i]-mj+k+l (D1-16)
=1

Therefore, substituting from previous calculations;

n
Z: -1
zm = - V!"ll-\ (D1-17a)
= o - -
1 a Q 4 (4] (¢}
1 2
Q 0 .1 62 0 1
(16 o o
1
Ty 61 9 a (p1-17b)
0
1 Q Q
1
= 76 0 a (D1-17¢c)
2
1
o e
n=3
= z-l
22(1 E vz'zh (D1-18a)
L=1
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|
1 5 |
- & 1 0]-== =3 0 i
0 a 1 62 0 1
i J il sl
r p—
16 Q o
1 -
+ 5= 6 9.8 (D1-18b)
o Bl
o 0o @
-1¢
0 0 0
r —
n=3 .
-1
Z30 W (D1-19a)
=1
s — ——
1 a a 4 0 O
1
1 Q 1 Q |+ 13 91 -3 0
a a 1 32 0 1
; s
——
wokoB
1
! 13 91 s O (D1-19b)
50, a ‘1
i aid
0 o]
= 0 a (D1-19¢) ;
1
-39 a 1
32
L 1
Substituting the component matrices into Eq (D1-15) results in the :

state transition matrix:
t

M=3 O A
MY T, g0 (@1-200
3.0

j=1 k=0

"o 8 ol i
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1l 2 3
+ + =
= zloe zzoe Z3oe (D1-20b)
S AR
1 4t 1 -3t
= - 91 0 0 e + - 791 1l 0 e
lez 0 Q Q 0 0
a e &
t
+ Q 0 e (D1-20c)
1
- 1
e Sl
" Yo R a
1. ol §, =3t -3t
= (761e 761e ) e 0 (D1~ 20d)
1 4t 1 t =
(3623 362e )} 0 )
atromac et

Comparing Eq (D1-20d) with Eq (D1-11] shows that the same answer comes
out either way. Note from Eq (D1-20c) how clearly visible the modes
are. Their individual influence on the state transition matrix is easily
discernable. Also, the influence of the parameters, 6 i on both the
modes and the state transition matrix are easily seen from this
formulation.

Note that in actual practice the parameters are numbers rather
than variables as shown in this example. They were carried as variables
in the example to show how they influence the modes and component
matrices. Another important point to note is how direct the component
matrix approach turns out to be in the end. Although the development
may seem to follow several independent paths, the application is very

direct. Once the component matrices are found from the inverse Vander-

monde matrix, all the effects of the modes and parameter sensitivities

are related to the system by Eq (21).




Example 2 - Augmented System
If n= 2, and é

’ A= (D2~1)

the solution is found as shown below, following the same procedure as

i Example 1. Before proceeding, however, the augmented system must be

formed
3 i A a | oy
e
A l Q i——g ( Q
1 ‘ e 6 A1
A= ___l_ A = _1_ AN 2 S = (D2-21
| ek
Q
Au” A Q | Al Q
291 Q 61 )\2
L ' il

Notice that the eigenvalues of the augmented system are the same as
those of the original system. The only difference is that the multi-

Plicity of each is doubled.

Inverse Vendermonde Matrix. Since the eigenvalues of the aug-
mented system are not distinct, derivatives must be taken to form the

transposed Vandermonde matrix:

o ey e —
B J\i Ai 1 2 4 8
. o & an _3& 0 1 & A3
vV = % ot S0 (p2-3)
| oA A R gy 3.3
3)2 .
L(.). G AL Lo. 1 2 .i

which has an inverse

D-10




O

P r P

[21/81
36/81

9/81

L-_6-/81

-18/81

-27/81
a.

