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I.~:;’.::~ABSTRACT L~ ~Appl ications of linear prediction (LP) algorithms have

been successful in modeling various physical processes. In

the area of speech analysis this has resul ted in the

development of LP vocoders, devices used in digital speech

communication systems. The t.P algorithm s used in speech

and other areas are based on all—pole models for the signal

being considered . With white noise excitation to the

model , the all—pole LP model is equivalent to the

autoregressive (AR) model .

• With the success of this model for speech well

established , the appl ication of LP algorithms in noisy

• environments is being considered . Existing LP algorithms

perform poorly in these conditions. Additive white noise

severely effects  the i n t e l l i g i b i l i t y  and qua l i ty  of speech

a f t e r  analysis by an LP vocoder .

>It is known that the addition of white noise to an AR

process produces data that can be described by an

autoregressive moving—averag e ( ARMA) model . The AR

coefficients of the ARMA model are identical to the AR

coefficients cf the orig inal AR process. This dissertation

investigates the p rac t i ca l i ty  of th is  model for  es t imating

the coefficients of the orig inal AR process. The
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mathematical details for this model are reviewed . Those

f for the autocorrelation method LP~ algorithm are also

di scussed .

Ex perim ental resul ts obtained from several parameter

es t imat ion  techn iques are  presented . These methods includ e

the autocorrelation method for LP and a Newton—Raphson

algorithm which estimates the ARMA parameters from the

noisy data . These estimation methods are appl ied to

several AR processes degrad ed by additive white noise .

Results show that using an algorithm based on the ARMA

model for the data improves the estimates for the original

AR coefficients.
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CHAPTER 1

INTR ODUCTION

In the analysis of physical processes, one of the

first steps taken is the development of a mathematical

model which is representative of the process. Some

• examples of successful models for physical processes are

those presently being used in the analysis of speech . One

especially useful model is that based on all—pole linear

prediction (LP). LP algorithms are important in both major

areas of concern in digital speech communications :

1) high quality synthetic speech and

2) low bit rate communications systems.

Unfortunately, few physical processes can be measured

without error. In many cases where measurement error is

insignificant , the desired signal is corrupted by some

other noise source. Since parameters of the model are to

be inferred from the data , the estimation algorithm must be

robust if it is to be useful in noisy situations. That is ,

-
‘ the estimation algorithm should produce acceptable C

C 

parameter estimates from data degraded by the types of

noise expected in the system. This should be accomplished

over a wide range of signal—to—noise ratios (SNR ’s). Most

of the evaluations of LP algorithms, however , have been

~~~~ -C-—-’—--.-~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~-~~~~~~~ --~~~~ 
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performed wi th high quality speech inputs having minimal

back ground noise.  When noise is added to a speech s ignal

prior to analysis, the intellig ibili ty and quality of the

synthetic speech generated by the LP system are degraded .

The addi t ion  of noise causes problems in fou r  areas :

1) silence detection,

2) voiced/unvoiced determination ,

3) pitch period calculation if voiced , and

4) identification of the LP coefficients.

McAulay (261 has addressed the first three problems . This

research is concerned with problem 4), the identification

of the coefficients of the all—pole model when the

• degrada tion is due to additive white noise.

Wi th white noise excitation, the all—pole LP model for

speech is identical to the autoregressive (AR) model

discussed in many texts. The research presented here

specifically deals wi th a model for an AR process plus

white noise . The data resulting from the addition of white

noise to an AR process is an autoregressive moving—average

(ARMA ) process. The moving-average  (MA ) component of the

model is equivalent to an all—zero specification for a

• system. In th i s  d i s s e r t a t io n , the model for  an AR process

plus whi te  noise w i ll  be r e f e r r e d  to as the AR—to-ARMA

transformation model. A detailed description of this model

is presented in Chapter 3. The most s i g n i f i c a n t  f e a t u r e  of

th is  model emphasized here  is the fo l lowing : if the AR
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process to be identified is degraded by additive white

noise , the AR parame ter s of the da ta are ident ical to those

of the original AR model.

The addit ion of the whi te noise int roduces MA

parameters. Parameter estimation methods must take into

accoun t the presence of the MA characteristics of the data.

Intuitively, an analysis sys tem base d on the ARMA mode l

should be more ro bus t in wh ite noise environments than

linear pred ic t ive coding (LPC) sys tems , whic h deal only

• , wi th AR parameters. This robustness arises because the

model explicitly accounts for this kind of noise. ARMA

es t imat ion proce dures , however, ar e more d iff icult to

implemen t than AR estimation methods. The MA portion of

the model introduces nonlinear relationships. Solutions

usually involve iterative schemes. Also , use of these

methods requires significant modifications of the LP

analysis procedure , even though the AR parame ter s are the

goal of each method .

The primary object ive of this research is to determine

the applicability of the AR—to—ARMA transformation model in

estimating the parameters of the desired AR process.

Intuitively, algorithms based on this model should perform

better in white noise environments than the LP algorithm ,

whic h ignores the MA component of the data. The possible

benefit of parameter estimation procedures derived from the

AR— to-ARMA transformation is improved operating

- •
-
•:.•:--~~ --—~~ .___~~r ~~~~~~ - — 
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characteristics of the system in white noise conditions.

Specifically, the objec t ives of this research are :

1) Illustrate the effect of additive white noise on the AR

coefficient estima tes produced by the autocorrelation

method of LPC .

2) Tes t several estima t ion procedur es based on the

AR— to-ARMA transformation on data generated from known

ARMA models.

3) Apply the most promising methods to data generated by

adding whi te noise to known AR models. This will be

done for several AR models over a wide range of SNR’s.

• 4) Compare the results of 3) with those obtained from LPC.

5) Identify areas for future work.

There are some restrictions placed on the scope of

this work. These qualifications are made to reduce the

complexi ty of the model for the no isy data and to emphasize

the estimation of the LP coefficients. First , only

additive white noise will be considered . In that case , the

AR coefficients of the data are identical to the AR

coefficien ts of the desired AR signal. If the noise is

non—white but can be described by an ARMA model , the AR

coefficients of the data are no longer equal to those of

the original AR process. An additional estimation stage,

based on nonlinear relationships , would be required for the

non-wh ite noise environment.

Second , if the original AR process is of order q, that

- 
- C- -r- C-- -— - - - - C- ~-- - ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ •— - -~~~~~~~~~~ —~~~~~~~~~~~~ —— C- •~~~~- •~~~~~i

_
~~ __ C- ~

- - C- — —- -~~
••
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is , there  a re  q AR c o e f f i c i e nts, it is assumed that q is

known for this AR (q) model. Otherwise, q must be estimated

from the noisy data along with the coefficients. The

emphasis here is meant to be on the es t imat ion of the

coeffic ients.

The third restriction is that q will be limited in

value to four or less foL most tests. The parameter q is

res tr icted to these small values because the variance of

the parameter estimates tends to increase as the number of

parameters in the model increases. Also, the computational

requiremen ts for some of the ARMA es t ima t ion algori thms are

large, resul ting in long experiments on the general purpose

computer used in this research . Demonstration of the

performance of estimation algorithms based on the

transformation model for these low order processes should

be sufficient to indicate the advantages and disadvantages

of that approach .

Finally, as stated in objectives 2) and 3) above ,

tests are performed on known ARMA models. This implies

that all data analyzed are synthetic in the sense that all

processes are genera ted from specified models using

approximately white noise sequences as the excitation.

This has defini te advantages over tests performed on data

from unknown ARMA models. Firs t, there is the confidence

that the data actually comes from an ARMA process. Second ,

the parameter estimates can be compared directly with the

C- _ _  —-- -• ••- • C- ’—- 
- - 

•
~ CCC- ~~~~ 
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parameters of the generating model. Third, experimental

specif ications such as SNR ’s can be g iven with g reater

cer tainty. Also , in those algorithms requiring initial

estimates for the parameters , the parame ter values of the

genera ting model can be used . This removes any

uncertaint ies due to init ial estimates from the

experimen ts, which are primarily concerned wi th ident ifying

the AR parameters using the AR—to--ARMA transformation

model. It must also be stated that the computational

requ irements of various algorithms are not considered in

this research. No algorithm is dismissed simply because it

requires a higher compu tational load than algorithms

already in common use.

Data presen~ted in this disser tation show the

degradation in the LPC. parameter estimates that results

from adding increasing levels of white noise to an example

frame of speech . Several estimation procedures are then

applied to noisy data generated from known AR models. The

results for the AR(l), AR (2), and AR (4) processes analyzed

show that two of the estimation methods tested yield AR

parameter estimates that are better than those obtainable

from the autocorrelation method of LPC. The improvement in

the estimates is evident at SNR’s throug h 0 dB- One of the

methods is a Newton—Raphson implementation of a conditional

maximum likelihood technique . This procedure

simultaneously estimates both the AR and MA parameters from

C-C - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 
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the da t a .  The second method is similar to LPC in  the type

of operations Involved , bu t ta kes in to accoun t the MA

component of the data , where the LPC method does not. The

estimates produced by these two algorithm s demonstrate the

val idity of the AR—to—ARMA transfo rmation model . These

algorithms are less susceptible to white noise degradation

than LPC and are thus more robust estimation procedures.

The com parisons of these estimation algorithms and the

demonstration of the practicali ty of the transfo rmation

model are the pr imary contributions of this research.

Chapter 2 presen ts the resul ts of a li tera ture search

into the topic of estimating the parameters of AR processes

in  the presence of no i se .  Refe rences  fo r  d isc ussions of

LPC a l g o r i t h m s and the AR—to—ARMA t r a n s f o r m a t i o n  model are

g i v e n .  Several sources f o r  pa r ameter  e s t i m a t i o n  a l g o r i t h m s

are  also provided . The m a t h e m a t i c a l  d e t a i l s  fo r  the AR

process plus white noise are given in Chapter 3. The LPC

estimation algorithm is disc ussed , as ar e tho se algor it hms

which take advantag e of the transfo rmation model .

Chapter 4 contains descriptions of the various experiments

perfo rm ed and the data obtained from those tests. A

summary of the work pe r fo rmed and the conclusions derived

from this research are presented in Chapter 5. That

chapter also lists areas for future work. Several

appendixes provide detailed explanations of some of the

material in Chapter 3.

C’
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CHAPTER 2

LITERAT URE REVIE W

Introd uct ion

The use of s tochastic models for the analysis of

d iscre te t ime domain series is impor tant in many areas of

interest. Examples of these applications include analysis

of economic time series , seismic data, and more recently,

discre te speech waveforms . The reader is referred to

references given in Makhoul [23] and Box and Jenkins [10]

as sources for discussions on the theory of time series

analysis and possible applications. In a paper published

in 1971 [3-], Atal and Hanauer describe a system which

models speech as an autoregressive process. Generation of

a synthetic speech sequence from the AR parameters is

proposed in that paper. This caused much activity in

applying the method of time series analysis to speech and

eventually resulted in the development of linear predictiun

vocoders , devices designed to apply LP algori thms to the

analysis of speech. Linear predic tion , the expression most

commonly used in speech analysis to describe AR modeling ,

is quite successful in its application to discrete speech

waveforms. As pointed out in Chapter 1, however , the

presence of noise in s ignals  analyzed using LP a lgor i thms
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has a detrimental effect on their performance.

A brief discussion of the LPC technique for speech

analysis is presented to describe previous efforts at

improving the operation of linear prediction when noisy

speech must be used . Given a sequence of speech samples

s(k), k = 0,..., N—l , estimates of the autocorrelation

func tion R55 (k) of s(k) are obtained from

N-i-k
R (k) = ~ s(i) s(i+k) , (2.1)

i=0

for k = 0, . . .,  q. In (2.1) q is the order of the AR

process for the speech modeled by C

q
s(k) = — ~ a(i) s(k—i) + c (lc) , (2.2)

i=l

with the (a (i)}~ the AR parameters and e (k) a white noise

process. Estimates for the fa(i)}~ are obtained by solving

the Yule—Walker equations - •

q

~ a(i) R~5
(i_k) = —R (k) , (2.3)

i=l S

k = 1, . . .,  q. Expression (2.3) represents a system of q

equations with q unknowns . The estimates {a(i)}’~——along

with gain , pitch period , and voiced/unvoiced estimates——are

used to construct a synthetic speech waveform. This brief

• development is based on what is commonly referred to as the

autocorrelation method of LPC speech analysis (23]. In

• t hat  method s ( k )  is usual ly  windowed pr ior  to analys is .

The p r i m a r y  aspect of th i s  procedure that  should be noted

—C--—-  —--- -C- ——- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
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is the need to e s t ima te  the  a u t o c o r r e l a ti o n  f u n c t i o n  R
55 (kl

from the data (s (k))~~
1.

The above discussion of LPC analysis will clarify the

presentat ion of several approaches to parame ter es t imat ion

in the presence of noise . These methods attempt to correct

the autocorre]ation function of the noisy data so that

(2.3) might be used to estimate the AR parameters. The

following par t also contains summaries of work that has

described and quantified the deg radation caused by additive

noise in LP systems . The reader is next referred to

several sources describing the AR—to—ARMA transformation

model. Using algorithms based on this model requires the

identification of the parameters of autoregressive

moving—average processes wi th respective orders of q and p,

ARMA(q,p). This dissertation will develop the ideas

presented in this latter modeling technique . Several

papers concerning possible nonlinear estimation procedures

will be reviewed in a section on parameter estimation .

That section also lists algorithms that are applicable to

ARMA parameter estimation . The reader is then referred to

three previous works which deal with the estimation of

parameters from MA (l) and ARMA (1,l) processes. The reader

is also referred to sources for  discussions of the

pre-fil tering approach to noise suppression . 

—
C-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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L i n e a r  Pre d ic t ion Li ter at u r e

In 197 6 at the IEEE Interna t ional Conference on

Acous t ics , Speech , and Signa l  Processing , Yegnanarayana

[421 reported on the effects of noise and distortion in

parame ter estimation in speech signals. Two topics from

that repo r t impo r tant to th is research concern the possib le

distortion introduced by pre—filtering and four possible

methods for dealing with additive noise. The pre—filtering

re fer re d to is that which is necessar y to avoid aliasing

prior to digitization of the speech signal. If the

anti—aliasing fil ter introduces a sharp roll—off at the

Nyquis t fre quency , this tends to increase the possibility

of ill—cond itioning in the autocorrelation matrix used in

the Yule—Walker equations (2.3). This also holds for

pr e-filters meant to suppress the noise, a disadvantag e

that might occur with a pre-filtering approach to parameter

estimation .

The four possible procedures to compensa te for

addit ive noise g iven (and cri t icized) by Yegnanarayana are

as follows :

1) Correct the short time power spectrum of the observed

data x (k) by subtracting the power spectrum of the

noise . The problem wi th this •approach is that the

shor t time power spectrum of the noise , contain ing

random variations , may not be cancelled by subtracting

the averag e noise power spectrum .

C- -— — -  ~~~~~~~~~~~~~~~~~~~~ - - - C- - -— - C- -  -— - ~~~—~~~-— —~~~~~~~~~
— -— 
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2) W h i t e n  the  noise  component by p r e — f i l t e r i n g . The

d i s t o r t i o n s  possible f rom p r e — f i l t e r i n g  have a l ready

been discussed .

3) Extract the parameters by analyzing only those sections

of the spec trum correspond ing to a high SNR (as a

func tion of frequency). This technique introduces the

more complica ted selective linear prediction analysis

method [24 ], requiring modif ica t ion of the parame ter

ex traction stage, and fails to use information about

the AR process contained in those frequency ranges that

are ignored .

4) Noise ef fec ts can be reduced by us ing a second order

filter discussed in [181. This filter , based on the

first two autocorrelation coefficients , would correc t

only the gross spectral distortions of the noise.

At the same IEEE conference in 1976, Sambur and Jayant

(33 1 presented preliminary results on the effects of white

noise and differentially quantized speech on LPC synthesis

procedures. To measure the distortion caused by inaccurate
C- identification of the AR coefficients , the authors used a C

distance measure proposed by Itakura [181. This metric is

said to indicate where spectral matching errors , which

occur because of failure to identify the AR parameters ,

begin to be statistically or perceptually significant. In

[33] and [34], Sambur and Jayant ind icate that the

degradation resulting from white noise is more severe than

• ~~~~~~~~~~~~~~~~~~~~~~~~
- -  ~~~~C- -_ C ~ -~---*~-~~- ~~ -C-- - — - S~~ & -~; U- ••C-~~~ C-~~

.
~~~~~~ ~~~~~~~~~~~~~~~



- —----~~-—-—- ——C- —‘s— —~~------—-------- — - - - 
-
~ 

-— -

13

that resul ting from the two types of d i f ferentially

quantized speech . Their results for white noise

degrada t ion also illus tra te that perceptually significant

varia tions occur at a signal—to—noise ratio of about 28 dE.

The signal— to—noise ratio is defined as ~ s
2 (k)/ ~ n~~(k),

the summation being over the ent ire dura tion of the speech

input.

The brief development of LPC given in the introduction

to this section indicates the possible approach of

correc ting the autocorrelation function of the input data

so that it matches R
55 

(k), the autocor relation func tion of

the signal s(k). If the noisy data x(k) is given by

x (k) = s(k) + n(k) , (2.4)

then the autocorrelations of s(k) and x(k) are related by

R
55
(k) = R

~~
(k) + R~~ (k) - R (k) — R

~~
(k) (2.5)

= R
~~~

(k) - R~~~(k) - R (k) - R~5(k) . (2.6)

Then if estimates for the noise autocorrelation and

signal—noise cross—correlation are available, the

autocorrelation R (k) of the original signal may be

estimated . This approach is appealing , since the standard

LPC algorithms can be used once R (k) has been obtained by

some additional operations.

In the development of a word spotting system based on

the calculation of LPC parameters , Christiansen [11]

proposed the following approach as one possible method of

C- —C--- C--— -—-C---  -C- —- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C - - -  - -  - - -- - - C-—— --—- - -C--- -—C-— C - - C- C- -C--—— C -— —  —C-- -. —•-—- a____._ C- ,1___ 
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dealing with noisy speech. If p
55

(k) indicates the

approximation for R (k) that will be used in (2.3) to

obtain the AR coefficients , a reasonable expression for

~ (k) might bess
ñ
~~

(k) = R
~~

(k) - R~~ (k) . (2.7)

Equation (2.7) derives from (2.6) with the following

assumptions:

1) R (k) is obtained by averaging the autocorrelation

function over intervals containing rio speech activity ;

2) s(k) and n(k) are uncorrelated , that is, R5~ (k) =

R (Ic) = O f o r  ali k.

This approach did not work in the word spotting system of

(11]. Results indicate that the LPC algorithms failed , due

to violation of assumptions 1) - and 2) above. The effect of

these assumptions is illustrated in Chapter 4.

Atashroo [4) proposed a system for handling noisy

speech that combines the pre—filtering and modeling

approaches. Using a noncausal formulation , the transfer

function for the Wiener filter H(~ ) is

— ______  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _H(w) — — 
+

4~ ( w )
1 — 

, (2.8)

where •(w) indicates the power spectrum of the subscripted

quantity . The power spectrum of the output , ~~~(w) , is

--
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• ( w )  2

• (w) ~H(w)~~2 = 
XX 

— 

•~~~
(u) (2 .9 )

is es t imated  by averag i ng the spectra of short

over lapp ing  segments of d a t a .  ~ ( w )  is es t imated  in l i k e

manner from speechless intervals. Once •55
( w )  is compu ted

from (2.9), its inverse Fourier transform will yield

~ ( k )  , which can be used in (2.3) to ob t a in  es t imates  fo r
ss

the AR parameters. Note that (2.8) is obtained by assum ing

s(k) arid n(k) are uncorrelated . Atashroo does not quantify

the improvement possible with this method.

Common to the two prev ious techniques is the

assumption that s(k) and n(k) are uncorrelated . Boll , in a

system referred to as Predictive Noise Cancellation (PNC)

-
- (9), describes a sys t em desig ned to approx imate  R

55
(k )  by

est imat ing all of the terms on the right hand sid e of

(2.5). PNC attempts to estimate these auto— and

cross—correlation terms by filtering a secondary noise

channel , n (k). The input for this channel is derived by

averag ing the characteristics of the noise when there is no

speech activity. The filter H(z) is designed to minimize

the error between its output u(k) and x (k) , the noisy data.

The method can be summarized in four statements:

1) Es tima te the bac kground no ise n(k) and the no ise

characteristics dur ing speechless intervals.

2) Estimate the noise—signal correlation filter H(z)

3) Modify the noisy speech autocorrelation function R
~~

(k)

— :~~~~~~~~~~~~~~~~~~~~~~~ - —-  -C-- C- ——- _ __M_a__- C-—-—
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to obtain t~ (k)ss
4) Calculate the final AR parameters using equation (2.3)

wi th ~ (k) repl ac ing R (k).ss Ss

Boll claims an improvement in SNR of 10 dB with this

approach. The similarity of the PNC system to adaptive

noise cancelling (ANC) systems should be rioted [41].

In a recent pape r (22], Lim and Oppenhe im presen t four

method s for estimating the parameters of an all—pole (AR)

system degraded by additive white noise. The methods

differ in the assumptions mad e about Initial conditions for

the parame ters , data , and gain. Two of the  methods a re

shown to be equivalent to the covariance and

autocorrelation methods of [CPC when there is no additive

noise . When considering the noiseless case , three of the

four method s result in linear operations in the estimation

proced ure , while the fourth method involves nonlinear

rela tionships . When white noise is added to the desired

signal , all of the procedures require the solution of

nonlinear equations in the estimation stage. The authors

propose two suboptimal methods involving only linear

operations. Both methods are iterative and involve

filtering the data to estimate the orig inal all—pole

signal. This is followed by an LPC estimation step to

prov ide new es t imates  fo r  the model parameters .  The

filterlng——L .PC process is repeated for each iteration. In
— one method , the f i l t e r  used is a noncausal  Wiener  f i l t e r.
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Resu l t s  fo r  s y n t h e t i c  da ta  and speech d a t a , at several

SNR ’ s , are presented .

ARMA Model Literature

The preceding discussions cover four possible

approaches to extracting the AR parameters of a signal

corrupted by noise . The three autocorrelation modification

techniques qualify as modeling approaches in the sense that

the relationsh ips of (2.5) and (2.6) are used to obtain an

estimate of R (k). The fourth technique , the iterative

approach proposed by Lim and Oppenheim , Is represen tati ve

of the filtering approach to noise removal. If the

additive noise is white , It is possible to use another

model description . Walker (393 presents a discussion of

the consequenc es of add it ive no ise when ana lyzing t ime

series. He points out that if s(k) is an AR (q) process

q
~ a(i) s(k—i) c(k) , (2.10)

i=0

a(0) = 1.0, and x(k) = s(k) + n(k) is the corresponding

noisy process , the combination of these two equations gives

q q

~ a(i) X (k—i) = ~ a(i) n (k—i) + c ( k )
i=O i=0

~ y(k) . (2.11)

The autocorrelation function of y(k) is now a function of

both the (a(i)}~ and the addit ive noise, complica t ing the

task of estimat ing the desired parameters of the system ,

the (a(i)}?. It is Walker ’s belief that the laborious and 
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uninteresting calculations involved may be the reason for

the neglect of this approach in time series analysis.

In their text on time series analysis (10], Box and

Jenkins briefly discuss the effects of noise added to a

general ARMA (q,p) process. If white , the noise w ill change

the MA param eters only, leaving the AR parameters

unchanged . The new time series is ARMA(q ,r), where

r = max(p,q). Thus, if the original process is AR(q) , that

is p = 0, then the new process created by adding white

noise is ARMA(q,q) . Box and Jenkins also discuss the

effects of non—white additive noise. In that case the AR

parameters are also chang ed .

The most extensive discussion to date on the

development of this type of noise model for AR processes is

due to Pagano [30]. He presents the extension of an AR(q)

process to an ARMA(q,q) process as a result of the additive

whi te noise. He also shows that the new process is

actually an P~RMA(q,q) process , not one in which the or ders

are less than q as a result of cancellation of factors from

the AR and MA operators. Pagano then develops the

nonlinear relationships , men tioned by Walker (39], between

the {a(i)}~~, the SNR, and R (k), the autocorrelat ion

• function of the sequence y ( k )  de f ined  by Walker in (2.11).

Finally, he proposes a nonlinear regression technique

throug h which estimates of the {a(i)}’~ can be obtained by

taking advantag e of the nonlinear relationsh ips discussed

C 
_ _ _ _
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by Walker.

In a pa pe r rev iewing  the appl ica t ions  of t ime  series

analysis (31], Par zen points out the necessary steps in

applying the techniques available in t ime series analysis.

One of the first steps is model conception , that Is,

selecting the model which is appropriate to the data being

observed. As an exampl e of this step, Par zen points out

the possible use of the ARMA model for an AR process

degraded by additive white noise , discussed by Pagano.

Tong (37] makes use of the extension of an AR(q) model

to an ARMA(q,q) model when whi te noise is added in a

procedur e devised to aid in determining the order of an AR

process corrupted by noise. He extend s those results in a

later paper (38] to special cases of addit ive noise that is

correlated to the signal represented by the AR model .

Parameter Estimation Literature

The procedures proposed by the above sources and

presented ‘in d etail by Pagano [30) at some point require

the estimation of the parameters of an ARMA process , wh ich

is i n h e r e n t l y  more  d i f f i c u l t than  the e s t i m a t i o n  of AR

coefficien ts. However , muc h work has been done on

techniques for  e x t r a c t i n g  ARM A parameters from time series.

The techniques ava i l ab l e  include methods based on nonlinear

opera t ions  and methods comprised of only linear operations.

The f i r s t  ha l f  of this section summarizes several papers

which  present a l g o r i t h m s  for  e s t ima t ing  the parameters  of

L ~~~ . . C-- --- --- C- C-- - --- - - C- ___~C-C-C-C-~~~~~~~~~~ ~~~.C- ~~~~~~~~ 
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an ARMA process. The second half of this section deals

wi th pa ram eter est imat ion technique s (not necessar i ly

limited to ARMA processes) and modifications mad e to

estimation procedures to improve convergence.

A presentation by Anderson [2] of ARMA parameter

estimation algorithm s based on the conditional maximum

likelihood opt im i zation of the normal likelihood function

is one of the most thoroug h treatments of the subject.

Anderson develops a mat rix notation wh fe h fac ilitates

wri ting the equations involved in the estimation.

Algorithms are then developed along these divisions:

1) time domain versus frequency domain;

2)- Newton—Raphson method versus the method of scoring

(Gauss—Newton method);

3) param eter set 1 (AR coef f ic ients, MA coe f f i c i e n ts, and

e x c i t a t i o n  sequence v a r i a n c e )  versus  pa ramete r  set 2

(AR coefficients and MA covariances)

Af ter present ing the algorithms based on these e ight

possi bili t ies , Anderson then briefly compares the me thod s

and discusses some resul ts found from Monte Carlo studies

per formed by other researchers. The con ten ts of th is pa per

are par ticularly useful in interpre ting the ma trix

form ulat ions for these algori thms common in the stat istical

l i t e r a t u r e .

Hannan [15] presents  a three step procedure  for

estimating the parameters of an ARMA process. Spectral

----C-.- - C-- C-C -—--- C-- 
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factorization may be used in the estimation of the MA

param ete rs , but if the requirements need ed for

factorization are not present , an alternative procedure is

g iven. Hannan ’s techn i que, even though it produces

asymptotically efficient estimates of the ARM A pa rameters ,

can be further modified to form an iterative procedure for

improv ing the estimates of the ARMA pa rameters. Akaike [1]

points out that Hannan ’s method is equivalent to a one—step

Newton—Raphson iterative procedure for modifying the

initial estimates to max imize the Gaussian likelihood

function. The main limitation of the procedure , in

Akaike ’s op i n i on , is the possible failure of the technique

to im prove the estimates because of poor initial estimates.

Anothe r  procedure  fo r  e s t i m a t i n g  ARM A pa rameters from

a time series i s g iven by G raupe ,, Krause , and Moore [13],

w h i c h  r e q u i r e s  t h r ee  steps i n v o l v i n g  on ly  the  s o l u t i o n  of

linear equations. The procedure is initiated by

identifying the parameters of an equivale rit-AR (~ ) process.

Even though an Infinite number of AR pa rameters is required

to represent an ARMA (q,p) process In general , it is claimed

that only a smal l number of these are necessary for the

com putation. From these initial AR (~ ) pa r am eters , two

steps involving linear operations are required to obtain

first the MA and then the AR pa rameters .

A fourth possibility for estimating the parameters of

an ARMA process is represented  in the a pproach g i v e n  by

— ._sC- —C- - --- ---— —-. - - — — 
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Steiglitz in (35]. Presented as a method for estimating

the poles and zeros of the vocal tract , the procedure uses

an algori thm developed for linear system identification

[36] .  This method r e q u i r e s  knowledge of the input  and

output (possibly noisy) of the system . An iterative

technique , us ing only linear opera ti ons , simul taneously

estimates the coefficients of the pole and zero filters.

This can be used directly on the signa l , or on a minimum

phase r e p r e s e n t a t i o n  of LL~e s ; i ~i 1 , obta~ ned from

homomorphic filtering .

Kashya p and Nasburg [213 review several methods for
C e s t i m a t i n g  the pa r ame te r s  of mul t ivar iate autoreg ress ive

moving—average processes, includ ing discussions of least

squares methods an~! max imum l i k e l i h o o d  methods .  The

a u t h o r s  also d iscus s n u m e r i c a l  methods tha t  m i g h t  be used

to ob t a in  the pa r ameter  es t imates.  The Newton — Raphson (N f l )

method is discussed , but convergence  problem s that  m i ght be

associa ted wi th this procedur e are hand led by using

d i f f e r e n t  i n i t i a l  guesses to star t the algori thm . In this

same pape r Kashyap and Nasburg also rev iew the a l g o r i t h m s

developed by D u r b i n  [12] and W alke r  ( 4 0 ] .  It is stated

that these methods are applicable in the univariate case ,

but may produce pa ram eter est imates o f que st ionable

eff iciency. Numerical results for various estimators are

prov ided for  one M A ( 1 )  process and one ARMA( 1 , l )  process .

Us i ng a s ta te  vec to r f o r m u la t i o n , Gupta and Mehra (14]

- -— ~~~~~~~~~ - -- -~~~~~~~.— - — -  - -- -~~~~ ~~~~ — -~~~~~-- - -— -C--~~~~~~~~~~~~~ _ . i~~~~~ t -
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disc uss the numerical aspects of max imum likelihood

estimates . Use of the NR method is discourag ed , p rimar i ly

because o f conver gence prob lem s and compu tat ional

drawbacks . The Gauss—Newton (GN)  method (method of

scoring ) is stated to hav e somewhat better convergence

prope r t i e s . Several  o the r  n u m e r i c a l  methods  fo r  pa ramete r

es t imation are g iven , includ ing a modified GN procedure and

som e suggestions for reduc ing the computational load .

Comparisons of several gradient methods for obtaining

estimates of parameters involving nonlinear relationsh ips

are presented by Bard (5). Gradient methods are of the

form

8 .  = 8. — p . R.1 g
~
. . (2.12)

—i+l —1 1 —1 1

In (2.12) 
~~~ . 

