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ABSTRACT

S————— L

Applications of linear prediction (LP) algorithms have
been successful in modeling various physical processes. 1In
the area of speech analysis this has resulted in the
development of LP vocoders, devices used in digital speech
communication systems. The LP algorithms wused 1in speech
and other areas are based on all-pole models for the signal
being considered. With white noise excitation to the
model, the all-pole LP model is equivalent to the
autoregressive (AR) model.

With the success of this model for speech well
established, the application of LP algorithms in noisy
environments is being considered. Existing LP algorithms
perform poorly in these conditions. Additive white noise
severely effects the intelligibility and quality of speech
after analysis by an LP vocoder.
~——>=1t is known that the addition of white noise to an AR
process produces data that can be described by an
autoregressive moving-average (ARMA) model. The AR
coefficients of the ARMA model are identical to the AR
coefficients c¢cf the original AR process. This dissertation
investigates the practicality of this model for estimating

the coefficients of the original AR process. The




mathematical details for this model are reviewed. Those
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for the autocorrelation method LP aléorithm are also

discussed.

Experimental results obtained from several parameter

—

estimation techniques are presented. These methods include
the autocorrelation method for LP and a Newton-Paphson
algorithm which estimates the ARMA parameters from the
noisy data. These estimation methods are applied to
several AR processes degraded by additive white noise.
Results show that using an algorithm based on the ARMA

model for the data improves the estimates for the original

AR coefficients. _
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CHAPTER 1
INTRODUCTION

In the analysis of physical processes, one of the
first steps taken 1is the development of a mathematical
model which 1is representative of the process. Some
examples of successful models for physical processes are
those presently being used in the analysis of speech. One
especially useful model 1is that based on all-pole linear
prediction (LP). LP algorithms are important in both major
areas of concern in digital speech communications:

1) high quality synthetic speech and
2) 1low bit rate communications systems.

Unfortunately, few physical processes can be measured
without error. In many cases where measurement error is
insignificant, the desired signal 1is corrupted by some
other noise source. Since parameters of the model are to
be inferred from the data, the estimation algorithm must be
robust if it is to be useful in noisy situations. That is,
the estimation algorithm should produce acceptable
parameter estimates from data degraded by the types of
noise expected in the system. This should be accomplished
over a wide range of sighal-to-noise ratios (SNR's). Most

of the evaluations of LP algorithms, however, have been
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2 i
performed with high quality speech inputs having minimal
background noise. When noise is added to a speech signal
prior to analysis, the intelligibility and quality of the
synthetic speech generated by the LP system are degraded.
The addition of noise causes problems in four areas:

1) silence detection,
1 2) voiced/unvoiced determination,

3) pitch period calculation if voiced, and

4) identification of the LP coefficients.
McAulay [26] has addressed the first three problems. This
research 1is concerned with problem 4), the identification
of the <coefficients of the all-pole model when the
degradation is due to additive white noise.

With white noise excitation, the all-pole LP model for
speech is identical to the autoregressive (AR) model
discussed in many texts. The research presented here
specifically deals with a model for an AR process plus
white noise. The data resulting from the addition of white
noise to an AR process is an autoregressive moving-average
(ARMA) process. The moving-average (MA) component of the
model is equivalent to an all-zero specification for a
system. In this dissertation, the model for an AR process

plus white noise will be referred to as the AR-to-ARMA

transformation model. A detailed description of this model
is presented in Chapter 3. The most significant feature of

this model emphasized here is the following: if the AR

;.I




3
process to be identified 1is degraded by additive white
noise, the AR parameters of the data are identical to those
of the original AR model.

The addition of the white noise introduces MA
parameters. Parameter estimation methods must take into
account the presence of the MA characteristics of the data.
Intuitively, an analysis system based on the ARMA model
should be more robust in white noise environments than
linear predictive coding (LPC) systems, which deal only
with AR parameters. This robustness arises because the
model explicitly accounts for this kind of noise. ARMA
estimation procedures, however, are more difficult to
implement than AR estimation methods. The MA portion of
the model introduces nonlinear relationships. Solutions
usually involve iterative schemes. Also, use of these
methods requires significant modifications of the LP
analysis procedure, even though the AR parameters are the
goal of each method.

The primary objective of this research is to determine
the applicability of the AR~to-ARMA transformation model in
estimating the parameters of the desired AR process.
Intuitively, algorithms based on this model should perform
better in white noise environments than the LP algorithm,
which ignores the MA component of the data. The possible
benefit of parameter estimation procedures derived from the

AR~to-ARMA transformation is improved operating




4
characteristics of the system in white noise <conditions.
Specifically, the objectives of this research are:

1) TIllustrate the effect of additive white noise on the AR
coefficient estimates produced by the autocorrelation
method of LPC.

2) Test several estimation procedures based on the
AR-to-ARMA transformation on data generated from known
ARMA models.

3) Apply the most promising methods to data generated by
adding white noise to known AR models. This will be
done for several AR models over a wide range of SNR's.

4) Compare the results of 3) with those obtained from LPC.

5) 1Identify areas for future work.

There are some restrictions placed on the scope of
this work. These qualifications are made to reduce the
complexity of the model for the noisy data and to emphasize
the estimation of the LP coefficients. First, only
additive white noise will be considered. In that case, the
AR coefficients of the data are identical to the AR
coefficients of the desired AR signal. If the noise is
non-white but can be described by an ARMA model, the AR
coefficients of the data are no longer equal to those of
the original AR process. An additional estimation stage,
based on nonlinear relationships, would be required for the

non-white noise environment.

Second, if the original AR process is of order q, that

.
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is, there are g AR coefficients, it is assumed that g is
known for this AR(q) model. Otherwise, g must be estimated
from the noisy data along with the coefficients. The
emphasis here is meant to be on the estimation of the
coefficients.

The third restriction is that q will be 1limited in
value to four or less for most tests. The parameter q is
restricted to these small values because the variance of
the parameter estimates tends to increase as the number of
parameters in the model increases. Also, the computational
requirements for some of the ARMA estimation algorithms are
large, resulting in long experiments on the general purpose
computer used in this research. Demonstration of the
performance of estimation algorithms based on the

transformation model for these low order processes should

be sufficient to indicate the advantages and disadvantages
of that approach.

Finally, as stated in objectives 2) and 3) above,

tests are performed on known ARMA models. This implies
that all data analyzed are synthetic in the sense that all
processes are generated from specified models using
approximately white noise sequences as the excitation.
This has definite advantages over tests performed on data
from unknown ARMA models. First, there is the confidence
that the data actually comes from an ARMA process. Second,

the parameter estimates can be compared directly with the
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parameters of the generating model. Third, experimental
specifications such as SNR's can be given with greater
certainty. Also, in those algorithms requiring initial
estimates for the parameters, the parameter values of the
generating model can be used. This removes any
uncertainties due to initial estimates from the
experiments, which are primarily concerned with identifying
the AR parameters using the AR-to-ARMA transformation
model . It must also be stated that the computational
requirements of various algorithms are not considered in
this research. No algorithm is dismissed simply because it
requires a higher computational 1load than algorithms

already in common use.

‘

Data presented in this dissertation show the
degradation in théu’LPC\ parameter estimates that results
from adding increasing levels of white noise to an example
frame of speech. Several estimation procedures are then
applied to noisy data generated from known AR models. The
results for the AR(1l), AR(2), and AR(4) processes analyzed
show that two of the estimation methods tested yield AR
parameter estimates that are better than those obtainable

from the autocorrelation method of LPC. The improvement in

the estimates is evident at SNR's through O dB. One of the
methods is a Newton-Raphson implementation of a conditional

max imum likelihood technique. This procedure

i simultaneously estimates both the AR and MA parameters from

ottt
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.
the data. The second method is similar to LPC in the type
of operations involved, but takes 1into account the MA
component of the data, where the LPC method does not. The
estimates produced by these two algorithms demonstrate the
validity of the AR-to-ARMA transformation model. These
algorithms are less susceptible to white noise degradation
than LPC and are thus more robust estimation procedures.
The comparisons of these estimation algorithms and the
demonstration of the practicality of the transformation
model are the primary contributions of this research.
Chapter 2 presents the results of a literature search
into the topic of estimating the parameters of AR processes
in the presence of noise. References for discussions of
LPC algorithms and the AR-to-ARMA transformation model are
given. Several sources for parameter estimation algorithms
are also provided. The mathematical details for the AR
process plus white noise are given in Chapter 3. The LPC
estimation algorithm is discussed, as are those algorithms
which take advantage of the transformation model.
Chapter 4 contains descriptions of the various experiments
performed and the data obtained from those tests. A
summary of the work performed and the conclusions derived
from this research are presented in Chapter 5. That
chapter also lists areas for future work. Several
appendixes provide detailed explanations of some of the

material in Chapter 3.

—TTTT T




——————

CHAPTER 2

LITERATURE REVIEW

Introduction

The use of stochastic models for the analysis of
discrete time domain series is important in many areas of
interest. Examples of these applications include analysis
of economic time series, seismic data, and more recently,
discrete speech waveforms. The reader 1is referred to
references given in Makhoul [23] and Box and Jenkins [10]
as sources for discussions on the theory of time series
analysis and possible applications. In a paper published
in 1971 (3], Atal and Hanauer describe a system which
models speech as an autoregressive process. Generation of
a synthetic speech sequence from the AR parameters is
proposed in that paper. This caused much activity in
applying the method of time series analysis to speech and
eventually resulted in the development of linear prediction
vocoders, devices designed to apply LP algorithms to the
analysis of speech. Linear prediction, the expression most
commonly used in speech analysis to describe AR modeling,
is quite successful ih its application to discrete speech
waveforms. As pointed out in Chapter 1, however, the

presence of noise in signals analyzed using LP algorithms
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has a detrimental effect on their performance.

A brief discussion of the LPC technique for speech
analysis 1is presented to describe previous efforts at
improving the operation of 1linear prediction when noisy
speech must be used. Given a sequence of speech samples
s(k), k=0,..., N-1, estimates of the autocorrelation
function R g (k) of s(kf are obtained from

N-1-k
R_(k) = Y s(i) s(i+k) , (2.1)
ss o
1=0
for k =0, ..., g. In (2.1) g is the order of the AR
process for the speech modeled by
q
s(k) = - § a(i) s(k-i) + e(k) , (2.2)
i=1
with the {a(i)}? the AR parameters and ¢ (k) a white noise

process. Estimates for the {a(i)}? are obtained by solving

the Yule-Walker equations
q

iZla(i) Ry (i-k) = -R__(k) , (2.3)
k =1, ..., gq. Expression (2.3) represents a system of g
equations with q unknowns. The estimates {a(i)}?—-along
with gain, pitch period, and voiced/unvoiced estimates--are q
used to construct a synthetic speech waveform. This brief
development is based on what is commonly referred to as the

autocorrelation method of LPC speech analysis [23]. 1In

that method s(k) is usually windowed prior to analysis.

The primary aspect of this procedure that should be noted
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is the need to estimate the autocorrelation function Rss(k1
from the data {s(k)}g'{

The above discussion of LPC analysis will clarify the
presentation of several approaches to parameter estimation
in the presence of noise. These methods attempt to correct
the autocorrelation function of the noisy data so that
(2.3) might be used to estimate the AR parameters. The
following part also contains summaries of work that has
described and quantified the degradation caused by additive
noise in LP systems. The reader 1is next referred to
several sources describing the AR-to-ARMA transformation
model. Using algorithms based on this model requires the
identification of the parameters of autoregressive
moving-average processes with respective orders of q and p,
ARMA (q,Pp) . This dissertation will develop the ideas
presented in this latter modeling technique. Several
papers concerning possible nonlinear estimation procedures
will be reviewed 1in a section on parameter estimation.
That section also lists algorithms that are applicable to
ARMA parameter estimation. The reader is then referred to
three previous works which deal with the estimation of
parameters from MA(l) and ARMA(l,1) processes. The reader
is also referred to sources for discussions of the

pre-filtering approach to noise suppression.
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f Linear Prediction Literature

In 1976 at the IEEE International Conference on

Acoustics, Speech, and Signal Processing, Yegnanarayana
[42] reported on the effects of noise and distortion 1in
parameter estimation 1in speech signals. Two topics from
that report important to this research concern the possible
distortion introduced by pre-filtering and four possible

methods for dealing with additive noise. The pre-filtering

referred to 1is that which is necessary to avoid aliasing
prior to digitization of the speech signal. If the
anti-aliasing filter introduces a sharp roll-off at the
Nyquist frequency, this tends to increase the possibility
of 1ill-conditioning in the autocorrelation matrix used in
the Yule-Walker equations (2.3). This also holds for
pre-filters meant to suppress the noise, a disadvantage
that might occur with a pre-filtering approach to parameter
estimation.

The four possible procedures to compensate for

: »

additive noise given (and criticized) by Yegnanarayana are
as follows:
1) Correct the short time power spectrum of the observed §

data x(k) by subtracting the power spectrum of the ﬁ

noise. The problem with this approach is that the

short time power spectrum of the noise, containing

random variations, may not be cancelled by subtracting

the average noise power spectrum.
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2) Whiten the noise component by pre-filtering. The

distortions possible from pre-filtering have already

been discussed.

3) Extract the parameters by analyzing only those sections
of the spectrum corresponding to a high SNR (as a
function of frequency). This technique introduces the
more complicated selective linear prediction analysis
method [24], requiring modification of the parameter
extraction stage, and fails to use information about
the AR process contained in those frequency ranges that
are ignored.

4) Noise effects can be reduced by using a second order
filter discussed in [18]. This filter, based on the
first two autocorrelation coefficients, would correct
only the gross spectral distortions of the noise.

At the same IEEE conference in 1976, Sambur and Jayant

[{33] presented preliminary results on the effects of white

noise and differentially quantized speech on LPC synthesis

procedures. To measure the distortion caused by inaccurate

identification of the AR coefficients, the authors used a

distance measure proposed by Itakura [18]. This metric is

said to indicate where spectral matching errors, which
occur because of failure to identify the AR parameters,
begin to be statistically or perceptually significant. In

[33] and [34], Sambur and Jayant indicate that the

degradation resulting from white noise is more severe than
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that resulting from the two types of differentially
quantized speech. Their results for white noise
degradation also 1illustrate that perceptually significant
variations occur at a signal-to-noise ratio of about 28 d4B.
The signal-to-noise ratio is defined as z sz(k)/ Z nz(k),
the summation being over the entire duration of the speech
input.

The brief development of LPC given in the introduction
to this section indicates the possible approach of
correcting the autocorrelation function of the input data
so that it matches Rss(k), the autocorrelation function of
the signal s(k). If the noisy data x(k) is given by

x(k) = s(k) + n(k) , (2.4)
then the autocorrelations of s(k) and x(k) are related by

RSS (k)

Rxx(k) + Rnn(k) - Rxn(k) - Rnx(k) (2.5)

Rxx(k) = Rnn(k) - Rsn(k) - Rns(k) . (2.6)

Then if estimates for the noise autocorrelation and
signal-noise cross-correlation are available, the
autocorrelation RSS(k) of the original signal may be
estimated. This approach is appealing, since the standard
LPC algorithms can be used once Rss(k) has been obtained by
some additional operations.

In the development of a word spotting system based on

the calculation of LPC parameters, Christiansen [11]

proposed the following approach as one possible method of

ol I — 2 o
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dealing with noisy speech. If ﬁss(k) indicates the
approximation for Rss(k) that will be wused in (2.3) to
obtain the AR coefficients, a reasonable expression for
ﬁss(k) might be

Rss(k) = Bkl = R (k) . (2.7)

Equation (2.7) derives from (2.6) with the following
assumptions:
1) Rnn(k) is obtained by averaging the autocorrelation
function over intervals containing no speech activity;
2) s(k) and n(k) are uncorrelated, that Iis, Rsn(k) =
Rns(k) = 0 for all k.
This approach did not work in the word spotting system of
[11]. Results indicate that the LPC algorithms failed, due
to violation of assumptions 1) .and 2) above. The effect of
these assumptions is illustrated in Chapter 4.
Atashroo [4] proposed a system for handling noisy
speech that combines the pre-filtering and modeling
approaches. Using a noncausal formulation, the transfer

function for the Wiener filter H(y) is

‘bsx(w) ¢Ss(w)
By = g==tey ~ b Ca) * 1o}
XX SS nn
] (w)
N nn
il o i
XX

where ¢ (y») indicates the power spectrum of the subscripted

quantity. The power spectrum of the output, sss(“)' is
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- 2
o (w) = o  (0) |H(w) |© = O (@) |1 - g7y« (2.9)

oxx(w) is estimated by averaging the spectra of short
overlapping segments of data. onn(w) is estimated in like
manner from speechless intervals. Once 6ss(w) is computed
from (2.9), 1its 1inverse Fourier transform will vyield
ﬁss(k), which can be used in (2.3) to obtain estimates for
the AR parameters. Note that (2.8) is obtained by assuming
s(k) and n(k) are uncorrelated. Atashroo does not quantify
the improvement bossible with this method.

Common to the two previous techniques is the
assumption that s(k) and n(k) are uncorrelated. Boll, in a
system referred to as Predictive Noise Cancellation (PNC)
[9], describes a system designed to approximate Rss(k) by
estimating all of the terms on the right hand side of
(2.5) « PNC attempts to estimate these auto- and
cross-correlation terms by filtering a secondary noise
channel, n(k). The input for this channel is derived by
averaging the characteristics of the noise when there is no
speech activity. The filter H(z) is designed to minimize
the error between its output u(k) and x(k), the noisy data.
The method can be summarized in four statements:

1) Estimate the background noise n(k) and the noise
characteristics during speechless intervals.
2) Estimate the noise-signal correlation filter H(z).

3) Modify the noisy speech autocorrelation function Rxx(k)
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to obtain ﬁss(k).
4) Calculate the final AR parameters using equation (2.3)
with Rss(k) replacing Rss(k).
Boll claims an improvement in SNR of 10 dB with this
approach. The similarity of the PNC system to adaptive
noise cancelling (ANC) systems should be noted [41].

In a recent paper [22], Lim and Oppenheim present four
methods for estimating the parameters of an all-pole (AR)
system degraded by additive white noise. The methods
differ in the assumptions made about initial conditions for
the parameters, data, and gain. Two of the methods are
shown to be equivalent to the covariance and
autocorrelation methods of LPC when there is no additive
noise. When considering the noiseless case, three of the
four methods result in linear operations in the estimation
procedure, while the fourth method involves nonlinear
relationships. When white noise is added to the desired
signal, all of the procedures require the solution of
nonlinear equations in the estimation stage. The authors
propose two suboptimal methods involving only 1linear
operations. Both methods are iterative and involve
filtering the data to estimate the original all-pole
signal. This is followed by an LPC estimation step to
provide new estimates for the model parameters. The
filtering--LPC process is repeated for each iteration. In

one method, the filter used is a noncausal Wiener filter.
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Results for synthetic data and speech data, at several

SNR's, are presented.

ARMA Model Literature

The preceding discussions cover four possible
approaches to extracting the AR parameters of a signal

corrupted by noise. The three autocorrelation modification

techniques qualify as modeling approaches in the sense that
the relationships of (2.5) and (2.6) are used to obtain an
estimate of Rss(k). The fourth technique, the iterative
approach proposed by Lim and Oppenheim, is representative
of the filtering approach to noise removal. If the
additive noise is white, it 1is possible to wuse another
model description. Walker [39] presents a discussion of
the consequences of additive noise when analyzing time
series. He points out that if s(k) is an AR(qg) process
q

Y a(i) s(k-i) = e(k) , (2.10)
i=0

a(o) = 1.0, and x(k) = s(k) + n(k) 1is the corresponding

noisy process, the combination of these two equations gives

q q
J a(i) x(k-=i) = [ a(i) n(k-i) + e (k)
i=0 i=0
£ yx) . (2.11)

The autocorrelation function ot y(k) is now a function of
both the {a(i)}? and the additive noise, complicating the
task of estimating the desired parameters of the system,

the {a(i))q. It is Walker's belief that the laborious and

a s it ol o b e
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uninteresting calculations involved may be the reason for
the neglect of this approach in time series analysis.

In their text on time series analysis [10], Box and
Jenkins briefly discuss the effects of noise added to a
general ARMA(q,p) process. If white, the noise will change
the MA parameters only, 1leaving the AR parameters
unchanged. The new time series 1is ARMA(q,r), where
r = max(p,q). Thus, if the original process is AR(q), that
is p = 0, then the new process created by adding white
noise is ARMA(q.,q). Box and Jenkins also discuss the
effects of non-white additive noise. 1In that case the AR
parameters are also changed.

The most extensive discussion to date on the
development of this type of noise model for AR processes is
due to Pagano [30]. He presents the extension of an AR(Qq)
process to an ARMA(q,q) process as a result of the additive
white noise. He also shows that the new process is
actually an ARMA(q,q) process, not one in which the orders
are less than q as a result of cancellation of factors from
the AR and MA operators. Pagano then develops the
nonlinear relationships, mentioned by Walker [39], between
the {a(i)}%, the ©SNR, and Ryy(k)f the autocorrelation
function of the sequence y(k) defined by Walker in (2.11).
Finally, he proposes a nonlinear regression technique

through which estimates of the {a(i)}? can be obtained by

taking advantage of the nonlinear relationships discussed




19
by Walker.
In a paper reviewing the applications of time series

analysis [31], Parzen points out the necessary steps in

applying the techniques available in time series analysis.
One of the first steps 1is model conception, that is,
selecting the model which is appropriate to the data being
observed. As an example of this step, Parzen points out

the possible use of the ARMA model for an AR process

degraded by additive white noise, discussed by Pagano.

Tong [37] makes use of the extension of an AR(q) model
to an ARMA(q,q) model when white noise 1is added in a
procedure devised to aid in determining the order of an AR
process corrupted by noise. He extends those results in a
later paper [38] to special cases of additive noise that is

correlated to the signal represented by the AR model.

Parameter Estimation Literature

The procedures proposed by the above sources and

— TR YT

presented in detail by Pagano [30] at some point require

the estimation of the parameters of an ARMA process, which
is 1inherently more difficult than the estimation of AR
coefficients. However, much work has been done on
techniques for extracting ARMA parameters from time series.
The techniques available include methods based on nonlinear

operations and methods comprised of only linear operations.

The first half of this section summarizes several papers

which present algorithms for estimating the parameters of
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an ARMA process. The second half of this section deals
with parameter estimation techniques (not necessarily
limited to ARMA processes) and modifications made to
estimation procedures to improve convergence.

