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Abstract

We analyze the global behavior of a predator-prey system , modelled by a

pair of nonlinear ordinary differential equations, under constant—rate prey

harvesting. By methods analogous to those used to study predator harvesting,

we characterize the theoretically possible structures and transitions. With

the aid of a computer simulation we construct examples to show which of these

transitions can be realized in a biologically plausible model.

AMS(MOS) Subject Classification: 92Al5, 34D05, 34C05

Key Words: predator-prey systems, stability, catastrophes.
0

Work Unit No. 1 - Applied ~na1ysis 
......... 0

8)’

-. 1 #3, 
~~ ,

I j

~~~~~ 

. 

. /
~~onsored by the United States Army under Contract No. DA~~29-75-C-0O24 and the
National Research Council of Canada , Grant No. 67-3138.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~1~ ~~~~~~~~ — ~
- 

~~
—

~
—-- — — —

~~~~
- .-

~ 
—---— - — -

~~~~~

Significance and Explanation

In previous ~~rk we have studied the qualitative effect of predator

harvest ing on predator-prey systems. Here we carry out a similar program

for predator-prey systems under harvesting of prey. We find that the

structure is simpler than under predator harvesting , bit that the re are

significant di f ferences. We obtain a complete characterization of the

possible states and transitions, together with practical criteria for L
identifying them. The result s are use ful in re source man agenmnt problems ,

giving methods for setting harvest rate s which will avoid catastrophes such

as extinction of one or both species.

The responsibility for the ~~rding and views expressed in thi s de scriptive
suninary lies with MRC , and not with the authors of this report .
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STABILITY REGIONS IN t~ EDATOR-PREY SYSTEMS
WITH CONSTANT-RATE PREY HARVESTING

F. Braue r
Department of Mathematics
University of Wisconsin

Madison , Wisconsin , 53706 , U.S . a

and

A. C. Soudack
Department of Electrical Engineering

University of British Columbia
Vancouver, B.C., V6T lW5, Canada

1. Introduction

The study of differential equation models for predator-prey systems has

been of interest since the work of Lotka ( 1924) and Voltcrra (1931) ; for a

modern account, see for example (May (1976)]. Recently, we have analyzed the

global behavior of predator-prey systems un der constant—rate harvesting of

predators (Brauer & Soudack (1979)]. The presence of a harvesting term un—

plies that the region of asymptotic stability is not the entire first quad-

rant. of the prey—predator plane, and we developed methods for determining

thi s region as well as for describing the qualitative behavior of all solutions.

In this previous work, we indicated our intention of studying the effect

of constant-rate harvesting of both predators and prey , with independent

harvest rates for the two species. The underlying theoretical structure ir.

this situation is essentially the same as for predator harvesting, unless oniy

the prey species is harvested. For predator-prey systems under constant—rate

prey harvesting , the results are somewhat di fferent from those obtained for

systems under constant-rate predator harvc sting, even though the methods use i

are quite similar.

In this paper , we develop the theory of global behavior of predator—prey

systems un der constant-rate prey harvesting and show by examples whi ch of the

theoretically possible transitions can actually occur for a class of bio1ogi~ai ’~

motivated models. As in our previous work , some of the transitions can be

• Sponsored by the United States Army under Contract No. DAAG29—75-c-0024 and the
National Research Counci l of Canada , Grant No. 67-3138.
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identified only by a computer simulation.

2. Theoretical Considerations

We consider the system

= x f ( x ,y) - F
(1)

y ’ yg( x ,y)

as a model for the sizes at time t of a prey population x (t )  and a predator

population y (t) from which prey are harvested at a constant time rate F . As

in our previous work (Brauer , Soudack , & Jarosch (1976), Brauer & Soudack (1979)],

we assume

(2) fy
(X~Y) < 0 , g (x ,y) < 0 , g~~(x~y) > 0

for x > 0 , y > 0

As explained in tBrauer & Soudack (1979)], the equation f(x,y) 0 defines

y as a single—valued function of x , which we may assume to be non—negative on

an interval a < x  < K , with f(K,O) = 0. If a = 0 , then f(0,0) > 0

while if a > 0 and f(a,0) = 0 , then f(0,0) < 0 . We shall draw all figures

for the case a = 0 in which there exists L > 0 such that f ( O ,L) = 0 , which

is the situat ion in the commonly-used models, e.g. tRosenzweig (1971) , Holling

(1965)]. The equation g(x ,y) = 0 defines x as a monotone non-decreasing

function of y . If the function g is independent of y , the curve g(x ,y) 0

is a vertical straight line x = J • We assume the existence of a number J > 0

such that

(3) g(J ,0) = 0

and ~~ treat explicitly only the case J < K . (The case J > K  is easily

analyzed by similar methods; the results are identical to those which ~ obtain for

J < K , F > F * . The biological interpretation of the numbers, 3, K, an d L , and

• of the assumptions are discussed in [Br auer & Soudack (1979)) .
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The assumptions we have made on f and g imply the exi stence of an nter-

section ~~~~~~ with x > 0 , y > 0 of the prey isocline for F = 0, namely

I - 
f (x ,y) = 0 , and the predator isocline g(x ,y) = 0. As F increases, the prey

isoclin e

(4) xf (x,y) = F

moves down (because f < 0 , an increase in F implies a decrease in y fory
fixed x . ) .  There is an intersection (x (F ) ,  y (F ) ]  of the pre y isocline (4)

and the predator isocline g(x ,y) = 0 which depends cont inuously on F for

