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Abstract
We analyze the global behavior of a predator-prey system, modelled by a
pair of nonlinear ordinary differential equations, under constant-rate prey
harvesting. By methods analogous to those used to study predator harvesting,
we characterize the theoretically possible structures and transitions. With

the aid of a computer simulation we construct examples to show which of these

transitions can be realized in a biologically plausible model.

A
i, o for
AMS (MOS) Subject Classification: 92A15, 34D05, 34C05 a s
UNoc whife
Key Words: predator-prey systems, stability, catastrophes. ,Us;g,:o%m Bury s.“immh"
. @ AT,
Work Unit No. 1 - Applied Analysis [ ™= =N Q
By teERRa B
06”,”’/ T

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and the
National Research Council of Canada, Grant No. 67-3138.

TR AT

B ——




Significance and Explanation

In previous work we have studied the qualitative effect of predator
harvesting on predator-prey systems. Here we carry out a similar program
for predator-prey systems under harvesting of prey. We find that the
structure is simpler than under predator harvesting, but that there are
significant differences. We obtain a ccmplete.characterization of the
possible states and transitions, together with practical criteria for
identifying them. The results are useful in resource management problems,
giving methods for setting harvest rates which will avoid catastrophes such

as extinction of one or both species.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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STABILITY REGIONS IN FREDATOR-PREY SYSTEMS
WITH CONSTANT~RATE PREY HARVESTING

F. Brauer
Department of Mathematics
University of Wisconsin
Madison, Wisconsin, 53706, U.S..

E 1“‘ and

E B A. C. Soudack
% ﬁi ; Department of Electrical Engineering

E _ University of British Columbia
E Vancouver, B.C., V6T 1lW5, Canada

i 1. Introduction
The study of differential equation models for predator-prey systems has
been of interest since the work of Lotka (1924) and Volterrz (1931); for a

modern account, see for example [May (1976)]. Recently, we have analyzed the

global behavior of predator-prey systems under constant-rate harvesting of

|
!
!
|
i
%
|
|

%} predators [Brauer & Soudack (1979)]. The presence of a harvesting term im-

2 : plies that the region of asymptotic stability is not the entire first quad-

rant of the prey-predator plane, and we developed methods for determining

this region as well as for describing the qualitative behavior of all solutions.
In this previous work, we indicated our intention of studying the effect

i of constant-rate harvesting of both predators and prey, with independent

harvest rates for the two species. The underlying theoretical structure in

; this situation is essentially the same as for predator harvestirg, unless only

the prey species is harvested. For predator-prey systems under constant-rate

prey harvesting, the results are somewhat different from those obtained for

systems under constant-rate predator harvesting, even though the methods us~d

e

' g are quite similar.

In this paper, we develop the theory of global behavior of predator-prey

&=

systems under constant-rate prey harvesting and show by examples which of the
theoretically possible transitions can actually occur for a class of biologically

motivated models. As in our previous work, some of the transitions can be

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and the
National Research Council of Canada, Grant No. 67-3138.
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identified only by a computer simulation.

2. Theoretical Considerations

We consider the system

x* xf(x,y) - F

(1)

y' = yg(x,y)
as a model for the sizes at time t of a prey population x(t) and a predator
population y(t) from which prey are harvested at a constant time rate F . As
in our previous work [Brauer, Soudack, & Jarosch (1976), Brauer & Soudack (1979)1],
we assume
) fy(x,y) L9, gy(X,y) <0, g, (xy) >0
for x>0, y >0.

As explained in [Brauer & Soudack (1979)], the equation f(x,y) = O defines
y as a single-~valued function of x , which we may assume to be non-negative on
an interval o < x < K, with £(k,0) =0. If oa=0, them £(0,0) >0,
while if o >0 and f(a,0) =0, then £(0,0) < 0. We shall draw all figures
for the case o = 0 in which there exists L > 0 such that £(0,L) =0 , which
is the situation in the commonly-used models, e.g. [Rosenzweig (1971), Holling
(1965)]. The equation g(x,y) = 0 defines x as a monotone non-decreasing
function of y . If the function g is independent of y , the curve gl(x,y) =0
is a vertical straight line x = J . We assume the existence of a number J > 0O
such that
(3) g(,0) =0,
and we treat explicitly only the case J < K. (The case J > K is easily
analyzed by similar methods; the results are identical to thosewhich we obtain for
J <K, F > F*. The biological interpretation of the numbers, J, K, and L, and