A presentation by Anderson [2] of ARMA parameter
estimation algorithms based on the conditional maximum
likelihood optimization of the normal 1likelihood function
is one of the most thorough treatments of the subject.
Anderson develops a matrix notation which facilitates
writing the equations involved in the estimation.
Algorithms are then developed along these divisions:

1) time domain versus frequency domain;
2)' Newton-Raphson method versus the method of scoring

(Gauss-Newton method) ;

3) parameter set 1 (AR coefficients, MA coefficients, and
excitation sequence variance) versus parameter set 2

(AR coefficients and MA covariances).

After presenting the algorithms based on these eight
possibilities, Anderson then briefly compares the methods
and discusses some results found from Monte Carlo studies
performed by other researchers. The contents of this paper
are particularly useful in interpreting the matrix
formulations for these algorithms common in the statistical
literature.

Hannan [15]) presents a three step procedure for

estimating the parameters of an ARMA process. Spectral

e aF ] W 03527
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factorization may be used in the estimation of the MA
parameters, but if the requirements needed for
factorization are not present, an alternative procedure is
given. Hannan's technique, even though it produces
asymptotically efficient estimates of the ARMA parameters,
can be further modified to form an iterative procedure for
improving the estimates of the ARMA parameters. Akaike [1]
points out that Hannan's method is equivalent to a one-step
Newton-Raphson 1iterative procedure for modifying the
initial estimates to maximize the Gaussian 1likelihood
function. The main 1limitation of the procedure, in
Akaike's opinion, is the possible failure of the technique
to improve the estimates because of poor initial estimates.

Another procedure for estimating ARMA parameters from
a time series is given by Graupe, Krause, and Moore [13],
which requires three steps involving only the solution of
linear equations. The procedure is initiated by
identifying the parameters of an equivalent AR(») process.
Even though an infinite number of AR parameters is required
to represent an ARMA(qQ,p) process in general, it is claimed
that only a small number of these are necessary for the
computation. From these 1initial AR(») parameters, two
steps involving 1linear operations are required to obtain
first the MA and then the AR parameters.

A fourth possibility for estimating the parameters of

an ARMA process 1is represented in the approach given by
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Steiglitz in [35]). Presented as a method for estimating
the poles and zeros of the vocal tract, the procedure uses
an algorithm developed for 1linear system identification
[36]. This method requires knowledge of the input and
output (possibly noisy) of the system. An iterative
technique, using only 1linear operations, simultaneously
estimates the coefficients of the pole and =zero filters.
This can be wused directly on the signal, or on a minimum
phase representation of the signal, obtained from
homomorphic filtering.

Kashyap and Nasburg [21]) review several methods for
estimating the parameters of multivariate autoregressive
moving~average processes, including discussions of 1least
squares methods and maximum 1likelihood methods. The
authors also discuss numerical methods that might be used
to obtain the parameter estimates. The Newton-Raphson (NR)
method is discussed, but convergence problems that might be
associated with this procedure are handled by wusing
different initial guesses to start the algorithm. 1In this
same paper Kashyap and Nasburg also review the algorithms
developed by Durbin [12] and Walker [40]. It is stated
that these methods are applicable in the univariate case,
but may produce parameter estimates of questionable
efficiency. Numerical results for various estimators are
provided for one MA(l) process and one ARMA(l,1) process.

Using a state vector formulation, Gupta and Mehra [14]
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discuss the numerical aspects of maximum likelihood
estimates. Use of the NR method is discouraged, primarily
because of convergence problems and computational
drawbacks. The Gauss-Newton (GN) method (method of
scoring) 1is stated to have somewhat better convergence
properties. Several other numerical methods for parameter
estimation are given, including a modified GN procedure and
some suggestions for reducing the computational load.

Comparisons of several gradient methods for obtaining
estimates of parameters involving nonlinear relationships
are presented by Bard [5]. Gradient methods are of the
form

fe o -1
g_.+1 = gi CH B—i g; - (2.12)

In (2.12) gi and 31+1 are the values of the parameter
vector at the jth and i+1th iterations, respectively, with

8. known. The vector gi is the gradient of the cost

function (e.g., 1likelihood, 1least squares), evaluated at

ei. Bi is a matrix and CH is a scalar, each evaluated at

0.« The various gradient methods are characterized by the

form of the matrix Bi and the strategy by which CH is

chosen., If Q(gi) is the value of the cost function Q(8) at
the ith iterate, then the estimation procedure seeks to

find o, such that
=i+

1
Q(8;,,) > Q(8;) , (2.13)

if it is desired to maximize the cost function. As pointed
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out by Bard, i should be positive definite to ensure
(2.13) holds for gi # 0 and CH > 0. Also, Bi is usually an
approximation to H., the Hessian of Q(8) evaluated at

1
a=49.. The Hessian of Q(g) is deﬁined as the matrix of

second partial derivatives of Q(8) with respect to the
elements of 6. If Bi = 51 and Py = 1, then one has the
Newton-Raphson method. After evaluating g(8) and R(8) at
8 = gi, Py is selected so that (2.13) is true. Bard then
proceeds to describe several estimation procedures based on
different choices for Bi and Py Using several of the most
successful techniques, the author demonstrates their
application to typical estimation problems and discusses
the capabilities of the methods.

In his text on nonlinear parameter estimation (6],
Bard describes various algorithms used to optimize some
cost function of the parameters. He points out that the
Newton-Raphson method is the only method which will reach
the extremum in one iteration when the cost function |is
quadratic. Based on the one step convergence of the NR
method for a quadratic function, Bard gives convergence
rate efficiency factors for the various methods (6, p. 89].
For the NR method this factor is one, but the method may
suffer from convergence problens. Bard also discusses
methods for terminating estimation algorithms [6, p. 114].

Another survey of numerical techniques for optimizing

a cost function is presented by Powell [32]. He discusses
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steepest descent, direct search, and conjugate direction
methods. Included 1in his discussion is a presentation of
the NR method, which he states is still wuseful in many
applications. Powell mentions that the most serious
disadvantage of the NR method to many users is the need to
evaluate the second derivatives of the cost function. Many
of the techniques described by Powell have been developed
to achieve fast convergence without explicitly evaluating
; the second derivatives. Powell gives recommendations for
selecting an algorithm to optimize a given cost function.
The suggestions are roughly based on the number of
parameters, the availability of derivatives of the cost

function, and whether or not the user wishes to evaluate

the derivatives.

One of the techniques discussed in most of the
preceding sources is attributed to Marquardt [25]. A
disadvantage of the GN and NR methods 1is that the
algorithms may fail to converge to the optimal solution if
the initial guess does not fall into a small enough
neighborhood of that solution. A criticism of some
gradient methods is that, while the region of convergence
is larger than that of the NR or GN methods, the rate of
convergence is slower. Marquardt's method claims to

combine the faster convergence of the GN method (when near

the optimal solution) with the larger region of convergence

for the gradient methods. If the iterative step in the GN
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method is given by

)

R
. TEN gi R (91) i(gi) ' (2.14)

then Marquardt's method is given by

$ie2

s = -1
- 9, [g(gi) + Ay I] g(gi) - (2.15)
The scalar xi is automatically selected by the algorithm to

ensure that Q(gi+l

) > Q(gi) when maximizing Q(8). In
(2.15) g(8) is again the gradient of Q(8), R(8) is a matrix
and I is the identity matrix. As gi approaches the optimal
solution Ai tends toward zero and the algorithm behaves
like the GN method. However, if gi is far from the optimal
solution, Ay will tend to be larger. When the Ai I term

dominates, then

8i41 % 8y - xll g(8;) (2.16)
which is the simplest expression for the gradient method.
Marquardt's method 1is often recommended for nonlinear
estimation problems (5], [32]. A disadvantage of this
method is the 1increase in computations incurred by
enclosing the iterative Marquardt method inside the
iterative GN method.

Two useful texts on nonlinear parameter estimation are
Ortega and Rheinboldt [29] and Beck and Arnold (7). The
text by Ortega and Rheinboldt provides extensive coverage
of iterative methods for solving nonlinear parameter

estimation methods, including the. NR and GN methods,

conjugate~direction methods, and gradient methods.

il R s L oinG




27
Convergence properties for the various techniques are
discussed.

In Chapter 7 of their text, Beck and Arnold (7]
describe several methods that might be used in parameter
estimation. After presenting the GN method, the authors
discuss several modifications of the GN method. These
include Marquardt's method and the Box-Kanemasu
interpolation method. The latter method is an algorithm
which uses quadratic interpolation to select the parameter
05 in (2.12) such that (2.13) holds (if maximizing). Beck
and Arnold present examples of some of the methods and
compare their findings to those of Bard [5], [6].

A collection of papers on numerical techniques for
unconstrained optimization, edited by Murray, is available
in [27]. The papers contributed for this book cover in
depth parameter estimation techniques that include direct
search, conjugate-direction, gquasi-Newton, and second
derivative methods. 1Included in the topics is one paper on
the problems related to optimization. There 1is also a
discussion of the failures that can occur with any of the
methods presented, causes of these failures, and what can
be done to correct them.

The last three papers to be reviewed in this section
on parameter estimation are all discussions of the
Gauss-Newton and modified GN method of solving for the

parameters to optimize a nonlinear function. Hartley [16]
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and Hartley and Booker [17] discuss the optimization of the

cost function Q(8) .,

" 2
gty = T [z, ~ E.(8)])° . (2.17)
—-— . 1 =
i=]
[ is the parameter vector, the z, are the known data
values, and the fi(g), i=1, ..., M, are M known functions

mapping from the 6 parameter space to the observed data,
z; . These papers are useful in light of the formulation
used by Pagano [30] to derive the nonlinear relationship
between the AR modei and the ARMA model resulting from the
addition of white noise to the AR process. Jennrich [19]
describes a modification of the GN method that may be
useful in this type of work. The details for the GN and

modified GN methods are included in Appendix B.

Previous Work on ARMA Estimation

This section presents several sources that provide
information about the practical aspects of ARMA parameter
estimation. 1In all cases, the work has been performed on
small order processes, usually no more than second order.
Box and Jenkins [10] provide the researcher with a thorough
background in time series analysis as applied to ARMA
modeling. Especially useful are the developments for the
variances of parameter estimates.

There are two papers in which MA(1l) and ARMA(1l,1)
models have been studied. Nelson [28] uses Monte Carlo

methods to test several types of estimators on MA(l)
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processes. The MA(l) process has a single MA parameter, b.
Nelson's work considered the operation of the selected
estimators for processes where b = +0.2, +0.5, and +0.8.
One of Nelson's most interesting findings is the tendency
for the magimum likelihood methods to perform best for the
MA (1) procegses with b of moderate magnitude, that 1is, b
close to 0.5 in magnitude. Kashyap and Nasburg [21] use
one MA(l) process and one ARMA(1l,1l) process to demonstrate
some of the techniques presented in their paper on
estimation methods. Anderson [2] discusses the findings of
Nelson [28] and Kashyap and Nasburg [21]). The results of
Nelson's work will be reviewed in more detail in Chapter 4.
For the benefit of the reader, two references to
alternative techniques for extracting the parameters of a
model from noisy data are given. Widrow, et. al., discuss
the method of adaptive noise canceling [41], and Kailath
[20] presents an overview of linear filtering theory. The
bibliography of the 1latter is extensive and gives many
references to topics in Wiener filtering and recursive
Wiener and Kalman filtering. ‘The approach taken when using
noise suppression methods in conjunction with these two
classes of estimation procedures is to restore the signal
prior to estimating the parameters. The algorithms of the
parameter estimation stage are then likely be unchanged

from the algorithms used in the noiseless case.




CHAPTER 3

THEORY

Introduction

In this chapter the details of pertinent theory are
presented. A review of 1linear prediction 1is given.
Included in the review is a development showing the effects
of white noise on the LP parameters determined by the
linear prediction algorithm. Presented in a matrix
formulation, the LPC algorithm discussed is that commonly
referred to as the autocorrelation method. The LPC
discussion is followed by the details of the AR-to-ARMA
transformation model. In that section the generation of an
ARMA(q,q) process from the addition of white noise to an
AR (q) process is demonstrated, followed by a section on the
first order AR process corrupted by white noise. This
section is valuable because the 1low order of the model
allows one to examine in detail the effects of adding the
white noise to the AR(l) process. Many of the results in
the next chapter are based on the analysis of this first
order case. Succeeding sections discuss five parameter
estimation methods that are considered as means to extract
estimates of the AR parameters from the data. Following

that 1is a discussion of the noncausal formulation for the
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Wiener filter. A brief presentation of the nonlinear
regression algorithm suggested by Pagano [30] 1is then
given. The last section presents details on the noise
sequences used in this work as the excitation sequences for

the ARMA models and the additive noise sequence.

Linear Predictive Coding

If s(k) is a time series which can be modeled as a

qth-otder autoregressive process, AR(q), then we have
q
s(k) = - ] a;(i) s(k-i) + e(k) , (3.1)
i=1

al(O) = 1.0. The {al(i)}? are the AR parameters and e(k)
is a zero mean white noise process. The formulation of the
AR (q) process in (3.1) 1is identical to the qth-order
all-pole LP model. In the autocorrelation method of LPC
analysis, the equations are much more compact if matrix
notation 1is used. Refer to Makhoul [23] for additional
background and a list of references for LPC development.
The development of a notational convention for LPC using a
matrix formulation can be found in Boll ([8].

Using the autocorrelation method, the sequence s(Kk)
has infinite extent but is nonzero only for 0 < k < N-1,
where N is the size of the analysis window. Form the

(N+q) x 1 vector s, where s is given by
s = [s(0) s(l) -+ s(N-1) 0 --- 0]T . (3.2)

Using D as a delay operator for vector notation, D?g is an
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(N+q) x 1 vector with the sequence s(0) ... S(N-1) f
beginning at the (i+1)th position. The superscript i can \

take on the values 1, ..., q. For example, \

pls = [0 s(0) s(1) --- s(N-1) 0 --- 0] ,

2 T
D°s = [0 0 s(0) s(l) -«-- s(N-1) O -++ 0] , and
pds = [0 0 -+ 0 s(0) s(1) --- s(n-1]T .

Form the (N+g) x q matrix Es by including as columns the

DlE, i=1, eeeyp q,

B, = [Dlg 02§ D3§ R Dq§] . (3.3)

If an error sequence ¢ is defined as
€= [e(0) (1) «-- e(N-1) -+ e(N+g-1)]T , (3.4)

then (3.1) can be written as

s = -Es a, + €. (3.5)

The vector a; = [al(l) a1(2) e al(q)]T is formed from
the prediction coefficients and the index k in (3.1) is
confined to the interval 0 < k < N+g-1. The subscript 1
indicates that these coefficients come from the application
of the LP algorithm to s(k). The coefficients {az(k)}?
which follow come from the application of the LP algorithm
to x(k).

In LPC, the optimal distance measure is the minimum of
the sum of squares of the elements of ¢, as a function of

the {al(i)}?. If the loss function L_1is defined as

-_@‘umn;u—&dnﬂﬂﬁ--‘-ﬂLf s i i ““ﬂﬁ“.'“-n.'ﬁlﬁﬁ
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N+{-1
| Lox' 3 st} = r . (3.6)
; k=0
[ then the minimum of Le with respect to the {al(i)}? is to

be found. Using vector calculus, we have

335 -t [cTc] = 2 eT :Ei
agl agl e = 93,

The minimum of Le is obtained by setting this expression

equal to zero:

T 9€

£ gm0

agl
From (3.5), de/da; = H, and ¢'H
H: e =0 . (3.7)

Substituting (3.5) into (3.7) gives

T T
SRS 4 R
or
T T
Hy By a) = -H s . (3.8)
Note that the matrix ﬂzﬂ and the vector ﬂzg are defined by
[ v -
R (0)  R__(1) Ry (a-1)
T Rss(l) Rss(O) A Rss(q—z)
Es Es = . . . . (3.9a)
Rss(q-l) Rss(q-z) o Rss(O) |

and

e F
2 &
PR . e ot i 2. -
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r ]
RSS (l)
T RSS(Z)
Hg 8 = ’ (3.9b)
LRSS(q)J
Rss(k) is given by
N-1- k|
Rg (k) = I s(i) s(i+|x|) . (3.10)
i=0

Equation (3.8) is a matrix equation representation for the
Yule-Walker expressions
q o .
izlal(l) R g (i-k) = -R__(k) ., (3.11)
Eor K = L, coiep G5
If the sequence s(k) is contaminated by additive noise
to produce the series
x(k) = s(k) + n(k) , (3.12)
and an AR(q) model is forced on the noisy data, similar
results are obtained. The AR model forced on the noisy
data is
q
x(k) = = ] a, (i) x(k-i) + e(k) , {3.13)
i=1
a2(0) = 1.0. The {az(i)}? are the prediction coefficients
and e (k) is the resulting error sequence. If the matrix H,
and the vector x are formed from the data x(0), ..., x(N-1)

in a manner similar to H, and s, then the loss function L,

for the noisy data is
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N+d-1
L, = 1 e?(x) = eTe , (3.14)
k=0
with ¢ = [e(0) e(l) ... e(N+g-1)]T. Minimizing L, with
respect to the {az(i)}? results in

T 2ol

as the expression defining the least squares estimate for

the {az(i)}? defined in (3.13). The elements of the matrix

H'H and the vector HIx are formed from the autocorrelation
—X— X =
function of x(k) as in (3.10) with x(k) replacing s(k).
The {al(i)}g represent the LPC coefficients determined from
the undegraded signal, while the {az(i)}? are the LPC
parameters obtained from noisy data, with no attempt made
to eliminate the effects of additive noise.

Constructing the matrix En and the vector n from the

additive noise sequence n(k), the following relationships

hold:
H =H_ +H , (3.16)
T I T T T
B 3 "B Be " B By v H o H  +* B By - kaba)

The gggn term is a matrix formed of the autocorrelation
terms of n(k), and the terms Egﬂn and Egﬂs contain the
cross-correlation terms between n(k) and s(k). If it can
be assumed that s(k) and n(k) are uncorrelated, (3.17)
becomes '

T T T
B, By = H, Ho + En By o (3.18)

with (3.12), (3.16), and (3.18) substituted into (3.15), we

AP, FTENCNRE T STIT™ W 75 N G B A MDY, ) Oy T e g
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have
T T e T
fH, B, + B H ] a, =~[H +H] (s +n) (3.19a)
N T T
= -{Hg s + H n] , (3.19b)

where the assumption of uncorrelated signal and noise is
used to reduce the right hand side of (3.19b) from (3.19a).
Solving equations (2.8) and (3.19b) for a, and a,

respectively, we obtain

~ T = T
a, = -[Hg H] ~ H_ s (3.20)
and
¥, -y T T -1..T T
a, = -[H; H, +H H] "[A ;s +H n] (3.21)
as the least squares estimates for a, and a,. The vector
éz can be related to él by pre-multiplying (3.19b) by
T -1 :
H*H t 1
(B H ) o give : e
T -1 T e -
I+, 8 "B, Ble =~ ,8] &
T “) I
—[Es Es] L . 1}
. -1 T
=a, [gs Es] H n. (3.22)
Solving (3.22) for éz gives
s ok T T h R A
2, = 8y By + By 17 B B, )
T T -1 T
- [Hg B, + H H ] " H n. (3.23)

From (3.23) it is apparent that the addition of n(k)

in two ways:

2
1) a bias term [H'H_ + H'H ]‘lHTn has been subtracted;
—s—s =n—n —n— .

has degraded the é
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2) the relative magnitudes of the {52(1)}? have been
changed due to the matrix multiplying effect of the
expression [gzgs + g:gn]'lﬂggs.
The results of equations (3.19b) through (3.23) are
valuable in showing the distortion possible when noise is
added to a sequence that is to be the input to an LPC
system. These results are based on the explicit assumption
that s(k) and n(k) are uncorrelated and fail to account for
non-zero cross-correlation terms (the terms ﬂiﬂn, etc.).
It is this effect that is the primary hindrance in using
the technique mentioned by Christiansen [11l]. Results
showing the distortion introduced by n(k) on the inverse
spectrum derived from the {Sz(i)}? and the effects of
assuming that n(k) and s(k) are uncorrelated will be shown

in Chapter 4.

ARMA Model Approach

Presented in this section are the details of the ARMA
process which results from adding white noise to an AR
process. The effects of additive white noise upon an AR(Qq)
process are discussed in [10], [30], and [39]. The
potential advantage of this approach is that it includes
the noise effects explicitly in a more general model than
the original AR(q) process. The model is developed on the
following assumptions:

l) s(k) is a proper AR(q) sequence described by
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q
} a(i) s(k-i) = e(k) , (3.24)
i=0
for a(0) =1, a(gq) # 0, and q > 0, with e(k) an

independent, identically distributed (i.i.d.) N(O,oi)
noise sequence and s(k) stationary;
2) s(k) is contaminated by n(k) to form the observable
data
x(k) = s(k) + n(k) , (3.25)
where s(k) and n(k) are independent and n(k) is an
s 0 0, N(O,oi) noise sequence
The model has g+2 parameters--{a(i)}93, ci, and o . The
data available for analysis to determine estimates of these
parameters is the data sequence x(0), ..., x(N-1).
Combining (3.24) and (3.25), we have
q q
} a(i) x(k-i) = } a(i) n(k-i) + e(k) . (3.26)
i=0 i=0

A sequence y(k) is defined as

q
y(k) = } a(i) x(k-i) (3.27)
i=0
or
q
y(k) = § a(i) n(k-i) + e(k) . (3.28)
i=0

1f Ryy(k) = Efy(i)y(i+k)}, it can be shown, wusing
(3.28), that Ryy(k) = 0 for |k| > q. From (3.28), y(k) is
seen to be stationary. Combining this with the property
that Ryy(k) =0, |k| > g, shows y(k) to be a moving average

sequence MA(p), with p < q. Also from (3.28),
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Ryy(q) = cia(q) # C, by the hypothesis under assumption 1)
above. As a result, y(k) is an MA(gq) process, and there
exists a sequence of random variables v(k), i.i.d. N(O,oi)

and constants {b(i)}? such that

y(k) =

I b)) vik-3) , (3.29)
J

0

Il ~1.0

b(0) = 1.0. Combining (3.27) and (3.29) gives
q q

] a(i) x(k-i) = § b(j) v(k-j) . (3.30)
i=0 j=0

Thus, the sequence x(k) can be viewed as an ARMA(q,q)

process. While the original model has g+2

2

parameters——{a(i)}?, o e and ci—-the new model has 2q+l

parameters--{a(i)}9d, {b(i)}?, and 03. From (3.29), we have
g Ik
R (k) =g¢ b(i) b(i+k) ., (3.31)
Lo v i=0
so the expanded parameter set could equivalently be
iy19 iy 149
expressed as {a(1)}l and {Ryy(l)}o.

