
.

AD A068 519 AIR FORCE WEAPONS LAB KIRTLAND AFB NM FIG 9/2 N
SAIL. AN AUTOMATED APPROACH To SOFTWARE DEVELOPMENT AND MANAGEM——ETC CU)
JAN 79 L P GABY. 0 C GRAHAM. C E RHOADES

UNCLASSIFIED AFWL TR 7S 8O SBIE—AD—E200 258 NL

~

I

~~~iI



-*~ 
‘t.llpl_. -

~~~~~ LEVEI~ 
AFWL-TR .

pDc~
SAIL, AN AUTOMATED APPROACH TO SOFTWARE
DEVELOPMENT AND MANAGEMENT

Lewis P. Gaby II
David C. Graham, Capt, USAF
Clifford E. Rhoades, Jr., PhD

January 1979

II~I
Final Report (

Approved for public release; distribution unlimited .

LiJ
- - ..—-— —

D D C~

AIR FORCE WEAPONS LABORATORY
-

Air Force Systems Command
Kirt land Air Force Base, NM 87117

l~~~~~~~

9

U-~k
_ _

_ _

~
-
~~— ---—-

-
S

‘ - - - •k.
— - — -~~—‘-.~--—----~~~~

—
~~

-—--
~
--—

~~~~~ -.‘- ~~~~~~~~~~ 
—

~~~~
.--- ----.- —

~~~~~~~~~~



- -
~~~

-

~~~

AFWL-TR-78-80

4

This final report was prepared by the Air Force Weapons Laboratory,
Kirtland Air Force Base, New Mexico , under Job Order 88091822. Clifford E.
Rhoades, Jr., (DYP) was the Laboratory Project Officer-in-Charge.

When US Government draw ings, specifications, or ot her data are used for any
purpose other than a definitely related Government procurement operation , the
Government thereby incurs no responsibility nor any obl igation whatsoever, and a
the fact that the Government may have formulated , furnished , or in aiy way
supplied the said drawings , specifications, or other data is not to be regarded
by implication or otherwise as in any manner licensing the holder or any other
person or corporation or conveying any rights or permission to manufacture,
use, or sell any patented invention that may in any way be related thereto.

This report has been authored by employees of the United States Government.
Accordingly, the United States Government retains a nonexclusive, royalty-free
license to publish or reproduce the material contained herein , or allow others
to do so, for the United States Government purposes.

This report has been rev iewed by the Information Office (0!) and is
releasabl e to the National Technical Information Service (NTIS). At NTIS, it
will be availabl e to the general publ ic, including foreign nations.

This technical report has been reviewed and is approved for publication.

1~
CLIFFORD E. RHOADES, JR., PhD
Project Officer

FOR THE COMMANDER

NORMAN F. RODERICK THOMAS W. CIAMBRONE
Major , USAF Colonel U SAF
Chief , Advanced Concepts Branch Chief , ~pplied Physics Division

p

t 
_ _ _ _ _ _ _ _ _ _ _~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~ ‘ . .- ~~. 5—.



- — ~— .. .~~~~ - -  --- . ~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~ - -  ~~~. - -~

UNCLASSIFIED
$ECUAITY CL. A$SIPICAY ~ON Or THIS PADS (*~sn Da I Sn.s,~~)

REPORT DOCtJ.MENTATION PAGE BEFO CO LETTNG FORM
L ~ EPO~~T NUMSIR 7 2. GOvt ACC ESSION NO. 3 ~ (CIPIINY S CA T  A L O D  NUMUIP

AFWL-TR-78-80
4. tITLE (ond $uAIlU.) S TY PE OP •SPOAt A PINIOD COV S~~ID

SAIL, AN AUTOMATED APPROACH TO SOFTWARE
DEVELOPMENT AND MANAGEMENT no eport

4 S PE~~PO~~MIN D 0150 •EPOUT NuI~SI15

~~. A()t H015(i) I- ~ ONT15AC? Q15 3AA N? NIJMIS15(4)

• Lewis P. Gaby, II
Capt David C. Graham
Cl ifford E. Rhoades, Jr.. PhD _________________________

S. PINPO15MING O 15OAHI Z AT I O N NAM E AND £0015555 ‘0 •*OO~~AU (I.Su (NT.P~~OJ(C 7A SK

Air Force Wea pons Laboratory 6260l F
Kirtland Air Force Base, NM 87117 

~
.— 88091822

I I .  CONT15OLLIHO OY PICE NAME AND £0015152 12. NIPOP’ OA TS
January 1979 v

Air Force Weapons Laboratory (DYP)
Kirtland Air Force Base, NM 87117 ‘~ HUM P PAGES

14. MO$IT0~~IMO AGENCY NAME 6 AOD15SSS(I1 dIll.,..,. I,... i~~n1roIllnf 0111g.) II. SECU15I IY CLASS. ‘.1 Ada r.pofl~

UNCLASSIFIED
IS. . ~~~~~ A$SIPICAIIQN 000NG15AOIN GSCHEDULE

1$. OISt15IIUTION STATEM ENT (ol tAd . Ripen )

Approved for publ ic release; distribution unlimited .

• 17. DIST15ISUTION ST A I(M(Nt (of ji~ .A.er.ct .ne.r.d in Stock 20. 11 , I I IM,.f u  (rem .p ort )

IS. SUPf l LSMIN TA PY MOT ES

lS.~~(EY *01503 (Cont lnu . on, nit.,.. add. it n.c.aa.ry ~~d id.ntdtt by block numb.r)

software mana gement HULL
machine independent
software ma i ntenance
SAIL

20. A SSTUA C I  (ConUnu. on ni,•ni. add. If ~~~~~~~~~~ one d.riutv by block nuMb.,)

Z SAIL is a software development and management aid which provides a basis for
• V discipl i ned desi gn , programing, ma intenance , and execution of computer programs .

V The system achieves a new level of centralized software development and mainte-
nance control , while simultaneously decentralizing applications , providing con-

• trolled task specialization at compile time , and realizing portability between
dissimilar machines. The system encourages economy by reducing duplication of
effort often found when many versions of a basic source code are required . The - ;-°

V OD 
~~~~~~~ 

l473~ EDITION OP I M0~ SI ii O U SO L S ’ S UNCLASSIFIED
S E C . 1 5 i T v C L A I S I P C & 7 1 0 N ~~ o15 •b.3E *‘t .n data E.it.,.d

L~
1

~~~~~~~~~



UNCLASSIFIED
• SICU15ItY CLAUIPICATIOM QP tI4I$ PAOI(Wt.0. D.l . Sat...d)

Block 20. (Contd )

~ system achieves efficient hardware utilization by providing source code which
Is specialized at execution time for the task. Except for a few machine
dependent statements, SAIL Is written in ANSI (66) FORTRAN IV. The system Is
currently operating on CDC, IBM. and Honeywell computers.

UNCLASSI F IED
S ECU15I IV  C... A SSI ’ ICATIQH 31 °$IS • A 3 E *’~ fl... &n,.ree, 

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — ‘La. ~~~~~


- — ~~~~~~~~~~~~~ -. ~~- . . ~~~~~~ -•—-~~~.•-- - , . --, —
~~~~~~~~~-- - - -•.-- .

— .

AFWL-TR-78-80

I
PREFACE

The authors wish to acknowledge the numerous contributions by Maj Daniel A.
Matuska, Maj Richard E. Durrett, and Dr. Reginald W. Clemens who were respon-

• sible for the early development of the SAIL program.

• Reference to a company or product name does not imply approval or
• reconrendat ion Of the product by the US Government to the exclusion of others

that may be suitable.

fr

II~C1SSt0N ~tw -
NtIS WIIttC
Dne I~IItI So.i~On D
UNANN(flIN(~! tI 0 

o~~~~~~~l1•~~
,I 

~ ~ fly CftDESt Ds~ I • • 

•.

;~; 
1/2

——5-.——- ~~~~~V 

~~~~~~~~~~~~~~~~~ .~~~~~~. .~~~~~~ ~~~~~~ ~~~~~~~~~~~


.~~

AFW L-TR-78-80

CONTENTS

Section

I INTRODUCTION 5
• II GENERAL INFORMATION 8

III SAIL LANGUAGE USED IN GENERAL MODES 12

IV SAIL. EXECUTIVE PROCESSOR LANGUAGE 27

V CONSIDERATIONS ABOUT SAIL USAGE 40

• VI MACHINE DEPENDENT INFORMATION 53

VII HISTORY AND PHILOSOP HY OF SAIL 64

APPENDIX A - SAIL SYSTEM GENERATION PARAMETER 69

APPENDIX B - SAIL PROCEDURES 75

-
GLOSSARY OF TERMS 98

I

1:
314

.
— — 5-

5- -5- ~~~-~-
~~~~~~~~~~~ -&g--~- -~~~ 5-~~~~~~~5-~~~ 5-~~~~~~~~~~~~~ —



_ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

AFWL-TR-78-80

SECTION 1

INTRODUCTION

1. OVERVIEW OF SAIL

SAIL is a computer program that manages card-image data fi les . Like other.
utilities of its type, SAIL creates , updates, and operates on library files
which contain data needed for other steps of Job execution. As a FORTRAN-based
program, SAI~~provides a very hi gh degree of machine independence. With the
exception of a few statements and routines which must be machine-dependent for
the sake of efficiency , SAIL i s wr itten in standard FORTRAN . Thus , it may be
run on any machine which has an ANSI 66 FORTRAN IV compiler and a reasonable
operating system. SAIL is currently running on the fol lowing computers and
operating systems:

CDC CYBER 176 (NOS/BE 1.2)
CDC 6600 (SCOPE 3.4.4)
CDC 7600 (SCOPE 2.1.4)
IBM 360 (OS)
IBM 370 (OS/VS2)
Honeywel l 6080 (MULTICS)
Honeywell 6080 (WWMCS)

In addition to high machine Independence, the most significant features of
SAIL include variabl e-value substitution , conditional selection of code, inclu-
sion of comon code, and a flexible, yet simple , macro capability . The selec-
tion and modification of lines of data are controlled by OPTION parameters
according to the needs of the particular task at hand .

SAIL was written to address two major problems that arise when large
computer programs are ma i nta ined and execu ted . Fi rst, duplication of effort
often resul ts when severa l vers ions of a source code exi st . Second , computer
time and space are wasted when problems of various sizes and compl exi ty are

¶ run on a code of fixed dimensions and generality .

5

-, —~ ~~~~~~~~~~~~~~~~~~~ 1_

-~~~

AFWL-TR-78-80

The fol lowing Is a suninary of the features of SAIL.

a. Single Mode for Each Execü?ion

(1) Normal mode in which the executive processor produces a card-image
file.

V

(2) L ibrary ma i ntenance modes are :

UPDATE for modifying a library .
a

LIST for printing its contents.
GENERATE for crea ting a new l ibrary.
COPY for reproducing a library .
PUNCH for punching portions of a library .
SCAN for finding occurrences of character strings.

b. Default Choices

(1) Operati ng mode (NORMAL)
(2) OPTION l ist (lib rary dependen t)

(3) PROGRAM list (library dependent)

c. OPTION Parameters (Name—Value Pairs)

(1) Whi ch control :
Selection of cards written during NORMAL runs.
Dynamic substitution (see below)

(2) Which can be:
Set to nonne gative integer va lues .
Treated as logical values.
Defined by an arithmetic expression involving OPTIONS.
Employed In logical expressions for definition of OPTIONS or for

select ion tests.

d. Dynamic String Substitution

(1) Al lows setting :
Dimensions to fit each task.
Other numbers such as loop indices .

(2) In which the string can be:
An integer encoded from the result of an arithmetic calculation

invol v ing OPTIONS an d cons tan ts.

6

~~~~~~~~~~~~~~ . 
~~~~~~~~~~~~~~~~~ 

~~~~~~~~~- V ~~~~~~~~~~~~~~ .V-.— 5- V~~~~~~~~~~~~~~~~ .



. -.-—--.— •~~~~~~~~~~~~~~~~~~~~~~~
-• - .-

~~~~~~ - -.---.- . V . .- --- . .V

AFWL-TR -78-80

The alphanumeric name of an OPTION selected from a tabl e within
the OPTION list.

e. Intermachine Transport of Libraries and Change Cards

(1) Allows a library used on several machines to be supported from any
one of them.

(2) Is enhanced by using OPTIONS to select the code peculiar to each
machine.

f. PROCs (Blocks Defined for Conditiona l Insertion at Multipl e Points on
the Processed Card-Image File)

(1) Can be used for coordinating FORTRA N COMMON blocks.

(2) Allow reordering of routines or other conti guous blocks of code.

V
(3) May be inserted in other PROCs.

(4) Have macro ability so different strings can be substituted within
a PROC at each insertion .

g. An Alternate Input Data to Control Data Generation During a NORMAL Run
• 2. OVERVIEW OF THE SAIL REFERENC E MANUAL

As its title suggests, this report Is intended primarily as a reference
manual for SAIL users. It is also of use to those who install and maintain

• SAIL on particu lar computers. Before using SAIL, users should be acquainted
with the material in Sections II, III, IV and V 1 as well as that part of
Section VI specific to their computer . The extensive examples in Section VI
should prove particularly useful. Examples are also given in Sections III and
IV . The appropriate job control language for typical SAIL executions is
illustrated in Section VI.

a

I

_____ —~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - - V V -

AFW L-TR-78-8O

SECTION II

GENERA L INFOR MATIO N

The basic objective of SAIL is to maintain library files that contain
card images for a related set of tasks so that the file for any specific task
can be produced by selecting the appropriate control OPTION . Al though this
reference manual is oriented toward its original use of managing source cards
for compilers and assemblers, SAIL can handle any card-image file that contains
72 or . fewer columns of data.

A library file consists of SAIL records preceded by two logical records of
header information. Each SAIL record consists of art identifier and 80 charac-
ters. The first 72 characters contain either a directive to SAIL or data that
is useful to one or more of the tasks. The last eight characters give the date
the card was inserted or 1ast modified . Throughout this manual , the terms
SAIL record or line refer to the identifier and character information as stored
on a library file. Card or card image refers to the information as written to
the file to be used for the task, that is , just the character information . The
SAIL record identifier will occasionally be called the line number.

The SAIL records are stored sequentially on the library in the order of
their line numbers. The library can be partitioned by the *8 dIrective which
identifies the cards between consecutive occurrences of itsel f as a named
PROGRAM. The lines on the library preceding the first program are called the
PROLOGUE. During executions other than those which create a new library , SAIL
deals only with the PROGRAMs which have been selected by the user. If the user
does not explicitly request one or more PROGRAMs , SAIL processes either the
entire library or, for a NORMAL run , those on the default PROGRAM list.
Default lists of both PROGRAMs and OPTIONs are maintained in the two header
records of the library along with a tabl e giving the first line number in each
PROGRAM. The PROGRAM structure , as defined on this last table , can only be r
modified on runs in the UPDATE mode. The first header record also contains a
SYSTEM name and the VERSION number to identify the library .

What actions SAIL performs during a particular execution are determined by
the contents of a file designated INPUT in this manual . The general form of

8

— V -— ~~~~~~~~~~~~~~~~~~~~ - — — —~. V . V~~~. _ V_~~ V~~~ V V 5-_ V ~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~ V..



— V  V -
AFWL-TR- 78-80

this file has two parts, the request area and the changes . If there are any
changes, there must be a request area. If the file is empty , all of the SAIL
defaults wil l be taken (NORMAL mode with the default OPTION and PROGRAM selec-
tions). A nonempty INPUT file must begin with the request SAIL. For an exact
description of the request area , see Section 3.

The operating mode for the run is either des i gnated by a request or is
defaulted to NORMAL. Only In NORMAL mode Is the execution processor called to
process the executive directives . (See Section III , para 1(a) for a full
description of each mode.) In other modes the executive processor creates ,
updates, hst~ , scans , punches , or copies the libra ry.

Changes to lines on the library consist of a general SAIL directive
(Secti on I I I , para 2b), followed by cards to be added to the library either
permanently or for the remai nder of the run. Changes are recognized by SAIL for
all modes except COPY. However, only In UPDATE runs are they made permanent
by creating a new library . The libra ry modification directives (1) allow Inser--
tion of cards after any line , (4) allow deletion of a sin~le lin e or a consecu-
tive set of lines with insertion of new cards in the place of the deleted cards,

• 
. and (3) allow repl acement of a string on a line by a new string. If a line or

consecutive set of lines to be inserted already appears elsewhere on the
library , the *M directive can be used to effectively pl ace a copy of It in a
change set at any place a card containing data or storable directives could
occu r.

Within each selected PROGRAM , SAIL lines are processed in the order they
occur on the library as modified by the changes. Each record is examined to
see If It is a recognizabl e directive. If it is, it Is either ignored or acted
on according to the mode of execution. During NORMA L runs , any data lines
(those lines which are not SAIL directives) are written out to SAIL unless
skipping hu been initiated by a previous directive. An exception to the strict
sequential processing occurs when groups of card s are defined as PROCs. The

PROC with the matching name can be written to the file for the task wherever an
*INCLUDE directive is encountered .

The subject of PROCs and selected skipping brings us to another distinction
arising from the origin of SAIL in two separate programs. This is between
general SAIL directives, which are recognized during all modes of execution , and
SAIL executive directives which are processed only during NORMAL runs. The

9

—— -~~•-— V 

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~


-

~~~~

AFWL-TR- 78-80

general directives Include the PROGRAM definition directive, the library
modifiers , the INPUT modifiers , and the listing controllers . Most are used to
manage the library .

Executive directives are used to select cards for the particular task at
hand during a NORMAL run. Most of these directives can contain an operand
field consisting of an expression involving OPTIONs. The operand field can
have either a TRUE or FALSE value. If it is FALSE , it inhibits the action of
the directive, thereby acting as a selection mechanism. The values of the
operand fields can be changed by mod ifying the OPTION values , allowing numerous
different files to be produced on different NORMAL runs corresponding to each
particular task dealt with by the library.

Ideally, once a particular set of card images has been tested for proper
operation and stored on the library along with appropriate executive directives,
the user need only set the OPTIONs to activate it. Thus, an entirely new
program may be created by selecting a hitherto untried combination of OPTIONs.
If an error is found on the library , it can be corrected for all tasks whose
OPTIONs activate the cards containing the error. On the other hand , if a new
task requ ires modification of a group of cards, but the original set is still
needed by others, the user can define a new OPTION and/or new values for exist-
ing OPTIONs to activate and inactivate the appropriate cards without affecting

• the other users.

This last use of OPTIONs is particularly applicabl e to source decks that
are to be used on different computers. Source statements peculiar to each
machine can be selected, while the library file remains the same on all machines.
When SAIL produces the file for the task at hand , only those card images needed
for that task and on that machine are present. Multimachine maintenance of a
library is enhanced by two other features of SAIL. The first is the ability
of SAIL to convert its library to and from a coded format which can be used on
any computer system. The second is the fact that SAIL does its own free-format
processing of INPUT which is independent of the computer .

A final noteworthy feature of SAIL is its cttaracter string substitutions.
In addition to the library mod ifying directive *C, which makes substitutions
in a single SAIL record , there is the EDIT request which will replace a given
character string by another wherever it occurs on the library . EDIT operates

• only during UPDATE and LIST runs. Dynamic substitution during NORMAL runs is

- . . ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~ . V .~ - - V 
-- • . .



-~~ — V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

AFW L-TR-78-8O

also available. While especially usefu l In changing several array dimensions
between which calculabl e relations must exist, it can do more general substitu-
tions than those in dimension declarations. These substitutions include not
only setting loop indices , etc., to match the chosen dimensions , but any alpha-
numeric substitution needed for a particular task.

A related type of substitution that can occur in PROCs is called MACRO
substitution. In this case, the *PROC directive which defines the name and
beginning of the PROC has a list of character strings which can be changed
wherever they are flagged within the body of the PROC. What they will become
is determined by similar lists of character strings on the *IP4CLIJDE directives
which cause the PROC to be placed on the file produced by the NORMAL run.

2. FILES USED BY SAIL -

The SAIL program uses ten files in processing Its data . In this manual ,
these files are designated as OLD, NEW , SAIL , INP UT, INPUT 2, OUTPUT, ERRO R ,
PROCF , SAVE , CHA NGE, and TEMPF. What SAIL uses each of these files for and
what they are named on various computer systems are tabulated below. (For
external structure of these files and substitutions that can be made, refer to

- the section on programing considerations for the particular computer system.)

SAIL FILES - NAMES AND USES
V

Name Used i CDC IBM Honeywel l
in Manual Use - Name Name File Code

OLD Old Library OLD FTO2FOO1 2
NEW New Library NEW FTO l FG~)l 1
SAIL Processed card-Images SAIL FTO8FOOn 15 ,16,...
INPUT Control and changes INPUT FTO5FOO1 1*
INPUT2 Alternate control INPLJT2 FTO9FOO4 9
OUTPUT Lists and run status OUTPUT FTO6FOO1
ERROR Non fata l error messa ges SSSSER FTO4FOO 1 4
PROCF Temporary storage-random SSSSPR FT1OFflO1 10
TEMPF Temporary storage-random SSSSTM FT1 1 FOOl 11
SAVE Temporary storage SSSSTM FT12FOO1 12
CHANGE Temporary storage SSSSCH FTO3FOO1 3

I ,

b

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - V _ _ _



- ~~~~ V~~~~~~~~~~~~~~~~~~~~ V VV_  - -~~~~~~~~~~ _

AFWL-TR-78 -80

SECTION I I I

SAIL LANGUAGE USED IN GENERAL MODES

1. SAIL REQUESTS

Most functions of the SAIL program are controlled by the SAIL requests
found in the input stream and the alternate Input stream during NORMAL runs.
All of the records (cards) on INPUT that are encountered before either one
containing an asterisk in column one or an end—of-file make up the request area.
Each record in the request area is assumed to contain request el ements
separated by one or more SAIL delimiters (blank , coma , or equa l sign ) .  Reques t
el ements may be either requests or parameters associated with requests.

Two structures that can occur within the request area merit mention. A
request pair is two elements that must occur on the same card . The first
identifies a parameter to be set and the second gives the value. A specifica-
tion area is the set of request elements starting after a request to form or
modify a list. Specification areas are terminated either by the end of the
request area or by the occurrence of a request element that has been designated
as the terminator.

The first request must be SAIL or the program will not process the input
stream at al l , but will execute a NORMAL run with the default OPTION and PROGRAM
lists. This request i.dentifies the SAIL input . On Control Data Corporation
(CDC ) systems, SAIL will search INPUT for its Input . The remaining requests
fall into three classes. Except as specifically noted, there is no order
dependence to the requests that either stand alone , are the first members of
request pai rs, require a specification area , or occur within a specification
area. There is no l imi tation as to the number of request elements on a record.
However , each request element must be completed on an input record (card).

a. Primary Requests

( 1 ) F i le Con trol Requests V

The first class is composed of those requests which affect the
status of either OLD or NEW or both. Any of these requests found before the

12

- - 

— 
V—  — ~~~~~~~~ ~~~~~~~~~~~~~~~~ 

p ~~~~~~~~~~ —, —, ~~~~~~~~~ V~~~~~~~ V ~~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~



VV ~~~~~~~~~~~~~~~~~

AFWL -TR- 7 8-80

first occurrence of a request from another class (or an unrecognizable request)
affects OLD, whil e any later occurrence affects NEW. These reques ts are :

V SYSTEM = name. Name Is the system identifier for an old SYSTEM
If OLD is being affected, name is compared with the SYSTEM name on OLD and

processing continues only if the names match. If this request is not made for
OLD or Is ignored, no comparison is made. If the request affects NEW , name
is pl aced In the name field of the header record of NEW . (This form of the
request has meaning only for the GENERATE , UPDATE , and COP Y modes.)

On COC systems , the SYSTEM request for OLD has the additiona l
• feature that, If it is specified , it is used as the permanent file name for

internal attaches. These Internal attaches are performed only if OLD does not
already exist as a recognizable OLD file and the requests TAPE or LOCAL have
not been specified for OLD. For further discussion of the internal permanent
file attaches, see the section on CDC programing considerations.

VERSION = nfl. nfl is the VERSION number existing on OLD or to be
put on NEW . If the old VERSION number is specified it is compared to the
VERSION num ber on OLD and process i ng stops if they are une qual . If no VERSION

• number is specified for OLD , no comparison is made and processing continues .
If the request is for the VERSION number of NEW , it is stored in the header of

V NEW . (This form of the request has meaning only in the GENERATE , UPDATE , or
COPY modes.) If the new VERSION number is not specified , then it Is set to
either one plus the old VERSION number or to one If the mode is GENERATE .

On COC systems, If the old VERSION number is specified , it Is used
as the cycle number for an internal permanent file attach. If the old VERSION
number is not specified , any attaches will fetch the last cycle.

CONVERT. This request Indicates that coded format conversion is
needed for either OLD or NEW . If the request specifies OLD, the mode Is forced
to be COPY (see the mode selection requests). A coded NEW file can be produced
only during a GENERATE , UPDATE, or COPY run.

TAPE = vsn. This request has meaning only on CDC systems.
indicates that OLD or NEW is found on a tape to be requested from the operating
system by SAIL. vsn is the VSN and density of the tape . If the tape has
default density the element may contain only the VSN. If the density is to be
requested and the VSN is shorter than six characters , the element has the form
xxx-dd , where xxx is the VSN and dd is the density . If the density is to be

13

V ~~~~ V V V V ,  - - .~~~
_
~__d~~ ~~~~



AFWL-TR-78-80

requested for a VSN of six characters, the request element has the form
xxxxxx dd , where xxxxxx is the VSN and dd is the density .

LOCAL. This request has meaning only on CDC systems. It
suppresses the automatic interna l permanent file attach Is specified for OLD
and suppresses the allocation to a permanent file device if specified for NEW .

(2) Mode Requests

The next class of requests are those that select SAIL operation
modes. These requests are UPDATE , LIST , GENERATE, COPY , SCAN , and PUNCH.
Since some of the modes can affect the meaning of the requests in the final
class, it Is recoimnended that any mode requests be placed Imedlately after
all requests affecting OLD. There is an exception In the case of GENERATE
which must be the last request on the record which imedlately precedes the
first card image record to be placed on NEW. If no mode Is selected, the
default Is NORMAL . It should be noted that with the exception of GENERATE,
which takes effect Imediately regardless of whether other modes have been
requested; if more than one mode request is found, only the first Is honored.
The SAIL opera tiona l modes are :

NORMAL. In this mode, requested changes are made to OLD and the
result Is passed to the SAIL data management executive which processes the
executive directives and writes the final form of the records on the file SAIL.
The actions of the executive directives on the SAIL records depend on the

• OPTIONs In effect at the time . This is the only mode that will produce more
than one bl ock on SAIL , and then only if It is requested to do so by the exe-
cutive directive *E. (For a further discussion of the operation of the e~ecu-
tive, see the section on the SAIL executive directives.)

UPDATE. In this mode, changes to OLD supplied in INPUT are made
• permanent and new SAIL records are assigned record identifiers . Changes may

also be made to the default OPTION list and the default PROGRAM list. (See the
requests OPTIONs and PROGRAM for further discussion of the default lists.)
Then. NEW is created with an updated VERSION number .

LIST. This mode causes either all SAIL records on the library or
just those in selected PROGRAMs to be listed with their Identifiers. The
listing may be full or directory (see the discussion of *DIR in the section on
SAIL directives). Any cards added by changes found on INPUT are listed with
identifiers that Indicate that they are new records.

14

_______ ~~~~~~~
• •~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - V . V ~~~~~~~ _ V ~~~~ _~~~ ~~~~~~~~~~~~~~~~~~



. - ---~~~~~~—-~~~V . • - - — .--- -- -.--- V - - - -V - V  —-“U,

AFWL-TR -78-80

COPY. Here OLD is copied to NEW. Only the default OPTION list
and the default PROGRAM list may be changed . Frequently, this mode is used to

convert the format of a library file. The two possible formats are (1) the
coded one recognized by all machines , and (2) the local version of packed for-
mat.