of the assumptions are discussed in [Brauer & Soudack (1979)].
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The assumptions we have made on f and g imply the existence of an inter-
section (¢ ,y ) with X, >0, y_ >0 of the prey isocline for F = 0, namely

f(x,y) = 0 , and the predator isocline g(x,y) = 0. As F increases, the prey

isocline
(4) xf(x,y) = F
moves down (because fy < 0, an increase in F implies a decrease in y for

fixed x.). There is an intersection (x_(F), Y, (F)] of the prey isocline (4)
and the predator isocline g(x,y) = 0 which depends continuously on F for

some interval O <F <F where F_ 1is defined by

e’ c
(5) xm(FC) =J, ym(Fc) =0.
For simplicity, we shall assume that this intersection is unique for O S F iFC.
There are situations in which this assumption could be violated, but these can
be treated by the same methods.
The prey isocline (4) defines y as a single-valued function of x on

some interval o(F) <x < B(F), where

fla(F),0} = £{B(F),0} = F

a(0) = o, B(0) =K .

The critical prey harvest FC may also be characterized by the fact that either

(5) a(Fc) <3 , B(FC) = J
or
(6) a(FC) =J, B(Fc) >J.

For O iF SR we have

c’
OsaP) <JT<BlP) <K,
from which it follows that
g{a(F),0} <0, g{g(F),0} >0 .
For 0 <F < FC » the system (1) has three equilibria. in the first quadrant,

namely
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P = Ix F), vy (F)]
s = [a(F),0]

o

sg = B(®,00 .

This is quite different from the predator-harvest case [Brauer & Soudack (1979)],
in which there are only two equilibria in the first quadrant, and it is the pres-
ence of the third equilibrium which produces the qualitative differences between
the two cases.

We may study the (local) stability of an equilibrium P Dby linearizing
the system (1) about the equilibrium and examining the coefficient matrix A(P)
of the resulting linear system. It has been pointed out by Bulmer (1976) that
the assumed unié;ueness of the equilibrium P in the interior of the first
quadrant implies that P = cannot be a saddle point. Thus P_ is either a
node or a spiral point, and is asymptotically stable if the trace of A(Pm) is
negative, and unstable if the trace of A(P ) is positive. It is easy to verify

that the equilibria Sa and S, are both saddle points for F < Fc .

B
We may determine the global behavior of solutions of (1) by an analysis of
the separatrices atthe saddle points sa and sB analogous to that carried out
for predator harvesting in [Brauer & Soudack (1979)]. At sa' the unstable
separatrices arealong the x-axis and one o1 the asymptotically stable separatices
is in the fourth quadrant. The other asymptotically stable separatrix may be
unbounded as t + -» , or it may tend to SB as : t » ~», or it may tend to
P_ or a limit cycle around P as t > -~ At SS' the two asymptotically
stable separatrices are along the x-axis and one of the unstable separatrices is
in the fourth quadrant. The other unstable separatrix may tend to P ortoa

limit cycle around P_ as t + =, or it may tendto S as t » «, Or it may
a

reach the y-axis in finite time as t increases. We are led to the following

three possibilities:
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Case 1; The asymptotically stable separatrix at Sa is unbounded as t »> -«

and the unstable separatrix at SB tends to P or a limit cycle around
P ash ‘& & o,

o0

Case 2: There is an orbit which tends to Sa as t > » and to SB as

t > -o, (Such an orbit is analogous to a homoclinic orbit in the predator

harvesting problem [Brauer & Soudack (1979)], and will be called a homo-

clinic type orbit.)

é; Case 3: The ésymptotically stable separatrix ot Sa tends to P_ or a
] ;é limit cycle around P as t > -», and the unstable separatrix at SB
%; reaches the y-axis in finite time as t increases.
Ei. For each of these cases there are two alternatives, which we index as a if the

o

equilibrium ) is asymptotically stable and b if the equilibrium P 15

I unstable. Observe that in case la, the unstable separatrix at SB tends to P
:j as t > » while in case 1b it tends to a limit cycle around P _. 1In case 3a,

£ the asymptotically stable separatrix at Sa tends to a limit cycle around P

(which must be unstable on both sides as t + «) as t -+ -», while in case 3b

it tends to P as t » -». There are five types of possible phase portraits,
2 as indicated in Figures 1-5. (The same figure describes both casc Za and cace

2b.)
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By the same arguments as those for the predator harvesting situation [Brauer &
Soudack (1979)], we may prove that for sufficiently small F > 0 the system (1) must
be either in case la or in case 1lb, while if the trace of the matrix A[Pw(FC)]
is non-zero then for F < FC sufficiently close to FC the system (1) must be

either in case la or in case 3b. Both for F » 0 and for F - F , the two
C

possibilities can be distinguished by checking the local stability of P (F),

that is, by computing the trace of A[Pm (r)] .