Using the definition for y(k) in (3.28),

R, (k) = 02 §(k) + o2 q-{kl (1) a(i+k)
yy = OE O'n i=0 all all I}

l, k =0
where 6§(k) = is the Kronecker delta function.
0, k # 0
It is also possible to develop an expression for Ryy(k)
from (3« 27) The three expressions for Ryy(k) are

summarized in (3.32):
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Zq—'kl
Ryy(k) = o, iio b(i) b(i+k) (3.32a)
q g
= ) Y a(i) a(3j) Ry, (k+i-3) (3.32b)
i=0 j=0
5 5 A~ k[ .
= o; §(k) + of a(i) a(i+k) . (3.32¢)

i=0
Thus, the addition of n(k) to s(k) produces the following
relationships between the parameters:
1) equation (3.32a) gives the autocorrelation function
R (k) for any MA(q) process;

YY
2) in (3.32b) R y(k) is in terms of the AR coefficients

Yy
and Rxx(k)' the autocorrelation function of the data
x(k), and 1is a valid expression for any MA
autocorrelation function, given that the a(i) can be
zero, i > 0, if x(k) is itself an MA process;

3) another definition for Ryy(k) given in (3.32c) arises
as a result of the noise model defined by (3.24) and
(3.25);

4) the ARMA parameters {a(i)}? and {b(i)}? for the process
x(k) are related through the autocorrelation function
Ryy(k), the relationship being expressed by (3.32a) and
(3.32¢) .

A comparison of the ARMA model approach just described
with a forced LPC fit of the data, represented by the
solution of (3.21), shows two interesting facts. First,

the forced LPC model, from a spectral point of view, must

match the spectral characteristics of the data x(k) as
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closely as possible. This spectral match includes those
characteristics introduced by the noise. The flattening
effect exhibited by forcing an all-pole LPC fit on a signal
degraded by additive white noise will be illustrated in the
next chapter. The second observation involves the
assumption of the model form. If the original sequence
s(k) is AR(q), then the addition of white noise results in
an ARMA(q,q) process,.x(k). This process 1is equivalently
an AR («) process. The forced LPC fit 1is actually
representative of the first step in the process discussed
in [13] for estimating ARMA parameters, that |is,
underfitting the AR(») process. Using the technique given
in [13], the ARMA model approach can then be viewed as a
procedure by which the AR(q) and MA(q) parameters are
estimated from the AR(®) parameters.

With the development of the AR-to-ARMA transformation
model complete, the processing steps required to use this
algorithm for extracting the g AR parameters from noisy
data are summarized:

1) because most ARMA estimation procedures require initial
guesses for the parameters, a procedure that provides
initial estimates for the parameters might be needed;

2) an algorithm suitable for estimating the AR and MA
coefficients from a time series must be selected;

3) if it 1is desired to make use of the nonlinear

regression stage to improve the AR parameter estimates,
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as suggested by Pagano [30], the algorithm is
terminated by that nonlinear regression procedure.
Of these three steps, the effort in this project has been
directed toward the second step, the estimation of the ARMA
parameters, concentrating on low order processes,
especially the ARMA(1l,1) model.

As will be pointed out in the next chapter, in testing

the ARMA estimation algorithms and the feasibility of this

model, synthetic data are used in all tests. These data
are generated from a known AR or ARMA model with an
approximately white noise excitation process. To avoid
introducing the problems encountered in obtaining suitable
initial parameter estimates into the ARMA parameter
estimation stage, the coefficients used to generate the
process are often used as the initial guesses. Thus, they
represent the best possible guesses for the parameter
values. Performing the experiments in this manner
emphasizes the accuracy of the AR coefficient estimates.

Where just AR or MA coefficients are being estimated, using

zeros for all initial estimates yields good results. This

is not possible where both AR and MA parameters are being :

estimated. Using zeros as initial estimates for the ARMA
parameters leads to a singular matrix in the estimation
algorithm. While wusing the model parameters as initial

estimates is an unrealistic approach, it does place the

emphasis on the validity of the transformation model and
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the estimation algorithm being tested. A small number of
tests using initial estimates arrived at through
experimental methods showed that the primary difference in
the experiment was the number of iterations required for
the algorithm to converge to a final solution, not the
final solution itself. Chapter 4 contains the results
achieved using the transformation model to estimate the

parameters of an ARMA process.

The AR(1) Process Plus White Noise

From the preceding section, if an AR(l) process is
corrupted by additive white noise, the resulting data can
be modeled as an ARMA(1l,1) process. The AR(l) process s(k)
is given by

s(k) + a s'k-1) = e(k) , (3.33) ;
where a is the single AR parameter. If n(k) 1is the
additive white noise corrupting the AR process as in
(3.25), after combining (3.25) and (3.33) we have

[x(k) - n(k)] + a [x(k=1) - n(k-1)] = e(k)
or

x(k) + a x(k-1) = n(k) + a n(k=-1) + e(k) . (3.34)

As before, define the sequence y(k) to be

y(k) = v(k) + b v(k-1) (3.35a) f 1
N
= x(k) + a x(k-1) (3.35b) 1

= n(k) + a n(k-1) + e(k) , (3.35¢)

where (3.35a) is the expression for an MA(l) sequence. In

(3.35a), b is the single MA parameter and v(k) is an i.i.d.
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N(O,oé) white noise process that is the excitation sequence
for the MA process y(k). The process v(k) is also the
excitation sequence defined for the ARMA model resulting
from adding n(k) to s(k), as described in the previous
section. From (3.34) and (3.35a) we have

x(k) + a x(k-1) = v(k) + b v(k-1) , (3.36)

the description for the ARMA(1,1) process x (k).

The equations in (3.35) give three ways of defining
the sequence y(k). For each of the three expressions for
y(k) there 1is the corresponding equation for the

autocorrelation function Ryy(k):

2 l'ﬁk : .
Ryy(k) = o, L b(i) b(i+k) (3.37a)
S |
= ¥ Y a(i) al(j) Ry, (k+i-3) (3.37b)
i=0 j=0

l-{kl
2 2
v (k) + O

a(i) a(i+k) , (3.37¢)
i=0

for Kk = 0 and 1, and a(0) = b(0) = 1. As pointed out in
the discussion of (3.32), equation (3.37¢c) is unique to the
ARMA model formed by adding n(k) to an AR(1l) process.

Using (3.37a) and (3.37c), the generation of the MA
coefficient by the addition of n(k) to s(k) is demonstrated

for various signal-to-noise ratios. From (3.37¢),

- 2 2
RYY(O) P (1 + a“) , (3.38a)
R_(1) = 0% a, (3.38b)
Yy n
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gyy(k) =0, k| »2, (3.38c)
with a(l) = a the single AR parameter. Alternatively,
using (3.37a) with b(l) = b,
R__(0) = o2 (1 + b%) (3.39a)
vy v : £ :
B (1) = o® b (3.39b)
YY - et 3
R k) =0 k| > 2 . (3.39c
;yy( ) . k] > )
Equating the terms for Ryy(o) and Ryy(l) from (3.38) and
(3.39) gives
2 2 25 =2 2
o, + o [1 + a%] = o, [1 + b7] ,
2 o 2
o, a= oy B .
Solving these expressions for b and 03, we obtain
b = ——;%—— ([02 + o2 (1 + az)] +
€ n -
2 o_ a
n
2 2 2y 72 4 2,1/2
[[op + o, (1 +a%)]° -40 a ) (3.40)
and
2 _ 2a
O %0 f5 (3.41)

Note there are two possible values for the MA coefficient

b. If the minus sign is used in (3.40), b_ will be used to

symbolize the value of b. If the plus sign is wused, b

+

will be written.
It is important that the parameters b and 03 possess

certain properties. Appendix C shows the derivation of the




properties listed here:

1) b is real;

2) b, = 1/b_, |b_|< 1;
, 3) 03 2 O3
4) o2, = b2 2.

2) establishes that b = b_
unit circle in the Z-domain.

1

B(z) l1+bz "~ ,

expanding B'l(z) is

B hia) = e = L w5

1+bs"

then the weights of the z°% terms

Thus, b = b_

[10]. In designing

the 1invertibility

MA (1) process, b_ and 03_

2

the effect of various

demonstrated. If a:

process, then og is given by

whether b_ or b, is used to compute 03

then B(z) = O when z = -b, If the

converge
corresponds to the convergent root.
the invertibility property discussed by Box
choose the MA parameters so that the MA operator
operator polynomial lie inside the unit

Given expressions for b and o,

in (3.40) and

is the variance of s(k), the

46

The minus and plus subscripts on the 63 term in 4) indicate

in (3.41). Property

corresponds to a root inside the

To demonstrate this, if

series generated by

-+ eee

iff |b| < 1.
This is

and Jenkins

an ARMA process it is appropriate to

satisfies

condition, that is, the roots of the MA

circle. For the

are the appropriate choices.

(3.41),

SNR's on these parameters will be

AR (q)




47
2 2 3
ol = oS/[1 + ] a(i) p(i)] , (3.42)
S € &
i=1l
= 2 = =
where p (i) = Rss(i)/Rss(O). For oL 1.0 and gq 1, the
process variance is og =1/(1 - a2), since p(l) = -a. The
SNR is
2
s 1
SNR = = . (3.43)
02 02 (1 - az)
n n

Consider now the extreme cases where SNR-+® and SNR-+O0.

This can also be expressed as oi-*O and oi-»m,
2

respectively. The results for the behavior of b_, b,r o,

and 03+ as SNR+0O or » are summarized in Table 3-1.

Using (3.40) and (3.41) to compute the MA (1)
parameters b and 03, the effect of a changing SNR on these
parameters is found in Tables 3-2, 3-3, and 3-4. For all
of this data, o: is arbitrarily set at 1.0. 1In Table 3-2
the results are computed using 0.1 as the single AR
parameter a. In Tables 3-3 and 3-4, a is 0.5 and 0.9,
respectively. From the data in these tables, it is clear
that as SNR s+, the observed data x(k) approaches the
desired AR (1) process since 03_-+a§ = 1 and b_-+0. When
SNR » 0, however, the observed data begins to resemble the
additive white noise n(k). This is true because b_+a and

(3.36) becomes

x(k) + a x(k-1) = v(k) + a v(k-1) (3.44)

In the Z-domain this can be written as

TR S S O S S AP S o0 o s e o et




Table 3-1

Behavior of Parameters at SNR Extremes

SNR :

i Ll
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1 + a z°1] X(z) = [1 + a z_l] V(z) (3.45)
Cancelling the common factor [1 + az'll, (3.45) becomes

X(z) = v(z) , (3.46a)

x(k) = v(k) , (3.46Db)
and the data x(k) is now a white noise sequence since wv(k)
is the white noise excitation sequence for the equivalent
ARMA model. To show that x(k) = n(k) as SNR+ 0O, we examine
(3.35c) and (3.36), which give

x(k) + a x(k-1) = n(k) + a n(k-1) + e(k) (3.47)

when combined. In the Z-domain (3.47) becomes
[L+az1] x(2) = [1+az1] N(z) + E(z) . (3.48)

As SNR » O, o§-+o and the [1 + az'l]N(z) term dominates the
right side of (3.48). Consequently, the left side of

(3.48) can be approximated as
[ +azh) 22y » [1+azl] N . (3.49)

Cancelling the common factor as before, we have

X(z) = N(z) , (3.50a)

x(k) = n(k) . (3.50b)
This result is intuitively appealing since it shows that
the data x(k) becomes more like the additive noise n(k) as
the SNR becomes poorer.

The ideas generated in this section are important to
the work done 1in evaluating the ARMA noise model because
much of the data found in Chapter 4 is based on the

analysis of the AR(l)-to-ARMA(l,1) transformation model.
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As will be seen in Chapter 4, two approaches are taken in

analyzing the this model:

1) simulate the s(k) + n(k) degradation by computing the
MA(l) parameters b_ and 03_ and generating directly the
resulting ARMA(1l,1) process using a noise sequence v (k)
as the excitation;

2) generate the AR(l) process s(k) and add the white noise
n(k) to obtain the equivalent ARMA(1l,1) process x (k).

More details on this are given in Chapter 4.

When generating estimates of parameters from data, it
is important to know the variances associated with those
estimates. If a large number of estimates are available,
sample statistics for the parameter estimates can be
obtained. For low order ARMA processes, however, it |is
possible to obtain equations describing the variance of the
parameter estimates. In Chapter 7 of (10], Box and Jenkins
discuss model estimation procedures and develop the
variance expressions for ARMA processes. Specifically, the
variance of the parameter estimates is of interest in the
following cases:

1) the estimate for a(l) in an AR(l) process;

2) the estimate for b(l) in an MA(l) process;

3) the estimates for a(l) and b(l) in an ARMA(1,1)
process.

For the first order cases analyzed in Chapter 4, the sample

variance of the parameters estimates are compared to the
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theoretical values.
If N is the number of points in each frame of data,

the variance of a = a(l) for the AR(1l) process is

var(a] = 3 (1 - a°) . (3.51)
Likewise, the variance for b = b(l) for an MA(l) process is

var[b] = % (1 - b2) : (3.52)

For the parameter estimates of an ARMA(l,1) process, we

have
a L L~ et 2
var[a] = G (L - a”) , (3.53a)
(a - b)
; 1 (1 - aby" 2
var[b] = R ] (= By, (3.53b)
(a - b)
sovfd, b & - & A S ABL o o oy b3 o Py (3.53c)

LT

The expressions found in (3.51), (3.52), and (3.53) are for
maximum 1likelihood estimates., Details for the derivations

of these expressions are found in [10], Chapter 7.

Steiglitz Mode 1 Estimation Method

The estimation of ARMA parameters comprises the major
effort of this dissertation. The following sections
present five procedures that have been used in this work to
estimate parameters. Details for the nonlinear regression
algorithm suggested by Pagano for improving the AR
estimates are also presented.

One possible procedure for estimating the parameters

e

ada

ul




55
of an autoregressive moving-average process is the mode 1
iterative method by Steiglitz and McBride [36]. The
approach 1is: given input and output sequences for an
unknown system, determine the filter which approximates the
unknown system. In the Z-domain the model for the filter
is the ratio of two rational polynomials A(z) and B(z).
Graphically, the problem is illustrated in Figure 3-1. The

polynomials A(z) and B(z) are given by

q =3
A(z) = § a(i) z %,
i=0
a(0) = 1.0, and
p -
B(z) = ) b(i) z * .
i=0

Note that in this method, b(0) does not necessarily equal
one. The resulting parameter set is {a(i)}? and {b(i)}p.
The variance of the excitation sequence 1is not estimated
explicitly. It is, however, related to b(0). The
coefficients a(i) and b(i) in A(z) and B(z), respectively,
are selected to minimize E(z) in some sense. The model's
response, U(z), is

_ B(z)

U(Z) o A(Z)

v(z) (3.54)

or

A(z) U(z) = B(z) V(z) . {3.55)
Also, from Figure 3.1, the error is given by

E(z) = U(z) - X(2) . (3.56)

Steiglitz and McBride then perform a "quasi-linearization"
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on (3.55), using previous iterations to form approximations

to the derivatives,

A, (z) U (z) + [A 1 z) - Ai(z)] Ui(z) +
A (z) [UH1 z) - Ui(z)]

= l+l(z) v(z) . (3.57)

The subscript indicates the 1iteration number. Replacing
Ui(z) with X(z) in (3.57) and simplifying gives

A, (z) U = [Ai(z) - Ai+l(z)] X(z) +

1+1(z)

l(z) vi(z) . (3.58)

Solving for Ui+1(z) and using that expression for U(2) in

(3.56) gives

E;41(2) = U ,,(2) - X(2)
1+1(z) (z)
- “_—T_Y_ Vi(z) _n—T—Y— X(z) . (3.59)

It is the form of (3.59) that suggests the mode 1 technique
presented in [36]. Noting that both V(z) and X (z) are
recursively filtered through the ith iteration of A(z),
define V(z) = V(z)/A,(z) and X(z) = X(z)/A{(z). With these
definitions, the time domain representation for (3.59) is
P A 9 '
e(k) = § b(i) v(k-1i) = ) a(j) x(k=-3j) . (3.60)
i=0 j=0

The iteration notation has been dropped for clarity. The

coefficients [a(i)}? and {b(i)}g are selected to minimize

TR , A PN PP, WA e
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e(k) 1in the 1least squares sense. The least squares
procedure requires the solution of the matrix equation

B.vx 2 = £Vx ’ (3.61)

where R __ is a matrix composed of the auto- and
cross-correlations of v(k) and x(k) and L I is a vector
composed of those correlations. 6 is the solution vector
containing the desired a(i) and b(i) coefficients. Use of
this method thus requires the solution of a set of p+g+l
linear simultaneous equations.

For application to the estimation of the coefficients
of an ARMA process as proposed by Steiglitz in [35], this
technique must be modified slightly. When only the output
of the system is known, v(k) is assumed to be the Kronecker
delta function. Also, the system output x(k) may be
modified so that it more closely resembles an impulse
response, as the assumption for v(k) implies. Steiglitz
proposes several operations that might improve the quality
of the parameter estimates. These procedures, applied to
the observed data x(k), include:

l) pre-emphasis;

2) windowing;

3) generation of a minimum phase signal xmp(k), which has
the same log magnitude spectrum as x(k);

4) removal of periodicity.

Steps 3) and 4) involve cepstral domain operations.

Results from tests on the mode 1 iterative method are
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presented in Chapter 4 for an ARMA(10,2) process excited by

an impulse, an impulse train, and a white noise sequence.

Anderson's Time Domain Maximum
Likelihood Methods

Anderson presents the details for ARMA parameter
estimation procedures based on the optimization of the
Gaussian 1likelihood equation [2]. As reviewed in
Chapter 2, the methods are characterized along the
following divisions:

1) time domain versus frequency domain;
2) Newton-Raphson method versus the method of scoring

(Gauss-Newton method) ;

3) parameter set 1 (AR coefficients, MA coefficients, and

excitation sequence variance) versus parameter set 2

(AR coefficients and MA covariances).

The development of these methods by Anderson is based on a
matrix formulation, useful for compact presentation of the
equations. This compactness, however, tends to obscure the
meaning of the operations. This section presents the time
domain Newton-Raphson and Gauss-Newton methods for
estimating the AR and MA coefficients and the variance of
the excitation sequence. Included in this review of
Anderson's methods is an elaboration on the matrix
notation. The equivalent scalar notation is also

discussed.

The description of the ARMA(q,p) process x(k) is

W S

T
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q
I a(i) x(k-i) =
i=0 3

b(J) V(k']) '
0

#l &~0

with a(0) = b(0) = 1. Using the matrix notation of [2],
this becomes
AxXx=BvV. (3.62)

The N x N lower triangular matrices A and B are given by

q ;

A= Y ati) L, (3.63a)
i=0
P :

B= ]b(i L, (3.63b)
3=0

and x = [x(0) ... x(N-l)]T and v = [v(0) ... v(N")]T are
N x 1 vectors. As before, v(k) is an i.i.d. N 24 noise
sequence. In (3.63) the matrix L is the N x N nr~» X lag
operator defined by Anderson. If lN-k is the (N-k) x (N-k)
identity matrix, then

0 0
L* = . (3.64)
Iyx ©

and L¥x = [0 ... 0 %(0) ... x(N-1-k)]T. Thus the effect of

pre-multiplying a vector by the matrix L to the kth power
is to introduce zeros in the first k positions of the
vector, shifting the elements of the vector down by k
places, imposing zero initial conditions on the problem.
Details for the development of the matrix model formulation

in (3.62) and the use of the matrix 1lag operator L are

given in Appendix D.

With the model now defined, the Gaussian likelihood




function to be maximized is

2
£ (ilg'é’ ov

Taking the logarithm of this function gives

log[£f] = -g log(2w) -
(3.65)

In (3.65) the term -(1/2) log |x 5T| can be simplified by

using the relationship
x=a'By,

derived from (3.62). Using (3.66) we have

|x x| B

With this, (3.65) becomes

log[f] = —g log(2m) - % log(oi) + log|A| - log|B|

20

- _lf X B Ax. (3.67)
v

Equation (3.67) is the modified likelihood function. It is
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i modified in the sense that the probability density function
for x is conditioned on the initial values assumed for x.
In the case where the matrix lag operator L is used, the
assumed values for the initial data points

Xx(1-q), «e., x(-1) are all zero. This also applies to

v(k): v(l1-p), «.e., Vv(-1l) are zero.

Since the function in (3.67) is to be maximized, we
begin by taking the partial derivative of log[f] with

respect to the parameters a(l), ..., a(gq), b(l), ..., b(p),

and 02:
v
3 -1 i
—— log[f] = -tr[B ~ L7] +
b,
i
R . T Gl e =]
< x A B B L B Ax, (3.68a)
OV
2 log(f] = -tra ! LI -
a., L
j
1, P E 1 )
S x A B BL x, (3.68b) ;
oy E
— T -1 1 ;
2> log(€] = -5 + ——14 x> AT BT B ax. (3.68¢) |
aov 2ov 20v B

6 1 % 1, wsep P a@nd J = 1, Jier Qe Setting the
expressions in (3.68) equal to zero and solving for the
{a(i)}?, {b(i)}ﬁ, and 03 that satisfy that condition will
max imize the function log(f]. Unfortunately, the

relationships in (3.68) are nonlinear. This requires an
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iterative procedure to solve for the maximizing parameters,
since an explicit solution is unlikely.

Two iterative parameter estimation procedures are

considered here:

1) the Newton-Raphson method;
2) the Gauss-Newton method.
Refer to Appendix A for the details on what these two

methods involve for the general optimization problem.

Defining a = [a(l) ... a(@)]” and b = [b(1) ... b(p)1", the
application of either the NR or GN method requires the

solution of the matrix equation

'&i [‘e‘i"‘l o~ _e_i] = g_i ’ (3-69)
where 8 = [ ngg? ]T is the parameter vector,
g=1I !T ET ]T is the gradient vector, and

2 8

R = :

al ¢

is the coefficient matrix appropriate to the NR or GN
methods. The subscripts i and i+l indicate the iteration
number . Bi and 9, indicate those quantities are evaluated
at g = g,, the present estimate for the parameter vector.

