AD=-A068 519

UNCLASSIFIED

—

AIR FORCE WEAPONS LAB KIRTLAND AFB NM F/G6 9/2
SAIL» AN AUTOMATED APPROACH TO SOFTWARE DEVELOPMENT AND MANAGEM==ETC(U)
JAN 79 L P GABY: D C GRAHAM» C E RHOADES

AFWL=TR=78-80 SBIE-AD-E200 258 NL

/

!

—

R

AFWL-TR-78-80 AFWL-TR-
78-80

PO

2 SAIL, AN AUTOMATED APPROACH TO SOFTWARE
Yo / DEVELOPMENT AND MANAGEMENT
0'0)
Ne Lewis P. Gaby |I
Q ' David C. Graham, Capt, USAF
< Clifford E. Rhoades, Jr., PhD
a .
' 8 January 1979
i] | ¢
IR ¥ Final Report {
: - EE Approved for public release; distribution unlimited.
1)
} Lt A
F £ | —
't (e
9 [)
% =
1 R=

& AIR FORCE WEAPONS LABORATORY
B Air Force Systems Command

g Kirtland Air Force Base, NM 87117

;

AFWL-TR-78-80 d

. L]

This final report was prepared by the Air Force Weapons Laboratory,
Kirtland Air Force Base, New Mexico, under Job Order 88091822. Clifford E.
Rhoades, Jr., (DYP) was the Laboratory Project Officer-in-Charge.

When US Government drawings, specifications, or other data are used for any
purpose other than a definitely related Government procurement operation, the
Government thereby incurs no responsibility nor any obligation whatsoever, and ¢
the fact that the Government may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other data is not to be regarded
by implication or otherwise as in any manner licensing the holder or any other
person or corporation or conveying any rights or permission to manufacture,
use, or sell any patented invention that may in any way be related theretc.

This report has been authored by employees of the United States Government.
Accordingly, the United States Government retains a nonexclusive, royalty-free
license to publish or reproduce the material contained herein, or allow others
to do so, for the United States Government purposes.

This report has been reviewed by the Information Office (0I) and is
releasable to the National Technical Information Service (NTIS). At NTIS, it
will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

eQ,/MQ Uondlag, n.

CLIFFORD E. RHOADES, JR., PhD
Project Officer

FOR THE COMMANDER

T e (ke

NORMAN F. RODERICK THOMAS W. CIAMBRONE
Major, USAF Colonel, USAF
Chief, Advanced Concepts Branch Chief, Kpp]ied Physics Division

o A i e, &

o dn

NCLASSIF

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entereq)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
[T REPOAY NUMBER / 2, GOVY ACCESSION NO.| 3. RECIBIENT'S CATALOG NUMBER
AFWL-TR-78-80
4. TITLE (and Subtitie) S. TYPE OF REPOART & PERMOD COVERED
SAIL, AN AUTOMATED APPROACH TO SOFTWARE
DEVELOPMENT AND MANAGEMENT i Final Report
a §. PERFORMING ORG. REPORT NUMBER
I7 AUTWOR(s) [} NTRACT O ANT NUM ()
' Lewis P. Gaby, II

Capt David C. Graham

Clifford E. Rhoades, Jr., PhD
. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

AREA & WORK UNIT NUMBERS

Air Force Weapons Laboratory 62601F
Kirtland Air Force Base. NM 87117 7 88091822
11. CONTROLLING OFFICE NAME AND ADDRESS n;J REPORT ofS;Q =
Air Force Weapons Laboratory (DYP) ‘ anuarf —
Kirtland Air Force Base, NM 87117 - “f;;; il o
TT MONITORING AGENCY NAME & ADDRESS(I{ different from Controlling Office) | 'S. SECURITY CLASS. (of thia report)
UNCLASSIFIED
[T5a. DECLASSIFICATION OOWNGRADING
SCHEDULE

6. OISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

. 17. CISTRIBUTION STATEMENT (of the ebstract entered in Block 20, it dilterent from Report)

18, SUPPLEMENTAARY NOTES

19. KEY WORDS /Continue on reverse side if necessary and identity by dlock number)

software management HULL
machine independent

§ software maintenance

SAIL

20. ABSTRACT (Continue on reverse side If necessary ana identify by block numbder)

/A4 SAIL is a software development and management aid which provides a basis for
disciplined design, programming, maintenance, and execution of computer programs.
The system achieves a new level of centralized software development and mainte-
nance control, while simultaneously decentralizing applications, providing con-

. trolled task specialization at compile time, and realizing portability between
dissimilar machines. The system encourages economy by reducing duplication of |
effort often found when many versions of a basic source code are required. The —4;~

S e T W T

DD | 5n%% 1473) eoimion oF 1 Nov 68 13 cesoLETE UNCLASSTFIED i

SECURITY CLASSIFICATION OF TW1iS PAGE When Date Eatered) ‘

S ——

SECURITY CLASSIFICATION OF THIS PAGE("hen Dete Entered)

Block 20. (Contd)

—{ J7system achieves efficient hardware utilization by providing source code which
is specialized at execution time for the task. Except for a few machine
dependent statements, SAIL is written in ANSI (66) FORTRAN IV. The system is

currently operating on COC, IBM, and Honeywell computers.

] A

UNCLASSIFIED

SECURITY CLASSIFICATION OF "WIS PAGE When Data Entered)

I I

e

AFWL-TR-78-80

PREFACE

The authors wish to acknowledge the numerous contributions by Maj Daniel A.
Matuska, Maj Richard E. Durrett, and Dr. Reginald W. Clemens who were respon-
sible for the early development of the SAIL program.

Reference to a company or product name does not imply approval or
recommendation of the product by the US Government to the exclusion of others
that may be suitable.

ACOESSION for___
NTIS White Sectlon &
ppe Rutt Section [
UNANNOUNCED O
JUSTIFICATION e

o ar - {

BY ——
DISTRIBULN AV ARUNTY CODES

(Dist ik, eodor SPICIAC]

1/2

— M e
AFWL-TR-78-80
CONTENTS
Section
I INTRODUCTION
11 GENERAL INFORMATION
111 SAIL LANGUAGE USED IN GENERAL MODES
IV SAIL EXECUTIVE PROCESSOR LANGUAGE
v CONSIDERATIONS ABOUT SAIL USAGE
V1 MACHINE DEPENDENT INFORMATION
VII HISTORY AND PHILOSOPHY OF SAIL

APPENDIX A - SAIL SYSTEM GENERATION PARAMETER
APPENDIX B - SAIL PROCEDURES
GLOSSARY OF TERMS

3/4

o
p— ™
NmmLp
"

27
40
53
64
69
75
98

!|ullllull-!F-v-----'--F--"'!""!'"'"'*"'H-!ll!-l'!---'-'---nw---=---u--s:f v

AFWL-TR-78-80

SECTION I
INTRODUCTION

‘ 1. OVERVIEW OF SAIL

SAIL is a computer program that manages card-image data files. Like other
utilities of its type, SAIL creates, updates, and operates on library files
which contain data needed for other steps of job execution. As a FORTRAN-based
program, SAId’brovides a very high degree of machine independence. With the
exception of a few statements and routines which must be machine-dependent for
the sake of efficiency, SAIL is written in standard FORTRAN. Thus, it may be
] run on any machine which has an ANSI 66 FORTRAN IV compiler and a reasonable
] operating system. SAIL is currently running on the following computers and
operating systems:

CDC CYBER 176 (NOS/BE 1.2)

CbC 6600 (SCOPE 3.4.4)
. CoC 7600 (SCOPE 2.1.4)

IBM 360 (0s)

IBM 370 (0s/vs2)

Honeywell 6080 (MULTICS)
Honeywell 6080 (WWMCS)

In addition to high machine independence, the most significant features of
SAIL include variable-value substitution, conditional selection of code, inclu-
sion of common code, and a flexible, yet simple, macro capability. The selec-
tion and modification of lines of data are controlied by OPTION parameters
according to the needs of the particular task at hand.