and are the values o f the parame ter

vector at the j th and i÷1th itera t ions , respectively, wi th

known. The vec tor g is the g radient of the cost

function (e.g., l i kel ihood , least squares), eval uated at

e. . R . is a matrix and p .  Is a scalar , each evalua ted at
—1 ~~1 1

e. . The various gradient methods are characterized by the

form of the matrix and the strateg y by which p
~ is

chosen . If Q(o.) is the value of the cost function Q(O) at

the ~th itera te, then the es t imat ion procedure see ks to

find 0. such that
—1 + 1

Q(8.~~1) > Q(01) , 
(2 .13 )

if it is des i red  to m a x i m i z e  the cost f u n c t i o n .  As pointed 
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out by Bard , FL should be positive definite to ensure

(2.13) holds for ~ 0 and p. > 0. Also, R . is usually an

approxima tion to H,, the Hessian of Q( e ) evalua ted at

o = o .• The Hessian of Q(e) is defined as the matrix of

second partial derivatives of Q( e ) with respect to the

elements of 0. If R. = H. and p . = 1, then one has the
— —1 —1 1

Newton—Raphson method . After evaluating g (O) and R(e) at

O = 0 . ,  p. is selected so that (2.13) is true . Bard then

proceeds to describe several estimation procedures based on

differen t choices for and p1. Using several of the most

successful techniques , the author demonstrates their

applica tion to typical estimation problem s and discusses

the capabilities of the methods.

In his text on nonlinear parameter estimation (6),

Bard descr ibes va r ious  a l g o r i t h m s used to op t imize  some

cost function of the parameters. He points out that the 
C

Newton—Raphson method is the only method which will reach

the extrem um in one iteration when the cost function is

quadratic. Based on the one step convergence of the NR

method fo r  a q u a d r a t i c  func t ion , Bard g ives  convergence

rate e f f i c i e n c y  f ac to r s  fo r  the va r ious  methods (6 , p. 89] .

For the NR method th is  fac to r is one , but the method may

s u f f e r  f rom convergence problems. Bard also discusses

methods for terminating estimation algorithms [6, p. 114].

Ano ther survey of numerical techniques for optimizing

a cost function is presented by Powell (32]. He discusses

—C-C-C-- ~ - C-— 
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steepest de scent , d i r e c t  search , and c o n j u g a t e  d i r e c t i o n

methods .  Inc luded  in his d iscussion is a presentati on of

the Nfl method , which  he s ta tes  is s t i l l  u s e f u l  In many

a p p l i c a t i o n s .  Po well m e n t i o n s  t ha t  the most s e r ious

disadvantag e of the NR method to many users is the need to

evaluate the second derivatives of the cost function. Many

of the techniques described by Powell have been developed

to achiev e fast convergence without expl icitly evaluating

the second d e r i v a t i v e s. Po well  gives recommendations for

selec ting an algorithm to op t imize  a g iven cost f u n c t i o n .

The suggest ions  a re  r o u g h l y  based on the number of

parameters , the availability of derivatives of the cost

function , and whether or no t the user wishes to evalua te

the derivatives .

One of the techn iques discussed in mos t o f the

preceding sources is attributed to Marquardt (25]. A

disadvantage of the GN and NR methods is that the

algori thms may fail to converge to the optimal solution if

the init ial guess does not fall into a small enough

neighborhood of that solution. A criticism of some

grad ient methods is that , while the region of convergence

is la rger  than that of the NR or GN methods , the ra te of

convergence Is slower . Marquard t’s method claims to

combine the faster convergence of the GN method (when near

the optimal so lu t ion)  wi th  the l arge r  reg ion of convergence

for  the g r a d i e n t  methods .  If the iterative step in the GN

________ —-—C--— ~~~ 
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method is given by

= 0 .  — R~~~ ( O )  a~1) 
, (2.14)

then Mar quar dt ’s method is given by

= 0 .  — 
~~~~~~~ + A ‘] 1a~°~ (2.15)

The scalar is automatically selected by the algorithm to

ensure that Q(0~ ÷1) > Q(0~ ) when max imizing Q(O). In

(2.15) g(0) is again the g radient of Q(0) , R (O) is a matrix

and I is the identity matrix. As O~ approaches the optimal

solution A 1 
tends toward zero and the algorithm behaves

like the GN method . However , if O~ is far from the optima l

solution , A~ will tend to be larger. When the A~ I term

dominates , then

= O~ — x~~ j (O . )  , (2 .16 )

which is the simplest expression for the g radient method .

Marquar dt ’ s method is of ten recommen ded for nonli near

estimation problems (5], (32]. A disadvantag e of this

method is the increa se in computations incurr ed by

enclosing the iterative Marquardt method inside the

i t e r a t i v e  GN method .

Two useful texts on nonlinear parameter estimation are

Orteg a and Rheinboldt (29] and Beck and Arnold [7). The H

text by Orteg a and Rheinboldt provides extensive coverag e C

of iterative methods for solving nonlinear parameter

est imat ion methods , includi ng the - Nfl and GN methods ,

conjugate—direction methods , and gradient methods.

a----- L ._:—~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ -~~~~-~~~~-~;;::
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Convergence properties for the various technique s are

disc ussed .

In Chapter 7 of their text , Beck and Arnold (7]

describe several methods that might be used in parameter

estimation. After presenting the GN method , the authors

discuss several modifications of the GN method . These

includ e Marquardt ’s method and the Box—Kanemasu

interpolation method . The latter method is an algorithm

which uses quadratic interpolation to select the parameter

p . in (2.12) such that (2.13) holds (if max imizing). Beck

and Arnold present exam ples of some of the methods and

com pare their find ings to those of Bard [5], [6].

A co l l ec t ion  of papers on numer i ca l  techniques  f o r

unconstra ined optimiza tion, edited by Murray, is available

in [27]. The papers contributed for this book cover in

depth parameter estimation techniques that include direct

search , conjugate—direction , quasi—Newton , and second

derivative methods. Included in the topics is one paper on

the problem s related to optimization . There is also a

di scuss ion of the failur es tha t can occur wi th any o f the

methods presented , causes o f these fa i lures , and what can

be done to correct  them .

The last three papers to be reviewed in this section

on parameter estimation are all discussions of the

Gauss—Newton and m o d i f i e d  GN me thod of solving for the

parameters to optimize a nonlinear function . Hartley [16]

- - — .1 - -- -
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and Hartley and Booker [17] discuss the optimization of th:

cost function Q(~ ) ,

M 2Q(O) = ~~ [z 1 — f~~(O)] . (2.17)
i=1

~ is the parameter vector , the z. are the known data

values , and the f. (O), i = 1, ... , M , are M known func t ions

mapping from the B param eter space to the observed data ,

z.. These papers are useful in light of the formulation

used by Pagano [30] to derive the nonlinear relationship

between the AR model and the ARMA model resul ting from the

addition of white noise to the AR process. Jennrich [19]

describes a modification of the GN method that may be

useful in this type of work. The details for the GN and

modified GN methods are includ ed in Appendix B.

Previous Work on ARMA Estimation

This sec tion presents several sources that provide

Informa tion about the practical aspects of ARMA parameter

estimation . In all cases, the work has been performed on

small ord er processes, usually no more than second order.

Box and Jenkins (10] provide the researcher with a thorough

background in t ime serie s analysis as applied to ARMA

modeling . Especially useful are the developm ents for the C-f
variances of param eter es t imates .

There a re  two papers in which MA(l) and ARMA(l,l)

models have been s tudied . Ne l son [28]  uses Monte Car lo

methods to test several types of estimators on MA (l)

- - A~~~~ - —--~~~~~~~~~~~~~~~~~~~~~~~~~ - -- -— --C-~~~~- - - ~~ C - -  - - - _ _ _ _ _ _ _
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processes. The M A ( l )  process has a single MA parameter , b.

Nelso n ’s work considered the operation of the selected

e s t i m a t o r s  f o r  processes where b = +0.2, +0.5, and +0.8.

One of Nelson ’s most interesting find ings is the tendency

for the max imum likel ihood methods to perform best for the

MA (1) processes with b of moderate magnitud e, that is , b

close to 0.5 in magnitude . Kashya p and Nasburg (21] use

one MA (l) process and one ARMA (l,l) process to demonstrate

some of the techniques presented in their paper on

estimation methods. Anderson (21 discusses the finding s of

Nelson [28] and Kashyap and Nasburg (21]. The results of

Nelson ’s work will be reviewed in more detail in Chapter 4.

For the benefit of the reader , two r e f e r ences  to

al terna t ive techniques for ex trac ting the parame ters of a

model from noisy data are given . Widrow , et. al., discuss

the method of adaptive noise canceling (41], and Kaila th

[20] presents an overview of linear filtering theory. The

bibliography of the latter is extensive and g ives many

references to topics in Wiener filtering and recursive

Wiener  and K a lm a n  f i l t e r i n g . The approach taken  when us i ng

noise suppression methods in conjunction with these two

classes of estimation procedures Is to restore the signal

prior to estimat ing the parameters. The algorithms of the

parameter estimation stag e are then likely be unchang ed

from the algorithm s used in the noiseless case .

I
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CHA PT ER 3

THEORY

Introd uction

In this chapter the details of pertinent theory are

presented . A review of linear prediction is given .

Included In the review is a developmen t showing the e f f e c t s

of whi te noise on the LP parame ters d etermined by the

l i n e a r  p r e d i c t i o n  a l g o r i t h m . Presented in a m a t r i x

f o r m u l a t i o n , the LPC a lgo r i t hm discussed is that  commonly

r e f e r r e d  to as the au toco r r e l a t i on  method . The LPC

discuss ion  is fol lowed by the d e t a i l s  of the AR—to—ARMA

t r a n s f o r m a t i o n  model . In that  section the g e n e r a t i o n  of an

ARMA(q , q )  process f rom the add i t i on  of whi t e  noise to an

AR(q)  process is demonstrated , followed by a sec tion on the

f i r s t  order AR process corrupted  by wh i t e  noise .  T h i s

sect ion is v a l u a b l e  because the low o rde r  of the model

allows one to examine  in  d e t a i l  the e f f e c t s  of adding  the

whi te  noise to the A R ( l )  process . Many of the resul ts in

the next  chapter  are  based on the ana lys i s  of t h i s  f i r s t

order  case . Succeeding sections discuss  f i v e  pa r ameter

e s t ima t ion  methods tha t  are  considered as means to e x t r a c t

estimates of the AR parameters from the data . Following

that  is a d iscuss ion  of the noncausal  f o r m u l a t i o n  for  the

- -
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W i e n e r  f i l t e r .  A b r i e f  p re sen ta t ion  of the n o n l i n e a r

regress ion  al g o r i t h m  suggested by Pagano (30] is then

g iven . The las t  sect ion presents d e t a i l s  on the noise

sequences used in t h i s  w o r k  as the e x c i t a t i o n  sequences f o r

the ARMA models  a nc4 the a d d i t i v e  noise sequence.

L inea r  P r e d i c t i v e  Coding

If s(k) is a time series which can be modeled as a

q th _ order  au to reg res s ive  process , AR( q) , then we have

q
s(k) = — ~ a~~( i)  s ( k — i )  + c ( k )  , (3.1)

i= 1

a
1
(O) 1.0. The {a

1
(i))’~ are the AR parameters and c(k)

is a zero mean whi te noise process. The formulation of the

AR(q) process in (3.1) is identical to the qth_order

a l l — p o l e  LP model . In the a u t o c o r r e l a t i o n  method of LPC

analysis , the equations are much more compact if matrix

no ta t ion  is used . Refer  to Makh oul (23]  for add it ional

bac kground and a l ist of references for LPC development.

The developmen t of a notational convention for LPC using a

matrix formulation can be found in Boll (8].

Us i ng the au toco r r e l a t i on  method , the sequence s ( k )

has i n f i n i t e  ex ten t  but is nonzero  only fo r  0 < k < N—l ,

where N is the size of the ana lys i s  window.  Form the

(N+q) x 1 vector s , where ! is given  by

S = [ s( O)  s( 1) ... s(N—1) o ... 0 1 T ( 3 . 2 )

Us i ng D as a de l ay  operator  for  vector no ta t ion , D1s is an

- - - C - ,  - -  
-
~~~~~~~~ ~~~~~~~~~~~~~~~ - -
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(N+q) x 1 vec tor w i t h  the sequence s (0 )  ... s(N—1 )

beg inning  at the ( i + l ) th pos i t ion .  The superscr ip t  i can

take  on the value s 1, ..., q. For exampl e,

D1s = [0 s(0) s(1) ... s(N—1) 0 ... ØJ
T

D2s = (0 0 s(0) s(1) .•. s(N—1) ~ 01
T 

, and

= [0 0 ... 0 s(O) s(1) ... s(N_1)J T
Form the (N+q) x q m a t r i x  H by inc l uding as columns the

D’s , i = 1, ..., q,

= [D 1s D 2s D 3s ~~~~~ . (3.3)

If an error sequence c is defined as

£ = [c(O) c(1) -~~~ E ( N 1) ~~•• c (N + q _ l ) ] T 
, ( 3 •4 )

then (3.1)  can be w r i t t e n  as

~~~~~~~~~~~~~~~~~~~~~~~ 
(3.5)

TThe vector a 1 = [a 1( 1)  a 1( 2 )  ... a 1(q) ] is formed from

the p red ic t ion  c o e f f i c i e n t s  and the ind ex k in  (3 .1)  is

conf ined  to the in te rva l  0 < k < N+q— 1 . The subscript  1

indicates  that  these c o e f f i c i e n t s  come from the appl ica t ion

of the LP a l g o r i t h m  to s(k ) . The c o e f f i c i e n t s  {a 2 (k ) }~
which  fo l low come from the appl icat ion of the LP a l g o r i t h m

to x ( k ) .

In LPC, the optimal distance measure is the minimum of

the sum of squares of the elements of c, as a f u n c t i o n  of

the (a 1(i)}~~. If the loss f u n c t i o n  L is def ined  as

- ~~~~~~-- - -~~~~~~~~~~ C- —~~~~~~~~—- C- C- - 
~~~~~~~~ 
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N+ q— l
= 

~ 
~~~ = 

T 
, (3.6)

k=0

then the minimum of L~ wi th respect to the {a1(i))~ is to
be found . Using vecto r calculus , we have

E 
= 1

T
1 = 2 ~

T

The minimum of L is obtained by setting this expression

equal to zero:

T~~~!Ø

From (3.5), 
~~~~~~~~~~ 

= and C T H = 0, or

HT c = o . (3.7)-9-

Substituting (3.5) into (3.7) gives

+ 

~: ~~ = 0

or

(.8)

Note that the matrix IITH and the vector HTs are defined by—s—s —s—
R

55
(0) R

~5
(l) R~~ (q—1)

R
55

(l) R
5~~
(0) ... R~~ (q—2)

~~~~~ 

= : : ~~. : (3.9a)

R~3
(q_1) R9~~

(q_2) .~~ : R~~ (0)

and

- - - - - -—C- - C- — - -- C- - —~~~~~~~~~~~~~~~~~~ - - -  - ——~~~~~~~~~~~~~~~~~
C-
~~~~~~~

-C--- - - — - -C - - -—
~~~~~~~~~~~~~~

C-C - — -
~~~~~

C-—



34

R (1)ss

R (2)
T SS

(3.9b)

R5~~(q)

R (k )  is g iven by

N- 1— I k I
R

55
(k )  = ~ s(i) s ( i +I k I )  . (3.10)

i=0

Equation (3.8) is a matrix equation representation for the

Yule—Walke r ex pressions

q
~ a~~(i) R59

(i—k) = —R
55

(k )  . (3.11)
i=1

for k = 1, ..., q.

If the sequence s(k) is contamina ted by add it ive noise

to prod uce the series

x(k) = s(k) + n(k) , (3.12)

and an A R(q)  model is forced on the noisy  data , sim ilar

resul t s  a re  ob ta ined . The AR model forced on the no i sy

data Is

q
x(k) = — ~ a~~(i) x(k—i) + e(k) , (3.13)

i=1

a 2(0) = 1.0. The {a2(i))? are the prediction coefficients

and e ( k )  is the r e s u l t i n g  e r r o r  sequence. If the m a t r i x

and the vector  x a re  formed from the da ta  x ( 0 ) ,  ..., x ( N — 1 )

in a manner similar to H9 and s, then the loss func tion L~
for the noisy data is

-— C- —-~~~~~ -— ~~~~~~—— — — C -- - C - . 
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N+q-].
L = 

~ e 2 (k )  = eTe~ , (3.14)
k=0

wi th  ~ = (~~(O) e(1) ... e~(N + q_ l ) ] T . M i n i m i z i n g  L~ w i t h

respect to the {a 2 (i))
’~ resul ts  in

HT H a = _ H T x (3.15)—x —x —2

as the expression defining the least squares es t imate  for

the {a
2(l)}? 

defined in (3.13). The elements of the matrix

HTH and the vector HTx are formed from the autocorrelation—x—x —x—

function of x(k) as in (3.10) with x(k) replacing s(k).

The (a 1(l)}~ represent the LPC coefficien ts determined from

the undegraded signal , while the (a2(i)}? are the LPC

parameters obtained from noisy data , with no attempt mad e

to e l imina te  the e f f e c t s  of a d d i t i v e  noise .

Constructing the matrix and the vector n from the

a d d i t i v e  noise sequence n ( k )  , the fo l lowing re la t ionshi ps

hold :

= + H~ , (3.16 )

IIT H = H T H + H T H + H T H + H T H . (3.17)—x —x —s —S —n —n —s —n —n —S

The HTH term is a m a t r i x  fo rmed of the au toco r r e l a t i on

terms of n(k), and the terms H~
’H and H

~
HS contain the

cross—cor re la t ion  terms between n ( k )  and s ( k )  . If it can

be assumed that  s ( k )  and n ( k )  are uncorrelated , ( 3.17)

becomes 
C

(3.18)

With ( 3 . 1 2 ) ,  ( 3 . 1 6 ) ,  and (3.18) subst i tuted into (3 .15 ) ,  we

—C- -—-- —C-- —C-—--  --—-- p-~~~~~— ~~~~~~~~ —- ---- -~~~~L~~~~~L. - - . - - ~~~~~~ _ _ _ _ _ _ _ _ _ _
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ha v e

(3.l9a)

(3.19b)

where the assumption of uncorrelated signa l and noise is

used to reduce the right hand side of (3.19b) from (3.19a) .

Solving equations (3.8) and (3.19b) for a1 and

respectively, we obtain

= - [
~~~~ ~~~~~~~~ ~~~ s (3.20)

and

= _ [ H T 
H + H

T H j
_ 1

[~
T s + HT n J  (3.21)—2 —s —s —n —n —s — —n —

as the least squares estimates for a
1 and !2• The vector

can be related to ii,~ by pre—multip lying (3.l9b) by 
C

[HTH ]~~ to give
S S  

+ (H~ H )~~~ ~~ !~~] 
~2 

= ~~~~ ~s ’ ~~

-

- -[~~5] ’~~ a
= a — 111T H ]

_ 1 
HT n.  ( 3 . 2 2 )—1 —s —-s

Solving (3.22) for 
~2 

g ives

- [H T H9 + ~~ ~~~~~~~~~~~~~~ 
H~ n . (3.23)

From ( 3 . 2 3 )  it is apparent that the addition of n(k)

has degraded the  a 2 in  two wa ys :

1) a bias term (H~ H9 + H~ H~ ]~~ H~~ has been subtracted ;

- 

-
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2) the relative magnitudes of the {à
2
(i))’~ have been

cha ng ed due to the m a t r i x  m u l t i p l y i n g  e f f e c t  of the
T T -i Texpression ~~~~~ + ~~~~~ ~~~~~~~

The resul t s  of equa t ions  (3 .19b) throug h ( 3 . 2 3 )  are

valuable in showing the distortion possible when noise is

added to a sequence that  is to be the input  to an LPC

system . These resul ts are based on the explicit assumption

that  s ( k )  and n ( k )  are uncor re l a t ed  and f a l l  to account  for

non—zero  c ro s s—cor re l a t i on  terms ( the term s ~~~~~ e t c . ) .

It is th i s  e f f e c t  tha t  is the pr imary  h i n d r a n c e  in us i ng

the technique mentioned by Chrlstiansen (11]. Results

showing the distortion introduced by n(k) on the inverse

spectrum derived from the {a
2(i)}1 

and the effects of

assuming that  n ( k )  and s(k) are uncorrelated will be shown

in Chapter 4.

ARMA Model Approach

Presented in th i s  section a re  the d e t a i l s  of the ARMA

process which resul ts from adding white noise to an AR

process.  The e f f e c t s  of a d d i t iv e  whi te  noise upon an A R ( q )

process are discussed in (10], (30], and (39]. The

potent ia l  advantag e of t h i s  approach is tha t  i t  Includes

the noise e f f ec t s  expl i c i t l y  in a more  general  model than

the o r i g i n a l  AR ( q)  process. The model is developed on the C

fol lowing assum ptions:

1) s(k) is a proper AR (q) sequence described by

—— -- C- C -—  — ~~~~--— -
~~ -— ~~
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q

~ a(i) s(k—i) = c(k) , (3.24)
i=0

for a(0) = 1, a ( q )  ~ 0 , and q > 0 , w i t h  c ( k )  an

independent , identically distributed (i.i.d.) N (0,o2)

noise sequence and s(k) stationary;

2) s(k) is contaminated by n (k) to form the observable

data

x ( k )  = s(k) + n ( k )  , (3 .25 )

where s(k) and n(k) are independent and n(k) is an

i.i.d . N(O,a~) noise sequence

The model has q+2 parameters-—{a(i)}~~, c~~, and i~~. The

da ta ava i lab l e for ana lys i s  to d ete rmine  est imates o f these

paramete r s  is the data sequence x(0), ..., x ( N — 1).