-
~~~~ some interval 0 < F  < F

c where F
~ 

is defined by

(5) x(F
~
) = ~~ ‘ =

For simplicity, we shall assume that this intersection is un ique for 0 < F < F .

There are situations in which this assumption could be violated , bit these can

be treated by the same methods.

The prey isocline (4) defines y as a single-valued function of x on

• some interval a(F) < x  < 8(F),  where

f {a ( F ) , 0} = f{8(F ) ,0} = F

a(0) = a, 8 ( 0)  K

• The critical prey harvest F
~ 

may also be characterized by the fact that either

(5) a(F ) < J , 8(F ) =

or

(6) a(F
~~

) = 3 8 (F ~~) > ~~

For 0 < F < FC , we ~iave

0 < a ( F ) < J < 8 ( F ) < K ,

from which it follows t hat

g ( a ( F ) , o )  < 0 , g{~~(F ) , o }  > 0

For 0 < F < Fc the system (1) has three equilibria, in the first quadrant ,

namely

—3—
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P Ix (F ) ,  y (F)]

E ct (F ) , 0)
a

S8 
(8 (F) , 0] .

This is quite di f ferent from the predator-harvest case (Br auer & Soudack ( 1979)] ,

in which there are only two equilibria in the first quadrant , and it is the pre s-

F ence of the third equilibrium which produces the qualitat ive differences between

the two cases.

We may study the (local ) stability of an equilibrium P by linearizing

the system (1) about the equilibrium and examining the coefficient matrix A (P)

of the resulting linear system . It has been pointed out by Bulmer (1976 ) that

the assumed uniqueness of the equilibrium P~ in the interior of the first

quadrant implies that P cannot be a saddle point. Thus ~~ is either a

node or a spiral point , and is asymptotically stable if the trace of A(P , ) is

negative , and unstable if the trace of A (P ) is positive. It is easy to verify

that the equilibria S and S
8 

axe both saddle points for F < F

We may determine the global behavior of solutions of (1) by an analysis of

the separatrices at the saddle points 5a and S8 analogous to that carried out

for predator harvesting in (Brauer & Soudack (1979)) - At Sa l the un stable

separatrices- are along the x-axis and one o~. the asymptotically stable separatices

is in the fourth quadrant. The other asymptotically stable separatrix may be

unbounded as t -~~ 
-

~~~ , or it may tend to S
8 

as t ~ -~~~, or it may tend to

P or a limit cycle around P as t + -~~~. At S
8
, the two asymptotically

stable separat rices are along the x-axis and one of the unstable separatrices is

in the fourth quadrant . The other unstable separatrix may tend to P or to a

limit cycle around P as t ~~
. 

~~, or it may tend to S as t + =, or it may
a

reach the y-axis in finite time as t increases. We are led to the following

three possibi lities:

~ 
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Case 1; The asymptot icall y stable separatrix at S is unbounded as t -
~ 
-

~~~

and the unstable separatrix at S
8 

tends to P or a limit cycle around

• P as t + .

Case 2: There is an orbit whjch terids to S as t ~~~ and to S asa 8
t -

~ 
— . (Such an orbit is analogous to a homoclinic orbit in the predator

harvesting problem (Brauer & Soudack (1979)3, and will be called a hom o-

clinic type orbit.)