Using the partitioned forms for 6, g, and R, (3.69)

can be written as

$; [Byyy - R3] + 85 (a5, - 3;] =w,; .

o
2y (b

Byay = Byl * L; 1n

Sis1 © ii] B ¢
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The algorithm requires an initial guess 30 for the
parameter vector. In order to compute the next estimate of
8 the following must be computed:
1) the matrices ¢, @, and ¥ of R;
2) the vectors w and u of the gradient vector g.
The w and u components of g are the same for the NR and GN
methods. The form of the ¢, @2, and ¥ components of R
differ in the NR and GN methods. The expressions for the
NR method are developed first.

The gradient vector g is formed from the p x 1 vector
th

w and the q x 1 vector u. The jth element of w and the m

element of u are given by

w]l. = 2l gty (3.70)
Chates & OF = T
g
v
and
[ul, = -5 v "aty (3.71a)
ov
- e . (3.71b)

-

03 e S
£or j = 1, op PaAnd m =1, <eepy Qo The matrix R is
partitioned into the p x p matrix ¢, the p x g matrix @,
and the 9 x q matrix v. The elements of these three

—

matrices are given by

=1 5 -
loly = 5 v 8" T tFply, (3.72)
(o}
v




_l J
[g]jm = __15 vT 8T T LM 1
Oy
=3 j
= _4% _? E? E? Ew B 1
Oy
' -1 m
(vl = % T aT LT o é'l
v
-1 m
- JE gT 9? E? EP _fl
%

l, ¢<¢eo, pand m, n = 1,

for j, k

Now define the sequences

C=B-1V!

Yy = A-l v = B-l X .

Using these definitions, (3.70) to

wy=Sal o aly
v
l_=-4 v’y .,
o)
v
loly = 5 @ 0 a* o,
oy :
laly, = -5 @ 0" " v ,
[0}
v
Wi = J% = o* @ v .
Iy
With A and B evaluated wusing
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(3.73a)

(3.73b)

| %

(3.74a)

X (3.74b)

ee ey qo

(3.75a)

(3.75b)
(3.74) become

(3.76a)

(3.76b)

(3.76¢)

(3.764d)

(3.76e)

the present parameter
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estimates, the nature of the expressions in (3.76) suggests
the following procedure:

1) compute

|=
[}
w

"
[o2)
>
b

|
>
w

]

>

Yi

2) compute v
3) compute g = B “v;
4) evaluate the elements of w, u, ¢, @, and Y.

We must now determine what matrix operations such as
E_l! and Ay imply in scalar equations. 1If y is the vector
of the MA sequence y(k), k = 0, ..., N-1, then Y 1is given
by

y=Bv. k3. 77)
The scalar expression for y(k), an MA(p) process, is given

in (3.29), with q = p. Imposing the initial conditions of

v(k) =0, k = 1-p, «e., -1, yY(k) can be written as

y(0) = v(0) , (3.78a)
K

y(k) = v(k) + J b(i) v(k-i), k =1, ++--, p-1, (3.78b)
i=1
P

y(k) = v(k) + ) b(i) v(k-i), k = p, *++, N=1. (3.78c)
i=1

In this formulation the zero initial conditions are
implicitly applied by the equations of (3.78). Since the
matrix model (3.77) imposes the same zero initial
conditions for wv(k), (3.77) 1is equivalent to the scalar
representation of (3.78).

Solving for v(k) in (3.78), we have
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v(0) = y(0) , (3.79a)
k

vik) = y(x) - ) b(i) v(k-i), k =1, ---, p-1, (3.79b)
i=1
k

vik) = y(k) - J b(i) v(k-i), k = p, ***, N-1. (3.79¢c)

i=1

Since this is equivalent to

v = g™l Y (3.80)

we see that operating on a vector by the inverse of a
matrix of the form of B is equivalent to the scalar
operations in (3.79). The expressions in (3.78) and (3.79)
are recursive 1in nature and imply zero initial conditions
on the wvector multiplied in the equivalent matrix
formulations. The results of (3.78) and (3.79) can be
applied to such expressions as occur in (3.75), with
appropriate changes in notation.

Once ithe sequences v(k), y(k), and z(k),
k =0, ..., N-1, have been determined using the procedures
illustrated in (3.78) and (3.79), it 1is possible to
determine the contents of R and g using (3.76). Noting
that the equations of (3.76) are all of the same form, we
will develop the scalar equation implied from these
expressions by examining (3.76d) in detail. From previous
discussions of the matrix lag operator L, it can be seen

that

1) g=1[0 -0 ¢(0) «-- c(N-l-J’)]T

and
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L™y = [0 -0 v(0) ++- y(N-1-m)]T .
where L)y and L™y are both N x 1 vectors. The product
(EjE)T(Eml) is a scalar which will be indicated by
RCY(j,m). Assuming that j > m, Rcy(j,m) is given by
N-1-3
R _(3,m) = § (i) y(i+|j-m|) . (3.81a)
Ty i=0
If j < m, the expression for R;Y(j,m) is
N-1l-m

R__(j,m) = J vy(i) z(i+|j-m|) . (3.81b)

Using the appropriate sequences in the example relationship
given in (3.81), the elements of R and g can be calculated.
The iterative step is now made using (3.69). For details
on the NR method, refer to Appendix A.

The preceding discussion developed the expressions for
the matrix R and the vector g based on the NR method. 1In

considering the GN method, we observe that g 1is 1identical

to that obtained for the NR method. The elements of the

matrices ¢, @, and y of R, however, are given by

(81 = el 37HT @k 7hy (3.82a)

(8] = -srited 74" @ a™h . (3.82b) |
.

(el = tef® a™HT @ a™hy (3.82c) :

for j, k=1, .., pandm, n=1, e, 9. In (3.82) the §

1 ana g'l. The ;

matrix L operates on the N x N matrices A~

result, prior to taking the trace, is an N x N matrix. Two

SRR v i s i i N M st L3 ot
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facts, however, allow considerable savings in computation:

= 1

1) because of the form of A and B, A"~ and B~ are lower

triangular with equal elements along each diagonal (see
Appendix D);
2) only the main diagonal elements of the final matrix,

(Ejg-l)T(LmA'l), for example, need be computed since

the trace operator uses only those elements.

Fact 1) above establishes that 5’1 and g’l are
characterized by the elements of their first column. If
a = [a(0) ... a(N—l)]T is the first column of é'l, then the

a(k) are given by

a(0) =1, (3.83a)
Kk

a(k) = - |} a(i) a(k-i), k =1, -+, g-1, (3.83b)
i=1
q

a(k) = - a(i) a(k-i), k = q, ***, N-1. (3.83c)
i=1

Likewise, the elements of the first column of g—l are given

by
8(0) = 1 ’ (3-84a)
Kk
B(k) = - J b(i) B(k-i), k = 1, +++, p-1, (3.84Db)
i=1
P
B(k) = - ] b(i) 8(k-i), k = p, -+, N-1. (3.84c)

i=1
Using (3.82b) to illustrate the meaning of the matrix

operations, we need consider only the cases where the nth

-1, T th 1

row of (Ejg )" multiplies the n-" column of (&mﬁ'

Ve The
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nt row of ( JB_l)T is the 1 xN row vector

(O ... 0B(O) ... B(N-n-j)], and the n™ column of (Emé-l)

T
is the N x 1 column vector [0 ... O ¢(0) ... &(N-n-m)] .

Their product is the scalar c(h,n), given by

N-n-j
c(n,n) = } B(i) a(i+|j-m|) , F > m, (3.85a)
i=0
N-n-m !
c(n,n) = § a(i) B(i+|j=m|) , m > j . (3.85b)
i=0
o Eh .
From (3.82b) the jm element of Q is
Nk (3.86)
[Q]jm = nElc(n,n) " .

where k = max(j,m). Additional computational savings can

be achieved by combining (3.85) and (3.86). If j > m, we

have
N-j N-n-j
(], = 1 Y B(i) a(i+|j-m|)
Jm n=1 1=0
N-1-3
= )} (N-j-i) B(i) a(i+|j-m[) . (3.87a)
i=0

For m > j, the result is
N-l-m \
2], = ¥ (N-m-i) ~(i) g(i+|j-m|) . (3.87b)
5 i=0
The elements of R are thus weighted correlations of the
appropriate sequences.

Summarizing the operations required for the GN method,

the sequences y(k), v(k), and ¢(k), k = 0, ..., N-1, must

be computed. The elements of the gradient vector g are
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determined from correlations of these sequences, with
(3.81) illustrating the form of this correlation. The GN
method then requires the generation of the a(k) and B(k)
sequences using (3.83) and (3.84), respectively. Note that
these sequences are not required in the NR method. From
these two sequences, the elements of R are determined using
the weighted correlation illustrated by (3.87).

The final step in each iteration for both the NR and
GN methods 1is the estimation of the variance of v(k). 1In
both methods this estimate is obtained using
82 = %Nilvz(k) :
k=0
where v(k) is the sequence generated in the GN and NR
methods. It is an estimate of the unknown excitation

sequence.

Unconditional Sum of Squares

Following the development in Box and Jenkins [10], the
unconditional sum of squares procedure is presented here.
Combined with a direct search of the parameter space for
the optimal solution, this technique is used in this work
to check the operation of the NR and GN methods for the
ARMA(1,1) process. The description of the unconditional
sum of squares approach presented here will be based on the
ARMA (1,1) process.

The ARMA(l,1l) model, with a(l) = a the AR coefficient

and b(l) = b the MA coefficient, is represented by (3.36).
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For a given set of estimates a and b, the conditional sum
of squares (CSSQ) is computed using
N-1

5 (k) (3.88)
k=0

s A 1
S*(a,b) = ﬁ
where v(k) is the estimate of the white noise excitation
sequence v(k). This estimate is generated according to
V(k) = x(k) + a x(k-1) - b v(k-1) ,

for k=0, ..., N-1. In certain cases, however, the

transient effect imposed by the assumption of zero initial

conditions for v(k) and x(k), k < 0, can have a strong
effect on the value obtained for S*(Q,B). An example of
this is when the AR singularity 1lies close 'to the unit
circle. To avoid or lessen the effects of this transient,
the unconditional sum of squares (USSQ) is recommended.

The basis of the USSQ is the estimation of wv(k) over
the range k = 0, ..., N-1 and the prediction of v(k) for a
few points outside that range. For example, v(k) might be
estimated over the range k = -10, ..., N+1l0. Using an

iterative algorithm, v(k) is re-estimated until the USSQ
. = 1 N-lA2
s(a,p) = 5 I vi(k) - (3.89)
k=0

computed for each estimate of v(k), is stable. Details for
implementing the USSQ are found in [10].
As mentioned previously, the USSQ is used to check the

validity of the solution found by the NR or GN algorithm

discussed in the preceding section. For the ARMA(1,1)
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model, the acceptable range for the AR parameter a is
-1.0 < a < 1.0. That for the MA parameter b 1is also
-1.0< b< 1l.0. To verify the operation of the other
estimation procedures, the USSQ is computed for each pair
of (a,b) values as a and b go from -1.0 to 1.0 by some
fixed increment. A useful result of scanning the ARMA(1l,1)
parameter space and generating the USSQ at each point is
the generation of the sum of squares cost function surface
for each process and set of data analyzed. The shape of
the cost function surface can provide information that can
aid in predicting the behavior of the more efficient

estimation routines. Note that this procedure is practical

only in a parameter space of small dimensions.

"Shifted" Yule-Walker AR Estimates

If y(k) is the MA(p) portion of an ARMA(Q,p) process,
then Ryy(k) = 0 for |k| > p. This moving-average process
is the weighted sum of the present and p previous random
shocks. When the 1lag in the autocorrelation of y(k)
exceeds p, there is no longer any overlap in the random
shocks summed. The result is a zero autocorrelation value
at that lag. This property is used in an ARMA process to
estimate the AR parameters. If k > p+l, the
autocorrelation of the ARMA(gq,p) process x(k) satisfies the

recursive relationship

LA A SOET™ T o TN 02 e

v
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q
-Rxx(k) = igla(l) R, (k=1) . (3.90)

By allowing k to run from p+l to g+p, we obtain the set of

equations:

“R ., (p+l) = a(l) R o (P) + --- + alq) R (p+l-q)
: : : (3.91)
R (p+q) = a(1) R (p+q-1) + -+ + a(q) R, (p)

This system of q equations is 1linear in the q unknowns
a(l), olei ey a(q) . With estimates for Rxx(k), the
autocorrelation function of the data x(k), (3.91) can be
used to estimate the {a(i)}?.

This approach 1is often proposed as a method for
obtaining the initial estimates for the AR parameters in an
ARMA estimation procedure. Hannan, for example, uses
(3.91) as the first step in his estimation procedure [15].
In Chapter 4, the estimates obtained by this tedhnique are
compared to the estimates obtained from the NR method.
This estimate is referred to as the "shifted" Yule-Walker

estimate (SYW).

Noncausal Wiener Filter

In the next chapter, one of the estimation procedures
used is the application of LPC to the data after it has
been filtered to suppress the noise. The filter wused is
based on the noncausal formulation of the Wiener filter.
If the additive noise to be suppressed 1is white, the

transfer function of the filter is
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¢ (w)
H(w) = sSs 5
QSS (w) + on
st(“) is the power spectrum of the AR process and oi is

the variance of the additive white noise. In computing
H(w) ., ¢ss(m) is calculated using the parameters of the AR
model. Hence, oss(w) is not an estimate. The impulse
response of H(w) is obtained and is then used to filter the
data. The autocorrelation method of LPC is applied to the
resulting sequence to estimate the AR parameters. This
procedure is wused in tests on the AR(l) process in
Chapter 4.

Nonlinear Regression Algorithm to
Improve the AR Estimates

It has been shown that the addition of white noise to
an AR(q) process produces a data sequence x(k) that is
described by the ARMA(q,g) model. Use of this model
requires an ARMA parameter estimation procedure, producing
estimates of the AR parameters {a(i)}%, estimates of the MA
parameters {b(i)}%, and an estimate of 03, the variance of
the ARMA model excitation sequence. As suggested by
Pagano, these parameters are converted to the parameter set
comprised of the AR coefficient estimates {a(i)}g and the
MA autocorrelation estimates {Ryy(k)}q. A nonlinear
regression can then be used to improve the estimates of the
{a(i)}9, oz, and 02, the parameters of the original AR

n
model. 1In this section is a brief presentation of the

PV P TR T “4.«_ b e ang e fhiees. 2. ke
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nonlinear regression technique. A more detailed
development is found in Appendix B.

-~ A - - '1‘
tti = C LA ) R 0 e e 0 R d
Le ng z (a(l) a(q) yy( ) yy(q)] an
8 = [(a(l) ... a(q) 8§ Si gt then the 29+l equations

relating the two parameter sets z and 6 can be written as

for i =1, ..., 29+1l. The metric [16] for evaluating the

effectiveness of 6 in minimizing the sum of squares of the

e is given by
2g+1l

Q(e) = ] [z,

2
Lz - g 0] (3.93)

Using (3.32c) to define the fi(g), i=1, ..., 29+1, gives

the following set of equations:

a(i) = a(i) + e; (3.94a)
R (0) = 6% + &2 % %13y + o (3.94b)
Yy J e g+l ' .
R (k) = o2 q-§k|~( ) a(i+k) + (3.94¢)
R =g a(i) a(i+ e ' .94c
YY n i=0 q+k+1

for i, k = 1, ..., q and a(0) = 1. The {a(i)), ai, and

52 are chosen to minimize Q®), given in (3.93). Because

n

of the nonlinear nature of the functions fi(g) in (3.94),
an iterative procedure based on the GN method or modified
GN method is used. The Gauss-Newton method is based on the

linearization of the nonlinear functions £, (9) about 9.

This will yield a solution g* to (3.92) having the property
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of convergence for a finite number of functional

*
relationships fi(g). The 6 will be asymptotically

efficient [17].

Characterization of the Noise Sequences

Some of the most important assumptions made about the
AR-to-ARMA transformation model concern the statistical
properties of the white noise sequences ¢€(k), v(k), and
n(k) . In defining any ARMA(q,p) process it is customary to
use an i.i.d. N(O,oé) excitation sequence. This implies
the "whiteness" of the sequence. It has been pointed out
that the data used in this work to test the validicy of the
model and the operation of the algorithms are generated
from known AR(gq) models. The excitation sequences for the
AR(q) processes and the ARMA(q,q) simulations, €(k) and
v(k) , respectively, must be reasonable approximations to
ideal white noise sequences.

This is also true for the sequence n(k), the additive
white noiée. Addition of white noise to an AR(g) process |
theoretically results in an ARMA(gq,q) process with the AR
parameters unchanged. If the additive noise n(k) is

non-white, however, the resulting data, while still an ARMA

TR

process, will no 1longer have the same AR parameters. If
n(k) is non-white, further processing must be performed on
the AR parameter estimates to retrieve the original AR(Q)
parameters. This problem is beyond the scope of this work.

Two approaches for generating the required noise files
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have been used. In the early stages of algorithm
development, the noise obtained by digitizing the output of
an analog noise generator 1is wused for the three noise
sequences. For small sequences and for use in algorithm

‘ development, this approach 1is adequate. Unfortunately,
these noise files have a sample power spectrum that décays
3 slightly near the folding frequency, defined as one half of
the sampling frequency. This is due to the anti-aliasing

filter used prior to digitization. Some of the data in the

following chapter is based on ARMA processes generated
using this digitized analog noise. The noise used in these
tests has been modified to reduce the effects of the
anti-aliasing pre-filter. In effect, the signal |is
"resampled" at a 1lower frequency, below the pre-filter
cutoff frequency, by using every other sample in the
sequence.

Most of the parameter estimation statistics reported
in the next chapter are taken from data sequences

synthesized using noise samples derived from the FORTRAN

software random number generator RAN. This number
generator provides samples from a uniform distribution on

the range [0,1], i.e., U[O,1]. Since samples of a random

-n =

variable (r.v.) with a normal distribution are desired, the

-

samples taken from RAN must be manipulated to achieve the
correct distribution. By summing several samples taken

from RAN and scaling appropriately, the resulting sample

e
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r.ve. approximates one taken from the desired normal
distribution.

If u(k) is a sample of the U[O,1] r.v. and w is the
desired sample from a r.v. with normal distribution
N(uw,o:), then w can be approximated by

n
w=c+d J u(k) , (3.95)
k=1
where n is the number of samples summed to approximate a
normal distribution. A value of 10 is used for n in this
work. The constants ¢ and 4 in (3.95) scale and shift the
sum to achieve the desired mean By and variance 03. These

constants are given by

2]l/2
w ’

By [3no

Cc

d

% [3no"2']l/2 .
The desired noise sequences e(k), v(k), and n(k) are formed
by appending large numbers of the w generated by (3.95).

As will be seen in data reported in the next chapter,
the noise sequences generated in this manner do not exhibit
the decay at the folding frequency in the sample power
spectrum., There may, however, be problems associated with
software generated random numbers. One of the most serious
defects as it affects this work would be periodic behavior
in the samples generated by RAN. A large number of samples
are needed for the tests in Chapter 4, with each sample

requiring several values of the function RAN. Periodic
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behavior in the noise sequences would effectively reduce
the size of the tests. Verification tests performed on the
noise sequences generated from RAN are reported in the next
chapter.

In using the noise files generated according to (3.95)
it is necessary to scale the noise sequences to achieve the
appropriate sample variance needed in the test. This is
especially true for the sequences n(k) and v(k). The
estimator for the variance of the sequence n(k), for
example, is given by

L 2

Y wiky ~ A”, (3.96)
k=1

62 =1
n M

where n is the sample mean

M
1 n(k) . (3.97)
k=1

k4

n =

M in (3.96) and (3.97) is the number of samples 1in the
entire noise sequence, not the number of samples in a frame
of data.

After scaling, the sequences are wused to synthesize
ARMA processes. The sample variance of these processes is
also calculated and compared to the theoretical value for
that process. Because of the importance of the sample
variance estimator in checking the validity of a process,
measures of its reliability are needed. The measures used
are the mean and variance of the estimator in (3.96). If

estimating ai. for example, E[ Gil and var| &ﬁ] are the
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desired reliability statistics. These statistics are now
developed for the estimator given in (3.96)

Taking the expected value of (3.96) gives

M
~2 1 2
Efo = ] E[n“(x)]
n M kml

= 62
n ’

since n(k) is a zero mean process and E[n(k)] = O. Thus,

a2
o

n 2s defined in (3.96) is an unbiased estimator of oﬁ.

Using the property that the n(k) are i.i.d., we have

M M
B[22 = L e[ I I n%w) 2]
M k=1 j=1

M
=% Temtw] + %ol (3.98)
1

k= e
E[n4(k)], the fourth moment of the normal r.v. ni(k) ., 1is
given by

E[n4(k)] 0: [

I
w

as developed in Appendix E. Equation (3.98) becomes

~202, _ 3 4  M-1 4
E[(Gn) ] = W% ™ R Ty v
and
S ~2,2 a2y 2
var[o ] = E[(0)"] - (E[Un])
3 M-1 4
G* % - Yo,
-2 4
"M °n (3.99)
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A7 TR TR ARCTEa, I PMVR AR, T LIRS T A




82

is the desired expression. Use is made of (3.96) and the

statistics of (3.97) and (3.99) in Chapter 4.




CHAPTER 4

EXPERIMENTAL RESULTS

Introduction

In this chapter the data from various experiments will
be presented. The theoretical basis for these experiments
is discussed in the preceding chapter. The first section
presents results obtained from the autocorrelation method
of LPC as applied to one frame of voiced speech. For a
variety of signal-to-noise ‘ratios, the sample spectrum
determined from the LPC coefficient estimates 1illustrates
the degrading effects of additive white noise. That
section also shows the effects of using the simple
autocorrelation correction method discussed in Chapter 2.
The implications of the uncorrelated signal and noise
assumption are discussed.

Because several noise sequences are required in
testing the parameter estimation methods, a section on the
characteristics of the noise files used is included.
Sample power spectra and time domain amplitude histograms
are shown. The sample variance required for a noise
sequence in a given test 1is 1listed in the section
describing that test.

The next section presents data obtained using
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Steiglitz's mode 1 algorithm. Desirable because of the
simple nature of the algorithm, parameter estimates for the
10 pole, 2 2zero model used by Steiglitz in [35] are
obtained for three cases. The three cases are
distinguished by the type of sequence used to excite the
"unknown" system:
1) impulse;
2) impulse train;
3) white noise.
For each case, the spectrum of the estimated model is
compared to the spectrum of the original model. Results
are excellent for cases 1) and 2). For the white noise
excitation of case 3, however, the results are
disappointing. Unfortunately, it is the white noise
excitation that is most important to this research.