The set of initial values for which the corresponding solution of (1) tends
to P or toa limit cycle around P, as t > +» may be called the region of
asymptotic stability of (i), since it is the set of initial states for which
predators and prey co-exist in some sense. A solution of (1) whose initial
value is outside the region of asymptotic stability reaches the y-axis in finite
time, corresponding to prey extinction, or tends to one of the saddle points (but

only if it is one of the asymptotically stable separatrices attlie saddle point).

In each of the possible cases, the region of asymptotic stability can be described

B et ey S RN
NS

in terms of the separatrices atthe saddle points. In Figures 1-5 the separatrix
which bounds the region of asymptotic stability is shown as a dashed line. Observe

that in case 3b, the region of asymptotic stability is empty.

Just as in the predator-harvesting situation, we think of a homoclinic-
type orbit (case 2) as a transitional case between cases 1 and 3. By solving
the system (1) backwards in time numerically from an initial point near the

saddle point Sa, we can distinguish between case 1 (for which this solution is

unbounded as t » -») and case 3 (for which this solution tends to P or to
a limit cycle around P_ as t -» ~-»), Thus we can approximate the value of F
{ ' s for which a transition occurs, and in addition we can approximate the region of

¥ asymptotic stability if the system is in case 1 . 1If the system is in case 3b

AR

s B FC , then the value FC is meaningless biologically; the critical prey




harvest rate which produces prey extinction is the rate for which the system
changes to case 3b, either from case 3a or from case 1lb via case 2b . This
rate can be determined only by numerical approximation.

The prey harvesting situation differs from the predator harvesting situation

in that there are two possibilities for F > F These are distinguished by the

c®
behavior for F < F. as F approaches FC. If (5) is satisfied, then P_ and
SB coalesce as F ~> FC_ , and for F < Fe sufficiently close to Fo there is
a (full) orbit connecting P and s8 as t runs from -» to + . As this
orbit is a separatrix at SB , the system must be in case la as F - FC_ and

the orbit must run from SB to Pm. The system is in case la at FC if and
only if the trace of A[Pm(FC)] is negative, or
(7} fo(J,O) + £(3,0) < 0.

If (7), or equivalently (5), is satisfied, then there are two equilibria

it is easy to verify that

Sa(a,o) and SB(B'O) with o < 8 <J for F >Fc

Sa is a saddle point, while SB is an asymptotically stable node. There is
an asymptotically stable separatrix at the saddle point Sa ; solutions with
initial value above this separatrix reach the y-axis in finite time (prey
extinction), while solutions with initial value below the separatrix tend to

the asymptotically stable equilibrium S_ as t 5> «» (ultimate predator extinc-

B
tion). This is illustrated in Figure 6.
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As F increases beyond Feo » there is a second critical value F* for which

Sa and SB coalesce. For F > F*, every solution of (1) reaches the y-axis in

finite time.

If (6) is satisfied, ther Pm and sa coalesce as F » FC - , and for
F < Fc sufficiently close to Fc
t runs from -« to +o . In this case the system (1) must be in case 3b as

there is an orbit running from Pw to Sa as

F > Fc_ , Or equivalently

(8) J fx(J,O) + £(7,0) > 0.

For F > FC there are two equilibria sa(a,O) and SB(B,O), with J < a < g.