GENERATE. When the request for this mode is encountered, the
rema i nder of the records on INPUT are read and pl aced on NEW . This is the way
to create a library which can be processed by SAIL.

PUNCH (or SOURCE). This mode writes all of the SAIL records on the
library or in selected PROGRAMs onto SAIL. Insertions and del etions on INPUT
will be processed , but none of the resulting records will be processed further
by SAIL. They will simply be written as found on OLD or in the change sets on
INPUT.

SCAN . In this mode, SAIL searches for selected character strings
in the SAIL records of OLD. Each record in the request area which follows the

V SCAN request and precedes a record whose first request element is ENDSCAN , con-
tains a character string to be located . The first nonblank character on the
record is the string delimiter. The character string is found between the
first and second occurrences of the delimiter . Any records in the selected
PROGRAMs which contain one of the character strings are written out along with
their identifiers on OUTPUT.

(3) Func tion Requests

The requests in the final class control many SAIL operations.
Some have meaning only for certain modes, while others have different meanings
for different modes. The requests in this class are:

• OPTIONS. During a NORMA L run this request allows the user to
modify values on , or add new OPTION s to , the default OPTION list which is on
OLD. It is used to create new default OPTION lists on GENERATE , UPDATE , or
COPY runs. Dur i ng a LI ST , PUNCH , or SCAN run , this request will change the r
listing of the OPTIONs but will have no otherS effect.

This request uses a specification area as described at the
beginning of this section. The terminating request is ENDOPTIONS. Request
el ements in the specification area consist of OPTION names, each of which may be
followed by a request element spec ifying the OPTION value as a nonnegative

15

• ;- --- V-~~~~~.- ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - .. — -



AFW L-TR-78-80

1• integer. If the element following an OPTION name is not on the same card or
does not contain i number, the OPTION val ue Is set to zero and the new el ement
is treated as a new OPTION name. If a specified OPTION name exists in the
OPTION l ist, only the new value is placed In the list. If not, the name is
added to the list as well. There is a limit of eight characters for an OPTION
name. Any name which is longer is shortened to the first eight characters.

If the request “AFTER” is encountered in this specification area
then a table will be constructed . (The symbol “ is part of the request. It is
an 8-4 multipunch , the alpha equal punch on the 026 keypunch which prints as a
$ on CDC systems.) The table will be placed in the OPTION list after the OPTION
name found in the request element following AFTER. All OPTIONs following this
name are placed In the OPTION list with values determined as above in the order

• in which they are found In INPUT until either the specification area ends or
two consecutive occurrences of the same name are encountered . The OPTIONs
which originally followed the head of the table are pushed down . As OPTIONs are
added to the tabl e, they are removed from any other positions In the OPTION list
where they occur, including prior positions in the table.

DELOPTIONS. This request deletes OPTIONs and their ‘,alues from the -

OPTION list. Like the OPTION S request, its specification area can be terminated
by the request ENDOPTIONS .

LINENO. This request causes SAIL to write the SAIL record V

identifier (line number) of each card-image in column s 73 to 80 (in pl ace of the
date) on NORMAL runs. If the entire identifier will not fit, omission of a non-
zero card number is indicated by a trailing plus sign and truncation of the most
significant digits of the block number by a l eading plus sign .

COL. The number which follows this request defines the number of
column s which are to be scanned for any free-field information on INPUT. The
default value is 72 unl ess it is reset for a particular instal lation .

BCD. This request has meaning only on IBM systems. It indicates
that SAIL must convert the information on the following records from 026 key-
punc h format (BCD) to 029 keypunc h format (EBCDIC).

EBCDIC. This request has meaning only on IBM systems. It negates
the conversion initiated by the BCD request.

16

— V.’.- ~~-V.~~~_  V V V ~~~~~~~~~~~~~~~~~ .~~~~ ~~~~~~~~~~~ V • ~~~~~~~~~~~ - ~~~~~~~~ ••



V — V - --—V—• V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~---.--~~~~~~~ --~~-~~

AFWL- TR- 78-80

NOL IST. This request suppresses the listing of NEW which

normally occurs during an UPDATE run.

NOAST. This request af fects only l istings of SAIL records.
If specified , it suppresses the asterisks which are normally printed in the
listing next to the card Images which were changed by the last UPDATE run.

LINES. The number following this request defines the number of
lines to be printed on each page of a listing. The default Is normally 60 but
may be set by the Installation .

COLMARK. If this request is specified , column numbers are printed
at the top and bottom of each page durin c~ a listing to allow easy use of the
column change feature.

DIRECTORY. This request sets the global l ist type to directory
instead of full. (See the discussion of *DIR in the section on SAIL directives. \

PROGRAM. This request allows the user to make PROGKAM selections.
The specification area fol l owing this request can be terminated by the request
EN PROGRAM

On NORMAL runs , only the PROGRAMs named In the specific ation area
will be processed by SAIL. If this request Is not found or none of the PROGRAMs
specified exist on the library , SAIL will process th1’ PROGRAMs In the default
PROGRAM table. An empty default PROGRAM table is treated as a selection of the
entire library.

On UPDATE, GENERATE, or COPY runs, the PROGRAMs named in the spec i-
fication area are used to form the new default PROGRAM table. If none of the
names on the new library , SAIL creates an empty default PROGRAM table.

On PUNCH or SCAN runs, only the PROGRAMs found In the speci fication
area are processed . If no PROGRAMs are requested (either there were no known
PROGRAMs In the list or the PROGRAM request was not specified~, the entire library
is processed . In these modes the PROGRAM name PROLOGUE is used to ~.pecif y the

- 
prologue.

On LIST runs the specification area Identifie s those PROGRAMs tha t
are to be listed. If the PROGRAM request is in use, the name PROLOGUE must he
in the specification area if the prologue is to be listed. If a PROGRAM name is
followed by “DIR” or NODIR” t.the symbo l ‘ is part of the name~, then the l i st in~

17

—-~~~-— ~~~~~~--- -~~~ 
V- ~~~~~~~~~~~~ ~~~~~~~ ~~~~~~



AFWL-TR-78-80

of that PROGRAM is directory or full , respectively. Otherwise , the listing is
the global type. Finally, if the PROGRAM request was not specified then the
entire library is listed. (See the DIRECTORY request for the globa l listing
type.) 

V

PROSNAME = name. This selects program name for special pro-
cessing during a NORMAL run. If special processing is selected only lines
requested in program ‘name ’ will be written onto SAIL. All other programs that.
were selected will be scanned for PROCs which can be used by name,

EDIT. This request is honored only in LIST or UPDATE runs. It
allows the user to make string substitutions. Each record in INPUT following
the request and preceding a record beginning with the request ENDEDIT or the
end ~f the request area , contains two character strings. The first nonbiank
character is the delimiter. The character string to be repl aced is between
the first and second occurrences of the del imiter. The string to be substituted
is between the second and third occurrences of the delimiter . During LIST or
UPDATE runs , the SAIL records are scanned for the requested character strings
after insertions , deletions , and column changes are processed. Substitutions
are made if the strings are found.

~~~~~ This request resequencing of the SAIL record identifiers of
the entire library on UPDATE runds. If this request is omitted , only the
PROGRAMs specified by the SEQPROGRAM request will be resequenced and other
new records will be assigned a card number with the block number of the preced-
ing existing record in the file.

• SEQPROGRAM . This request selects PROGRAMs to be resequenced
during an UPDATE run. If S~Q has been specified , this request has no effect.
The specification area for this request is the same as for the PROGRAM request.
For this request, the PROLOGUE must be identified by name .

(4) Exam ples of Reques ts

For these examples we will assume that SAIL is processing a library
• whose SYSTEM and VERSION identifiers are EXAMPLE and 12 , and that it contains

the PROGRAMs : TRIAL, TEST , and DONE. The default OPTION list of the library
contains: A=2, B=3 , Cx 12, D=O , E=36, and its default PROGRAM table contains
TEST .

V

18

-- ~~~~~~~~~~~ •._ — _VV__V ~~~V_ _V~~~ V •~~••VV_ V ~~~~~~~~~~~~~~~~~ V.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~•— ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •—. ——V 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


I
AFWL-TR-78-80

SAIL SYSTEM EXAMPLE

This set of requests will cause SAIL to process PROGRAM TEST in a NORMA L
mode and to use the OPTIONs as they appear in the default OPTION list.

SAIL SYSTEM EXP
or
SAIL SYSTEM EXAMPLE
VERSION 12

In either of these cases , SAIL will terminate abnormally, If in the first
set, the SYSTEM identifier of the requested library Is not EXP and in the
second , the SYSTEM identifier is not EXAMPLE or the VERSION number requested
is not 12.

SAIL
OPTIONS
CC=1O , 8=2 , E=ll
ENDOPTIONS

V DELO PTI ON S C ENDOPTIONS
PROGRAM TR IAL

V In this case, SAIL will process the PROGRAM TRIAL In a NORMAL mode. C will
V be removed from the OPTION list and CC will be added with a value of 10. The

values of B and E will be reset to 2 and 11 , respectively.

SAIL LIST

With this request set, SAIL will list all t”e PROGRAMs that are on OLD.

SAIL LIST DIRE CTORY

In this case, SA iL will l ist only tho~e card-images on OLD which are found
between a *DIR and a *EDIR directive..

V SAIL LIST

PROGRAM TRIAL
V

DONE “DIR” ENOPROGRAM
or

19

L - .~~~~~~ . • - - - ~~~~~~~~~~~~~~~~~~~

AFWL-TR-78-80

SAIL LIST DIRECTORY
PROGRAM
DONE TRIAL “NODIR”
ENOPROGRAM

Either of these request sets will cause SAIL to list all of PROGRAM TRIAL
and the directory portion(s) of PROGRAM DONE.

SAIL UPDATE

Here, the library on OLD will be updated by the changes that are found in
the rest of the input in order to form a VERSION 13 of EXAMPLE which will be
written on NEW. Neither the default OPTION list nor the default PROGRAM table
wi ll be changed by this update and none of the existing record.

SAIL UPDATE SEQ VERSION 15
OPTIONS CX=l4

With this request set , the library identified by SYSTEM EXAMPLE on OLD will
be updated to VERSION 15 on NEW. During the update, the record identifiers in
all the PROGRAMs will be resequenced . The new library will have a different
OPTION list to which CX will have been added .

SAIL UPDATE

SEQPROGRAM TEST ENDPROGRAM
PROGRAM DONE

These requests will update the library on OLD to produce VERSION 13 of
SYSTEM EXAMPLE, bot only the record identifiers in PROGRAM TEST will be
resequenced. The new version of the library will have a default PROGRAM table
which contains only DONE.

SAIL CONVERT COPY

This set of requests instructs SAIL to convert a coded file on OLD to a
packed file on NEW , and not to mod i fy the OPTION list or the PROGRAM table.

SAI L COPY CONVERT
OPTIONS XX=12 , Az10

Here, SAIL will conve rt a packed OLD file to a coded NEW file. There wi ll
be an additional OPTION XX with a value of 12 on the default OPTION list of the
resulting NEW and the value of A will be changed to 10.

20

- -V. S V. -- — ~~~
- V

AFWL-TR-78-8 0

SAIL COPY
PROGRAM NONE

Since NONE is not a PROGRAM on SYSTEM EXAMPLE , SAIL will simply copy OLD to
V NEW , with an empty default PROGRAM table on NEW . The default on a NORMAL run

for the resulting library would be all the existing PROGRAMs .

SAIL SYSTEM SYSNEW VERSION 2
GENERATE PROGRAM TEST
OPTIONS XX=2

These requests instruct SAIL to generate a new library called SYSNEW
beginning with VERSION 2. The PROGRAM request will be completely ignored . The
record that looks like an OPTIONS request will be treated as data . It will not
be processed as a request either on this run or on any subsequent run.

SAI L SCAN
- X XYY -
$ZQ VWS

Here, SAIL would scan the PROGRAMs on OLD for record s which contain the

V
character strings XXYY and ZQVW .

b. Alternate Requests

SAIL reads file INPUT2 for additional requests which effect option
selection , and program selection during a NORMAL run. On the alternate input
file there is one request per line. The requests are:

V PROGRAM name. This selects name as a program to be processed. When
this request is first encountered it overrules any program selection from INPUT .

PROSNAME name. This selects name as the program for special pro- S

cessing. it acts the same as PROGRAM in addition to setting special processing.

OPTION name = value. The request set as OPTION name to value.

2. SAIL RECORD IDENTIFIERS

As was mentioned in the discussion of current SAIL structure (Section 2.1),
SAIL record identifiers contain a bloc k and a card number . As parameters of the
SAIL directives , they appear in the form bbbbb.ccc , where bbbb is the bloc k
number and ccc is the card number . If the card number is zero, neither ccc nor
the period need be given . Actually, the user need only remember that the proper

~~~ 21

- S-V. V.~~~V.~~~ V ~~~ _VV.  - - - _ _ _ _ _ _ _



~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ V S ~~~~~~~~ V.V ~~~~~~~~~~~~~~~~~~~~~~~

AFWL-TR-78-E

record identifiers appear in the SAIL listing. This form of identifier allows
libraries to be updated without resequencing all the line numbers. Thus , while
a library is in a development and testing phase, change decks need only minor
alterations in spite of updates .

3. GENERAL SAIL DIRECTIVES

There are thirteen general SAIL directives . Unl i ke the SAIL executive
directives which operate only in NORMA L runs , these take effect during execu-
tions in any mode. Each directive is identified by an asterisk in column one
of the input record , with the directive verb beginning in column two. The verb

must be separated from any parameters by at least one of the SAIL delimiters
(blank , coma , or equal sign). One of the directives is used to define PROGRAMs
in the SAIL system, four are used to modify OLD , five affect the structure of
the inpu t stream, and three control the SAIL listing. During NORMAL runs , none
of these are written to SAIL.

a. SAIL PROGRAM Definition

*B pname

When this directive is encountered during a GENERATE or UPDATE run , the
name pname is pl aced in the PROGRAM tabl e in the header of-NEW. On subsequent
runs when this file is reidentified as OLD , the records found after this direc-
tive and before the next *B directive are considered to compose one PROGRAM .
The PROGRAM may then be selected for processing by referring to pname in the
specification area of the PROGRAM request. Note: The PROGRAM name is added to
the PROGRAM tabl e only during GENERATE and update runs. Thus , PROGRAM name
definition directives added during any other run are ignored . When this direc-
tive is encountered during a SAIL listing it is forced to be at the top of the
page.

b. SAIL Library Modifiers

All of these di rectives modify OLD and appear only on INPUT . Only
one modification directive should speci fy any SAIL record (this includes records h

- in the range of the del ete directive). If, however , more than one directive
specifies the same record, then all but one are i gnored and a warning message
is printed Indicating which directives were not used .

22

___ ~~~~~~~~ •~~~~~~ V
~~~~~~~~~~~~~ - -



r V V
V.

~~~~~~~~~~~~ 

V V V~~~S ~VV ~~~~~~~ V.~~ V V ~~~~~~~~~~~~~~~~~~~~ S~~ ~~~
V V - -~~~~~~~

A FWL-TR-78-80

(1) Record Insertions

*A ni
or

~I iii

Either of these directives inserts records after the record in OLD
with the identifier nl. All the records between this directive and the next
modification directive or end-of-file are inserted .

(2) Record Deletions

*0 ni n2
or
*~ nl n2

These directives are used to del ete all of the SAIL records on OLr
from the one with the identifier ni through the one with the identifier n2. If
only ni Is specified , then only one record is deleted . If both are specified .
they must be separated by at least one SAIL del imiter . All the record s between
this directive and the next modification directive or end-of-file are inserted
at this point.

(3) Record Modification

~ nl (cl ,c2,cnl ,cn2)

This directive replaces columns ci through c2 of the record
identified by ni with columns cnl through cn2 of the record which follows this
directive. If the number of characters in the replacement is not equal to the
number removed from the record , the characters in the ori ginal record to the
ri ght of the change are shifted . Should nonblank characters be shifted off the
end of the record , a warning message is printed. The column change parameter H
field is defined by the parentheses and must be separated from the record
identifier by at least one of the SAIL del imiters . The column numbers may be
separated by an SAIL delimiter(s) ci must be specified . If c is not specified
It Is set to ~2. The defaults for cnl and cn2 are 1 and cni~c.- c . respectivel y.

.
If cnl is zero then no characters replace those removed from the record arid the
record containing the characters to be substituted may be omitted . A l l record s
followiny this directive, except for the one holdin g the substituti on characters .
are i gnored until another modification directive is encot~ntered.

23

V V ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ V - •~

AFWL-TR-78-80

V c. SAIL Inpu t Modifiers

(1) Record Copying

*M ni n2

This directive copies records from OLD beginning with the one V

identified by ni to the one Identified by n2. The records copied effectively
• replace this directive in the input stream. If n2 Is not specified , only the

one record is copied . - V

(2) Input Record Conversion (IBM)

*BCD
and
*EBC DI C

These directives affec t conversion of subsequent records in the
input stream In the same way as the BCD and EBCDIC requests.

(3) Text Data Control

*TXT
and
*ETXT

These directives identify the beginning and end of a block of input
records which are not processed either by SAIL or the S~SIL executive. The
included records are treated as ordinary data even if they have the format of
a SAIL directive. (This also applies to additional occurrences of *TXT before
*ETXT.) Because they also act as executive directives , they appear as data on
OLD and NEW.

d. SAIL Listing Control

This set of directives gives the user control of SAIL listings. In
order to maintain their function on later runs , they are stored as data on NEW .

(1) Paging and Sumary Control

*p sname
. L

When this directive is encountered as a record to be listed , SAIL
forces It to begin a new page. in addition , if the name sname is present, it
is written along with the record identifier for the directive at the end of the
listing on a suninary table.

24

LI
_ _ _ _ _

-

V

~~~~ 
______----i--V.



AFWL-TR-78-80

(2) Directory Listing Control

*DIR
and
*ED I R

V These directives identify the beginning and end of a block of
records to be listed if the listing type is directory. During a airectory
listing of the PROGRAM where they occur, only those blocks of records so

V 

identified will be listed . During a full listing , all records in the PROGRAM

V - are l i sted.

e. Exampl es of SAIL D irectives

A typical set of modification directives are:

*A 10000
*~~ TEST

Card 1
*M 942,966

V Card 2
*0 12642.1 12713
Card3
Card4
Card5
*M 15462 15477
*0 942,966
*0 16111 , 16452 V

*TXT
*A TEXT
*D TEXT
*C 10 (TEXT)

• *ETXT
*C 1214 (12,14,2,3)
ABCDE

The first directive instructs SAIL to insert records containing
*p TEST and Cardl , records 942 through 966 from OLD , and a record containing V

Card 2 after record 10000. Then SAIL is to del ete -ecords 12642.1 through 12713
and insert three records containing Card3, Card4, and Card5 followed by

25

-V — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



- ~~~~~~~~~~~~~~~ 
V ~~~~~~~ V.~__ V.V.__ ~• V.S V ~~~~~~~~~~~~~~ ~~~~~~~ V VS ~~~ V . V S S V  

~~~~~~ V V.~~~~~~ V. _  VSVS V ~~~~~~~~V.~~~~ V V S  V~~~~~~ V ~VV.

AFWL-TR-78-80

records 1 5462 through 15477 in their place. Records 942 through 966 are to be
deleted without making insertions. (Note: these are the same records copied
during the first insertion.) SAIL is then instructed to delete records 16111
through 16452 and insert as text the records containing *A TEXT , *D TEXT and

*C TEXT. (Note: these records would have been mista ken as directives had they
not been between *TXT and *ETXT) The last directive is an Instruction to
replace columns 12 through 14 on record 1214 with the characters BC.

4. SAIL COMMENTS

Any record , either on OLD or in a change set, which has an equal sign (=)
in column one i s a SAIL coment. Dur i ng NORMAL runs these records are not sen t
to the SAIL executive processor.

26

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V.S~~i~~~J~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~ 

V V_~~S~VS V



~
V S S

~
S V~~~~~ -V V - V V V .~~~~~~~~~~~~~~~ VS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ V V V V V ~~~~~~~~~~~

AFWL-TR-78-80

SECTION IV

SAIL EXECUTIVE PROCES SOR LANGUAGE

V 
1. EXECUTIVE DIRECTIVE FIELDS

• In general , SAIL executive directives contain three fields: the verb field ,
the name field , and the operand field. Each field contains one or more elements
which are separated by SAIL delimiters (blank , coma , and equal sign).

a. Verb Field

The verb field contains one el ement which must begin in column one
of the record, and must be *PROC , *INCLUDE , *ENDPROC , *KEEP TO , *SKIPTO , *LABEL,
*DEFL , *DEFN , *AUTO , *MAN , or *E. Because all general SAIL directives except
*B, *TXT, and *ETXT are stripDed from the modified library before the executive
processor opera tes , any caed not containing one of these three or a SAIL execu-
tive directive will be treated as data.

b. Name F ield

The name field may contain a simple name , a macro name , or a table
name. The simple name form can be used for all directives that need a name

V 

(*AUT0 *MAN , *ENDPROC and *E do not). It contains one element called the name.
The macro name contains a parenthesized subfield. The left parenthesis must be
part of the first el ement of the name field. In this case, the name is the
portion of the first element which precedes the l eft parenthesis. The subfield
within the parentheses may contain up to nine elements called parameters. (For
a discussion of the macro parameters see the section In the macro processor.) H

The macro name field may be used in *PROC and *INCLUDE directives. The tabl e
name field may be used In *INCLUDE directives and contains three or four ele-
ments, the first and last of which are the character S. (Refer to the discussion
of the inclusion of PROCs for a description of the tabl e name.)

c. Operand Field

The operand field contains either a numeric or logical expression. It
may be l eft blank to make the directiv e uncond~tiona l .

27 

V V ~~~~~~~~~ VVS - ~~~~~~~~~~~~~~ ~~• V S~~~V • 
~~~~~~~~~~~ V _ V  

V

r

V V V ~~~

AFWL -TR-78 -80

(1) Num erIc Operands

A numeric expression is one element long and contains integers ,
nonnumeric OPTION names (replaced by the corresponding OPTION value) and the
arithmetic operators + (addition), - (subtraction), and / (division). The
numeric operand field is used only on the *DEFN directive. Its evaluation is
described In the section on OPTION redefinition .

(2) Logical Operands V

A logical expression contains one or more logical units which are
connected using the logical operators AND, OR , and NOT. Each logical operator
must be an el ement of the field. The operand field is processed from left to
right so each logical operator acts on the values of the total expression to its
l eft and the first unit to its right. Higher level units may be defined by
parentheses to modify the order of processing . The parentheses may be either
separate elements or concatenated onto logical unit elements (but not onto
operators). Each unit has a TRUE or FALSE value for use in the logical opera-
tions.

Each lowest level logical unit is composed of one , two, or three
elements. The one element units are of the form xxx or xxxnn , where nn is a
number and xxx is the name of an OPTION. (SAIL will terminate abnormally if
the name is not found in the OPTION list.) If nn is not specified , the unit is
TRUE If the value of the OPTION xxx is greater than zero and FALSE if it is
equal to zero. If nn is specified , the unit is TRUE only if the value of the
OPTION Is equal to the number .

The two element logiLal units occur in two forms. In the first,
the first element is an OPTION name and the second is of the form yynn , where
yy is one of the comparative operators EQ, NE , IT, LE , GT, or GE and nn is a
number. The unit is TRUE if the comparison is satisfied and FALSE otherwise.
If the OPTION name is not in the OPTION table, SAIL wi l l termi nate abnormally.
In the second form, “DEF” is the first el ement (the symbol Is part of the
element) and an OPTION name is the second one. The unit is TRUE only if the
OPTION is currently in the OPTION list. V

The three element logical units contain an OPTION name in the
first el ement, a comparative operation in the second , and a number or an OPTION
name in the third . The result of the comparison of the value of the OPTION in

28

- VS -__-~~~~ V ~S SV~~~~~~VS V V~~~ S VS VS_VS V V — V. ~~~~~~~~~~~~~~~~~~~~~ V~~~~~~ VS~~V V VV V

AFWL-TR-78-80

the first element and the number or value of the OPTION in the third determines
the logical value of the unit.

The user should refer to the discussion of each directive for
information on how the operand field affects it. If there is no operand field

. present on an executive directive which can have a logical expression , SAIL
acts as if a TRUE result were obtained (this is considered an unconditional
directive.

(3) Exampl es of Operands

For these exam ples , we assume the OPTION li st con ta ins : A l ,

B=2, C=42, D=O , Q=16, BVD=22, and XXX=45. The first five examples are assumed
to occur in the operand fields of *DEFN directives , so they are interpreted as
numberic operand s in accordance with the rules explained below in the discussion
of that directive.

A+B*C
This has a va l ue of 126. (3 times 42)
A-B+Q
Thi s operan d has a va l ue of 15.
A-C+2
Since the computation yields a negative result , the value will be

set to zero .
B
As a numer ic operan d , this field has a value of 2.
Cl 0

Because the OPTION name—test value concatenation has no meaning in
a numeric operand field , d O will be treated as the OPTION name. No such

OPTION appears in the list , so the *DEFN will be ignored .

The remaining examples are assumed to occur in the operand .
A-C+2
This looks like a numeric operand , but it has been assumed to

occur in a place where it will be interpreted as a logical operand . There is
V no OPTION names A-C+ in the list, so SAIL will terminate abnormally.

B
As a lo gi ca l operan d , the result is TRUE since B is greater than

zero.

29

V V~~~~~~~~~~ ~~~~V V V ~~~~~~~~~~~~~~~~~~~~~ V~~~ VSVS V~~~~~~ V

• AFWL-TR-78-80

Cl 0
The resu l t will be FALSE si . -’-e C is not equal to 10.
“DEF ” X
This logical operand is FALSE since X Is not in the OPTION list.
“DE F ” Q
This field will be TRUE since Q is in the OPTION list.

Q GE5
• Because Q is~greater than or equal to 5 , this field will be TRUE.