SAIL was written to address two major problems that arise when large
computer programs are maintained and executed. First, duplication of effort
often results when several versions of a source code exist. Second, computer
time and space are wasted when problems of various sizes and complexity are
run on a code of fixed dimensions and generality.

S —

AFWL-TR-78-80

The following is a summary of the features of SAIL.

a.

file.

Single Mode for Each Execufion

(1)

Normal mode in which the executive processor produces a card-image

(2) Library maintenance modes are:

UPDATE for modifying a library.

LIST for printing its contents.

GENERATE for creating a new library.

COPY for reproducing a library.

PUNCH for punching portions of a library.

SCAN for finding occurrences of character strings.

Default Choices

(1)
(2)
(3)

Operating mode (NORMAL)
OPTION list (library dependent)
PROGRAM 1list (library dependent)

OPTION Parameters (Name-Value Pairs)

(1)

(2)

Which control:
Selection of cards written during NORMAL runs.
Dynamic substitution (see below)

Which can be:

Set to nonnegative integer values.

Treated as logical values.

Defined by an arithmetic expression involving OPTIONS.

Employed in logical expressions for definition of OPTIONS or for

selection tests.

d.

involving OPTIONS and constants.

Dynamic String Substitution

(1) Allows setting:

(2)

Dimensions to fit each task.
Other numbers such as loop indices.

In which the string can be:
An integer encoded from the result of an arithmetic calculation

Wm e . aiaas o
.

e T YT Tty

e e e

e

R -

AFWL-TR-78-80

The alphanumeric name of an OPTION selected from a table within
the OPTION 1list.

e. Intermachine Transport of Libraries and Change Cards

(1) Allows a library used on several machines to be supported from any
one of them.

(2) Is enhanced by using OPTIONS to select the code peculiar to each
machine.

f. PROCs (Blocks Defined for Conditional Insertion at Multiple Points on
the Processed Card-Image File)

(1) Can be used for coordinating FORTRAN COMMON blocks.
(2) Allow reordering of routines or other contiguous blocks of code.
(3) May be inserted in other PROCs.

(4) Have macro ability so different strings can be substituted within
a PROC at each insertion.

g. An Alternate Input Data to Control Data Generation During a NORMAL Run
2. OVERVIEW OF THE SAIL REFERENCE MANUAL

As its title suggests, this report is intended primarily as a reference
manual for SAIL users. It is also of use to those who install and maintain
SAIL on particular computers. Before using SAIL, users should be acquainted
with the material in Sections II, III, IV and V, as well as that part of
Section VI specific to their computer. The extensive examples in Section VI
should prove particularly useful. Examples are also given in Sections IIl and
IV. The appropriate job control language for typical SAIL executions is
illustrated in Section VI.

~4

E

l'lllllll.lllll!llllllllllll!!lllllllll!lllIIll!lllll!llIll!Illnllllnul-u-n-l!u-u----nnu_

AFWL-TR-78-80

SECTION II
GENERAL INFORMATION

The basic objective of SAIL is to maintain library files that contain
card images for a related set of tasks so that the file for any specific task
can be produced by selecting the appropriate control OPTION. Although this
reference manual is oriented toward its original use of managing source cards
for compilers and assemblers, SAIL can handle any card-image file that contains
72 or fewer columns of data.

A Tibrary file consists of SAIL records preceded by two logical records of
header information. Each SAIL record consists of an identifier and 80 charac-
ters. The first 72 characters contain either a directive to SAIL or data that
is useful to one or more of the tasks. The last eight characters give the date
the card was inserted or last modified. Throughout this manual, the terms
SAIL record or line refer to the identifier and character information as stored
on a library file. Card or card image refers to the information as written to
the file to be used for the task, that is, just the character information. The
SAIL record identifier will occasionally be called the line number.

The SAIL records are stored sequentially on the library in the order of
their Tine numbers. The library can be partitioned by the *B directive which
identifies the cards between consecutive occurrences of itself as a named
PROGRAM. The lines on the library preceding the first program are called the
PROLOGUE. During executions other than those which create a new library, SAIL
ideals only with the PROGRAMs which have been selected by the user. If the user
does not explicitly request one or more PROGRAMs, SAIL processes either the
entire library or, for a NORMAL run, those on the default PROGRAM list.

‘Default 1ists of both PROGRAMs and OPTIONs are maintained in the two header

records of the library along with a table giving the first line number in each
PROGRAM. The PROGRAM structure, as defined on this last table, can only be
modified on runs in the UPDATE mode. The first header record also contains a
SYSTEM name and the VERSION number to identify the library.

What actions SAIL performs during a particular execution are determined by
the contents of a file designated INPUT in this manual. The general form of

. " —r -
m‘v .

AFWL-TR-78-80

this file has two parts, the request area and the changes. If there are any

changés. there must be a request area. I[f the file is empty, all of the SAIL

defaults will be taken (NORMAL mode with the default OPTION and PROGRAM selec-

tions). A nonempty INPUT file must begin with the request SAIL. For an exact
B description of the request area, see Section 3.

The operating mode for the run is either designated by a request or is

: . defaulted to NORMAL. Only in NORMAL mode is the execution processor called to
process the executive directives. (See Section III, para 1(a) for a full
description of each mode.) In other modes the executive processor creates,

updates, lists, scans, punches, or copies the library. .

Changes to lines on the library consist of a general SAIL directive
(Section III, para 2b), followed by cards to be added to the library either
permanently or for the remainder of the run. Changes are recognized by SAIL for
all modes except COPY. However, only in UPDATE runs are they made permanent
by creating a new library. The library modification directives (1) allow inser-
tion of cards after any line, (2) allow deletion of a single line or a consecu-
tive set of lines with insertion of new cards in the place of the deleted cards,
and (3) allow replacement of a string on a line by a new string. If a line or
consecutive set of lines to be inserted already appears elsewhere on the
library, the *M directive can be used to effectively place a copy of it in a
change set at any place a card containing data or storable directives could
occur.

Within each selected PROGRAM, SAIL lines are processed in the order they
occur on the library as modified by the changes. Each record is examined to
see if it is a recognizable directive. If it is, it is either ignored or acted
on according to the mode of execution. During NORMAL runs, any data lines
(those lines which are not SAIL directives) are written out to SAIL unless
skipping ha- been initiated by a previous directive. An exception to the strict
sequential processing occurs when groups of cards are defined as PROCs. The
PROC with the matching name can be written to the file for the task wherever an
*INCLUDE directive is encountered.

The subject of PROCs and selected skipping brings us to another distinction
arising from the origin of SAIL in two separate programs. This is between
general SAIL directives, which are recognized during all modes of execution, and
SAIL executive directives which are processed only during NORMAL runs. The

o

AFWL-TR-78-80

general directives include the PROGRAM definition directive, the library
modifiers, the INPUT modifiers, and the listing controllers. Most are used to
manage the library.

Executive directives are used to select cards for the particular task at
hand during a NORMAL run. Most of these directives can contain an operand
field consisting of an expression involving OPTIONs. The operand field can
have either a TRUE or FALSE value. If it is FALSE, it inhibits the action of
the directive, thereby acting as a selection mechanism. The values of the
operand fields can be changed by modifying the OPTION values, allowing numerous
different files to be produced on different NORMAL runs corresponding to each
particular task dealt with by the library.