Combining (3.24) and (3.25), we have

q q

~ a(i) x(k—i) = ~ a ( i )  n (k—i)  + c(k) . (3.26)
i=0 i=0

A sequence y ( k )  is d e f i n e d  as -

q
y(k) = ~ a(i) x(k—i) (3.27)

i=0

• or
q

y ( k ) = ~ a(i) n (k—i) + c(k) . ( 3 . 2 8 )
i=0

U R (k) = E (y (i)y (i+k)3, it can be shown , using

( 3 . 2 8 ) ,  that R (k)  = 0 for l id > q. From ( 3 . 2 8 ) ,  y ( k )  is

seen to be stationary. Combining this with the property

that R~~ (k) = 0, I k I  > q, shows y ( k )  to be a moving averag e

sequence M A (p) , with p < q. Also from ( 3 . 2 8 ) ,

- - - C -—  - ~~~~~—~~~~~-— - — — —  -—~~~~ — —-- -~~~~~
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R (q) = o2a(q) ~ 0, by the hypothesis under assum ption 1)

above. As a resul t, y(k) is an MA (q) process , and there

exists a sequence of random variables v(k) , i.i.d. N(O ,a2)

and constants {b(l)}~ such that

q
y(k) = ~ b(j) v(k—j) , (3.29)

j=0

b(0) = 1.0. Combining (3.27) and (3.29) gives

q q

~ a(i) x(k—i) = ~ b(j) v(k—j) . (3.30)
i=O j=0

Thus , the sequence x(k) can be viewed as an ARMA(q,q)

process. While the orig inal model has q+2

parameters——{a (j)}~~, c~~, and ~
2—— the new model has 2q+l

parameters—— (a(i)}~~, {b(i)}~~, and c~ . From (3.29), we have

2 q-jk~R (k) = 

~ 
b(i) b(i+k) , (3.31)

so the expanded pa ramete r  set could e q u i v a l e n t l y  be

expr essed as {a (i)}~ and {R
yy i~~~}~~•

Using the definition for y(k) in (3.28),

2 2 q—lkj
R~~ (k) = a S(k) + a

n i~ O 
a(i) a(i+k) ,

11, k = 0
where â ( k )  = is the Kronecker del ta function .

L0, d~~ C
It is also possible to develop an expression for R~~~(k)

from (3.27). The three expressions for R~~~(k) are

summarized in (3.32):

-~~~ -- -— C-~~~~~ ——- - —-~~~--— -~~~~ . —— -~~~~~~~~~~ - - -C- —— C-
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2R (k) = ~ b(i) b(i+k) (3.32a)yy i=0

q q
= ~ a(i) a(j) R~~

(k+i—J) (3.32b)
i=O j=O

2 q~~~j
= o ~(k) + ~n ~ a(i) a(i+k) . (3.32c)

C i=0

Thus , the addition of n(k) to s(k) produces the following

relationships between the pa rameters:

1) equation (3.32a) gives the autocorrelation function

R~~~(k) for any MA(q) process;

2) in (3.32b) R (k) Is in terms of the AR coefficients

and R
~~~

(k) , the autocorrelation function of the data

x(k) , and is a val id expression for any MA

autocorrelation function , g iven that the a(i) can be

zero , i > 0, if x(k) is itself an MA process ;

3) another definition for Ryy (k) g iven in (3.32c) arises

as a result of the noise model defined by (3.24) and

(3. 25);

4) the ARMA pa rameters (a (i)}~ and {b(i)}~ for the process C

x(k) are related throug h the autocorrelation function

R (k) , the relationsh ip being expressed by (3.32a) and

(3.32c).

A compa r i son of the ARMA model approach just descr i bed

wi th a forced LPC fit of the data , represented by the

sol ution of (3.21), shows two interesting facts. First ,

the forced LPC model , fr om a spectral point of view , mus t

ma tch the spec tral  charac ter ist ics o f th e d ata x (k) as

L - --- - 
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closely as possible. This spectral match includes those

characteristics introduced by the noise . The flattening

effect exhibited by forcing an all—pole LPC fit on a signa l

degraded by additive white noise will be illustrated in the

next  chapter. The second observation involves the

assumption of the model form . If the orig ina l sequence

s(k) is AR ( q )  , then the addition of white noise results in

an ARMA (q,q) process ,.x (k). This process is equivalently

an AR (~ ) process. The forced LPC fit is actually

representative of the first step in the process discussed

in [13] for estimating ARMA pa rameters , that is ,

underfitting the AR (~ ) process. Using the technique g iv en

in (13], the ARMA mod el a ppr oach can then be viewed as a

procedur e by which the AR (q) and MA (q) parameters are

estimated from the AR (~ ) parameters.

With  the developmen t of the AR—to—ARMA t r a n s f o r m a t i o n

model compl ete , the processing steps r equ i r e d to use th is

algorithm for extracting the q AR parameters from noisy

data are summarized :

1) because most ARMA estimation procedures require initial

guesses for  the param eters , a procedure tha t pr ovides

Ini tial estimates for the parameters might be needed ;

2) an algorithm suitable for estimating the AR and MA

coefficien ts from a time series must be selected ;

3) if i t is des i red to m ake use of the nonl inear

reg ression stage to improve the AR parameter estimates ,

—C---- - 
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as suggested by Pagano [30], the algorithm Is

terminated by that nonlinear reg ression procedure.

Of these three steps , the effort In this projec t has been

directed toward the second step, the estimation of the ARMA

parameters , concentrating on low order processes ,

especially the ARMA (l ,l) model.

As will be pointed out in the next chapter , in testing

the ARMA estimation algorithm s and the feasibility of this

model , synthetic data are used in all tests. These data

are generated from a known AR or ARMA model with an

approximately white noise excitation process . To avoid

Introd uc ing the problem s encountered in obtaining suitable

initial parameter estimates into the ARMA parameter

estimation stag e, the coefficients used to generate the

process are often used as the initial guesses. Thus , they

represent the best possible guesses for the parameter

values. Performing the experiments In this manner

em phasizes the accuracy of the AR coefficient estimates.

Wher e just AR or MA coe f f i c i en ts ar e be in g est ima ted , using

zeros for all initial estlmate~-. yields good results . This

is not possible where both AR and MA pa rameters are being

estimated . Using zeros as initial estimates for the ARMA

p a r a m e t e r s  leads to a s i n g u l a r  m a t r i x  in  the estimation C

algorithm. While using the mod el parameters as Initial

estima tes is an u n r e a l i s t ic a ppr oach , it does pl ace the

em phasis  on the  val i d i t y  of the  t r a n s f o r m a t i o n  model and

—~~~~~~~ C-- ~~~~~ ~~~~~~~~~~ - - .
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the estimation algorithm being tested . A small number of

tests using initial estimates arrived at throug h

experimental methods showed that the primary difference in

the experiment was the number of iterations required for

the al gori thm to conver ge to a f i n a l solut ion , not the

final solution itself. Chapter 4 contains the results

achieve d us ing  the tr ans fo rma tion model to estima te the

paramete r s  of an ARMA process .

~~~~~~~~~ AR (l) Process Plus White Noise

From the preceding section , if  an A R ( l )  process is

corrupted by additive white noise , the resul ting data can

be modeled as an ARMA(],].) process. The AR(1) process s(k)

is given by

s(k)  + a s k— 1) = c ( k )  , (3.33)

where a i s  the s ing le  AR p a r a m e t e r .  If n ( k )  Is the

a d d i t i v e  w h i t e  noise  c o r r u p t i n g  the AR process as in

( 3 .2 5 ) ,  a f t e r  combin ing  ( 3 . 2 5 )  and ( 3 . 3 3 )  we have

[x(k) — n ( k ) ]  + a [x(k—1) — n(k—1)] = E(k)

or

• x(k) + a x(k-1) = n(k) + a n (k—1) + c ( k)  . (3.34)

As before , d e f i n e  the sequence y ( k )  to be

y (k) = v(k) + b v(k—1) (3.35a)

= x(k) + a x (k—1) (3.35b)

= n(k) + a n (k—1) + c(k) , (3.35c)

where (3 .3 5a)  is the expression for  an M A ( l )  sequence. In 
C

(3 .35a) , b is the s ing le  MA parameter  and v ( k )  is an i.i.d.
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N(O ,~~
2) white noise process that is the excitation sequence

fo r  the MA process y ( k )  . The process v ( k )  is also the

exci tation sequence defined for the ARMA model resulting

from adding n(k) to s(k) , as described in the previous

section. From (3.34) and (3.35a) we hav e

x(k) + a x (k—l) = v(k) + b v(k-1) , (3.36)

the description for the ARMA (1,l) process x(k) .

The equations in (3.35) give three ways of defining

the sequence y(k) . For each of the three expressions for

y (k) there Is the corresponding equation for the

a u t o c o r r e l a tlo n  f u n c t i o n  R (k )yy

2 1-1k !
R (k )  = a ~ b(i) b(i+k) (3.37a)

1=0

1 1
— = ~ a(i) a(j) R (k+i—j) (3.37b)

i=O j=0 XX

2 2 1 1k 1
= a ~5(k) + a ) a(i) a(i+k) , (3.37c)

C i=0

for k = 0 and 1, and a(0) = b(0) = 1. As pointed out In

the d i scuss ion  of ( 3 . 3 2 ) ,  equa t ion  (3 .37c )  is unique to the

ARMA model formed by adding n (k) to an AR(1) process.

Us i ng (3 .37a )  and (3 .37c ) , the g e n e r a t i o n  of the MA

coefficient by the addition of n(k) to s(k) is demonstrated

for various signal—to—noise ratios. From (3.37c),

R~~~(0)  = + a~ (1 + a2) , ( 3 .3 8 a )

R~~ (1) = a , (3.38b)

_ _ _
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R~~~(k )  = 0 , 1k !  > 2 , (3.38c)

wi th a(l) = a the single AR pa rameter. Al ternatively,

using (3.37a) with b(l) =

R~~ (0) = a~ (1 + b
2) , (3.39a)

R (1) = b , (3.39b)

R (k) = 0 , 1k ! > 2 . (3.39c)

Equating the terms for R (0) and R~~~(l) from (3.38) and

(3.39 ) g ives

+ [1 + a2] = [I. + b2]

2 2a = a
~ 

b

Solving these expressions for b and a~ , we ob ta in

b = ~ ([02 + (1 + a2)] ±
2 a~ a

- 
[ [0 2 

+ a~ (1 + a
2)]2 — 4 a~ a

2
]1”2) (3.40)

and

2 2 a
= a~ ~ . (3.41)

Note there are two possible value s for the MA coefficient

b. If the m i n u s  s ign  is used In ( 3 . 4 0 ) ,  b w i l l  be used to

symbolize the va lue  of b.  If the pl us s ign  is used , b~
will be written.

It is important that the parameters b and ~~ possess

ce r t a in  proper t ies.  Appendix C shows the d e r i v a t i o n  of the

L 
- 

C - -~~~ - -~~~~~~~~~~ -~~---~~-~- ---.~-~~~ —C--  -- - -- ~~~~~~~~~~~~~~~~~~~~~~~~~~ - -- - ———-C-C-- — - - -~~~~~ —--C-— ---- - C-----— —-- p C-C-



C-- C--—-— -C- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -‘-C--C-C- C- ---—- —.- — ---C-

46

proper t i es  l i s ted  he re :

1) b is real ;

2) b~ = l/b_ , )b_ I < 1;

3)
2 2 24)  

~~~ 
= b_ OV_

The minus and plus subscripts on the term in 4) indicate

whe ther b or b+ is used to compute in (3.41). Property

2) establishes that b = b corresponds to a root inside the

uni t circle in the Z—domain. To demonstrate this , i f

B(z) = 1 + b

— then B(z) = 0 when z = —b. If the series generated by

expanding B~~ (z) is

B~~ (z) = = 1 — b z~~ + b
2 z 2 

— +

i + b  z

then the weights of the z~~ terms converge 1ff (b~ < 1.

Thus , b = b_ corresponds to the convergent  root .  This is
C 

the invertibility property discussed by Box and Jenkins

[10]. In designing an ARMA process it is appropriate to

choose the MA parameters so that the MA operator satisfies

the invertibility condition , that Is , the roots of the MA

opera tor polynomial lie inside the unit circle. For the

M A ( l )  process , b and a are  the app rop r i a te  choices.

Given expressions fo r  b and in (3 .40)  and ( 3 . 4 1 ) ,

the e f f e c t  of v ar i o u s  SNR ’ s on these pa rame te r s  w i l l  be

demonstra ted . If a~ is the v a r i a n c e  of s ( k ) , the A R ( q )

• process , then is g iven by

- C - —  
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q
= a2,[1 + ~ a(i) p(i)] , (3 .42 )

S C i=1

where p(i) = R ( i ) / R ( 0 ) .  For = 1.0 and q = 1, the

process va r i ance  is a~ = 1/(1 — a2), since p C i) = —a. The

SNR is

2a
5 1

( 1 — a )

Consider now the ext rem e cases where SNR -~-~~ and SNR + 0.

This can also be expressed as a~~+0 and

respectively. The resul ts for the behavior of b , b+, ~~~~~

and a~~ as S N R + O  or ~ are summarized in Table 3—1.

Using (3.40) and (3.41) to compute the M A ( l )

parameters  b and a~~, the e f f e c t  of a changing SNR on these

parameters  is fo und in Tables 3—2 , 3—3 , and 3—4. For all

of th is  data , is a r b i t r a r i l y  set at 1.0. In Table 3—2

the results are  computed using 0.1 as the s ingle  AR

parameter  a. In Tables 3—3 and 3—4 , a is 0.5 and 0.9 ,

respectively.  From the data in these tables , i t  is clear

that as SNR -,-~~, the observed data x(k) approaches the

desired AR( 1)  process since ~~~~~~~~ = 1 and b_ +0. When

SNR÷0, however , the observed data beg ins to resem ble the

a d d i t i v e  w h i t e  noise n ( k ) . This is true because b -- a and

(3.36 ) becomes

x(k) + a x(k-1) = v (k )  + a v (k— 1) ( 3 . 4 4 )

In the Z— domain th is  can be w r it t e n  as

- .
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Table 3-1

Behavior of Parameters at SNR Extremes

SNR b_ b~ a

2
0 

C 
0

0 a 1/a
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[1 + a X ( z )  = [1 + a z~~’] V ( z )  (3 45 )

Cancel l ing the common facto r (1 + az~~-] ,  ( 3 . 4 5 )  becomes

X(z) = V ( z ) , (3.46a)

x(k) = v (k) , (3.46b )

and the data x ( k )  is now a whi te  noise  sequence since v ( k )

is the white noise excitation sequence for the equivalent

ARMA model.  To show that x(k) n (k) as SNR÷0, we examine

(3.35c) and (3.36), which g ive

x(k) + a x(k-l) = n(k) + a n(k-1) + c (k )  (3 . 4 7 )

when combined . In the Z—domain (3.47) becomes

[1 + a z’~~] xz) = [1 + a z 1] N(z) + E(z) • (3 . 4 8 )

As SNR -+ 0, ~~
2 -,- -o. and the (1 + az~~]N(z) term dominates the

r igh t  side of ( 3 . 4 8 ) .  Consequently, the l e f t  side of

(3 .48 ) can be approximated as

[1 + a z~~~] X ( z )  [1 + a z’1] N ( z )  . (3.49 )

Cancelling the common factor as before , we have

X(z) N(z) , (3.50a)

x(k) nik) • (3.50b)

This resul t  is intuitively appealing since it shows that

the data x ( k )  becomes more  l i k e  the additive noise n (k) as

the SNR becomes poorer .  
-

The ideas generated in th i s  section are impor tant  to

the work done in  eva lua t ing  the ARMA noise model because

muc h of the data  fo und in Cha pter 4 is based on the

analysis  of the A R ( 1) — t o— A R M A ( 1 , 1) t ransfo rmat ion  model .
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As wi ll be seen in Chapter 4, two approaches are taken in

analyz i ng the this model :

1) simulate the s(k) + n(k) degradation by computing the

MA(l) parameters b_ and and generating directl y the

resulting ARMA (l,l) process using a noise sequence v(k)

as the excitation;

2) generate the AR(l) process s(k) and add the white noise

n(k) to obtain the equivalent ARMA(1 ,l) process x(k) .

More details on this are g iven in Chapter 4.

When generating estimates of parameters from data , it

is important to know the variances associated with those

estimates . If a large number of estimates are available ,

sampl e statistics for the parameter estimates can be

obtained . For low order ARM A processes , however , i t is

possible to obtain equations describing the variance of the

parameter estimates. In Chapter 7 of (10], Box and Jenkins

di scuss model e s t i m a t i o n  procedures  and develop the

varian ce expressions for ARMA processes. Specifically, the

variance of the parameter estimates is of interest in the

followi ng cases :

1) the estimate for a(l) in an AR(l) process;

2) the estimate for b(l) in an MA (l) process;

3) the estimates for a(l) and b(l) in an ARMA(],l)

process.

For the f i r s t  o rder  cases ana lyzed  in  Ch a pter 4 , the sampl e

var iance of the parameters estimates are compared to the

~~~~ C- ~~~~~~~~~~~~ - -   
-
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theoretical values.

If N is the number of points in each frame of data ,

the -’ variance of  a = a(l) for the AR( 1) process is

var [~~1 = ~~
- (1. — a~ ) - (3.51)

Likewise , the variance for b = b(1) for an MA Ci ) process is

var[~~] ~ (1 — b2) . (3.52)

For the parameter estimates of an ARMA (l,1) process , we

have

var [~ ] = 
1 (1 — ab)2 (1 — a2) , (3.53a)

(a - b)

‘V var [6J = 
1 (1 - ab)2 (1 - b2) , (3.53b )

(a - b)

cov[~~,~~] = - 1 
(1 - ab) (1 - a2) (1 - b2) . (3.53c)
(a - b)

- 

I 
The expressions found in (3.51), (3.52), and (3.53) are for

maximum likelihood estimates . Details for the derivations

of these expressions are found in [10], Chapter 7.

Steiglitz Mode 
! 

Estimation Method

The estimation of ARMA parameters comprises the major -

C

effort of this dissertation. The following sections

present five procedures that hav e been used in this work to

estimate param eters. Details for the nonlinear regression

algorithm suggested by Pagano for improving the AR

estimates are also presented .

One possible procedure for estimating the parameters

~ 
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of an autoregressive moving—averag e process is the mod e 1

iterative method by Steiglitz and McBride [36]. The

approach is: g iven input and output sequences for an

unknown system , determine the filter which approximates the

unknown system . In the Z—domain the model for the filter

is the ratio of two rational polynomials A (z) and B(z).

Graphically, the problem is illustrated in Figure 3—1. The

polynomials A(z) and B(z) are g iven by

q 
-

A(z) = ~ a(i) zi =0

a(O) = 1.0, and

p 
-

B(z) = ~ b(i) z 1
i=0

Note that in this method , b(O) does not necessarily equal

one . The resulting parameter set is {a(i)}~ and (b(i)}~~.

The variance of the excitation sequence is not estimated

explici tly. It is , however , related to b(0). The

coefficients a (i) and b(i) in A (z) and B(z) , respec tive ly ,

are selected to minimize E(z) in some sense . The model’ s

response , U(z) , is

U(z) = V(z) (3.54)

or -

A(z) U(z) = B(z) V(z) . (3.55)

Also , from Figure 3.1, the error is g iven by

E(z) = U(z) — X (z) - (3.56)

Steiglitz and McBride then perform a “quasi—linearization ” 
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on (3.55), using pr evious iterations to form approximations

to the derivatives ,

A. (z) U.(z) + [A.~~1(z) 
— A. ( z ) 1  t J . ( z )  +

A1 (z) [U.~~1(z) 
— U.(z)]

= B.~~1(z) V (z) . (3.57)

The subscript indicates the iteration number. Replacing

U (z) with X(z) in (3.57) and simplif ying g ives

A. (z) U .~~1(z) = [A.(z) — A.~~1(z)] 
X(z) +

B.~~1(z) V(z) . (3.58)

Solving for (J .~~1(z)  and us ing that expression for U (z) in

(3.56) gives

E.~~1(z) = U.~~1(z) 
— X(z)

B-~~1(z) A .~~1(z)
= A. (z) V(z) — A . ( z )  X(z) . (3.59)

It is the form of (3.59) that suggests the mode 1 technique

presented in [361. Noting that both V(z) and X(z) are

recursively filtered throug h the ~th iteration of A (z)

define V(z) = V (z)/A.(z) and X(z) = X(z)/A 1(z) . With these

definitions , the time domain representation for (3.59) is

p q C

e(k) = ~ b(i) ~ (k—i) 
— 

~ a(j) x(k—j) . ( 3 . 6 0 )

t 
i=0 j=0

The iteration notation has been dropped for clarity. The

coefficients (a(l)}? and (b(i))~ are selected to minimize

- ___;;.___ -C- ~~~~~ _ 
C- - 
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e(k) in the least  squares sense . The least squares

proced ure requires the solution of the matrix equation

~~~~~~~~ 
-
~~~ 

= , (3.61)

where is a matrix compo sed of the auto— and

cross—correlations of v(k) and x(k) and is a vecto r

composed of those correlations . 0 is the solution vecto r

containing the desired a(i) and b(i) coefficients. Use of

this method thus r equ i res  the solu tion of a set o f p+q+l

linear simul taneous equations.

For applica tion to the est ima tion of the c o e f f i c i ents

of an ARMA process as proposed by Steiglitz in (35], this

technique mus t be m o d i f i e d  slightly. When only the output

of the system is known , v (k) is assumed to be the Kronecker

delta function. Also, the system outpu t x (k) may be

modified so that it more closely resembles an impulse

response , as the assumption for v(k) implies. Steiglitz

proposes several operations that might improve the quality

of the parameter estimates. These procedures , applied to

the observed data x(k) , include:

1) pre—em phasis;

2) windowing;

3) gene ra t ion  of a m i n i m u m  phase signal  X mp ( k )  w h i c h  has

the sam e log m a g n i t u d e spectrum as x ( k ) ;

4)  removal of periodicity.

Steps 3) and 4 )  involve cepstral  domain  opera t ions .

Results  f rom tests on the mode 1 i t e r a t i v e  method are

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~-—-- — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~~~~~~~~~~~~~~~~ - - ——~~~~~~~~
- -
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presented in Chapter 4 for an ARMA (1O,2) process excited by

an impulse , an impulse t r a i n , and a whi t e  noise sequence.

Anderson ’s Time Domain Max imum
Likelihood Methods

Anderson presents the details for ARMA parameter

estimation procedures based on the optimization of the

Gaussian likelihood equation [2]. As reviewed in

Chapter 2, the me thods are  charac ter i zed along the

followi ng divisions:

1) time d omain versus f r equency domain ;

2) Newton—Raphson method versus the method of scoring

(Gauss—Newton method);

3) parameter  set I (AR coeff icien ts, MA c o e f f i c ien ts, and

exci tation sequence variance) versus parameter set 2

(AR coefficients and MA covar lances)

The developmen t of these methods by Anderson is based on a

matrix formulation , usefu l  for compa ct pr esen tation of the

equations . This compactness , however , tends to obscur e the

meaning of the operations. This section presents the time

domain Newton—Raphson and Gauss—Newton methods for

estimating the AR and MA coefficients and the variance of

the excitation sequence. Included in this r ev iew of

Anderson ’s methods is an e l abo ra t i on  on the m a t r i x

no ta t ion . The equ iva l ent scalar notation is also

disc ussed .

The de sc r ip t i on  of the A R M A ( q , p )  process x ( k )  is

—C- —C-— —- — — — -C- —C- -C- ’- ~_ , .L u.L~~~~ .èav _ a
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q p

~ a ( i )  x ( k — i )  = ~ b(j) v (k—j) ,
i=0 j=0

wi th  a ( 0 )  ~ b(0)  1. Us i ng the m a t r i x  nota t ion of [ 2 ] ,

this  becomes -

(3.62)

The N x N lower triangular matrices ~ and B are  g iven by

g -

A = ~ a(i) ~~
‘ 

, (3.63a)
i=0

p 
-

B = ~ b(j) L
3 

, (3.63b)
j=0

and x = ( x ( O )  ... x ( N _ l ) ] T and v = [v(O) ... v (N- )]
T are

N x 1 vectors. As before , v (k) is an i.i.d . N~O, noise

sequence . In (3.63) the matrix I. is the N x N r~~tr~~ lag

operator defined by Anderson. If is the (N—k) x (N—k)

identity matrix , then

0 0
Lk = (3.64)
— 

-~N-k 0

and = (0 ... 0 x(0) ... x (N.~1_k))T. Thus the effect of

pre—mul tiplyi ng a vector by the matrix L to the kth po we r

is to Introduce zeros in the first k positions of the

C vec tor , shif ting the elemen ts of the vec tor down by k

places , imposing zero ini tial conditions on the problem .

Details for the development of the matrix model formulation

in (3.62) and the use of the matrix lag operator L. are

given in Appendix D.

j 
With the model now defined , the Gaussian likelihood

- -—— -- C-- C-~ - C- - 
_a___ 
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function to be max imized is

= 
1

[2]N/2 ~~~
T

t
1/2

- exp (----i~- ~T AT BT ~~~ A x)

Ta king the logar i thm of this  func tion g ives

log[f] = -
~~ log(2n) - ~~

- 1og~x ~~ -

—11 ,~T AT BT ~~~ A x . (3.65)
2a

V

In (3.65) the term —(1/2) 1og~ x xT1 can be simplified by

using the rela tionship

x = s y , (3.66)

derived from (3.62). Using (3.66) we have

T
~ ~

T
1 = I A 1 B V ~

T BT 
~ 
1

= IA
1 B a 2 BT A h

1

= (2)N i~r2 
I~~I

2

With  th i s , (3 .65 )  becomes

log[f] = -
~~ log(2ir) - ~~

- 1og(a~ ) + log A l - 1og~B~

—1
- 

1 
~
T AT 3T B ’ A x . (3.67)

Equation (3.67) is the modified likelihood function. It is

- —~~-~— -~—-- — ~~~~~~~~~~~~~~~~~~~~~ —-— ~~~~ —--. ~~~~~~~~ _  ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ -
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modi f i e d in the sense tha t the pro bab i l i ty densi ty func tion

for x is cond itioned on the initial values assumed for x.

In the case where the m a t r i x  lag operator  L is used , the

assumed value s for  the i n i t i a l  data  p o i n t s

x (l—q) , . . . ,  x(—1) are all zero. This also applies to

v ( k ) : v ( 1 — p ) , ..., v(—1 ) are zero.

Since the function in (3.67) is to be maximized , we

beg in by t a k i n g  the p a r t i a l  d e r i v a t i v e  of l o g ( f ]  w i th

respect to the parameters a(1), ..., a(q), b(1), ..., b(p) ,

and 2 :
V

-a--- log[f} = -tr[B~~ L
’] +

—l -L T AT BT B I LL B 1 A X ,  (3.68a)

-

~~~~~

— log[f] = -tr [A~~ ~~~ 
—

—1 -1 ,~T AT 3T ~~~ i) x , (3.68b)
o
V

1 T —l 1
—

~~
-
~~

- log(fl = __~N~2- + —i x ~2’ 3T B A x . (3.68c)
20
V 

2a ,J

for I = 1, . . . ,  p and j  = 1, ..., q. Setting the

expressions in  (3.68 ) equal to zero and solving for  the

(a(i)J?, (b (i)}~~, and chat satisfy that condition will

max imize the func tion log[f]. Unfortunately, the

re la t ionships in  (3 .68 ) are n o n l i n e a r .  Th i s  r e q u i r e s  an

- ~~~~~~~~
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iterative procedure to solve for the max imizing parameters ,

since an expl icit solution is unlikely.

Two i t e r a t i v e  pa r ameter e s t ima t ion  procedures a re

considered here:

1) the Newton—Raphson method;

2) the Gauss—Newton method .