9/81

60/81
-36/81
-9/81

6/81

~27/81

9/81

(D2-4)

. For this system with n=4, powers of A

through A3 must be taken:

A g | o Q| X 1 e
1 ' 1 I
2 2
SRS LA g G A
a &t N 9 a o] A
2 L a8
. o Ve 3 20, @ 0
it G e B ¥
x2 & ks Q
s |
oo B S 0 Q
| 2
Q aQ | AL Q
2
ﬂl (7«1+}\ 21 Q ' 91 (11+A2). A
Qor
— o,
2 0 : Q ;;1 2 a : 0
0 o | 1 Q e et 1
[
-6 a ! «3 =1 -6 0 -3
imaieal ﬁ
o T ST R
i : g8 0
B | e e e e c— an—
VR e T
|
L S W W
o R
D-11
e by

l~>' o) e il

(D2-5a)

(D2-5b)

(D2-6a)

(D2-6b)
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and
!
A Q l 0 0 A, o | 0 0
| o 1oawag 0 0 e Lis 3
; = [ c— n —— v Cm— c— | — — — — — S — G —— — S — —
0 0 | x* 0 0 0o 17 0
20.(A.4A) 0 EOwk) AP 2, o | e 2
12 Wi gnie | B o ke
(D2-7a)
 amal 3 ey
M Q : Q Q
2.5 2 3
0T QA+ A_+20) A Q Q
= —1-—1-—1—3'———2—1——--——2-— s s o (D2-7b)
o] 0 I )‘1 Q
2 2 2.2 2 3
20,050,500 | ejaiaand A
| A l P
or
P ww——sn (o sr— ———
& et o 8 2 ol a 0
|
e ' g @ e a 0
A3 = —-——'—-— — ————-L— — — o= (D2-8a.)
o 0 l 4 Q 0 1 2 a
“ Sy 9 2 -6 0 : -3 g
} e smrarsod R ez
s akig 0
3% - | a Q
- —_————— (D2-8b)
| & ekl 0
-18 o0 : 7 ey
i Gisad

Notice from Eqs (D2-2, D2-5, D2-7) that the parameter and its sensi-
tivity remain in their respective positions for all the powers of the
augmented matrix. This is an important property because it causes all

( k the modes to remain visible throughout the component matrix process of

system identification.




State Transition Matrix. For this example, Eq (C2-8) is

At i -2 =3
e = a.l(t)I G i az(t)A + a3(t)A + 34(1:“\ (D2-9)

Eq (C2-7] results in the following system of linear equations, from

which the remainder polynomial coefficients, aj (t) , may be found:

— — o
At |
a, (¢l T DY ST g 5
1
a, (t) v v v v te
2 2. Y2 Yz Y
s : At (D2-10)
33 v3l 32 V33 V34 eA "
(x) t ,
3 i w "m e x
e, o S B L —
By applying Eq (D2-4), the following coefficients are found:
2t » -t
a (£l = 21/81e2% - 18/81te’" + 60/8le”" + 36/81te
a (el = 36/81e2% - 27/81te?" - 36/81e7t
(D2-11)
a,(t] = a/81e%* - 9/8le”t - 27/81te”"
a, (£l = -6/81e2% + a/81te’t + 6/81e”t + a/site”"
Substituting into Eq (D3-9):
et o (21/81e%° - 18/81te’" + 6078167 + 36/81te”%)
s ‘ o
1 6,0 a
¢ ‘118 4
0 P18
6. wvE iy
e ' R

D-13




e

+ (36/81e%% - 27/81te?" - 36/81e” %)

S l S
2 0 | 0
2
61 -1 | 0] Q
T A
| 2
Lffl e

+ (97812t -9/8le”t -~ 27/81te™%)
— s
& ajloeo o
N 1_J_ a0
V. T8 ge e
2
20, © a4

+ (=6/81e°t + a/81te?® 4+ 6/81e7" + o/81te™

P af o o
3ei -la ®
@ als &
60, O | 392 -1
L1 171
Summing up all the terms yields
o2t Q : a
ei(z7/81e2t - 2778167 &7° | 0
At a 0 | o
e 2t t g 2t
8, (54/81e"" - 54/81e™) 0 | 67 27/81e”" - 27/81e” %)

If Eq (D2~13) is evaluated at 61 = -3, the result is

D-14

(D2-12)

(D2-13)
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2t
1 0 ; (6] 0
; o ’
At (3e2t - 3e ) e E l 0 0
T i e e e e e it e | AR
0 o | e 0
2t i _ -
8" 426 @ | T e AT
L l %

Parameter Sensitivity Derivatives. This system has only one parameter

sensitivity derivative, ettl, and it can be found by applying Eq (19),
: which for this example is
2n=4
epgl = ; A%H a () (D2-15)

From Eq (D2-15] it is evident that powers of the original system matrix

are needed up through the third power. Therefore

]

¢

!