Q EQ C
The result from this field is FALSE since Q is not equal to C.
The next six examples of compound operands will have a result of

TRUE .
A OR 80
A AND B

• A AND D OR Q GE12
A OR (D AND Q)
B3 OR (0 OR (C42 AND BVD))
“DEF” A OR (B AND “DEF” X)

while these will be evaluated as FALSE:
A AND BO
A OR Q GE12 AND D

A AND (A2 OR Bi)
XX X LE100 OR DO AND “DEF ” X

2. SAIL EXECUTIVE DIRECTIVES

These directives control the creation and inclusion of bl ocks of records
called PROCs, skipping of records during processing, further definitions of
OPTIONs , dynamic substitution , and termination of blocks on SAIL. They are
stored in the card portion of the SAIL records on NEW so they can be used
during later runs. They will appear in listings of the library , but will only
take effect during NORMAL runs. After being processed , they do not appear on
SAIL.

a. PROC Creation

a PROC is a collection of SAIL records that can be included at any
later point(s) on SAIL. If the executive directives *DEFN, *DEFL, *KEEPTO ,
*SKIP TO , *LABEL , *AUTO, or *MAN occur within the body of the PROC , they are

30

-
-

~~~~~~~~~~~~~~~~~ V~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ _~~~~~~ ~~~~~~~~~~~~ 
V V - V~~~~•_~~V~S ~ _V~~~~~~~ _

V. —- 
~~ S•SVSV~~~~~~~~~~ iSV. • • • 

V



AFWL-TR-78-80

processed a t crea ti on , not at Inclusion . *INCLUDE and *E are implemented when
the PROC is included. PROC s ar~ identified and created by the directives :

*PROC name opera nd
V and

* END PROC

If the logical expression in the operand field is TRUE , the records
between these directives are saved as a PROC named name . Note: *PROC and
*ENDPROC directives are paired . Therefore, SAIL will abort if *PROC occurs in
a bl ock Identified as a proc (between a *PROC and *ENDPROC directive), or If
tENDPROC occurs without a paired *PROC.

b . PROC Inc l us ion

Inclusion of PROCs is initiated by the directive:
* INCLUDE na me operand

This directive causes the block of records in the PROC identified by the
name field to be included if the result of the operand is TRUE. PROCs may be
Included within other PROCs, but the l evel of inclusions is limited to eight.

SAIL requires that a PROC be created before the request for its
inclusion is honored. For *INCLUDE5 outside of *PROC5, this is at the time
the directive is processed. If the *INCLUDE directive is l ocated In a bl ock

defined as another *PROC , it is honored when the PROC that contains it is
included.

This directive can have a table name field. The field is defined by
a dollar sign C S ) being the beg inning and ending elements. The rest of the 

V

field may be made up of one or two el ements called table elements. The first
i s of the form xxxn n , where xxx is an OPTION name and nn is a number. The OPTION
list is searched for the name xxx and the corresponding value NV is obtained .
Then the values of the next NV OPTIONs in the list (table) are compared with nn. 

V

If the name xxx is not found , SAIL will terminate abnormally. If none of the
OPTION values searched are equal to nn, then the *INCLUDE is not honored . How-
ever , if an OPTION Is found whose value is equal to nfl, the characters that make
up that OPTiON name become the first part of the PROC name. If there is a second
tabl e element, it Is concatenated on the end to complete construction of the
name .

I

V 31

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ V V~~~~~~~~ 

—

V V V V S • V~~~~~~ V~~~~• V ~~~ VS~~~~~~~~~~~~~~~ ~~~

AFWL-TR -78-80

c. Record Process i ng Con trol

Control over which records within each PROGRAM are processed by the
SAiL executive is established by the directives :

*SKIPTO name operand
*KEEPTO name operand
and

*~~BEL name

The first two conditionally initiate skipping of the records identi-
fied by the name field. SAIL starts skipping after *SKIPTO if the operand
field Is TRUE and after *KEEPTO if it is FALSE. Otherwise, processing con-
tinues with the next card . If the name is of the form *~~~~, the next nn records
are skipped. (SAIL coment, *p , *ETXT, *DIR, and *EDIR are not counted.) If
the name element is any other character string, the records are skipped until
a *~fiBEL directive is encountered with either no name field or a name identical
to the one on the *SKIPTO or *KEEPTO directive. *LABEL cards are i gnored if
skipping is not in progress or if the names do not match. Skipping by the SAIL
executive is automatically terminated at the end of a PROGRAM.

Since these directives can cause SAIL to skip SAIL executive directives
(includ ing other *SKIPTO and *KEEPTO directives), care should be taken that the
records skipped do not unbalance the required pairing between tPROC and *ENPROC
directives.

d. OPTION Definition

New OPTIONs may be added or existing OPTION values modified by the use
of two SAIL executive directives. If an OPTION Is defined in either of these
ways, SAIL writes an informative message on OUTPUT identifying the OPTION name
and Its new value. These values only apply to occurrences of the OPTION name
that physically fol low the defining directive and precede any redefinition of
the same OPTION. If the OPTION identified in the name field is in the OPTION
list, these directives redefine the value. If not , the OPTION is added to the
end of the list. r

An OPTION may be defined as the result of a logical expression by the
directive:

*DEFL name operand

32

_____ - - -- - VS - - -

V_VS ~~~~~~~~~~~~~~~~~~~~~~~ V S _ • V S~~~~~~~ V V S V S~~~~~~ V S V V S~~~VS •VVSSVS5VVSS VV- V V SVS~~~~~SVS~~~~ V

AFWL-TR-78-80

The logical value of the operand determines whether the OPTION ,
identified in the name field , is set to one (TRUE) or zero (FALSE). Otherwise ,
it is added to the OPTION list.

An OPTION may be defined by an arithmetic expression by using the
directive :

*DEFN name operand

This is the only directive that has an arithmetic expression as an
operand field. The expression is evaluated in strict l eft to right sequence.
Parentheses cannot be used to define subexpressions and no hierarchy is
recognized among the operators. If an OPTION name occurring in the expression
is not on the OPTION list, a warning message is printed and the directive is
ignored. If the final result is negative , it is set to zero. Otherwise , the
result of the expression is used as the new value of the OPTION identified in
the name field.

e. Value Substitution Control

Dynamic value substitution is not performed for every SAIL record . This
processing occurs only for those records which have a dollar sign (5) in column
one or which follow the directive:

*AUTO
and which precede the directive:

The operation of dynamic substitution is described in paragraph 3.

f. Bl ock Termination Control

This directive will cause the current bloc k being written on SAIL to be
termInated . If ft occurs in a PROC, it takes effect when the record containing

V the directive would have been wri tten on SAIL had it been a data record .

g. Examples of Executive Directives

V If we assume that the OPTION list is the same as for the operand examples ,
then typical executive directives would be:

33

- - • V ~~~ V V V_ ~~ V~~•

AFWL -TR-78-8O

*PROC ABC
Cardl
Card 2
Card3
*ENDPROC
*PROC XVZ A OR BO
Card4
Card 5
* INCL UDE ABC
*ENDPROC
*PROC QRS A AND BO
Card6
Card7
* END PROC

These directives will cause two PROCs to be created. The PROC named
ABC will be created unconditionally and will contain records Cardl , Card2, and
Card3. XYZ will be created since the operand is TRUE. It will contain Card4,
Card5, and all the records in PROC ABC . QRS will not be created since the
operand is FALSE. Records Card6 and Card7 will be ignored .

*INCLUDE VVV

The records in PROC VVV will be Inc luded unconditionally at the posi-
tion where this directive occurs.

*INCL UDE V XZ Q GE 1O

This directive causes the records in VXZ to be included because the
V

operand is TRUE.

*INCLUDE VVX D

In this case, no records will be included because the operand is FALSE.

*KEEPTO *1 A
CardA
*SKIPTO *2 B V

Car dB
Car dC
*SK IPTO END D
CardD

34

V S_ V ~~

AFWL-TR-78-8O

CardE
*KEEPTO END BVD LT 5
Card F
*~~BEL END

• This set of directives will cause the records CardA , CardO and CardE
to be processed, and records CardB, CardC , and Card F to be skipped .

*DEFL YYY A NE1 OR B3
*DEFL ZZZ A AND Q GT5
*DEFN BBB Q*C/BVD

V
*DEFN XXX 12

Here, YYY , ZZZ , and BBB will be added to the OPTION list with values
0, 1 , and 30, respectively. The value of XXX will be redefined as 12.

• *KEEPTO *1 Q

These directives will cause the current block being written on SAIL to
be terminated .

If in addition to the OPTIONs mentioned , the OPTION list contained the
table: TAB=4 , TIM=3, QVZ=4, ZZX=2, and VWW=l , then

*INCL UDE $ TAB 1 CCX $

would cause the records contained in the PROC named VWWCCX to be inc l uded at
this point, while

*INCLUOE $ TAB6 XX $
*INCLUDE $ TAB4 XV $ QO
*I NCLUDE $ TAB2 $ A AND B

would cause only PROC ZZX to be included . The first *INCLUDE would be ignored
because there is no OPTION fol l owi ng TAB which has the value 6. The second
is ignored because the operand is FALSE.

3. DYNAM IC SUBSTIT UTION

a . Descr ipti on of Processor

The dynamic substitution processor modifies the contents of a record to
values depending on the OPTIONs currently in the list. An arithmetic
expression which contains OPTION names and/or integers separated by the

35

V
• V V ~~~~~~~~~~~ V V~~~~~~~~~~~~• ~~~• . •

AFWL-TR-78-80

arithmetic operators + (addition), - (subtraction), * (multiplication) , and
/ (division) can be processed. Each expression must be enclosed by its own pair

of the characters produced by a 0-8-5 ntm lti punch (printed as ~ on COC systems

and as —
on IBM systems and designated as the special delim iter in the following

discussion). The expression is processed from left to right in the same manner
as the numeric operand field (see the description of the *DEFN directive). If
any of the OPTION names in the expression are not found In the OPTION list, the
executive processor writes an error mess~qe ard sets the fatal termination flag.
Otherwise, the encoded result of the expression replaces that expression in line
(delimiters are also removed). SAIL will terminate abnormally if the dynamic
substitution processor finds an odd numer of occurrences of this delimiter on
a card .

The user may request SAIL to make more general character substitutions.
The substitution identifier is enclosed by the same delimiters and is of the
form $xxxnn (the $ is requ i red), where xxx is an OPTION name and nn is an
integer. The OPTION list is assumed to contain the name xxx followed by at
least as many OPTIONs as the value of OPTION xxx . This identifier and its
delimiters are replaced by the first OPTION name from the group mentioned whose
value is equal to nn. If either xxx or a value equal to nn is not found , the •

V

identifier is replaced in the record after the delimiters and $ are removed.

Two other delimiters are recognized by SAIL as defining the beginning of a
substitution field. These are l eft parenthesis and slash. Ri ght parenthesis
and slash are the respective terminators. Subfields may be defined by comas.
If the special delimiter appears, it terminates the current subfield and the
processing described in the two paragraphs above occurs. A new subfield begins
after the special substitution field unless the appropriate terminator (right
parenthesis or slash) appears immiediately. Since the occurrence of a left
parenthesis or a slash begins a specific field definition for this form of
processing, one of these types cannot be inside the field defined by the other. —

The user should be certain that the characters which begin and end these fields
are properly paired . The substitution is limited to the replacement of a
single OPTION name by Its value. If the user wishes to use an expression to
define the substitution field, he must use the special field form . During sub-
stitution In fields delimited by parentheses or slashes, none of the delimiters
(except those defining special substitution subfields) are removed . This form
allows va~ues to be substitued in FORTRAN DIMENSION and DATA statements. It is

V

36 V

V
— V

~~~~~~~~~~~~~~~ -



VS~~~•VS V ~~~~~~~~~~ V VV

V 

AFWL-TR-78-80

the user ’s responsibility to insure that records are not Identified for sub-

stitution processing if they contain variabl es identical to OPTION names

V 
enc losed by parentheses or slushes .

The next blank field following any substitution area will be either

expanded or contracted , if possible, to pl ace the next nonbiank character in

the same column that it occupied prior to substituion . This realignment allows

the SAIL user to maintain tabulated columns in CO1~ION and DATA statements,

since the next blank may be inside an H field. This problem is easily overcome

by inserting an extra blank before the H field.

b. Exam ples of Dynamic Su bsti tu tion Fiel ds

For these exam ples , we will assume that the OPTION list is VV=2 , QT~3,
Z2X~4, QVX~3, C1B*l , C2B~4, C3X*7. When the SAIL executive processes the

V 

following records:

$ DI MEN SION A ( VV ,QT) ,C(C3X) ,BX( C2B*C3X_)
$ DATA A(2,ClB) / C1B*2+l_/

DIMENSION Q(Z2X), AX( _VV*Q T )
*AUTO

CALL $QVX4 (X )
CALL $QVX1 O_( X)
_Z2X+l *QT
A*B+C

it will produce: 
V

DIMENSIO N A(2 ,3),C(7),BX(28)
DATA A (2,1) /3/
DIMENSION Q(Z2X) ,AX( VV*Q T )
CALL C2B(X)
CALL QV1O(X)
45
A*B+C *FATAL ERROR*

4. SAIL MACRO PROCS

a. Description of Macro Processor

Macro PROCs are Identified by parenthesized subfields In the name field
of the *PROC and *INCLUDE directives . When a macro PROC is being included , eac h

37

~



V. - V 
VS~~~~~~ V ~~~~~~~~~~~~~~ V V~~~~ -• V~~~~~~~VS V. VS~~~ ~~~~VS ~~~ V • ~~~~~~~~~~~~~~~~~~ •~~~~~~~~~

VS ~~~~~~~

AFWL-TR-78-8O

record of the PROC is scanned for a field enclosed by a unique pair of the

charac ters “ . (This character is the alpha shift of the equal sign on the 026
keypunch and is printed as $ on COC systems.) If the field within the del imiters
matches one of the subfield parameters on the *PROC directive, the corresponding
parameter on the *INCLUDE directive replaces the field and its delimiters if it - 

V

was specified as nonblank. If an *INCL UDE di rective for a macro proc is foun d
In another macro PROC , then each time that include is honored, I ts parameters
are scanned in the same way as other records and substitutions are made. After
any scan , if the field within the del imeters does not contain a parameter that
appeared on the PROC directive or there is no corresponding parameter on the
*INCLUDE directive , then the delimiters are removed and the field Is returned
to the record. Just as in the dynamic substitution , the first blank field
fol lowing each macro substitution is used to realign the following nonblank
character. (See the discussion at the end of the description of the dynamic
su bstitution processor.) In the case of macro PROCs , the realignment allows

V correct pl acement of the character following a substituted FORTRAN statement
number , as wel l as tabulated COMMON and DATA statements.

b. Example of Macro PROC Usage

If we have the following records:

*PROC MACi (A ,B,C)
“C”y= ”A”+” B” X

c II~~~II~~~6Sl I~~~Il

*ENDPROC
*PROC NORM(11 ,I,N,X ,Y)

“ V I’ = 0 
-

DO “1 1” “I = 1 , N’1

~1 111 l
~
Y1 = 11Y1, + ‘X h ’ ( hh I~~)*~ X h ’ ( lh Ih’ )

“Z” = SQRT (”Y ” )
*INCLUDE MAC1 (”Y”,D ”Z”D ,Q)
*ENDPROC
*INCLUOE MAC1(VV ,UU,BV)
*INCL UDE MAC 1 ( XX) •

*INCLUDE NORM(3,J ,NXTOT ,F,FBAR )
*INCLUDE NORM(2015,M,P) - 

- 
:~

the SAIL executive would produce:

38 
V

_V — V

-~~~~~~ • . V _ V V ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~



AFWL-TR-78-i 80

BVY=VV+UUX
C VVUUBV

CY=XX+BX
C XXBC

V FBAR = O
DO 3 J 1,NXTOT

3 FBAR FRAR + F(J )*F(,J)
Z = SQRT ( FBAR )
QY=FBAR+DZDV

C FBARDZDQ
V = 0
DO 2015 I 1,M

2015 V = y + p(I)*p(I)
2 = SQRT(Y)
QY=Y+DZD~

C YDZDQ

V I

V 39

_ _  
~~~~~~~~~ _~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V V V V~~~~~~~~


-

~~~~~~~~~~

AFWL-TR-78-80

SECTION V

CONSIDERATIONS ABOUT SAIL USAGE

1. LIBRARY GENERATION AND EARLY DEVELOPMENT

V A user could convert an existing card-image file into a SAIL library by a
GENERATE run. The easiest way to proceed is to simply place a card containing

V 

SAIL SYSTEM name GENERATE

for a request area at the beginning of the file. If the file has been main-
tained by some other editing program in which special bl ocks that will become
PROCs have already been identified , it would save time if these blocks were
kept separate, especially if the equival ent of the *INCLUDE directive were kept
in the file input to SAIL.

Having created a SAIL library of the file , the user could then examine It
for sets of consecutive cards that appear in more than one pl ace throughout the
file and consider making them into PROCs. Such PROCs could then be created and
the original sets repl aced by *IN CLU DE di rectives on one or more runs in UPDATE
mode. This idea would apply especially to such sets as COMMON blocks in
FORTRAN which are subject change as the routines develop and which must be the 

V

same in each rou tine. The user coul d a l so find array dimens ions , loop indices ,
and other parameters for which it would be advantageous to use dynamic string
substitution. He could modify and flag cards containing this sort of data and
define OPTIONS to be used in the substitution during UPDATE runs. As he
developed the structure of the library , the user would always (barring errors)
be abl e to produce the original file on NORMA L runs both for production and for
testing of the devel oping library .

At some point in the development , the need for an alternate version might
arise. Without del eting any good lines from the original library , the user
could insert new cards for the alternate along with directives to skip the
unneeded cards on NORMAL runs meant to produce either file. These directives

V 
might be controlled by a new OPTION which identified the version . For instance,
READ statements of FORTRAN source code vary in format from one computer to
ano ther. In part icular , cards like

READ (8,100) A
If (EOF(8) .NE.O.) GO TO 200

40

V 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


-
~-

~~~ AFWL-TR-78-80

where one of the OPTIONs CDC , HONW, or IBM has been set nonzero (TRUE) and the
other two zero (FALSE). The same so~’t of structure, perhaps involving more
cards and employing the *LABEL directive , could be used to add a new capability
that was only needed for some runs. Whil e the identica l file coulci be produced
on a NORMAL run using del etions and Insertions , the necessary c~~nge deck could
soon become cumbersome and the purpose of using SAIL defeated. If programing
errors were found in a part of the coding comon to both versions , correcting
the library wou ’d correct both versions so two different change decks would be
unneces sary .

As a (somewhat overdone) example of what a routine in a SAIL library could
V become, consider the following . Sixteen different versions of this routine are

contained in this library representing all possibl e choices of the OPTIONs
COMPLEX , GAUSS, DIM (odd o” even - the variations due to simple dimension changes
are not counted in the sixteen), CDC , IBM, and HONW. The routine is supposed
to init ialize the array F which m ight be either compl ex or real. The array
values are to represent either a Gaussian curve or a square. If F Is real , the
absolute squares of the complex values that would have occupied the same array
position are needed. The machine— Indicating OPTIONs are set as in the preceding
exam ple.

*PROC /FIELD/
*KEEPTO *1 COMPLEX

COMPLEX F
$ COMMON /FIELD/ F(DIM)
tENDPROC
*B SAMPLE

V 
SUBROUTI NE SETFLD 

V

*INCLUDE /FIELD/
C READ POWER AND WIDT H OF BEAM
C AND W IDTH OF WOR K I NG GRID
C
•KEEPTO *2 CDC

READ ( 5,200) POWER ,WIDT H,GW I DT H
IF (EOF( 5) .NE.O.)  GO TO 100

41

• •_~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ VVS~~~~



ru_._I.uPPu _Pu_uIP!r
~
_ 

~~ V .V V. V . V~~~~~~~~~~~ VV ~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

V V V V - -~~~

AFWL-TR-78- 80

*KEEPTO *1 IBM OR HONW
READ (5 ,200,END=100) POWER ,WDITH ,GWIDTH
IF (WIDTH.LE.GW I DTH) GO TO 20
WRITE (6,210) WIDT H, GW IDT H
STOP V

$20 DX=GWIDTH/_DIM
*KEEPT O END GAUSS GAUSS
C
C INTE NSIT Y IS
C 1(X) = POWER*SQRT(2/PI)/WIDTH
C * EXP(_2*X*X/(WIDTH*WIDTH)
C .7979 = SQRT(2/PI)
C
*SKIPTO *2 COMPLEX

FNORM= . 7979*POWER*DX/ WIDTH
ALPHA=-2./ (WIDTH*WIDTH)

*KEEPTO *2 COMPLEX
FNORM=SQRT(.7979*POWER*DX/ WIDTH)
ALPHA=l .414/WIDTH
X= . 5*(..GWIDTH+DX)

*LABEL ENDGAUSS
*SKIPTO SQUARE GAUSS
*SKIPTO *1 COMPLEX

FNORM=POWER*DX/WI DTH
*KEEPTO *1 COMPLEX

FNORM=SQRT(POWER*DX/ WIDTH)
XSTART=-. 5*WIDTH
X=~. 5*GWIDTH

*LABEL SQUARE
• $ DO 80 I=l ,_DIM/2

*KEEPTO *1 GAUSS AND NOT COMPLE X
*KEEPTO *1 GAUSS AND COMPLEX

F(I)=COMPLX(FNORM8EXP(ALPHA*X) ,O.)
V

*SKIPTO SQUARE GAUSS
IF(X. E.XSTART) GO TO 60
IF(X+DX.LE .XSTART) GO TO 40

42

L_. .
VV_ V V~~~~~~~~~ — ~ •• V • • •~~~~~~~~

__ V . - - V~ —
~~~~~~~~~~~~~~~~~~ ~- ~~ ~~~~~~~~~~~~~~~~~~~~~~~~ 

—

~~~~~~~~~~ ~~~~~~~~~~~~~~~ — 
~V V~ V~_~ ~~VV

~~~~~~~~~~~~~ 
VV_~~~~V~V — V~•~~~V~V — ~~~~~~~~~ 

— 
~~~~~~~~~~~~~~~ •~~~~~V V~ _ 

-~~~~ A


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- 

P AFWL-TR-78-80

C
C APPORTION INTENSITY IF BEAM EDGE NOT CELL EDGE
C
*KEEPTO *1 COMPLEX

• F( I )+CMPLX(FNORM*SQRT( (X+DX-XSTART)/DX ) ,O.)
*SKIP TO *1 COMPLEX

F( I )ZFNORM*(X+DX_XSTART)/DX
GO TO 70

*KEEPTO *1 COMPLEX
40 F(I)=(0.,O.)
*SKIPTO *1 COMPLE X

V 
40 F(I)a0.

GO TO 70
*KEEPTO *1 COMPLEX
60 F(I)=CMPLX(FNORM ,O .)
*SKIPTO *1 COMPLEX
60 F(I)=FNORM
*LABEL SQUARE
C
C TAKE ADVANTAGE OF SYMMETRY ABOUT X=O (GRID CENTER)
C

-

• $70 F( DIM+l —I)=F(I)
80 X=X+DX
*DEFN EVEN DIM/2*2

= THESE ARE SAIL COMMENT CARD S
= THIS SECTION W ILL BE SKIPPED IF DIM IS ODD

IT SETS THE MIDDLE POINT
=

*SKIPTO ENDODD DIM EQ EVEN
*SKIPTO *1 COMPLE X
$ F( _DIM/2-I-l_)wFNORM

- *KEEPTO *1 COMPLE XT 
V

$ F( DIM/2+1_)aCMPLX(FNORM ,O .)
*LABEL ENDODD

RETURN

~~ V V V V —— -
~~~~~

— ~~~~~~ V
V~~~~ ~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~



V ~~~~~~~~V . V V V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

AFWL- TR- 7 8-80

V

100 WRITE (6,220)
STOP

200 FORMAT(3ElO.3) V

210 FORMAT(14H BEAM WIDTH C ,El0.3,
1 30H) IS GREATER THAN GRID WIDTH (V

1 E1O.3 ,l H))
V

220 FORMAT(38H END-OF-FILE ENCOUNTERED , NO BEAM I NFO)
END

2. FREQUENTLY USED SAIL MODES

The three modes used most frequently during SAIL executions are NORMAL,
UPDATE , and LIST . NORMAL mode produces a card-image file to be used for some
task. It can be used not only when a well-established file is needed, but also
to test the effect of changes to the library before they are made permanent. V

When UPDATE is requested, SAIL creates a new library , thereby making permanent
changes to an older library . In LIST mode, SAIL provides listings of the library ,

as affected by the changes. It can be used both to discover the line numbers
for needed changes and to see the effects changes make r the library .

When a well-established library is used during a NORMA L run , the user will
probably need to make no changes. If the default OPTION and PROGRAM selections
are the ones that produce the desired file , the request area (in fact the whole
INPUT file) could be l eft empty. If modifications to the OPTION list of a
different set of PROGRAMs are needed, the INPUT file would consist of a request
area. If an error on the library has been detected , a set of changes would be
necessary on the NORMAL runs used to verify the correction. However, It Is
possibl e to set the options from the alternate input file. This is used to
allow options to be set from other programs.

Development of a library could be handled by a combination of NORMAL , UPDATE ,
and LIST runs. Until changes become so numerous as to make INPUT burdensome to
handle , NORMAL runs could be used to test out additions and corrections. When
INPUT becomes too large or when some major portion has been completed and checked,
an update run would create a new library. Normally, the lin e numbers would be
resequenced during an update. However , especially when several users are involved
in parallel devel opment, It might be convenient to have the lines not involved
In the change retain the numbers from an older stabl e version of the library .

44

V _V~~~~~~~~ V. V •~~V ~~~~~ VV
~~~_~~~ ~~ V __

~~ — —  _ _~~ V. VV ~~~~~ V ~~~~ ~~~~~~~~~~~~~~~~~~~



_ _ _ _ _ _  
— VV~V_V.~~ V.V~~ _~~~V V:~~V T~~~ V V,_ VV~~~ V V~~~~~~~~~~~~~~~V~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

V V ~ V

AFWL-TR-78-80

In this case, either no resequenci ng would be done or only those PROGRAMs on
which work was essentially complete could be resequenced using the SEQPROGRAM
request .

At times , especially during a development phase, users might need extra
listings of a library in addition to the one produced during the last UPDATE run.
This can be accomplished by LIST runs. The EDIT feature, as wel l as the change
set, is recognized during runs in LIST mode, so the library can be listed as It
would appear after an UPDATE run wi th the same INPUT file except for the obv ious
change in the requests from LIST to UPDATE . The only advantages of this over
doing a trial update and discarding the new library if further corrections were
needed , are that the execution time to copy a temporary file onto the new library
Is saved and one less file need be assigned . On the other hand , if all went wel l ,
an UPDATE run would still be needed to create the new library.

3. USE OF REQ UESTS

Most of the information the user needs concerning requests is presented in
other sections of this manual . The specifics of what each request does are found
in Section 3.1. Much of the test of Section V deals with choosing the operation
mode, PROGRAMs , and OPTIONs. This section reemphasizes points about the inter-
actions among the requests and warns about pitfalls that can arise while request-
ing EDIT.

The first thing to keep In mind is the general structure of the request area .
In general , request el ements are free-field , that is they do not have to start in
any particular column ; there can be any number on a card , and they are separated
by one or more SAIL delimi ters (bl ank , coma , or equal sign). Any unrecognized
request is Ignored . A character string that looks like a request may be treated
as an OPTION or PROGRAM name if it falls within a specification area or it may be
treated as a parameter if it follows a request that is the first member of a
request pair . In many cases, a request parameter can be overridden if the same
request recurs.

The very first request must be SAIL if any further requests or change cards
are to be processed. Following this , any file control requests (listed in

• Section 3, para . 1) that refer to OLD must appear. As soon as a request that
cannot affect OLD Is found , the old library Is opened and any further file control

V requests are applied to NEW. Unless the mode is GENERATE or NORMA L it is best to
specify the mode next. This Is because many function requests, such as EDIT and

45

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

• . • • ~~~~~~~~~~~~ ~~~~~~~~- -• _s___ 
-- 

V V  V . V ~~ V ~~~~~~~~~~~~~~~ -- V -- ~~~~~ - • • V



-V.- -—---V ~~~~~~~~~~~~~~~~~~_V_~~ V~~~ _ V.V.

AFWL-TR-78-80

V those which affect listing , are ignored unless the mode has been already
sel ected . For GENERATE runs , mode selection must be the last request, because
SAIL ininediately starts reading subsequent cards as lines for the library being
created.

Remember the following restrictions. Only one mode can be in effect for a

given execution of SAIL with the half-exception of LIST which is considered a
function request during an UPDATE run. If two or more mode requests occur , the
first remains in effect unless GENERATE occurs, which overrides all other modes.
The CONVERT function request automatically selects COPY mode when it refers to
OLD.

Finally, following the mode request if needed, the function requests and
file control requests referring to NEW may come in any order. Unless the SYSTEM
or VERSiON requests explicitly appear in the part of the request area where they
reset these parameters for NEW , the values from OLD will be used with the
VERSION number incremented by one.

EDIT should be used with extreme care. A prior SCAN mode run with the same
cards will find and list all the strings that will be substituted for. Remember
that all cards are processed by the EDIT routine , includ ing those newly inserted
or modified by the col umn change feature. After an UPDATE or LIST run on which
he requests EDIT , the user should check each card from the SCAN listing , as we l l
as each card marked by an asterisk as newly changed , to insure that the desired
character changes were made.

4. SETTING UP SELECTIO N MECHANISMS

Three basic methods are á~ailable for selecting which card s from a library
will be written to the SAIL file during a NORMAL run. In order of increasing
fl exibility , these are:

a. PROGRAM requests
b. Use of *KEEPTO and *SKIPTO
c. Combinations of *PROC and *INCLUDE

Not only Its infl exibility , but the fact that it is independent of the OPTION
selections (although the converse Is not true), puts PROGRAM selection into a low
priority among the available selection mechanisms . Nevertheless , it has some
utility. The origina l purpose of PROGRAM structure was to indicate the main
FORTRAN programs on a library of related programs . In the HULL library , SAIL

46

V - -4
V - ____ V---

~~~~ 

V V~~~~~~~~~~~
—. _V_~M.&àV~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — VV

_V~~~~~V V _ V V V~~~~i~~~~~~

V
V1
i,r

V V
- •

AFWL-TR-78-80

itsel f, a problem initializer , a preprocessor that managed interfaces with a
tape library , the main probl em solving code , and a graphics package were stored
and selected by the PROGRAM request. A second form of library where PROGRAM
selection is useful is one consisting of modules, subsets of which can serve as
replacements for each other. Each module could be identified as a PROGRAM ,
allowing it to be selected for individ ual Output on NORMAL , LIST , or PUNCH runs.