In Chapter 3, details for the AR(1l)-to-ARMA(1l,1)
transformation model are given. After the section
demonstrating Steiglitz's mode 1 algorithm, there follows a
comparison of the mode 1 and NR methods as applied to an
AR (1) process. Data are then obtained for various AR(1l)
and MA(l) processes. The validity of the AR-to-ARMA
transformation model for the first order process 1is then
tested using several estimators.

The last two sections present parameter estimation
data obtained by using the NR method on two higher order

processes, where q = 2 and 4. These estimates are compared

i .t N S - ik
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with estimates computed using the shifted Yule-Walker and
LPC procedures. Using distance measures which combine the
errors between the coefficient estimates and the actual
coefficients, significant improvement is shown in the
estimates from the NR algorithm when compared to the LPC

estimator.

LPC Analysis

One of the objectives of this research is to
characterize the effects of additive white noise on LPC
analysis systems. The following data illustrate the
degradation caused by additive noise. Results are
presented for a frame of voiced speech at varying levels of
noise. Figure 4-1 shows the speech frame used as the
example in this section. The time waveform is shown in
Figure 4-la). Sampled at 6667 Hz, this frame of 128
samples corresponds to about 19 msec. of speech. This
frame represents a portion of the schwa vowel /3 /, as in
the word “rust". This particular vowel was selected
because of the nearly uniform distribution of formants.
Also, on a dB scale the formants drop in peak magnitude at
a nearly constant rate as frequency increases. Figure
4-1b) shows the sample spectrum of this frame of speech,
after windowing with a Hamming window. On the dB scale,
the nearly uniform formant structure of the schwa vowel is
apparent. Superimposed on Figure 4-1b) is the spectrum

corresponding to a 10 pole LPC fit of this frame. The LPC

i o SR s e e
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Figure 4-1: Example frame used as s (k)
a) 128 samples of the vowel /a/, sampled at
6667. Hz
b) Spectrum of /3/ and a 10 pole LPC fit to
that spectrum
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spectrum is smoother and matches the formant peaks well.
Figures 4-2, a)-e), show the effects of additive white
noise with progressively smaller signal-to-noise ratios:
40, 30, 20, 10, and 0 dB. The SNR is found by averaging
the energy in the speech and the noise sequences over
several seconds. The ratio of these energies is then used
to determine the SNR, defined as SNR = ) sz(k)/z nz(k),
Superimposed on each spectral plot is the corresponding 10

pole LPC fit. All spectral graphs in Figures 4-1 and 4-2

are on the same scale and can be compared directly. The

following noise effects are noted:

1) with decreasing SNR, the noise "floor" rises, obscuring
more of the formant structure of the speech;

2) the formants identified by LPC analysis in increasingly
poorer SNR's tend to be wider in bandwidth and have
their peaks ét slightly higher frequencies;

3) the formant structure identified by LPC is badly
degraded for SNR's below about 20 dB.

The importance of the assumption of uncorrelated
signal and noise is demonstrated in the next set of data.
This assumption |is primary to the autocorrelation i
correction methods of parameter estimation, some of which
are discussed in Chapter 2. Figure 4-3a) shows Rss(k), the
autocorrelation function for the frame of speech being

discussed. Plotted in Figure 4-3b) are Rnn(k), the noise

autocorrelation function, and Rsn(k), one of the
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cross-correlation functions. The abscissa in Figures 4-3a)
and b) starts at lag k = 0 and is followed by 50 lags for
k =1, ..., 50. The last 50 points are the negative lags
in the order k = -50, ..., -1. The noise used for Figure
4-3 corresponds to a 10 dB SNR. Noting that Rgy (k) in
Figure 4-3b) is that curve with the larger magnitude, it is
obvious that R, (k) # 0, based on the estimation of Ry, (k)
from

N-1-k

R, (k) = iZO s(i) n(i+k)
In fact, Rsn(k) for this frame is of the same order of
magnitude as Rss(k) in Figure 4-3a). The spectral
implications of this are shown in Figure 4-3c), which shows
four spectral curves determined from LPC coefficients
calculated from the four autocorrelations:
i) Rss(k),
ii) Rss(k) " Rou V&) = R IR} = Rsn(k) - Rns(k),
iii) R (k) = R (k) - R__(k),
iv) Rxx(k).
Note that i) and ii) result in the same spectral plot. The
explicit assumption of wuncorrelated signal and noise is
used in iii), while iv) corresponds to LPC coefficients
determined from noisy data, with no correction attempted.
Figure 4-3¢c), curve iii, shows the 1inadequacy of the

uncorrelated assumption for the autocorrelation correction

modeling approach. Even though curve iii appears superior
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to 1iv, 1in a large percentage of frames the LPC algorithms
will fail, producing unstable inverse filters. An
autocorrelation matrix which is not positive definite

causes this problem.

Noise Sequence Characteristics

As mentioned in Chapter 3, several noise files are
needed for excitation and additive noise sequences. The
noise files used in this work come from three sources: 1)
digitized analog noise, 2) "resampled"” digitized analog
noise, and 3) software generated random numbers. In this
section the methods of generation of these noise sequences
are discussed. The sample power spectra and amplitude
histograms for the noise files are also given.

The first approach to generating noise files is
digitizing the output of an analog noise generator. The
procedure for creating the noise files is summarized as
follows:

1) set the General Radio Company Random Noise Generator,
type 1390-B, No. SGL-78, at the 20 KC range;

2)M adjust the generator output controls and audio panel
gain adjustments for a noise envelope that is
approximately 8 volts peak-to-peak;

3) with a 3.2 KHz anti-aliasing pre-filter, sample the
amplified generator output at 6667 Hz;

4) rescale the digitized noise sequences for a variance of

about 1.0 and store in unpacked format on disk.
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Two noise files obtained by this procedure are wused in
tests in the following sections. The upper plot in Figure
4-4 shows the sample power spectrum in dB of one frame of
E noise from one of these files. The lower plot in Figure
4-4 is the histogram of the time series amplitude for the

example frame. For this figure and the rest of the figures

in this section, the frame size is 1000 points, the DFT
order is 11, and 40 cells are used to form the histogram.
From Figure 4-4, note the near flat character of the sample
spectrum. However, at frequencies near the folding
frequency of 3333 Hz there is a noticeable roll-off in the
spectrum. This is due to the anti-aliasing pre-filter used
prior to digitization.

The second approach for generating the noise sequences
is to "resample® the noise files obtained by the first

method. This resampling is accomplished by taking as a new

g ———— ™

time series all noise samples with an even time index.
Another sequence can be formed by taking the samples with
an odd time index. The wupper plot 1in Figure 4-5
illustrates the sample power spectrum for one frame of
noise generated in this manner. The amplitude histogram is
shown in the lower plot. There is 1less tendency for
roll-off at the folding frequency for the noise generated
by this method. The effect of resampling in this case |is

similar to pre-filtering at 3333 Hz and sampling at

3333 Hz. This causes aliasing and eliminates the spectral
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decay at the folding frequency.

The last method used to generate noise files involves
the use of the FORTRAN uniform random number generator RAN.
A r.v. with the appropriate normal distribution N(o,oz) is
obtained by summing n wuniform r.v.'s. The uniform r.v.
samples are scaled and shifted to achieve the correct mean
and variance in the normal r.v. A value of 10 is used for
n for the noise sequences generated for this work. Details
on the creation of normal noise samples from the RAN
function are found in Chapter 3. Most of the data 1in the
following sections 1is based on processes synthesized and
degraded using noise sequences obtained in this fashion.

The characteristics of three noise files generated
with this method are given in Figure 4-6 a)-c). Part a) of
Figure 4-6 is the sample power spectrum and amplitude
histogram of noise file one. Abbreviated NF1l, this file is
used exclusively to generate the AR(g) process s(k) that is
to be identified. The characteristics of the second file
NF2 are given in Figure 4-6b). NF2 is used only as the
additive white noise. The third sequence NF3 is used to
generate the equivalent ARMA(1l,1) process created by adding
white noise to an AR(l) process. Its characteristics are
shown in Figure 4-6c).

One further test required for the noise sequences
generated from RAN is the verification that no cycles occur

in the numbers generated by RAN. The function RAN has one
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integer argument. This integer sets the starting value for
the random number generator. If that argument is zero, a
standard starting point 1is |used. For the tests in the
following sections, approximately 500 frames of data are
required. With 256 points/frame and three noise sequences,
3.84 x 105 noise samples are needed. Since each sample
requires ten values from RAN, there are 3.84 x 106 samples
from a uniform r.v. To compensate for data values found at
the start of each frame, 4300800 RAN samples are used.
This yields three sequences of 143360 points each. In
analysis, this provides 518 frames of data. With this
large number of values required from RAN, it 1is important
that no «cycles occur in the sequence produced by RAN. If
this happens, the effective length of the sequence is
reduced, degrading the quality of the sample statistics for
the parameter estimators.

The validity of the RAN sequence is checked in two
ways: |

1) determine if the standard integer starting value for
RAN reoccurs within 4300800 samples;

2) after 4000000 values, record the integer argument of
RAN and determine i€ that value occurs again in the
next 300800 samples.

The sequence produced by RAN does not repeat from the

starting value at any point in the 4300800 samples.

Neither does it enter a cycle of less than 300800 points at
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a later point in the sequence. It is felt the noise
5 sequences generated in this manner are suitable

approximations to Gaussian white noise sequences. Table
4-1 lists the beginning and ending values for the integer
argument of RAN for the three noise files. All three
sequences are designed to be zero mean processes with a
variance of 1.0. The sample values for these two

| parameters are also given in Table 4-1.

Steiglitz Mode 1 Iterative Procedure

The mode 1 technique by Steiglitz and McBride [36]
described in Chapter 3 is basically a system identification
method in which it is assumed the input v(k) and output
x(k) of the system are Kknown. For application to the
estimation of the coefficients of an ARMA process, this
technique must be modified. When only the output of the
system is known, v(k) is assumed to be the Kronecker delta
function. Also, the system output x(k) may be modified so
that it more closely resembles an impulse response, as the
assumption for v(k) implies. Suggested modifications for
the signal include windowing, pre-emphasis, and cepstral
processing. To test Steiglitz's mode 1 method, the
following procedure is used:

l) From a known model, which is the system to be
identified, generate an output sequence x(k).

2) The input to the "unknown" system is one of: impulse,

impulse train, or noise (approximately white).
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Table 4-1

Generation of Noise Sequences Using RAN

Noise Starting Ending Sample Sample
File Integer Integer Mean Variance
NF1 0 50312698  -1.69150 x 10~°  1.00341

NF2 50312698 1254307719 -8.71251 x 10'-4 1.00257
NF3 1254307719 357121965 9.29829 x 10_4 0.998244

v b - . l » e e
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3) Use the mode 1 method to compute estimates for the
parameters of the "unknown" system.
4) Compare the parameter estimates to the design
parameters.

The results for one 10 pole, 2 zero model system are
now presented. This model 1is identical to that used by
Steiglitz in [35]. 1In [35] Steiglitz arbitrarily sets the
sampling frequency at 15 KHz and enters the pole locations
by specifying the center frequency and bandwidth for the
poles in the upper half of the Z-plane. The location of a
pole in the Z-plane in polar coordinates is determined from
R=1-BW/2 and 6 = 2 fc/fs, where R and 6 are the radius
and radian angle of the pole. The terms fc and BW are the
center frequency and bandwidth of the pole. The sampling
frequency is fs.

Since the work reported here began with speech sampled
at 6667 Hz, the pole locations are specified according to a
sampling frequency of 6667 Hz. However, because the
assignment of the sampling frequency is arbitrary for this
type of test, either specification of pole locations yields
the same set of coefficients. Table 4-2 gives the upper
Z-plane pole 1locations for the example system. Both
specifications are provided for the reader's convenience.
Table 4-3 lists the 10 coefficients resulting from the pole
locations 1listed in Table 4-2, As discussed in Chapter 3,

the coefficients in Table 4-3 correspond to the AR




103

Table 4-2

Upper Z-Plane Pole Locations for 10 Pole Model

fs = 15000 Hz fs = 6667 Hz
Center Center
Frequency Bandwidth Frequency Bandwidth
270 60 120 26.7
2290 100 1018 44.4
3010 120 1338 53.3
3500 175 1556 77.8
4500 281 2000 125,
Table 4-3

Denominator Coefficients for 10 Pole Model

k a(k) k a (k)

1 -3.300959 6 13.53270
2 7.222431 7 -9.888342
3 -11.62311 8 5.741208
4 14.69756 9 -2.461647

-15.58842

10 0.7301360
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coefficients of the model, with a(0) = 1. By solving the
polynomial equation p(z) = } a(i) z ! 0, one obtains the
locations of the singularities in the 2Z-plane. These
locations are identical to those determined from Table 4-2.
Figure 4-7 shows the model spectrum to be identified. Note
that the zeros are a complex conjugate pair located on the
unit circle. The numerator coefficients, corresponding to
the MA portion of the model, are: b(0) = 1.0,

b(l) = -1.414214, and b(2) = 1.0.

Figure 4-8 is the output of this model when excited by
an impulse. Figure 4-8a) is the time sequence and Figure
4-8b) is the sample spectrum of that sequence in dB, as are
all spectral ©plots in this section. The estimate for the

model spectrum produced by one iteration of this method is

shown in Figure 4-9b). The model spectrum is repeated in
Figure 4-9a) for ease of comparison.

The time sequence produced by exciting the model with
an impulse train is shown in Figure 4-10a). The period for
this example is 100 samples. In Figure 4-10b) 1is the
estimate of the spectrum of this process. The data x(k) is
multiplied by a Hamming window prior to computing the
sample spectrum. In using the mode 1 technique for this
type of time sequence, it is desirable to pre-process x(k)
to make it more like an impulse response. Figure 4-1la)
shows the real part of the complex cepstrum of the windowed

data sequence, x(k). By properly windowing this cepstrum,
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two things are accomplished. First, by eliminating the
cepstral spikes resulting from the pitch harmonics in the
frequency domain, apparent in Figure 4-1la), the periodic
nature of x(k) can be suppressed. The second step is to
force this cepstral representation of x (k) to be causal.
Upon returning to the time domain, if appropriate scaling
has been done in the cepstrum, the resulting time series
will be minimum phase. Figure 4-11b) shows the cepstrum
after windowing and scaling. Figure 4-12b) contains the

new minimum phase time sequence, while Figure 4-12a)

contains the output of the impulse excited model for
comparison. Figures 4-13a) and 4-13b) are, respectively,
the spectral estimates of x(k) and xmp(k), the modified
version of x(k). Note in Figure 4-12 that xmp(k) is quite
similar to x(k) from the impulse excited case. Figure 4-13
shows the suppression of the harmonic structure on the

spectrum of x(k) caused by the periodic nature of x(k).

R T e

The mode 1 technique 1is now applied to xmp(k). Figure
4-14b) shows the estimated spectrum for the impulse train
excited case after two iterations. The original model
spectrum is repeated in Figure 4-14a).

The last case to be considered is when the model is

excited by a noise sequence. The resulting output sequence

g g A ST

and spectral estimate are shown 1in Figures 4-15a) and

4-15b), respectively. Superimposed on the spectrum of the

noise excited x(k) is the original model spectrum. Note
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the random variations from that ideal spectrum resulting
from the deviation of the excitation sequence from an ideal
white noise process. Figures 4-16b) and 4-17b),
respectively, show the spectral estimates produced by this
technique after the first and second iterations. Further
iterations fail to improve the estimate, which is poor.

The results presented above for the three types of
input represent the best possible spectral estimates
obtained through the appropriate choice of modifications to
Xx(k) prior to analysis. For the impulse excited model, no
intermediate processing steps such as windowing are
performed on x(k) before applying the mode 1 estimation
algorithm. In fact, use of any of the suggested operations
(windowing, pre-emphasis, or cepstral processing) degrades
the parameter estimates. In the impulse train excitation
case, the use of cepstral processing considerably improves
the estimates. Adding pre-emphasis degrades the estimate
somewhat. The initial step of windowing x(k) is necessary.
If x(k) is not windowed, the estimated filter becomes
unstable within a few iterations. No modifications are
made to x(k) in the noise excited case. None of the
options given provide any improvement in this case.

From the sample spectra in Figures 4-9b) and 4-14b),
it is apparent that this technique does well in estimating
the model for impulse and impulse train excitation. The

error in the case of the impulsive input is nearly zero.
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That for the impulse train excitation is well within
acceptable limits. In the noise excited case, however, the
error is unacceptable. The estimates obtained for noise
excited processes were consistently poor, often converging
to unstable filter estimates. In addition, the mode 1
method is strongly dependent wupon double precision
arithmetic to achieve success, even 1in the impulse and
impulse train excited cases. Because of the results for
the noise excited case, this method has been discarded.
However , the mode 1 estimate for the single AR parameter of
the processes in the next section will be compared to the
estimate obtained from other methods. This is done to
ensure that the large value of 10 for the AR order in this

example is not the dominant factor.

The First Order Model

In this section parameter estimation data from a
variety of first order models are presented. First, the
mode 1 scheme by Steiglitz and the NR method by Anderson
are compared. An AR(l) process is used for testing these
algorithms. In the second set of tests, the NR method Iis
applied to several AR(1l) and MA(l) processes. The tests on
the AR(l) processes also produce LPC estimates for
comparison. The data obtained from the MA(l) tests is used
to check the NR algorithm's performance against previous

work. The third set of experimental results deals with an

AR (1) process plus white noise. The resulting data is
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modeled as an ARMA(1,1) process. Several parameter
estimation procedures are applied to data of this type.

The data base for the tests in this section is
composed of various AR(l1), MA(l), and ARMA(1l,1) processes.
The excitation sequences for these processes are derived
from noise files generated by the three methods discussed
earlier in this chapter. All three types of noise are
used. The method of generation is noted in the discussion

of each test.

In the following tests, parameter estimation data are
presented for seven estimators, The mathematical
development for these estimation procedures 1is given 1in
Chapter 3. Three methods provide estimates for the AR
parameters and excitation sequence variance, only. These
are: the autocorrelation LPC method, the "shifted"
Yule-Walker LPC technique, and Wiener filtering followed by
the autocorrelation LPC method. Abbreviated as LPC, SYW,
and W-LPC, respectively, these three methods do not require
initial guesses for the parameters.

Four estimation methods considered provide estimates
of the AR and MA parameters and the excitation sequence
variance. These methods are the mode 1 procedure of
Steiglitz, the Newton-Raphson and Gauss-Newton time domain
methods from Anderson, and the unconditional sum of squares
method by Box and Jenkins. The abbreviations for these

techniques are mode 1, NR, GN, and USSQ, respectively. The
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] first three procedures require initial guesses for the
parameters being estimated. In the USSQ method, the entire
parameter space is scanned.

For tests on ARMA(1l,1) sequences the initial wvalues

for the parameter estimates are the actual AR and MA

coefficients of the ARMA(l,1) model that describes the
data. Using these parameters as the 1initial guesses
removes all uncertainty due to inaccurate 1initial guesses

from the experiment. Tests performed on AR(l) and MA(1l)

processes sometimes use other initial values for the
parameter estimates; especially all zeros. The type of
initial guess used is noted in each experiment.

Comparisons of the parameter estimates generated by
the preceding methods are made using the mean, variance,
and standard deviation sample statistics. The expressions

for these statistics are given by

A 1 M
U'-'E.ZC(i) '
i=1
» M .
02=%2c2(1)-2.
i=1
& [82 1/2 ,

where c(i) is the estimate of parameter c at the ith frame
and M is the number of frames. These statistics are
computed for each AR and MA coefficient estimate and for
the estimate of the excitation sequence variance. For the

first order processes tested, these statistical measures
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are sufficient. In higher order processes, however, it is
desirable to use a combined measure for the AR coefficients
or the MA coefficients. Two distance measures will be
defined in the sections dealing with the second and fourth
order AR models.

The mode 1 procedure is the first estimation method to
be examined. In the section that discusses this algorithm,
found earlier in this chapter, it is apparent that the mode
1 method does not do well when the excitation for the model
is white noise. The results in that section are based on
the analysis of a 10 pole, 2 zero system. Part of the
reason for the failure of this method in that case¢ could be
due to the high order of the AR part of the model. To
examine this, the mode 1 and NR methods are applied to data
generated from an AR(1l) model with a(l) = 0.5. No noise is
added to the AR sequence. The excitation for the process
is from NF1. The 1initial parameter estimate for both
methods is a(l) = 0.5, the parameter used to generate the
data. Table 4-4 1lists the estimates for a(l) from these
two methods for two frames. Ten iterations are given.
Note the estimate for a(l) generated by the NR procedure
does not change in the five most significant figures after
the first iteration. For these example frames, it is
apparent that the mode 1 method is inadequate. While the

NR estimate 1is accurate and stable, the mode 1 estimate

varies considerably from one iteration to the next. The




Comparison of the Mode 1 and NR Estimates

Table 4-4

for a(l) of an AR(1l) Process

Frame 1
Iteration Mode 1 NR
1 .20713 .52667
2 .27195 101 .52667
3 -.12183 10l .52667
4 .12604 .52667
5 ~-.15914 x 10l .52667
6 -.10244 x 10°%  .52667
7 ~-.90959 .52667
8 ~.77367 .52667
9 ~.49257 .52667
10 .83789 .52667

117
Frame 2

Mode 1 NR
-.05109 .49538
1.4135 .49538
-1.2294 .49538
-5.5827 .49538
-.24169 .49538
.89261 .49538
.97296 .49538
.99496 .49538
.99732 .49538
.99728 .49538

- -
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mode 1 estimate does converge in frame 2, but to a value
that indicates the singularity is close to the unit circle
in the 2Z-domain. Hence, the estimated model will tend to
have marginally stable behavior. It is also important to
note that all mode 1 computations are performed in double
precision, while those for the NR method are done in single
precision. Because of these results and those of the
earlier section, the mode 1 technique will not be
considered in any further tests.