Refer  to Appendix A f o r  the d e t a i l s  on what these two

methods involve for the general optimization problem .

Defining a = (a(1) ... a(qflT and b = (b(1) ... b (p)]T, the
appl ica t ion of e i ther  the NR or GN method requi res  the

sol ution of the m a t r i x  equation

a
1 E

~ 1÷1 — O~~] = , (3.69 )

where 0 = 

~ a
T
~b
T 

1
T is the parame ter vec tor ,

a = ( !T I~T 
1
T is the gradient vector , and 

C

—

is the coefficient matrix appropriate to the NR or GN

j methods.  The subscripts I and 1+1 ind icate the iteration

number. B. and g .  indicate those quantities are evaluated

at 0 = 0 , the present es t imate  for the parameter vector.

Us ing the par t i t ioned  fo rms for  0 , ~~~ , and B, (3.69 )

can be w r i t t e n  as

±_i t
~ i+l~~ ~-i

] + a~ ~~i+1~~ ~~ 1 =

a~~~~ E~~~j +l
—

~~~~ j
1 +

~~~~ j  ~~~~~~~~~~~~~~~~
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The algori thm requires an initial gue ss ~~ for the

parameter  vec tor .  In order  to compute the next  es t imate  of

~~~, 
the fo l lowi ng mus t be computed :

1) the mat r ices  • , ~~, and ~‘ of R; 
C

2) the vec tors w and U of the gradient vector

The w and u components of g are the same for the NR and GN

methods. The - form of the z ,  ~ , and w components of R

differ in the NR and GN methods. The expressions for the

NR method are devel oped f i r s t .  C

The g rad ien t  vec to r 
~ 

is formed from the p x 1 vector 
C

w and the q x 1 vector U. The ~~~ element of w and the mth

element of U are  given by

[w]~ = 

~5 v’
~ L~ B~~ V (3.70)

and

[U]m = ~ v’~ L
m A~~ V (3.71a )

= 
1 

~
T Lm B 1 x , (3.71b)

for  j  = 1, .., p and m = 1, ..., q. The matrix B is

pa r t i t i oned  into the p x p m a t r i x  •, the p x q m a t r i x  ~~~,

and the q x q m a t r i x  The elements of these three

matr ices  are g iven  by

= L ~T 3T
1 
LT Lk B 1 V , ( 3 .72 )

-F
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= -~~~~~~ ~~ B
T 1,T 1,m A 1 

V (3.73a)2 — —  — — — —

= 
1 ~T BT

1 
LT

3 
Lm B~~ x , (3.73b)

cYv

- -1 m
= 

1 ~T AT LT iP A~~ V (3.74a)

— 1 m
~~~X

T BT LT Ln B-l X (3.74b)
ov

for j, k = 1, ..., p and m , n = 1, ...,  q.

Now define the sequences

= ~— l v , (3.75a)

(3.75b)

Using these d e f i n it ions , (3.70) to (3.74) become

-

- - 
[w]~ = -4 (L° ~)T (!~ £~ 

(3.76a)
-~~~

[u] = 

~ 
(L~ v)

T (Lm 
L~ 

(3.76b)
0v

~~‘jk 
= -4 (I) ~ ) T (Lk ~ ) 

~ (3.76c)
c,V C

t
~~~jm 

~~ (L~ ~)
T (Lm i) (3.76d)

1 (Lm )T (L1
~ y) . (3.76e)

With A and B eva lua ted  us i ng the present parameter

___________________ _ _ _ _ _ _ _ _  
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estimates , the nature of the expressions in (3.76) suggests

the fo l lowi ng p rocedure :

1) compute y =

2) compute v = B~~ Ax = AB 1x = A y ;

3) compu te ç =

4) evaluate the elem ents of w, u , ~~~, c~, and * .
We must now dete rmine  wha t ma tr i x  opera tions such as

B 1v and Ay impl y in scalar equations. If is the vecto r

of the MA sequence y(k), k = 0, . . .,  N—l , then ~ is gi ven

by 
-

(3.77)

The scalar expression for y(k) , an MA (p)  process , is g iven

In (3.29), with q = p. Imposing the initial conditions of

v ( k )  = 0, k = l—p , .. .,  —1 , y (k) can be written as

y(0) = v(0) , (3.78a)

k
y (k ) = v (k )  + ~ b(i) v(k—i ), k = 1, •“ , p—i , (3.78b)

i=l

p
y(k) = V ( k )  + ~ b(i) v (k—i), k = p, ~~ - , N—i. (3.78c)

i=l

In this  formul ation the zero in i tia l cond itions are

implici tly applied by the equations of (3.78). Since the

matrix model (3.77)- impo ses the same zero Initial

cond itions for v(k) , (3.77) is equivalent to the scalar 
C

representa t ion  of ( 3 . 7 8 ) .

Solving for  v ( k )  in ( 3 . 7 8 ) ,  we have

- 

_aC- C--__ 
~~~~~~~~~~~~~~~~ — —_ — _~~~~_
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v ( 0 )  = y ( O )  , (3.79a)

k
v(k) = y(k) — ~ b(i) v (k—i), k = 1, -“ , p—i , (3.79b)

i=i

k
v(k) = y(k) — ~ b(i) v(k—i), k = p, ~~~~~~~~~~ N—i. (3.7 9c)

i= 1

Since this is equivalent to

I = (3.80)

we see that operating on a vec tor by the inverse of a

matrix of the form of B is equivalent to the scalar

operations in (3.79). The expressions in (3.78) and (3.79)

are recursive in nature and impl y zero initial conditions

on the vec tor multiplied in the equivalent matrix

formulations. The results of (3.78) and (3.79) can be

applied to such expressions as occur in (3.75), wi th C

appropriate changes in notation.

Once the sequences v(k) , y(k) , and r (k)

k = 0, .. .,  N—i , have been determined using the procedures

illustrated in (3.78) and (3.79), it is possible to

determine the contents of B and j using (3.76). Noting

that the equations of (3.76) are all of the same form , we

will develop the scalar equation implied from these

expressions by examining (3.76d) in detail. From previous

discussions of the matrix lag operator L, It can be seen

that

r) ~ = [0 . -‘  0 c(O) •. ‘

and

C-’—C--- ~-
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Lm y = [0 -- ~~~ 0 y ( 0 )  -- ~~~ y (N_i_m )]
T 

-

where LJ ç and Lm~ are both N x 1 vectors. The produc t

(L)~~)
T(Lm1) is a scalar which will be indicated by

R (j,m). Assuming that j > m , R~~~(j,m) is given by

N-1-j
(j,m) = ~ rAi) y ( i- 4 - l J — m I )  . (3.8ia)

V i=0

If j < m , the expr ession f or R~~ (j,m) is

N-i-rn
R (j,m) = ~ y ( i )  ~(i-i-~ j—mj ) . (3.81b )

i=0

Using the appropriate sequences in the exampl e relationship

g iven in (3.81), the elements of B and j can be calculated .

The iterative step is now mad e using (3.69). For details

on the NR method , refer to Appendix A.

The preceding discussion developed the expressions for

the matrix B and the vec tor ~ based on the NR method. In

cons idering the GN method , we observe that g is identical

to that obtained for the NR method . The elem ents of the

matr ices ~~, ~~, and ~ of B, however , are g iven by

~~
1jk = tr[(~~ 

~
_i
)T (Lk 3 1)] (3.82a)

= -tr [(L~ 3~~)
T (Lm A-1)] , (3.82b)

= tr[(Lm A
_l
)T (L’~ A~~ )J , (3.82c)

for j ,  k = 1, . . . ,  p and in , n = 1, . . . ,  q. In (3.82) the

m a t r i x  L. operates  on the N x N matrices A 1 and B~~ . The

resul t , p r i o r  to t ak ing  the t race , is an N x N m a t r i x . Two

- 
_ _ _ _ _ _  _ _ _ _  

-
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facts , however , allow considerable saving s in computation:

1) because of the form of A and B, A 1 and B~~ are lower

triangular with equal elements along each d iagonal (see

Appendix D);

2) only the main diagonal elements of the final matri x ,

(L)B—l )T(LmA—i ), f or exampl e , need be computed since

the trace operator uses only those elements .

Fact 1) above establishes that A 1- and B~~ are

characterized by the elements of their first column. If

a = [~~(O) ... ci (N_1)]T is the first colum n of A 1, then the

a(k) are given by

c&(0) 1 , (3.83a)

k
c i (k )  = — ~ a(i) c~(k—i), k = 1, - • , q—1, (3.83b)

i= 1

q
c~(k )  = — 

~ a(i) cz (k—i), k = q, ~~~~~~~~~, N — i .  (3 .83c)
i= 1

Likewise , the elements of the f i rst column of B~~ are g iven

by

~(0) = 1 , (3.84a)

k
= — ~ b(i) ~(k—i), k = 1, . - . , p—i , (3.84b)

i=1

p

~(k) = 
— 

~ b(i) B(k—i), k = p, - - s , ~~~~~~~~~~ (3.84c)
i=i

Using (3.82b) to illustrate the meaning of the matrix

C operations , we need consider only the cases where the ~th

row of (L J l )T mul tiplies the ~th colum n of (LmA~~ ). The

~ —~
.--_.- . -_ _ ___ . — ———--— —a--—- __. ._~~~~~ _ _ n  —— -— ~-.~~~
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th j-i T -n row of (L B ) is the 1 x N row vecto r

(0 ... 0 ~(O) ... ~(N—n—j)], and the ~th col u m n  of (Lin
A
1
)

is the N x 1 column vector (0 ... 0 a(O) ... o~( N_ n _ m ) ]
T
.

Their produc t is the scalar c(n ,n) , g iven by

N -n-j
c( n ,n)  = ~ ~ ( i )  a- (i+Ij--mI) , j > in , (3 .85a )

i=0

N-n-rn
c(n,n) = ~ c&(i) ~- (i+jj-- mj) , in > j . (3.85b)

i=0

From (3.82b) the .th elem en t of ~ is

N-k
[c2 J . = ~~ c(n,n) , (3.86)

3~~~~ n=i

where k = max(j,m). Additional computational saving s can

be achieved by combining (3.85) and (3.86). If j  > m , we

have

N-j N-n-j
= ~ ~(i) ~(1÷Ii—m l )

~~ n=1 1=0

N—1—j C

= ~ (N—j—i) ~(i) a (i+lj— rn I ) . (3.87a)
i=0

For m > j, the resul t is

N-i-rn -

[12J m = ~ (~~ mj ) — (i) 8(i+I j—m J ) . (3 .87b)
J i=0

The elements of B are thus weighted correlations of the

a p p r o p r i a t e  sequences. 
C

Summarizing the operations required for the GN method ,

the sequences y(k) , v ( k )  , and ~( k )  , k = 0, . . . ,  N—i , must

~~ — o~~pu t ed . The elements of the  gradient vecto r are

— 
-
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determined from correlations of these sequences , w i t h

(3.81) illustrating the form of this correlation. The GN

method then r equ i r e s  the g e n e r a t i o n  of the c~( k )  and 8 (k)

sequences using (3.83) and (3.84), respectively. Note that

these sequences are not required in the NR method . From

these two sequences , the e lements  of B a r e  d e t e r m i n e d  us i ng

the weighted c o r r e l a t i o n  i l l u s t r a t e d  by ( 3 . 8 7 ) .

The final step in each iteration for both the NR and

GN methods is the estimation of the variance of v(k) . In

both method s this estimate is obtained using

N-i

k=0

where v (k) is the sequence generated in the GN and NR

methods. It is an estimate of the unknown excitation

sequence .

Unconditional Sum of Squares

Following the development in Box and Jenkins [10], the

uncond itional sum of squares procedure is presented here.

Combined wi th a direct search of the parameter space for

the opt imal solut ion, this technique is used in this work

to check the opera tion of the NR and GN method s for the

ARMA(i,l) process . The description of the unconditional

sum of squares approach presented here will be based on the

ARMA (1,l) process.

The ARMA (l ,1) model , wi th a (l) = a the AR coeff ic ient

and b ( l )  = b the MA coef f ic ient, is represen ted by (3.36). 

-~~ 
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For a given set of estimates a and b , the conditional sum

of squares (CS SQ) is computed using

N-i
S~~(&,b) = ~~ -~‘

2(k) , (3.88)
k=0

where v(k) is the estimate of the white noise excitation

sequence v(k) . This estimate is generated according to

~ (k) = x(k) + a x ( k- i)  - b v(k-i)

for k = 0, . ..,  N— i. In certain cases, however , the

transient effect impo sed by the assumption of zero initial

conditions for v(k) and x(k), k < 0, can have a strong

effect on the value obtained for S~~(~~,b). An exampl e of

this is when the AR singularity lies close ‘to the unit

circle. To avoid or lessen the effects of this transient ,

the unconditional sum of squares (USSQ) is recommended .

The basis of the USSQ is the estimation of v(k) over

the range k = 0, . . . ,  N—i and the prediction of v(k) for a

few points outside that range. For example, v (k) might be

estimated over the range k = —10, .. . ,  N+lO. Using an

iterative algorithm , v (k) is re—estimated until the USSO

N—1~
S(&,b) = ~ v~~( k )  ‘ (3.89)N k=0

computed for each est imate of v (k), is stable. Details for

implementing the USSQ are found in [10].

As men tioned prev iously, the USSQ is used to check the

valid ity of the solution found by the NR or GN algorithm

disc ussed in the preceding section. For the ARMA (l,l) 

- --C--C--
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model , the acceptable rang e for the AR parameter a is

—1.0 < a < 1.0. That for the MA parameter b is also

— 1.0 < b < 1.0. To verif y the opera t ion o f the o ther

est ima t ion pr ocedures , the USSQ is computed for each pair

of (~~,b) value s as a and b go from —1.0 to 1.0 by some

f i x e d  i n c r e m e n t .  A useful result of scanning the ARMA(l ,i)

parameter space and generating the USSQ at each point is

the generation of the sum of squares cost function sur face

for each process and set of data analyzed . The shape of

the cost func tion surface can provide informa t ion that can

aid in predicting the behav ior of the more efficient

estimation routines. Note that this procedure is practical

on ly in a parameter  space of small d imens ions .

“Shifte& Yule—Wa lker AR Estimates

If y(k) is the MA(p) portion of an ARMA (q,p) process ,

then R (k) = 0 for I k i > p. This moving—averag e process

is the weighted sum of the present and p previous random

shocks. When the lag in the autocorrelation of y(k)

exceeds p, there is no longer any overlap in the random

shocks summ ed . The resul t is a zero autocorrelation value

at that lag . This property is used in an ARMA process to

estimate the AR parameters. If k > p4-i, the

autocorrelation of the ARMA(q,p ) process x(k) satisfies the

r ecu r s ive  r e l a t i o n s h i p

~ _ _ _ _ _
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_R
~~

(k) = R (k-i) . (3.90)

By allowi ng k to run from p+i to q+p, we obtain the se t of

equa t ions :

_R
~~

(p+i) = a(i) R
~~~

(p) + ... + a ( q )  R~~~(p+l_q)

(3.91)

~R~~ (p+q ) = a(i) R~~~(p+q_l) + -
~~~~~~ + a(g) R~~ (p)

Th is system of q equa tions is linear in the q unknowns

a(1), ..., a (q) . Wi th est ima tes fo r  R
~~

(k) , the

autocorrelation function of the data x (k) , (3.91) can be

used to estimate the {a(i))~~.

This approach is often proposed as a method for

obtaining the initial estimates for the AR parameters in an

ARMA estimation procedure . Hannan , for exampl e , uses

(3.91) as the first step In his estimation procedure [15].

In Chapter 4, the es timates obtained by this technique are

com pared to the estimates obtained from the NR method.

This estimate is referred to as the “shif ted ” Yule—Wa lker

es t imate  (SYW) .

Noncausal Wiener Fil ter

In the nex t chapter , one of the est ima tion procedures

used is the appl ication of LPC to the da ta af ter it has

been fil tered to suppress the noise. The filter used is

based on the noncausal formulation of the Wiener filter.

If the a d d i t i v e  noise to be suppressed is white , the

transfer function of the filter is

C-

i ~~~~~~~
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~~~~~~~~~~~ 
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~ ( w )ssH ( w )  = 2
~~~~~ (w )  +

is the power spec trum of the AR process and o~ is

the variance of the additive white noise. In computing

is calculated us ing the param eters o f the AR

model . Hence, ~~~ (w) is not an estimate. The impulse

response of H(~ ) is obtained and is then used to filter the 
C

data . The autocorrelation method of LPC is applied to the

resul ting sequence to estimate the AR parameters. This

procedure is used in tests on the AR(l) process jr-i

Chapter 4.

Nonl inear  Regression Algor i thm to
Improve the AR Es t imates

It has been shown that  the a d d i t i o n  of whi te  noise to

an AR (q) process produces a data sequence x (k) that is

C described by the ARMA(q,q) model . Use of this model

requires an ARMA param eter estimation procedure , producing

estimates of the AR parameters {a(i)}~~, es t imates of the MA

parameters { b(i)}’~, and an est imate of ~~ , the variance of

the ARMA model excitation sequence. As suggested by

Pagano , these parameters  are  converted to the parameter  set

com prised of the AR coefficient estimates {a(i)}~ and the 
C-

MA autocorrelation estimates (Ryy (k)}~~• A nonlinear

regression can then be used to improve the estimates of the

{a(i)}~~, a~, and u~ , the parameters of the original AR

model . In this section is a brief presentation of the 

£=_~~~ -C-_C-~ C-~~~~ C-—C-~~ --~~ i ~~~~~~~~~~~~~~~~~~~~~~ m.-- - - - - _--—_--~-_~ 
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nonlinear regression technique . A more detailed

development is found in Appendix B.

Let t ing  z = [a(l) ... ~ (q) ã~~~(O) ~~~~~
• ~~~ (q)]T and

& = (à(1) ... a(q) ;2 ;2 1T, then the 2q+l equations

relating the two parameter sets z and e can be written as

z. = f. (0) + e. , (3.92)
1 1 —  1

for i = 1, . . . ,  2q+l. The metric [161 for evaluating the

effectiveness of 0 in minimizing the sum of squares of the

e1 is given by

2q+1 2
— Q(0) = ~~ [z — f . ( 0 ) ]  ( 3 . 9 3 )

i= 1

Using (3.32c) to define the f~ (e)1 i = 1, ..., 2q+l , gives

the following se t o f equa t ions :

~(i) = à(i) + e. , (3.94a)

ñ~~ (0) = + &~ •~~~à2 (i )  + eq+i (3.94b)

— 2R~~~(k) = a~ 
i~ O 

a(i) a(i+k) + eq+k+1 (3.94c)

for i, k = 1, ..., q and a(O) = 1. The {a(i) }~~, &2 , and

are chosen to min imize Q(O ), g iven in (3.93). Because

of the nonlinear nature of the func tions f~~(0) in (3.94),

an itera tive procedure based on the GN method or mod i f ied

GN method is used . The Gauss—Newton method is based on the

lineariza tion of the nonlinear functions f1 (0) about 0.

This w i l l  y i e ld  a so lu t ion  0 to (3 .92 ) having the proper ty

- - - -~~~~ _ _ _ _ _  — - __—_ k__C-C- - C- - —C-—-.— —_ C-—” -
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of conver gence for a f inite number o f functional

rela tionships f~~(0). The 8 will be asymptotically

e f f i c i e n t  [17] .

Characterization of the Noise Sequences

Some of the most important assumptions mad e about the

AR— to—ARMA transformation model concern the statistical

propert ies  of the white noise sequences c(k) , v(k) , and

n(k) . In defining any ARMA(q,p) process it is customary to

use ar-i i.i.d. N(0,a~) excitation sequence. This implies

the “whiteness ” of the sequence. It has been pointed out

that the data used in this wor k to test the validicy of the

model and the opera tion of the algorithms are generated

from known AR (q) models. The excitation sequences for the

AR (q) processes and the ARMA (q,q) simulations , C (k) and

v(k) , respectively, must be reasonable approximations to

ideal whi te  noise sequences.

This is also true for the sequence n(k) , the additive

whi te  noise. Addition of white noise to an AR(q) process

theore t ica l ly  resul ts in  an ARMA(q,q) process with the AR

parameters  unchang ed . If the additive noise n (k) is

non—wh ite , however , the resul ting data, wh i le still an ARMA

process , will no longer have the same AR parameters. If

n (k) is non—white , fur ther processing must be performed on

the AR parameter estimates to retriev e the original AR(q)

parameters. This problem is beyond the scope of this work.

Two approaches for  gene ra t i ng  the r equ i red  noise f i l e s

- - -
~~~~~~~
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have been used . In the early stages of algorithm

development, the no ise obta ined by di g itizing the output of

an analog noise generator is used for the three noise

sequences. For small sequences and for use in a l g o r i t h m

development, this approach is adequate. Unfortunately,

these noise files hav e a sampl e power spectrum that decays

sl ightly near the foldi ng frequency, defined as one hal f o f

the sampling frequency. This is due to the anti—aliasir ig

filter used prior to digitization. Some of the data in the

following cha pter is based on ARMA processes genera ted

using this digitized analog noise . The noise used in these

tests has been mod ified to reduce the ef fec ts of the

anti—aliasing pre—filter. In effect , the signal is

“resampled” at a lower frequency, below the pre—filter

cutoff frequency, by using every o ther sampl e in the

sequence .

Most of the parameter  e s t imat ion  s ta t is t ics  repor ted

in the next chapter are taken from data sequences

synthesized using noise samples derived from the FORTRAN

software rand om nL~nber genera tor RAN. This number

genera tor  provides  samples f rom a un i fo rm d i s t r i b u t i o n  on

the rang e [0,1], i.e., U(0,l]. Since samples of a random

variable (r.v.) with a normal distribution are desired , the

samples taken from RAN must be man ipulated to achiev e the

correct d i s t r i b u t i o n .  By summing several samples taken

from RAN and scaling appropriately, the resul ting sample

— —___-C-__ — —— C- . a  . 1-C-C---- — ~~~~~~ -‘ _ *____ C-___C-__ —C- —C---—- — —
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r.v. appr oximates one taken from the desired normal

d i s t r i b u t i o n.

If u (k) is a sampl e of the IJ [0 , l)  r.v . and w is the

desired sample from a r.v. wi th normal distribution

, then w can be approximated by 
-

n
w = c + d ~ u(k) , (3.95)

k= 1

where n is the number  of samples summed to app rox ima te  a

normal distribution. A val ue of 10 is used for n in this

work. The constants c and d in (3.95) scale and shift the

sum to achieve the desired mean and variance a~~. These

constants are given by

2 1/2c = — [3~~~~]

d = 2 [3na 2 ] 112

The desired noise sequences c ( k ) , v (k), and n(k) are formed

by appending large numbers of the w generated by (3.95).

As will be seen in data reported in the next chapter ,

the noise sequences generated in this manner do not exhibit

the decay at the folding frequency in the sampl e power

spectrum . There may , however , be problem s associated wi th

so ftware generated random numbers .  One of the most serious

defects as it affects this work would be periodic behavior

in the samples generated by RAN. A la rge  number of samples

are needed for the tests in Chapter 4, with  each sampl e

requiring several values of the function RAN. Periodic
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behavior  in the noise sequences wo uld e f f e c t i v e l y  re duce

the size of the tests. V e r i f i c a t i o n  tests pe r formed on the

noise sequences generated f rom RAN are reported in the next

chapter .

In using the noise files generated according to (3.95)

it is necessary to scale the nois e sequen ces to achi ev e the

appropriate sample variance needed in the test. This is

especially true for the sequences n(k) and v(k) . The

estima tor for the va r i anc e of the sequence n (k) , for

exam pl e , is given by

n = N k~]. 
— ~.2 , (3.96)

-
- I where ~ is the sampl e mean

~~~
M

C 
= 
g ~~ n ( k )  . (3.97)

k=l

M in (3.96) and (3.97) is the number of samples in the

ent i re  noise sequence , not the number of samples in a fram e

of data.

After scaling , the sequences a-e used to synthesize
C 

ARMA processes. The sample variance of these processes is

also calculated and compared to the theoretical value for

that process . Because of the importance of the sam pl e

variance est imator in checking the val id i ty  of a process ,

measures of i t s  r e l i a b i l i t y  are  need ed . The measures  used

are the mean and variance of the estimator in (3.96). If

es t imat ing or~ , for  exampl e , El and var( are the

- -— - -- —- --~~~~~~~~~~-
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desired reliability statistics. These statistics are now

developed for  the es t imator  g iven in (3 .96)

Taking the expected value of (3.96) gives

M
E [a~ ] = ~ E[n

2(k)}
k= 1

C 2
= an ,

since n(k) is a zero mean process and E[n(k)] = 0. Thus,

- . . 2as defined in (3.96) is an unbiased estimato r of art.

Using the property that the n(k) are i.i.d., we hav e

M M
E[(&2)2] = -4 E[ ~ ~ n

2(k) n2(j)}
M k=i j=1

= -4 ~ E[n~ (k)] + a~ . (3.98)
M k=i

E [n 4 ( k ) ] ,  the fo u r th  moment of the normal r.v. n(k), is

giv en by

E [n 4 (k ) ]  = 3

as developed in Appendix E. Equation (3.98 ) becomes

~2 2  3 4 M—1 4E[(a~ ) ] ga~~:- +— ~--- a~~,

and

var[~~ ] = E[(&~)
2] — (E[a~])

2

(3 M— i 1~ 4 - r_
~~ M + M J °n

2 4
= 
g a~ (3.99)

- a~~~~~~~~~~~~~
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is the desired expression. Use is mad e of (3.96) and the

statistics of (3.97) and (3.99 ) in Chapter 4.

C- -,,
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CHAPTER 4

EXPERIMENTAL RESULTS

m t rod uctiori

In t h i s  chap ter the d ata from var ious experim en ts ~il1

be presented . The theoretical basis for these experiments

is discussed in the preced ing chapter. The first section

presents resul ts obtained from the autocorrelation method

of LPC as applied to one fram e of voiced speech. For a

vari ety of signal—to—noise C- ratios-, the sam pl e spec trum

determ ined f r om the LPC coe f f i c i e n t estima tes il lustra tes

the degrading effects of additive white noise. That

section also shows the e f ects of using the simpl e

autocorrelation correction method discussed in Chapter 2.

The implica tions of the uncorrelated signal and noise

assumption are discussed .

Because several no ise sequences are required jr-i

testing the parameter estimation methods , a sec tion on the

charac teristics of the noise files used is included .

Sample power spectra and time domain amplitud e histograms

are shown . The sample variance required for a noise

sequence in a given test is listed in the section

describing that test.

The nex t section presents data obtained using

-
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Steiglitz ’s mode 1 algorithm . Desirable because of the

simple nature of the algorithm , parameter estimates for the

10 pole , 2 zero model used by Stelglltz in (35] are

obtained for three cases. The three cases are

d ist ing uished by the type of sequence used to exci te the

unknown M system :

1) Impulse ;

2) impulse tr a i n ;

3) white noise.

For each case , the spectrum of the estima ted model is

compare d to the spec trum of the or i g inal model . Results

are excellent for cases 1) and 2). For the white noise

excitation of case 3), however , the resul ts are

disappointing . Unfortunately, it is the whi te noise

exci tation that is most important to this research.

In Chapter 3, details for the AR (l)—to—ARMA(l,1)

transformation model are given . After the section

demonstrating Steiglitz ’s mode 1 algori thm , there follows a

comparison of the mode 1 and NR methods as applied to an

AR (1) process. Data are then obta ined for various AR(l)

and MA (l) processes . The val idity of the AR—to—ARMA

transformation model for the first order process is then

tested using several estimators.

The last two sections present parameter estimation

data obtained by using the NR method on two highe r order

processes , where q = 2 and 4. These estimates are compared

4
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with estimates computed using the shifted Yule—Walke r and

LPC procedures. Using distance measures which combine the

errors between the coeff icient est imates and the ac tual

coefficients, significan t improvemen t is shown in the

estimates fr om the NR algor ithm when compared to the LPC

estimator.

LPC Analys is

One of the objectives of this research is to

characterize the effects of additive white noise on LPC

analysis systems. The following data illustrate the

degradation caused by additive noise. Results are

presented for a frame of voiced speech at varying levels of

noise. Figure 4—1 shows the speech frame used as the

example In this section. The time waveform is shown in

Fig ure 4—la). Sampled at 6667 Hz, this frame of 128

samples corresponds to about 19 msec. of speech. This

frame represents a portion of the schwa vowel /a I, as in

the word N rustw . This par ticular vowel was selected

because of the nearly uniform distribution of formants .

Also , on a dS scale the fo rman ts drop in peak magni tud e at

a nearly constant rate as frequency Increases. Figure

4—ib ) shows the sample spectrum of this frame of speech ,

after windowing with a Hamming window. On the dB scale ,

the nearly unifo rm formant structure of the schwa vowel is

apparent. Superimposed on Figure 4—ib) is the spectrum

corresponding to a 10 pole LPC fit of this frame. The LPC

_____ ~ ~~~~~~~~~~~~~~~~~~~



~~~I Ø~flft .11 I 21a(,2
I 2Ge~ .4

a)

-, •00f.3
1 1ø~~~.2 O f T I S I K . 1

_ _  =

4 5ø~ E.I
0 000E.e 3 333(•3

Figure 4-].: Example frame used as s(k)
a) 128 samples of the vowel /e/, sampled at

6667. Hz
b) Spectrum of /a! and a 10 pole LPC fit to

that spectrum
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spectrum Is smoother and matches the formant peaks well.