Ideally, once a particular set of card images has been tested for proper
operation and stored on the library along with appropriate executive directives,
the user need only set the OPTIONs to activate it. Thus, an entirely new
program may be created by selecting a hitherto untried combination of OPTIONs.
If an error is found on the library, it can be corrected for all tasks whose
OPTIONs activate the cards containing the error. On the other hand, if a new
task requires modification of a group of cards, but the original set is still
needed by others, the user can define a new OPTION and/or new values for exist-
ing OPTIONs to activate and inactivate the appropriate cards without affecting
the other users.

This last use of OPTIONs is particularly applicable to source decks that
are to be used on different computers. Source statements peculiar to each
machine can be selected, while the library file remains the same on all machines.
When SAIL produces the file for the task at hand, only those card images needed
for that task and on that machine are present. Multimachine maintenance of a
library is enhanced by two other features of SAIL. The first is the ability
of SAIL to convert its library to and from a coded format which can be used on
any computer system. The second is the fact that SAIL does its own free-format
processing of INPUT which is independent of the computer.

A final noteworthy feature of SAIL is its character string substitutions.
In addition to the library modifying directive *C, which makes substitutions
in a single SAIL record, there is the EDIT request which will replace a given
character string by another wherever it occurs on the library. EDIT operates
only during UPDATE and LIST runs. Dynamic substitution during NORMAL runs is

10

AFWL-TR-78-80

also available. While especially useful in changing several array dimensions
between which calculable relations must exist, it can do more general substitu-
tions than those in dimension declarations. These substitutions include not
only setting Toop indices, etc., to match the chosen dimensions, but any alpha-
numeric substitution needed for a particular task.

A related type of substitution that can occur in PROCs is called MACRO
substitution. In this case, the *PROC directive which defines the name and
heginning of the PROC has a 1ist of character strings which can be changed
wherever they are flagged within the body of the PROC. What they will become
is determined by similar lists of character strings on the *INCLUDE directives
which cause the PROC to be placed on the file produced by the NORMAL run.

2. FILES USED BY SAIL

The SAIL program uses ten files in processing its data. In this manual,
these files are designated as OLD, NEW, SAIL, INPUT, INPUT2, OUTPUT, ERROR,
PROCF, SAVE, CHANGE, and TEMPF. What SAIL uses each of these files for and
what they are named on various computer systems are tabulated below. (For
external structure of these files and substitutions that can be made, refer to
the section on programming considerations for the particular computer system.)

SAIL FILES - NAMES AND USES

Name Used | coC IBM Honeywell
in Manual Use - Name Name File Code
OLD 01d Library oLD FTO2F001 2
NEW New Library NEW FTO1FGO1 1
SAIL Processed card-images SAIL FTO8FOON 19,165 ..
INPUT Control and changes INPUT FTO5F001 I*
INPUT2 Alternate control INPUT2 FTO9F004 9
OQUTPUT Lists and run status OUTPUT FTO6F001 p*
ERROR Nonfatal error messages SSSSER FTO4F001 q
PROCF Temporary storage-random SSSSPR FT10F001 10
TEMPF Temporary storage-random SSSSTM FT11F001 1
SAVE Temporary storage SSSSTM FT12F001 12
CHANGE Temporary storage SSSSCH FTO3FOO1 3

AFWL-TR-78-80

‘ SECTION III
SAIL LANGUAGE USED IN GENERAL MODES

1. SAIL REQUESTS

Most functions of the SAIL program are controllied by the SAIL requests
found in the input stream and the alternate input stream during NORMAL runs.
A11 of the records (cards) on INPUT that are encountered before either one
containing an asterisk in column one or an end-of-file make up the request area.
Each record in the request area is assumed to contain request elements
separated by one or more SAIL delimiters (blank, comma, or equal sign). Request
‘ elements may be either requests or parameters associated with requests.

Two structures thai can occur within the request area merit mention. A
request pair is two elements that must occur on the same card. The first
identifies a parameter to be set and the second gives the value. A specifica-
tion area is the set of request elements starting after a request to form or
modify a 1ist. Specification areas are terminated either by the end of the
request area or by the occurrence of a request element that has been designated
as the terminator.

The first request must be SAIL or the program will not process the input
stream at all, but will execute a NORMAL run with the default OPTION and PROGRAM
lists. This request identifies the SAIL input. On Control Data Corporation
(CDC) systems, SAIL will search INPUT for its input. The remaining requests
fall into three classes. Except as specifically noted, there is no order
dependence to the requests that either stand alone, are the first members of
request pairs, require a specification area, or occur within a specification
area. There is no limitation as to the number of request elements on a record.
However, each request element must be completed on an input record (card).

T ——————

T T —

a. Primary Requests
(1) File Control Requests

The first class is composed of those requests which affect the
status of either OLD or NEW or both. Any of these requests found before the :

12

AFWL-TR-78-80

first occurrence of a request from another class (or an unrecognizable request)
affects OLD, while any later occurrence affects NEW. These requests are:

SYSTEM = name. Name is the system identifier for an old SYSTEM
If OLD is being affected, name is compared with the SYSTEM name on OLD and
processing continues only if the names match. If this request is not made for
OLD or is ignored, no comparison is made. If the request affects NEW, name
. is placed in the name field of the header record of NEW. (This form of the
request has meaning only for the GENERATE, UPDATE, and COPY modes.)

On CDC systems, the SYSTEM request for OLD has the additional
feature that, if it is specified, it is used as the permanent file name for
internal attaches. These internal attaches are performed only if OLD does not
already exist as a recognizable OLD file and the requests TAPE or LOCAL have
not been specified for OLD. For further discussion of the internal permanent
file attaches, see the section on CDC programming considerations.

VERSION = nn. nn {s the VERSION number existfng on OLD or to be
put on NEW. If the old VERSION number is specified it is compared to the
VERSION number on OLD and processing stops if they are unequal. If no VERSION
number is specified for OLD, no comparison is made and processing continues.
If the request is for the VERSION number of NEW, it is stored in the header of
NEW. (This form of the request has meaning only in the GENERATE, UPDATE, or
COPY modes.) If the new VERSION number is not specified, then it is set to
either one plus the old VERSION number or to one if the mode is GENERATE.

On COC systems, if the old VERSION number is specified, it is used
as the cycle number for an internal permanent file attach. If the old VERSION
number is not specified, any attaches will fetch the last cycle.

e s R _taee -

CONVERT. This request indicates that coded format conversion is
needed for either OLD or NEW. If the request specifies OLD, the mode is forced
to be COPY (see the mode selection requests). A coded NEW file can be produced

B e

only during a GENERATE, UPDATE, or COPY run. !

TAPE = vsn. This request has meaning only on CDC systems. .

indicates that OLD or NEW is found on a tape to be requested from the operating ;

system by SAIL. vsn is the VSN and density of the tape. If the tape has :F

. default density the element may contain only the VSN. If the density is to be ;

requested and the VSN is shorter than six characters, the element has the form
xxx-dd, where xxx is the VSN and dd is the density. If the density is to be

%
i
.ﬁ
|
|
‘1

13

Wm s — - - —‘

AFWL-TR-78-80

requested for a VSN of six characters, the request element has the form
xxxxxxdd, where xxxxxx is the VSN and dd is the density.

LOCAL. This request has meaning only on CDC systems. It
suppresses the automatic internal permanent file attach is specified for OLD
and suppresses the allocation to a permanent file device if specified for NEW.