Before examining the AR(1)-to-ARMA(1l,1) transformation
model, the NR procedure is applied to three AR(l) processes
(a = 0.1, 0.5, and 0.9) and three MA(l) processes (b = 0.1,
0.5, 0.9). For the AR(l) processes, an LPC estimate for
a(l) is also calculated. The processes in these tests are
excited by NF1 scaled for 5> = 1.0. Table 4-5 lists the
theoretical variances for these processes, based on
oi = 1.0 This table also 1lists the sample variances
determined from the data sequences generated wusing NF1l.
Using (3.99) to calculate var[&i], the variance of the
sample variance estimate, the theoretical and sample
variances are compared by observing how close these
quantities are in value. Taking the square root of var[&i]

~

as the standard deviation, °§ lies within d standard

deviations of oi, the true variance of the process. The

value for d is given in Table 4-5 under the column labeled

A2

"Limit". This assumes that the distribution for Og is

il

> Wy S
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Table 4-5

Theoretical and Sample Variances for the
AR(l) and MA(1l) Processes

Value of Theoretical Sample
Process Coefficient Variance Variance Limit
AR (1) a=0.1 1.01010 1.00867 -1
AR(1) a=20.5 1.33333 1.32308 -3
AR(1) a=0.9 5.26316 5.16576 -5
MA (1) b = 0.1 1.01 1.01140 1
MA (1) b = 0.5 1:25 1.25700- 2
MA (1) b= 0.9 1.81 1.82259 2
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Gaussian with a mean of oi. The initial guess for a(l) and
b(l) required by the NR method is zero in all cases. The
number of frames analyzed is 518. There are 256 points per
frame. Convergence for the iterative NR procedure is

achieved when both of the following conditions hold:

1) ai - &i_ll < 0.0001, where éz is the estimate of the
variance of the excitation sequence at the ith
iteration;

2) |ci - ci-ll < 0.0001 (c.l_1 + 0.001), where c; is the

th iteration.

estimate of either a(l) or b(l) at the i
If both of these conditions are satisfied, the NR procedure
is terminated. However, a limit is placed on the maximum
number of iterations allowed per frame. Designated ITMAX,
this 1limit 1is wusually set at 30 iterations. Convergence
test 2) is suggested by Bard ([6].

The results of the AR(l) tests are found in Table 4-6.
Those for the MA(1l) tests are listed in Table 4-7. 1In both
tables note that the sample variance of the NR estimate
decreases as the magnitude of the coefficient increases.
In Chapter 3, equation (3.51) gives the theoretical
variance of the conditional maximum likelihood (CML)
estimate for a(l) of an AR(1l) process. The variance of the
estimate for b(l) of an MA(l) process is given in (3.52).
Noting that the expressions are of the same form, Table 4-8

lists the variance and standard deviation for a, b = 0.1,

0.5, and 0.9. A frame size of N = 256 is used in computing

% el

Ty
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Table 4-6
NR and LPC Estimates of a(l) and NR Estimate of 02
for AR(1l) Processes v
Sample Sample
a(l) Estimator Mean variance Convergence
0.1 NR a(l) .967 x 10”1 4.09 x 1073 3
i LPC a(l) .991 x 10™' 6.65 x 1073
NR ol .993 7.54 x 1073 3
0.5 NR a(l) .492 3.26 x 19°° 3
LPC a(l)  .492 5.35 % 1077
NR o2 .995 7.54 x 1073 3
i 0.9 NR a(l) .891 9.33 x 10" 3
LPC a(l) .886 1.78 x 1073
NR o2 .101 x 101  g8.44 x 1073 3
Table 4-7
NR Estimate of b(l) and 03 for MA(l) Processes
Sample Sample
b(1l) Estimator Mean Variance Convergence
0.1  NR b(l) .103 4.42 x 1073 9
NR o2 .993 7.54 x 1073 9
0.5 NR b (1) .505 3.46 x 10 ° 7
NR o2 .994 7.53 x 10”3 7
0.9 NR b(l)  .891 1.38 x 1073 16 |
NR o2 .101 x 100  8.67 x 1073 16 |
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this data. As seen from this table, the variance of the
estimate improves as the magnitude of the parameter
approaches 1.0. Comparing Tables 4-6 and 4-7 with Table
4-8, one finds close agreement between the sample variances
and the theoretical variance of the parameter estimate. 1In
Table 4-6 note that the average LPC estimate for a(l) is
superior to the NR estimate only for a(l) = 0.l. The
variance of the NR estimate for a(l) is smaller than the
variance of the LPC estimate in all three cases.

The entry "NR 03' in both tables is the estimate of
the excitation sequence variance. 1In this case, with no
additive noise, the excitation is e(k), with 32 = 1.0. The
poorest estimate (occurring when a = 0.9 or b = 0.9) is in
error by 1%. The 1last column in both tables 1is the
iteration at which convergence occurs for the first frame
of data. The MA(1l) processes all require more iterations.
The AR(1l) processes require three iterations to satisfy the
convergence criteria. However, there is usually no change
in the five most significant figures after the first
iteration in the AR(l) cases.

In a study of MA(l) processes with coefficients of
0.2, 0.5, and 0.9, Nelson [28] presents results similar to
those in Table 4-7. Although his investigation uses
smaller frame sizes, the variance of his CML estimate for
b(l) exhibits the same improvement as b(l) increases in

magnitude. Nelson compares several estimators in his work.

-




Variance of CML Estimate for the Coefficient

Table 4-8

of an AR(1l) or an MA(l) Process

aorb var [a] st. dev.[a]
0.1 3.87 x 1073 6.22 x 1072
0.5 2.93 x 1073 5.41 x 102
0.9 7.42 x 1074 2.72 x 1072
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In his studies, Nelson finds that the CML and ML (maximum
likelihood) estimators perform best on sequences generated

from models with the MA parameter in the range of 0.5 to

0.9 in magnitude. The CML method mentioned is most like
the NR method used in this work.

In Chapter 3 it is shown that the addition of white
noise to an AR(l) process introduces an MA parameter b and

an excitation sequence v (k). The resulting data is

described by the ARMA(1l,1) model. Tables 3-2, 3-3, and 3-4
illustrate how b and 03, the variance of v(k), are affected
by wvarying 1levels of n(k), the additive noise. These
tables are based on AR(l) processes with a(l) = 0.1, 0.5,
and 0.9, respectively. Equations (3.53) a)-c) give the
variance and co-variance of the estimates for a(l) and b(1l)

of an ARMA(l,1) process. Tables 4-9, 4-10, and 4-11 list

the variance for the a(l) estimate of an ARMA(l,1l) process.

The values of a(l) assumed for these tables are 0.1, 0.5,

BBy

and 0.9, respectively. The MA coefficient b(l) is computed

e Et

according to the SNR's specified in the tables. The

diie

coefficient b(l) and the theoretical variance of b(l) are

also given. From these tables several trends are noted:

l) For a fixed SNR, as a(l) increases 1in magnitude, the
variance of the estimate decreases.

2) If a(l) is held constant, the variance of the estimate

RO R AP 1P

wor sens as the SNR decreases. i

3) The introduction of even the relatively small MA

I il O e N Bl e i i D e
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Table 4-9
Variance of Parameter Estimates of the ARMA(l,l) Process
for Various SNR's and a(l) = 0.1
SNR (dB) b var[a] var [b]
30 .10091 x 107>  .387 .391
20 .99990 x 10°° .394 .398
10 .91667 x 1072  .468 .473
0 .50126 x 10°Y  .154 x 10t .155 x 10°
-10 .90917 x 1071 .460 x 102 .461 x 10°
Table 4-10
Variance of Parameter Estimates of the ARMA(l,1l) Process
for Various SNR's and a(l) = 0.5
SNR (dB) b var[a] var [b]
30 (66556 = 107° 17 x 10"t 157 x 10t
20 .65577 x 102  .120 x 10°Y  .159 x 10t
10 .57331 x 10t .141 x 107t .187 x 107}
0 .26795 .408 x 10+ .505 x 101
-10 .45573 .891 .942
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parameter at 30 dB noticeably degrades the variance of
the estimate when compared to the data in Table 4-8 for
an AR (1) process.

In the experiments that follow, two approaches are
used to test the validity of the model for an AR(l) process
plus white noise:

1) Given an AR(l) process with a = 0.5 and 0§ = 1.0,
compute the parameters b and 03 that result from adding
white noise. The parameteré a, b, and 03 define an
ARMA(1,1) model. The data used for analysis is
obtained by exciting this ARMA(1,1) model with a noise
sequence v (k).

2) Given an AR(1l) model with a = 0.5, excite this process
with a noise sequence ¢(k). To the resulting sequence
s(k) add the white noise sequence n(k), scaled to
achieve the appropriate SNR. The time series obtained
is x(k) , the data available for analysis.

The test described in 1) is a simulation of the noise

model. That 1is, the ARMA(l,1) model that results from

adding white noise to an AR(l) process is generated
directly. Tests of this type will be referred to as
simulations of the AR-to-ARMA transformation model. For
brevity, these are called ARMA tests. Experiments of the
type in item 2) above represent the situation that occurs

in practice: a signal described by the AR model is

corrupted by the actual addition of white noise. In the
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discussion that follows, type 2) experiments are referred
to as AR+N tests.,

The ARMA and AR+N tests offer two methods for checking
the validity of the noise model and the usefulness of the
estimation algorithms. The former type of test, with data
generated from a known ARMA(1,1) model, is used to test the
capability of the parameter estimation procedure. The
latter category of tests then determines the
appropriateness of the ARMA noise model. Since the data in
both tests 1is theoretically an ARMA process, a given
estimation procedure should produce similar results in the
analysis of each type of data. This is supported by the
results presented in this section.

The behavior of the AR(l) process in the presence of
white noise 1is now considered. Parameter estimation data
is obtained from processes with a(l) = 0.5 as the single AR
coefficient. Using the equations from Chapter 3 for b_ and

02‘, but henceforth omitting the minus subscript, Table

v
4-12 gives the parameter values for this process corrupted
by noise at the SNR's shown. The numerical values in this
table are derived assuming oi = 1.0. From Table 4-12, one
observes that the parameter b approaches a in value as the
noise 1level worsens. The data listed in Tables 4-10 and
4-12 is used in the following tests tc compare .the sample

statistics with their theoretical values.

The first experiment is an ARMA test simulation of the
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Table 4-11

Variance of Parameter Estimates of the ARMA(1l,1l) Process
for Various SNR's and a(l) = 0.9

SNR (dB) b var[a] var [b]
30 .46922 x 1072  .918 x 107>  .483 x 1072
20 43330 x 107 Je3e x W™ .e91 x 1072
10 .25884 106 x 1072  .522 x 10”2
0 .62679 .189 x 1072  .604 x 1072
-10 .83588 XL w 176 = W
Table 4-12

AR (1) Process Corrupted by Additive Noise
a= 0.5, 02 =1
€

SNR Oi b 03

- 0 0 1.0

30 1.3 ¢ 00" 66556 % 10 ° 1.0017

20 1.3 x 1072 .65577 x 102 1.0166

10 1.3 x w0t 57330 = 10T° 1.1628

0 1.3 .26795 2.4880 5
-10 1.3 x 10! .45573 14.628
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AR(1) process with a 0 dB SNR noise level. From Table
4-12, the parameters of the resulting ARMA(l,1) process
are: af(l) = 0.5, b(l) = 0.26795, and 03 = 2.4880. This
ARMA model is excited by digitized analog noise (DAN) in
one case and "resampled" digitized noise (RDAN) in the
second case. The excitation noise sequences are scaled for
a sample variance of 2.4880. The parameter estimates from
two procedures are considered: USSQ and NR. Five frames,
256 points each, are analyzed by each procedure. No mean
correction is performed. The initial parameter estimates
for the NR method are the actual model parameters. The
USSQ method initially scans the parameter space for values
of a and b from -1.0 to 1.0 in steps of 0.02. When the
minimum of the surface generated in this manner 1is found,
another scan takes place in a small neighborhood of the
minimum in increments of 0.001 for both parameters.

The purpose of this test 1is to verify that the
iterative NR procedure produces a solution which minimizes
the energy in the residual generated by that solution. The
USSQ method generates the surface corresponding to a large
number of solutions. The minimum obtained by the two
methods should agree and be in the vicinity of the true
model parameters: a = 0.5 and b = 0.26795. The
theoretical value of the minimum is 2.4880.

The parameter estimates from these two methods are

given in Tables 4-13 and 4-14. The DAN excitation sequence
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is used for the experiment summarized in Table 4-13. The
results for RDAN excitation are in Table 4-14. In most
cases the estimates agree, especially for 03. Only in two
frames do the results differ greatly. These are frames 3
and 4 of Table 4-14. The most likely explanation 1is that
the NR method occasionally oscillates between two
solutions. The termination procedure for this algorithm
does not account for this kind of problem at present. As a
result, the procedure may be terminated at the wrong

solution. Figure 4-18a) 1is an isometric plot of the

sur face generated by the USSQ method for frame 5 of Table

4-14. Cross-sections taken through the minimum are shown
in Figure 4-18b). These plots 1illustrate the quadratic
nature of the surface. Estimation methods based on least
squares seek to find the minimum of this surface.

The next comparison to be made is between the NR and
GN methods. Both procedures are used in an ARMA test at a
simulated O 4B SNR. The conditions for the experiment
are: 518 frames analyzed, 256 points per frame, no mean
correction, and true parameter values for initial

estimates. The excitation sequence 1is NF3 scaled for a

sample variance of 2.4880. The results, 1listed in Table

4-15, show the GN method produces parameter estimates

somewhat closer to the true values of a(l) = 0.5,

b(l) = 0.26795, and 03:- 2.4880. However, the sample

variance of the GN method is 1larger, indicating a wider




consm ot o e

131

Table 4-13

NR and USSQ Analysis of 0 dB ARMA Test
with DAN Excitation Sequence

NR USSQ
Frame Parameter Estimate Estimate
1 a .384 .381
b .104 .100
a2 2.321 2.321
v
2 a .253 . 252
b -.130 -.132
2
o, 2.791 2.791
3 a .141 . 140
b -0095 -o096
2
g, 2.615 2.615
4 a .239 .254
b -.040 -.025
2
i 2.534 2:533
5 a .367 .381
b -.034 -.019
2
o, 2.210 2.208

il R e b nin it Bhiibinicsa' ; i i N




Table 4-14

NR and USSQ Analysis of 0 dB ARMA Test
with RDAN Excitation Sequence

NR USsSsQ
Frame Parameter Estimate Estimate

1 a -.074 -.075
b -.233 -.234
a2 1.979 1.979

v
2 a .555 «55S
b .383 .383

2
o, 2.301 2.301
3 a .143 .921
b « b LL .936

2
= 2.763 2.762
4 a -.096 -.961
b -.212 -1.000

2
9o 2.634 2.622
5 a .452 .453
b .236 « 237

2
Sy 2.216 2.215

132
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Table 4-15
i NR and GN Analysis of 0 dB ARMA Test
Sample Sample
Method Parameter Mean Variance
NR a(l) .46881 6.2832 x 10”2
GN a(l) .47317 6.9737 x 1072
: NR b (1) .23245 7.3184 x 1072
GN b (1) .23619 7.8825 x 10" 2
NR o2 2.467 4.011 x 10”2
GN 03 2.475 4.328 x 1072

il s
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spread in the estimates. But the differences do not appear
to be striking, especially when the test is a 0 dB SNR
simulation.

Recalling from Chapter 3 that the GN method requires
the generation of two additional sequences in each
iteration, that method requires a higher computational load
per iteration. This is not compensated for by a decrease
in the number of iterations per frame required to achieve
convergence. Observations on a small number of frames
indicate that neither method has an advantage in rate of
convergence. Because of the computational savings of the
NR method, it is used in all wupcoming tests. This |is
especially important in the higher order models to be
3 discussed. In the fourth order model, for example, the
time required to process 518 frames of data is about three
hours on a general purpose computer (DEC PDP-10).

The last two sets of experiments demonstrate the

behavior of four estimators in the analysis of ARMA and

AR+N tests based on the AR(l) process. Each of the

estimators (NR, LPC, SYW, and W-LPC) 1is applied to
sequences representing SNR's of «», 30, 20, 10, O, and
-10 dB. For each test 518 frames of data are available,
with 256 points per frame. No mean correction is performed {
on the data. The Wiener filter used in the W-LPC method

has a 21 point impulse response. It is generated as

described in Chapter 3. The excitation sequence v(k) in |
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the ARMA tests is taken from NF3. NF3 is scaled for the
proper sample variance 83, the value of which is determined
from Table 4-12. In the AR+N tests the AR(l) process
(a(l) = 0.5) 1is synthesized using NF1l as the excitation
e(k). NF1 1is first scaled for a sample variance of
82 = 1.0. The additive noise required for the AR+N tests
is generated by scaling NF2 appropriately. The results for
the ARMA tests are presented first, followed by th&se for
the AR+N tests;

Data obtained from the ARMA tests at the various
simulated SNR's 1is 1listed in Table 4-16, 4-17, and 4-18.
The estimates for a(l) are found in Table 4-16. Those for
b(1l) (NR method, only) are given in Table 4-17. The
estimates for 03 from the NR and LPC methods are listed in
Table 4-18. 1In these tables and those describing the AR+N
tests, the data listed under "Mean" are the sample means of
the parameter estimates. The sample variances are
tabulated under "Variance". The number of frames analyzed
is 1listed under "Frames". The synthesized data provides
for a maximum of 518 frames. With the NR method it is
possible for the Gauss elimination routine to detect a
singular coefficient matrix. If that occurs, an error flag
is set and the results for that frame are not included in
the sample statistics for the estimates. The number of

frames successfully analyzed by the NR method provides

information about the stability of the estimation procedure

R o el e e e R e e R




Estimates of a(l)

Table 4-16

= 0.5 for ARMA Tests
of the AR(l) Process

SNR Method Mean Variance . Frames
- NR .48312 1.35 x 10”2 518
SYW .48810 3.28 x 1073 518

LPC .48958 5.48 x"lo'3 518

W-LPC .48958 5.48 % 1073 518

30 NR .49519 1.36 x 1072 518
SYW .49250 1.36 x 1072 518

LPC .49474 5.20 x 1073 518

W-LPC .49597 . 5.23 x 1073 518

20 NR .49505 1.39 x 102 518
SYw .49252 1.38 x 1072 518

LPC .49034 5.26 x 10 ° 518

W-LPC .50032 LR 518

10 NR 49355 1.67 x 1072 518
SYW .49279 1.67 & 19°° 518

LBC .45039 5.75 % 1™ 518

W-LPC .53679 4.68 x 1073 518

0 NR 46881 6.28 x 1072 513
SYW 50986 8.74 x 10~ 2 518

LBC .24955 7.29 x 107> 518

W-LPC 67112 2.96 x 107> 518

-10 NR .24537 2.85 x 1071 221
SYW =3.3153 3.54 x 10° 518

LPC .04897 7.05 x 10”3 518

.77210 1.80 x 107> 518

137
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Table 4-17

NR Estimates of b(l) for ARMA Tests
of the AR(1l) Process

SNR True Value Mean Variance Frames
> 0 -.88433 x 10”2 1.68 x 10”2 518
30 .66556 x 107> . -.50483 x 102 1.96 x 10~2 518
20 .65577 x 1072 -.21100 x 10>  2.00 x 10”2 518
10 .57331 % 10”7 48995 x 107 2.37 % 10”2 518
0 .26795 .23245 7.32 x 1072 513
-10 .45573 .16904 2.95 x 107 % 221

TEOY WO PRI S IRV A ORI SR a . W DA, phrivheny WO s e
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Table 4-18
NR and LPC Estimates of 03 for ARMA
3 Tests of the AR(1l) Process
True
SNR Value Method Mean vVariance Frames
w .3 NR .9948 7.62 x 10~° 518
LPC .9984 1.41 x 10~2 518
30 1.0017 NR .9942' .58 x 10”2 518
LPC 1.001 1.29 x 10”2 518
20 1.0166 NR 1.009 6.77 x 10°° 518
LPC 1.015 1.33 x 16°° 518
10 1.1628 NR 1.154 8.86 x 10> 518
LPC 1.162 1.74 x 10~ 2 518
0  2.4880 NR 2.467 4.01 x 10™° 513
LPC 2.493 8.11 x 10™°2 518
-10 14.628 NR 14.48 1.48 221
LPC 14.61 2.78 518
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at varying noise levels.
These trends are noted from Tables 4-16, 4-17, and

4-18:

1) The estimates for a(l) are good for all methods at
SNR's at and above 20 dB.

2) The LPC estimate for a(l) is noticeably degraded for
SNR's below 20 dB.

3) Decreasing the SNR causes an increase in the sample
variance of all estimates.

4) .The increasing sample variance is strongest in the NR
and SYW methods, which have sample variances greater
than that for the LPC estimate in all cases.

5) While the LPC estimate for a(l) tends toward zero as
the noise level worsens, the W-LPC estimate is
increasing.

6) In terms of the sample mean, the NR and SYW estimates
are superior to the other methods at SNR's of O and
10 dB. All methods perform badly at -10 dB.

7) At O dB the NR method fails in 5 frames. The method is
successful in only 221 frames at -10 dB.

8) At all SNR's, the average NR estimate for 03 lies below
the average LPC estimate for that parameter, indicating
that the NR method is doing a better job of finding the
minimum of the quadratic surface.

Figure 4-19 is a plot of the sample mean data for the a(l)

estimates from Table 4-16. This clearly indicates the

o
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degradation in the LPC and W-LPC estimates below 20 dB. At
O dB the NR estimate has the same error as the LPC estimate
at approximately 14 dB. The SYW estimate provides an even
greater improvement with much lower computational
requirements. However, it degrades radically between 0O and
-10 dB.

The curves plotted in Figure 4-19 show a definite
advantage in the NR and SYW estimates at O and 10 dB SNR's
when compared to the LPC estimate. There is another aspect
to these estimates that must be emphasized, however.
Figure 4-20 shows a plot of the NR and LPC estimates from
Figure 4-19. Also shown in the plot are vertical linesk
indicating one sample standard deviation interval away from
the sample mean. The standard deviation is ébtained by
taking the square root of the sample variance of the
estimator 1listed in Table 4-16. For SNR's above 10 dB the
spread of the two estimates is comparable. At 10 dB the
bias in the LPC estimate is evident, though the spread of
the estimate stays about the same. At SNR's below 20 dB,
the sample deviation for the NR estimate grows quickly.
Even though the interval covered by the +o limits for the
NR estimate always includes the desired value of 0.5, the
large spread in the estimate at the poorer SNR's indicates
that a single NR estimate can have a large error when

compared to the true parameter value. Only in the average

does the estimate approximate the true value well. The
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results for the SYW estimate are quite similar.
E The upper plots in Figure 4-21 a)-d) show the time
series generated by appending the estimates from each type
of estimator for the O dB case. Parts a)-d) of this figure
correspond to the NR, SYW, LPC, and W-LPC estimators,
respectively. The lower plot in each part of the figure is

an amplitude histogram obtained from the data in the upper

plot. The histogram is divided into 40 cells. A solid
line in each plot indicates the location of the sample
mean. The dashed lines in the plots mark intervals around
the sample mean of 2o. Of the four estimates, the NR
estimate has a somewhat asymmetrical distribution about the
sample mean. The other estimators are more symmetrically
distributed. The asymmetry of the NR estimate is in a
direction that tends to favor the estimate. That is, the
bulk of the distribution is shifted toward the true value
of the parameter. This alleviates the larger spread of
this estimator somewhat, though that is still a serious

problem.