V

This form of selection would work best on module libraries where strict module
interfacing rules were imposed on module programmers. Strict enforcement of
such rules would be less necessary If the modules were not used with ones not
supported by SAIL , for by tying OPTIONs to PROGRAMs (see the next section),
interfaces could be made dependent on which modules were in use. If OPTION
cont~ro1led selection were used on such a library instead of, rather than in
addition to PROGRAM selection , module separation for use within non-SAIL-
supported modules could only be accomplished on NORMAL runs , so only one
version of the module , not all those on the library could be obtained.

The remainder of this discussion is concerned with OPTION-controlled
selection mechanisms. Notwithstanding the comment at the end of the preceding
paragraph, it is in NORMAL mode where selections are usually wanted, so the
fact that these selection mechanisms work only In that mode is not a drawback.
In fact, if they worked on UPDATE runs , It would be impossibl e to change lines
containing SAIL executive directives .

The flexibility of the OPTION-controlled mechanisms resides basically in
the fact that they rely on logical expressions , not just single TRUE-FALSE
tests. It is further enhanced by the fact that the logical units in such
expressions can be relational tests on OPTIONs . Even more, it is OPTIONs that V

are used in dynamic substitution so the choice of dimensions , for instance, can
be tied to the choice of cards. Finally, OPTION-controlled selection can inter-
connect with PROGRAM selection due to OPTION revaluing feature explained in the
next section .

Like PROGRAM selection , the *KEEPTO and *SKIPTO directives are sequential
in their operation . Each line or set of consecutive lines is either skipped
without processing or it is not. It is important to remember that *KEEPTO and
*SKIPTO either immediately initiate skipping or they are ignored . Once skipping
is initiated , it is stopped only if (1) the line count is satisified or a
matching or blank *LABLE directive is encountered , (2) the end of the curren t

47

— V - ~ V_ VV • • ~~~~. ~~~~~~~~~~

~

AP.dL-TR-78-80

PROGRAM i s found . In par ti cu l ar , a *KEEPTO with a TRUE operand or a *SKIPTO
with a FALSE one will not nullify ski pping Initiated by a previous *KEEPTO or
*SKIPTO

The great flexibility inherent in selection by *PROC and *INCLUDE manifests
itsel f in several ways. A block of cards can be placed In several pl aces on SAIL
while only appearing once on the library . Blocks can be reordered by reordering
the *INCLUDE cards. PROCs can be nested within other PROCs. The macro pro-
cessing ability generalizes the concept of bloc k of cards from strictly identical
set to one in which different character strings can occur for each *INCLUDE while
retaining the same basic structure. Augmenting all the above features is OPTION
control over whether to create a PROC , whether to honor an *INCLUDE , and which
PROC should be included .

The user must avoid two basic pitf alls when using PROCs. First, only
*INCLUDE (except the conditional expression is•

V
processed at PROC creation time)

and *E are honored within a PROC when it is included . The other executive direc-
tives , in particular *KEEPTO, *SKIPTO, *DEFL, and *DEFN. are honored when it IS
first created. Second , SAIL aborts If a PROC has not been created at the time
an *INCLUDE for it is honored (see Section IV , para. Zb). This problem can arise
when using OPTiONs either to select a PROC name or to nullify creation of a PROC.
These situation s mi ght aris e If a li brary con tains sev era l versions of a PROC .
with the correct one being selected by OPTIONs.

Having reviewed the properties of the OPTION-controlled selection mechanisms ,
let us consider how and when to use them. As a general rule, if a bloc k of
lines are to appear only one pl ace on the SAIL file, use *KEE PTO or *SKIPTO ; if
it must or can appear In several different places, define it as a PROC.

It would be possible to create the same final SAIL file by using either only
the skipping directives or only PROCs, but either extreme would be cumbersome .
With only *KEEPTO and *SKIPTO, a line would have to appear on the library
explicitly in each position where it was needed for any single variation of the
SAIL file. With only the PROC mechanism a large number of PROCs would have to
be defined . On some computers, SAIL will abort if too many (about 500) PROCs
are created . By using a combination of selection mechanisms , the user can
create an efficient librar y that Is easy to comprehend .

r 48

— ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~ V • V V V . V ; V V.• •~~~ V V • V.

~ ~~~


~~~~~~~• V~~~~~~~~~~ V V ~~~~• V~~V . _~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ -‘

AFWL-TR-78-8O

5. REVIEW OF OPTiON DEFINITION METHODS

Because OPTIONs play such an Important role in producing task-oriented files
on NORMAL runs, a review of the means by which they are defined is warranted.
Each library file has a default OPTION list which is set during GENERATE ,

V 

UPDATE, or COPY runs. On such runs, additions , redefinitions , and deletions
given In the request area modify the old default list to form the one written
out on the new library. Permanent changes of the default list can be made only
in this manner.

No action involving OPTIONs , except editing the default OPTION list , occ urs
during runs in modes other than NORMAL, so the rest of this discussion is con-
fined to that mode. Before any SAIL records are processed , the default OPTION
list is modified by the OPTIONS and DELOPTIONS requests just as in any other
run. Then SAIL reads the alternate input file (INPUT2) for PROGRAM and OPTION
directives. Finally, each selected PROGRAM name is compared with each OPTION
name. For each match where the option value Is zero , It Is reset to one. This
changes the OPTION effectively to TRUE if it was FALSE. Once processing begins ,
new OPTIONs can be added to the list and old ones given new values by the *DEFN
and *DEFL directives. Note that changes to the OPTION list by these directives
only affect the lines which physically follow them on the libra ry.

V The “DEF” operator gives the user a powerful tool for setting OPTIONs.
Consider the structure :

*SKIPTO *1 “DEF” OPTA
*DEFN OPTA operand
This could be more properly or readily handled by the default OPTION list of the
numerical operand were a simpl e constant. However, if one or more OPTION names
are used in the operand , these lines establish a default relationship between
OPTIONs which can still be explicitly overridden by setting OPTA with the
OPTIONS request. Obviously, OPTA should not appear in the default OPTION list
or the *SKIPTO would be useless. There is a case where even a constant operand
makes sense. That is where these two lines fall within the range of a longer
*SKIPTO that depended on another OPTION . An example of this usage occurs
within the libra ry for SAIL itself where the OPTIONs are used to handle machine-
dependent features. The lengths of various I/O buffers are set~by this struc-
ture to values best suited for the machine for which a source file of SAIL is
being produced .

49

L - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ V:~~~~~~~~
_V V 

- V V V . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V V ~~~~~~~~~~~~~~~~~~~~
V V V

~~~~~~~~~~~~~~


V~~~~VV V V ~~ V V V V VV V ~~~~~~~ V V V V V~~

AFWL-TR-78-80

Another use of “DEF” Is possibl e if the user establishes the convention that
among a set of OPTIONs that are used mainly for TRUE-FALSE tests, that one appear
on the default OPTION list, that those explicitl y defined by the OPTION request
for a run (usually just by naming them with no paired value so they are set to
zero) should be reset to one (TRUE), and that those no otherwise defined should
be set to zero (FALSE). For each such OPTION, a SAIL record of the form:

*DEFL OPTA “DEF” OPTA

would properly reset the values . Of course, each such OPTION could be left
undefined (by the library) and the logical unit “DEF” opta used for each test
instead of OPTA, but this mi ght get cumbersome.

A slight modification of the convention might involve defining undefined
OPTIONs as zero (FALSE) , resetting a-l zero values to one (TRUE), and leaving
any larger values alone , thus al lowing the OPTION to convey more information in
TRUE cases. A proper set of *SKIPTO or *KEEPTO instructions would have to pro-
ceed the *DEFL. In particular , *SK IPTO *1 “DEF” OPTA
*SKIPTO *1 OPTA
*DEFL OPTA “DEF” OPTA
6. NAMING OPTIONS

Any string of eight or fewer characters that contains no SAIL delimiter can
be used as the name during OPTION definition . Both the OPTIONS request and the
DEFL and *OEFN directives will establi sh or reset OPTIONs with such names. How-
ever , there are some practical restrictions on the actual names a user should
employ. Except for the special case of a tabl e entry (which Vmust be more general),
OPTION names should both begin and end with alphabetic characters.

This restriction is based first upon the concatenated OPTION name-integer
form of logical unit within a logical operand . While processing such an element
as A1B23, SAIL recognizes it as meaning AIB EQ 23. Thus, if an OPTION were
defined as A1B23, SAIL would be unabl e to test It for TRUE or FALSE or to use it
in a comparative test In a logical expression. Therefore, any OPTIO N name to be
used in a logical operand should not end in a number. Also, the letter combina-
tions that form logical or comparative operators should not be used as OPTION V
names.

Another reason for restricting OPTION names arises from the actions performed
by the dynamic substitution processor. This applies mainly to card s identified

50

— _~__V__ — _ •~~ V~ V•~

— —V.— — —
~~

— — — — —~~~~~ V_h V — ~~ — _ V — ~~~~~~~~ V

_ _

-~~~~~~~~~~~~~~~~~~ ~~~~~~~~~

P~FWL.-TR-78-8O

for such processing, and the general rule that OPTION names begin with alphabetic
characters prevents most probl ems. What has to be avoided is inadvertent substi-
tution. Because a left parenthesis or slash will Initiate construction of a
string for possible substitution, and commas can delimi t these strings , a field
may match an OPTION naive and be replaced by its value even though no such action
was intended by the user. The fields occurring in FORTRAN FORMAT statements may
present such a case if substitution is in effect. Usually, no charac ter string
that both begins and ends with a letter will be a legal FORMAT specification ,
although such things as A3/ 1X might still appear set off by comas. Another
possibl e inadvertent substitution situation is on cards marked for substitution
that contain a simpl e integer variabl e as a subscript. Because this is exactly
the syntax that occurs on declaration statements where substitution is desired,
the user should avo id gi v ing an OPTION the name of a FORTRAN var iable.

The use of a tabl e in an OPTION list has been neglected in most of the dis-
cussion In this manual. SAIL uses these tabl es in two processes. One is dynamic
substitution where a field set off by the special delimiter begins with a dollar
sign. The other is In constructing a PROC name on *INCLUDE directives where the
name field is set off by elements consisting of dollar signs. Section IV ,
para. 2b and 3b., respectively, explain how SAIL processes these fields.

What is of concern in this discussion is how to set up a table or tabl es to
impl ement these features , that is , how to use the “AFTER” request within the
OPTIONS specification area . Especially for dynamic substitution , the user might
want a general character string. He must remember and consider the reasons for
the restrictions on OPTION names presented at the beginning of this section. An
OPTION name, whether or not used as a character string to be substituted for
another , can neither exceed eight characters nor contain any of the SAIL
delimi ters (blank , coma , or equal sign). It also should be chosen so that
Inadvertent substitution does not occur. One interesting point is that an OPTION
name that appears on a table and ends with a numeric character will never be
confused with any logical element , because of the scanning rules within logical
operands.

Concerning the mechanics of the “AFTER ” structure itself , several points IL

should be reemphasized. First, the tabl e-identifying OPTION that appears
ininediately after the “AFTER ” request, must have already been defined . Second ,
as OPTIONs are placed on the table, if they are already on the OPTION list, they
are moved from where they were to the current slot on the table. This applies

51

V

-

- - - V - — - ___________________________ ~~~~~~~~

AFWL-TR-78—8O

even to OPTIONs that have been placed at previous positions on the tabl e, they
are moved to the new position and removed from the old one. If an OPTION name
appears imediately following itsel f during table construction , the removal
takes place but it is not inserted back on either the tabl e or the entire list.
This terminates table construction and the normal processing initiated by the
OPTIONS request resumes, that Is OPTION whose names already appear in the list V

are redefined and new OPTIONs are added at the end of the entire list. There V
-

-Is no particular reason to terminate “AFTER” processing , although it can be done
V

by placing an unused string , such as END, twice In a row. The table length is
specified when the user sets the value of the table-identifying OPTION, so al l
the “AFTER” request does is insure that the OPTIONs are in the proper order.
In fact, another table or tabl es can be added by putting the tabl e-identifying
OPTION with its value after the “end” of the previous tabl e followed by its
table entries. Remember that the first OPTION on the tabl e whose value agrees
with the desired value specified in the field that initiates table searching,
is used in the substitution or PROC name construction. If no match is found ,
the original characters, minu s the identifying delimiters , are used. The use of
*DEFN to modify the values of table members during executive processing gives
further flexibility if it Is needed.

52

~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~—- - --- -

~~~~~~~

AFW L-TR-78-80

SECTION VI

MACHINE DEPENDENT INFORMATION

1. CDC CONSIDERATIONS

a. Invoking SAIL

An absolute load of SAIL Is stored in a loader library in a permanent
file. At AFWL, the permanent fi le name and ID are HULLIB and DYMXCER. The
entry points DYTSAIL I DYTLAMB, DYTHUL, and DYMAST are currently active as
initiators of SAIL. Thus, the control sequence
ATTACH(HULLIB, ID— DYMXCER)
LIBRARY(HULLIB)

DYTSAIL(...)
will execute SAIL. The parameters pn the DYTSAIL or DYTLAMB control card are
of the form paaaaa, where p identifies the parameter to be reset and aaaa is the
new value. Possibl e values of p, the default values , and the meanings of the
parameters are:

P flefault Meaning
I INPUT Name of input file containing SAIL V

control cards.
V 0 OUTPUT File to print diagnostics (and listings ,

If requested).
S SAIL File for output of NORMAL and PUNCH runs.
N NEW File for the new library .
0 entry point used Base for permanent file names used in

interna l attaches.
ID for entry point

DYTSAIL - DYTHULL
DYTLAMB - DYTHULL
DYTHUL - DYTHULL V

- DYMAST - DYMXCER
DESHUL - DESHULL

CV higher cycle Cycle number for permanent file a ~aches. —

- - ~~~~~~TiT~~~~~~~ . ~~-.
_ _ _

L.~~~rI:~~
VVV

V ~~~ V -
~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~



AFWL-TR-78-80

The D and ID parameters will be discussed more thoroughly in the next section
which covers libra ry file access.

A few considerations of the input file are In order. The end—of-file is
detected using the FORTRAN function EOF. Unless this file Is named INPUT, that
is unless it Is the card file read in for the job , EOF detects end-of-partition,
not end-of-section (7—8-9) cards. It Is the mark written by COPYBF or COPYP
that is recognized by the EOF function. This permits concatenation of several
files into one for use as an input file for SAIL by use of COPYBR or COPYS.
For example, suppose a local file named SRS contains the compilable cards for a
routine the user wants to make into a SAIL library . The control card sequence
COPYBR( INPUT,A)
COPY BR(SRS,A)
ATTACH(HULLIB, ID~DYTHULL)
LIBRARY (HULL 1B)
OYTSAIL( I=A )
CATALOG(NEW,...)
where the record copied from INPUT was one card long and consisted of
SAIL SYSTEM=name GENERATE
would set up the GENERATE run.

Bear in mind that SAIL always rewinds its designated input file and that
an empty record Is valid for SAIL control. Thus , if SAIL is to be executed
two or more times during the same job with different requests and/or changes ,
its control files must be something other than INPUT for all but one, because
the first record of SAIL control cards will be used over and over . The easiest
way to al leviate this situation is to copy each section of INPUT containing
SAIL control cards to it~ own separate file. Al so bear in mind that when SAIL V
terminates, the file Is left positioned just behind the marker recognized by
the EOF function.

b. Access to Library Files

On CDC machines, SAIL can go hunting for its old library file and can
allocate a device for its new library file.

The request TAPE applied to the OLD file tells SAIL to request a tape
from the operating system for OLD with VSN and density as described in
Section III, para. la. The request LOCAL will prevent SAIL from trying to
attach a permanent file even if no local file named OLD is known to the job.

54

i - i 
_ _ _ _  

H



-~~~ -— ~~ V~~~ V ~~~~~~~~

AFW L-TR-78-80

If the TAPE request does not appear and a local file named OLD is known for the
job by the CDC-SCOPE operating system, SAIL will first check if It conforms to
l ibrary format.

When neither the LOCAL nor the TAPE requests appear and OLD either does
not conform or Is unknown , SAIL tries to attach a permanent file for OLD. The
permanent file ID parameter is either the ID parameter from the control card
that invoked SAIL or the instal lation default (DYMXCER at AFWL). The permanent

file name is constructed from a base that is defined in one of three ways. If
the SYSTEM request appears for OLD, that name is used for the base. If there
Is no SYSTEM request, the parameter specified after the D= on the invoking
control card is used. And if neither of these is present, the base is the
default name of the invoking control card. The permanent file name Is con-
structed by concatenating instal lation dependent characters onto the base. At
AFWL, no characters are concatenated on, so the base is the permanent file name
for the old library file. The cycle number is the number given by the VERSION
request If that was specified for OLD. Otherwise, the highest cycle for that
permanent file name and ID are attached.

Once an OLD file has been establ ished , SAIL checks whether the SYSTEM
and VERSION parameters stored on the file agree with the requests. If either
request has not been made, that check is considered as passed. If the checks
fail or If the file is not in library form, a flag is set to abort SAIL unless
GENERATE mode is requested. Note that some file will be attached as an OLD
candidate if LOCAL is unspecified even on GENERATE runs, so if the checks are
passed (or not made), the OPTION list from that library will be set up for
modification. To avoid adding unneeded OPTIONs from some other library on a
GENERATE run, either the SYSTEM request should come first so the check will be
failed , or a LOCAL request made.

On UPDATE , GENERATE , and COPY runs , SAIL wi l l write NEW on a permanent
file device unless either TAPE or LOCAL is requested for NEW . If TAPE is
requested, the file will be written on the tape spec i fied by the request as
explained In Section II , para . la.

- Because the SCOPE Record Manager routi nes for the various fil es have
been specified (on CDC 6600 systems) when the absolute load was created, a FILE

• card will not be recognized for SAIL’s files , in particular , SAIL or formatted
versions of NEW or OLD. If these fi les are needed in a different format so as

55

--  --~~~~- 
— 

V. ~~~~~~~~~ ~~~~~



V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

r AFWL-TR-78-80

to comply wi th the requirements of transporting to a machine of a different
manufacturer , as might occur when CONVERT is requested, the SCOPE control card
FILE would be useful . Currently, the files must be copied by reading each card
and rewriting It on a different file in a FORTRAN program so as to impl ement
the capabilities of Record Manager. There Is no such problem on the CDC 7600,
for Record Manager is applied by all routines that interact with files, so FILE
cards are always recognized.

2. IBM CONSIDERATIONS

a. Invoking SAIL

The SAIL program is invoked on the IBM 360 or 370 by executing the pro-
cedure SAIL. The substitutabl e parameters for this procedure are:

LIBPRE - the prefix for the SAIL library. The current default Is
‘SAIL’ .

LIB specifies the library data set name which contains the SAIL program
in a partition named SAIL. The default value of this parameter is HULLIB.

LIBU specifies the unit where the library data set is located . This
parameter has a null default and must be specified if the library data set has
not been cataloged.

LIBVOL specifies the VOLUME parameter for the library data set. It has
a null default value and must be specified if the library data set has not been
cataloged.

ALT! — The definition of alternate inpu t file default is ‘DUMMY ,’ .

CHNBLK specifies the block size of the change file data set. It has a
default value of 3521.

CHLRL — The logical record length of the change file 3517.

DISPn specifies the disposition field for data set assigned to the nth
block of the SAIL file. The defaults are ‘ DISP=(NEW ,PASS)’ for al l values of
n. -

EXP specifi es the retention period for the NEW file data set . The
default Is ‘RETPD=720’ and it should be changed to null if NEW is to be on an
unla beled tape.

56

V V 
~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~VV _ ~~~~~~~~~~~ — ~~~~~~~~~~~~~ — V —


— V V
~~~~~~~~~~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -

AFWL-TR-78-8O

FILN specifies the file number on a tape where the NEW file data set Is
to be written on a tape.

FILO specifies the file position of the OLD file data set on a tape. It
is given a null default and need only be specIfied if the old file data set is
on a tape.

GENDUM is a parameter which allows the user to dummy the OLD file DD
card for generation runs. It has a null default and should be set to ‘DUMMY,’
for a generation run. V

GENN is the parameter which specifies further qual i fication of the NEW
file data set name. It has a default of ‘ (+1 )’ so that it will be the next
generation of a generation data group. If the new file Is the first of the
generation data group (i.e., this is the first time this data set name has been
pl aced on the system), then this parameter should be set to ‘.Gnn .VOOl ’ (where nn
is the VERSION number of the library). If the data set is not a member of a
generation data group this parameter must be set to an appropriate value.

GENO specifies the further qualification of the OLD file data set name.
The default value is ‘(0)’ which assumes that the data set Is the most current

• member of a generation data group. This parameter must be set if the -OLD file
Is not a member of a generation data group.

• LABN specifies the type of label for the NEW file data set. It has a
null default and must be set if the data set is to be written on a tape with
other than a standard IBM label .

LABO specifies the label type for the OLD file data set. It must be
specified if the OLD file is on a tape with other than an IBM standard label .
The default is null.

NEWPRE - the data set prefix for the new data file. Default is ‘SAIL’ .

NEWDCB Is the DCB parameter for the NEW file. It has a default of

‘(RECFM~VBS,BLKSIZE*7294)’. The block size may be changed to allow better
utilization of disk space. If the run is to produce a coded NEW file, this

V parameter should be set to ‘(RECFM ~FB 1LRECL~l2O ,BLKSIZE~l 2OO)’,

NEWDS is the disposition of the NEW file data set. Its default is
(NEW ,CATLG,DELETE) .

57

_________  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 
__ V~~~~~ _____________



-~~~~~ - - ~~~~~~~~ - -— ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - -  -~~- - - -~~-V - - 

~~~~~~~~~~~~~

AFWL-TR-78-8O

NEWDUM is a parameter which allows allocation of data sets for genera-
tion, update, and copy runs . It has a default of DU*IY and is used to dumy out
the NEW and TEMPF file DO cards. This parameter must be set to null to allow
the TEMPF and NEW files to be allocated to data sets on generation , update and
copy runs. V

NEWP allows the user to specify password control for the NEW file data
set . It has a default of NOPWREA D for read only access.

- NEWSPC Is the SPACE parameter for allocation of the NEW file data set .
It has a default value of ‘ (CYL ,(l0,20),RLSE) ’ and can be changed as needed.

NEWU specifies the unit on which the NEW file Is to be written. It has
a default of TAPE, but may be set to other units .

NEWVOL is the VOLUME parameter for the NEW file data set. Since this
one has a null default, it must be specified on any generation, update, or copy
run.

OLDPRF - the prefix for the old data set name. Default Is ‘SAIL.’

OLD specifies the last simpl e name of the OLD file data set. The
default value of this parameter is SAIL to indicate the OLD file contains the
SAIL library. This parameter must be specified when running SAIL for any other
SAIL library.

OLDDCB Is the DCB parameter for the OLD file data set. It has a default
value of ‘(RECFM~VBS,BLKSIZE=7294)1. This parameter may be changed to allow for
a better bloc k size. When converting from a coded OLD file , it should be set
to ~(RECFMRFB,LRECL3l2O,BLKSIZE=l20O) ’ .

OLDOS specifies the disposition of the OLD file data set . The default
is SHR.

OLDU specifies the unit on which t~e OLD file data set resides. The
default for this parameter is null and It must be given if the old file data
set is not cataloged.

OLDVOL specifies the VOLUME parameter for the OLD file data set. It
has a null default and must be given if the OLD file has not been cataloged .

V

PROG — the member name for SAIL in the library . Default is SAIL. —

PRCL - the number of bytes in random file used for PROCs. Defaulted to
length of record for SAIL generation .

H’ 58

V
- _ _


~~~~VV_V VV V~~~~~~~~~~~~~~~~~~~~~ _ V ~~~~~~~ _ V

AFWL- TR- 78-80

PRCN - the number of records in the PROC file. Defaulted from SAIL
generatIon.

P1 specifies the routing of the normal output from the SAIL program.
The default is SYSOUT”A ’ .

P2 specifies the routing for the nonfatal error messages from the SAIL
program. The default is ‘SYSOUT~A ’ .

REG is the region size for the SAIL execution step. Its default is 160K. 
V

SAILBLK specifies the block size for the card Image data sets which are
produced on the SAIL file during a NORMAL run. The default is 800.

SAILR - the logical record length of the SAIL file used during NORMAL
runs. Default Is 80.

SAILn specifies the allocation for the data set assigned to the nth
block of the SAIL file during a NORMAL run (n runs from 1 to 15). ‘DSNsSAILCD ,
UNITaSYSDA,SPACE*(TRK,(lO 20),RLSE)’ is the default for SAIL1. The default
value Is DUMMY for all other values of n. 

-

SCRTC specifies the generic unit name for the scratch disk area. The
default is SYSDA .

STIME Is the TIME parameter for the SAIL execution step. Its default
is ‘(2,0)’.

TEMBLK specifies the block size used by the TEMPF file data set on a
generation or update run. The default is 7924.

TEMPLRL - the logical record length of the TEMP file set used in genera-
tion or update run. Default is 7290.

b. Examples of SAIL Runs

To copy the SAIL library from an unlabel ed tape to a generation data
group member, the following would be used:

V 
//C PY EXEC SAIL , GENN ‘.G5OVOO ,NEWVOL* SER*SAILVOL’ ,

/1 OLDU TAPE9,OLDVOL ‘SER’SAILTAP ’,

/1 OLDDS* (NEW IKEEP)

II LABOaNL ,FILOa l ,GENOa ‘.TAPE ‘,NEWDUM~
//SAIL.INPUT DO *

59

V 
~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~— -—-— VVV~ VVV~~VV ~~~~~~ V -


V. - V.
-- ---~~~--~~~~~ .— -~~~ — — V..,

SAIL CONVERT COPY
V

1*

To perform a NORMAL run from SYSTEM LAMB the card would be:

//NRML EXEC SAIL ,OLD=LAMB

I/SAIL. INPUT DO *

SAIL
(SAIL change cards)

1*

As can be seen from the examples , the procedure has one step name SAIL
and the input DD name Is INPUT. V

c. The SAIL Procedure

//******** k * * * * * SA I L * * * * * * * * * * * * * * *

/1*
//* NAME

//* SAIL

/1*

/f* FORMAT

/1* II EXEC SAIl,,... (OPTIONAL PARAMETERS AS REQUIRED)

/1* //SAIL.INPIJT DO *

3. HONEYWELL CONSIDERATIONS V

Invoking SAIL

A load module of SAIL is stored on permanent file. This load module is
invoked by the Honeywell control card PROGRAM. An exampl e of the control cards
for a NORMAL run are :

$ PROGRAM RLHA,DIJMP

$ LIMITS ,33K
-

$ PRMFL H*,R,R,USER/SAILHSTR V

$ FILE 01,NULL V

$ TAPE9 02,A2D,,tape number of SAIL library

60

L _ _ _ _ _

Iii. — — ——---—. —
~

— .
~— -V.-— V_V~ à~~~ _ — ~~~~~~~~~~~~~~~~~ _ V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ a

-~~~~~~~~ ~~~ ~~~ -~~~

AFWL-TR-78-8 0

$ FILE 03,A3R,20L

$ FILE 04,A4R,lOL

$ FILE l O,BOR ,2OR

$ FILE ll ,B1R ,20L

$ FILE 12 ,B2R,40R

$ FILE 15,NOSLEW

$ FILE l5,B5S,50R
$ DATA I*I,COPY,ENDFC

SAIL control cards -

$ ENDCOPY 1*
Cards for utilizing file 15

$ ENDJOB

***EOF

The control cards for files 3, 4, 10, 11 , and 12 should remain unchanged
for any runs in any execution mode except for possibl e variation in the file-size
parameter. The control card for file 1* should al so remain unchanged. No con-
trol card is needed for ~ * which is coninonly referred to elsewhere in this manual
as OUTPUT. Refer to Section II , para. 2 for the correspondence between other
file names appearing in this manual and the Honeywell file number.