(2) Mode Requests

The next class of requests are those that select SAIL operation
modes. These requests are UPDATE, LIST, GENERATE, COPY, SCAN, and PUNCH.
Since some of the modes can affect the meaning of the requests in the final
class, it is recommended that any mode requests be placed immediately after
all requests affecting OLD. There is an exception in the case of GENERATE
which must be the last request on the record which immediately precedes the
first card image record to be placed on NEW. If no mode is selected, the
default is NORMAL. It should be noted that with the exception of GENERATE,
which takes effect immediately regardless of whether other modes have been
requested; if more than one mode request is found, only the first is honored.
The SAIL operational modes are:

NORMAL. In this mode, requested changes are made to OLD and the
result is passed to the SAIL data management executive which processes the
executive directives and writes the final form of the records on the file SAIL.
The actions of the executive directives on the SAIL records depend on the
OPTIONs in effect at the time. This is the only mode that will produce more
than one block on SAIL, and then only if it is requested to do so by the exe-
cutive directive *E. (For a further discussion of the operation of the execu-
tive, see the section on the SAIL executive directives.)

UPDATE. In this mode, changes to OLD supplied in INPUT are made
permanent and new SAIL records are assigned record identifiers. Changes may
also be made to the default OPTION 1ist and the default PROGRAM 1list. (See the
requests OPTIONs and PROGRAM for further discussion of the default lists.)
Then, NEW is created with an updated VERSION number.

LIST. This mode causes either all SAIL records on the library or
Just those in selected PROGRAMs to be listed with their identifiers. The
listing may be full or directory (see the discussion of *0IR in the section on
SAIL directives). Any cards added by changes found on INPUT are listed with
identifiers that indicate that they are new records.

14

i i - Mmﬁ*MMughm_ﬂun-ﬁmnﬂidiilhiaiii

AFWL-TR-78-80

COPY. Here OLD is copied to NEW. Only the default OPTION list
and the default PROGRAM 1ist may be changed. Frequently, this mode is used to
convert the format of a library file. The two possible formats are (1) the
coded one recognized by all machines, and (2) the local version of packed for-
mat.

GENERATE. When the request for this mode is encountered, the
remainder of the records on INPUT are read and placed on NEW. This is the way
to create a library which can be processed by SAIL.

PUNCH (or SOURCE). This mode writes all of the SAIL records on the
library or in selected PROGRAMs onto SAIL. Insertions and deletions on INPUT
will be processed, but none of the resulting records will be processed further
by SAIL. They will simply be written as found on OLD or in the change sets on
INPUT.

SCAN. In this mode, SAIL searches for selected character strings
in the SAIL records of OLD. Each record in the request area which follows the
SCAN request and precedes a record whose first request element is ENDSCAN, con-
tains a character string to be located. The first nonblank character on the
record is the string delimiter. The character siring is found between the
first and second occurrences of the delimiter. Any records in the selected
PROGRAMs which contain one of the character strings are written out along with
their identifiers on QUTPUT.

(3) Function Requests

The requests in the final class control many SAIL operations.
Some have meaning only for certain modes, while others have different meanings
for different modes. The requests in this class are:

OPTIONS. During a NORMAL run this request allows the user to
modify values on, or add new OPTIONs to, the default OPTION list which is on
OLD. It is used to create new default OPTION Tists on GENERATE, UPDATE, or
COPY runs. During a LIST, PUNCH, or SCAN run, this request will change the
listing of the OPTIONS but will have no other effect.

This request uses a specification area as described at the
beginning of this section. The terminating request is ENDOPTIONS. Request
elements in the specification area consist of OPTION names, each of which may be
followed by a request element specifying the OPTION value as a nonnegative

15

TENY, T R, Wog R 3

AFWL-TR-78-80

integer. If the element following an OPTION name is not on the same card or
does not contain a number, the OPTION value is set to zero and the new element
is treated as a new OPTION name. If a specified OPTION name exists in the
OPTION list, only the new value is placed in the list. If not, the name is
added to the list as well. There is a 1imit of eight characters for an OPTION
name. Any name which is longer is shortened to the first eight characters.

If the request "AFTER" is encountered in this specification area
then a table will be constructed. (The symbol " {is part of the request. It is
an 8-4 multipunch, the alpha equal punch on the 026 keypunch which prints as a
on CDC systems.) The table will be placed in the OPTION list after the OPTION
name found in the request element following AFTER, A1l OPTIONs following this
name are placed in the OPTION 1ist with values determined as above in the order
in which they are found in INPUT until either the specification area ends or
two consecutive occurrences of the same name are encountered. The QPTIONs
which originally followed the head of the table are pushed down. As OPTIONs are
added to the table, they are removed from any other positions in the OPTION list
where they occur, including prior positions in the table.

DELOPTIONS. This request deletes OPTIONS and their values from the
OPTION list. Like the OPTIONS request, its specification area can be terminated
by the request ENDOPTIONS.

LINENO. This request causes SAIL to write the SAIL record
identifier (1ine number) of each card-image in columns 73 to 80 (in place of the
date) on NORMAL runs. If the entire identifier will not fit, omission of a non-
zero card number is indicated by a trailing plus sign and truncation of the most
significant digits of the block number by a leading plus sign.

COL. The number which follows this request defines the number of
columns which are to be scanned for any free-field information on INPUT. The
default value is 72 unless it is reset for a particular installation.

BCD. This request has meaning only on IBM systems. It indicates
that SAIL must convert the information on the following records from 026 key-
punch format (BCD) to 029 keypunch format (EBCDIC).

EBCDIC. This request has meaning only on IBM systems. It negates
the conversion initiated by the BCD request.

16

P T AT . Y v W ST

.

AFWL-TR-78-80

NOLIST. This request suppresses the listing of NEW which
normally occurs during an UPDATE run.

NOAST. This request affects only listings of SAIL records.
If specified, it suppresses the asterisks which are normally printed in the
listing next to the card images which were changed by the last UPDATE run.

LINES. The number following this request defines the number of
lines to be printed on each page of a listing. The default is normally 60 but
may be set by the installation.

COLMARK. If this request is specified, column numbers are printed
at the top and bottom of each page during a listing to allow easy use of the
column change feature.

DIRECTORY. This request sets the global list type to directory
instead of full. (See the discussion of *DIR in the section on SAIL directives.)

PROGRAM. This request allows the user to make PROGRAM selections.
The specification area following this request can be terminated by the request
ENPROGRAM.

On NORMAL runs, only the PROGRAMs named in the specification area
will be processed by SAIL. If this request is not found or none of the PROGRAMs
specified exist on the library, SAIL will process the PROGRAMs in the default
PROGRAM table. An empty default PROGRAM table is treated as a selection of the
entire library.

-

On UPDATE, GENERATE, or COPY runs, the PROGRAMs named in the speci-
fication area are used to form the new default PROGRAM table. If none of the
names on the new library, SAIL creates an empty default PROGRAM table.

On PUNCH or SCAN runs, only the PROGRAMs found in the specification
area are processed. If no PROGRAMs are requested (either there were no known
PROGRAMs in the 1ist or the PROGRAM request was not specified), the entire library
is processed. In these modes the PROGRAM name PROLOGUE is used to specify the

_prologue.

TP, P <, Goar AR A

On LIST runs the specification area identifies those PROGRAMs that
are to be listed. I[f the PROGRAM request is in use, the name PROLOGUE must be
in the specification area if the prologue is to be listed. If a PROGRAM name is
followed by "DIR" or "NODIR" (the symbol “ is part of the name), then the listina

17

AFWL-TR-78-80

of that PROGRAM is directory or full, respectively. Otherwise, the listing is
the global type. Finally, if the PROGRAM request was not specified then the
entire library is listed. (See the DIRECTORY request for the global listing
type.)