Case 3: The asymptotically stable separatrix rt S tends to P or a

limit cycle around P as t -* -= , and the unstable separatrix at S~

reaches the y—axis in f in i te  time as t increases.

~ii For each of these cases there are two alternatives, which we index as a if the

equilibrium P is asymptotically stable and b if the equilibrium P is

unst able . Observe that in case la , the unstable separatrix at S
8 

tends to P

as t -
~~ whi le in case lb it tends to a limit cycle around P .  In case 3~t ,

the asymptotically stable separatrix at S tends to a limit cycle around P

(which must be unstable on both sides as t + o~) as t -~- -“i, while in case 3o

it tends to P as t + —= . The re are five types of possihi c ~~i~i~-c po1 r~:’ .t i ,

as indicated in Figures 1—5 . (The same f igure describe s both C~~ SL 2a  and c - -r

2 b )

A ~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ i~~~ ~~~ - 
—

~~~~~~~~~
-

~~~



- ~
-•

~ 
—:::--- --- 

~~~~~~~~~~~~
—-

~~~~~~~~~~~~~
- -
~~

----- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-V:-’- - . - 

—

I
0 1~~~I- I C)Ui
(I) I _i 

~~~Li~wz i cri
00 4(
~~~~I~~~0 VI

>-z I
WI- I

Q.. LLt1
I
I

0
H

H
x I

U) >- ’

I—~ 4 Iz o
(I)
4 >
__I -

~~~ x
x

< F —
( f l U )

I
I

>1

-6—

~~~i ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .
~~ - - ----~~• - - 

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ i~~. ~~~~~~~
—-- -

~
.‘-

~~~~



- ~- - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - _--. - 
-

r’ r~ ~~~~~~

‘

1 . 1 I
I

-~~ I 9)
-

~~ I ~~~~-

-

, ‘ Ui In
I-J

~~~~- 1 4

w Z I
o2
(D I— ’

U
>-~~I
WI-

• a_ W I

I
I 0)

o
II I
>.~ I -~~x

I
_ _ _ _ _- ———___ 

U

‘4 L.L

4 II

>-Ui i—
I__i — -.

~~ ‘4.-x
‘-J

<~~~ ~~~~~~~~s~uI

I I (if
I
I

>~

J _____ _ _ _ _ _ _ _ _  

-7-

___ -- - - -~~~~.- - - 

- ~~~ ~Q&.,..:_ ~~‘~~~~~~~~ -~~~— ~~~~~~~~~~~ ~
- - — .—~~~ :: 

-- 
~~~~~~~~~ ~~~~~~~~~~~~~



-—-
~~ ---~~~~~~•- -=- • 

— --- U

I— x
C~)
C)

0 In

//
//

>- /Z //
2 1/z 0 / 1

o 0m I— i~ ii>(
>- Ui
I—

/
/U)

Ui /
0~ 8 i

4 0

~_ i
(I•) >~
Ui

80 0 )  0=I—

z
>-

‘4

‘4 IL
Ui ‘I

S. 
~

1-

’

(I) x •

I -~~~

I - 
•

I

— 8— •1

_ _ _ _ _ _ _ _  
_ _  

-~~~~

• —--~~~——-- •-



• L1______ 
~~~~~~~~ ______ 

- 
~~~~~~~~ —:-~

•----- -- --
~• - 

~~~ E~~
—- 

~~~~~~~~~~~~~~~~~~~~~~~

x

IL
I ”

•1/ >..
I
,

j r  / x
Jr J

I ‘4—

(fl Z
w 2

0 /II (D cj
% >~~~U) >- )(

•% 
~~~ W I—/ 8 ~~~~~— 4  ~~ Q- m % 0 = W

0 0 I
U)S.