It is easy to verify that sB is a saddle point, SQl is an unstable node, and

every solution of (1) reaches the y-axis in finite time (Figure 7).
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For a large class of commonly used predator-prey models, g(x,y) is

independent of y and

9) X fxy(x,y) + fy(x,y) <0,

In particular, this is true for models of the form (1) with

fx,y) = ¢(x) - y¥(x)

g(x,y) = slxy(x) - Jp1,
if

P (x) io P V' (x) <0, dix-(x P(x)] = x'(x) + Y(x) >0 .
If g(x,y) is independent of y and if (9) is satisfied, then the trace of the
matrix A(P ) increases as P moves down the curve g({x,y) = 0. Thus as F
increases, the real parts of the eigenvalues of A[Pw(F)] can change from
negative to positive but not in the other direction. Thus increasing the prey

harvest rate can destabilize the equilibrium P_ but can not stablize it. As

F increases from 0 to F. there are four possible case transitions, namely

I la

II 1b » 2b > 3b

III la + 1b » 2b » 3b
v la > 2a + 3a +> 3b .

In all but the first of these transitions there exists FH < FC for which there

is an orbit of homoclinic type. 1In transitions III and IV there exists Fs < FC
for which the equilibrium L becomes unstable, with Fs < FH for IIT and
Fs > FH for 1V.

In the next section we shall examine the same class of models which we
studied in the predator harvesting problem, and sha1.1 demonstrate which of the
four possible transitions may occur. The transitions I and II can be identified

easily by examination of the stability of P as F increases, although the

harvest rate at which the change from case 1lb to case 2b to case 3b occurs in II

o 45.> A2




can be found only by a computer simulation. Likewise, the distinction between

-
III and IV, as well as the harvest rate at which transition occur, can be found
! . only by a computer simulation.
’ ’ 3. A Class of Examples
é 'The choice

' ! ) o Xy e 2Y

F ! £lx,y) =l - £) - =%

: (xoy) = s( Xo - Ty o _SAlx-T)

: g X,y X+A _ J+A’ (J+R) (x+A)

has been used to model predator-prey interactions [Holling (1965)]. For this

choice it is easy to calculate

= @ e AT
x F) =3, y,(F) = (J+A) [r (1 K) 3 ]

and that the equilibrium P_(F) is asymptotically stable if and only if

F<r—Ji(2J+A-K)
= <
We define
(10) F=£J—2'(2J+A—K)
S KA 7

and then the equilibrium B is asymptotically stable for F < Fg and unstable

for F >F_. . We determine F

s c from ym(Fc) = 0 , which gives

" o B e
i (11) Pow 0K =08) o

Using (10) and (11), it is easy to verify that if K < 2J , then Fg > FC ¢

A 5 AT BN P < T 150 T A e RN S

iy and thus P_ is asymptotically stable for 0 <F f_Fc (transition I). 1If

E 1 ! K>2J+A, then F, <0, and thus P_  is unstable for 0 <F ti (transi-

tion II). If 2J <K< 2J +A , we have 0 < F_ < Fc , which implies either

S

transition III or transition IV.

The numbers o and g are the roots of

R,

X
rx(l--i)~F=0,




Fo.
S

2 K .2 Kr, 1/2
A (. S T TE RIS SLEE - i

If K < 2J , then a(FC) = K-J < J, B(Fc) = J, while if K > 2J, a(FC) = J,

B(F ) = K-J >J . In the case K < 2J in which Poo(FC) is asymptotically stable,
C

the value F* for which Pa and PB coalesce is given by
er - 4KF* = 0 ,
or
(12) B = % .
We now give examples to illustrate the possibilities.
Example I: r=1,s=1, K=40, A = 10, J = 30. Since K < 2J , the
system is in case la for 0 < F iFC = 7.5, and F* = 10.0 . The simulations
for F=2, F=4, F= 7.5, and F =9 (Figures 8-11) indicate that the region
of asymptotic stability shrinks as F increases. For F < 7.5, the separatrix
at sa divides the region of coexistence from the region of prey extinction.
For 7.5 < F < 10.0, we have a new phenamenon, which cannot occur for predator : .
harvesting but which is predicted by the theory, namely that the separatrix at

SQ now divides the first quadrant of the x-y plane into a region of prey

extinction and a region of predator extinction. Note the expanded scales in

Figures 10 and 11.
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Example II: r=1,s=1, K= 40, A = 10, J = 10. Since K > 2J + A, the
equilibrium P is unstable for 0 < F iFC = 7.5. Thus there exists FH < FC
for which there is a homoclinic-type orbit and a transition from case 1lb to

case 2b to case 3b . A computer simulation (Figures 12-15) shows that FH E0.357

and that the region of asymptotic stability shrinks as F increases. The system

collapses for F = FH , although a local stability analysis might suggest that
harvest rates up to FC are safe. Even for harvest rates less than FH' the
limit cycle comes so close to the x-axis that a small perturbation could produce

predator extinction and collapse of the system. Note the expanded scale in

——

Figure 15.
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Example III: r=1,s=1, K=40, A =10, J = 19. Since 2J < K < 2J + A.