B

2 v }

i Al Q Al o Al Q ;
A = 2 = 2 2 (D2-16) 1
61 A, 2 0, (A A0 Ay }

D
>

Qr
] 2 o 38 4 0
, o - (02-17)
g R T
and
2  e——
i -y a A 0
2 2 2 §
e 2l e A ‘
xi c
(D2-18)
2,.2 2 3
91(A1+X112+K2) 12 ;
-
4 & .0 Y B 8 0 ]
a’s = (D2-19)
g s 9 -1 27 <=1
D-15
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Applying these to Eq (D2-15):

At
*)

Finally,

At
"l

3 g
E%' ( 2/81e2% - 18/81te?t + 60/8le”t + 36/81te” D)
Bo 1
— ——
2 0
E%' (36/81e°" - 27/81te’t - 36/81e7H)
He
—-l P
4 Q]
£ £ 9/81e2t - 9/81e”t - 27/81te” 5
Y .2 3
28
e &
3%- (~6/81e2% + a/81te’® & g/81e”F + 9/81te”h
i 2
i
(D2-20a)
ey
(36/81e2% + 27/81te?" - 36/81e™%)
2
S
.
( a/81e2t - 9/81e”" - 27/81te”%)
oy
s W
(-6/81e%% + o/81te?® + 6/8le”t + aysite”t)
o ¢
(D2-20b)
R 0
(D2-21)
01(54/8132t - 54/81e”%) 0

D-16

s 3 2P 03



A comparison of Eq (D2-21) and Eq (D2-13) shows that the parameter
sensitivity of the original state transition matrix is in fact the
lower left block of the partitioned state transition matrix for the
augmented (sensitivity) system. Thus the validity of Eq (15) is
demonstrated.

Use of Component Matrices. Since the augmented system has two
distinct modes and two pseudo modes, a total of four component matrices
must be found: 2,2 , Z2_, Z

10° 11° 20" 21
sition matrix and the component matrices may be found using Egs (C3-2)

. The augmented system state tran-

and (C3-1), respectively. They are repeated here as Eqs (D2-22] and

(D2-23) .

m -1
eAt -; Z ('zj,k“" e 3 (D2-22)
n

1 k=0
z, , = % AT s g m, | - m +k+l (D2-23)
jk L,c ' i j
1 i=1
Applying previous calculations:
n=4
—4-1 g
%10 Z b4 T (D2-25a)
=1
re— e ﬁl
i g -ate
Q 1 I Q ei -1 l 0o o
=21/81 |=—— —}—— +36/8l |—— o — —-
0 2




£ 4]0 W IR B ST OIS A4S

' - - B - —
?
[
g i
8 1 o 0
27 .2
-= 4l¢ R SR 0
} TR L RO e SRR AR N e (D2-25¢)
0 R e 0
54,2 | 27.2
i ~—0 Q —0 0
: 1 81 1
[ . g =
4
=1 %
21 Mo N (D2-~26a)
2=1
1 olo o 2 o] o o
Y 2N Ch a8 »
= K e e - 7788 Jrt e i s
.0k % 0 ol _—
| 2
o 0, 0 _1.4 ‘-2_9-1 olel—l}
8 o| o a
32 1] o
+ 9/81 |—"— — - (D2-26b)
ST SRR
| .2
6, O, 36 -1
8 o] o B8}
o et ele
= —— e — (D2~26¢)
0 oI g 0
g smfe 4
4
S vy v . W (D2-27a)
20 2,3
=1
()
D-18
F e
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- 36/81

3ei
T R b SHEN
0
66,
a
a
a
2
61 1
4
2
%
- 27/81 ot
0
291
s
o] a a
R
) || 8 o
0| 302 1
1
—

(D2-27b)

(D2-27c)

(D2-28a)

(D2-28hb)
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|
]
e i B b a J
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It can be seen from the above that if the component matrices are cal-

culated in order of increasing value of the subscript, the calculation

of c, the column index for v , need not be computed. It can be

L£.c
simply initialized to one for the first component matrix, and there-

after incremented by one for each new component matrix calculation.