~~~~~~~~~~ /
U)
4 >

I-

0
< F —(f) u,

H~~~ . 
1 

-

>~F
-9-

- 
•t 

—- — _________ — - • ••••• ___ •_ __ ~~~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

hI~ A~~~~~~~iL. - ~~~
-—-----—.-

~~~~~~~~~ -
---

~~~~~~~ , -~~~



— -
~~~~~~~~~ -~~- - -

~~~~~~~~~~~

• 

I

0
IL
z 0)

2 IL
F--
U
z
~~~U)

WI-

ILi — U )  II

‘4-
(D~~~ x
>-
W j
fX~~J

— 

0=4

0
II •

>1

Ui 8
I-
0
I—
0=

>-
(1,
4
Ui• -J -~0 -Ifl
0
4

H U,

A 

-10- 

_ __ _

~~~~~~~~~~~~~~ 
:•_
~~~~~~~~~~~~~~~~ •. - 

~~~~~j• 
•
~~~~~~

— ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
• - 

• “~



_ -- - 
• 

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ —~~~~~ - .-, — — - .
— — - -_____

By the same arguments as those for the predator harvesting situat ion tBrauer &

Soudack (1979)] , we nlay prove that for sufficientl y amall F > 0  the system (1) must

be eithe r in case la or in case lb , while if the trace of the matrix A l?  (F ) J
= C

is non —zero then for F < F
~ 

sufficiently close to Fc 
the system (1) must be

eithe r in case la or in case 3b. Both for F -‘ 0 and for F -
~ F , the two

C
possibilities can be distinguished by checking the local stability of P (F) ,

that is , by computing the trace of A(P (F)]  -

The set of initial values for which the correspondin g solution of (1) tends

to P,~ or to a limit cycle around P as t ~ -F~ may be called the reg ion of

asymptotic stability of (i), since it is the set of initial state s for which

predators and prey co—exist in some sense . A solution of (1) whose initial

value is outside the reg ion of asymptotic stability re aches the y-axis in finite

time , corre sponding to prey extinction , or tends to one of the saddle points (but

only if  it is one of the asymptotically stable separatrices attlie saddle point) .

• In each of the possible c~~es , the region of asymptotic stability can be de scribed

in terms of the separatrices atthe saddle points. In Figures 1-5 the separatrix

-
~~~ which bounds the reg ion of asymptotic stability is shown as a dashed line . Observe

that in case 3b , the region of asymptotic stability is empty.

- 
~~

- Just as in the predator-harvesting situation , we think of a homoclinic-

type orbit (case 2)  as a transitional case between case s 1 and 3. By solving

the system (1) backwards in time numerically from an initial point near the

saddle point 5
a’ 

we can distinguish between case 1 (for whi ch this solution is

-
~~ un boun ded as t -* -=) and case 3 (for which thi s solution tends to P or to

00

a limit cycle arou nd P as t -
~ -°). Thus we can approximate the value of F

for which a transition occurs , and in addition we can approximate the region of

asymptotic stability if  the system is in case 1 . If the system is in case 3b

~s F 
~ 

F , then the value F
~ 

is mean ingless biologically; the critical prey

—11—
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harvest rate which produces prey extinction is the rate for which the system

chan ges to case 3b, either from case 3a or f rom case lb via case 2b - Thi s

rate can be determined on ly by numerical approximation.

The prey harvesting situation differs from the predator harvest ing situation

in that there are two possibilities for F > F
~~

. These are distinguished by the

behavior for F < F
C 

as F approaches F
C
. If (5) is satisfied , then P and

S
8 

coalesce as F + F
~

.. , and for F < F~ sufficiently close to Fc there is

a (full) orbit connect ing P and S as t runs f rom -
~~~ to + ~~~. As this

orbit is a separatrix at S
8 
, the system must be in case la as F ÷ F~~_ and

the orbit must run from S to P - The system is in case la at F if and
B C

only if the trace of AIP (F C)]  is negative, or

(7) Jf (J ,O) + f ( J,O) < 0 -

If (7) , or equivalently (5) , is satisfied, then there are two equilibria

S (ct, O) and S
8

(8, 0) with a B < J for F > FC 
it is easy to verif y that

S is a saddle point , while S
8 

is an asymptotically stable node . There is

an asymptotically stable separatrix at the saddle point S ; solutions with

initial value above this separatrix reach the y-axis in finite time (prey

extinction), while solution s with init ial value below the separatrix tend to

the asymptotically stable equilibrium S~ as t ÷ (ultimate predator extinc-

t i o n) .  This is illustrated in Figure 6.

:t -
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As F increases beyond Fc ~ there is a second critical value F* for which

and S
8 

coalesce . For F > F~, every solution of (1) reaches the y-axis in

finite time.

If (6) is satisfied , ther. P and S coale sce as F ÷ F — , and for
a C

F < F sufficiently close to F there is an orbit running f rom P to S as
C C a

t runs from -
~~~ to -~-~ - In this case the system (1) must be in case 3b as

F ÷ F
~

_ , or equivalently

(8) ~ + f(J ,0) > 0 -

For F > Fc 
there are two equilibria S ( ~t , O) and S

8
(B , O) ,  with J < a B-

It is easy to verify that S8 is a saddle , S is an unstable node, and

every solution of (1) reaches the y-axis in finite time (Figure 7) .