PROSNAME = name, This selects program name for special pro-
cessing during a NORMAL run. If special processing is selected only lines
requested in program 'name' will be written onto SAIL. A1l other programs that, -
were selected will be scanned for PROCs which can be used by name,

EDIT. This request is honored only in LIST or UPDATE runs. It
allows the user to make string substitutions. Each record in INPUT following
the request and preceding a record beginning with the request ENDEDIT or the
end of the request area, contains two character strings. The first nonblank
character is the delimiter. The character string to be replaced is between
the first and second occurrences of the delimiter. The string to be substituted
is between the second and third occurrences of the delimiter. During LIST or
UPDATE runs, the SAIL records are scanned for the requested character strings
after insertions, deletions, and column changes are processed. Substitutions
are made if the strings are found.

SEQ. This request resequencing of the SAIL record identifiers of
the entire library on UPDATE runds. If this request is omitted, only the
PROGRAMs specified by the SEQPROGRAM request will be resequenced and other
new records will be assigned a card number with the block number of the preced-
ing existing record in the file.

SEQPROGRAM. This request selects PROGRAMs to be resequenced
during an UPDATE run. If SEQ has been specified, this request has no effect.
The specification area for this request is the same as for the PROGRAM request.
For this request, the PROLOGUE must be identified by name.

(4) Examples of Requests

For these examples we will assume that SAIL is processing a library
whose SYSTEM and VERSION identifiers are EXAMPLE and 12, and that it contains
the PROGRAMs: TRIAL, TEST, and DONE. The default OPTION list of the library
contains: A=2, B=3, C=12, D=0, E=36, and its default PROGRAM table contains
TEST.

18

=

AFWL-TR-78-80 !

SAIL SYSTEM EXAMPLE

This set of requests will cause SAIL to process PROGRAM TEST in a NORMAL
mode and to use the OPTIONs as they appear in the default OPTION list.

SAIL SYSTEM EXP

or

SAIL SYSTEM EXAMPLE
VERSION 12

In either of these cases, SAIL will terminate abnormally, if in the first
set, the SYSTEM identifier of the requested library is not EXP and in the
second, the SYSTEM identifier is not EXAMPLE or the VERSION number requested
is not 12.

SAIL

OPTIONS

CC=10, B8=2, E=N
ENDOPTIONS

DELOPTIONS C ENDOPTIONS
PROGRAM TRIAL

In this case, SAIL will process the PROGRAM TRIAL in a NORMAL mode. C will
be removed from the OPTION 1ist and CC will be added with a value of 10. The
values of B and E will be reset to 2 and 11, respectively.

SAIL LIST

With this request set, SAIL will list all the PROGRAMs that are on OLD.
SAIL LIST DIRECTORY

In this case, SAIL will list only those card-images on OLD which are found
between a *DIR and a *EDIR directive.

SAIL LIST

PROGRAM TRIAL

DONE "DIR" ENDPROGRAM
or

AFWL-TR-78-80

SAIL LIST DIRECTORY
PROGRAM

DONE TRIAL "NODIR"
ENDPROGRAM

Either of these request sets will cause SAIL to list all of PROGRAM TRIAL
and the directory portion(s) of PROGRAM DONE.

SAIL UPDATE

Here, the library on OLD will be updated by the changes that are found in
the rest of the input in order to form a VERSION 13 of EXAMPLE which will be
written on NEW. Neither the default OPTION list nor the default PROGRAM table
will be changed by this update and none of the existing record.

SAIL UPDATE SEQ VERSION 15
OPTIONS CX=14

With this request set, the library identified by SYSTEM EXAMPLE on OLD will
be updated to VERSION 15 on NEW. During the update, the record identifiers in
all the PROGRAMs will be resequenced. The new library will have a different
OPTION list to which CX will have been added.

SAIL UPDATE
SEQPROGRAM TEST ENDPROGRAM
PROGRAM DONE

These requests will update the library on OLD to produce VERSION 13 of
SYSTEM EXAMPLE, but only the record identifiers in PROGRAM TEST will be
resequenced. The new version of the library will have a default PROGRAM table
which contains only DONE.

SAIL CONVERT COPY

This set of requests instructs SAIL to convert a coded file on OLD to a
packed file on NEW, and not to modify the OPTION list or the PROGRAM table.

SAIL COPY CONVERT
OPTIONS XxX=12, A=10

Here, SAIL will convert a packed OLD file to a coded NEW file. There will
be an additional OPTION XX with a value of 12 on the default OPTION list of the
resulting NEW and the value of A will be changed to 10.

AFWL-TR-78-80

SAIL COPY
PROGRAM NONE

Since NONE is not a PROGRAM on SYSTEM EXAMPLE, SAIL will simply copy OLD to
NEW, with an empty default PROGRAM table on NEW. The default on a NORMAL run
for the resulting library would be all the existing PROGRAMs.

SAIL SYSTEM SYSNEW VERSION 2
GENERATE PROGRAM TEST
OPTIONS XX=2

These requests instruct SAIL to generate a new library called SYSNEW
beginning with VERSION 2. The PROGRAM request will be completely ignored. The
record that looks like an OPTIONS request will be treated as data. It will not
be processed as a request either on this run or on any subsequent run.

SAIL SCAN
~XXYY-
$2Q VWS

Here, SAIL would scan the PROGRAMs on OLD for records which contain the
character strings XXYY and ZQVW.

b. Alternate Requests

SAIL reads file INPUT2 for additional requests which effect option
selection, and program selection during a NORMAL run. On the alternate input
file there is one request per line. The requests are:

PROGRAM name. This selects name as a program to be processed. When
this request is first encountered it overrules any program selection from INPUT.

PROSNAME name. This selects name as the program for special pro-
cessing. It acts the same as PROGRAM in addition to setting special processing.

OPTION name = value. The request set as OPTION name to value.

2. SAIL RECORD IDENTIFIERS

As was mentioned in the discussion of current SAIL structure (Section 2.1),
SAIL record identifiers contain a block and a card number. As parameters of the
SAIL directives, they appear in the form bbbbb.ccc, where bbbb is the block
number and ccc is the card number. If the card number is zero, neither ccc nor
the period need be given. Actually, the user need only remember that the proper

21

AFWL-TR-78-8

record identifiers appear in the SAIL listing. This form of identifier allows
libraries to be updated without resequencing all the Tine numbers. Thus, while

a Tibrary is in a development and testing phase, change decks need only minor
alterations in spite of updates.

3. GENERAL SAIL DIRECTIVES

There are thirteen general SAIL directives. Unlike the SAIL executive
directives which operate only in NORMAL runs, these take effect during execu-
tions in any mode. Each directive is identified by an asterisk in column one
of the input record, with the directive verb beginning in column two. The verb
must be separated from any parameters by at least one of the SAIL delimiters
(blank, comma, or equal sign). One of the directives is used to define PROGRAMs
in the SAIL system, four are used to modify OLD, five affect the structure of
the input stream, and three control the SAIL listing. During NORMAL runs, none
of these are written to SAIL.

a. SAIL PROGRAM Definition
*8 pname

When this directive is encountered during a GENERATE or UPDATE run, the
name pname is placed in the PROGRAM table in the header of :NEW. On subsequent
runs when this file is reidentified as OLD, the records found after this direc-
tive and before the next *B directive are considered to compose one PROGRAM.
The PROGRAM may then be selected for processing by referring to pname in the
specification area of the PROGRAM request. Note: The PROGRAM name is added to
the PROGRAM table only during GENERATE and update runs. Thus, PROGRAM name
definition directives added during any other run are ignored. When this direc-
tive is encountered during a SAIL listing it is forced to be at the top of the
page.

b. SAIL Library Modifiers

A11 of these directives modify OLD and appear only on INPUT. Only {

one modification directive should specify any SAIL record (this includes records :
“in the range of the delete directive). If, however, more than one directive
specifies the same record, then all but one are ignored and a warning message

is printed indicating which directives were not used.