Figures 4—2, a)—e) , show the effects of additive white

noise with prog ressively smaller signal—to—noise ratios:

40, 30, 20, 10, and 0 dB. The SNR Is found by averaging

the energy in the speech and the no ise sequences over

several seconds. The ratio of these energ ies Is then used

to determine the SNR , defined as SNR = ~ s
2
(k)/) n 2(k)

Superimposed on each spectral plot is the correspond ing 10

pole LPC fit. All spectral graph s in Figures 4—1 and 4—2

are on the sam e scale and can be compared directly. The

followi ng noise effects are noted :

1) with decreasing SNR , the noise Rfloor w rises , obscuring

more of the forman t structure of the speech;

2) the formants identified by LPC analysis In increasingly

poorer SNR ’s tend to be wider in bandwi dth and have

their peaks at slightly higher frequencies;

3) the formant structure identified by LPC is badly

deg raded for SNR’s below about 20 dB.

The importance of the assum ption of uncorrelated

signa l and noise is demonstrated in the next set of data.

This assumption is pr imary to the autocorrelation

correction methods of parameter estimation , some o f which

are disc ussed in Chapter 2. Figure 4—3a) shows R
55

(k), the

autocorrelation function for the frame of speech being

disc ussed . Plotted In Figure 4—3b) are R~~~(k) , the noise

autocorrelation function , and R (k) , one of the
Sn 

.- .- - - - .~~-~~~-,~~~~~ 

, ..‘



X ( k )  40 06 SNR
& 000 +e I

I 200(+4 
__________________________ ______

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-, 00o +3

1 100(’2 O F T ( X K I  
_____ ____________

4 500E+1
0 000E +0 3 333(+3

a)

X ( k )  50 08 SN~1 000(+~I 200t+4 
__________________________ ______

-7 000(+3
I .200E +2 O FTIX ~~K ) 1  

________ ________

4 SeeE+ 1
o eGG(+0 3.333(+3

b)

Figure 4—2: Illustrations of the effects of additive white
noise on the example speech frame and 10 pole
LPC approximations to resulting spectrum
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cross-correlation functions. The abscissa in Figures 4—3a)

and b) starts at lag k = 0 and is followed by 50 lags for

k • 1, ..., 50. The last 50 points are the negative lag s

in the order k — —50, ... , —1. The noise used for Figure

4—3 correspond s to a 10 dB SNR . Noting that R5~~(k) in

Fig ure 4—3b) is that curve with the larger magnitud e, it is

obv ious that Rsn (k) ~ 0, based on the estimation of R
~~~

(k)

f rom

N-i-k
R (k) = ~ s( i)  n(i+k)Sn i=0

In fact , R (k) for this frame is of the same order of

m a g n i t u d e  as R
55 (k) in Figure 4—3a) . The spectral

i m p l i c a t i o n s  o f this are shown in Figure 4—3c) , which shows

four spectral curves determined from LPC coefficients

calcula ted fr om the four autocorrela tlons:

I) R
35

(k),

Ii ) R55 (k) = R
~~~

(k) — R~~~(k) — R (k) — R~5 (k),

i i i ) R5~~
(k) = R

~~~
(k) — R~~~( k )

iv) R (k).xx
Note that i) and ii) resul t in the same spectral plot. The

ex pl ici t assumpti on of uncorrela ted signa l and noise is

• used in iii), while iv ) corresponds to LPC coefficients

determined from noisy data , with no correction attempted .

Fig ure 4—3c) , curve iii , shows the Inadequacy of the

uncorrela ted assum ption for the autocorrelation correction

modeling approach. Even though curve ii i appears superior

• ____,_~_ _ __‘___ — — ,—•.— -
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to Iv , in a large percentag e of frames the LPC algorithm s

will fail , produc ing unstable inverse filters. An

autocorrelation matrix which is not positive definite

causes th i s  problem .

Noise Sequence Characteristics

As mentioned in Chapter 3, sev eral no ise fi les ar e

needed for excitation and additive noise sequences. The

noise files used in this work come from three sources: 1)

dig iti zed analog noise , 2) “resampl ed” dig itized analog

noise , and 3) software generated random numbers. In this

sec t ion the methods of genera tion of these noise sequences

are disc ussed. The sample power spectra and amplitud e

histograms for the noise files are also given .

The f i rst approach to genera ting noise files is

digi tizing the output of an analog noise generator . The

procedur e for creating the noise files is summarized as

follows :

1) set the General Rad io Company Random Noise Generator ,

type 1390—B, No. SGL—78 , at the 20 KC range;

2) adjust the generator output controls and aud io panel

ga in adjustments for a noise envelope that i s

approximately 8 volts peak—to—peak;

3) with a 3.2 KHz anti—aliasing pre—filter , sampl e the

amplified genera tor output at 6667 Hz;

4) rescale the digitized noise sequences for a variance of

about 1.0 and store in unpacked format on disk.
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Two noise files obtained by this procedure are used in

tests ~n the following sections. The uppe r plot in Figure

4-4 shows the sampl e power spectrum in dB of one frame of

noise from one of these files. The lowe r plot In Figure

4—4 is the histogram of the time series amplitud e for the

exam ple frame. For this fi gure and the rest of the figures

in this section , the fram e size is 1000 points , the DFT

order is 11, and 40 cells are used to form the histogram .

From Figur e 4—4 , note the near flat character of the sampl e

spectrum . However, at frequencies near the folding

frequency of 3333 Hz there Is a noticeable roll—off in the

spectrum . This is due to the anti—aliasing pre—filter used

prior to digitization.

The second appr oach for genera t ing the no ise se quences

Is to resam ple~ the noise files obtained by the first

method . This resampl ing is accomplished by taking as a new

time series all noise samples with an even time index .

Another sequence can be formed by taking the samples with

an odd time ind ex . The upper plot in Figure 4—5

illus trates the sample power spectrum for one fram e of

noise generated in this manner. The amplitud e histog ram is

shown in the lower plot. There is less tendency for

roll-off at the folding frequency for the noise generated

by this method. The effect of resampling In this case is

similar to pre—filtering at 3333 Hz and sampling at

3333 Hz. This causes aliasing and eliminates the spectral

d
_________
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decay at the fo ld ing  f r equency .

The last method used to generate noise files involves

the use of the FORTRAN uniform random number generator RAN.

2 .A r.v . with the appropriate normal distribution N(0,a ) is

obtained by summ ing n unifo rm r.v.’s. The un iform r.v.

sam ples are scaled and shif ted to achieve the correc t mean

and variance in the normal r.v. A val ue of 10 is used for

n for the noise sequences generated for this work. Details

on the creation of normal  noise samples from the RAN

f u n c t i o n  are fo und in Chapter 3. Most of the data In the

following sections is based on processes synthesized and

degraded using noise sequences obtained in this fashion.

The charac terist ics o f three no ise files genera ted

with this method are g iven In Figure 4—6 a)—c) . Part a) of

Fig ure 4—6 is the sample power spectrum and amplitud e

histogram of noise file one. Abbreviated NFl, this f i le is

used exclusively to genera te the AR(q) process s (k) that is

to be identified . The characteristics of the second file

NF 2 are given in Figure 4—6b). NF2 Is used only as the

additive white noise. The third sequence NF3 is used to

generate the equival ent ARMA(l ,l) process crea ted by adding

whi te noise to an AR(l) process. Its characteristics are r
shown in Fig ure 4—6c).

One further test required for the noise sequences

genera ted from RAN is the ver i f icat ion that no cycles occur

In the numbers generated by RAN. The function RAN has one

L. -~~~~
- . -
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in teger argument. This Integer sets the starting value for

the random number generator. If that argument is zero , a

standard starting point Is used . For the tests In the

followi ng sec tions , approximately 500 frames of data are

requ ired . With 256 points/fram e and three noise sequences ,

3.84 x 10~ noise samples are needed . Since each sampl e

requires ten value s from RAN , there are 3.84 x io
6 samples

from a uniform r.v. To compensate for data values found at

the star t of each frame , 4300800 RAN samples are used .

This yields three sequences of 143360 points each. In

ana lys i s , this provides 518 frames of data . With this

large number of value s required from RAN , i t  is important

that  no cycles occur In the sequence produced by RAN. If

this happens , the e ffec tive length of the sequence is

red uced , degrading the quality of the sampl e statistics for

the paramete r  e s t ima to r s .

The val i d i t y  of the RAN sequence Is checked in two

ways :

1) de t e rmine  i f  the s tandard  In teger  s t a r t i n g  value  for

RAN reoccurs  w i t h i n  4300800 samples;

2) a f t e r  4000000 value s, recor d the integer ar gument of

RAN and d e t e r m i n e  if that value occurs again in the

next 300800 samples.

The sequence produced by RAN does not repeat from the

s t a r t i n g  va lue  at  any po in t  in the 4300800 samples.

Ne i the r  does i t  enter  a cycle of less than 300800 points at

• - ~~~~~~~~~~~~~~~~ ... .A~i

- — -~~~~~~~~~~~~~~~~~~~ . ~~~~~~~~~~~~~~~~~~~
-
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a later point in the sequence. It is felt the noise

sequences generated In this manner are suitable

approxima tions to Gaussian white noise sequences. Table

4— 1 lists the beginning and end ing values for the Integer

argument of RAN for the three noise files. All three

sequences are designed to be zero mean processes with a

variance of 1.0. The sample values for these two

parameters are also given In Table 4—1.

- 

- 
Stelqlltz Mode 1 Iterative Procedure

The mode 1 techn ique by Steiglitz and McBride (36]

described In Chapter 3 Is basically a system Identification

method in which it is assumed the input v(k) and output

x (k) of the system are known. For appl ication to the

estimat ion of the coeff ic ients o f an ARMA process , th i s

technique must be modified . When only the output of the

system is known , v (k)  Is assumed to be the Kronecker delta

f u n c t i o n .  Al so , the  system output  x ( k )  may be m o d i f i e d  so

that it more closely resembles an Impu l se response , as the

assumption for v(k) implies. Suggested modifications for

the signal include windowing , pre—em phasis , and ceps tral

processing . To test Steiglltz ’s mode 3. method , the

following procedure is used :

1) From a known model , which Is the system to be

identified , genera te an output sequence x (k).

2) The input to the TM unknown 5 system Is one of: impulse ,

impulse train , or noise (approximately white)

~

- •— ~~~~~~~~~~~~ —- 
• 
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Table 4-1

Generation of Noise Sequences Using RAN

Noise Starting Ending Sample Sample
File Integer Integer Mean Variance

NFl 0 50312698 —1.69150 x 10~~ 1.00341

NF2 50312698 1254307719 —8.71 251 x 10~~ 1.00257
NF3 1254307719 357121965 9 .2 9829  x ].Ø 4 0 . 9 9 8 2 4 4

L - - - - - - -~ • —i-- - - --- — -- ‘a ~~ —~~~—-——-_- - -
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3) Use the mode 1 method to compute estimates for the

param eters o f the unknown5 system .

4) Compare the parameter estimates to the design

param eters.

The resul ts for one 10 pole, 2 zero model system are

now presented . This model Is identical to that used by

Stelglltz in (35). In (35] Steiglitz ar bitrarily se ts the

sampling frequency at 15 KHz and enters the pole locations

by specifying the center frequency and bandwid th for the

poles in the upper half of the Z—plane . The location of a

pole in the Z—plane in polar coordinates is determined from

R = 3. — BW/ 2 and e = 2 f /f5, where R and 8 are the rad ius

and radian angle of the pole. The terms and 8W are the

center frequency and bandwidth of the pole. The sampling

frequency is f .

Since the work reported here began with speech sampled

at 6667 Hz, the pole locations are specified according to a

sam pling f requency of 6667 Hz .  Ho wever , because the

assignmen t of the sampl ing f requency  is ar bit rary for this

t ype of test , e i the r  spec i f i ca t ion  of pole loca t ions  y ie lds

the same set of c o e f f i c i e n t s .  Table 4—2 g ives the uppe r

Z—plane  pole locat ions for  the exampl e system . Both

specifications are provided for the reader ’s convenience.

Table 4—3 lists the 10 coefficients resulting from the pole

locations listed in Table 4—2. As discussed in Ch a pter 3,

the coefficients in Table 4—3 correspond to the AR

- 

-_
~=: T ._~~ ~. .T T 

_ _ _ _ _  _ _ _  
_ _ _ _ _ _ _ _ _ _ _6. ~~~~~~~ ~~~~~~~~~~ L - - -~~~~~~ -- _______
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Table 4-2

Upper Z-Plane Pole Locations for 10 Pole Model

f5 
= 15000 Hz f5 = 6667 Hz

Center Center
Frequency Bandwidth Frequency Bandwidth

270 60 120 26.7

2290 100 1018 44.4

3010 120 1338 53.3

3500 175 1556 77.8

4500 281 2000 125.

Table 4-3

Denomi na tor Coeffic ients for 10 Pole Model

a(k) k a(k)

1 —3.300959 6 13.53270

2 7.222431 7 —9.888342

3 —11.62311 8 5.741208

4 14.69756 9 —2.461647

5 —15 .58842 10 0.7301360

.1•

______________  ____________________  -,- -. 
~~~~~~~~~~~~~~~~~~~ ~~~~~~
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coefficients of the model , with a (O) = 1. By solving the

polynomial equation p (z) = ~ a(i) ~~~ = 0, one obtains the

locations of the singularities in the Z—plane. These

locations are identical to those determined from Table 4—2.

Figur e 4—7 shows the model spectrum to he identified . Note

that the zeros are a complex conjugate pair located on the

uni t circle. The numerator coefficients , correspond ing to

the MA portion of the model , are: b(O) = 1.0,

b(l) = —1.414214, and b(2) = 1.0.

Figure 4—8 is the output of this model when excited by

an impulse. Figure 4—8a) Is the time sequence and Figure

4—8b) is the sample spectrum of that sequence in dB , as are

all spectral plots in this section. The estimate for the

model spectrum produced by one iteration of this method is

shown in Figure 4— 9b). The model spectrum Is repeated in

Figure 4—9a) for ease of comparison.

The time sequence produced by exciting the model with

an impulse train is shown in Figure 4—lOa) . The period for

t h i s  example is 100 samples.  In F igure  4—lOb)  is the

es t imate  of the spectrum of t h i s  process. The data  x ( k )  is

mul tiplied by a Hamm ing window pr ior to com put ing the

sample spectrum . In using the mod e 1 technique for this

type of t ime sequence , it is desirable to pre—process x(k)

to make it more li ke an Impulse response . Figure  4 — l l a )

shows the real par t of the complex cepstrum of the w indowed

data sequence , x (k). By properly windowi ng this cepstrum ,

a

•1
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two thing s are accomplished . First , by eliminating the

cepstral spikes resulting from the pitch harmonics in the

frequency domain , apparent in Figure 4—h a) , the periodic

nature of x(k) can be suppressed . The second step is to

force this cepstral representation of x(k) to be causal.

Upon returning to the time domain , if appropriate scaling

has been done in the cepstrum , the resulting time series

will be minimum phase. Figure 4— Jib) shows the cepstrum

after windowing and scaling . Figure 4—12b) contains the

new m in i m u m  phase ti me sequence , wh i le Figure 4—12a)

contains the output of the impulse excited model for

comparison. Figures 4—13a) and 4—13b) are , respec tively,

the spectral estimates of x(k) and xmp (k) the modified

version of x(k). Note in Figure 4—12 that Xmp (k) Is quite P
similar to x(k) from the impulse excited case. Figure 4—13

• shows the suppression of the harmonic structure on the

spectrum of x(k) caused by the periodic nature of x(k)

The mod e 1 techn i que is now applied to xmp (k). Figure

4—14b) shows the estimated spectrum for the Impu lse train

excited case after two iterations. The original model

spectrum is repeated in Figure 4—l4a)

The last case to be considered Is when the model is

excited by a noise sequence. The resulting output sequence

and spectral estimate are shown In Figures 4—iSa) and

4-15b) , respectively. Superimposed on the spectrum of the

noise excited x(k) Is the orig inal model spectrum . Note

— -.4-~~~~~~ -— -’- •, ~~~~~~~~~~~~~~~~~~
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the random variations from that ideal spectrum resulting

from the deviation of the excitation sequence from an ideal

whi te noise process. Figures 4—16b) and 4-17b) ,

respec t ively, show the spectral estimates produced by this

technique after the first and second iterations. Further

iterations fail to impr ove the estimate , which is poor.

The resul ts presen ted above for the three types of

input represent the best possible spectral estimates

obtained throug h the appropriate choice of modifications to

x (k) prior to analysis. For the impulse excited model , no

intermediate processing steps suc h as windowi ng are

performed on x(k) before applying the mode 1 estimation

algorithm. In fact, use of any of the suggested operations

(windowi ng , pre— em phasis , or ceps tral proces sing) degra d es

the parameter estimates. In the Impulse train excitation

case , the use of cepstral processing considerably impr oves

the es t imates .  Adding pr e—em phasis  deg r ades the e s t i m a t e

• somewhat .  The I n i t i a l  s tep of  w indowing  x ( k )  is necessa ry .

• If x(k) is not windowed , the estimated filter becomes

unstable within a few iterations . No modifications are

mad e to x(k) in the noise excited case . None of the

options given prov ide any impr ovement in this case.

From the sample spectra in Figures 4—9b) and 4—l4b)

it Is apparent that this technique does well In estimating

the model for impul se and impul se train excitation. The

error in the case of the impulsive Input is nearly zero.



UR*GINAI 1400, 1 SPICTRUM
• (1 (1(11*) III 3 333L i- 3

4 000E+1 I 
_________

___

-

a) ~~~~~~~~~~~~~~~~~ 

_ _ _

-4- 000E+I
4 000E+1 E S I I M A T E — - N O I S E — — I T E R A T I O N  1 

—

__ _

-

• 

b ) :
___

I a a

• eeec+e 3 33Z•3

Figure 4-16: Noise Excitation
a) Model spectrum
b) Estimate of model spectrum after 1

iteration

O R I G I N A L  1400,1 SPECTRUM
o ORI0L+R~ 3 3 33E+3

5 SOeE +i 
— * 2 3

a) 
_ _ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~L~~~~~~~~~~L_ _ _

-2. 500E ÷ i
5 500E +1 E S T I M A T E - — N O I S E — — I T E R A T I O N  2 

—

b) a_ _  _ _ __ _ _

-2 500E+1 I a a
•eeeE+e 3.333E+3

Figure 4—17: Noise Excitation
a) Model spectrum
b) Estimate of model spectrum after 2

iterations



113

That for the impu l se train excitation is well wit hin

acceptable limits. In the noise excited case , howev~ r , tht~

error Is unacceptable. The estimates obtained for n o i s e

excited processes were consistently poor, often converg ing

to unstable filte r estimates. In addition , the mod e 1

method is strongly dependent upon double precision

arithmetic to achieve success , even in the impu l se and

Impulse train excited cases. Because of the results for

the noise excited case , this method has been discarded .

However , the mod e 1 estimate for the single AR parameter of

the processes in the next section will be compared to the

estimate obtained from other methods. This is done to

ensure that the large value of 10 for the AR order in this

exampl e is not the dominan t  fac tor .

The Fi rs t Order Model

In this sec tion parame ter es t imation d ata fr om a

variety of first order models are presented . First , the

mode 1 schem e by Stelglitz and the NR method by Anderso n

ar e compared. An AR(l) process is used for testing these

a l g o r i t h m s .  In the second set of tests , the NR method is

applied to several A R ( l )  and M A ( l )  processes. The tests on

the AR( 1)  processes also produce LPC es t imates  fo r

com parison. The data obtained from the MA (l) tests Is used

to check the NR algorithm ’s performance against previous

work. The third set of experimental results deals wi th an

AR(l) process plus white noise. The resulting data is

L •— —...a ~~~~~~~~~~~~ ~~~~~~~~~
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modeled as an A R M A ( l ,1) process . Several parameter

estimation procedures are applied to data of this type .

The data base for the tes ts in this sec tion is

composed of various AR(l), MA(l), and ARMA(l ,l) processes.

The excitation sequences for these processes are derived

from noise files generated by the three methods discussed

earlier in this cha pter. All three types of noise are

used . The method of generation Is noted in the discussion

of each tes t .

In the f o l l o w i n g  tests , parameter estimation data are

presented fo r  seven estimators . The mathematical

development  fo r  these e s t i m a t i o n  procedures  Is g i v e n  in

Chapter  3. Three methods  p r o v i d e  e s t ima tes  f o r  the AR

parameters and e x c i t a t i o n  sequence variance , only. These

are : the autocorrela t lon LPC method , the “shifted”

Yule—Wal ker L.PC technique , and Wiener filtering followed by

the autocorrelation LPC method . Abbreviated as LPC , SYW ,

and W—LPC , respectively, these three methods do not require

Initial guesses for the parameters.

Four e s t i m a t i o n  methods  considered p rov ide  e s t i m a t e s

of the AR and MA param eter s and the exci ta t ion sequence

variance . These methods are the mode 1 procedure of

Steiglitz , the Newton—Raphson and Gauss-Newton time domain

method s fr om Anderson , and the uncond it ional sum of squares

method by Box and Jenkins. The abbreviations for these

techniques a re  mod e 1, NR , GN , and tJSSQ, r e spec t ive ly .  The

— ._ 
— 
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f i r s t  t h ree  procedures  r e q u i r e  i n i t i a l  guesses f o r  the

pa rame te r s  being es t imated . In the USSQ method , the entire

parameter space is scanned .

For tests on ARMA(l ,l) sequences the in it ial v a l u es

for the pa rameter estimates are the actua l AR and MA

c o e f f i c i e n t s  of the ARMA(l ,i) model that describes the

data . Us i ng these pa rame ters as the In it ial guesses

rem oves al l  uncer ta i n ty d ue to inaccura te ini ti al guesses

from the experiment. Tests performed on AR(l) and MA (l)

processes sometimes use o ther  i n i t i a l  va lues  f o r  the

paramete r  e s t imates , especially all zeros. The type of

i n i t i a l  guess used is noted in each expe r Imen t .

Compar i sons  of the pa ramete r  es t imates  gene ra t ed  by

the preceding methods a re  made using the mean , v a r i a n c e ,

and s tandard  deviation sample statistics. The expressions

fo r  these s t a t i s t i c s  are  g i v e n  by

M1 r~~~.
P g L c( i)  ~i=1

2 1 ~2 .

~ L C ( 1 ) P
i= 1

- -2 1/2
~~~~

= [ c i

where ~ ( l )  is the e s t ima te  of p ar a m e t e r  c at  the 1th f r a m e

and M is the  number  of f r a m e s .  These s t a t i s t i c s  a re

com puted for each AR and MA coefficient estimate and for

the estimate of the excitation sequence variance . For the

firs t order processes tested , these statistical measures

-~~~~ -~~~~~~~~~~~ • - - — -‘ - —  • • -~~~ -— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ——-
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are  sufficient. In hig her order processes , however , it is

desirable to use a combined measure for the AR coefficients

or the MA coefficients. Two distance measures will be

defined in the sections dealing with the second and fourth

order AR models .

The mode 1 procedure Is the first estimation method to

be examined . In the section that discusses this algorithm ,

found earlier in this cha pter , it is apparent that the mod e

1 method does not do well when the excitation for the model

Is white noise . The results In that section are based on

the analysis of a 10 pole , 2 zero system . Part of the

reason for the failure of this method in that cas~ could be

due to the high order of the AR part of the model . To

examine  t h i s , the  mod e 1 and NR methods a re  appl ied  to da t a

genera ted from an AR(l) model with a(l) = 0.5. No noise  is

added to the AR sequence. The excitation for the process

is from NFl. The Initial parameter estimate for both

methods is a(1) = 0.5, the parameter used to generate the

data. Table 4—4 lists the estimates for a(l) from these

two method s for two frames. Ten iterations are g iven .

Note the estimate for a(l) generated by the NR procedure

does not chang e in the five most significant figures after

the first iteration. For these exampl e frames , it is r

apparent that the mod e 1 method is inadequate . While the

NR e s t i m a t e  is  a c c u r a t e  and s table , the mode 1 estimate

v a r i e s  cons iderab ly  f r o m  one i t e r a t i o n  to the n e x t .  The

- ,• _ • -
- - - - -- - I _ _ _  -
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Table 4-4

Comparison of the Mode 1 and NR Estimates
for a(l) of an AR(l) Process

Frame 1 Frame 2

Iteration Mode 1 NR Mode 1 NR

1 .20713 .52667 — .05109 .49538

2 .27195 x 101 .52667 1.4135 .49538

3 — .12183 x 101 .52667 —1.2294 .49538

4 .12604 .52667 —5.5827 .49538

5 — .15914 x 101 .52667 — .24169 .49538

6 — .10244 ~ io 6 .52667 .89261 .49538

7 — .90959 .52667 .97296 .49538

8 — .77367 .52667 .99496 .49538

9 — .49257 .52667 .99732 .49538

10 .83789 .52667 .99728 .49538

• 
•~~~_-~~ -•-~~ _.~~

-,
~~~~ •__ — —--- *._~
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mode 1 estimate does converge In frame 2, but to a value

that indicates the singularity Is close to the unit circle

In the Z—domain. Hence , the estimated model will tend to

have mar g inally stable behavior. It is also important to

note that all mode 1 computations are performed in double

precision , while those for the NR method are done in single

precision. Because of these results and those of the

earlier section , the mode 1 technique will not be

considered in any further tests.