The control cards for fil es 1, 2, and 15-23 (NEW, OLD, and SAIL) depend
on the SAIL execution mode. Dur ing NORMAL runs , the SAIL file begins on file
15 and is incremented by one each time a *E directive (if any) is written .
Most NORMAL runs require only file 15. If additional files are required , control
cards for files 16 onward should be defined in a manner similar to file 15 in
the above exampl e except that each file must have its unique logical unit desig-
nator.

The following exampl e shows how to set up the control cards for a run in
UPDATE mode. In this exampl e the entire library is to be resequenced and the
default OPTION li st al tered.
$ PROGRAM RLHS,DUMP

S LIMITS ,33K
V

61

_______ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ p

_____ -• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V~~~V . V . V•V~ _ VVV ~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~

AFWL-TR-78-80

$ PRMFL H*,R,R,USER/SAILHSTR

$ TAPE9 O1,A1O,,tape no. of new library

$ TAPE9 02,A20,,tape no. of old library

$ FILE 03,A3R,20L

$ FILE 04,A4R ,10L
$ FILE 10,BOR,20R
$ FILE 1I ,B1R,20L

$ FILE 12,B2R,40R
$ FILE 15,B5R,201

$ DATA I*,,COPY ,ENDFC
-

SAIL UPDATE SEQ

OPTIONS ... ENDOPTIONS

SAIL change cards

$ ENDCOPY 1*

$ ENDJOB
***EOF

Finally, here Is an example of creating a new library from cards. The
SYSTEM Identifier for the library is to be NEWLIB. SECOND and PLOTTER are the
PROGRAMs to be written to file 15 by default on NORMAL runs. A default OPTION
list is also being stored on the library .

$ PROGRAM RLHS,DUMP

$ LIMITS ,33K

$ PRMFL H*IR,R ,USER/

$ TAPE9 0l ,A1D,,tape no. of new library

$ FILE 02 ,NULL

S FILE 03,A3R,20L
V

$ FILE 04,A4R,1OL

$ FILE lO ,BOR,20R -

— - -~~~~~~~~~~~~~~~~ - - -. -- —~~~~~~~~~~~~~~~~~- - — ~~
~~~~~~~~~~~~~~ - V V



~ V V V. VV V V~ V.V~ - V V V  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

___

AFW L-TR-78 -80

$ FILE ll,B1R ,20L

$ FILE l2 ,B2R,40R
$ FILE 15,NULL

$ DATA I*,,COPY,ENDFC

SAIL SYSTEM NEWLIB

PROGRAM SECOND PLOTTER ENDPROGRAM

OPTIONS ... ENDOPTIONS GENERATE

Lines to be pl aced in library go here.

$ ENDCOPY 1*

$ EP4DJOB

***EOF

63

_ _ _ _  _ _ _ _ _  

1 V .~LI - _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~

V V

~~~~~~~~~~~~~~~~~~

V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

AFWL-TR-78-8O

SECTION V II

HISTORY AND PHILOSOPY OF SAIL

1. HISTORY OF SAIL

Sail grew from the merger of two closely related programs used to manage the
HULL system of hydrodynamic programs at the Air Force Weapons Laboratory. The
older of these was the progenitor of the current SAIL executive. Its objective
was to produce card-image source code tailored to each problem to be solved.
In recognition of the fact that a particular section of code or a particular
routine could be used for several related problems, a library file was created
that held all coding for all treatments of each physical effect related to the
system of routines. The outstanding characteristic of both the original execu-
tive and the current SAIL is that this file was structured so that the accessing
program could produce efficient compliabl e code.

The construction of a library file that could handle a range of probl ems
involving similar coding that differed in a few details could have been achieved
in several ways. Let us cons ider the approac h found in SAIL and compare it to
two alternatives that might have been used. On any particular execution , the
original executive processor set dimensions in FORTRAN declaration statements
and defined blocks of cards called PROCs, each of which could be inserted into
the resultant card-image file at any places where the *INCLUDE directive with
the matching name occurred. Dimension values and control over whether or not
to include a PROC were provided through pairs of parameters, consisting of a
character string and an integer value , called OPTIONs, SAIL reflects upgrades
to this processor so it now effectively selects only the cards appropriate to
the task at hand while producing a card-image file. Once all the needed por-
tions of code have been placed in a library , new programs can be constructed
merely by choosing the proper combinations of OPTION values.

Among the alternative approaches to library construction is a general
program that consists of all coding needed for any task with flags that select
the appropriate portions during execution. To deal with varying array-length
requirements, the used could: (1) set all dimensions to their largest possibl e V

values , (2) change all the array declaration statements and recompile, or

64

Li

~ 

_ _ _ _ _ _  _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _ _



V.
~~~~~~~ VVV ~~~~~~~~~~~~ V V . V~~~~~~~~~~~

AFW I-TR-78-80

(3) employ a complicated bookkeeping scheme to store this data in one or two
large arrays. A second alternative approach is to maintain a file containing

V
the version of the program oriented toward one of the tasks along with change
decks for each other task so an editing utility can build the appropriate ver-
sion.

SAIL has advantages over both these alternatives and , in a sense , combines
them In its library file structure which , like the general program, conta ins a ll
coding needed for any task, while its selection directives essentially define
built-in change decks. General programs suffer from overheads in both memory
space and computation time . Routines and sections of routines unneeded for a
particular task, and possibly unused array positions , require memory beyond that
needed by the tailored code produced by the other approaches. Extra time is
spent checking flags to determine which portions to skip and which to execute.
If a bookkeeping system is used to hold down array lengths, the coding becomes
less transparent to the users and it may take more time to calculate addresses.
The change deck approach , although it can produce code tailored to a problem,
often causes extra work. When coding errors are found or new features that
apply to several tasks are added, the user must not only modify several change

V

decks, he must first identify and locate those which are affected. Al so, the
change decks can become obsolete if the line numbers on the basic file are
resequenced . These problems are rel ieved in wel l -managed SAIL libraries , for
corrections can be made (after testing) directly to the library and the OPTIONs
which selected cards appropriate to a particular task will select the corrected
cards if they dealt with that task. If additions are made the selection mecha-
nisms can be set so that the OPTIONs either keep or skip the new cards, as V

appropriate to each old task as wll as any new ones the additions make possible.

Even with only the two features mentioned in the above comparison , the
original executive processor provided a powerful tool for program management.
However, its libraries were fairly static. As users were presented with
different problems to solve , compl etely new portions of code were needed which
had not yet been added to the library . Thus, in December 1973, the need- for an
updating program became evident . The program was required to update the file in
such a way that the identifiers of the existing card images in the fi led need not
be changed . It was desired that the order of the change sets could be random
rather than that in which the records they modified where found in the file. The
CDC system UPDATE did not satisfy the exact need , so the development of SAIL began.

65

V ~~ V V _~~~~~~ __ - ~~~~~~~~~~~~~~ ~~~~~~~~ —-V - V- - - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



AFWL-TR-78-8O

The first version of SAIL was simply i FORTRAN program which updated a file
of SA IL. records. Each SAIL record contained one card image and an Identifier
which specified its bl ock and card location . During the initial generation of a
file or during an update where resequencing was requested, the records were
assigned sequential bl ock numbers and card numbers of zero. During other
updates, they retained their previous identifiers and added records were given
the block numer of the previous existing record with a unique sequential card V

num ber.

To allow SAIL to identify instructions given to it, the convention was
adopted that the directive verb would ininediately follow an asterisk (*) In
col umn one. Cards with an asterisk in column one but no understandable SAIL
directive were processed as ordinary card images to be added to the file. The

V file was divided into groups of records called PROGRAMs which were identified by
a special directive in the file. These PROGRAMs could be selected for individual

V processing. .•

During execution of SAIL , the change sets were read and any cards to be V

inserted were written onto a random file with information about the changes and
a pointer to the cards kept in central memory. The allowed modifications were
insertion of new cards and deletion with or without insertion. VA set of records
in the existing file could be copies to any pl ace in the change set that a card
could be inserted. To accomplish this the original file was read and the sets
requested were copied to the random file while pointers were saved to allow these
records to be included in the correct change set. The insertion and deletion V

pointers were then sorted into the order that the records they modified were - -

found in the original file. Then , all the changes were written in that order
onto a sequential file in a special packed format. It was then a simpl e matter
to modify the original file by merging it with the sequential change file.

While this first version of SAIL was being used, the capabilities of the
executive processor were being expanded. The ability to create PROCs was
enhanced by making the creation and inclusion depend on the result of a logical V

string, rather than on the value of a single variable. In addition , while pro—

V 
ducing the card-image file , bl ocks of card images could now be skipped or kept
depending on the result of the same type of logical string. The dynamic dimen-
sioning routine was expanded to allow numbers to be calculated from OPTION 

V

66 

L - - _ _  - -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -  

V



AFWL-TR-78 -80

values , encoded, and inserted In card Images other than FORTRAN DIMENSION 
V

statements. The routine was then described as a dynamic value substitution
routine.

The next requi rement was to include the executi ve processor In the SAI L
V program proper. Although when this was first done there were exactly four

OPTIONs fixed in the program, the executive portion was rewritten to allow the
user to add more OPTIONs with a default set provided in the header of the
original file being processed.

Next, the ability to resequence selective PROGRAMs during an update was
added . (This required the additional conventIon that each PROGRAM begin with
a block number which was a multip l e of 10000.) The card Images found in the
file before the first PROGRAM were designated as the PROLOGUE which was set to
be processed regardl ess of the PROGRAMs selected , thereby allowing PROCs to be
created and used by several PROGRAMS. Finally, the program was expanded to
perform automatic internal attaches of any CDC permanent files It needed.

In November of 1 974, it became apparent that SAIL should run on computers
other than those with CDC SCOPE systems, so work began on a new phase of SAIL
development. The dependence on the word length of the CDC computers was removed
from the program as we l l as the use of such CDC system features as ENCODE and
DECODE.

At the same time, new capabilities were added bringing SAIL to its present
form. OPTION values could be set during processing using simple logical or
arithmetic expressions involving OPTIONs and constants. A new SAIL directive
controlled modification of just a portion of a card Image (this is called the
column change feature). Finally, the ability to scan for or replace character
strings was added to the program.

2. SAIL SUPPORT AND MAINTENANCE CONCEPT

One of the main strengths of SAiL has been Its slow growth under the support
and control of users. This should continue in the future. If anything , further
development will probably be slower , for most of the really useful features have
already been incorporated into the program. In any case, the following criteria
should be strictly adhered to:

V a. Any changes made to SAIL will be such that all existing libraries can be
processed with the current results except for cases where obvious errors exist H

V In SAIL.
67

_______________________ V 
V V V ~~~~~~~~ ~ V V V ~~ ~~~~~~~~~~~~~~ ~~~~~ ~~ &-



AFWL_TR_78_80

b. No ex isting feature will be removed from the program without unanimous
consent from the SAIL user coninunity.

c. Any new feature will be added only with the approval of a majority of
the conninity and only if a significant number of users need the feature.

d. The offic ial versions (as Identified by the VERSION number) of each
SAIL library will be identical on all machines .

e. New VERSIONs of SAIL will be developed as new computers and operating
systems are added to the user coninunity , or as better coding Is written to
support the current features.

68

V - ~~~~~~~~~~~~~~~~~~~~~~~~~~ — V _ V~~~~~~~~ VVV ~~~~~~~~~~~~~ V • V  V ______ -



AFWL-TR-78-8O

APPENDIX A

SAIL GENERATION

1 . GENERATION OPTIONS
- Sail is maintained on a SAIL library and is generated wi th options which
control its funct ion. These options are :

INST - This defines the installation at which SAIL is being generated. The
default Is in the sys SAIL library file header. The values are

INST

1 Air Force Weapons Laboratory
Ki rtland AFB , New Mexico

2 A ir Force Armaments Laboratory
Eg1In AFB, Florida

3 McDonnell -Dougl as
Los Angeles , California

4 ABEMDA Researc h Center
(Brown Engineer ing )

V 5 ABEMDA Research Center
(SA l )

6 Atomic Weapon Research Establishment V

United Kingdom

SYS — This option defines the computer system for which SAIL is to be generated.
The default is in the SAIL library file header. The values are:

SYS Computer
66 CDC 6600

76 CDC 7600

176 CDC Cyber 176

360 IBM 360

- 
. ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~
_
~~ V LI

V~~~ ~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

AFWL-TR-78-8O

V 
Computer

370 IBM 370

6080 Honeywel l 6080

VER — This option defines the version of the operating system being used . The
default is in the SAIL library file header and the values are:

VER Operatir.g System

1 IBM OS

2 IBM OS/VS2

3 CDC SCOPE 3.3
4 CDC SCOPE 3.4

20 COC SCOPE 2.0

LBUFF - This option defines the l ength of the random file buffer in character
wards. The defaults are:

CUC - 510

IBM - 430 V

V 

Honeywell - 160

NUMREC - This option defines the number of records in the random file on IBM
system. The default is 3000.

LENC - This option defines the size of the change file buffer in character words.
The defaults are:

CDC - 512

IBM - 450

Honeywel l - 160

CARDBUF - This option defines the number of SAIL lines in a SAIL library block.
The defaults are:

C D C - 1 13

IBM - 82

Honeywel l - 20



AFWL-TR- 78-80

COMBUF - This option defines the size of the change coninand buffer. On IBM
Honeywell systems the maximum number of changes (i.e. , coninands) Is COMBUF/2.

HX - This option defines the H extended FORTRAN compiler on IBM systems if
set to non-zero. Default = 0.

LOPT - This option defines the maximum size of the option table.

Default = 150.

FILMPR - This option .defines the film output ability for listing if non-
zero . Defaults are :

INST FILMPR

1 1

Others 0 
V

2. IBM GENERATION PROCEDURE

The control procedure for generating a new SAIL from the SAIL library file
is shown in the listing in paragraph 1. The procedure parameters are:

LIB - The partition data set name for current library . The full name is
LIBPRE/LIB. Default = HULLIB.

LIBPRE - The prefix for current library data set. Default = ~SAIL. ’
LIBU - The unit for current library. Default is null.

LIBVOL - The volume parameter for the current library . Default is null.

NLIB - Primary name for new library data set. Full name is NLIBPRE/NLIB.
Default HULLIBN .

NLIBU - UNIT field for new library data set. Default = SYSDA.

NLIBVOL - VOLUME field for new library data set. Default is null.

NLIBDS - Disposition of the new library data set for the Link Edit step for
generation of SAIL. Default = ‘ (NEW ,CATLG ) ’.

LDSPACE - Space for the new library data set when disposition is NEW .
Default s (CYL,(2o,5,5))I.

APROG - The name of the assembler. Default = IFOXOO .

AREG - The REGION size for the assembly step. Default = 187K.

APARM - Assembly step parameters. Default = ‘LOA D,NODECK ’ .

V 

71

L-~~~~

-- -

~~~~~~~~~~ 

-

-— V
VV ~~~~~~ ~ V_ ~~~ —

~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ V.


AFWL-TR-78-80

ATIME — Assembly step time limit. Default

AMACL - The data set name for system assembler macro lib rary.
Defaul t ‘SYSl.MACL IB ’.

AP1 - The disposition of the assembler output. Default = ‘SYSOUT A ’.

CHNBLK - The BLKSIZE for the SAIL change file. Default 3521.

CHNLRL — The LRELL for the SAIL change file. Default 3517.

FILO - The file number for the old SAIL file if on tape. Default is null.

FPARM - The function step parameters in addition to ‘NAME=SAIL’.
Default ‘WP’.

V FPROG - The name of the FORTRAN compiler. Default = IFEAAB .
V

FREG - The REGION size for the compiler step. Default = 512K.

FP1 — The disposition of the compiler output. Default = ‘SYSOUT=A ’.

FSPACE — The space for the object output from the compiler . Default =
(CYL, (10,5) ,RLSE) ’.

FTIME - The time limit for the compiler step. Default ‘(1,0)’.

GENO - The version suffix for the old SAIL f il e. Total data set name Is
OLDPRE/OLD/GENO. Default ‘(0) ’ .

LABO - This defines the label tape for a tape old SAIL file. Default is null.

LPARM - This defines the LINK-EDITOR step parameters in addition to ‘OVLY’.
Default

LREG - This defines the REGION size for the linkage editor step. Default =
250K.

V LP1 - The disposition of linkage editor printed output. Default ‘ SYSOUT=A ’ .

LTIME - This defines the time l imit for the linkage editor step. Default =

‘(0,45)’.
V SGENSP - This defines the space for the source output from SAIL for the compiler .

Default ‘ (CYL ,(5.5) ,RLSE) ’ .

OLD - This is the primary data set name of the old SAIL file. Default = SAIL.
-

OLDOCB - This Is the DCB field for the old SAIL file. Default is null.

OLDDS - This is the disposition for the old SAIL file. Default = SHR.

V 72

L~ ~~ V
~~~~~~~ V V~~ V V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -_ V ~~~~~~~~~~~~ V



- -- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V . ~~~~~

_

AFWL-TR-78-80

OLDPRF - This is the data set ndme prefix for the old SAIL file.
Default ‘SAILs .

OLDU - The UNIT fiel d for the old SAIL file. Default is null.

OLDVOL - The VOLUME field for the old SAIL fi le. Defaul t i s nul l.

V PRCN - The number of records in the SAIL random file. Default set for
current SAIL.

PRCL - Number of bytes in SAIL random file. Default set for current SAIL.

PSi - Disposition for the primary printed Output from SAIL.
Defaul t = ‘SYSOUT=A ’.

PS2 - The disposition for the error output from SAIL. Default ‘SYSOUT=A’ .
V

SATLBLK - The bloc k s ize of the SAIL source data sets. Defaul t = 800.

SAILR - The record length of the SAIL source data sets. Default = 80.

SCRTC - The UNIT class for the scratch di s k. Defaul t = SY SDA.
SPROG - The member name for the SAIL program in the current library .

Defaul t = SAIL.

SREG - The REGION size for the SAIL execution step. Default = 175K.

STIME - The time l imit for SAIL execution step. Default = ‘(2,0)’.

WORKSP - The SPACE field for scratch data sets used by the assembl er and
compile.’. Defaul t = ‘ (CYC ,(5,5))’.

73/74

V V _ V _ _~~~~~~~~~~~ -— V V - ~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ V~~~~~~~~~~~ V V -~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



r V
V V V V  ~~~~~~~~~~ V~~~~~V~~V_V -

~~~~ _ _ _ _

AFWL-TR-78-80

APPENDIX B

- SAIL PROCEDURES

75

I

AFWL-TR- 78-80 V

It, It~ V•) I~~ It, II~ V~ W~ It) It) It) If) It) Ill It) If) It) It) If) If) If) IC)
It) If) It) It) If) It) If) If) It) If) If) Ii,

r—.. N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. N N. N. N. N. N. N. N. N N N. N. N N. N. N. N.
~~ z ~~A. A. A. A. A. A. A.. A.

~~~ 
.
~~ ~c ~~ ~~~ 

.
~~ ~~~ ~~~ 

.
~~ ~~~N. N. N. N N. N. N. N. N. N. N. N. N N. N. N. N. N. N. N. N. N. N N. N. N N. N. N. N. N. N. N N.

0
0
0
N.

a
a
0 V

0
‘0

a

z
a

a

U)
a

U) — V

a

U,
U, U)

a z a
.. a a
a ~~

- ..~ A.
. —

— ~~ A. ..-
alA I.U

a .~.s a ~~ A. 0
C.) A.. ..-

a z
CD C.) I- a
~~ U) UI A. )- C.)
— ~~~a I- A.

V a z a a  a
a — a s-.~~~ a a

a _i — I- ~ A. a
~~~ ..~ a A. I- C.)

a a .~aC.) t.~. ~~ . — •
~~ ~~

) U) ~~. I- U)
..i L~a — a ~ ~ = ~a a — A. — a a — a
~~~ ~- C.) ~ I ~~ CA ~~ .J -~ C.) ~ I ...J

— a a
Z a
a U) t,~ .-. a a ...a

0.1— 0. A.
— ~~ ~

_  
~~C.) a — a a — a ~~a ,~ . •

a .~~ .~~ _. a .~~ ~~~a — .-~ a — -~ a — —I~ á ~~ I~ I 0 0 I~~ ~~ L~I ~~ ~--  ~~ ~~I ~~
• ii ii it it is ii it .5 ii ~~ U) * U) U, * 5) II II I) .X CA * U) * II II II II ~~ U) * Cl) *

O — l’4 I~) ~ It) .0 N. U) 0.0— C’4 r~) It) 0 N. U) 0.0— C’I M) It) V.0 N. U) 0-0— C’4 1)
o o  * 0 0 0 0  0 0 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C.) (‘1 C’~ ~‘s CV I C’4 C~I C’~ t4 ri
* 0 00 0 0 0 0 00 0 0  0 0 00  0 0 0 0 0 0  0 0 0 0 00 0 0 0 00 0o o 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 00 0 0 00 0 0 0 0 0 0 0
N) N) N) N) p ) N) N) N) N) N) N) N) N) N) N) N) N) N) P0 N) £0 £0 N) N) £0 N) N) £0 tO £0 N) N) 5) N)

76

V — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- L~~ -— -  V V ___________


V AFWL-TR-78- 80

CD

U) U)
N. N. N. N. N. N. N N N. N. N. N N N- N. N N- N N. N. LV.. N N. N. N. N N. N. N N N. N. N N N. N. N. N. LV-. N. N LV.. N. N. N N. LV.z z ~ z z Z ~~ Z ~~ Z ~~ Z Z z ~~ Z Z Z Z Z 2 . 2 . 2 . 2 . 2 ._,

~
) -, -) _, _•) __i -) -, -, ~) ~~) V _) -~ ~

•) -) _J -) ~) ~
_
J ~

•) -, ••) V_)
~~

-)
~~

-)
~)

~
) _, -, -) -, _, -) -, -) V_) V_)

~~
V_)

~
•) -, V_) -

C_i IN C_I IN C_i C_i C_i IN IN (N C_i 11 (‘1 C_I C_i IN (N C_I ri IN (‘1 IN C_i C_I C_i C_i IN C_i C_I IN (N (N IN (N ‘1 IN IN IN IN IN C_i (N (N (N LVI IVVI (~~I— — — — — — _ — — — —
)< >C >C)()< X)C)<)<)C)C)< >C)< X)< ,C)<)< >C)C)C)C)< >C~~(* *

* *0
N. * *N) — ~~* a z~~~~~ - *0 LU 100.2.
a * o *

Ni
0 * a o -...j *
‘0 0 az a
N) * LU LI. 0 Ci) *

V

0
* LUU)0 *

U) U) A. -
— * 10 1 1&. *a a
2. * U) I— i-, *
~0 0 ..J 2.

* lU 0 -0 *2. —
~~ * II.) a~~~~i— *

c o m a
* 10 L Uac .) *— 0

C.) ‘0 * ‘0 0 —) C *a 0) 0. 0 LU LU LU
0 * A.P- 0 *
A. 2. ..J LU 00 a
I * .0 002.0 *

0 2. A.LiJ ’0L&I
a * C = CJ * S S s
Ni 0 Ni .J LU 2. 0 s s s S

— j I— CD CD 0 * ~~~-~~~~~~~—~~~~~~~~~~~~~~~~~~~~~~~~ Cl) U) U) Cl) Cl) Cl)
0. ‘0 - N iA .

0 0 Ni C U) LU I— * U) CA CII CII CII CII CII (II 0) - 0 0 0 0 0 0
0 LU 1- 0 0)
U) U) ‘0 • lU ‘0 ._I — * A. A. A. A.. 0. A.. A. A. A.
© a •U) • I.— A. A. — * a a a a a a a a a w LU LU LU LU
A. U) — a — LU Lii Lii LU Iii Lii LU LU LU 2. 2. S

Ni * —.1 (J) 0L1. * s 0
LU C.) 0 . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ II II II II II IS (N

C.) * ‘0 I— Cl) * ._l — . 11 U U U It I) H II 1 1 0 . 0 . A . A .A .A.. N.
O U) am— ,- -. ~~~~~~N . A .A . A .A . A . A . A .A . A . C f lU) CA U)U)C l) I~0 * * C.)OU)0 *U)’0)- CN~~~~~U) C A U , U , U) U , U) U)U) .iNi N i N ia

U) A. L U . LlJ ’0 CI) N i — N i 0 0 0 0 0 0 A .
If) *)C 5— A. 0. * ~~i S N) N) 0 0 0 0 CD a a a CD S S S s 5 5—

CD a L U C~~~~ .~~~~II II II I , ’ S ’ 5 ’ S 5 ’ V~ ~~~~~~~~~~~~~ SI tU
2. * C.)0 ZI-~~. * LU ~~_ i a~~~~ ._1 II II II II II II II II Ii 0 — I N N) 0 If) -0 V —~~~
-1 LU i.~ia a 0Il a II — C_ I N) 0U ,’0N .U) O~

V
a * >C 0 Li.. 2. * II A. a ~~

. Ni U) ..J 0. 0. 0. 0. A. A. A. 0. A. A. A. 0. A. A. 0. II 2. 0 =
2. 0 i.j~~— a a . U) U) U)i . 2 . 2 . U) Cf lCl) Cfl CA Cfl O) U) Q) Cfl U) CII Cfl (II Cl) 0. _J ..J~~~~O _J * a a 0 LU * s-i ~~ Ni s-s .~~ m — — —~ ~— — - — — s- Ni — Ni)< _~
Ni .j A. LU 0
U) a * 2. CVJ 0 .J ’0 *

l.a. I.aJ Ni 0 (00 C.)

LU I-. * • 0 m~~~ *0
U) LU U) ._I 2. A. Iii 0 0 0
C.) ~~ * Ni a m a o *0.
O I- CA ..J — 0 — CO ~~~~2. CD
0 * — ‘0 (II I .N i 0 *V A. h O ~~~~~~~~~.. C.) 2. L a . 0 0
• * m u~ o’-.-... P— O 0 A . *

-I ~~ ‘0 0 = —I
a * 2. Li. I~

‘0 Ni ‘0U)
U) •V_ — S.~ -V~ ~V.V_ ~V. ~~~ —~ V.. ~S. —_ ‘S. V.. ~-VV. ~V.V •V.~ -.- ~~~ -~~ •V~_ -.- ~-V ~~_ •~_ ‘-V -.- •VV_ VV_~ ~-V ~~~

•VVVV. ~-V •~V_ ~~~ ~V.V ‘-V ‘-V •-V~ •VVV~ -VVV. ~.m * •i II II II ~~
V LU

I-.
U) V
I..

V U)

a
0 — IN N) 0 It) ‘0 N. CD 0. 0 — (N N) 0 It) ‘0 N. CD 0. 0 — (‘1 N) 0 If) ‘0 N. CD 0. 0 — (N N) 0 -0 N. U, 0. 0 — C_i N) 0~ 5I~) .~(0 0 0 0 0 00 0 0 0 0 I N (N I N N) N) N) N) N) N) N) N) N) N) 0 0 0 0 0 0 0

2. 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 00 0 00 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 CD 0 0 00 00 CD 0 0 C
Ni 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 00 0 0 00 0 0 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 .0 C

0 0 0 0• 0• 0. 0 0~ 0•~~~• 0~ 0. 0• 0• 0 0 0 0 . 0 0 0 0 . 0 . 0 . 0 0 0 . 0 . 0 0 0 . 0 0 . 0 . 0
U,
Ni

~~
* * * * * * * *~~* * * * * * ** * * ** * * * * * ** * * * * * * ** * * * *~~~~~~~~~~* ** * *— H

—I
a

77

L
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ V V . V V ~~~~~ VV ~~~~~ VV. VV ~ ~~~

AFWL-TR-78-80

N . N .N .N . N . N .N .N .N .N .
2.2.2.2.2.2.2.2.2.2.a aa a a a aa a
-) -, V., 

~~ 
V.) V.)  ~) 

V.) 
~) 

V.) 

— —
)~ ~C ~C ~C 

)~ )~~~( )( )( )(

S

0.
0-~(-.4
N
I’
LU
P.4
Ni

U)

V.)
a

0
0.
C-V_I ~~N. s
I I —
.J La.I 

V

L U L U
o ~ a
.0

U)

3._I -
i l _ s  —
2.0 — S

~~ t. ~~ • a
— (.) 2 .._ I’0

s —
— s——+0  . JS  ~~~~~‘ S O .

Ni II S II II 0 
V.

.. . . — o a ii LU 2.
o it u U) C.) CO a o Ii

*~~~~~~~a ii a a 0.0.

* m a a a a a a a a
LU LU 00 LU LU LU LU Ui LU
(0( 0 l~~ i 2. 2. 2. *2 .  2.

N. U) 0.0— (‘4 N) 0 If)’O
0.0.0 IC) Ifl If) If) it) If) It)
0 0 0 0 0* 0 00 0
0 0 0 0 0 00 0 0 0
0.0.0.0.0.00.0.0.0.

• * 0 0 0 * 0 0 0 *

V 

~~~~~~~~

V V

~~~~~~~~~~~~~~~

VV

8 

_ _ _ _



rVV
~~~~~~~~~~~~~

V V V
VV V .

~~~~~~~

. V

~~~

V _

~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V~~~~~~~~~~~~~

AFW L-TR- 78-80

[
IN

LU
CD
.0

U) a a a a a ~~ U) U) a (0~~~ U) U) U) U) U) U) CD U) U) U) U) U) U) U) U) U, U) U) U) U) U, U) U) U) U) U) U) U) U) CD CD U, U)
N L’s. N. LV, LV.. N. N. LV. N N L’s. N. N N N. N. N. N. N. LV. N N. IS. N. £5 . N. N. N. N I’~ N N N N. LV.. N. N £5.. N N. LV.. £5.. N. N. N. N.
2. 2. 2 . 2 . 2 . 2 . 2. 2. 2 . 2 . 2. 2. 2 . 2 . 2 . 2 . 2 . 2 . 2. 2 .2 . 2 . 2 . 2. 2. 2 . 2 . 2. 2 . 2 . 2 . 2 . 2. 2. 2. 2. 2. 2. 2 . 2 . 2. 2. 2. 2. Z ~~ 2.
= a a = a a a a a a = a a a a
V.,

~~
V.) V.)