Substituting the component matrices into Eq (D2-22) yields the

state transition matrix for the augmented system:

- M=2 m.‘l A t
eAt = E E (2 ltke 3 (D2=29a)
j.k
j=1 k=0
Alt Alt Azt Azt
= zme + znte + zzoe + 221te (D2-29b)
: 1 Q | Q 0
27 .2
274 o | o 0
& 8l °1 s 2t 4 [o]ee?t
0 a | 1 0
54 | 27 .2
s54 0 oL Q
811 | 8 &
[o 0 l o a |
-2ed 1} e g A =
+ i1 et + [0lte (D2-29¢)
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Comparing Eq (D2-29d) with Eq (D2-13) shows that the same solution is
found by either method. Again the influence of the system modes and
parameters is clearly visible throughout the component matrix method

solution process.

Example 3 - Use of Cséki's Generalized Algorithm

An explanation of Csaki's generalized algorithm is found in
Section III of the main text. Suppose for this example that a fourth
order system has one distinct eigenvalue and one eigenvalue repeated

three times: A, = 1 with multiplicity kl = 3, and kz = -1 with

1
multiplicity k2 = 1. The Vandermonde matrix can then be written
1 Q 0 1 1 0 0 1
Al 1 Q Az 1 1 0 -1
ve| CN
kl 2A1 1/2(2}1 Az 1 2 1 1
3 2 3
Al 3A1 1/2(6A11 Az 1 3 3 1

D-21
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which has an inverse

|
ot 2 —
7/8 3/8 -3/8 1/8
-l -6/8 2/8 6/8 -2/8
v = (D3-2)
4/8 -4/8 -4/8 4/8
1/8 -3/8 3/8 -1/8
e SENEY
The characteristic polynomial is
p(s) = (s-13(s+1) = 5% - 257 + 0s? 4 25 -1 (D3-3)
There are two denominator polynomials--one for each eigenvalue. They
are
C P
Dl(Sl % (ggllk o S -2s"+0s ;25 =3 . i (D3-4)
171 (s-1)
4 3 2
D(S) S -25 +0S"+2s-1 3.3 2
DZ(S). = (S‘AZ’.KZ = (.S'."l). = (S 11 .S "38 +3S 1
(D3-5)
For every application of Csdki's algorithm there are n truncated poly-
nomials, Ng(S). In this example they are:
3 2
Nl(Sl =8 - 28" + 08 + 2 (D3-6)
2
N2(S) =S ~-25=0 (D3-7)
N3(sl =S -2 (D3-8)
N4(Sl =1 (D3-9)
O
D=-22
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The following structure describes the inverse Vandermonde for this

example:

fo

4

ﬁ
(1) (1)
%3 "4
(1) (1)
Was LY
(1) (1)
W33 Wi
(2) (2)
3 W4

(D3-10)

Each element is evaluated as follows, using Eq (25), repeated here as

Eq (D3-11):
ar. 1 a%y-i
3¢ 7 T30t 0,31 D, (sl
s-xl
gt ko gt i _1 4% 25,
117 G0t 2 b G1 3 g
s-Al-l S=1
A O WME il o _1a® g3
12 = G-117 42 D (sL e Ry
4 s-}‘lul | s=1
atile b £ S B A
13 (3-1})% as? Pl(S) 2 as? S+1
s-)\l-l S=1
2 N,(8) 2
7 SN A Ok 14 1
Wil e e e eSS
14~ T-IIT 452 D, (8) 2,52 SH
5 s-klnl S-1

s e D emh e 3 e e 1
oo Ul ~,,,._.$7df._ql' .:"v‘;t"" 1*.‘"?*-‘ R s

(D3-11)

@i

(D3-12a)
3
8

(D3-12b)

ofjw

(D3=12¢c)
1
8

(D3-124d)

o T




After evaluating each element, the matrix formed from Egs (D3-10)
and (D3-11) is the same as the matrix, Eq (D3-2), found by inverting
the Vandermonde matrix. Note, however, that Csdki's method does not
need to work with the Vandermonde matrix at all. It only needs the

system eigenvalues and their multiplicities.
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