Before examining the AR (l)—to—ARMA( l ,l) transformation

model , the NR procedure is appl ied to three AR(1) processes

(a = 0.1, 0.5, and 0.9) and three MA(l) processes (b = 0.1,

0.5, 0.9). For the AR(l) processes, an LPC est ima te for

a(l) Is also calculated . The processes in these tests are

excited by HF]. scaled for = 1.0. Table 4—5 lists the

theore tical va r i ances  f or these proc esses, based on

= 1.0 This table also lists the sampl e variances

determined from the data sequences generated using NFl.

Using (3.99) to calculate var[~~ ], the variance of the

sampl e var iance  est ima te , the theore tical and sampl e

var iances are compared by observ ing how close these

quantities are In value . Taking the square root of var [~~~)

as the standard deviation , lies within d standard

deviations of a~~, the true variance of the process. The

value for d is g iven in Table 4—5 under the colum n labeled

“Limit” . This assumes that the distribution for is

4- --- — —-—,-
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Table 4-5

Theoretical and Sample Variances for the
AR(1) and M A ( l )  Processes

Value of Theore tical Sample
Process Coeff icient Variance Variance Limit

AR(1) a = 0.1 1.01010 1.00867 — 1

AR(1) a = 0.5 1.33333 1.32308 — 3

ARC].) a = 0.9 5.26316 5.16576 —5

MA ( 1)  b = 0.1 1.01 1.01140 1

MA ( l )  b = 0.5 1.25 1.25700 2

M A ( l )  b = 0.9 1.81 1.82259 2 

—~~~~~~~ --- . •- -~~~~—---‘—-~~~~~~~~~~~~~~~~ 
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Gauss ian  wi th a mean o f o~~. The initial guess for a(l) and

b(l) required by the HR method Is zero in all cases. The

number of frames analyzed is 518. There are 256 points per

frame. Convergence for the iterative HR procedure is

achieved when both of the following conditions hold:

1) — < 0.0001, where is the estimate of the

thvarianc e of the excitation sequence at the i

itera tion ;

2) {c~ — 

~i 1 t < 0.0001 
~~j1  

+ 0.001), wher e is the

estimate of either a(l) or b(l) at the ~th iteration.

If both of these cond itions are sati s f i ed , the NR pr ocedure

is terminated . However , a l imi t is placed on the max imum

number of iterations allowed per frame. Designated ITMAX,

this limit is usually set at 30 iterations. Convergence

test 2) is suggested by Bard (6).

The resul ts of the AR(l) tests are found In Table 4—6.

Those for the M A ( l )  tests are listed in Table 4—7. In both

tables note that the sample variance of the NR estimate

decreases as the magnitud e of the coefficient increases. 3
In Chapter 3, equation (3.51) gives the theoretical

variance of the conditional maximum likelihood (CML)

estimate for a(1) of an AR(1) process. The variance of the 1’
estimate for b(1) of an MA (1) process Is given in (3.52).

Noting that the expressions are of the same form , Table 4—8

lists the variance and standard deviation for a , b = 0.1,

0.5, and 0.9. A frame size of N = 256 is used in computing

- -
~~~~~~~~~~~ 
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Table 4-6

HR and LPC Estimates of a(1) and NR Estimate of
for A R ( l )  Processes

Sample Sample
a(1) Estimator Mean Variance Convergence

0.1 NR a(1) .967 x 10
_i 

4.09 x ~~~~ 3

LPC a(1) .991 x 10
_i 

6.65 x

HR .993 7.54 x 10~~ 3

0.5 NR a(1) .492 3.26 x 10~~ 3

LPC a(1) .492 5.35 x 10~~

HR .995 7.54 x 10~~ 3

0.9 NR a(1) .891 9.33 x 10~~ 3

LPC a(].) .886 1.78 x 10~~

N R a~, .].Olxl O 1 8.44xl0 3 3

Table 4-7

NR Estimate of b(1) and for MA(1) Processes

Sample Sample
b(1) Estimator Mean Variance Convergence

0.1 HR b(i) .103 4.42 x 1O~~

NR .993 7.54 x 10~~ 9

HR b(i) .505 3.46 x ~~~~ 7
2 —3• HR .994 7.53 x 10 7

0.9 HR b(1) .891 1.38 x 16

t HR .101 x 101 8.67 x l0~~ 16

• - - —
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this data. As seen from this table , the variance of the

estimate improves as the magnitud e of the parameter

approaches 1.0. Comparing Tables 4—6 and 4—7 with Table

4—8 , one f i n ds close ag reemen t between the sampl e var iances

and the theoretical variance of the parameter estimate . In

Table 4—6 note that the averag e LPC estimate for a(l) is

superior to the NR estimate only for a(l) = 0.1. The

variance of the NR estimate for a(1) is smaller than the

variance of the LPC estimate in all three cases.

The entry “NR at” in both tables is the estimate of

the excitation sequence variance. In this case , with no

additive noise , the excitation is c(k) , wi th = 1.0. The

poorest estimate (occurring when a = 0.9 or b = 0.9) is in

error by 1%. The last colum n in both tables is the

i tera tion at which conver gence occurs for  the f i r s t f r a m e

of data . The M A ( l )  processes all require more iterations .

The AR (l) processes require three iterations to satisfy the

convergence criteria. However , there is u s u a l l y  no change

in the five most significant figures after the first

iteration in the AR(l) cases.

In a stud y of MA(l) processes with coefficients of

0.2, 0.5, and 0.9, Nelson (28] presents results similar to f
those in Table 4—7. Al though his investi ga tion uses

smaller frame sizes, the variance of his CML estimate for

b (l) exhibits the same Improvement as b(l) Increases in

magnitude. Nelson compares several estimators In his wor k.

F-,,

‘ I t

_ _ _ _ _ _ _ _ _  
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Table 4-8

Variance of CML Estimate for the Coefficient
of an AR(i) or an MACi ) Process

a or b var [ã] st. dev. [~~]

0.1 3.87 x ~~~~ 6.22 x io 2

0.5 2.93 x ~~~~ 5.41 x io 2

0.9 7.42 x 2.72 x io~2

-- -•- _ - ~~~~~~~~ _ -- -~~~~~ —•—-- -- • -—— • S ~~~
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In his studies , Ne l son f i n d s  t h a t  the  CML and ML ( m a x i m u m

l ike l ihood ) e s t ima to r s  pe r form best on sequences generated

f rom models wi th  the MA pa rame te r  in the rang e of 0.5 to

• 0 .9 in m a g n i t u d e .  The CML method mentioned is most like

the NR method used in this work.

In Chapter 3 it is shown that the addition of white

noise to an AR(l) process introduces an MA parameter b and

an excitation sequence v(k). The resulting data is

described by the ARMA(1,l) model . Tables 3—2 , 3—3 , and 3—4

illustrate how b and a2, the variance of v(k), are  a f f e c ted

by vary ing level s o f n (k) , the additive noise . These

tables are based on AR(l) processes with a(l) = 0.1, 0.5,

and 0.9, respec tivel y. Equations (3.53) a)—c) g ive the

variance and co—variance of the estimates for a(l) and b(l)

of an ARMA(1,1) process. Tables 4—9, 4—10, and 4—li list

the var iance  for  the a (1) est ima te of an ARMA (l ,l) process.

The values of a ( l )  assumed for  these tables  a re  0.1, 0.5 ,

and 0.9, respectively. The MA coefficient b(1) is computed

according to the SNR ’ s spec i f i ed  in the tables .  The

c o e f f i c i e n t  b ( 1)  and the theore t i ca l  v a r i a n c e  of b ( 1)  are

also given . From these tables several  trend s are  noted :

1) For a f ixed  SNR , as a ( l )  Increases  in magnitud e, the

var i ance  of the es timate  decreases.

2) If a ( l )  is held constant , the v a r i a n c e  of the e s t ima te

wo r sens as the SNR decreases.

3) The I n t r o d u c t i o n  of even the re la t ive ly small  MA
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Table 4-9

Variance of Parameter Estimates of the ARMA (1,1) Process
for Various SNR ’s and a(l) = 0 . 1

SNR (dB) b var [i] var [6] 
—

30 .10091 x .387 .391

20 .99990 x .394 .398

10 .91667 x io
_ 2 

.468 .473

0 .50126 x 10
_i 

.154 x 101 .155 x 101

—10 .90917 x 10
_i 

.460 x io 2 .461 x io 2

Table 4-10

Variance of Parameter Estimates of the ARMA ( 1 , 1) Process
for Various SHR ’s and a( 1)  = 0.5

SNR (dB) b var [~~] var [b]

30 .66556 ~ io~~ .117 x 10
_i 

.157 x 10
_i

20 .65577 x io 2 .120 x 10
_i 

.159 x 10
_i

10 .57331 x 10
_i 

.141 x 10
_i 

.187 x 10
_i

0 .26795 .408 x 10
_i 

.505 x 10
_i

—10 .45573 .891 . 9 4 2

~~~~~~~~~~~~~~~ 
4-
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pa r ameter  at  30 dB no t i ceab ly  degrades  the v a r i a n c e  of

the es t imate  when compared to the data  in Table 4—8 f o r

an A R ( l )  process .

In the experiments that follow , two approa ches are

used to test the val i d i t y  of the model for  an A R ( l )  process

pl us whi te  noise :

1) Given  an A R C ] . )  process w i t h  a = 0.5 and o~ = 1.0,

compu te the parame ters b and that resul t f rom add ing

whi t e  noise . The pa r ameters  a , b , and define an

ARM A(l,l) model . The data used for analysis is

obtained by exciting this ARMA(l,l) model wi th a no ise

sequence v(k).

2) Given an AR(1) model wi th a = 0.5, excite this process

wi th a no i se sequence ~(k). To the resulting sequence

s(k) add the white noise sequence n(k) , scaled to

achiev e the appropriate SNR. The time series obtained

Is x ( k ) , the da ta  a v a i l a b l e  for  a n a l y s i s .

The test described in 1) is a s imula tion of the noise

model . That is, the ARMA(l ,l) model tha t resul ts f r om

adding w h i t e  noise  to an AR(l) process is generated

d i r e c t l y .  Tests o f this  type w i ll be ref er r e d to as

simulations of the AR—to—ARMA transfo rmation model . For

b r e v i t y ,  these are called ARM A tests. Experiments of the

type in item 2) above represent the situation that occurs

in prac tice : a signal desc r i bed by the AR model is

corrupted by the actua l addition of white noise . In the

~ 
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discussion tha t fo llows , type 2) experiments are referred

to as AR +N tests.

The ARMA and AR+N tests o f f e r  two me tho ds fo r chec k in g

the val i d i t y  of the noise model and the usefu lness  of the

estimation algorithms. The former type of test , with data

genera ted  f rom a known ARMA( 1 , 1) model , is used to test the

capability of the parameter estimation procedure. The

latter category of tests then determines the

appropriateness of the ARMA no ise model . Since the data in

both tests Is t h e o r e t i c a l l y  an ARMA process , a g iven

es t ima t ion  procedure should produce s i m i l a r  resul ts  in  the

analysis of each type of data. This is supported by the

results presented in this section.

The behavior  of the A R C ] . )  process in  the presence of

w h i t e  noise is now considered . Parameter  e s t i m a t i o n  da ta

is obtained from processes w i t h  a ( l )  = 0.5 as the s ing le  AR

c o e f f i c i e n t . Us i ng the equa t ions  f rom Chapter  3 fo r  b_ and

but hencefo r th omi tti ng the m i n u s subscr ipt, Ta ble

4—12 gives the parameter  va lue s fo r  t h i s  process cor rup ted

by noise at the SNR ’s shown . The numerical value s in this

table are der ived assuming = 1.0. From Table 4— 12 , one

observes that  the parameter  b a pproaches a In  va lue  as the

no i se level worsens. The data  l is ted in Tables 4—10 and

4—12 is used in the fo l lowi ng tests to compare  the sam pl e

statistics with their theoretical values.

The f i r s t  e x per i m e n t  is an ARMA test s i m u l a t i o n  of the
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Table 4-il

Variance of Parameter Estimates of the ARMAC1,1) Process
for Various SNR ’s and a(1) = 0.9

SNR (dB) b var [~~] var [6]

30 .46922 x i0 2 .918 x ~~~~ .483 x io
_2

20 .43330 x 10
_ i  

.934 x .491 x io
_2

10 .25884 .106 x io 2 .522 x i0 2

0 .62679 .189 x io
_2 

.604 x io
_2

—10 .83588 .111 x 10~~ .176 x 10
_i

Table 4-12

AR(1) Process Corrupted by Additive Noise
2a = 0.5, a = 1

SNR a~ b

— 0 0 1.0

30 i.~ .66556 x ~~~~ 1.0017

20 i.~ x iø
_ 2 

.65577 x i0 2 1.0166

10 1.3 x 10
_i 

.57331 x 10~~ 1.1628

0 1.3 .26795 2.4880

—10 l.~3 x 101 .45573 14.628

— - — - - •  - - ——  _~~~~~~~~~~~~~~~~~~ :~~~~ ~~~~~~~~ -— — - - ——- ~~-~~-— -— ~~~~_ — ~~~~~- ~~~~~~~~~~~~~~~~~~~~~
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A R C ] . )  process w i t h  a 0 dB SNR noise  level . From Table

4—12 , the pa r amete rs  of the r e s u l t i n g  AR MA(l , l) proc ess

a re :  a ( 1 )  = 0.5 , b ( 1)  = 0.26795, and = 2.4880. This

ARMA model is exci ted by d i g i t i z e d  analog noise (DAN) in

one case and “resampl ed” dig itized noise (RDAN) in the

second case . The excitation noise sequences are scaled for

a sample variance of 2.4880. The parameter estimates from

two procedures a re  considered : USSQ and HR. Five f rames ,

256 points  each , a re  analyzed by each procedure .  No mean

cor rec t ion  is performed . The initial parameter estimates

fo r  the NR method are the actua l model pa r ameters .  The

USSQ method ini ti a l ly  scans the param eter space for val ue s

of a and b from —1.0 to 1.0 in steps of 0.02. When the

m i n i m u m  of the sur face genera ted in this  manner  is found ,

another scan takes place in a small nei ghborhood of the

m inimum in increm ents of 0.001 for both parameters.

The pur po se of t h i s  test is to v e r i f y  tha t  the

i t e r a t i v e  HR procedure produces a solution which m i n i m i z e s

the energy in the residua l generated by that solution. The

USSQ method generates the surface correspond ing to a larg e

number of solutions. The minimum obtained by the two

methods should agree and be in the vicinity of the true

model parameters: a = 0.5 and b = 0. 26795. The

theoretical value of the minimum is 2.4880.

The parameter  e s t imates  f rom these two methods a r e

given in Tabl es 4—13 and 4— 14 .  The DAN e x c i t a t i o n  sequence

~-1• -
~5

~~~~ — 
•~_~~~~~~~g_._ 
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is used for  the e x p er i m e n t summar i zed  in Table 4—13.  The

resul t s  fo r  RDAN exc i ta ’ lon a re  in Table 4—14.  In most

cases the es t imates  agree , especial ly fo r  a~~. Only In two

f rames  do the resul ts d i f f e r  g rea t ly .  These are  f r ames  3

and 4 of Table 4—14. The most likely explanation Is that

the NR method occasionally oscillates between two

solutions . The termination procedure for this algorithm

does not account for this kind of problem at present. As a

result , the procedure may be terminated at the wrong

solution . Fig ure 4—l8a) is an isometric plot of the

surface generated by the USSQ method for frame 5 of Table

4—14. Cross—sections taken throug h the minimum are shown

In Figure 4—18b). These plots Illustrate the quadratic

nature of the sur face. Estimation methods based on least

squares seek to find the minimum of this sur face.

The nex t comparison to be mad e is between the NR and

GN methods. Both procedures are used in an ARMA test at a

sImul ated 0 dB SNR. The conditions for the experiment

are: 518 frames analyzed , 256 points per frame , no mean

correc tion , and true parameter value s for initial H

estimates. The excitation sequence is NF3 scaled for a

sample variance of 2.4880. The resul ts, listed in Table

4— 15, show the GN method produces parameter estimates

somewhat closer to the true value s of a (l) ~ 0.5,

b(1) = 0.26795, and 2.4880. However , the sampl e

variance of the GN method is larger , Indicating a wider

~~~ -_-.- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~
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Table 4-13

NR and USSQ Analysis of 0 da ARMA Test
with DAN Excitation Sequence

NR USSQ
Frame Parameter Es t imate  Estimate

1 a .384 .381

b .104 .100

2.321 2.321

2 a .253 .252

b — .130 -.132

2.791 2.791

3 a .141 .140

b — .095 — .096

a
2 2.615 2.615

4 a .239 .254

b — .040 — .025

2.534 2.533

5 a .367 .381

b — .034 — .019

2.210 2.208

r

L 
. 
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Table 4-14

NR and tJSSQ Analysis of 0 dB ARMA Test
with RDAN Excitation Sequence

HR USSO
Frame Parameter Estimate Estimate

1 a — .074 — .075

b — .233 — .234

1.979 1.979

2 a .555 .555

b .383 .383

2.301 2.301

3 a .143 .921
— 

b .111 .936

2.763 2.762

4 a — .096 — .961

b — .212 —1 .000

2.634 2.622

5 a .452 .453

b .236 .237

2.216 2.215

-4
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Table 4-15

HR and GN Analysis of 0 dB ARMA Test

Sample Sample
Method Parameter Mean Variance

HR a(1) .46881 6.2832 x io
_2

GN a(1) .47317 6.9737 x io 2

HR b(l) .23245 7.3184 x io
_2

GN b (l) .23619 7.8825 x i0 2

HR 2.467 4.011 x io
_2

GN 2.475 4.328 x io
_2

- ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- - • • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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spread in the estimates. But the differences do not appear

to be striking , especially when the test is a 0 dB SNR

simul ation.

Recal l ing  from Chap te r 3 tha t the GN me thod requ i res

the genera tion of two add i tional sequences in each

Iteration , that method requires a highe r computational load

per I t e r a t i o n .  This  is not  com pensated for  by a decrease

in the number of iterations per fram e required to achieve

convergence . Observa t ions  on a smal l number  of f r a m e s

ind icate that  ne i the r  method has an advantag e in r a te  of

convergence . Because of the computational saving s of the

NR method , it Is used in all upcom ing tests. This is

especially impo rtant In the highe r order models to be

disc ussed . In the fourth order model , fo r  exampl e, the

time required to process 518 frames of data is about three

hours on a general purpose computer (DEC PDP—10).

The last two sets of experiments demonstrate the

behavi or of four  est ima to rs In  the ana lys i s  of ARMA an d

AR+N tests based on the A R ( 1)  process . Each of the

estimators (NR, LPC, SYW, and W—LPC) Is applied to

sequences represen t ing  SNR ’s of ~~~, 30 , 20 , 10, 0, and

— 10 dB. For each test 518 frames of data are available ,

wi th 256 points per frame. No mean cOrrection is performed

on the data. The Wiener filter used in the W—LPC method

has a 21 point impulse response. It Is generated as

described in Chapter 3. The excitation sequence v(k) in

- -
— 4-- - -~~
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the ARMA tests is taken from NF3. NF3 is scaled for the

pr oper sampl e v a r i a n c e  a~ , the va lu e o f whi ch Is d eterm ined

from Table 4—12. In the AR+N tests the A R ( l )  process

(a(l) = 0.5) is synthesized using NFl as the excitation

c ( k )  . NFl  is f i r s t  scaled for  a sam pl e var ianc e o f

= 1.0. The additive noise required for the AR+N tests

is generated by scaling NF2 appropriately. The results for

the ARMA tests are presented first , followed by those for

the AR+N tests.

Data obtained f rom the ARMA tests at  the v a r i o u s

s imula t ed  SNR ’s is l is ted in Tabl e 4—16 , 4— 17 , and 4—18.

The estimates for a(l) are found in Table 4—16. Those for

b(1) (NR method , only) are given in Table 4—17. The

estimates for from the HR and LPC methods are listed In

Table 4—18. In these tables and those describing the AR+N

tests, the d ata l i sted under “Mean” are the sampl e m eans of

the parameter estimates. The sample variances are

tabulated under “Var iance ” . The number  of f r ames  analyzed

Is listed unde r “Frames” . The synthesized data provides

for a max imum of 518 frames. With the NR method it is

possi ble for the Gauss e l im ina tion r out ine to detec t a

singular coefficient matrix. If that occurs , an e r r or f l a g

is set and the resul ts for that frame are not includ ed in

the sample statistics for the estimates. The number of

frames successfully analyzed by the NR method provides

information about the stability of the estimation procedure

_ _ _ _ _  -
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Table 4-16

Estimates of aCi) = 0.5 for ARMA Tests
of the AR(i) Process

SNR Method Mean Variance • Frames

HR .48312 1.35 x iO 2 518

SYW .48810 3.28 x i~0
3 518

LPC .48958 5.48 x ~~~~ 518

W—LPC .48958 5.48 * 10~~ 518

30 HR .49519 1.36 ~ io
2 5i8

SYW .49250 1.36 x io
_2 

518

LPC .49474 5.20 x 1O 3 518

W—LPC 5.23 x ~~~~ 518

20 HR .49505 1.39 x io
_2 

518

SYW .49252 1.38 x iO 2 518

LPC .49034 5.26 x ~~~~ 518

W—LPC .50032 5.17 x 10~~ 518

10 HR .49355 1.67 x io 2 518

SYW .49279 1.67 x io 2 518

LPC .45039 5.75 x 1O~~ 518

W—LPC .53679 4.68 x l0~~ 518

0 HR .46881 6.28 x io 2 513

SYW - . 5 0 9 8 6  8.74 x io
..2 

518

LPC .24955 7.29 x 1O 3 518

W—LPC 
-

, 

.67112 2.96 x ~~~~ 518

—10 HR .24537 2.85 x 10
_i 

221

SYW —3 .3153 3.54 x ~~~ 518

LPC .04897 7.05 x 10~~ 518

W—LPC .77210 1.80 x l0~~ 518

- ~__ .
~_i~ _~~ __ 

-~~~~--~~~~
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~~~
—-—- - •_

~~~~~~~~~~
-S

~~~~~~



138

Table 4—17

HR Estimates of b(l) for ARNA Tests
of the AR(1) Process

SNR True Value Mean Variance Frames

0 — .88433 x io
_2 

1.68 x io
_2 

518

30 .66556 x ~~~~ — .59483 x io
_2 

1.96 x io
_2 

518

20 .65577 x i0 2 
— .21100 x ~~~~~~~~~~~ 2.00 x 1o 2 518

10 .57331 x 10
_i 

.48995 x 10
_i 

2.37 x iø 2 518

0 .26795 .23245 7.32 x io
_2 

513

-10 .45573 .16904 2.95 x 10
_i 

221

_____________________________________________________________________
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Table 4—18

HR and LPC Estimates of for ARMA
Tests of the AR( 1) Process

True
SNR Value Method Mean Variance Frames

1.0 HR .9948 7.62 x ~~~~ 518

LPC .9984 1.41 x i0~
2 518

30 1.0017 HR .9942 6.58 x 1O~~ 518

LPC 1.001 1.29 ~ io
2 518

20 1.0166 HR 1.009 6 .77  x ~~~~ 518

LPC 1.015 1.33 x i0 2 518

10 1.1628 NR 1.154 8.86 x ~~~~ 518

LPC 1.162 1.74 x io~
2 518

0 2.4880 HR 2.467 4.01 x io
_2 

513

LPC 2.493 8.11 x io
_2 

518

—10 14.628 HR 14.48 1.48 221

LPC 14.61 2.78 518

- ____________________ _ __ _  
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at varying noise levels.

These trend s are noted from Tables 4—16, 4—17, and

4— 18:

1) The estimates for a(l) are good for all methods at

SNR’ s at and above 20 dB.

2) The LPC estimate for a(l) is noticeably degrad ed for

SNR ’s below 20 dB.

3) Decreasing the SNR causes an increase in the sample

variance of all estimates.

4) The increasing sample variance is strongest in the HR

and SYW methods , which have sample variances greater

than tha t  for  the LPC e s t i m a t e  in a l l  cases.

5) WhIle the LPC estimate for a(1) tends toward zero as

the noise level wors ens , the W—L.PC estimate Is

increasing .

6) In terms of the sampl e mean , the NR and SYW est ima tes

are superior to the other methods at SNR ’s of 0 and

10 dB. All methods pe r form badly at -10 dB.

7) At 0 dB the HR method fails In 5 frames. The method is

successful in only  221 f r a m e s  a t  — 10 dB.

8) At a l l  SNR ’ s , the averag e NR e s t ima te  for  l i e s  below

the averag e LPC e s t ima te  for  tha t  parameter , i n d i c a t i n g

that the HR method Is doing a better job of find ing the

m i n i m u m  of the quad ra t i c  sur face.

Figur e 4—19 Is a plot of the sample mean data for the a (l)

estimates from Tabl e 4—16. This clearly Ind icates the

- 
— S.-
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degradation in the LPC and W—LPC estimates below 20 dB. At

0 dB the NR estimate has the same error as the LPC estimate

at app rox ima te ly  14 dB. The SYW es t imate  provides an even

greater improvement with much lower computational

requ irements. However , it deg rades rad ically between 0 and

—10 dB.

The curves  plotted in Fi gu re  4—19 show a definite

advantag e in the HR and SYW es t imates  at 0 and 10 dB SNR ’s

when com pared to the LPC estimate. There is another aspect

to these estimates that must be emphasized , however .

FIgure 4—20 shows a plot of the HR and LPC estimates from

Figur e 4—19. Also shown in the plot are vertical lines

indi ca ting one sample standar d devia tion interval awa y fr om

the sam ple mean. The standard deviation Is obtained by

taking the square root of the sample variance of the

estimator listed in Table 4—16. For SNR ’s above 10 dB the

spread of the two estimates is comparable. At 10 dB the

bias In the LPC es t imate Is evident, though the spread of

the estimate stays about the same. At SNR ’s below 20 dB,

the sample deviation for the NR estimate g rows quickly.