The experiments performed on the ARMA simulations just
described are repeated in AR+N tests. The approach is to
generate the AR(l) process, add noise to achieve the
desired SNR, and apply the four estimation algorithms. The i
details for these experiments are described with those for

the ARMA test. Table 4-19 lists the data for estimates of @

a(l). The NR estimates for b(l) are given in Table 4-20.
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The NR and LPC estimates for 03 are listed in Table 4-21.
The comments made for the corresponding tables in the ARMA
tests hold for these results. The most important aspects
of this data are summarized as follows:
1) the variance of the estimates increases with higher
levels of noise;
2) based on average statistics, the NR and SYW are
superior to LPC at SNR'S below 20 dB;
3) the variance of the NR and SYW estimates is larger than
that for the LPC estimates.

Figure 4-22 presents the sample means of the four a(l)
estimates versus SNR. The NR estimate at O dB is about the
same as the LPC error at 14 dB. Interpolating the SYW
estimate at -1 dB, the same error occurs as with LPC at

14 dB, an extension of 15 dB. However, the SYW estimate

again degrades more rapidly below O dB than the NR method,
though not as badly as in the ARMA tests. The NR and LPC

estimates are shown again in Figure 4-23 with the +o0 limits

indicated. The comments made concerning the ARMA test
results in Figure 4-20 also apply to Figure 4-23. The
advantage of the NR estimate applies only in the average.
The 1large sample standard deviation weighs against the use
] of individual estimates.

The a(l) time series and histograms for the AR+N tests
at 0 dB are shown in Figure 4-24 a)-d). The dashed lines

mark deviations in the estimate from the sample mean by

. womrve e —— t i
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Table 4-19
| Estimates of a(l) = 0.5 for AR+N Tests
of the AR(1l) Process
SNR Method Mean Variance Frames
© NR .48312 1.35 % 10°% 518
SYW .48810 3.28 x 1073 518
: LPC .48958 5.48 x 107° 518
f W-LPC .48958 5.48 x 10> 518
30 NR .48334 1.35 x 102 518
SYW .48233 1.39 x 10~2 518
LPC .48907 5.50.% 15 > 518
W-LPC .49062 5.47 x 1073 518
20 NR .48351 L.3T % 10" 518
i SYW .48250 1.40 x 1072 518
: LPC .48464 5.63 x 10 ° 518
W-LPC .49490 5.46 x 10 ° 518
10 NR .48310 1.66 = 10°° 518
SYW .48301 1.61 x 10~2 518
LPC .44477 6.32 x 10°° 518
W-LPC .53142 5.09 x 1073 518
0 NR .46320 5.36 x 10”2 515
SYW .49954 9.64 x 102 518
LPC .24404 8.34 x 1073 518
W-LPC .66690 3.23 x 10°° 518
-10 NR .29938 2.56 x 107t 214
SYW .16791 5.98 x 10% 518
LPC .04276 7.74 x 1073 518
3

W-LPC .76962 1.85 x 10~ 518




Table 4-20

NR Estimates of b(l) for AR+N Tests
of the AR(l) Process

149

SNR True Value Mean variance Frames
- 0 -.88433 x 1072 1.68 x 10”2 518
30 .66556 x 107>  -.79156 x 102  1.68 x 102 518
20 .65577 x 1072  -.19046 x 1072 1.70 x 10~2 518
10 .57331 x 107 .47712 x 1071 2.10 x 1072 518
0 .26795 .23168 6.22 x 1072 515
-10 .45573 .22541 2.65 x 107t

214




NR and LPC Est.imates of 03
Tests of the AR(1l) Process

Table 4-21

for AR+N
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True

SNR Value Method Mean Variance Frames
e - o NR .9948  7.62 x 10> 518
LPC .9984 1.41 x 10”2 518

30 1.0017 NR .9966 7.64 x 10”3 518
LPC 1.000 1.41 x 10~2 518

20 1.0166 NR 1.012 7.89 x 10°° 518
LPC 1.015 1.45 x 102 518

10 1.1628 NR 1.156 1.05 x 102 518
LPC 1.160 1.92 x 10~2 518

0  2.4880 NR 2.464 5.15 x 10~% 515
LPC 2.473 9.14 x 102 518

-10 14.628 NR  14.35 2.11 214
LPC  14.41 2.99 518
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multiples of 20. The sample mean is indicated by the solid
line. These plots are quite similar to those for the ARMA
tests. The asymmetry of the NR estimate is apparent in the
AR+N tests, as well,

This concludes the presentation of the data on various
first order models. The AR(l) and MA(l) processes are
analyzed to determine the behavior of the NR estimator in
noiseless situations. Several estimators are then applied
to the AR(l) plus white noise model. These tests are
performed as ARMA simulations of the model and AR+N actual
tests of the model. The results for the two approaches

agree, establishing confidence in the algorithms and model.

The Second Order Model

In the preceding section, the results from the
analysis of an AR(l) process at several SNR's are
presented. 1In this section a single AR(2) process is
considered. The AR model selected for this experiment has
a complex-conjugate pole-pair located at a radius of 0.9
and a center frequency of +1000 Hz, referenced to a
sampling frequency of 6667 Hz. This model results in two
AR coefficients: a(l) = -1.05808 and a(2) = 0.81000.
Figure 4-25 presents the inverse spectrum of this AR(2)
operator. This spectrum shows on a dB scale the single
resonant peak resulting from the conjugate pole-pair. The
AR (2) process s(k) is obtained by exciting the AR(2) model

with NF1l, which is first scaled for a sample variance of
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1.0. NF2 1is appropriately scaled and added as n(k) to
produce x(k), the data to be analyzed. The theoretical
variance of this AR(2) model is 4.41735. The sample
variance of the AR(2) process generated by using the scaled
NF1 noise as the excitation sequence is 4.43889. With 256
points per frame, 518 frames of data are available for
analysis. The data in each frame is corrected for a zero
sample mean prior to analysis by any method. The initial
estimates for the parameters of the ARMA(2,2) model in the
NR method are:
1) for the two AR parameters, the actual model

coefficients are used;
2) for the two MA parameters, zeros are used as the

initial guesses.
These tests are similar to the AR+N tests of the preceding
section, but 1in this case the MA parameters 1in the
equivalent ARMA(2,2) model are unknown. Hence, the initial
guesses for the MA coefficients are zero.

Using the NR, LPC, and SYW algorithms, the estimation
data for the a(l) and a(2) parameters is listed in Tables
4-22 and 4-23, respectively. Two distance measures which
combine the error for each coefficient estimate into one

parameter are now defined:

L{a(k)] = la(i) - a(i)]? ,

1
q 121

AT T 3 i
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Table 4-22

Estimates for a(l) = -1.05808 of the AR(2) Process
Sample Sample

SNR Method Mean Variance Frames
w NR -1.0547 2.76 x 10> 518
SYW -1.0441 1.60 x 10~ 518

LPC -1.0491 2.58 x 1072 518

30 NR -1.0547 2.75 x 10> 518
SYW -1.0500 g.90 x 10 518

LPC -1.0468 2.61 x 10°° 518

20 NR -1.0547 2.77 x 103 518
SYW -1.0499 2.79 x 10~ 518

LPC -1.0258 2.92 x 1073 518

10 NR -1.0545 3.16 x 10°3 518
SYW -1.0500 3.17 x 1073 518

LPC -.85837 6.27 x 10> 518

0 NR -1.0505 8.78 x 10> 499
SYW -1.0505 2.62 x 1072 518

LPC -.34856 9.76 x 10™> 518

~10 NR -.69685 4.23 x 10~ 183
SYW -4.0376 2.66 x 10° 518

LPC -.05335 7.00 x 1073 518




Table 4-23

Estimates for a(2) = 0.81000 of the AR(2) Process

Sample Sample

SNR Method Mean Variance Frames
- NR .80474 1.66 x 10”3 518
SYW .79584 1.55 x 10> 518

LPC .80199 2.32 x 1073 518

30 NR .80471 1.66 =2 102 518
SYW .79822 1.74 x 10~° 518

LPC .79988 2.36 x 10”3 518

20 NR .80478 1.70 x 10> 518
SYW .79820 1.79 x 10°3 518

LPC . 78061 2.82 x 10”3 518

10 NR .80538 2.10 x 10”3 518
SYW .79894 2.73 x 10~° 518

LPC .62791 6.67 x 10°° 518

0 NR .78657 1.81 x 10~2 499
SYW .81823 6.25 x 10”2 518

LPC .20474 8.00 x 10°° 518

-10 NR .45245 2.56 x 10~1 183
SYW .42323 1.08 x 10 518

LPC .03104 6.13 x 10~° 518
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‘% (1 - a2

tL[a(k)] = . a_GT] - (4. 1b)

In (4.1) the {;(i)}? are estimates of the parameters
{a(i)}q. L{*] and $L(*] are shown in (4.1) in terms of the
AR parameters. With appropriate substitutions, these
expressions can aiso be used to calculate distance measures
between the MA coefficients, when known, and their
estimates. The measures are computed at each frame of
data. The expression in (4.la) is the sum of squares of
the error between the parameters and their estimates. This
type of error criterion tends to give more weight to errors
in parameters with a 1larger magnitude. The measure in
(4.1b) is designed to counteract that tendency. The error
criterion of (4.1b) computes the difference between the
parameters and their estimates relative to the true value
of the parameter.

The sample statistics obtained by averaging the
distance measures computed at each frame for the three sets
of AR estimates are 1listed in Tables 4-24 and 4-25.
L{a(k)] is given in the former, $L[a(k)] in the latter. As
seen from the distance measure data, the NR and SYW methods
perform better than the LPC method at all SNR's. The
variance of these estimates is always smaller than that of
the LPC estimates except at a ©SNR of -10 dB. The SYW
method performs better than the NR method at a SNR of
infinity. However, the NR method is forced to estimate two

MA parameters in that case. Estimating these theoretically
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r Table 4-24

L[a(k)] Distance Measure for
the AR(2) Process

Sample Sample

SNR Method Mean Variance
- NR 2.23 x 103> 1.01 x 10~°
SYW 1.77 x 107 6.26 x 107°
LPC 2.52 x 10”3 1.05 x 10°°
-3 =

30 NR 2.23 x 10 1.01 x 10
SYW 2.36 x 10°3 1.34 % 10°3
LPC 2.60 x 10°3 1.17 x 10°°
-3 -5

20 NR 2.26 x 10 1.04 x 10
SYW 2.39 x 10°° 1.38 x 107>
LPC 3.82 x 10”3 3.02 x 1072
-3 -5

10 NR 2.65 x 10 1.77 x 10
SYW 3.04 x 1073 2.07 x 107>
LPC 4.30 x 10~2 1.13 x 10~°
1 -2 -3

| 0 NR 1.37 x 10 2.28 x 10

§

g SYW 4.44 x 10”2 1.29 x 10”2
| LPC 4.44 x 10”1t 1.36 x 10~2
, il -

| -10 NR 4.69 x 10 5.08 x 10
J SYW 1.39 x 103 4.82 x 10°
-l -2

LPC 8.15 x 10 1.20 x 10
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Table 4-25

tL[a(k)] Distance Measure for

the AR(2) Process

Sample Sample
SNR Method Mean Variance
- NR 2.53 x 1073 1.30 x 107°
SYW 2.14 x 1073 9.18 x 107°
| LPC 3.00 x 1073 1.48 x 107°
| 30 NR  2.52 x 1070 1.36 = 3077
| SYW 2.70 x 1073 1.75 x 107°
LPC 3.10 x 10°° 167 = 1077
i -3 -5
20 NR 2.56 x 10 1.35 x 10
SYW 2.74 x 1073 1.83 x 107°
LPC 4.58 x 10”3 4.41 x 107°
ﬁ 10 NR 3.04 x 1073 2.25 x 10°°
SYw 3.62 x 1073 3.08 x 107°
LPC 5.10 x 102 1.64 % 10°°
0 NR 1.82 x 102 4.64 x 1073
SYW 5.94 x 1072 2.78 x 102
LPC 5.14 x 10t 1.87 x 1072
-10 NR 5.40 x 10~ 1 5.88 x 107}
SYW 1.27 x 10° 3.87 x 10
LBC 9.21 x 1071 1.59 x 10°2

« i 4B
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zero parameters introduces more uncertainty into the AR
estimates. The SYW again fails badly at -10 dB SNR.

Figure 4-26a) plots the sample mean of L[a(k)] versus
the SNR. %L[;(k)] is plotted in Figure 4-26b). From these
plots it is evident that the NR and SYW methods do extend
the range over which the AR parameters can be estimated in
the presence of white noise. At 0O dB, the NR estimate has
the same error as the LPC estimate at 14 dB. For the SYW
estimate, the improvement is 10 dB, referenced to the error
at 0 dB for the SYW estimate. From Table 4-22, it is again
noted that the NR method fails to successfully estimate

parameters in some frames at SNR's of O and -10 dB.

The Fourth Order Model

The tests of the preceding section on the AR(2) model
are now performed on an AR{4) model. The AR coefficients
are: a(l) = -0.49336, a(2) = 0.45804, a(3) = -0.28481, and
a(4) = 0.58523. The AR operator with these coefficients
has two Z-plane singularities with a radius of 0.9 at
+800 Hz. The other two singularities have a radius of 0.85
at +2200 Hz. The center frequencies are referenced tc a
sampling frequency of 6667 Hz. The inverse spectrum of
this AR model is shown in Figure 4-27 1in dB. Excitation
for the process is NF1 scaled for a sample variance of 1.0.
Each frame of data is corrected for a =zero sample mean
before analysis with the NR, SYW, and LPC methods. The

initial estimates in the NR method for the AR parameters




-1

10 1

10

10'3 . —+ + -+ o
-10 ) 10 20 30 o
SNR, dB

Figure 4-26: Distance measures for three estimates of the
AR(2) model coefficients
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are the actual model coefficients. Those for the four MA
coefficients of the equivalent ARMA(4,4) model are zero.

Tables 4-26, 4-27, 4-28, and 4-29 list the estimates
for a(l), a(2), a(3), and a(4), respectively. The
statistics for the two distance measure, obtained by
averaging the distance measure for each frame analyzed, are
given in Tables 4-30 and 4-31. Note from this data that
the LPC estimates have the smallest error except at a SNR
of infinity. At that SNR, the SYW estimates are slightly
better. The improvement seen in the first and second order
cases is not evident. It must be realized, however, that
the two distance measures used combine the errors for the
individual coefficients into one parameter. Smoothing of
the coefficient errors occurs and is more significant for
the AR (4) case.

Taking another approach, the two distance measures are
computed for each type of estimator using the sample means
for the AR coefficient estimates 1listed in Tables 4-26
through 4-29. As noted in the results for the first order
model, the value of the AR estimates based on the
transformation model and the NR estimation procedure lies
mainly in the average of a large number of estimates. This
is because of the larger variance of the NR estimates as
compared to the LPC estimates. The distance measures
defined in (4.1) are applied to the average values of the

parameter estimates to determine whether or not the
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| Table 4-26

Estimates for a(l) = -0.49336 of the AR(4) Process
Sample Sample
SNR Method Mean Variance Frames
- NR -.48417 1.40 x 1072 518
SYW -.48727 2.66 x 1073 518
LPC -.48870 4.58 x 10”3 518
30 NR -.48265 1.40 x 1072 518
SYW -.48200 1.15 x 1072 518
LPC -.48793 4.62 x 1073 518
20 NR -.48266 1.55 x 10”2 518
SYW -.48028 1.23 x 10”2 518
LPC -.47935 4.73 x 1073 518
10 NR -.47231 2.37 x 1072 517
SYW -.47559 2.02 x 102 518
LPC -.40877 5.34 x 107> 518
0 NR -.48742 2.15 x 10! 469
SYW -.41230 5.96 x 10+ 518
LBC -.18913 6.55 x 10™° 518




Table 4-27

Estimates for a(2) = 0.45804 of the AR(4) Process

Sample Sample

SNR Method Mean Variance Frames
- NR .44983 1.82 x 102 518
SYW .45059 3.43 » 10 518

LPC .45964 5.71 x 10°° 518

30 NR .44888 1.84 x 10”2 518
SYW .44778 1.54 x 102 518

LPC .45865 5.70 x 107> 518

20 NR .45029 1.95 % 10 % 518
SYW .44724 1.60 x 102 518

LPC .44662 5.82 x 10> 518

10 NR .44611 3.09 x 10”2 517
SYW .44789 2.21 x 10™2 518

LPC .34974 6.87 x 10”3 518

0 NR .48444 3.07 x 10”1 469
SYW .52888 1.25 518

LPC .10894 7.05 x 10~° 518

g ;T TO  p r




3 Estimates for a(3)

Table 4-28

= -0.28481 of the AR(4) Process
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Sample Sample

SNR Method Mean Variance Frames
» NR -.27538 1.20 x 10”2 518
SYW -.27375 3.37 x 10°3 518

LPC -.27907 5.50 x 10> 518

30 NR -.27500 1.21 x 10”2 518
SYW -.27460 1.03 x 10~2 518

LPC -.27798 5.56 x 10> 518

20 NR -.27571 1.19 x 10”2 518
SYW -.27480 1.03 x 10™2 518

LPC -.26659 5.85 x 10> 518

10 NR -.27877 1.85 x 102 517
SYW -.27789 1.29 x 10~2 518

LPC -.17874 7.60 x 10~° 518

0 NR -.29406 1.80 x 10~t 469
SYW -.39988 1.33 518

LPC .44233 7.81 x 10°° 518

—————
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Estimates for a(4)

Table 4-29

0.58523 of the AR(4) Process

Sample

SNR Method vVariance Frames
= NR 6.76 x 10°° 518
SYW 2.69 x 10”3 518

LPC 4.32 x 10”3 518

30 NR 6.69 = 103 518
SYW 6.10 x 10”3 518

LPC 4.36 x 10°° 518

20 NR 7.45 x 10”3 518
SYW 6.45 x 10" 518

LPC 4.56 x 103 518

10 NR 1.20 x 10°2 517
SYW 1.17 x 10”2 518

LPC 5.68 x 10> 518

0 NR 1.25 x 10t 469
SYW 5.3¢4 x 10”1 518

LPC 7.25 x 10> 518

il L M“ “' m - hec el
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Table 4-30

L[a(k)] Distance Measure for
4 the AR(4) Process

Sample Sample
SNR Method Mean Variance {
- NR 1.28 x 1072 2.76 x 10”° !
SYW 3,16 x 10> 9.98 x 10°° !
LPC 5.09 x 10 ° 1.87 x 10°°
30 NR 1.29 x 10"2 2.83 x 1072
SYW 1.09 x 102 1.60 x 10~ %
LPC 5.13 % 1073 1.94 x 10°°
20 NR 1.37 x 10~2 3.29 x 10”4
SYW 1.14 x 10”2 1.78 x 1074
LBC 5.55 x 10> 2.50 x 107°
10 NR 2.14 x 10”2 1.61 x 103
SYW $e6o = 20" 5.24 x 10~ %
LBC 1.63 x 102 1.85 x 1072
0 NR 2.07 x 10t 2.88 x 101
SYW 9.37 x 107! 9.47 x 10%
LPC 1.11 x 10”1 1.26 x 10”3 #




Table 4-31

173

tL[a (k)] Distance Measure for
the AR(4) Process
Sample Sample

SNR Method Mean vVariance
- NR 7.83 x 1072 1.19 x 10”2
SYW 1.9% x 162 5.61 x 10~ %
T i 9.73 x 1074
1072 1.23 % 19°°
1072 7.21 x 1677
1072 1.01 x 1073
1072 1.26 x 1072
10™% 7.58 x 10™°
1072 1.30 x 1073
10" 6.51 x 10”2
102 1.63 x 102
107t 9.27 x 1073

1.10 x 10t

6.45 x 10°
107t 5.23 x 1072
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improvement seen in the 1lower order cases for the NR

estimates becomes apparent when the average statistics are

used. Designating these measures as L[;(k)] and %L[S(k)],

the results are listed in Table 4-32, Figure 4-28a) 1is a

plot of the L[a(k)] data in Table 4-32 versus SNR. The

$L(a(k)] data in Table 4-32 is plotted in Figure 4-28b).
The following points are noted:
1) The LPC estimates have the smallest error at « and
30 dB SNR's.
2) For SNR's below 30 dB, the NR estimates have the
smallest error.
3) The NR estimates are superior to the SYW estimates
except at 10 dB.
Data at -10 dB SNR is not presented because of the 1lengthy
computation time for the NR method for the AR(4) process.
As seen in the first and second order cases, all methods do
poorly at -10 dB SNR. From Figure 4-28, it is evident that
the NR and SYW methods again provide an extension of the
successful operating range when estimating AR parameters in
white noise. Using the distance measure curves in Figures
4-28 a) and b), the NR estimate error at 0 dB is equal to
the LPC estimate error at approximately 22 dB. The
estimates from the SYW method provide a 10 dB improvement.
The SYW estimates at O dB are significantly poorer than the
NR estimates, however. The results achieved by applying

the distance measures to the average values of the
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Table 4-32

L[a(k)] and $L[a(k)] Distance Measures

for the AR(4) Process

i SNR Method Lla(k)] sL[a (k)]
% - NR 6.29 x 107°  4.49 x 10°%
% SYW 1.19 x 3~ §.72 = 1078
§ LPC 6.18 x 107> 2.66 x 107%
1
' 30 NR T.50 % 107 5.8 w30t
SYW 1.20 = 10°° 682 » 1870
LPC 7.33 x 10°°  3.33 x 107°
20 NR 6.48 x 10°°  4.46 x 10
SYW 1.28 = 10°%  J.04 « 167"
LBC 3.08 x 1074  1.80 x 1073
10 NR 166 = 10™°  7.68 x 10"
SYW 1.23 x 107%  6.12 x 107¢
LPC 9.97 x 1073  6.31 x 10”2
0 NR 2.05 x 107%  1.13 x 1073
SYW 8.34 x 1073 5.98 x 1072
LPC 2.15 x 1071 1.96
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coefficient estimates again point out the need to use the

estimates from individual frames with caution.