I
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For a large class of commonly used predator-prey models, g(x,y) is

independent of y and

(9) x f (x ,y) + f~ (x~~) < 0 -

In particular, this is true for models of the form (1) with

f(x,y) = ~~x) 
— y*(x)

g(x,y) = s(x~ (x) —

if

~~x) > 0 , ~~ Cx) < 0 , ~~— C x qi (x) J = x4i ’ Cx ) + ~~ x) > 0

If g(x,y) is independent of y and if (9) is satisfied, then the trace of the

[ matrix A(P ) in crease s as P moves down the curve g(x,y) = 0 - Thus as F

increases, the real parts of the eigenvalues of A(P (F) 1 can change from

negative to positive bet not in the other direction. Thu s increasing the prey

harvest rate can destabilize the equilibrium PQ) bet can not stablize it. As

F increases from 0 to F
~ 

there are four possible case transitions, namely

I la

II lb+2b + 3b

III la -* lb + 2b + 3b

lv la~~~2a -’- 3a + 3b .

In all bet the first of these transitions there exists F
H 

< F~ for which there

is an orbit of homoclinic type. In transitions III and IV there exists F5 <

for which the equilibrium P becomes unstable , wit h F < F
1~ 

for III and

Fs > F
H 

for IV.

In the next section we shall examine the same class of models which we

4 studied in the predator harvesting problem, and shall demonstrate which of the

four possible transitions may occur. The transitions I and II can be identified

easily by examination of the stability of P as F increases, although the

harvest rate at which the change from case lb to case 2b to case 3b occurs in II

-16-
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can be found only by a computer simulation . Likewise , the distinction between

III and IV, as well as the harvest rate at which transition occur, can be found

only by a computer simulation.

3. A Class of Examples

The choice -

f (x ,y ) = r(l — ) —
x aA (x-J)

g (x ,y) = s(  — ~~j~) = (3 1-A) (x+A)

has been used to mode l predator—prey interactions E Holling (1965)]. For this

choice it is easy to calculate

x (F) = 3 , y (F) = (J+A)(r(l - ~~
) -

and that the equilibrium P (F) is asymptotically sta ble if and only if

F < ~~~ - (2J+A-1 () -

We define

(10) F
5 

= 
~
j
~ — (23 + A — K)