Even though the Interval covered by the +a limits for the

NR estimate always inc ludes the desired value of 0.5, the

large spread in the estimate at the poorer SNR ’s ind icates

that a single NR estimate can have a large error when

com pared to the true parameter value . Only In the averag e

does the estimate approximate the true value well. The

. __ ______~- —S .  __~ 
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results for the SYW estimate are quite similar.

The upper plots in Figure 4—21 a)—d) show the time

series genera ted by append ing the estimates from each type

of estimator for the 0 dB case. Parts a)—d) of this figure

correspo nd to the NR , SYW , LPC, and W—LPC estimators ,

respec t ive ly .  The lowe r plot in each p a r t  of the f i g ure is

an am pl itude h i s tog ram obtained f r om the d ata in the upper

plot. The histog ram is divided Into 40 cells. A solid

line in each plot indicates the location of the sample

mean. The dashed lines in the plots mark intervals around

the sample mean of 2a. Of the four estimates , the HR

estimate has a somewhat asymmetrical distribution about the

sample mean. The other estimators are more symmetrically

d i s t r i b u t e d . The asymm etry of the HR est ima te is in a

direction that tends to favor the estimate. That is , the

bul k of the d istr i bu t ion is shif ted towar d the true va lue

of the parameter. This alleviates the larger spread of

this  est ima tor somewh at, though that is still a serious

problem .

The exper imen ts pe r formed on the ARMA simul at ions just

described are repeated In AR+N tests. The approach is to

generate the A R ( l )  process, ad d no ise to achiev e the

desired SNR, and apply the four estimation algorithms. The

details for these experiments are described with those for

the ARMA test. Table 4—19 lists the data for estimates of

a(1). The NR est imates for  b(l) are given in Table 4—20.

~ —
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The HR and LPC estimates for are listed in Table 4—21.

The comments mad e for the correspond ing tables in the ARMA

tests hold for these resul ts. The most important aspects - ‘
-

of this data are summarized as follows :

1) the variance of the estimates increases with highe r

levels of noise ;

2) based on averag e statistics , the NR and SYW ar e

superior to LPC at SNR’S below 20 dB;

3) the variance of the HR and SYW es t imates is lar ger than

that for the L.PC estimates.

Figure 4—22 presents the sample means of the four a(l)

estimates versus SNR. The HR estimate at 0 dB is about the

same as the LPC error at 14 dB. Interpolating the SYW

estimate at —l dB, the sam e error occurs as wi th LPC at

14 dB, an extension of 15 dB. However , the SYW es t imate

again degrades more rapidly below 0 dB than the HR method ,

though not as badly as in the ARMA tests. The HR and LPC

— estimates are shown again in Figure 4—23 with the 
~~ 

limits

Indicated . The comments mad e concerning the ARMA test

results in Fig ure 4—20 also apply to Figure 4—23. The

advantage of the HR estimate applies only In the average.

The large sample standard deviation weighs against the use

of ind ividua l estimates.

The a(l) time series and histograms for the AR+N tests

at 0 dB are shown in Figure 4-24 a)—d). The dashed lines

mark deviations in the estimate from the sample mean by

I’ 

- 

- —
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Table 4—19

Estimates of a(1) = 0.5 for AR+N Tests
of the AR(1) Process

SNR Method Mean Variance Frames
HR .48312 1.35 x io 2 518

SYW .48810 3.28 x ~~~~ 518

LPC .48958 5.48 x l0~~ 518

W—LPC .48958 5.48 x 10~~ 518

30 HR .48334 1.35 x 1C 2 518

SYW .48233 1.39 x 10 2 518

LPC .48907 5.51 x 10’
~~ 518

W—LPC .49062 5.47 x ~~~~ 518

20 HR .48351 1.37 x io
_2 

518

SYW .48250 1.40 ~ io
2 518

LPC .48464 5.63 x ~~~~ 518

W—LPC .49490 5.46 x 10~~ 518

10 HR .48310 1.66 x i0 2 518

SYW .48301 1.61 x io
_2 

518

LPC .44477 6.32 x 10~~ 518

W—LPC .53142 5.09 x i0~~ 518

0 NR .46320 5.36 x io 2 515

SYW .49954 9.64 x io 2 518

LPC .24404 8.34 x 518

W—LPC .66690 3.23 x 518

—10 HR .29938 2.56 x 10
_i 

214

SYW .16791 5.98 x 101 518

LPC .04276 7.74 x ~~~~ 518

W—LPC .76962 1.85 x ~~~~ 518
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Table 4—20

HR Estimates of b(1) for AR+N Tests
of the AR (1) Process

SNR True Value Mean Variance Frames

0 — .88433 x io
.2 

1.68 x 1o 2 518

30 .66556 x i0~~ — .79156 x io
_2 

1.68 x io
.2 

518

20 .65577 x io
52 

— .19046 x io
_2 

1.70 x 1o 2 518

10 .57331 x 10~~ .47712 x 10
_i 

2.10 x io 2 518

0 .26795 .23168 6.22 x io 2 515

— 10 .45573 .22541 2.65 x i0~~ 214

______________ ___________ 
~~~~ -— ~-~~~~~~~~~
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Table 4-21

HR and LPC Est~mates of for AR+N
Tests of the AR (l) Process

True
SNR Value Method Mean Variance Frames

1.0 NR .9948 7.62 x 10~~ 518

LPC .9984 1.41 x i0 2 518

30 1.0017 HR .9966 7.64 x 10~~ 518

LPC 1.000 1.41 x io
_2 

518

20 1.0166 HR 1.012 7.89 x ~~~~ 518

LPC 1.015 1.45 x io 2 518

10 1.1628 NR 1.156 1.05 x io 2 518

LPC 1.160 1.92 x io
.2 

518

0 2.4880 HR 2.464 5.15 x io 2 515

LPC 2.473 9.14 x io 2 518

—10 14.628 HR 14.35 2.11 214

LPC 14.41 2.99 518 - r

I -~
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mul tiples of 2a. The sample mean is indicated by the sol id

line . These plots are quite similar to those for the ARMA

tests. The asymmetry of the NR estimate is apparent in the

AR +N tests, as well.

This conc ludes the presentation of the d ata on various

first order models. The AR(l) and MA (l) processes are

analyzed to determine the behavior of the HR estimator in

noiseless situations. Several estimators are then applied

to the A R ( l )  pl us white noise model . These tests are

performed as ARMA simulations of the model and AR+H actual

tests of the model . The resul ts for the two approaches
I agree , establish ing confidence In the algorithm s and model .

The Second Order Model

In the preceding sec tion, the resul ts from the

analysis of an A R ( i )  process at several SNR ’s are

presented . In this section a single AR (2) process is

considered . The AR model selected for this experiment has

a complex—conjugate pole—pair located at a radius of 0.9

and a center frequency of ±1000 Hz, referenced to a

sampling frequency of 6667 Hz. This model resul ts in two

AR coefficients: a(l) = —1.05808 and a(2) = 0.81000.

Fig ure 4—25 presents the Inverse spectrum of this AR (2)

operator. This spectrum shows on a dB scale the single

resonant peak resulting from the conjugate pole—pair. The

AR (2) process s(k) is obtained by exciting the AR (2) model

wi th NFl, which is first scaled for a sample variance of

I
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1.0. NF2 is appropriately scaled and added as n(k) to

prod uce x(k) , the data to be analyzed . The theoretical

variance of this AR (2) model Is 4.41735. The sampl e

variance of the AR (2) process generated by using the scaled

NFl noise as the excitation sequence Is 4.43889. With 256

points per fram e, 518 frames of data are available for

analysis. The data in each fram e is corrected for a zero

sample mean prior to analysis by any method. The initial

estimates for the param eters of the ARMA (2,2) model in the

HR method are:

1) for the two AR pa rameters , the ac tual model

coeff icients are used;

2) for the two MA pa r am eters , zeros are used as the

ini tial guesses.

These tests are similar to the AR+N tests of the preceding

section , but in this case the MA parameters In the

equivalen t ARMA(2,2) model are unknown . Hence, the initial

guesses for the MA coefficients are zero.

Using the NR, LPC, and SYW algorithms , the estimation

data for the a(l) and a(2) parameters is listed in Tables

4—22 and 4—23, respectively. Two distance measures which

combine the error for each coefficient estimate into one

parame ter are now de fined : L
q

L[ &(k)J = 
~ [a(i) — £(i)]2 (4.la) r

i 1

-— -- -- — - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —--~~ -- 5 l S .~~_ 
~~~~~~~~~~~~~~~~~~~~~~~ - - -  - -S.---- ~~~~~~~~~~~~
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Table 4-22

Estimates for a(l) = —1.05808 of the AR(2) Process

Sample Sample
SNR Method Mean Variance Frames

HR —1.0547 2.76 x 1O 3 518

sYw —1.0441 1.60 x l0~~ 518

LPC —1.0491 2.58 x 10~~ 518

30 HR —1.0547 2.75 x l0~~ 518

sYw —1.0500 2.79 x ~~~~ 518

LPC —1.0468 2.61 x ~~~~ 518

20 HR —1.0547 2.77 x l0~~ 518

SYW —1.0499 2.79 x l0~~ 518

LPC —1.0258 2.92 x 10~~ 518

10 HR —1.0545 3.16 x 10~~ 518

SYW —1.0500 3.17 x l0~~ 518

LPC — .85837 6.27 x l0~~ 518

0 NR —1 .0505 8.78 x 10~~ 499

SYW —1.0505 2.62 ~ 518

LPC — .34856 9.76 x ~~~~ 518

—10 HR — .69685 4.23 ~ io
1 183

SYW —4.0376 2.66 x l0~ 518

LPC — .05335 7.00 x 10~~ 518

I 

~~~~~~~~~~~~~ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-



,—,--- ~~~ - - - _ _ 
~w

- - -~~~-- _
~ — 

. 
-

159

Table 4-23

Estimates for a(2) = 0.81000 of the AR(2) Process

Sample Sample
SNR Method Mean Variance Frames

NR .80474 1.66 x ~O
’
~ 518

SYW .79584 1.55 x 10~~ 518

LPC .80199 2.32 x ~~~~ 518

30 HR .80471 1.66 x 10~~ 518

SYW .79822 1.74 x 10~~ 518

LPC .79988 2.36 x 10~~ 518

20 HR .80478 1.70 x ~~~~ 518

SYW .79820 1.79 x ~~~~ 518

LPC .78061 2.82 x 10~~ 518

10 HR .80538 2.10 x l0~~ 518

SYW .79894 2.73 x l0~~ 518

LPC .62791 6.67 x 10’~ 518

0 NR .78657 1.81 x io 2 499

SYW .81823 6.25 x io 2 518

LPC .20474 800 x 10~~ 518

—10 HR .45245 2.56 x 10
_i 

183

SYW .42323 1.08 ~ io
2 518

LPC .03104 6.13 x 1O~~ 518
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= 
1 

~~[l — 
a(1)

]
2 

. (4 . lb )

In (4.1) the {a (i)}’~ are estimates of the parameters

{a ( 1 ) J ~~. L ( - J and % L ( ] are shown in (4.1) in terms of the

AR parameters. W i th appr opr ia te sub sti tut ions , these

expressions can also be used to calculate distance measures

between the MA c o e f f i c i e n ts, when known , and their

estimates. The measures are computed at each fram e of

data. The expression In (4.la ) is the sum of squares of

the error between the parameters and their estimates. This

type of error criterion tend s to give more weight to errors

in parameters with a larger magnitude. The measure in

(4.lb) is designed to counteract that tendency. The error

cri terion of (4.lb) computes the difference between the

parameters and their estimates relative to the true value

of the parameter.

The sample statistics obtained by averaging the

distance measures computed at each fram e for the three sets

of AR estimates are listed In Tables 4-24 and 4—25.

t.(a(k)] is given in the former , %L(~~(k)] in the latter. As

seen from the distance measure data , the HR and SYW methods

perform better than the LPC method at all SNR ’s. The

variance of these estimates is alwa ys smaller than that of

the L.PC estimates except at a SNR of —10 dB. The SYW

method performs better than the NR method at a SNR of

Infini ty. However, the HR method is forced to estimate two

MA parameters in that case. Estimating these theoretically

L i  
_ _  

_ _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _  _ _ _ _ _- - - a— 

- 
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Table 4—24

L[~~(k)] Distance Measure for
the AR (2) Process

Sample Sample
SNR Method Mean Variance

HR 2.23 x 10~~ 1.01 x l0~~

SYW 1.77 x ~~~~ - 6.26 x io
56

LPC 2.52 x ~~~~ 1.05 x l0~~

30 HR 2.23 x 10~~ 1.01 x 10~~

sYw 2.36 x ~~~~ 1.34 x 10~~

LPC 2.60 x l0~~ 1.17 x 10~~

20 NR 2.26 x 10~~ 1.04 x 10~~

SYW 2.39 x ~~~~ 1.38 x 10~~

LPC 3.82 x 10~~ 3.02 x 10~~

10 HR 2.65 x ~~~~ 1.77 x l0~~

SYW 3.04 x 2.07 x

LPC 4.30 x l0~~ 1.13 x 10~~

0 NR 1.37 x i0 2 2.28 x l0~~

SYW 4.44 x io
_2 

1.29 x io 2

LPC 4.44 x i0 1 1.36 x io
_2

—10 HR 4.69 x 10
_i 

5.08 x 10 1

p 
SYW 1.39 x 4.82 x io8

LPC 8.15 x 10
_i 

1.20 x l0
_2

_  — —  

_  

_ _
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Table 4-25

%L[a(k)] Distance Measure for
the AR (2) Process

Sample Sample
SNR Method Mean Variance

HR 2.53 x 1.30 x 10~~

SYW 2.14 x 10~~ 9.18 x io 6

LPC 3.00 x 1.48 x i0~~

30 HR 2.52 x ]Q~ 3 1.30 x io~~

SYW 2.70 x 10~~ 1.75 x 1O 5

LPC 3.10 x 1.67 x

20 HR 2.56 x ~SO~~ 1.35 x 10~~

SYW 2.74 x ].0~~ 1.83 x 10~~

LPC 4.58 ,c ].0 3 4 .41x10 5

10 HR 3.04 x l0~~ 2.25 x 10~~

SYW 3.62 x 10~~ 3.08 x 10~~

LPC 5.10 x io 2 1.64 x 10~~

0 HR 1.82 x io 2 4.64 x i0~~

SYW 5.94 x io
_2 

2.78 x

LPC 5.14 x 10
_i 

1.87 x io 2

—10 HR 5.40 x 10
_i 

5.88 x 10
_i

- 

-

~ SYW 1.27 x l0~ 3.87 x 108

-
I LPC 9 .21x10~~ l.59 x 1&2

~ -
- -S.- --- _— _~)~ 

S.
~ 
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zero parameters introduces more uncertainty into the AR

estimates. The SYW again fails badly at —10 dB SNR.

Figure 4—26a) plots the sample mean of L(~~(k)) versus

the SNR. %L(a(k)] is plotted In Figure 4—26b). From these

plots it is ev ident that the HR and SYW methods do extend

the rang e over which the AR pa rameters can be estimated In

the presence of white noise. At 0 dB , the HR estimate has

the same error as the LPC estimate at 14 dB. For the SYW

est ima te , the improvem ent is 10 dB , referenced to the error

at 0 dB for the SYW estimate. From Table 4—22 , it is again

noted that the HR method fails to successfully estimate

param eters in some f ram es at SHR ’ s of 0 and —10 dB.

The Fourth Order Model

The tests of the preced ing sec tion on the A R ( 2 )  model

are now performed on an AR (4) model . The AR coefficients

are: a(l) = —0.49336, a(2) 0.45804, a(3) = —0.28481, and

a(4) = 0.58523. The AR operator with these coefficients

has two Z—plane singularities with a radius of 0.9 at

±800 Hz.  The o ther  two s i n g u l a r i t i e s  hav e a rad ius of 0.85

at +2200 Hz. The center frequencies are referenced tc a

sampling frequency of 6667 Hz. The inverse spectrum of

this AR model is shown in Figure 4—27 in dB. Excitation

for the process is NFl scaled for a sampl e variance of 1.0.

Each frame of data Is corrected for a zero sampl e mean

before analysis with the HR , SYW , and LPC methods. The

i n i t i a l  est ima tes in the NR me thod for  the AR p arame ters

1 )
— 

—— --S.- — - -  
- -~~ - t ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~ S_ ~~L*AS~~~~~~•__ _ ~



rr_ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-S.—-- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ - --‘r-- -— --- --- -

L[ â(k)]

:_ \ \ \
\
\

\ \ ~LPC

\
\
\ \
\SYW

“I

SNR, dB
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AR (2) model coefficients
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are the actua l model coefficients. Those for the four MA

c o e f f i c i e n t s  of the equival ent ARMA (4,4) model are zero.

Tables 4—26, 4—27, 4—28, and 4—29 list the estimates

for a(1), a(2), a(3), and a(4), respectively. The

statis t ics for  the two d istance measure , obta ined by

averag ing the d istance measur e for  each f ram e analyzed , are

given in Tables 4—30 and 4—31. Hote from this data that

the LPC estimates have the smallest error except at a SHR

of infinity. At that SHR, the SYW estimates are sl ightly

better. The improvemen t seen in the first and second order

cases is not evident. It must be realized , howev er , that

the two distance measures used combine the errors for the

Ind iv id ual coefficients into one parameter. Smoothing of

the c o e f f i c i e n t err ors occurs and is more sign i f i c a n t for

the A R ( 4 )  case.

Ta king ano ther approach , the two distance measures are

com puted for each type of estimator using the sample means

for the AR coefficient estimates listed in Tables 4—26

through 4—29. As noted in the resul ts for the first order

model , the val ue of the AR estima tes based on the

t r a n s f o r m a t i o n  model and the HR e s t i m a t i o n  procedure l ies

m a i n l y  In the averag e of a l a r g e  number  of es t imates .  This

is because of the la r ger va r i ance  of the HR est ima tes as

compared to the LPC estimates. The distance measures

defined In (4.1) are applied to the averag e values of the

parameter estimates to determine whether or not the

- -  _ S .
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Table 4-26

Estimates for a(1) = -0.49336 of the A R ( 4 )  Process

Sample Sample
SNR Method Mean Variance Frames

HR — .48417 1.40 x io 2 518

SYW — .48727 2.66 x l0~~ 518

LPC — .48870 4.58 x ~~~~ 518

30 HR — .48265 1.40 x io 2 518

SYW — .48200 1.15 x io 2 518

LPC — .48793 4.62 x ~~~~ 518

20 HR — .48266 1.55 x io
_2 

518

SYW — .48028 1.23 x l0
_2 

518

LPC — .47935 4.73 x lo~~ 518

10 HR — .47231 2.37 x i0 2 517

syw — .47559 2.02 x io
.2 

518

LPC — .40877 5.34 x 10~~ 518

0 NR — .48742 2.15 x i0~
1 469

SYW — .41230 5.96 x 10
_i 

518

LPC — .18913 6.55 x 10~~ 518

- — - - - - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Table 4-27

Estimates for a(2) = 0.45804 of the A R ( 4 )  Process

Sample Sample
SNR Method Mean Variance Frames

NR .44983 1.82 x io
_2 

518

SYW .45059 3.43 x 10~~ 518

LPC .45964 5.71 x 10~~ 518

30 HR .44888 1.84 x io 2 518

SYW .44778 1.54 x 1o 2 518

LPC .45865 5.70 x l0~~ 518

20 HR .45029 1.95 x io 2 518

SYW .44724 1.60 x io
_2 

518

LPC .44662 5.82 x 10~~ 518

10 HR .44611 3.09 x io 2 517

SYW .44789 2.21 x io 2 518

LPC .349 74 6.87 x l0~~ 518

0 HR .48444 3.07 x 10
_i 

469

SYW .52888 1.25 518

LPC .10894 7.05 x ~~~~ 518 

_ _ _ _ _  

L~~~~~~~ W~~~ha. _ 
_ _ _ _  ~~~~~~~~~~~~~~~~ -~~~~S. ~~~~~ 
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Table 4-28

Estimates for a(3) = —0.28481 of the AR (4) Process

Sample Sample
SHR Method Mean Variance Frames

HR — .27538 1.20 x io 2 518

SYW — .27375 3.37 x 10~~ 518

LPC — .27907 5.50 x l0~~ 518

30 HR — .27500 1.21 x io 2 518

SYW — .27460 1.03 x io 2 518

LPC ~~~~. 27798 5.55 x 518

20 NR — .27571 1.19 x io
_2 

518

SYW — .27480 1.03 x lO
_2 

518

LPC — .26659 5.85 x i0~~ 518

10 HR — .27877 1.85 x 10 2 517

SYW — .27789 1.29 ~ io
2 518

LPC — .17874 7.60 x lO~~ 518

0 HR — .29406 1.80 x 10
_i 

469

SYW — .39988 1.33 518

LPC .44233 7.81 x l0~~ 518

I

I
-

- - - _______
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Table 4-29

Estimates for a(4) = 0.58523 of the AR(4) Process

Sample Sample
SNR Method Mean Variance Frames

HR .58194 6.76 x l0~~ 518

SYW .56907 2.69 x 10~~ 518

LPC .57145 4.32 x 518

30 HR .58288 6.69 x i0~~ 518

SYW .57339 6.10 x l0~~ 518

LPC .57051 4.36 x l0~~ 518

20 HR .58389 7.45 x i0~~ 518

SYW .57476 6.45 x 10~~ 518

LPC .56129 4.56 x l0~~ 518

10 HR .59180 1.20 ~ io
2 517

SYW .58034 1.17 x l0 2 518

LPC .48643 5.68 x 10~~ 518

0 HR .58380 1.25 x10 1 469

SYW .67750 5.34 x 10
_i 

518

LPC .24356 7.25 x 10~~ 518

_ _  _ _ _ _  

. 

- - 
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Table 4-30

L(a(k)J Distance Measure for
the A R (4 )  Process

Sample Sample
SNR Method Mean Variance

NR 1.28 x io
_2 

2.76 x l0~~

SYW 3.16 x l0~~ 9.98 ~

LPC 5.09 x ~~~~ 1.87 x 10~~

30 HR 1.29 x io
_2 

2.83 x

SYW 1.09 x 10 2 1.60 x 10~~

LPC 5.13 x 1.94 x 10~~

20 HR 1.37 x io 2 3.29 x 10~~

SYW 1.14 x lO
_2 

1.78 x 10~~

LPC 5.55 x l0~~ 2.50 x 10~~

10 HR 2.14 x i0 2 1.61 x 10~~

SYW 1.69 x io
_2 

5.24 x

LPC 1.63 x 10 2 1.85 x 10~~

0 NR 2.07 x 10
_i 

2.88 x l0 1

SYW 9.37 x l0~~ 9.47 x 101

LPC 1.11 x 10
_i 

1.26 x

- ~~~~~~~~~~ i--. - ~~~~~~~~~~~ . 
~~~~~~~~~~~~~~~~~~~~~
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Table 4-31

%L[a (k)] Distance Measure for
the AR (4) Process

Sample Sample
SNR Method Mean Variance

HR 7.83 x io 2 1.19 x io 2

SYW 1.98 ~ io
2 5.61 x 10~~

LPC 3.19 x io 2 973 x 10~~

30 HR 7.89 x io 2 1.23 x io 2

SYW 6.70 x io 2 7.21 x

LPC 3.22 x 1o 2 1.01 x 10~~

20 NR 8.19 x io 2 1.26 x io
_2

SYW 6.89 x io 2 7 5 8 x

LPC 3.50 x io 2 1.30 x

10 HR 1.28 x 10
_i 

6.51 x io
_2

SYW 9.60 x io 2 1.63 x io 2

LPC 1.04 x 10
_i 

9.27 x ~~~~~~~~~~~

0 
- 

NR 1.23 1.10 x 101

SYW 6.67 6.45 x ~~~

LPC 6.28 x 10
_i 

5.23 x io
_2

~~~~~~~~~~~~~ - -~~~~~----- _ - -—- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - _ _ _ _ _ _ _ _ _
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impr ovem ent seen in the l owe r or der cases for  the NR

estimates becomes apparent when the averag e statistics are

used . Designating these measures as L(a(k)] and %L(a(kfl ,

the results are listed in Table 4—32. Figure 4—28a) is a

plot of the L[~~(k)] data in Table 4—32 versus SNR. The

%L[à(k)] data in Table 4—32 Is plotted In Figure 4—28b).

The following points are noted :

1) The LPC estimates have the smallest error at and

30 dB SNR ’s.

2) For SNR ’s below 30 dB , the HR estimates have the

smallest error.

3) The HR est ima tes ar e superior  to the SYW estima tes

except at 10 dB.

Data at —10 dB SNR is not presented because of the lengthy

com putation time for the NR method for the AR (4) process.

As seen In the first and second order cases, al l  methods do

poorly at — 10 dB SHR. From Figure 4—28, I t Is ev iden t tha t

the HR and SYW methods again prov ide an extension of the

successf u l  opera ti ng ran ge when estima ti ng AR param eters in

white noise . Using the distance measure curves in Figures

4—28 a) and b) , the HR estimate error at 0 dB is equal to

thi~ LPC estimate error at approximately 22 dB. The

estimates from the SYW method provide a 10 dB improvement.