CHAPTER 5
CONCLUS IONS

Summary

The first experimental results 1in the preceding
chapter 1illustrate the effects of additive white noise on
the sample spectrum of a frame of voiced speech. These
data, shown in Figures 4-2 a)-e), also show the 10 pole LPC
fit to the sample spectrum. The results for this frame of
speech are given for several SNR's. Using the same frame
of speech, Figure 4-3 presents the auto- and
cross-correlations obtained from the data and four 10 pole
LPC spectra, including the LPC spectrum arrived at by
assuming the signal and noise are uncorrelated. The data
plotted in Figure 4-3 demonstrate the risk associated with
assuming independence between the signal and noise.

The next set of experiments tests the applicability of
the mode 1 estimation procedure due to Steiglitz [35].
That algorithm is used to estimate the parameters of a 10
pole, 2 zero model from data generated using three
different inputs. The input sequences used to drive the
model are: 1) an impulse, 2) an impulse train, and 3) a
white noise sequence. The results, plotted in Figqures 4-7

through 4-17, show this method is useful for impulse and
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impulse train excitation. However, the performance is pocor
for the noise excited case. It is the noise excited case,
unfortunately, which is most important in this research.

In the £ollowing set of experiments, several
estimation algorithms are applied to data generated from an
AR (1) process, with the single AR coefficient a(l) = 0.5,
that is degraded by additive white noise at various SNR's.
These experiments test the validity of the AR-to-ARMA
transformation model for the first order case. Results
from these tests clearly show the nature of the estimation
problem to be the minimization of a two dimensional
quadratic surface. The estimate for a(l) obtained from the
autocorrelation method of LPC has the smallest variance of
the estimators tested, but at SNR's below 20 dB a severe
bias is introduced in the estimate. An estimate obtained
from a Newton-Raphson implementation of a conditional
maximum likelihood formulation provides a superior estimate
at ©SNR's through O dB, based on the average of the
estimates for a(l). The variance of the NR estimate is
larger, however. An estimator referred to as the "shifted"
Yule-Walker estimator yields results similar to the NR
estimate. This estimator requires operations similar to
LPC and only provides estimates for the AR coefficients.
The SYW estimate does take into account the MA component of
the transformation model, where the LPC method does not.

All estimates perform poorly at a -10 dB SNR.

T e R AR
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The last two sets of experiments apply the NR, LPC,

and SYW estimators to an AR(2) process and an AR(4)
process, each degraded by varying levels of additive white
noise. Again, the NR and SYW estimates are superior to the
LPC estimate in the O dB to 30 dB SNR range. In the AR(4)
test, however, this improvement is apparent only when the
distance measure used is applied to the average values of
the estimates. This again emphasizes the importance of

averaging the estimates in the NR method.

Contributions

This research illustrates the effect of additive white
noise on speech. It also points out the risks of the
assumption of wuncorrelated signal and noise. This
assumption is often made in what the author calls
autocorrelation correction methods for noise suppression in
LP algorithms.

The major contribution of this work is the
experimental verification of the AR-to-ARMA transformation
model. This model states that the addition of white noise
to an AR process produces a data sequence which is an ARMA
process. Test results for this model, presented in Chapter
4, show that estimates for the AR coefficients obtained
from algorithms based on the transformation model are
superior to those obtained using the autocorrelation method
LP algorithm. This superiority, however, 1is achieved by

averaging a large number of estimates. The variance of the
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transformation model estimators tested 1is 1large at the
poorer SNR's. This places the value of AR estimates
produced by these methods from a single frame of data in

question.

Directions for Future Research

Guidelines for extensions of this research are limited
to the AR-to-ARMA transformation model. The experimental
data show the value of the model ‘for AR(g) models with
q=1, 2, and 4. Tests on higher order models should be
undertaken. Also, different kinds of AR models could be
studied. For example, the AR(2) model might have two real
roots, or the complex roots can be shifted farther from the
unit circle. If the analysis of higher order models,
q = 10, for example, is successful and if the problem of
the large variance of the estimators can be alleviated,
this technique might then be applied to the analysis of
speech signals.

Anderson's paper [2] proposes several estimation
techniques based on the NR and GN methods. Those using the
frequency domain approach are not used in this work. In
their most wuseful form, these methods estimate the AR
coefficients and the MA covariances. If there is no reason
to explicitly estimate the MA coefficients, as was desired
for this research, the frequency domain methods are
probably of more value if the nonlinear regression on the

AR coefficients is to be used. That operation is based on
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the nonlinear relationship between the MA covariances and
the AR coefficients that results from the noise model.
There could be an advantage in estimating the MA
covariances directly. The nonlinear regression suggested
by Pagano [30] should be tested to see if it improves the
AR parameter estimates.

Also, artificial restrictions were placed on the
nature of the experiments in this research. It was assumed
in all tests that the orders of the ARMA process are known.
In addition, the parameters of the true model were often
used as the initial parameter estimates. These assumptions
were made to concentrate the experiment on the practicality
of the transformation model and the estimation algorithm's
ability to produce accurate parameter estimates based on
that model. These restrictions must be removed in a
practical analysis system. The problems of estimating the
process order and initial parameter estimates have been
dealt with extensively in the literature [1], (10], [15],
(271, (29, 1[(37)], and [38]. The assumption that the
additive noise is white is also restrictive. The extension
of the model to allow n(k) to be non-white introduces the
need for additional nonlinear analysis once estimates for
the AR parameters for the data are found. The reader |is
referred to ([(10] for a discussion of this problem.

One of the experimental parameters noted in tests of

the NR method is the number of frames successfully analyzed

g e
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by the algorithm. This success is a function of whether or
not the Gauss elimination procedure fails in solving for
the ARMA parameters. At SNR's of O and -10 dB, more frames
result in failure of the Gauss elimination method. This
indicates increasing instability in the NR algorithm. Some
of the estimation procedures discussed in Chapter 2 could
cancel this trend.

Finally, the NR algorithm requires much more
computation than the LPC or SYW methods. This research
does not consider the detailed computational requirements
of the algorithms. Further work should take this into
account, Efficient FORTRAN coding is used in the programs
which implement the algorithms discussed, but programming
in assembly language could produce considerable

computational savings, as would use of an array processor.




APPENDIX A

In Chapters 2 and 3, mention is made of the
Newton-Raphson and Gauss-Newton methods for nonlinear
parameter estimation. This appendix discusses the
generalized formulation of these methods. If @ is the
n x 1 parameter vector and Q(8) is the scalar cost
function, then one seeks the appropriate choice for 6 which
will optimize Q(8). Defining g(6) as the n x 1 gradient
vector, the ith element of g(e) |is gi(g) = aO(g)/aei.
Except for the case where Q(e) is linear in 8, g(g) will
also be a function of 8. The optimum solution g‘ is found
by solving the n equations gi(g*) = 0; I = 1, sesp Be

The NR method proceeds by 1linearizing about 6 the

vector form of the following equation:
* *

g(e ) =g(e) + g'(e) (6 -9) .
Setting this equation equal to zero yields
*

g(e) + g'(e) (6 -96) =0 .

Solving for gf gives

*

0" =0 - [g' (@17t go) . (A.1)

The term g'(g) in (A.1l) is the derivative of the vector

g(e) with respect to 8 and is an n x n matrix. This term

is also the second derivative of Q(8) with respect to 8 and

g ————r
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is designated H(8), the Hessian of Q(8). The ijth element

of H(9) is
2
370
By s () & e .
ij'= aej 26

Using the definition for H(8), (A.1l) becomes

* -1
8 =0~ H (8) g(8) . (A.2)

This is the‘ usual formulation for the NR method. An
initial gqguess 8 is required, and the gradient g(8) and the
Hessian H(8) are evaluated at that initial point. Equation
(A.2) is then used to generate a new estimate gf for the
parameter vector. These steps are usually repeated to form
an iterative procedure.

Development of the GN method 1is based on the
assumption that the cost function Q(6) can be written in
quadratic form:

T

Q(e) =

]

(8) E(8) , (A.3)

where 6 is the n x 1 parameter vector and F(8) is an m x 1

vector of nonlinear functions, where m > n. In this case

the n x 1 vector gradient of 0(8) is
g8 =22 =2 Fr (o) F(o) , (A.4)

where F'(g) is the n x m matrix of partial derivatives of

F(8) with respect to 6. The ijth element of F'(8) is

aF. (9)
LA B il
f13(9-) a0y '

where ?j(g) is the jth element of the vector F(§).
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cost function Q(8) is optimized by setting (A.4) equal to

zero. This gives

* * '
F'(8°) F(8) = 0 (A.S5)

as the equation from which the optimal solution g* is

determined. Linearizing g(g*) about 6 yields

* T * .
F(8') = F(8) + F' (8) (8 - ) . (A.6)

*
Substituting (A.6) into (A.5) for F(8 ) gives

* T *
F'(8 ) [F(8) + F''(8) (6 =-86)] =0 . (a.7)

* *
If 6 is close enough to 8 , then F'(8 ) in (A.7) can be

approximated by F'(8) and (A.7) becomes
T *
F'(8) [F(8) + F'"(8) (6 =-18)] =0 .

*
Solving this for 8 , one obtains

J=E-IEQ)EHQY1EQ)y9 (A.8)

as the computational procedure required in the GN method.
*

Again, an initial guess for 8 is required before 8 can be

computed. Equation (A.8) 1is wusually implemented as an

iterative algorithm.
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APPENDIX B

In the literature review presented in Chapter 2, three
sources on the Gauss-Newton and modified GN methods are
given [16], (17], [19]. The GN formulation presented in
these sources is recommended for performing the nonlinear
regression on the ARMA estimates as suggested by Pagano
[30]. The nonlinear regression (NLR) technique needed for
the ARMA model approach to parameter estimation attempts to
find the vector 8 which minimizes e in

z=£(8) +e . (B.1)
If the minimization is accomplished in the 1least squares
sensz, the 1loss function measuring the perfsrmance of a
particular 6 is given by

2g+1

Q(e) = kzl % = fk(9_)]2 ‘ (B.2)
where the £(8)0 k=1, ..., 2941 are the nonlinear
relationships which map from the g+2 parameters of ® to the
2q+1 parameters of z. The 1linear terms of the Taylor
expansion for fk(g*) about ¢ are

£,0%) = £,(8) + :z(e; - 8) £, (B.3)
k=1, ..., 2g+1l. In (B.3) féj)(g) indicates the partial

derivative of fk(g) with respect to the jth component of 6.
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Denoting the partial derivative of Q(8) with respect to the
ith parameter of 8 as Q(l)(g),
. 2g+1 .
(1) e = (i)
o't (o) = -2 kzllzk £.(00] £,77(0) (B.4)

i=1, ..., g+2. The least squares equations are obtained
by setting Q(i)(g) =0, fori=1, ..., q+2, and solving

t for the solution gf, as in

2g+1l <
I [z, - £,000] £ " =0 . - (B.5)
k=1
Substituting (B.3) into (B.S5) for fk(g*) gives, for i =1,
susg ¥,
2q+1
kgllzk - £,(8)
g+2 : :
= 5 s =0 w0 NeE £ e = 0 (B.6)
3=1
or
gt (1) o*
k__z_l[zk - 5,00 £ =
2g+1 g+2 : .
R R TR U (B.7)

Define Dj = e; - ej and (B.7), after changing the order of

summation, becomes

q+2 2g+1 .
D, kzlféj)(g) £ (@) =
i=1 =

2g+1

L2 - 50 £ ., (.8)
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i=1, .., g+2. In deriving (B.8) from (B.7), all terms
féi)(g*) are evaluated at 6. By using (B.8) and the
relationship g* = 0 + D, the procedure for obtaining the
new estimate of 6 is defined. The process is made
iterative by letting 6 = g' and repeating the process
described by (B.8). The process described above is the
Gauss-Newton method for performing a nonlinear regression.

The modified Gauss-Newton technique can also be used
[19), [29]. If J(8) 1is defined as the Jacobian matrix,
where the ijth element of J(e) is given by
Jij = afi(g)/aej, then (B.8) can be written in matrix form
as

3T(e) 3(e) b = 3T(0) [z - £(0)] . (B.9)

With this notation established, the modified GCauss-Newton

method for NLR can be written as
T T
w [37(8) J3(8) + A I] D =J(8) [z- £(O)] . (B.10)

The parameter w in (B.10) 1is chosen to ensure that
Q(gf) £ 0(8). The parameter A is selected to guarantee the
invertibility of [JT(8) J(8) + A IJ.

For the general Gauss-Newton method described above,
knowledge of the nonlinear functions fk(g) and the partial
derivatives fii)(g) is required. 1In the specific case of
an AR process obscured by additive white noise, the

functions fk(g) are derived from
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-k
Y a(i) a(i+k) , (B.11)
i=0

iy 3 2
R y(k) - g §(k) + o

where 8(k) is the Kror..cker delta function and a(0) = 1.0.
The partial derivatives of fk(g) are taken with respect to
the elements of 8: a(l), «euy a(q), °§' and °§' The fk(g)
are given by

£,(0) = a(d) ,

q
e 2 2
fq+l(g) ol + o izoa (i) ,
2 q'j ’ i T
£ie144(8) = o 1 a(i) a(i+j) ,

i=0

a(i),

(i)

for 3 = 1, ..., a. If 3£ (8)/20, = £1)(8) ana s,

s S e Qe O = °§' and © = oi, then the f

g+l

(%)

q+2

are

Gl & Kook
£, (8) = 8(k-1) ;

£(3) - 2 T

q+1(9) =20 a(j)

(q+1) " .

q
(q+2) - o)
(8) = I a“(3) :

q+l j=0
fézi+k(g) = o2 s(k=j) + o2 (<a(j+k)> + <a(j=k)>),

a(m), m=1, .-+, q
<a(m)> = :
0, otherwise




;.

q-k .
I a(i) a(i+k) ; '
i=0

(g+2) <
fqe1ek (@) =
for j, k=1, ..., qand i = l, ¢eey, q+2. Assembling the
f;i)(g) into a matrix J(8), with the jith element of J(g)

being in = f;i)(g), gives the Jacobian matrix.




APPENDIX C

In Chapter 3, the AR(l1)-to-ARMA(1,1) transformation
model {is discussed 1in detail, with numerical results for
that model presented in Chapter 4. Equations (3.40) and
(3.41) of Chapter 3 give the expressions for the parameters
b and 03 of the ARMA(1,1) process obtained by adding white
noise to an AR(l) process, with a(l) = a the single AR

parameter. Those equations are repeated here as (C.1) and

(C.2):
b=—%— (o2 +02 1 +a?)]+
2 o a - s
n
2 2 2,42 4 2.1/2

[[oE e (1 + a%)]"° - 4 o, a 1 1038

2 2 a
Ov - O'n s' . (C.2)

The parameters b and 02

ssess certain properties. For
vm

example, it must be shown that b = b_ or b = b, is real.
The parameter 03 is the variance of the ARMA excitation
sequence v(k) and must be a real, positive scalar.

First, the properties of the MA coefficient b are
examined. If ¢ is defined as the argument of the radical
in (C.1), ¢ becomes

2
n

4 2

c = [oi +o2 1+a?))? -4l a




‘ ; —
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4 2 2 2 4 &2 4 2
c = cc + 2 ™ + % (1 + a%) + o (1 + a%) 4 LR
5 Simplifying this expression gives
i
: ewot s 2efaf (1 eaty et -ah?, (C.3)
i € € n n

By definition, ci is positive, oi is non-negative, and a is
a real number. In addition, to satisfy the stationarity

i requirement [10], |a| < 1.0. With these properties for a,

02, and 02

” n¢ one sees that ¢ 1is real and ¢ > 0. This

establishes the first property given in Chapter 3: b s

real (either b_ or b ).

Defining
5 1/2
b, = sedeile? 4 o mow g - 1Y)
2 0o_ a
n
and
b, = —hedffo? & of W 4afi1 ¢ VY,
2 0° a
n
note that

and b, = 1/b_. Because they are reciprocals and real, b_
and b, must have the same sign. One can thus deduce from
(C.1) that the sign of the numerator in (C.1) is ths same
for b_and b, ,. This establishes two facts:

1) the sign of b equals the sign of a;

2) Ib_| < |b,| (for ¢ > 0).
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Using 2) and the fact that b+ = 1/b_, one deduces that

|b_| < 1.0. This completes the derivation of property 2)

in Chapter 3.

2

Knowing that o

> 0 in (C.2) and using fact 1) above,

2

we can state that of > 0 and 03 is real (since a, b, and o

2
v
are real), property 3) of Chapter 3. Defining

e _ 2 2
o L a/b+ and B

M
g - T AL a/b_, then

w B

[
|U'N
—

=]
~—

= b“ ¢ (C.4)

establishes the last property required for the development

in Chapter 3.

2

, and
v-

Having developed the properties for b_, b+, o

03+, we proceed to illustrate how these parameters behave

for extremes in SNR. Recall from Chapter 3 that the

variance of an AR(l) process is oi = oi/(l - a2). If

SNR = oi/oi, we are concerned about the behavior of the MA

parameters as SNR-+ = (oi-»O) and SNR+O (oi-*w). The

characteristics of these parameters will be developed by

looking at b_ and 03_. The parameters b+ and 03+ can then

be characterized by using the properties developed above.

Defining N as the numerator of (C.l), using the minus




sign, and D as the denominator of (C.1), b_ = N/D.

Case I: SNR+ =, ci-*o

PSSR

For b_, consider

ol

lim b_ = lim

a§+0 o§+0

where N' = dN/doi and D' = dD/doﬁ are required in the
of L'Hospital's rule. The behavior of 03_ is given by
4 D

n
N

g

lim 62_ = a 1im
2 2

> ->
%n 0 %n 0

a lim P"
02+0
n

= 1im N°

02+0
n

4 a 2
(4 a%/o?) e

a

where N* = dzN/d(cg)z and F" = dz(qi o)/d<q§)2.

Summary, as the SNR approaches infinity, b_+0 and 02_
= 2 = 2 : <

From b+ I/b_ and = b_ Oy-+ We see that b+-+

2

°v+ + 0.

Case II: SNR=+O, oi-*o

196

use

In
2

+0 .
e

and

As the level of noise increases, b_ approaches a in value:
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: S
lim b_ = lim )

qi-}a oi-bo
N/oi
= I;m s
0n+w
£ 2 a2 -
2 a ?

The behavior of the variance 03_ is given by

. 2 Es e 2 a
l;m Vo ™ I;m °n b_
on-)w on-bm

2 2
For b+ and °v+' we have b+->1/a and Oyse > = as SNR + O, The

results for the behavior of these parameters from Case I

and Case II is summarized in Table 3-1.




APPENDIX D

Anderson, in his presentation of estimation procedures
for ARMA models [2]), uses a matrix notation to simplify the
equations involved. For the time domain approach a matrix
operator 1is required which will impose the assumption of
zero initial conditions on the ARMA process x(k) and the
excitation sequence v(k). If x(0), eee, X(N-1) are the

observed data, the operator is the N x N matrix L, given by

0 0
E - ’
gy ©

where lN-l is the (N-1) x (N-1) identity matrix. If N =5,

for example, L is

[0 0 0o o o
1 00 0 0
L=|0 1 0 0 of .
0 01 00
0 0 0 1 0

For this N = 5 case, Lz is found to be




s i
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(0 0o o o0 o
0 0 0 0 0 e
el b 8.8 8w )
o 1 0 0 O
00 1 0 0

In general, L

L” is
0 0
3
L =
g Sy O

The effect of pre-multiplying a vector by Ll is now
examined. Forming the data vector x, x = [x(0) ...

x(N-l)]T, we have Lii « {0 o0 O X(0) <o x(N-l-i)]T. The

multiplication by L' shifts the elements of the vector X

down i places, introducing zeros in the first i positions.

In scalar form the ARMA(q,p) process x(k) is given by

q )
! a(i) x(k-i) = § b(j) v(k-j) , (D.1)
i=0 j=0
with a(0) = b(0) =1 and x(k) = v(k) = O for k < O. Noting
that L® = I, the matrix formulation for (D.1) is
q " p .
La) L' x= Ib@) L)y, (D.2)
i=0 j=0

Defining the matrices A and B as

A= §a() Lt
i=0

and

P
B= §b(j L,
3=0
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(D.2) becomes
Ax=Bv. (D.3)

To see what form A and B have, consider the case where

P=2and N =5, For this example the matrix B is

F3 0 0 o o0
b(1) 1 0 o 0
B=|b(2) b(1) 1 & . o .
0 b(2) b(l) 1 0 2
i 0  b(2) b() 1 :

As seen in this example, the elements along each diagonal
are equal and the matrix is lower triangular. The matrix A
has the same form.

As described in Chapter 3, ' the parameter estimation

procedure requires the generation of n x 1 vectors of the

form y = g'l

X. Given the matrix B as described above, we

are interested in the structure of g-l. Since B is lower

3

triangular, g' will also be lower triangular. Also, the

elements along the diagonals of E-l are equal., Designating

the first column of g-l as the vector

Equating the elements of the left and right hand sides of
this equation and solving for the g(k), kK = 0, ..., N-1,

gives

k
- ] b(i) B(k=i), k =1, «++, p-1,
i=1

B (k)

]
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P
B(k) = - )} b(i) B(k-i), k =p, +-+, N=1 .
i=1

For the p = 2, N = 5 example used above, g-l is of the form

o.

[ 1 0 0 0
B(1) 1 0 0
g g(2) 8(1) 1 0 s

0
0
8(3) 8(2) B(L) 1 0
8(4) 8(3) B(2) 8(1) 1]

1 is formed in the same manner as 5_1 and has

i The matrix A~
the same properties: 1lower triangular and equal elements

along the diagonals.




APPENDIX E

In Chapter 3 an expression for the estimator of the
variance of a noise sequence is developed. Two measures of
the usefulness of this estimator are its sample mean and
variance. The development of the sample variance of the
estimator requires knowledge of the fourth moment of a
normal random variable.

If n is a r.v. with distribution N(u,oz), then the
moment generating function of n is

- 1
Mn(t) = exp{ut + 5tho s (E.]1)

Differentiating (E.1l) with respect to t gives

(1) < 8 - 2
M (t) = ac Mn(t) = (u + to") Mn(t) .

The ith derivative of Mn(t) with respect to t is

i
d
— Mn(t)

(1)
N, att

(u + to?) MU ()

+ (i -1 M;i-z)(t) . (E.2)

Equation (E.2) is valid for i > 2.

The ith moment of n is found by evaluating Mél)(t) at

t = 0. Thus, the fourth moment of n is




()

& (0) = u4 +

If E[n) = py = 0 as in Chapter 3, the fourth moment of n

given by

E(n?) = Mé"(o)

6

e 2

u

= 3

g

o

+

3

o

4
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is
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