~) -, -,
V.) -) -) V.) -, V.) -

~~ ~)
-) -V) -, -, V.) V.) -

~
V.) V.) -) V.) -

~~
V.) -, ~~~~~~~~ ~~~ -, -) V.) V.) V.) V.) V.) V.) V.) V.) V.) -

~~
V.

~~
-

(‘4 IN IN C_i C_i (N C_i (‘1 (‘1 C_I (.4 C_i C__I C_i C_I (N (‘4 (.4 IN C_I C_i IN IN (‘.1 (.1 (.1 IN C_i (‘4 C_I C_i (‘4 C_i C_i C_I C_i ~ i (SI C_i C_i (N C_i C_I C_I (SI (N -

~~~~~~~~~~~~)C)~~X> (>( ,~~ X X~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ >C )C )C )< )< )‘C )C

S

0
IN

0 
V

0
I-

II
LU
C.)
~0A. CD
U) Li.)

— 0
C.) .0 Ni
© a II
0 Ci) 2.
A. — ) 0

S U) —
2. — II U) V
U) Lii 5- LU
— U) N’ 0

2. - -

2. 0 a LU V

.0 - - 2.
0 — CD —CD C_i C_~ 5-
© - CI)
0 0 4 Ni -
A. - .0 II U)

S I — — U) LU i
— • I LI. S S Ni 2. ...i Ni

00 — Ni ~~~~~~~~~~~~>- )— >- — - ~ - 0 0 . — .  Ni — II
- — 11 11 0 II~~~~~~5-~~~~~>. ).. >- >. )- 2 . 2 . 2 . 2 . 2 . 2 . O 0 0- 0 . I -  LU _I

— . 0  0 U)  ~~s—I - 0 2 . 2 . 2 .2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 0  . I N C_ i  — o a a  ~~U) — C D  — 00) 2._ I ..j a a  — U )  — U , 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 .a a a~~~~U ) I N r’.. N . c D  A.U)3. C~~~
it) S U) — ..1 — 2 . ’  — * — a a~~~ ii a a a a a a a a a a a  C D 0 C D C D~~~~ —~ it ii 0 U ) — U ) 0  .~~~~II I— II .-. II CS) II II 2. CD .0 Cl) CA If) ~~ 

5 CD 0 CD a CD CD CD CD Ii ii Ii II II II CA S ~~~ ._I 0 —i _I — = 2. 2
C . ) U ) _ I . 0 U )  II LU ~~ _I I U)~~~~~~~~N. _ I  II II II II II II II II II II 0~~~~~ (N N) 0 0 ) 11 II ..J 0 0. ._I Ni ._I U) ~~A. II 0 Ci) C.) CII 0 IS 0 ii II SI U) CS) — U) 0 (‘1 N) 0. If) ‘0 N. CD 0.. I.) LU .0 ._I Ni Ni II Ni II ~~~ Ii
U I 3 .  II 0 00 .  3. 2 . _ I  C D’  S II _ I- . J  _ I . J  I — I _ I_ I _I _ I _ I_ I _I  ) _ I _ I _ I  2.0.0. II II II A. ~~~~5—V 

2. a a a a a a a a a  L) CJ O i l  H C D N i N i N i N iNi~~~~~~~~~~~~~~~~~~ I.- Ni V.-. Ni . . . , 0 N i 2 . 2 . 2 .  Z- i_ I U )  LiJ~~~~~ 
V

0 L U L U L U_ I_ I_ I_ I- . . .I_I 00 0~~~~(N L U 0 0 O’ 0 0 0 0 0 0 0 0 0 O O 0 0 0 C_ I 5- L U L U C D  U)Z0 ~~~2..~* 2.2.2.000000 A .A .  A . A . A .0 C A U) U , C A U ) U )U ) U) U ) W U ) U) 0 ) U) U ) U)U) CII CA I- I- A. C D a 3 . C D  Ni~~~U)
0 C~) CD C
LU LII CD C
3.

Lii

U)
— C.
._I V..-

~_I A. —
0 LU
5- 2. 5- —

to a o U)*CI)
N. N.N.N. N. N. -.- N. ‘. 0  N .N .  2. N. N .”. N. -‘. N . N .  N. N .N .  N. ‘s... N.’-. N. N.’.. N .N .  N. N . N .’ s. ‘. -.- N. N. N. N . N .  N. 5-V VV~

2. N. N. N. N. N. N. N. ‘. N. 41 N. N. 41 N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. ‘s.. N. ‘.. N. N. N. N. N. N. N. N. N. N. N. N. N. N. ‘-
LU
— 

V
U)

U)

LI.

N. U) 0. CD — C_i N) 0. It) ‘0 N. CD 0- 0 — 151 N) 0. It) ‘.0 N. CD 0’ 0 — CS) £0 0 Ii) ‘0 N. CD 0. 0 — IN N) 0. it) ‘0 N. CD 0. CD — N.(0 It) U) Sf) ‘0 -0 ‘0 ‘0 ‘0 ‘0 ‘0 ‘0 ‘0 ‘0 N. PS. N- N. I’S. N. N. N. N. N. U, U) U) CD U, CD CD U) U) CD 0’. 0’. 0— 0. 0’ 0- 0’. 0.. 0. 0. 0 CD
~~ 0 0 0 0 0 00 00 0 . 00 0 0 0 00 . 00  0 0 0 0 . 0 . 0 .0 0 0 0 0 0 00 00 0 00 .0 00 0 0 . —— —-
— 0 0 0 00  0 0 0 0  0 . 0 0 0 0 0 0 0  0 0 00 . 0 .0 0 0 0 0 0 0  CD 0 0  0 00 0 0 0 0 0 00 0 0 0 0  ~
- 00.0.0.0.00 0. 0.0.0.0.0.0.000.0.00.000.00.0.0000000. 0 ‘~~‘ 00.0.0.0.0.0.000U)
Ni

4 1 * 4 1 * 4 1 * 4 1 *  * 41 * * * 4 1 4 1 4 1 4 1 4 1 4 1* * * *4 1 * * 4 P * * * . * *  * * 41 * 4 1*  * 4 1*  * * 0 ’

a

~~~

I.— _ _ _ _ _ _ _ _ _ _ _ _ _
— ~ V -~~ ~~~~ V —V. — — - -

___&i~
__

~~ -~~-~~~~~~~---~~

V.— V -~~~~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~
V~~~~_~~~

V
~~~

V —- 

~ P!~~-~ ~~~~~~

AFWL-TR-78-80 V

U) U) U) CD U) U) U) U) U) U)
N. £5.. N. IS. N. N. N. I’S. N. N
2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 .a a a a a a~~~~~aaV.)  V.~ V.)~~~~~ V.) V.) ~~~~~~~V.) V.)

C’4 I N C _ _ I  (N C_I £54 £54 IN IN C_I

~C~~~~)C )C )C)~~~ c ,.c

A.

LU
SN

I- 0
a 2.
U) LU

— (0
A. SN .
a a —
LU ~ I 2.
2. 0
SN SN— LU .
2. o a
U) A. a V
.0 CD
V.) V.) _I
SN - Ni

— C.) SN ~2. N 0—  V-J Ul _I UI C D  * ~~~J U)— a a a~~ U ) a N i C D
Su tsi a *a  • _ ISS _I
- . 2 . L U S N L U  2 . 0- 0
IS 541 ~~ 55 * a SN II SN
_I N SN LU SN CD IS .J 55
LU A V IS 1.) SI 2 . 5-  LU 0.
U)(f l_ I . 0 a  V i i N i U ) U l
0— © A . J  CD 2. V0 Ni
. . . J C D 3 . U ) a  .. a ..J CD

a
a

0
CD
LI.. VIN
0

* 11..
N. N. N. N. N. N. N. N. N. N.
N .N . N .  N. N. N. N. N. N. N.

L

0. 0, ‘0 I’S. CD 0 0 — I N  N)
0 0 0 0 0 0~~~~~ -~~~~ V~V.

0 0 00 0 00 0. 0 0I 0 .0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 0 .

4 1 * 4 1 * 4 1 *4 4 1 . 4 1

V.

- ‘ V 80

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~ 
—



AFWL-TR-78-80

N)

LI.)
CD
‘01.

CD CD U) CD U) CD CD U) CD U) U) U) CD CD U) U) CD CD CD U) CD CD U) U) CD CD CD CD CD CD U) U) CD U) U) U) CD U) U) ( 0 C D  U) U) U) CD U) U)
LV. N LV.. N. N N. N. LV.. N PS. N. N N. N. N. LV.. N. LV, N. N. N. £5. N. N. LV~ N. LV. N N. N. N N .. N. N. N. N. N. LV.. N. N. N.. N. N. LV.. N. N-
2.2.2.2.2.2. 2. 2 . 2 . 2 .Z 2 . 2 . 2 .Z 2 .Z Z Z Z2 . 2 . 2 .Z Z2 . 2 . 2 . 2 .Z 2 . 2 .Z 2 .Z  2 . 2 .  2 . 2 .  2. 2 . 2 . 2 . 2 . 2 . 2 . 2.
a a a a= a a a a a aa a aa a ~~~~~~~~~ a a= a a a a a= a a a aa a a a a a a a=
-
~~ 

V.) V.) V.) V.) V.) V.) V.) -~~ V.) V.) V.) V.) V.) V.) V.) V.) V.) V.) V.) V.) ~~~)  V.) V.) 
~~~ 

V.) V.) V.)
~~~~~ 

V.)  V.) V.) -, V.) V.) V.) V.) V.) V.) V.) 
~~ 

V.) V .)  V.) V.) V.) -

C_i IN (‘IC_i C_i C_i INC_ I  C_i (N IN C_I (N C_i IN IN (N C_I IN C_i C I  C_i C_i IN IN (‘I C_i C_i IN (SI (SI C_i C_i C_i (SI (SI (N (N C_I C_I C_I C_i (‘I I NC _ I  C_I (‘ V 

~C )<)~~X )< ).C >C )C >C )( >( )< )~~~~ )<>C >~~)< >C >C >(

V.)
U) V 

~ 1 _I _J ~ 1 _i ~ 1
2. CD U) U) a a a
2. .j _ ..j
C.) Ni P41 Ni l~~ 5- P41 Ni Ni
SN ‘0 ‘0 ‘0 ‘0 ‘0 ‘0 ‘0 .0

5 U) CS) CS) CI) CI) CI) In U)
1.11 SN 50 Ni SN Ni Ni Ni SN
N_I II 55 55 iS SI SI II II

LU LU LII LU LU Iii UI LU
U) Ni NI Ni Ni NI Ni Ni— Ni Ni Ni — Ni — Ni

CS) Cl) U) U) CS) Ci) U) CS)
C.) U)
0 - V.) V.) .J _) V.) V.) -~ V.a
0 _I U) a U) U) U) U) U) CD
0.. 0 — — — — — — — —-.1 0 0 0 0 0 0 0 0
2. 2. _I _) ..J ..i
CD = Ni — — —

C.) ‘0 ‘0 ‘0 ‘0 ‘0 ‘0 ‘0 ‘0Ni U) U) U) U) CS) Ci) CII U)
2. II SN Ni - SN Ni SN Ni Ni Ni
‘0 _I SI SI SI II II II II II
0 C.) — .J ..J ..J
O — LII — C.) C.) C.) C.) C.) C.) C.) C..)
CD — 0 0  LU LU LU Lii LII LI.) LU Lii
0 Ui_ I ( N  0 0 0 0 0 0 0 0 V
A. 5- — — V.) V.1 V.) _I ..)

L U U) 0  .. — — — — —a (N a U) U) U) a U) U) a
— — LU 3. 5-. La.. L~. LI. LI. Li. LI.. Ii.
CD C..) CD IS — a o II IS SI s~ IS II Ii

(0 1.) I— 2.~~~ 0. 2. 2. 2. 2. 2. 2. 2. 2.
CD 3.0 0 a La. 0 2. Li.. Li. Ii. Li. LI. l.a. l.a. I~C.) CD CD C.) Iii C.) C..) C.) C.) 1..) C.) C.) C..) (V.)

_I _I U) 2. LU -~~ 55 •. .. LU — — Lii — — LU . — LU — — LU — — LU — — UI • LU V
00 Ni - 0 IS La.) — —0  (51 (51 0 N) £ 0 0  0-0.0 11) 0) 0 ‘0’O 0 N. 15. 0 CD CD 0 0’SN SN IS SI .~~ LU 2. _I A. — _I A. — _I 0.’ .’ _I A. — -J A. — _I A. _I A. — .J A. -
II 55 I— A. II C..) .0 Ni CS) SI Ni U) II N’ U) SI Ni U) SI Ni U) SI — U) IS Ni CO SI — CS) II

2. ..J U) U) U) VO (N 2. — o— a  o~~~~a . 0— C D  ‘ 0 N i C D  o — a  o — a  o — a  € — .~~ ‘.r
CD CD C.) 2.~~~ C.) A. A. CD 0. U) CD C.) CS) CD C.) U) CD C.) Cl) CD 1.) Cl) CD C..) Cl) CD C.) U) a C.) U) CD (.) tr
Ni 31(0 ( 0 C D U )  SN CD SN N i S N O  N i S N O  S NS N CD SNSN O S0 N iC D  S N S N C D  5 0 5 0 0 S S S N C D
LA
0 CD a a a a a CD a a a a a
U_I CD CD CD CD CD CD CD CD a .~~ a so
3. V— — — — — C__I N) 0 IL) -0 N. CD

0 0 0. 0 .0 0 0 0 0 0 0 0 C
0 0 .0 0 0 0 0 0 0 0 0 0
hi. Li. LI.. U. Ii. La. LI. LI. Li.. Li. U. U.
N) 41 If) 0 C..) CD CD CD CD CD U) U)

— 0 0 0. 0 0 0 CD 0. 0 0 0 0 C
‘0 5- 5-. 5- 5— ,- s.~ s~. ~-U) 41 U. 41 Ii. * Ii. 41 LI. 41 La. 41 La. 41 Li. * Li.. 41 LI. * LI. 41 La. 41 U. —

N. N. N. N. N. N. N. N. s N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. S. N. N. N. N. N. N. N. N. N. N.
2. N. ‘.. N. N. N. N. N. N. N. N. -. N. N. N. S N. N. N. N. N. N. S.. N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. .. N.

LI)

L~a
41 If) ‘0 N. U) 0- 0 — IN N) 0 It) ‘0 N. CD 0’. 0 — (‘I N) 0. Is, -~0 I’S. CD 0.. 0. — (51 N) 0. If) -0 PS. CD 0. CD — C_-I PA 0. Ii) ‘0 I’S. U) 0.

ID C__I 154 IN (SI 154 IN C_I (N (N (N N) N) N) N) N) PA N) N) N) N) 0. 0 0 41 0 0. 0 0. 0. 0 U) U) Ii) it) I)) If) If) If) If) Is) -(.
2.
— 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 . 00 0 . 00 00 . 00 0 00 0 0 0 0  CD 0 00 00 0 0 0 0  C

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 41 0. 0. 0. 0 0 0. 0. 0. 0. 0. 0. 0 0. 0 0. 0. 0. 0. 0. 0. 0’ 0. 0. 0. 0 0 0. 41’ 0. 0
Cl)
5,

* 4 1 4 1* 4 *  * * *  * 4 5 * 4 1

-a
V.)
a
‘a.

31 
~~~ r&~z IS 8~ST QUALITY PRkC?I~*~

Ia1

,~~O$ C~~~ ~ ~J.’(~ISH-~ T~ DDC
V

~
V - ~~•V V V V _ V _ _ _ _ _ _ _

- —~~~ ~~~~~~~~ V~~ -~~
~•V

a. V- V~~~~V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ VV~

-~~
—-

~~~~~ 
V _  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

AFWL V.78 V.80

U) U) C D C D C D CO CD CD
N. N. N. N. iS. N. IS. £5. IS.
* *2.2. * ~~~~~ 2.
V.) V.) V.) V.)

~~
V.) -~~ V.) V.) V•)

x
V.) -4 -a

CD CD
.4

N’ Ni Ni

‘0 ‘0 ‘0
In CS)

SN Ni SN
SI IS II
hi) LU LI)
Ni Ni Ni
Ni ~~ 5 Ni

U) U) U)

V.1 .4 .4
CD
0 0

V.) V.1 -a
— N’ N’
‘0 ‘0 ‘0
U) CS) UI
SN Ni SN
I, II SI
..) ..a .4
I.) C.) C.)
LU LII hi)
0 0
..a ..~ .4

CD CD CD
U. U. U.
SI IS II
2. 2. 2.
‘a. Li. U.
I., — • (~) • — I..)

• L U 0 0 W ~~~~~~~)aI
0-0 — 0 .-~~~.00.. .40.- .4 0. -
11) Ii . .4 Cl) It 041 Cl) ii

‘0 N i C D
CD C.) In CD I.) U) CD C.)
N iC D . SN iC D 5 0 5 0 0

U)
CD CD

0 -

‘a. ha.
CD CD
o o
5- 5-

N S a . N il.
S.. S. S. S.. S.. S.. S. S.. S. S..
S.’S. S. S.. N. N. N. ‘S. N. N.

— (N P 1 0. Ii) 0 15. U) 0. 0
‘ 0 . 0 0 - 0 0 0 0 0 01’ ...

0 00 0 00 0 0 0 0
0.0.0.000.00.0.0.

• . • . .• — * • *

82

L —~~~~ - ~~
_ _ _


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

AFW L-TR- 78-80

LII
IS)
a
0.

CD U) U) U) CD CD CO CD U) CD CD CD CD CD CD CD CD CD U) U) CD CD CD U) CD U) CD CD U) CD U) CD CD
V N. N.. 55. N- N. N. N. N. N. £5. N. N. VS. N N S’S. N N. N. N. ‘S. N. N.. N. 55. N. N- N’. N. N. N. I’... N.

2. 2.2.2.2.
a a a a a a a a a a a a a a a a a a a a a a a a a a a a a aV.)  V.) V.) V.) V.) V.) V.) V.) V.) V.) 

~) 
-~~ -, V.) V.) V.) V.) V.) V.) V.) 

~) 
V.) V.) V.) V.) V.) V.) V.) V.) V.) 

~) 
V.) V.)

C__I (N C~4 (SI (N IN (N IN (N IN C_I IN (N (N (N IN IN (N (N C_I (N (‘4 15_I IN (N IN (N (N (SI C _ S I N  (Si IN— _ _ _ _ _ _  — — 
IC )<~~~ ).C IC I C I C I C

V.1
- — — — U)

0.
V.) V.1 .J .4 2.
CD a a a LU
V.) V.) V.) .4 5-
— 5- N’ Ni
‘0 ‘0 ‘0 ‘0 II —
Cl) U) CS) CS) Lii -
541 Ni Ni 541 l’s) 0
II IS IS SI 0
LII hal La) UI U) (N
Ni Ni Ni Ni —
— Ni — — ..) SI
U) U) U) Cl) CD LU

C.) • Ni
CD V.1 .4 V.) Ni

0 CD CD CD CD 0 U)
0. - - - - .4
I 0 0 0 0 0. .4
2. .1 .4 .4 2. CD
U) Ni Ni 0V.5 ‘.4 LII —
5- ‘0 ‘0 ‘0 ‘0 5- 0

CS) Cs) CI) U) SN (51
2. SN Ni SN Ni . ii —
‘0 II II IS IS — — .4 55
0 .4 .4 .1 ...I 2. C.) C.) ..4
ID C.) C.) C.) C..) — C.) I— — Li) — I.)
CD LII III ha) hal . - s X  0 . 0  — LU —

0 0 0 0 La) 0. C.) La.) .4 LU 0 -.
0. .4 .~I .4 .a 5- 50 CA l- • .4 (51— — — — La.I~~~~ N i L UC I)  LU — —

a a a a .J — SI .1 CD I.) _J CD IN
Ia. ha. La. Si. — hi) .4 5- LU 3. 0. — LU U. —
II 5 II 55 C.) CD C.) Ni (051 Cl) C.) CD SI -
2. 2. 2. 2. 5— 0 2. .2.3. 5-

CD U. Ii. U. Ii. 0 3 . 5 ).  3. 3. ii. LU 0 3 .  La. 0
Si) — — C.) — — C.) — — C.) — — (V.) C.) LU SN • LU C.) 2. 1.) Lii (4 I—

(“I C_I La) N) N) LU 0. 0. LU If) If) ha) Cl) 2. — 2. 2. ha) SN CI) 2. LU
-~~~0 — —0  — — 0  — —0  5 0 -  IS 3. — 0  II SN’-~ 0 II

.4 A. — .4 0 ..-  .4 A. — .4 A. 5-. 55 55 UI - CD 55 — LU IS Ii — LU
N’ Cl) IS Ni CI) IS 041 Cl) IS 041 CI) II I~~ 0. C.) 3. A. II 1.) 0 . 5 1  C.)

* ‘ 0 N ’ C D  ‘ 0 N ’ C D  ‘0— C D  ‘0 N i C D  .4 Niln O LIJ U)CD0 CI) CD VO
CD U) CD (4 CI) CD C.) U) CD C.) U) CD (4 ‘0 2. N’ 4. 2. C.) A. 2..-. C..) A.
— N i S N U )  S UN i C D  S N S N C D  S N S N C D  Ni 3 . I3 .U) S N C D C D C S )  a s o s o c n
LI)
0 (0 CD (0 .3 CD a so so
LII CD (0 (0 CD (0 CD CD CD
3.

S. C_i IS) 0 If) — — — —— — — — 0 0 0 0
0 0 0 0 0 0 0 0
La. 14. La. 14. ii. Li. U. U.

V.1 U) CD U) CD 0.. 0 — (51
-4 .0 0 0 .0 0 — — —‘0 5- 5- 5~ 5- 5- 5-
Cl) 41 U. 41 U. * U. 41 La. * La. 41 l.a. 41 Ii. 41 U. *N. N. S.. N. N. N. N. N. N. N. N. N. N. N. N. N. S., S. N. N. N. N. N. N. S. N. N. S. N. N. N. S. N.
2. N. N. N. S. N. N. N. N. N. N. N. S. N. N. N. N. N. N. N. N. N. N. ‘S. N. N. N. N. N. N. N. N. N . ”.,
L&)
5-
U)

U)

a. V

a — (‘4 N) 0 U) -0 15. CD 0’. CD — (N N) 0 U, ‘0 1’.. CD 0. 0 — (~I PA 0 U) -0 N. CD 0’ 0 — (N PA
CS) N. N.. P.. N. N’. £5. N. N. N- U) U) U) U) CD CD CD CD CD U) 0 . 0 . .  0’. 0. 0. 0. 0. 0. 0 . 0- 0 0 00
2.
— 0 0 0 0 00 0 0 0 0 00 .0 0  0 0 00 00 0 0 0 0 0 00 0 0 0  .3 CD 0.
— 0000.0.0.0.0.0000.0.000.0.0000.00 0 00000.00.0.0.
Sn
.4 * 0 * 4 1 4 1* 4 1 4 1  N 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 4 1

.1
V V.)

_  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



F V V
V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~

AFWL-TR-78-80

‘4’)

LU
CS)
‘05),

CD CD CD CD U) CD CD CD CD U) CD CD CD CD CD CD CD CD CD CD U) CD U) CD CD U) CD CD CD CD CD CD U) CD U) CD CD U) CD U) CD CD CD CD CD CD U)
15. N. N.. £5. N. N. N. N. N. N. N. N N. N. N N. £5. N. N. N. 15. N. N. N- N’. i’s. N. N. N. N N. N. N. N. N. £5. N. N. N. 5”. N. N.. V .. N. £5. N. N.
2.2.2.2.2.2.2.2.2.2.2.2. * 2 . 2 .  2 . 2 .  2. 2 . 2 .  * 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 .  2 . 2 .  2 .2 .  * 2 .2 .  * 2 . 2 . 2 . 2 . 2 .  2 . 2 . 2 . 2 .  2.a a aa  a a a a a a =a a  a a a a a a a a a a a a a = aV..)  

~~~ 
V~~ ~V’) V..)

~)
V.)

~)
V~~ ‘V.) VVV) —

~
V.) VV_

) V.) V.) V.)
~)

V.) V.) V.) V.) V.P) .‘) V.) •_) V
~) —

~
_) V.) V.) V.) V.) V.) V.) V.~•

V.) V.) V.) V.) V.) _) V.) V.) V.)
~) —(“4 (‘4 (“4 (“4 (‘4 (“4 (‘4 (“1 (‘4 (“4 SN (N (‘4 (N (SI C__I C_I IN (51 (‘4 (‘1 IN IN (SI (N IN IN (‘4 (5) IN (‘1 C”) C”) IN (‘4 (‘1 (‘1 C_I (5) (“4 (5) IN (N IN (‘.4 (‘4 C_I—

IC IC
41 41

V.) * *Ni

‘0 * 41
Ca — 3.