The SYW estimates at 0 dB are significantly poorer than the

HR est ima tes , however . The resul ts achieved by applying

the distance measures to the averag e values of the

— ~~~~~~~~~~~ - -- ___ ~~~~~~~~ --  ~
• ° —~~~—~~~~~—--~~~~~~~~~~~~~~~~~ 

- 
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Table 4-32

L[a(k)] and %L[~~(k)] Distance Measuresfor the AR (4) Process

SNR Method L[a(k)J

HR 6.29 x l0~~ 4.49 x l0~~

SYW 1.19 x 6.72 x

LPC 6.18 x 10
_s 

2.66 x

30 NR 7.51 x 10~~ 5.18 x

SYW 1.20 x ~~~~ 6.82 x

LPC 7.33 x 10~~ 3.33 x l0~~

20 HR 6.48 x lO~~ 4.46 x

SYW 1.24 x 7.04 x 10~~

LPC 3.08 x 1.80 x

10 HR 1.66 x l0~~ 7.69 x

SYW 1.23 x ~~~~ 6.12 x

LPC 9.97 x 6.31 x io
_2

0 HR 2.05 x 10~~ 1.13 x l0~~

SYW 8.34 x i0~~ 5.98 x io 2

LPC 2.15 x 10
_i 

1.96

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

~~~
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coefficient estimates again point out the need to use the

estimates from individ ual frames with caution.

-t
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CHAPTER 5

CONC LUS IONS

summary

The first experim ental resul ts in the preceding

cha:ter illustrate the effects of additive white noise on

the sample spectrum of a fram e of voiced speech. These

data , shown in Fig ures 4—2 a)—e) , also show the 10 pole LPC

fi t to the sample spectrum . The results for this fram e of

speech are given for several SNR ’s. Using the same frame

of speech , Figure 4—3 presents the auto— and

cross—correlations obtained from the data and four 10 pole

LPC spectra , Including the LPC spectrum arrived at by

assuming the signal and noise are uncorrelated . The data

plotted in Figure 4—3 demonstrate the risk associated with

assuming independence betw en the signal and noise.

The nex t set of experiments tests the appl icability of

the mode 1 estimation procedure due to Steiglitz (35].

Tha t algori thm is used to est ima te the parame ters of a 10

pole, 2 zero model from data generated using three

different inputs. The input sequences used to drive the

model are:  1) an impuls e, 2) an impulse tr a in , and 3) a

white noise sequence. The resul ts, plo tted in Figures 4—7

through 4—17, show this method Is useful for impulse and

A
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impulse train excitation. However , the perf ormance is poor

for the noise excited case. It is the noise excited case,

unfo rtunately, which is most important in this research.

In the collowing set of experiments, several

estimation algorithm s are applied to data generated from an

AR (l) process , with the single AR coefficient a(l) = 0.5,

that is degrad ed by additive white noise at various SNR ’s.

These ex per iments  test the val i d i t y  of the AR—to --ARM A

t r a n s f o r m a t i o n  model for  the f i r s t  order  case . Results

f rom these tests c lea r ly  show the nature of the est imation

problem to be the minim ization of a two dimensional

quadratic surface. The estimate for a(l) obtained from the

autocorrelation method of LPC has the smallest variance of

the estimators tested , but at SNR’s below 20 dB a severe

bias is in troduced in the estimate. An estimate obtained

from a Newton—Raphson impl ementation of a conditional

max imum likelihood formulation provides a superior estimate

at SNR ’s through 0 dR based on the averag e of the

estimates for a(].). The variance of the NR estimate is

larger , however. An estimator referred to as the ~shifted”

Yule—Walke r estimator yields resul ts similar to the NR

estimate. This estimator requires operations similar to

LPC and only provides estimates for the AR coefficients .

The SYW estimate does take into account the MA component of

the transformation model , where the LPC method does not.

All estimates perform poorly at a —10 dB SNR.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _______
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The las t two se ts o f experimen ts appl y the NR, LPC,

and SYW estimators to an AR(2) process and an AR(4)

process , each degrad ed by varying levels of additive white

nnlse . Again , the NR and SYW estimates are superior to the

LPC estimate in the 0 dB to 30 dB SNR range. In the AR (4)

test , however , this improvemen t Is apparent only when the

distance measure used is appl ied to the averag e values of

the estimates. This again emphasizes the Importance of

averag ing the estimates in the NR method .

Contributions

This research illus trates the effect of additive white

noise on speech. It also points out the risks of the

assumption of uncorrelated signal and noise . This

assumpt ion is of ten made in what the author calls

autocorrela tion correction methods for noise suppression in

LP algorithms.

The major contribution of this work Is the

experimental verification of the AR—to—ARMA transfo rmation

model . This model states that the addition of white noise

to an AR process produces a da ta sequence which is an ARMA

process . Test resul ts for this model , presented in Chapter

4, show that est imates for the AR coeff ic ients obtained

from algori thm s based on the transfo rmation model are

superior to those obtained us ing the autocorrela tion me thod

LP algori thm . This superiority, however , is achieved by

averag ing a large number of estimates. The variance of the

.Ji
—— ~~‘ - —-f ~-—~~---~-~~ ~~~~~~~~~~~~~~~~
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transformation model estimators tested Is large at the

poorer SNR ’s. This places the value of AR estimates

prod uced by these methods from a single fram e of data in

question.

Directions for Future Research

Guide l i ne s  fo r  ex tens ions  of t h i s  research are  l imi t ed

to the AR—to—ARMA transfo rmation model . The experimental

data show the val ue of the model for AR(q) models wi th

q = 1, 2, and 4. Tests on highe r order models should be

under taken . Al so , d i f f e r e n t  k inds  of AR models could be

studied . For exampl e , the A R ( 2 )  model migh t  hav e two real

roots, or the complex roots can be shifted farther from the

unit circle. If the analysis of higher order models ,

q = 10, tor example, is successful and if the problem of

the large variance of the estimators can be alleviated ,

this technique might then be applied to the analysis of

speech signals.

Anderson’s paper [2] proposes several estimation

techniques based on the NR and GN methods. Those using the

frequency domain approach are not used in this work . In

their most useful form , these methods estimate the AR

coefficients and the MA covarlances. If there is no reason

to explicitly estimate the MA coefficients , as was desired

for this research , the frequency doma in methods are

probably of more value If the nonlinear reg ression on the

AR coefficien ts is to be used . That operation is based on
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the nonlinear relat ionship between the MA covariances and

the AR coefficients that resul ts from the noise model.

There could be an advantag e In estimating the MA

covariances directly. The nonlinear regres~ lon suggested

by Pagano [30) should be tested to see If it improves the

AR parameter  e s t imates .

Al so , ar tificial res tric tions were placed on the

nature of the experiments in this research. It was assumed

in all tests that the orders of the ARMA process are known .

In addition, the parameters of the true model were often

used as the initial parameter estimates. These assumptions

were made to concentrate the experiment on the practicality

of the transfo rmation model and the estimation algorithm ’s

ab i l i t y  to produce accurate parameter estimates based on

that  model . These r e s t r i c t i o n s  mus t be removed in a

practical analysis system . The problem s of e s t imat ing  the

process order and initial parameter estimates have been

deal t with extensivel y In the literature (1], (101, (15],

(27], [29], (37], and (38]. The assum ption that the

additive noise is white is also r e s t r i c t i v e .  The ex tens ion

of the model to allow n(k) to be non—white introduces the

need for add itional nonlinear analysis once estimates for

the AR parameters for the data are found . The reader Is

referred to (10] for a discussion of this problem .

One of the experimental parameters noted in tests of

the NR method is the number of frames successfully analyzed

——-—- —~~~ —-.--—. -~~~~~ ---,--.~~ ---~~---—-- - ----~ ~-—------- -



184

by the algorithm . This success is a function of whether or

not the Gauss elimination procedure fails In solving for

the ARMA parameters. At SNR’s of 0 and -10 dB, more frames

resul t in failure of the Gauss elimination method. This

indicates increasing instability In the NR algorithm . Some

of the estimation procedures discussed in Chapter 2 could

cancel this trend .

Finally, the NR algorithm requires muc h more

com putation than the L.PC or SYW methods. This research

does not consider the detailed computational requirements

of the algorithms. Further work should take this into

account. Efficient FORTRAN cod ing is used In the programs

which implement the algorithms discussed , but prog r amming

in assembly lang uag e could produce considerable

com putational saving s, as would use of an array processor.

L 
_ _ _ _  

_ _ _ _ _ _ _
- 
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APPENDIX A

In Chapters 2 and 3, men tion is made of the

Newton—R aphson and Gauss—Newton methods fo r  n o n l i n ea r

parameter estimation. This appendix discusses the

generalized formulation of these methods. If 0 is the

n x 1 pa r ameter vec tor and Q (O) is the scalar cost

function , then one seeks the appropriate choice for 0 which

will optimize Q(e). Defining g(0) as the n x 1 gradient

vec tor , the ith element  of g (~ ) is g (~ ) 
= aQ(o)/ao..

Except for the case where Q (0) is l inear in 0, 9 (0 )  will

also be a function of o. The optimum solution 0* is found

by solving the n equations g.(o*) = 0, 1 = 1, ... , n.

The NR method proceed s by linearizing about 0 the

vector form of the following equation:

* *a(° ) = + ~~ (0) (0 - 0)

Setting this equation equal to zero yields

*+ a’ (2) (2. - 2.) = 0

Solving for ~~* gives

* —1
2. = 2 . —  [a’(2) 1 a(2.) 

• (A. 1)

The term g ’(O) in (A.l) is the derivative of the vector

g ( o ) with respect to 0 and is an n x n matrix . This term

is also the second derivative of Q(0) with respect to 0 and

.~— - .-__ -___~:___ — -
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is designated 11(0), the Hessian of Q(0). The 1~ th element

of H(0) is

= 

~o~~~ej

using the d e f i n i t i o n  for  1 4( 0 ) ,  (A . l )  becomes

* —12. = 2. - ~ (2.) a(2.) • (A .2)

This is the usual formulation for the NR method . An

ini tial gue ss 2. is requi red , and the gradient g (O) and the

Hessian 11(0) are evaluated at that initial point .  Equation

(A.2) is then used to generate a new estimate 0* for the

parameter vector. These steps are usually repeated to form

an iterative procedure.

Developmen t of the GM method is based on the

assumption that the cost function Q(0) can be written in

quadra tic form:

Q(!) = ~T ( 0 )  
~

(2) , (A.3)

where is the n x 1 parameter vector and F(0) is an m x 1

vector of non l inear  func tions , where m > n. In this case

the n x 1 vector gradient of Q(O) is

= }~~~
= 2 F’(O) !~(2.)

where F’(e) is the n x m matrix of partial derivatives of

with respect to 0. The 1~ th element of F’(O) is

aF .(o )
= 

‘

where F~ (o) is the jth element of the vector F(0). The

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Cost function Q(0) is optimized by setting (A.4) equal to

zero. This gives

* *!‘(! ) 
~(! 

) = 0 (A.5)

*as the equation from which the optimal solution 2. ~
*determined . Linearizing F(0 ) about 2. yie lds

* T *!(2. ) = !.(2) + F’ (2) (2. — 2.) • (A .6 )

*Substituting (A.6) into (A.5) for F(0 ) gives

* T *
~‘ C 2. ) EEC!) + E’ (2) (2. — 2 ) 1 = 0 • (A . 7 )

* *If 0 is close enoug h to 2. ~ then F’(O ) in (A.7) can be

approximated by F’(!) and (A.7) becomes

T *E’ (2) [
~
(!) + ~“ (2) (2. — 2.)] = 0

*Solving this for 2. one obta ins

* T -1
2. = ! — EE’ (2) r (2.)]  !. ‘ (2.) !.(2) (A.8)

as the computational procedure required in the GN method .
*Again , an ini tial guess for 0 is required before 2. can be

com puted . Equation (A.8) is usually impl emented as an

iterative algorithm .

)



APPENDIX B

In the literature rev iew presented in Chapter 2, three

sources on the Gauss—Newton and modified GN methods are

given (16], (17], (19]. The GN formulation presented in

these sources is recommended for performing the nonlinear

reg ression on the ARMA est ima tes as sugges L~~ by Pagan o

(30]. The nonlinear regression (NLR) techni que needed for

the ARMA model approach to pa r ameter  e s t ima t ion  attempt s to

find the vector 2. w h i c h  m i n i m i ze s s ~~
z = f(0) + e . (B.1)

If the minim ization is accomplished in the least squares

sensc- , the loss function measuring the perf~ rmance of a

par t i cu la r  2. is given by

2q+ 1
Q(0) = 

~~ 
[Zk 

— f (~~) ] 2 
, (8.2)

k=1 k

where the 
~k~ °~ ’ 

k = 1, ... , 2q+l are the non l in ear

relationsh ips which map from the q+2 parameters of 2. to the
2q+l parameters of z. The linear term s of the Taylor

ex pansion for abo ut 0 are

* 
q+2 

* ( • )

~ 
fJ~~2) + ~~1

(0~ 
— ~~ ~~~~~ ( a )  , (8.3)

k — 1, ..., 2q+1. In (B.3) f~~fl’ ( 0 )  indicates the partial

derivative of f
k
(e) with respect to the jth com ponen t of e.
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Denoting the partial derivative of Q (0) with respect to the

1th parame te r of 2. as Q(1) (2) ,

Q
(1) (9) = —2 

:~l
EZk ~k~2.

fl f~~~)
(Ø )  , (8.4)

i 1, ..., q+2. The least squares equations are obtained

by sett ing Q
U) (0)  0, for I = 1, ... , q+2, an d solving

*for the solution 2. ~ as in

2q+ 1 * . *
~ 
[zk 

— 

~k~! ~
] 
~1~
’
~~(! 

) = 0 . (B.5)
k=1

Substituting (B.3) into (B.5) for f
k(o

*) gives, for i = 1,

q+2 ,

2q+l

~ 
[zk —

k=].

q+2 
* ( • )  ( • )  *

— 
~~~~~~~

(0
~~~ 

— O
~~~~~) 

~~~~~~~~~ 

(0)1 f~’ (0 ) = 0 (3.6)

or

2q+1. 
*

~ 
[Zk — 

~~~~~ 
f

(1) (Ø ) =
k=1

2q+l q+2 * ( • )  ( • )  *Y J — O~ ) 
~k ~

) 
~k 

(! ) • (B. 7)
k=1 ]1

Define D . = 0~~~ 
— 0 . and (8.7), after changing the order of

summation , becomes

q+2 2q+1 
~~~ (i)}

~ Dj  ~ f~~ (2) 
~k 

(2) =

j=]. k—i

2q+1
~ 
(Zk — 

~k~~
)1 f

(1)
(~~ ) , (3.8)

k=i

j
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i = 1, ..., q+2.  In d e r i v i n g  (8 .8 )  f rom ( B . 7 ) ,  a l l  terms

f~~ ) (!*) are evaluated at 0~. By using (B.8) and the

relatIonship 2. = 2. + D , the procedure for obtaining the

new estimate of 2. is defined . The process is mad e

*iterative by letting 2. = 2. and repeating the process

described by (B.8). The process described above is the

Ga uss—Newton method fo r  per forming a nonlinear reg ression.

The m o d i f i e d  Ga uss—Newton technique can also be used

[19], (29]. If 3(0) is defined as the Jacobian matrix ,

where  the ~~th el ement of 3 ( 0 )  is g iven  by

J . .  = a f . ( o ) / a e . ,  then ( B . 8 )  can be wri tten in matrix fo rm

as

JT(0) Jc~) D = ~T(0) [z - f(0)] . (B.9)

With  th i s  no ta t i on  establ ished , the m o d i f i e d  Gauss—Newton

method for NLR can be wri tten as

w [J T ( 0)  
~(2.) + A i]  D = 3

T ( 0 )  [z - t(2)] (B.10)

The parameter w in (B. 10) is chosen to ensure  tha t
*

~~ 
) .1 Q (2.) •  The parameter A is selected to guarantee the

inver tibility of [JT(0) J(0) + A I].

For the general Gauss—Newton method described above,

knowledge of the nonlinear func tions 
~~~~ 

and the par tial

derivatives f~~1) 
(2) is required . In the specific case of

an AR process obscured by additive white noise , the

functions fk(!) are derived from

L~ —---~ a—-
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q-k
R (k) = a2 6(k) + ~2 

~ a(i) a(i+k) , (8.11)yy

where 6(k) is the Kror ~~cke r de l ta  f u n c t i o n  and a ( 0 )  = 1.0.

The partial der ivatives of 
~k~

°1 are taken with respect to

the elements of 0: a(l), ... , a(q) , a~ , and a~~. The

are g iven by

= a(j)

= + ~ •~~0
a2u

= c1~ •~~~
a(i) a(i+j)

for j = 1, ..., q. If 
~~~~~~~~~~ 

= f~
1)(0) and = a(i) ,

= 1, ..., q, 8q+1 = a~~ and 8q+2 = a~~ then the

are

(2) = 6 (k—i)

= 2 a(j)

f(q+l) 8) — 1q+1 ~~~ 
—

~~~~~~~~~ 
(2) = ~~a

2 j)

~q+i+k~
2) a1~ 6(k—j) + a~ (< a ( j + k ) >  +

Ia(m) , m = 1, •.. , q
< a C m ) >  =~~~

otherwise

f(q+].)(0) — 0q+1+k — 
—

_ _ _  ~~~~~~~~ :~~~~
-

~~
-
~~~

--
~ ~~~~~
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~~a ( i )  a (i+k)  ;

for  j , k = 1, ..., q and i = 1, ..., q+2. Assembling the

f (i )  (0 )  In to  a m a tr i x  J ( & ) , wi th the ~ 1th element of J(
~ )

being J .. = f~’~~( o ) ,  gives the Jacobian matrix .

I

— ,.~_*~__ ____~~___ ._______ ~~ - --- -. ~~--.  .- — -- - ~~— --- -~ —--~ --- -- —_.k~~~ - --~~
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APPENDIX C

In Chapter 3, the AR(1)—to-ARMA (l,1) transf o rma t ion

model is disc ussed in d e t a i l , w i t h  n u m e r i c a l  r e su l t s  fo r

that model presented in Chapter 4. Equations (3.40) and

(3.41) of Chapter 3 giv e the expressions for the parameters

b and of the ARMA(1 ,1) process obtained by adding white

noise to an AR (1) process , wi th a (1) - a the single AR

parameter. Those equations are repeated here as (C.l) and

(C.2):

b = ~ (~~
2 

+ a2 (1 + a2)] +
2 o ~~ a

[[a 2 
+ ~

2 Cl + a2)]2 — 4 a~ a~ J 1”~), (C.1)

2 2 a
°v 0n b •  (C.2)

The parameters b and possess certain properties . For

exam ple , it mus t be shown that b - b or b b+ is real.

The parameter a~ is the variance of the ARMA excitation

sequence v(k) and must be a real , positive scalar.

Firs t, the proper t ies o f the MA coeff ic ient b are

examined . If c is defined as the argument of the radical

in (C.l), c becomes

c — [c~ + a~ ( 1 + a2)]2 — 4 a~ a
2

C. 4I~~~
—-- _s_ _~

__ -- - - — -  __.. 
.—~ - -----—~~~ --- — -- - .~~ — — - --—- - -. ~—s -~~~

_ — - ----
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c — ~4 + 2 a2 + a 2 Cl  + a2) + a 4 ( 1 + a2)2 — 4 a2
£ C fl n n

Simplifying this expression gives

c = u ’~ + 2 ~2 ~
2 (1 + a2 ) 4 (1 — a2 ) 2 

. (C.3)
C C n n

By definition , is positiv e, a~ is non— negative , and a is

a real number. In add i t ion , to satisfy the stationarity

requirement [10], la l  < 1 0 .  W i t h  these p rope r t i e s  fo r  a ,

a 2 , and a~~, one sees t h a t  c is rea l  and c > 0. This

establishes the first property given in Chapter 3: b is

real (either b_ or b~)

De f i n I ng

b_ = ~ ([az + (1 + a2 ) ]  - [c]1”2)
2 a

and

= 

2 a~ a C a~ (1 + a2 ) ]  +

note that

b b4 a~ a2 (~~~2 + a~ (1 + a2 ) ] 2 
— c)

4 a~ a2 [4 a~ a J = 1

and b + - 1/b . Because they are rec iprocals and real , b .

and must have  the sam e si g n .  One can thus  deduce from

( C . 1 )  that  the s ign  of the  nu m e r a t or  in  (C. 1)  is th~ sam e

for  b and b 4 . T h i s  e s t ab l i shes  two fac t s:

1) th. sign of b equals the s ign of a ;

2) b < 1b 4 1 ( fo r C > 0 ) .
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Using 2) and the fact that b+ = l/b_ , one deduces that

lb_ I < 1.0. Th i s  completes the d e r i v a t i o n  of p roper ty  2) - 
--

in Chapter 3.

Knowing that a~ > 0 in (C.2) and using fact 1) above ,

we can state that > 0 and a2 is real (since a , b , and

are real)  , p r o p e r t y  3) of Chapter 3. D e f i n i n g

= c~~ a/b+ and a~ _ = a~ a/b_ , then

2
2 a~~a

= b+

= a~ a b

= b2 rt a
)

= b2 a2 (C.4)

establishes the last property required for the development

in Chapter 3.

Hav ing developed the properties for b , b
+
, a~_ , and

or
2

4
, we proceed to illustrate how these parameters behave

for extremes in SNR. Recall from Chapter 3 that the

variance of an AR (l) process is a~ a2/(l — a2). If

SNR = a2/02, we are concerned about the behav ior of the MA

parameters as SNR+co (a~~÷0) and SNR -’- O (O~~ +~~). The

characteristics of these parameters will be developed by

looking at b and a~~. The parameters b+ and a~4 can then

be characterized by using the properties developed above.

Defining N as the numerator of (C.l), using the minus

_ _ _ _  _ _I’ ______— — . - _ _ _  -. - - -

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
-h——- ~~~~~~~~ ~~~~~~~~~~~~~~~ . ~~~ _~~~~_ _ _  ...~ — -- -— -~ .—~~ __  . —~-- — —  _. .—-—..- -- -~
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s ign , and D as the denomina to r  of (C .1) ,  b_ — N/D .
Case I: SNR+— ,

For b_ , consider

N .u r n  b_ = u r n
2 2a~ +O

u r n  N ’
a~ ÷O 0
rim
a2÷0n

where N ’ = dN/da~ and D’ dD/d a~ are requi red  in the use
of L’Hospita]’s rule . behav ior of a is given by

lim a2 — a i im  .~~~
2 V~ 2a~+O

a 1.irn F”

— _________

u r n  N ’
a 2 on

4 a
(4 a~/a~) 

C

where N’ = d2N/d(a2)2 and F’ d2(a2 D)/d(a2)2, In
summary, as the SNR approaches Infinity, b - s o and
From b

+ — 1/b and — b_ a2 , we see that b4-s- -= and

Case II: SNR+O ,

As the level of noise increases, b_ approaches a in value:

L ~~- 4 -  —_
~~~~~~~~~~ ‘.- _ -~~~ ~~~ - - - 4 - -- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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NUrn b_ = Urn

2N/a
u r n  2 i
a -

~~~~~

2 a2 
—- 2 a  — a .

The behavior  of the v a r i an c e  a~ Is g iven by

2 . 2 alim o = lim o —

2 V 2 -an+=

=

For b4 and a~~~, we hav e b4 -s 1/a and a~~ + — as SNR + 0. The
resul ts for the behav ior of these parameters from Case I
and Case II is summarized in Table 3—1 .

1
~~Ii~ - - — — ----4--- ___________ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 



APPENDIX D

Anderson, in his presentation of estimation procedures

for ARMA models (2], uses a matrix notation to simplify the

equations involved . For the time domain approach a matri x

operator is required which will impose the assumption of

zero ini tial cond itions on the ARMA process x (k) and the

L 

excitation sequence v(k). If x(O), ... , x(N—l ) are the

observed data , the operator is the N x N matrix L, given by

0 0

I 0—N— i

where is the (N—i ) x (N—i ) id entity matrix. If N = 5,

for example, L is

0 0 0 0 0

1 0 0 0 0

L =  0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

For this N = 5 case , is found to be

- 

- ~~~~•4 ~~“ 
~_ .~~~~~___ .__~~~.j 

- 

—
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0 0 0 0 0

0 0 0 0 0  
~~ 0

L2 1 0 0 0 0 =
13 

0
0 1 0 0 0

0 0 1 0 0  
-

In general , L1 is

0 0

~N~ i 0

The e f f e c t  of p r e — m u l t i p l y ing  a vec to r b j  L1 is now

examined. Forming the data vector x , x — (x(0)

x(N_l)]T, we have ~ = (0 ... 0 x(0) ... x(N_ l_ i )]T. The

mul ti p l i c a t ion by L1 shifts the elements of the vec tor x

down I places , in troduc ing zeros in the first I positions.

In scalar form the ARMA(q,p) process x (k) is giv en by

q p

~ a(i) x(k—i) = ~ b(j) v(k—j) , (D.l)
i=0 j=0

with a(0) — b(O) = 1 and x (k) — v(k) — 0 for k < 0. Noting

that — 1N’ the matrix formulation for (D.1) is

q . p

~ a(i) L~ x = ~ b(j) t) v . ( D . 2 )
i=0 j=0

Defining the matrices A and B as

q
A =  ~~a(i) L

i=0

and

p
B —  ~~b (j) L~

j—0

-I

—.-- --- -

~

---—--- — - - ———---—--- —‘- ---
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(D.2) becomes

(D.3) -

To see what form A and B have, consider the case where

p = 2 and N — 5. For this exampl e the matrix B Is

1 0 0 0 0

b ( 1)  1 0 0 0

8 =  b (2) b(l) 1 0 0 .

0 b ( 2 )  b ( 1)  1 0

O 0 b ( 2 )  b ( l )  1

As seen in th i s  exampl e , the e lements  along each d iagona l  
-

are equal and the m a t r i x  Is lowe r t r i a n g u l a r .  The m a t r ix  A

has the same form .

As described in Chapter 3, - the parameter estimation

procedure requires the generation of n x 1 vectors of the

form = 8 1x. Given the matrix B as described above, we

are in terested in the structure of B
_ i
. Since B is lower -

- -

t r i ang u l a r ,  B~~ w i l l  also be lowe r triangular . Al so, the

elements along the diagonals of B~~ are equal. Designating

the first column of B~~ as the vector

8 = (8(0) 8(1) ... 8 ( N _ i ) ] T , we have B8 (1 0

Equating the elem ents of the left and right hand sides of

this equation and solving for the 8(k), k — 0, ..., N—i,

gives

8( 0 )  = 1

k
6(k) = — ~ b(i) 8(k—i), k = 1, - , p—i

i—i -

. .Li: .-~~~
---~~~~~~

---- 
~~~~~~~~ - --- -—— -.- ~- —4 —4—— — 4—-—--- .4 ——
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p
3 ( k )  = — ~ b ( i )  8 (k—i), k = p, •~~~~

- , N—i
i—i

For the p = 2, N = 5 ex ampl e used above , B~~ is of the form

1 0 0 0 0

D C l )  1 0 0 0

= 8 (2) 8 (1) 1 0 0

8(3) 8(2) 8(1) 1 0

8(4) 8(3) 8(2) 8(1) 1

The m a t r i x  A 1 is formed In the same manner as B 1 and has

the same properties : lower triangular and equal elements

along the diagonals. 
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APPE NDIX E

In Cha pter 3 an expression for the estimator of the

variance of a noise sequence is developed . Two measures of

the usefulness of this estimator are Its sampl e mean and

variance . The devel opment of the sample variance of the

est ima tor requ i r e s  knowl edge of the four th m omen t of a

normal random variable.

If n is a r . v .  w i t h  d i s t r i b u t i o n  N ( p , o 2 ) ,  then the

mom en t gene r a t i n g  f u n c t i o n  of n is

M~ (t) = exp{pt + t2 o~ ) . (E.1)

Differen tiating (E.l) with respect to t g ives

= a~E
M ( t ) = (p + to2 ) M (t)

The 1 th d e r i v a t ive of M (t) wi th respect to t is

M~
’
~ Ct) = -

~~~-,- M Ct)
dt1 ~

= (p + to2) M~~~~~~(t)

+ Ci — 1) M 2
~~(t )  . C E . 2 )

Equat ion ( E . 2 )  is valid for I > 2.

The i th momen t of n is found by evaluating M~
’
~ (t) at

t — 0. Thus , the f o u r t h  moment  of n is

L - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ 
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= p 4 
+ 6 2 2 

+

If E ( n )  = p 0 as i n  Chapter  3 , the  f o u r t h  moment  of n is
g iven  by

E [n 4 ] = M~
4
~ (0) = 3

‘~ ~
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