22

AFWL-TR-78-80

(1) Record Insertions

*A nl
or
L3 | nl

Either of these directives inserts records after the record in OLD
with the identifier nl. All the records between this directive and the next
modification directive or end-of-file are inserted.

(2) Record Deletions

* nl n2
or
*C nl n2

These directives are used to delete all of the SAIL records on OLD
from the one with the identifier nl through the one with the identifier n2. If
only nl is specified, then only one record is deleted. If both are specified,
they must be separated by at least one SAIL delimiter. All the records between
this directive and the next modification directive or end-of-file are inserted
at this point.

(3) Record Modification
* nl (e1,c2,cnl,cn2)

This directive replaces columns ¢l through ¢2 of the record
identified by nl with columns cnl through cn2 of the record which follows this
directive. If the number of characters in the replacement is not equal to the
number removed from the record, the characters in the original record to the
right of the change are shifted. Should nonblank characters be shifted off the
end of the record, a warning message is printed. The column change parameter
field is defined by the parentheses and must be separated from the record
identifier by at least one of the SAIL delimiters. The column numbers may be
separated by an SAIL delimiter(s): ¢l must be specified. If c2 is not specified
it is set to 72. The defaults for cnl and cn2 are 1 and cnl+c2-ci, respectively.
If cnl is zero then no characters replace those removed from the record and the
record containing the characters to be substituted may be omitted. A1l records
foliowing this directive, except for the one holding the substitution characters,
are ignored until another modification directive is encountered.

s

AFWL-TR-78-80

c. SAIL Input Modifiers
(1) Record Copying
M nl n2
This directive copies records from OLD beginning with the one
identified by nl to the one identified by n2. The records copied effectively

replace this directive in the input stream. If n2 is not specified, only the
one record is copied. :

(2) Input Record Conversion (IBM)

*BCD
and
*EBCDIC

These directives affect conversion of subsequent records in the
input stream in the same way as the BCD and EBCDIC requests.

(3) Text Data Control

*TXT
and
*ETXT

These directives identify the beginning and end of a block of input
records which are not processed either by SAIL or the SAIL executive. The
included records are treated as ordinary data even if they have the format of
a SAIL directive. (This also applies to additional occurrences of *TXT before
*ETXT.) Because they also act as executive directives, they appear as data on
OLD and NEW.

d. SAIL Listing Control

This set of directives gives the user control of SAIL listings. In
order to maintain their function on later runs, they are stored as data on NEW.

(1) Paging and Summary Control

*p sname

When this directive is encountered as a record to be listed, SAIL
forces it to begin a new page. In addition, if the name sname is present, it
is written along with the record identifier for the directive at the end of the
listing on a summary table.

24

R gy

AFWL-TR-78-80

(2) Directory Listing Control

*DIR
and
*EDIR

These directives identify the beginning and end of a block of
records to be listed if the listing type is directory. During a directory
listing of the PROGRAM where they occur, only those blocks of records so
identified will be Tisted. During a full listing, all records in the PROGRAM
are listed.

e. Examples of SAIL Directives
A typical set of modification directives are:

*A 10000

*P TEST

Cardl

*M 942,966

Card 2

*D 12642.1 12713
Card3

Card4

Card5

*M 15462 15477
*D 942,966

*D 16111, 16452
*TXT

*A TEXT

*D TEXT

*¢ 10 (TEXT)
*ETXT

*C 1214 (12,14,2,3)
ABCDE

The first directive instructs SAIL to insert records containing
*p TEST and Cardl, records 942 through 966 from OLD, and a record containing
Card2 after record 10000. Then SAIL is to delete records 12642.1 through 12713
and insert three records containing Card3, Card4, and Card5 followed by

25

e s o m— e —

AFWL-TR-78-80

records 15462 throdgh 15477 in their place. Records 942 through 966 are to be
deleted without making insertions. (Note: these are the same records copied
during the first insertion.) SAIL is then instructed to delete records 16111
through 16452 and insert as text the records containing *A TEXT, *D TEXT and
*C TEXT. (Note: these records would have been mistaken as directives had they
not been between *TXT and *ETXT.) The last directive is an instruction to
replace columns 12 through 14 on record 1214 with the characters BC.

4. SAIL COMMENTS

Any record, either on OLD or in a change set, which has an equal sign (=)
in column one is a SAIL comment. During NORMAL runs these records are not sent
to the SAIL executive processor.

e

AFWL-TR-78-80

SECTION 1V
SAIL EXECUTIVE PROCESSOR LANGUAGE

1. EXECUTIVE DIRECTIVE FIELDS

In general, SAIL executive directives contain three fields: the verb field,
the name field, and the operand field. Each field contains one or more elements
which are separated by SAIL delimiters (blank, comma, and equal sign).

a. Verb Field

The verb field contains one element which must begin in column one
of the record, and must be *PROC, *INCLUDE, *ENDPROC, *KEEPTO, *SKIPTO, *LABEL,
*DEFL, *DEFN, *AUTO, *MAN, or *E. Because all general SAIL directives except
*B, *TXT, and *ETXT are stripped from the modified 1ibrarv before the executive
processor operates, any card not containing one of these three or a SAIL execu-
tive directive will be treated as data.

b. Name Field

The name field may contain a simple name, a macro name, or a table
name. The simple name form can be used for all directives that need a name
(*AUTO, *MAN, *ENDPROC and *E do not). It contains one element called the name.
The macro name contains a parenthesized subfield. The left parenthesis must be
part of the first element of the name field. In this case, the name is the
portion of the first element which precedes the left parenthesis. The subfield
within the parentheses may contain up to nine elements called parameters. (For
a discussion of the macro parameters see the section in the macro processor.)
The macro name field may be used in *PROC and *INCLUDE directives. The table
name field may be used in *INCLUDE directives and contains three or four ele-
ments, the first and last of which are the character $. (Refer to the discussion
of the inclusion of PROCs for a description of the table name.)

¢. Operand Field

The operand field contains either a numeric or logical expression. It
may be left blank to make the directive unconditional.

27

AFWL-TR-78-80

(1) Numeric Operands

A numeric expression is one element long and contains integers,
nonnumeric OPTION names (replaced by the corresponding OPTION value) and the
arithmetic operators + (addition), - (subtraction), and / (division). The
numeric operand field is used only on the *DEFN directive. Its evaluation is
described in the section on OPTION redefinition.

(2) Logical Operands

A logical expression contains one or more logical units which are
connected using the logical operators AND, OR, and NOT. Each logical operator
must be an element of the field. The operand field is processed from left to
right so each logical operator acts on the values of the total expression to its
left and the first unit to its right. Higher level units may be defined by
parentheses to modify the order of processing. The parentheses may be either
separate elements or concatenated onto logical unit elements (but not onto
operators). Each unit has a TRUE or FALSE value for use in the logical opera-
tions.

Each lowest level logical unit is composed of one, two, or three
elements. The one element units are of the form xxx or xxxnn, where nn is a
number and xxx is the name of an OPTION. (SAIL will terminate abnormally if
the name is not found in the OPTION list.) If nn is not specified, the unit is
TRUE if the value of the OPTION xxx is greater than zero and FALSE if it is
equal to zero. If nn is specified, the unit is TRUE only if the value of the
OPTION is equal to the number.