41 (0 LU *
ha. UI 2.
= * 0 41

2. N’ ‘0 V
LU 2. * 3. 41
(3 (0 (0 U)
CS) I’ ~~ * LU LU 41

U) 0 5-
Ci) 0 * ‘0 41
2. LU U) 0
N’ 3.. 41 ‘0 LU 41
5- 2.
3. 3. * CI) LU 41
(0 LII 0 CD
0 2. 41 Lii 41
CD 5.- (0 -V 3. ‘0 41 LU 2. *Cl) 2. ‘0ha.) * ‘0 41

5-. 0 2.
C..) ‘0 41 ‘0 ‘0 41
CD 0 0. 0
0 LU 41 CD 41
A. 2. .4 (0 -
I Li) 41 ‘0 0 41
2. CD 2. 0. —
U) * (0 41 ‘ LII

• Ni (0 -4 V.) — 11)
5- 2. 5- 041 41 —

2. 2. A. ‘0
‘0 CD LU LU (0 U) 41 -. — —0 II) S S

CS) U) U) CD • III 41 CD — IC U) If)
(0 • j O
0 CI) U) • 41 — I— C_I Ia.) .4
A. U) — — 5 CD I..) — — —

41 2. U) * .. . ~~ • — 0 O’
N. La.) Ia.) • • .J — S Z2.O • ‘0C.) N) 41 (0 - 45. ~) 2. N’ — 3. 0 — • IS — — a is .4

a C)) s.Ni C D’0’0 L U 1 4* 0 (0 — I — — N . ‘0
00 41 41 (4 *U)’0 — U) (0 * - ~~~~ — — ‘ 0 CA t N — ‘0 — 3 . 1 4

U) A. (0 Ia.) Ni U) _J S. Cl) — — ‘ CD ~~ C_I (0 1.. CD If) 55) 5). LaD ~C (055) 41 141 *.4 s _J lt I- l) S)I U . N . ‘— ..J U) C A r S)N) ‘0 La .IN U) ’CD 0 (0 CI) LU .4 II 55 UI U) .4 55 LII ‘41 CD S S S I.’ II IS 2. Ni —).. 51
Z 0 41 1 4(0 LU * 3 .L U - . J 2 . O I S(0 U) C 4SS — II II II C flIC.4 .) 5 I I U) C f lLai
N’ N) LU CD La.) 0 Ii (0 I) A. 3 . (0 ‘ 0 (0) 5 W 2 .) ’ .40 Ii 2.CS) II ‘ 14
3. 41 IC 2. 0 41 55 A. 3. 3. CD U) CD U) CD 0. CD CD 2. 0 C.) IS CD .4 0 0 CD CS) IS ‘0

2. 0 2 . L U 5 ’ ‘0 3.). U)U)U) U) N i 5-~~~~~~~~~ . 4 U) 0 W 5- ’ 0 ’ 0 2 .* . 4 O 0 L UA.
(0 .4 CD 41 3. CD 0 41 041 - s .4 ,4 .J CD 0.0 5- 5). 2. 0 .Z A. A. 0 A. US
Ni .4 ..I A. C.) L U O ..~~~~~~~4 .4 2 .* * *2 . . 4’ 0 O O’ 0 ’ 0 ’ 0 1 4(4 U .ha. U. L a .U . U .
U) (0 * * (.3 0 41
0 ha. 2. — .4 C.)
Li) ‘0 41 0 — O N i 4 1 (0
3. LU .4 ‘0 * 4 ._ I 0

41 Ni U) CD *0 .
5-0 2. 5~ ‘0

41 LU ‘0 U) 5 . - N i N i 41
LUCO 2 . - N . 41

2. 41 2 . U) 0 N . N . N. 2.5— CA 41
.4 LII ‘0 0 3. *
Ni CD 41 2. U. Ia.. O il.)
‘0 Cl) lb
U)

A. N. N. S. S. S. S. N. S. N. ‘.. N. N. N. N. N. N. N. S. N. N. N. N. N. N. N. N. N. N. N. S. N. N. N. N. N. N. N. N. N. N. N. S.
2. 41 II 55 II IS N. N. N. N. N. N. N. N. N. N. N. N. N. N. S. N. N. N. N. N. S.. N. N. N. N. N. N. N. S., S.. N. N. S. N. N. N. N. N. N. S. N. S.
La)
5...
(I)
I-
Cl)

U. V

(0
0. If) ‘0 N. CD 0.. 0 — (“ 1 N) 0 55) ‘0 N. U) 0’ CD — (N N) 0. If) ‘0 N.. CD 0’. 0 — IN PA 0 4’) ‘0 N. CD 0. CD — IN N) 41 it) ‘0 N. CD 0’ ~~CD 0 0 0 CD 0 0 (‘1 (‘4 (N IN (“ I IN C”) IN (N (S.) N) N) N) N) PA N) PA N) N) PA 0 0. 0. 0 0 0. 0 0. 0 0

* 154 (‘4 (‘4 (“4 (‘4 C__I (51 (‘4 CM CM C__I (54 (N (‘4 151 (“4 C__I C_I IN IN (SI (SI (‘I IN (51 (51 (N (51 (5) (5) (‘I C_i Cs) (51 (5) (5) (51 (‘1 (‘4 (‘4 IN (‘1 IN (‘4 (‘4 (N N.
Ni 0 0 . 0 0 0 0 00 0 0 0 CD 0 .0 0 00 0 . 0 00 00 0 . 0 00 0 0 0 0 0 . 00 0 0 0 0 0 00 00 0 .0 0 ~~‘5- 0.0.0.0.00.00.0.0.00.00.0.0.0.0.0.0.00.0.0.0.00. 00.0.00.000.0.0.00.0000.0.00. 0
U)

V.) * 4 * 0 * 4 1* 4 1* * * * * ** l 5 . 0 0* * * ** * * * * * *1 5* * * * *0 4 1 0 * 4 1 * 0 * 4 1 4 * 4 1

.4

ha.

84

- -

AFWL-TR-78-80

N. N N. N. N. N. N. £5. N. N.
*2.2.2.2.2.2.2.2.2. Va a aV.~~~~~~~~~ V.) V.) V.) V.) V.) V.)

(“4 (54 (5) (“4 (51 IN (“ i (“ i (SI (N

IC X IC IC IC 341 IC IC IC IC

4

— ‘4,

S C . —
— - SS V.) .J
0. — S
— S 4._ I — = — CV)— —— 0 2. LU CD U) S .4

‘V ‘V ..—, I 5)) .’ SI o
IS ‘. IS II C_I U) 55 4. ‘0

La) II II 2. CD IS ‘ LU U) U)
2.0 000(0-IS 2.2. II
-‘2. CD ‘00 ii) — N’ la_I CD
5- LU ‘00.0.04.5.- CD_ I
La. CD . 4 . 4 . 4 . 4_ I _ I (I) CD

N . N . N . S . N . N . N .N . N . N .

— (5) N) 0. II’) “0 N. CD 0.0
4’) 55) U) If) 55) 55) 55) 55)553 -0
(N (NI N IN IN (‘4 (55 15) (“4 IN
0 0 0 00 . 00 * 0 0
0.0.00.0.000.0.0

41 41 41 41 41 41 41 41 41 *

85

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ,~~~~~‘~~~~~~~‘~~~
V

AFWLV.TR_78_80

‘0

LU
CD
‘0
A.

CD U) U) CD U) CD U) U) CD CD CD CD U) CD CD U) U) U) U) U) CD CD U) U) CD U) U) U) U) CD U) CD U) CD CD U) CD U) U) U) U) U) CD CD U) CD CD
N. N. N.. l’s. N’. F’.. N, IS.. N. (S.. N, N- N- N’. N. N. N. (5., N. N- F’S N. N. P’. N’. N- N. N. N’. N. N. N.. F ’. N. N. N. V’s F”. N. N. N- I’... N. l’s, I”. N. N.
2.2.2.2.2.2.2.2. 2. Z 2 . 2 . 2 . 2 . 2 . 2 . 2.
a a a a a 3 . a a3 . 3 . a aa a a aa aa a a = =a a a~~~~~~

—
V.) V.) V.) V.)

~‘)~~‘) ~‘)
V.) V.) V.) V.)

~‘)
V.) V.) V.) V.) V.) V.) V.) V.) V.) V.)

~‘)
V.)~~~) V.) V.) V.) V.) V.)

~)
V.) V.)

~.)
V.) V’) ~~~ ~‘)

V.) V.) V.) V.) V’)~~~’) V.) V.)

(‘4 (N (N IN (51 (‘1 IN (SI C_i (“4 C_I (‘4 (N (SI CS) IN CM C_I (‘4 (‘4 C_I (‘4 (54 (“4 (S.) (54 (51 C_i C_i CS) IN C_I (SI (SI (5) (‘4 (“1 (55 (‘4 (5) (54 (54 (‘4 (“ 1 CM (5$ (5$

I C IC I CI CI C > C I C)C IC IC IC >C) C I C I C)C IC IC ICIC)C)C IC ICICIC IC 1<
*

2.
LU -
(0 — V

U)
.4

ha_I U)
2. 2.
Ni 2.
5- (.3
= 06 — -
CD II 0 0
0 Li) N)
U) CD Ni N) I’)
= LU Ni — -(1) 0 Cl) II II

U) IC UI III
SO .4 15) NI

(.3 SI CD N’ —
CD 2. • U) CS)
0 (0 .4 IC

— 0 .4 .4
I CD CD a
2. UI 2. —
U) 0 — = N) N)— — — C.) N)

UI 2. 06 — —
2. 2. - .41 Ii I) I)
‘0 “ 5 CD — .4 .4 .4
0 — 5 5— 2. — (4 — CV) 14
CS) — I CI) La) CD • LI) . LU CII
0 ‘4, 1 50 CD CD ‘ O O 0 0
0 - I SI • 06 ‘0 III .4 IN .4 .V.I
A. — • U) S LU U) CD .4 5—. — —

S — I S S — — I 2. Ni .4 SO LU U) 0 ‘0 ‘0V U . ‘0 ‘0 5 — I — .4 (0 • .4 CD (N CD U)
.4 1.) U. - S I II — — — V..) I 5— SO — SO CD — — — LU 3. — Ia.. U.
‘41 L U 3 . 5 - 5 - C D ‘0 — 01— I — LI) — V.1 UI _ I U) _ I C D (4 (0 11 — 55 3. IS

- ‘0 0U) aa* C D _ I - - C V)) CD o a o 5- - 2 . I C 2. 0. 2.
CD 0 U) 2. ..) (0 C D C D • U) N iI C I N — I CD A . (0 L a .(0 3 .(0 0 3 . L a .0 U. 2. La.
If) • 2. S — * Cl) U) II 0 1- ‘0 I)’) S I 0 CD CD 0 (0 .~~ .0 .4 (0 (0 1.) LU C.) 5- 1..) — 14

II Cl) ii II 2. CD 3— 3- IC CD U) CI) N. S II S A. Ni .4 = .4 (0 (0 .4 .4 CI) 2. LU UI II l.a.)
U) U L U - .4 I I U) C O _ I S I II II — I I 4 . I U) _ I S _ I U) (056 1 1 . 0(0 (0 SO~~~~ 0 I S 0 LU 0
14 Cl) 0 II (0 IS IS S S U) 0 CV) CS) IS LU CI) I 50 56 SI 50 II 1— 56 II .4 II 56 50 55 55 LU — ‘ 2. — —
(0(04.3.3. 2 . _ I II II ...I .J I - C D C S) 2 . I C 5 55 55 5- 11 4. 2. 11 5.- La_I A. SI IS 5- 5). SI C.) (‘4 II ‘0 — ‘I

2. C D C D (0 (0 C D (4 1.) ,-(N N iO O L I J.-I0I2. 2 . N i.JU) 2. 2 . N i U) U)_ I U) N i C f l C D’ 0 U)CD 2. (flU)
CD . 4_ I_ I _ I _ I 00 (l)U)’0’0 L 4A .O I - C DS CS) (#12.0— 3. U) 2 . ’ 0 - . C D 1 4 ZN ’CJ A. 4.1.) (0 4.14

0 (0 0 0 0 0.0 . A .4 . C I)U) Cn U) U) U)3 . IA . C D 3 .(0 (0 C D 3 . _ I (0 3 . (0 3 . (0 (0U) . 0 (0 (0
U) I
0 I 1.) CD CD CD .3. (0 (0 CD
LII I LU CD (0 (0 CD (0 (0 (0
3. S I C

I Lii

~~ ;
I Ni 0. CD 0 0 0 0
I .4 U. U. Ia. U. U. l.a.

.4 I .4 A. — (N N) 0 ‘4’) ‘0
CD I Ni LU 0 0 CD 0 0 0

‘0 5- 2. S ‘0 5.- I 1 5.- 5-. 5-
U) 3. ‘0 41 U) 41 CD) 45. 14,. 41 Li. 41 Li. 41 Ia. 45. LI. 41 La.

S., N. N. N. N. ‘ 0 N . S., 2. N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. S.. N. N. S.. S.. S., N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. S.
2. N. N. N. N. N. 41 N. S., 41 N. N. N. N. N. N. N. N. N. N. N. N. N. N. S.. N. S., N. N. S. N. N. N. N. N. N. N. 5. N. N. N. N. N. N. N. N. N. N.
Iii
5-
CD)

— C~4 N) 0 U’) ‘0 N. CD 0.. CD — (N N’) 0. If) ‘0 N. CD 0’ 0 — C_i N) 0 U) -0 N. CD 0.’ CD — IN N) 0. U’) ‘0 N, CD 0.. 0 — C_I N) 0 U’) ‘0 15.
CD ‘O ’O ’O ’O ’O ’O ‘0 ’)) ’)) N. N- N. N. (S. N. N. N. N. N- U) CD U) U) CD U) CD CD CD CD 0- 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 00 00 0 0 0 ~~• 2. (“4 (“1 (“1 IN (“I IN (SI (“I IN (N (“1 IN IN (“4 IN (“4 IN IN C’~I (N (“4 (‘1 C_i (N (“1 (“4 “i (“I (“i (SI (‘4 (‘-1 IN C_I C”) (“ I (‘I IN (N N) N) N) PA N’) N) N) N)
— 0 00 0 0 00 0 . 00 0 0 . 0 CD 0 .0 CD 0 . 0 0 0 . 0 . 0 .0 00 .0 0 0 0 0 0 0 0 00 0 00 .0 0 CD 0 0 0 0 C~5- 00.0.0.00.0.0.0.0.0.00.0.0.0.0.0.00.0.0.0.00.0.0.0.0.00 000.0.0.0.000.0.00000.0
U)

I N ’_I * 4 1 * 4 1 * 4 1 4 1* 0 * 4 1 * 4 1 4 1* 4 1 * 0 4 1 0 4 1 4 1 4 0 4 1 0* ** * * *0 4 1 0* ** * * ** • ~~~~* * *
.4
-I
=
ha.

86

~~~~~~ . .4.VVV~~~~~~~~~~~ , V.V.~,VVV . , ~~ V V ,. V V . V s~~~~ . ~. ~
V • V~~~V V_V~~~~V~~~~ ,_ - V~~



-~~~~~~—-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

AFWL-T~-78-8O

N’. N. N. N. N. N’. N. £5. N. N.

* 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 .2 .
a=  = aV.) V.) V.) 

~‘) 
V.’)  V.) 

~) 
V.) V.) V.)

(Si (“4 (N (“ I (“ I C_I IN (“I (“4 (54

I C I C I C I C  I C I CI C

IC
V.)
CD
V.)

N’
‘C
Cl)

:13
TM
Ni

U)
IC
V.)
U)

0
.4
Ni

‘0U)
SO
SI
V..)
CV)
Ia_I

— 0
— V.) —
U) — — Ci)
CII 0.0 CI)
.. ‘0 • U) U .  • ‘ 0  —
.JA.(.3Z II .40.1.3
— .5-LII2. Ni 5-

‘03.0
P U) La_I C.) U) CV) Cl) LU C.)

ha. 2. (#1 50 La_I ‘02. U)
SO SO II 0 50 50
SO Il SI LI) — SO II SI
5 ) 0 . 5-  ( 4 11 SI 0 . 5 -

• Z U ) N i’ 0 C D  Z U)Ni
- - ( f l I 1 2 . A . C 3  U ) N i2 .

C D C D 3 .U )(0 C D C D a
CD (0

V 
CD

V 
— (54
CD 0.
CD 0
U. U.
CD CD
CD 0.
5- 5-

* U .N . S .N . N . N . N .S . N . S .. N .
S . S . N . N . N .S . V S .N . N . N .

* 0 0 * 0 0 0 00 0
0.00.0.0.00.00.0

V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ *

87

a l 
- .  

~~~~~~~~~~ 

-_ -

-• ~—.. -- --

AFWL-TR-78-80

N.

Cal
CD
‘0
A.

CD CD (000(0(0 CD U) U) CD CD CD (0 0 CD (0 (0 (0 CD (0(0 0 (0 (0 (0 (0 (0 0 0 (0 (0 0 0 (0 (0 CD CD U) U) CD CD (0 0 CD U) (0
N. N. N. 1’., N. N. N. F’s. N. N. N. N. N, F’,, N. N. N. N. $5. N- N, N, N. N. N. N. N. N. N N- N. N, N. 55.. N. N. N. N. N, N. PS. F’.. N, N. IS. £5.. (5,
2. 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 .2 .2 .2 .2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 .2 . 2 . 2 . 2 . 2 . 2 .2 . 2 .2 . 2 . 2 . 2 .2 .2 . 2 . 2. 2. 2 . 2 . 2 . 2 . 2 . 2 .2 .2 .
3 .= 3 .= =a 3 . 3 . a= 3 . 3 . 3 . 3 .= 3 .= =3 . 3 . 3 .= = 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 .3 . = = = = 3 .3 . 3 . 3 . = ~~V.) V.) V.) V.’) V.) V.) V.) V.) V.) V.) V.) V.) V.) V.’) V.) V.) V.) V.) V.)

~‘)
V.) V.)

~‘)
V.) V.) V.) V.) V.) V.) V.) V.) V.) V.) V.) V.) V.’) ~‘)

V.) V.) V.) V.)
~
_j V.’) V.) V.) V.) -

C__I IN C_S (“1 (“1 CM (“ 1 (5) C_I CM CM C__I (N C__I (“4 (“4 t~I C_I (N (“4 (Si C_i C_I (‘4 IN C_I C_i (‘4 (5_I C_I (N IN C_I C_I (SI IN (N C_i C_I C_i IN IN (‘I (55 IN C_i (SI
— I- — ~~~~~~~~~~~~~~~~~~~ 1~~ N’ — — — — — — — — — — — — — — N’
IC I(IC).C IC)C I C) C I C I C IC IC IC IC

41 41
S)

2.
I

Li_I
CD
U) — —IC IC
UI .4

U) U)
N’ .4 .4
5- Ni 5-5
3. ‘0 ‘0 I — —
(0 U) U) l C D 0
0 56 56 113 N) - .5
U) II II 0 N) CD
3. LII Is) ‘0 — CD
U) NI P-i 06 55 ‘ 0 5

Ni IS Ii) —
U) U) 2. Ni Il l

C.) IC IC CD Ni ha_I
(0 ._J .4 — — U) N il
0 CD U) CD LU IC I
5). — — Ia.) 5- .4 (# 1 5

S 0 0 0 UI U)
2. .4 .4 — .4 • A. A. A. .4 I
(0 — Ni S LU N’) U) U) U) CD I

‘0 ‘0 2. CD N) IC IC IC — S .
CI) U) 0 — — 0 (0 (0 0.

2. 56 06 — ‘0 CD II (0 (0 (0 CD
‘0 II II - A. .4 .4 3. 3. 3. 5)
(0 .4 .4 2. ‘0 (0 CD CV) 50 56 SO .4
CD CV) (4 06 ‘ UI IS II SI CV)
(0 Ii) LU — 0 5 Cl) 55 (0 LU LU LI) 113
(0 (0 — (0 LU A. SI ‘ . II 5). _I ~.) ~~

c,~ — (0
4. .4 — .4 5-.55 2. .4 0. CI) - ‘0 ‘0 ‘0 — .4—— U) •~~~ 1 3 — (0 Ni U) Ni ‘0 4. 5). 4. 2. —

4.0 (II 0.0 .4 - ‘0 ‘~~ N~ CD CD UI U) Cl) 5-4 5- (5) UI CD
U) ha. ‘0 • CI) U. — li_I .4 A. • CS) CD — U. — — — .4 Ii) ‘0 (4 ha,
2. II .4 A. C.) ~~ IS IV) CD C.) — — .4 SI C.) (4 - CV) U) U) CV) 4. ‘0 II
L U2 . Ni • L U 2 . 5- 0 0 2 . 5 -. .4 Ni 2. 5- 5- 5— 3- (0 — 0.2. C~U) C DU . ‘0 3 . OC D Ia. 0 3 . 4 . 05 4 1 .4 (4 ‘0 U. (0 (0 (0 CI) ‘ 0 0 C D U) L i , C

VI CS) C.) CI) LI) 1.3 U) C.) (.3 11_I 50 (05- • ‘C U) (4 C.) 1.) CV) U) II CD C.) 0 Ia.. (.3 (0
SO Ia) . 42 . U) 50 La) CI) 2 .— 0.’0 (0 2. ‘0 113 LII CI) C)) II LU .4 (5) 2 . 0 6 Cal A.
1 1 (0 SO ’- SS II (0 SO~~~ - I S ‘050 ’- ‘0 50 (0 SO 50 50 5- 2. S0 SU ’... II (0 U.
UI — 50 II II 113 — I— II SI U.) 3. 3 50 II II 50 50 .. — 55 II II 3. ‘0 SO SI 55 113 — SO
1 4 5 5 11 4.)- (4 15 2. 5-A. CV) 2. 2. II ha_I CD SI IS — SI 5- 5... 5- (0 2. II — 5) . (4 11 II

2. ‘00 2 .Ch Ni - ’0 0 2 . N i U)’ 0 2. 2. 2.2.2. 2. 2. 4 . 0 a- s- Ni U) (0 2 .N i U)-C 0 2.
(0 A. C.) CI) N’ 2 .0 . (.33 . 2. Ni A. 3. = CD N’ (0 CI) Cl) ‘C C.) 2. 2. 2. 3. CD CI) 2. Ni 0, 1.) 5 (~
N’ (5) 0 C D C D CI)CD (0 (0 C5) (0 CD 4.5.-C.) (0 (0 S0(0 3. 3. = U) (0 3 . (0 C # 1(0 A.
Cl)
(0 CD (0 (0 (0 (0 (4 (0 (0 (0 (0 (0 (0 (0 (0 (0
513 CD (0 (0 (0 (0 LU CD (0 CD (0 (0 CD (0 CD CD I U.
3. IC

LU
~4) — — — — 5- 2.
0 CD 0 CD 0 2. CV) I
* 0 0 0 0 CD - CS) N) 2. 2.
U. U. Ia. U. U. Ni 2. (0 — 5- 5 3. (0 Ni I

.4 CD 0’ CD — (54 .4 Ni 0, = 3. A. (0 ..) I 5-
CD CD — — 2. U) U) Cl) U) Cl) U) U) U) U) .~~

‘0 5- I— 5- 5- 5 - I CI~ 3- 1- 1- 1- 3- 3- 3- 1. 3-
U) * L a . U .* * I a . * L a . 4 5 . U .* ’ 0 * U)* C l)* C I) * U)* C f l* U)* C l)* Cn 4 CI)

N. S. N. N. ‘S., N. N. N. N. N. N. N. N. N. N. N. N. N. N. N. S.. N. N. N. N. N. N. N. N. N. N. N. N. N. S. N. N. N. N. N. S., S., N. N. N. N. ‘ -
2. N. ‘S. N. N. N. S. N. N. N. S., S. N. N. N. N. N. ~La)
5-
U)

L
U) 0.. CD — C~I N) 0 U) -0 F’., CD 0.’ 0 — IN N) 0 U) ‘0 N. CD 0’ 0 — IN N) 0 If) .0 N. CD 0’. CD — C”) N) 41 U) ~0 N. CD 0.. 0 — (N N) 0’

CD — — (Si (“1 (“4 (“4 (54 (SI (Si (54 (SI (‘4 NI N) N) N) N) N) PA N) N) F’) 0. 0. 0 0 0 0 0 41 41 41 ‘4’) U) U) U’) U) U’) U) U) Is’) If) .0 ‘0 .0 .0 ~(‘2. N’) N’) N) N) N) PA N) N) N) N) N) N) PA N) N) PA N) N) N) N) N) PP N) 5 N N) N) ~~ N) ~~ N) r~ r. ~~ PA N) N) N) N) N’) N) N) N) N)
— CD 0 0 00 0 0 0 0 * 0 .0 0 0 00 0 .0 0 00 . 0 0 00 0 00 - 0 0 0 0 0 0 0- 0 00 - 0 0 0 0 CD 00 - 0 . C
5- 0.0.0.000.0.0.0.0.0.0000.00.0.0.00.0.0.0.0.0.0.0.00 0.0.0.0.0.0.0.00.0.0.00.00. 0. 0’
U)

V
N’
.1

1 _ I
‘-I
a

~~~~ U.

88

~~~~~~~~~~~~~~~~~~ ~,~~~~~~,________ ______ — _____ ~~~~~


AFWL-TR-78-80

U) (0 U) C D .~~~C D (0 C D C D (0
Ps. N, IS. N. F’., N. N. N. N. N.
~~ 2 . 2 . 2 . 2 .2 .2 . 2 . 2 . 2.
3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . .3.
V.) V.) V.) V.) V.) V.) V.) V.’) V.) V.)
(“4 (“4 (51 (“ 1 (SI (55 (“4 (N (I (N

)C IC IC IC I CI C

0
N)
N)

IS
LU
Ni
N’
(5)
IC
V.)
CD

— N)
N)

2. —
(0 SI
‘0 .4

• 4. CV)
C . U . LI)

50 (0— — .4 —
.4 .4 —

Ni ‘0 U)
‘0 CD 5- U)

(D CI) s CSI Is, I4l ’0113 11 113 — II (00.
(0)132. 5— 2. CD —
U. 2. N i . 4 U. ‘0 (0

— CV) (0 (0
112 . U. (0 154 . 4 2 .

— 2.’. (0
(0 1 1 11 11 .‘ SO Il
5-a 2. LII CD .- S5 II A.
0(02.2. 0.0 Z U)
UI’0 . - .(0 ha. CJ U)N i
(0A .5 . -C.) S O C D (0 (0

(0 CD
CD CD

5-
2.
Ni 2.
(0 Ni

4. V..)
U) U)
3- 3.

* U) * U)N. N. N. N. S. N. N. N. N. N.
S . N .N . N. N . N . N .

U) 0 N, (0 0 .0 — (“1 N’) 0.
‘O ’O ’O ‘O ’O N. N, (5, Cs. N.
N) N) Pa) N) N) N) N) N) NI N)
0 00 .0 0 0 0 .0 0 0
0.00.0.0.00.0.0.

*4 1 41 41 41 41 41 41

V 89

L -~~~~~~~~~~ - - — ~~~~~~~~~~~~~~~ --- V _____
. - _L~

-- , ~~~~~~~~~~~~~~~~~~~~~~~~~~ - J~~ ‘ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_

V -— -~ ~~ V__•_~ ~~~~~~ ~VVVV ~V.~ ~~~~ ~V ~~~~~~~ - — ~~~ V V~~ - -r ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~•~~ 5_V ~~ V —

AFWL-TR-78-80 V

(0

UI
CD
‘0
5),

(0(0(0(0(0(0(0(0(0(0(0(0(0(0(0(0(0(0(0 U) CD CD CD (0 (0 (0 (0 (0 (0 (0 (0 (0
N. N. N. N. N. F’,, N, N. C’s, N. N- N, I’., N. N, N. N. N. F’., N. N. N, N N. C’s. I’S, N. l’s. N, N, 5”’. N.
2 . 2 . 2 .2 . 2 . 2 . 2 . 2 .Z 2 . 2 . 2 .Z 2 . 2 . 2 . 2 . 2 . 2 . 2 . ZZ 2 . 2 . 2 .Z Z 2 . 2 . 2 . 2 . 2 .
= 3. = 3 .= 3 .= 3 . 3 .= =3 . 3 .= a = 3 .a 3 . = 3 . 3 . 3. = = 3 . 3 . = 3 . 3 . 3 . 3 .
V.) V.) V.) V.) V.’) V.) V.) V.) V.) V.) V.) V.) V.) V.) V.) V.) V.) V.) V.) V.) V.) V.) V.’) V.) V.) V.) V.) V.) V.) V.) V.) V.)