there exists Fs < FO for which the equilibrium P becomes unstable; from (10)

and (11) we find Fs = 7.22, Fc = 9.975. We know also that there must exist

FH <Fg, for which there is an orbit of homoclinic type. If Fs < FH' the transi-

tion is 1la - 1b » 2b » 3b and the effective collapse of the system is at FH '

while if FS > F

of the system is at F

"’ the transition is 1la - 2a -+ 3a »> 3b, and the effective collapse

s Only a computer simulation can distinguish between
these possibilities, and this indicates that FH ~ 7.815 > Fs, showing that the
transition is 1la - 1b > 2b + 3b (Figures 16-20). Again, the region of asymptotic
stability shrinks as F increases . Even for F = 7, the region of asymptotic
stability has a narrow "neck" for large x , and small perturbations could drive
the system to collapse. In a practical sense, the maximum safe harvest rate -

for which the region of asymptotic stability is of reasonable size and for which

orbits do not come too close to the x-axis -is still smaller than FH .




‘el aseny °y=4 ‘¢ ordwexdy
B » gt 2e9s g8z 724 0z 9l L Ysg y 0

T i T .J-'W T O




N.—.m_nm qy °sed °9°.=d ‘£ ordwexy

. e 43 87 72 0z 9l

;v ! T T

¢/s

319A2 Jlwn

>




e —

*qT °sed

Ve

‘8°L=d

*¢ ordwexy

. ¥
e ———— —————— e

ki

S ol

T T S P %




qz @sed °GI8°L=d ‘g oTdwexy

L1840
IdAL-2INIIOWOH—
N /m




m 0z m_u ‘qe @se) °g=d ‘g ordurexy

11V ¥0d 1ONILX3 A3yd




FF_*:.-~ -

{ioay

We have been unable to construct an example of the transition 1la - 2a-~ 3a- 3b.
Some attempts with J very close to K/2 appeared to be of this type, but closer
examination disclosed that they were actually 1la » 1lb > 2b > 3b. We conjecture
that examples of the desired type exist but are very fragile, both in the bio-
logical sense that the system survives only for a very small set of initial condi-
tions and in the mathematical sense that FH is very close to FS so that the
system is in case 3a for only a small range of harvest rates.

4. Conclusions

We are studying a class of systems with two saddle points on the x-axis and
an equilibrium in the interior of the first quadrant. By locating the separatrices
at the saddle points, which requires a computer simulation and by studying the
local stability of the equilibrium, we can describe completely the global structure
of solutions. Our examples indicate that, just as for predator-harvesting, the
system may collapse for harvest rates much smaller than would be considered safe
on the basis of a purely local stability analysis. 1In particular, if the equi-
librium is unstable at the maximum harvest iate FC suggested by a local analyses,
then the system must already have collapsed.

A new phenomenon, which cannot occur under predator harvesting, occurs for

harvest rates greater than F_ if the equilibrium is stable at Fc. In this case

C
there is a range of harvest rates for which there is a separatrix dividing the
first quadrant into a region of prey extinction and predator survival (although
prey extinction will ultimately lead to predator extinction as well) and a region
of prey survival and predator extinction. For still larger harvest rates,

the prey species becames extinct for all initial values, as one would expect,

Compared to the predator harvesting problem, there is a simpler structure with

fewer possibilities.




We propose to investigate the simultaneous harvesting of both species. Since

there are theoretical differences between systems with both species harvested and
systems with no predator harvesting, we shall study only systems in which there is
some predator harvesting. The study of systems without predator harvesting has
been carried out here.

The simulations reported here were carried out on the University of Wisconsin
UNIVAC 1110 and the University of British Columbia Amdahl 470. The authors wish
to thank Judy Hooper for her help in writing the simulation programs, Al MacKenzie
for his work in drawing the figures and the Mathematics Research Center, University
of Wisconsin for arranging a visit by the second author which facilitated the

campletion of this work. (4
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