The two element logical units occur in two forms. In the first,
the first element is an OPTION name and the second is of the form yynn, where
yy is one of the comparative operators EQ, NE, LT, LE, GT, or GE and nn is a
number. The unit is TRUE {f the comparison is satisfied and FALSE otherwise.
If the OPTION name is not in the OPTION table, SAIL will terminate abnormally.
In the second form, "DEF" is the first element (the symbol " is part of the
element) and an OPTION name is the second one. The unit is TRUE only if the
OPTION is currently in the OPTION list.

The three element logical units contain an OPTION name in the
first element, a comparative operation in the second, and a number or an OPTION
name in the third. The result of the comparison of the value of the OPTION in

28

AFWL-TR-78-80

the first element and the number or value of the OPTION in the third determines
the logical value of the unit.

The user should refer to the discussion of each directive for
information on how the operand field affects it. If there is no operand field
present on an executive directive which can have a logical expression, SAIL
acts as if a TRUE result were obtained (this is considered an unconditional
directive.

(3) Examples of Operands

For these examples, we assume the OPTION 1ist contains: A=1,
B=2, C=42, D=0, Q=16, BVD=22, and XXX=45. The first five examplies are assumed
to occur in the operand fields of *DEFN directives, so they are interpreted as
numberic operands in accordance with the rules explained below in the discussion
of that directive.

A+B*C

This has a value of 126. (3 times 42)

A-B+Q

This operand has a value of 15.

A-C+2

Since the computation yields a negative result, the value will be
set to zero.

B

As a numeric operand, this field has a value of 2.

ci0

Because the OPTION name-test value concatenation has no meaning in
a numeric operand field, c10 will be treated as the OPTION name. No such

OPTION appears in the list, so the *DEFN will be ignored.

The remaining examples are assumed to occur in the operand.

A-C+2

This looks like a numeric operand, but it has been assumed to
occur in a place where it will be interpreted as a logical operand. There is
no OPTION names A-C+ in the list, so SAIL will terminate abnormally.

B

As a logical operand, the result is TRUE since B is greater than
zero.

29

e s e s =

r—

AFWL-TR-78-80

c10

The result will be FALSE since C is not equal to 10.

“DEF" X

This logical operand is FALSE since X is not in the OPTION list.
"DEF" Q

This field will be TRUE since Q is in the OPTION 1list.

Q GES

Because Q is'greater than or equal to 5, this field will be TRUE.
Q EQ C

The result from this field is FALSE since Q is not equal to C.
The next six examples of compound operands will have a result of
TRUE.
OR B8O
AND B
AND D OR Q GE12
OR (D AND Q)
B3 OR (D OR (C42 AND BVD))
"DEF* A OR (B AND "DEF"* X)
while these will be evaluated as FALSE:
A AND BO
A OR Q GE12 AND D
A AND (A2 OR BI)
XXX LE100 OR DO AND "DEF" X

> > > >

2. SAIL EXECUTIVE DIRECTIVES

These directives control the creation and inclusion of blocks of records
called PROCs, skipping of records during processing, further definitions of
OPTIONs, dynamic substitution, and termination of blaocks on SAIL. They are
stored in the card portion of the SAIL records on NEW so they can be used
during later runs. They wi]] appear in listings of the library, but will only
take effect during NORMAL runs. After being processed, they do not appear on

SAIL.
a. PROC Creation

a PROC is a collection of SAIL records that can be included at any
later point(s) on SAIL. If the executive directives *DEFN, *DEFL, *KEEPTO,
*SKIPTO, *LABEL, *AUTO, or *MAN occur within the body of the PROC, they are

30

AFWL-TR-78-80

processed at creation, not at inclusion. *INCLUDE and *E are implemented when
the PROC is included. PROCs are identified and created by the directives:

*PROC name operand
and
*ENDPROC

If the logical expression in the operand field is TRUE, the records
between these directives are saved as a PROC named name. Note: *PROC and
*ENDPROC directives are paired. Therefore, SAIL will abort if *PROC occurs in
a block identified as a proc (between a *PROC and *ENDPROC directive), or if
*ENDPROC occurs without a paired *PROC.

b. PROC Inclusion

Inclusion of PROCs is initiated by the directive:
*INCLUDE name operand

This directive causes the block of records in the PROC identified by the
name field to be included if the result of the operand is TRUE. PROCs may be
included within other PROCs, but the level of inclusions is limited to eight.

SAIL requires that a PROC be created before the request for its
inclusion is honored. For *INCLUDEs outside of *PROCs, this is at the time
the directive is processed. If the *INCLUDE directive is located in a block
defined as another *PROC, it is honored when the PROC that contains it is
included.

This directive can have a table name field. The field is defined by
a dollar sign ($) being the beginning and ending elements. The rest of the
field may be made up of one or two elements called table elements. The first
is of the form xxxnn, where xxx is an OPTION name and nn is a number. The OPTION
list is searched for the name xxx and the corresponding value NV is obtained.
Then the values of the next NV OPTIONs in the list (table) are compared with nn.
[f the name xxx is not found, SAIL will terminate abnormally. If none of the
OPTION values searched are equal to nn, then the *INCLUDE is not honored. How-
ever, if an OPTION is found whose value is equal to nn, the characters that make
up that OPTION name become gpe first part of the PROC name. If there is a second
table element, it is concatenated on the end to complete construction of the
name.

31

AFWL-TR-78-80

¢. Record Processing Control

Control over which records within each PROGRAM are processed by the
SAIL executive is established by the directives:

*SKIPTO name operand
*KEEPTO name operand
and

*LABEL name

The first two conditionally initiate skipping of the records identi-
fied by the name field. SAIL starts skipping after *SKIPTO if the operand
field is TRUE and after *KEEPTO if it is FALSE. Otherwise, processing con-
tinues with the next card. If the name is of the form *nn, the next nn records
are skipped. (SAIL comment, *P, *ETXT, *DIR, and *EDIR are not counted.) If
the name element is any other character string, the records are skipped until
a *LABEL directive is encountered with either no name field or a name identical
to the one on the *SKIPTO or *KEEPTO directive. *LABEL cards are ignored if
skipping is not in progress or if the names do not match. Skipping by the SAIL
executive is automatically terminated at the end of a PROGRAM.

Since these directives can cause SAIL to skip SAIL executive directives
(including other *SKIPTO and *KEEPTO directives), care should be taken that the
records skipped do not unbalance the required pairing between *PROC and *ENPROC
directives.

d. OPTION Definition

New OPTIONs may be added or existing OPTION values modified by the use
of two SAIL executive directives. If an OPTION is defined in either of these
ways, SAIL writes an informative message on OUTPUT identifying the OPTION name
and its new value. These values only apply to occurrences of the OPTION name
that physically follow the defining directive and precede any redefinition of
the same OPTION. If the OPTION identified in the name field is in the OPTION
list, these directives redefine the value. If not, the OPTION is added to the
end of the list.

An OPTION may be defined as the result of a logical expression by the
directive:

*DEFL name operand

32

AFWL-TR-78-80

The logical value of the operand determines whether the OPTION,
identified in the name field, is set to one (TRUE) or zero (FALSE). Otherwise,
it is added to the OPTION list.