(SI (“ I (“4 (‘4 (‘1 (“1 IN (N (N (‘i (SI (54 (‘4 (5) (“5 (N IN (55 C”) C_i (“1 IN (Si (“I IN (“1 IN C_I (‘1 (‘1 (‘.4 (“1 _ _ __
I CI C IC I C I C I C)C

* 0

2.
Ia.I S
CD S
U)

LU
2. I
5-S S —

2.
5 3. I C)) —
(0 ‘0 0
(0 — • N)
CD 0 S CsI)- Pa)
= 0 I 2 .~~~ S —
U) ‘0 s a - s II —

— 5 -C D La_I —
II l _ S Ni CD —

C.) UI I SO — Ni IN La)
0. Ni —))l — U) — —
(0 Ni LI) I L U _ S IC 0 hal UI
A. (5) 5- 5 2. .-. .4 0

IC LU N i C CD (‘I LU La)
2. .4 .4 5). A. 5.- CS) - (0 — C D _ S
CD CD UI U) U) — — Pa) 2. — — La)
— CD IC IC CD)- N) (5) 0. (0(0

* — (0 (0 I 513 .4 — IS IN .4 —
2. (0 (0 (0 (0 1(0 - SI A. CD (0(0
‘C IS .4 3. 3. . 4(0 .4 U) — — . 4
(0 .4 0 50 50 5 0 — C.) Ni I S O
CD C.) — SI II 55 — S LU (0 55 • A. —
CD LI) II Ia.) ha) 2. — 2. (0 • UI CD U) II
IX (0 A. CV) (.1 05- (0 .4 U) 1.) Ni 5.4 0.
A. .4 CI) ‘0 ‘0 S . I (0 ’ 0 — 5-~ ‘0 .4 O CI)

— • 541 4. A. C D C D A . ‘0 .4 5). 2. UI “Ni
UI U. CD U) (I) LU Ia. .4 CD 5— Cl) SO • .1.) 5— (0
• (4 CD — — — (0 —55 Ci. (0 — LU — . 4 U) ‘0 LU

1.3 ‘0 II .4 CV) 1.) — — • II (0 1.) (0 (0(0 4. Cl) .4
5 - 4 . 2 . Ni 5.- 5- 5 C ~~ _ S 3 - 2. Ia. 5- A . C D 3 . U) U) (0 N i

(0 (0 U)ha. ‘0 (0 (0 0. .4 La. • (0 U)N iC D 5 -*(0 ‘CC
U) CV) U. (4 CI) 1.) 1.) (0 4 1 3 . 1.) — C.) Ni .4 i.S .4 V.J (0(0

(5) 50 154 U. U) U) A. — (0 LU U) U) . 42 . . 42 .5 6 . 4 . 4
0 6 1 1 (0 50 50 SO . 4— S (0 5-. 50 2.50 2.50 II SOSO
II UI 50 II II 3- 50 55 IS • CI) II SO IS SO SI hal SO SO
5- CV) II II 5- 5- 2. I II (0 2. — SI II 5 II 5- IS A. CV) II II

2. p a’ 0 U) 2. N’ a- 2. 2.Z (0 0.0 2. Ni 2.S-_S U)’0 2.2.
(0 2 .A .(.) U) 2. 2. CD CD -’C . 4 1 4 U) 2. U) 2 . C DN i4 . (0(0
Ni C5) (0 CD 3. 3. CD A . C V)A. SO (0 (0 = (0 3 .(0U) (0 0
U)
iX (0 CD CD CD C.) (0 (0 CD (0 (0(0
UI (0 (0 CD (0 5 LII CD (0 (0 CD CD CD
3. IC

h a .) S
5- I

2. 2. CD I
— (“4 (0 Ni U) — 0 2. 5

2. 5-~ 5- 513 I (0 Ni 5- 2. N’ I
Ni 3. — 5 (0 4. .4 3. .4 4 I

Ni U) (5) (5) U) 5 LII CS) CI) U) U) U) I
‘0 5- 3- 3- 5- IC 3- 3- 3- 3- 3- I
U) * Cfl 4 5 .U)* (O* C f l* . . J 41 (I) * CS) 45. U) 45. Cl) 41 (I) 41 I V

N. N. N. S. N. S.. N. N. N. N. N. N. N. N. N. N. N. S. N. N. N. N. S. N. N. N. S.. N. N. S. N. S. F2. N. N. S., N. N. N. N. N. N. N. N. S. N. N. N. N. N. N. N. N. S. N. S.. N. N. S.. N. S. N. N. N. S.
LU
5-
U)

. V.

L

U) ‘0 N, (0- 0’ 0 — (‘.4 5-) 0 Is) ‘ON. U) 0. CD — IN N) 41 U’) “0 F” . (0 0’ CD — IN PA 0. If) “0 —
CD N- N. C’% P’S N. CD (0(0(0(0(0(0(0 (0 (00.0.0.0. 0.. 0’ 0’ 0.0.0-0. CD 0 0 0 00
2. N) N) N) N) N I P A N) N) P A N) N) N) N) N) N) N) N) N) P A N I P A N) N) N) N) 0 ’ 0-41 0 - 0 0 . 0
— 0 0 0 0 0 * 0 0* 0 0 0* 0 0 00 .0 0 0 . 0 . 0 0 0 0 0 0 0 0 . 0 0 . 0 . V

5- 0.0.0.0.00.0.0.0.0.0.0.000.00.00.0.0.0.000.0.0.0.00 0.41
U)
N’
.4 * * *l 5 .* * * * * * * * ** * * 4 5 . * * 4 5 .45. 45. 4 5 . 4 1 4 1 4 1* * 4 5 . 4 1 4 1 Ø

V.)

go

-~~~~~~~

— -
~~~~~~~~~~~~~~~~~ 

_V

___
~_~V_

_ V V •V.__~ ~~ - V . ,_,_.__~_ ‘ ____V_ ,~,,V (V_~

__ 
~~~~~~~~~~~~~ — V ,,____,_V.V_,r,_V_,,_ ~r~~V__a__ __ VV ~~~~~~~~~~~ ~~~~~~~~~~~~~~ 7V~__ _

~
_
~~

•_ VV.V.~____ V ~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-V .-

AFWL-TR-78-80

15_I

A.

CD
N,
2.
=

I

2.
‘0
IC

2. 
VCD

Ni

2.
‘0I
CD
CD
(0

~~~~~A.

C

(0
It’)

2.
(0

• C N’
(II U)• L C D La)
Ia.) .4
3. 4.

2.
‘0
IC

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

9’

_ _

_ _ _ _ _ _ _ _ _
—~~~-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~~~~


-
~~~~~~~~~~~~~~~~~~ 

V V ~~~~~

AFWL-TR-78-80

IN

II)
CD
‘C
A.

Is) U) U) U’) CD CD CD CD CD CD U’) Is’)
PS, IS. N, N- N, IS. C’s. N. N. IS. N, N.
3 - 3 - 3 - 3 - 2 .2 . 2 .2 . 2 . 2 . 3- 3 -
‘ 0 C C- C  3 . 3 .  3 . 3 .’ 0  ‘C
2 . 2 . 2 . 2 .  ~~~~~ 

V.) V.)  V.) V.) 2 .2 .

U,
IS)
V.)
A.

‘C
V IC

LI)

LII
2.

I-
3.
(0
(0
CD
=U)

2.
‘C
IC
LI)

5CD
Ni

2. 2.
‘0 ‘C
CD CD
CD CD - - -
(0 CD
CD (0
4. 5).

V.)

- Ni
‘0U)

CD
If) 3.

IS)
2. CI)

LU
‘0 41 (0

2. 2.
(0 LU ‘0
— (0 2.
(1) ‘0 2.0. 1.3
(0 CD Is_I
154 LII CD ~~3. (0 2. Ni

UI LII = ‘0
4 CD (40. (I)
0. 542.
2. I CN i
‘C h a ) .

.4 IC .4
— UI 3. Ni

‘0 LII’0
U) 2 .0)

4. N .S .  41
2. 41 SI 55 II N. N. ~~ N. II SI
LI_I
5-.
U,
3-
U,

Ca.

CD 0 0 0 0 00 0 0 0 ——
2. 0 0 .0 0 0 0 0 0 0 0 0*
a- 0 0 00 0 0 00 00 0 0
5- U’) If) U) U) Is’) Is’) U’) U) U’) If) U) It)
0)
N’

* 4 1* 4 1* .

.4
V.)
3.
U.

-

‘ 

: 92

L. V~~~~~~~~~ 



AFW L-TR-78-87

N)

LU

‘C
A.

N. N. N, F’,. N. N, N. N. N. (5, N.
3 - 3 - 3 - 3 - 2 . 3- 3 - 3 - 3 - 3 - 3 -
C C  ‘ C C  ‘ 0 ’ C  ‘ 0 C C - C
2.2.2.2. V.) 2.2.2.2.2.2.
‘0 ‘0 ‘.0 -0 ?‘I ‘0 ‘0 ‘0 ‘-0 ‘0 ‘0 

U)
LI)
_I
0.
2.
‘0
IC
III

LU
2.
— U)
5- (0
= (0
CD ‘C
IX CV)
CD
= Ci.
U) CD

2.
2. ha.)
‘C 5-
IC
14)

(0
3. U)

(0 2.
— LII CD

V..)
2. —
‘C l.a. A.
(0 (0
CD LU CD
(0 2. 2.
(0 CD UI
A.

3-
_I
2.
(0 U)

0.
U) = (0
U) 5- ‘C

V — 1.)
3.

LU
2. 41 • CD

2. 3. 2.
O (0 ‘0s-s 2.
CI) 4’ CD CV)
(0 ‘C 4(0( 1 3
La) 2. N’ 2. .4
3. IX ‘ 0 5 - C D  Ni

(0 ‘0
2. A .) -  U)

(.3 2.0.
La_I -I CDV IC

.4 LU . 4_ S
Ni N’ Ni

‘C 2 . -C C
U) ( 0 U) u)

A. N . N .  *2. 41 SI II II N. N. II II II N.
LI: V

1-
Cl)
~~5

‘
U,

U.
CD

0. II’) ‘0 (5, (0 0.. 0 — (Si PA
CD (‘i CSi (N C’I
2. 0 0 00 00 . 0 0 . 0 0 0
“a 0 0 . 0 0 0 0 . 00 0 00 .
0 U) U’) U) U’) If) It’) U’) U’) U) U’) U’)
CS)
P41
V.) 41

V.1
V V.5

=ha. ‘

L V~~~~~~~~~~~ _ _  

_ _
— - - — — - .- ——- -~~~ . a . U- V~ •~~

,I’j — ~~~~~~~~ — ~~~~~~~~~~~~~~~ •~~‘- •— -- — ~~~~~~~~ ~~~~~~ ~~~~ , tita.’~~,4 14



AFWL -TR- 78-87

41.

La)
CD
‘0
A.

U)If) Is’) It) (0 (0 If) U) U)
N . N .  IS. N. C’s. N .N .  N, N.
3- 3- 3- 3 -2 . 2 . 3 -  3- 3-
‘CC ‘0 -C  = ‘0 - C C
2. 2 . 2 .2 .  ~) ) 2 . 2 . 2 .
‘0 ‘0 ‘0 ‘0 (N (54 ‘O ’O ’O

(5,
LU
.4
A.
2.
‘0
IC
LU

LI_I
2.
N’
5-
3.
CD
CD U)
CD 2.
= (0
U) Ni

5-
A. •

2. 0 5
‘0 2.
IC 5- 3. U)
UI .4 CD 2.

= 3. (0
2. ‘C La)41
CD U. 2 . —  5-

UI N) A.
0. IS (S) (0

2. hU ll (0
‘C Ci.) IX 2.
(0 CD A .3 .  LU
CD 2. 3 . L U
(0 ‘0 La) 2.
(0 2. —
A. C.) — ‘

S V.)
(0 3.0
2. L U 3 .
‘C 2._ S

V . _  •
U) UI ‘ ‘ 0

V U’) .4 550)
Ni

U. 2 . C D
L U U I  U)

-I (D U )* 2 .
2. — — s
CD ‘C ~~~ I) Ni

N’ U) N i. _ S  I-
CI) ‘ 0 0( 0 4 .
CD ‘C 0 ) 3 . 0 . 0
LII 3.
3. 3- (V) LI) 5-

A. L U 2 . 3 .) -
(0 IC A .A .
C.) La) 2 .0

— C.)

.4 3- _ ) . 4
— A. Ni 5.4
‘0 (0U) CV) CI) U)

0. N .N . N .  41
2. 41 II II II N. S. N. S.
LU
U)
I-
U)

U.
CD

0. If) ‘ON.  ( 0 0 .0 —  IN
CD IN (‘4 C’s CS) (51 (5) N) N) N)
2. 0 0 0 0 0 . 0 00 0
— 0 0 0 0 . 0 0 0 0*
— If) It’) It’) Is’) If) Ii’) If) 5)’) If)
U,
Ni

V.) 4 1*

V..)
.4
3.
Is.

94

_ _  _ _ _ _ _ _  

V VL - 
~~~ 

~Mm.ü V
— _________________________________

_ -— - -~~ ~~~~~~~~~~~~~~~~~

r
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

AFW L-TR-78-87

U)

‘C
0.

U’) U’) U) If) U’) CD U’) U’) If) 5)’) U’) If)
- N. N. N. N. N, N- F’. N, (5. F’. F’s. I”.,

3 - 3 - 3 - 3 - 3 - 2 .3 - 3 - 3 - 3 - 3 - 3 -
‘C’C’C’C’C ‘0’C C C  ‘ C C
2.2.2.2.2. V.) 2 . 2 . 2 . 2 .2 .2 .
‘O’0 ‘O ’O ‘-‘3 (54 ‘0 ‘0 ‘0 ‘0 “O ’O

U)
LI)
V.)
A.
2.
‘C
IC
ha)

LU
2.
N’
5.-
=
CD
(0 — 5
CD s —
3.
U) 4 .4 1’

L U C D
La) UIIf)

2. .4 ~C I I
‘0 N’
IC U .L U  3.r.4
UI A. III —

S C D ’ C  2 . U )
2. IS) 5- ‘
CD CD .4 0..
Ni ( 0V ’ C  II CD LU

CV) If) A,.
2. 2. 0.~~ s ‘C
‘0 ‘0(0 3.154 —
CD UI’- 55
(0 CD LII 2 . 1 1  3.
(0 5-_ S  .4 3.
(0 Ni 41.) UI
A. LIIU. Z L U  -.2.

4 11 (0 11
N’)-  2 . 42 .’
15. 0) CD “3 . 0
(0 ‘0(0(0(4

0’41 .4 Is. 3._ S
(0 h UU .  . 5 1  UI
If) ~~ — 2 . 2 .’ C

C.)U) I S U .  ()) V

‘C 2.14 ’ II
A. . . I L UU I( 0  (0

LU -‘.CDA.I,Ij * LU
2. ‘04 U.’-” ’C U) 3.
CD Ni — s  5 - s  2.
— Is. 4 1 1  • II (0
U) (0 N’ CD S _) (0 1.)
(0 LU CD ‘ 0 ( 4 1 1  0 CD
UI 3. Ia.) Cl) (02.3. 3-
3. 2 . 0 .  3 . 2 . 3 . 5- A .

(0( 0
(4 (4 1 4)2 .  CD 2. A. C.)

IC 2.
La) N i_ S

Ni

.4 3.
Ni 2. ‘-(0
‘C CD ‘0
U) C.) U)

4. N . N . N . N . N .  41
2. 41 II II IS II N. N. N. S. N. N.
UI
5-

LI.
CD

P~) 0 II’) ‘O N .  CD ~~
. 0. — (“ 1 N) 41

CD N) N) N) 5-) I”) N) N) 0.0.0.0.0.
2. 0 0 * 0 00 00 0 . 0 0 0
~- O C D* C D 0 0 0 0 0 0 0 C D
N. Is’) UI SI’) 5?) 5)’) If) If) U’) U) II ’) Ia’) I.’)
Ca,
N’

V -~
V..)
V.)
3.
U.

95

V - ~~~~~ ~~~~- CD. — ~ - -~~~~~~~~
‘ - - - — — 

- -



E RH OADES
SRTE AD E200 258LASSIF ‘Er 

iId8S
~11 SI

~~~~~~ ~r 6-79
.1k

DDC

r
I.

t

/

~-,

AFWL-TR-78-80

‘UU)

4.

y... p... p.~ N. r~. N. N. N. N.

0 ‘C ‘C 4 ~‘â ‘C ‘C ‘0 ~0’C ’ 0— — — — —
U)
LU
-I
4.

LU

‘Uz
— p4
I-

U)
— $1

LU
-

~~~~~ 
0)

U)
‘UO  - IS
‘U U~ SI -~

LU
~~SIU ~~~P1~~~~~~LU -~ 4. ~ J — ~~ LU

S.- ~~~~~~~~~~~~ —

~~~ S ~~~ •O~.— LU~~~~ II ~~~~ LU
~~ U)

£ LJ~~~ ~~Oe~~~~ ~~ I-
a. ~J~~~~~~~~IiU) LU U) f l~~~~~~~U) U)~~J .. _ a O U)
I~~~~~~ ..J C.3 O ...3

4. I.&. £ L & I U) U)
LU II~~~~ •

U)~~~~ % S
U)

LI. ~~ U) £
p4

U) U) L&. — I S UJ~~-iU) LU
U)U) IS La. U)

U) cJ S II
t~ _I tat L&~ ~~LaS ~~~4 . ’ U * 4 .
~~~~~ Ia. -~~~~~U) U)

U) p4 — s  — ‘  ~ )
— i- La. ..J IS . 1 1
U) ~~ — U) S —~ U) —

LaS U) t..) IS U) U)
LU ~~ LU U) U) U) ~~ LU

£ U)
o U)
(.3~~.3 LU~~~~ U) U)4 . U)

LU

— 5 —
—

U)
U) (.~ U)

4. ~~~~~~~~~~~~~~~~~~~ *
£ * II II It ~I ‘~ — -. ‘.. — s
LU
I.-
U,

U)
a

La.
U)

U~ ‘0 N. U) 0 - 0 —  C~.t P)  q It) ‘0U) q ~~ ~~ ~~ q~ It) tS~ It) It) It) U~ SI)
Z 0 0 00 00 0 00 0 00
— 0 0 00 0 00 0 0 0 00

It) It) II) SI) It) 545 II) U, 155 It) If) US
U,
p4

*
-S
-S

96



-

AFWL-TR-78-80

CD

A.

~~~ r~ r’~. ?~ . r... ~%. p r~ r~ g~. r.,- ,_ )- ~~~ ,- ~~.. ,_ 
~.. a.. a..)~

~~~~~~~~~~~~~~~~ o,o .
~~~,o

,c -o ,o
—

CD
LU
-J
A.

‘C
LU

‘U
z
I-

U,

* ** ** ** *— * *

* ** p— *— * CD *p., * ‘.4 *C4 * *CD II * *• * U. *A. LU * CD *..J LU * *— ~~ * CD *U.. * ~~ *(I) * Ui *._I ~~~.J CD *CD P.4 ~~ * *U, * *U, ~~~Cfl CJ * *L U l l * *LU * *.IU * CD ~ * * * *U. ..J CD
CD CD ~~~~~~
-P ~~~ ll Lii =U, LU CI~ ~J CD CD C.)

I-. C D C D
LU ~~ LU

CD LU I- ‘.4
A.)C Lii~~~~~~ ~~Ui Z A. CD CD

A.
LU

.~~ ._I _J
— CD — —

A. ~~~ €u, Ua U)
A. ~~~~~~~~-.. *£ * II II II ~~ ~ ~.. II II II

UI
—U,

I , -
U.
CD

CD 0- CD — C~4 P~~ .4 If) ‘0 ~. CD
CD ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -0 ’0 ’0
z C D 0 0 0 C D 0 0 0 C D C DO C D
,~~ ~~~C D C D C D C D o C D O a C D C D C D
—
CD
-P

*
-I
-I
=

97

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~



AFWL-TR-78-80

GLOSSARY OF TERMS

Block - On the SAIL file(s) output during a NORMAL run , a Set of card images
that belong to one logical portion of the file(s). On CDC, this is a
logical section; on IBM, those cards Identifi ed by FTO8FOOn for some n;
on Honeywell , one of the files 15, 16, 17, etc.

On a l i brary, a group of cards with the same block number.

There Is no relationship between these two meanings of block.

card - One physical card or one line of information corresponding to a physical
card on INPUT.

One l ine appearing on the SAIL file from a NORMAL run.

In general , the set of characters read or written as a single record by
formatted FORTRAN I/O statements.

The part of a SAIL record containing data or a SAIL directive.

card—image - The same as card , but usually wi th the implication that the infor-
mation Is stored on some device other than physical cards.

change set - A consecutive set of cards appearing on INPUT, the first of which
is one of the SAIL directives *A, *C, ~O, or *1, and the last, the card
preceding the next such card or the end-of-file.

COPY - SAIL execution mode in which an old library is copied to a new one,
usual ly with a conversion between the coded format used for intermachine
transport and the packed format used for SAIL records on a particular
machine.

del imiter - A .character used to nark the beginning or end of a character string .

On free—field cards, one of the characters blank , comma, or equal sign ,
which are referred to as SAIL del imiters.

• One of the characters (U or =) ,  $, or ( or +), which are used as delimi ters
on some data cards and di rectives.

directive - A character string following an asterisk In col umn one, which is
• recognized by SAIL as a command to perform an action . The command may be

modified or Ignored due to the effect of SAIl requests. D rectlves fall
into two classes : general and executive.

di rectory - Those SAIL records occurring after the *DIR directive and before the
*EDIR directive.

A Type of listing in which only SAIL records occurring in directory sections
are printed.

98

~~~~~~~~~~~~~~~ •- —. .~~- —•.-—- — 
.—‘.—-- — —

-~~

AFWL-TR-78-80

element - On free-field chards, a contiguous string ~of characters appearingafter the beginning of the card or a SAIL delimeter and before the end of
the scanned portion of the card (column 72 by default) or another SAIL
del imiter.

ERROR - The name used In this manual for a file on which SAIL writes error
messages.

executive - The processor section that operates during NORMAL runs to select
cards within PROGRAMs to be written to the SAIL file.

• field - A contiguous set of columns on a card or card—Image. Field Is used as a
general term to describe such a set that has been set aside for a particular
purpose by a computer program.

free-field - The characteristic of the request area on INPUT and of the cards or
SAIL records which are recognized as SAIL directives , that elements can be
separated by any number of SAIL delimiters without having either to appear
in particular columns or a certain number of columns after the previous
element.

GENERATE - A SAIL execution mode in which the cards appearing on INPUT followi ng
• the request area are used to create a new library.

global list type — On LIST runs, either-directory or full. (The latter causes
SAIL to lis t all cards in the selected PROGRAMs.) This Is used as the list
type for any PROGRAM that Is not explicitly selected opposite.

Identifier - A pair of integers used to identify SAIL records. One is the block
number and the other the card number within the block.

include - On a NORMAL run , to pl ace the contents of a PROC on the SAIL file.

INPUT - The name used in this manual for the file SAIL uses for control informa-
tion and changes to the library .

l ibrary - A file containing SAIL records which together contain each possible
data card that can appear on the SAIL file during a NORMAL run along with
directives to select among them under OPTION control . Default lists of
PROGRAMs and OPTIONs are also stored on a library . SYSTEM and VERSION
parameters allow the user to verify the Identity of the library .

l ine - In thi s manual , a term used synonymously with SAIL record .

LIST - A SAIL execution mode that lists selected PROGRAMs from a library .

list type - For each PROGRAM on a library during a LIST run , the choice between
listing the entire PROGRAM (full) or Just the directory cards (directory).

macro processing - During inclus ion of a PROC, the substitution of new character
strings given on the *INCLUDE directive for those Indicated on the *PROC
directive. The characters to be replaced must be flagged inside the PROC .

mode - The choice of processing function to be accomplished during a SAIL execu-
t ion.

99

.1 ~~~~~~~~


~~~~~~~~—~~~
-- •

~~~~~~~~-- • - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

AFWL-TR-78-80

name field - The second element or set of el ements on a card Interpreted as a
SAIL executive directive.

NEW - The name used In this manual for the new library file created on GENERATE ,
UPDATE, and COPY runs.

NORMAL - A SAIL execution mode in which the executive processor selects cards
from the library under OPTION control and writes them to the SAIL file.

OLD — The name used in this manual for the library file used tn all modes as a
basis for processing;

operand field - The third set of elements on a card or cards containing a SAIL
executive directive. If it is not omitted, it Is usual ly a logical
expression combining logical units composed of comparison tests or TRUE-
FALSE determinations on OPTIONs. For the *DEFN directive, it Is an arith-
metic expression Involving OPTIONs and constants.

OPTION - A pair of parameters consisting of a character string (the name) and a
nonnegative integer value used to control card selections and character
string substitutions during NORMAL runs.

OUTPUT — The name used in this manual for the file on which printabl e output Is
placed.

PROC - A set of SAIL records Identified by the SAIL executive directive *PROC
so they can be included at any point by an *I~~LUDE directive with a
matching name field.

PROCF - The name used in this manual for a file used to store the PROCs from the
PROLOGUE during NORMAL runds on CDC machines.

PROGRAM - The SAIL records beginning with one *B directive and ending with either
the end of the library or the card preceding the next *B.

PROLOGUE - The SAIL records preceding the first PROGRAM on a library .

PUNCH - A SAIL execution mode in which the card portion from SAIL records within
the selected PROGRAMs are written to the SAIL file ready to punch or to use
source cards or changes for another library .

request - An element In the request area used to control processing during SAIL
execution.

request area - The cards on INPUT preceding the first card (if any) with an
asterisk in column one, except on GENERATE runs where the card with the
GENERATE request terminates the request area .

request pair - Two consecutive requests, which must occur on the same card , the
first of which speci fies a parameter to be set, and the second, the value
to be given it.

SCAN - A SAIL execution mode in which the library is searched for SAIL records
containing any of a set of character strings designated by the user.

100

.~ . . - • • - • • . - - .. • . . - . • . -- • - -. • . . .-~
. _ : .~~~~~~

- -~~~~~~~~~~“ - • ____

AFWL-TR-78-80

SAIL - The program described In this manual . The name used In this manual for
the file on which task—oriented card images are written during a NORMAL run
or on which source cards are written during a PUNCH run.

SAIL. del imiter - One of three characters (blank, coma, or equal sign) used to
separate elements on cards or SAIL records written In free-format.

SAIL directive (general) - A directive recognized by SAIL that Is processed not
only on NORMAL runs, but during executions in at least one other mode.

SAIL executive d irective - A directive recognized by SAIL that is processed
(by the executive processor) only on NORMAL runs. In other modes, such a
SAIL record is trated as data.

SAIL record - One card-image along with Its identifier stored on a library or
printed on OUTPUT.

specifi cation area — Those requests that fall between the requests OPTIONS and
ENDOPTIONS, DELOPTIONS and ENDOPTIONS, or PROGRAM and ENDPROGRAM . If the
terminating directive does not appear sooner, the specification area ends
at the end of the request area.

SYSTEM - A character string stored on a library that identifies it by name.

The request that specifies the name of a library .

• table - A subset of the OPTION list starting with the OPTION after the one
designated as the head and consisting of as many consecutive OPTIONs as
the value of the head.

task - A problem for which the user needs a card-Image file either In the form
of input to a compiler or as data.

UPDATE - A SAIL execution mode in which changes to an old library are made
permanent by creating a new library .

verb field - The first element of an executive directive. The first character
must be an asterisk and it must appear in column one of the card or card-
image portion of a SAIL record.

VERSION - An integer stored on the library to distinguish it from other libraries
with the same SYSTEM name.

The request that specifies this integer for a library .

•
.

101/102

_ _ _ _
- ~~~~~~~~~~~~~~~ •- ~•- - • - .

—- —~~~~~~ - -~~~~~~-~—-~~ —~~~~~~~~—~~— • .• . ~~~~~~~~~~~~~~~~~~~~~ ~~~~~