and then the equilibrium P is asymptotically stable for F < F5 and un stable

for F > F s - We determine F
~ 

from y ( F ~ ) = 0 , which gives

(11) Fc =
~~~~

(K _ J)

Using (10) and (11), it is easy to verify that if K < 23 , then F 5 > F c

and thus P is asymptotically stable for 0 < F < Fc (transition I) .  If

K > 2J + A , then F < 0 , and thus P is unstable for 0 < P < F (tran si-
S • — — c

tion II) .  If 2 3 < K < 2 J + A , we have 0 < F S < F C , which iinplies either

• t ransition III or transition IV. 
-

The numbers a and B are the roots of

rx (l - ) — F = 0

namely

—17—
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K K 2 XE’ 1/2 K ( ~S ) 2 
- 

KF~ 1/2
a ~~- -  {( ~-) - - -  } , B = 

~
- +  ~ 2 r

If K < 23 , then a(F
~
) = X-J < 3, B ( ~~ ) = 3, while if K > 2J , ct (F

~
) =

8 (F ) K—J > J - In the case K < 2J in which P (F
e

) is asymptotically stable ,
C

the valu e F* for which P and P
8 

coale sce is given by

rK
2 _ 4KF* = 0 ,

or

(12)

We now give examples to illustrate the possibilities.

Example l: r = 1 , s = l , K = 40 , A = l 0 , J= 30. Since K < 2 J , the

system is in case la for 0 < F < F
c 

= 7.5 , and F* = 10. 0 . The simulations

for F = 2 , F = 4 , F = 7 5 , and F = 9 (F igures 8-11) indicate that the region

of asymptotic stability shrinks as F increases. For F < 7.5 , the separatrix

at S divides the region of coexistence fran the region of prey extinction .

For 7.5 < F < 10. 0, we have a new phenomenon, which cannot occur for predator - a

harvesting but which is predicted by the theory, namely that the separatrix at

S now divides the first quadrant of the x-y plane into a region of prey

extinction and a region of predator extinction. Note the expanded scales in

Figures 10 and 11.
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Example II: r = 1, s = 1, K = 40 , A ~~- 10 , 3 = 10. Since X > 23 + A , the

equilibrium P~ is unstable for 0 < F  < F
e 

= 7.5. Thu s the re exists <

for which there is a homoclinic-type orbit and a transition f ran case lb to

case 2b to case 3b . A computer simulation (Figures 12-15) shows that F
R 

0.357,

- and that the region of asymptotic stability shrinks as F increases. The system

- 
collapses f or F = F

R , although a local stability analysis might suggest that

harvest rates up to F
~ 

are safe. Even for harvest rates less than FH r the

— limit cycle comes so close to the x-axis that a small perturbation could produce

predator extinction and collapse of the system. Note the expanded scale in

Figure 15.
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Example ll i: r = l , s = l , K 40, A l 0 , J = 19. Since 2 J < K < 2 J + A .

the re exists for which the equilibrium P becomes unstable; from (10)

and (11) we find F 5 = 7.22 , FC = 9. 975 . We 1c~ow also that there must exist

F~ < F for which there is an orbit of homoclinic type. If F5 < F H I the transi-

tion is la + lb + 2b -
~~ 3b and the effect ive col lapse of the system is at F

R

while if FS > F
R I the transition is la ~~

- Za -* 3a + 3b, and the effective collapse

of the system is at F 5. Only a computer simulation can distinguish between

these possibilities , and this indicates that FR ~ 7.815 > F~ , showing that the

transition is la + lb + 2b + 3b (F igures 16-20) . Again , the region of asymptotic

stabil ity shrinks as F incre ases . Even for F = 7 , the region of asymptotic

stability has a narrow “neck ” for large x , and small perturbation s cou ld drive

the system to collapse . In a practical sense , the max imum safe harvest rate -

for which the region of asymptotic stability is of reasonable size and for which

orbits do not cane too close to the x-axis -is still smaller than F
R
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We have been unable to con struct an example of the transition la + 2a~ 3a-’ 3b.

Some attempts with J very close to K/2 appeare d to be of this type, but closer

examination disclosed that they were actually la -“ lb + 2b -
~ 3b. We conjecture

that examples of the desired type exist but are very fragile , both in the bio-

logical sense that the system survives on ly for a very small set of initial condi-

tions and in the mathematical sense that F~ is very close to F5 so that the

system is in case 3a for only a small range of harvest rates.

4. Conclusions

We are studying a class of systems with two saddle points on the x-axis and

an equilibrium in the interior of the first quadrant . By locating the separatrices

at the saddle points, which requires a computer simulation and by studying the

local stability of the equilibrium , we can describe completely the global structure

of solutions. Our examples indicate that , just as for predator-harvesting, the

system may collapse for harvest rates much smaller than would be considered safe

on the basis of a purely local stability anal~’sis. In particular , if the equi-

libri um is unstable at the maximum harvest rate F
~ 

suggested by a local analyses,

then the system must already h ave collapsed.

A new phenomenon, which cannot occur un der predator harvesting, occurs for

harvest rates greater than Fc if the equilibrium is stable at F
~
. In this case

there is a range of harvest rates for which there is a separatrix dividing the

first quadrant into a region of prey extinction and predator survival (althou gh

prey extinction will ultimately lead to predator extinction as well) and a region

of prey survival and predator extinct ion . For still larger harvest rates,

the prey species becomes extin ct for all initial values, as one would expect ,

Compared to the predator harvesting problem , there is a simpler structure with

fewer possibilities.
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We propose to investigate the simultaneous harvestthg of both species. Since

there are theoretical differences between systems with both specie s harvested and

systems wi th  no predator harvesting, we shall study only systems in which there is

some predator harvesting. The study of systems without predator harvesting has

been carried out here.

The simulations reported he re were carried out on the University of Wiscon sin

UNIVAC 1110 arid the University of British Columbia Amdahl 470. The authors wish

to thank Judy Hooper for her help in writing the simulation programs, Al MacKenzie

for his work in dra wing the figures and the Mathematics Research Center , University

of Wisconsin for arranging a visit by the second author which facilitated the

completion of this work.
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