An OPTION may be defined by an arithmetic expression by using the
directive:

*DEFN name operand

This is the only directive that has an arithmetic expression as an
operand field. The expression is evaluated in strict left to right sequence.
Parentheses cannot be used to define subexpressions and no hierarchy is
recognized among the operators. If an OPTION name occurring in the expression
is not on the OPTION 1ist, a warning message is printed and the directive is
ignored. If the final result is negative, it is set to zero. Otherwise, the
result of the expression is used as the new value of the OPTION identified in
the name field.

e. Value Substitution Control

Dynamic value substitution is not performed for every SAIL record. This
processing occurs only for those records which have a dollar sign ($) in column
one or which follow the directive:

*AUTO
and which precede the directive:

*MAN
The operation of dynamic substitution is described in paragraph 3.

f. Block Termination Control
*E

This directive will cause the current block being written on SAIL to be
terminated. If it occurs in a PROC, it takes effect when the record containing
the directive would have been written on SAIL had it been a data record.

'g. Examples of Executive Directives

If we assume that the OPTION 1list is the same as for the operand examples,
then typical executive directives would be:

33

,;
|
E
}

AFWL-TR-78-80

*PROC ABC

Cardl

Card2

Card3

*ENDPROC

*PROC XYZ A OR BO
Card4

Card5

*INCLUDE ABC

*ENDPROC

*PROC QRS A AND BO
Card6

Card7

*ENDPROC

These directives will cause two PROCs to be created. The PROC named
ABC will be created unconditionally and will contain records Cardl, Card2, and
Card3. XYZ will be created since the operand is TRUE. It will contain Card4,
Card5, and all the records in PROC ABC. QRS will not be created since the
operand is FALSE. Records Card6 and Card? will be ignored.

*INCLUDE VW

The records in PROC VVV will be included unconditionally at the posi-
tion where this directive occurs.

*INCLUDE VXZ Q GE10

This directive causes the records in VXZ to be included because the
operand is TRUE.

*INCLUDE VX D

In this case, no records will be included because the operand is FALSE.

*KEEPTO *] A
CardA
*SKIPTO ol B
CardB
CardC
*SKIPTO END D
CardD

34

e e

AFWL-TR-78-80

CardE

*KEEPTO END BVD LTS
CardF

*LABEL END

This set of directives will cause the records CardA, CardD and CardE
to be processed, and records CardB, CardC, and CardF to be skipped.

*DEFL YYy A NE1 OR B3
*DEFL 22 A AND Q GTS
*DEFN BBB Q*C/BVD

*DEFN XXX 12

Here, YYY, ZZZ, and BBB will be added to the OPTION list with values
0, 1, and 30, respectively. The value of XXX will be redefined as 12.

*KEEPTO *] Q
]

These directives will cause the current block being written on SAIL to
be terminated.

If in addition to the OPTIONs mentioned, the OPTION list contained the
table: TAB=4, TIM=3, QVZ=4, ZZX=2, and VWW=1, then

*INCLUDE $ TAB1 CCX $

would cause the records contained in the PROC named VWWCCX to be included at
this point, while

ey

*INCLUDE $ TAB6 XX $
*INCLUDE $ TAB4 XY $ Qo
*INCLUDE $ TAB2 $ A AND B

would cause only PROC ZZX to be included. The first *INCLUDE would be ignored
because there is no OPTION following TAB which has the value 6. The second
is ignored because the operand is FALSE.

3. DYNAMIC SUBSTITUTION

v
TNV SN R SPERIGN. S 4, GO WO, b SN, DA A

a. Description of Processor

The dynamic substitution processor modifies the contents of a record to
values depending on the OPTIONs currently in the list. An arithmetic
expression which contains OPTION names and/or integers separated by the

35

S —

| W——

AFWL-TR-78-80

arithmetic operators + (addition), - (subtraction), * (multiplication), and

/ (divisicn) can be processed. Each expression must be enclosed by its own pair
of the characters produced by a 0-8-5 multipunch (printed as - on CDC systems
and as _ on IBM systems and designated as the special delimiter in the following
discussion). The expression is processed from left to right in the same manner
as the numeric operand field (see the description of the *DEFN directive). If
any of the OPTION names in the expreSSien_are not found in the OPTION list, the
executive processor writes an error messagé‘aad sets the fatal termination flag.
Otherwise, the encoded result of the expression repiaces that expression in line
(delimiters are also removed). SAIL will terminate abnormally if the dynamic
substitution processor finds an odd numer of occurrences of this delimiter on

a card.

The user may request SAIL to make more general character substitutions.
The substitution identifier is enclosed by the same delimiters and is of the
form $xxxnn (the $ is required), where xxx is an OPTION name and nn is an
integer. The OPTION list is assumed to contain the name xxx followed by at
least as many OPTIONs as the value of OPTION xxx. This identifier and its
delimiters are replaced by the first OPTION name from the group mentioned whose
value is equal to nn. If either xxx or a value equal to nn is not found, the
identifier is replaced in the record after the delimiters and $ are removed.

Two other delimiters are recognized by SAIL as defining the beginning of a
substitution field. These are left parenthesis and slash. Right parenthesis
and slash are the respective terminators. Subfields may be defined by commas.
If the special delimiter appears, it terminates the current subfield and the
processing described in the two paragraphs above occurs. A new subfield begins
after the special substitution field unless the appropriate terminator (right
parenthesis or slash) appears immediately. Since the occurrence of a left
parenthesis or a slash begins a specific field definition for this form of
processing, one of these types cannot be inside the field defined by the other.
The user should be certain that the characters which begin and end these fields
are properly paired. The substitution is limited to the replacement of a
single OPTION name by its value. If the user wishes to use an expression to
define the substitution field, he must use the special field form. ODuring sub-
stitution in fields delimited by parentheses or slashes, none of the delimiters
(except those defining special substitution subfields) are removed. This form
allows vaiues to be substitued in FORTRAN DIMENSION and DATA statements. It is

36

AFWL-TR-78-80

the user's responsibility to insure that records are not jdentified for sub-
stitution processing if they contain variables identical to OPTION names

enclosed by parentheses or slashes.

The next blank field following any substitution area will be either
expanded or contracted, if possible, to place the next nonblank character in
the same column that it occupied prior to substituion. This realignment allows
the SAIL user to maintain tabulated columns in COMMON and DATA statements,
since the next bIAnk'may be inside an H field. This problem is easily overcome
by inserting an extra blank before the H field.

b. Examples of Dynamic Substitution Fields

For these examples, we will assume that the OPTION list is VV=2, QT=3,
Z2X=4, QVX=3, C1B=1, C2B=4, C3X=7. When the SAIL executive processes the
following records:

$ DIMENSION A(VV,QT),C(C3X),BX(C2B*C3X)
§ DATA A(2,C1B) /_C18%2+1 / 3
DIMENSION Q(Z2X), AX(_VV*QT)
*AUTO i
CALL_$QVX4_(X)
CALL_$QUXT0_(X)
22XA1%QT_
A%B4C
MAN
it will produce:
DIMENSION A(2,3),C(7),BX(28)
DATA A (2.,1) /3/
DIMENSION Q(Z2X).AX(_VV*QT)
CALL C28(X)
CALL QV10(X)
45
A*B4C *FATAL ERROR®

4. SAIL MACRO PROCS
a. Description of Macro Processor

Macro PROCs are identified by parenthesized subfields in the name field
of the *PROC and *INCLUDE directives. When a macro PROC is being included, each

37

AFWL-TR-78-80

record of the PROC is scanned for a field enclosed by a unique pair of the
characters ". (This character is the alpha shift of the equal sign on the 026
keypunch and is printed as # on CDC systems.) ' If the field within the delimiters
matches one of the subfield parameters on the *PROC directive, the corresponding
parameter on the *INCLUDE directive replaces the field and its delimiters if it
was specified as nonblank. If an *INCLUDE directive for a macro proc is found
in another macro PROC, then each time that include is honored, its parameters
are scanned in the same way as other records and substitutions are made. After
any scan, if the field within the delimeters does not contain a parameter that
appeared on the PROC directive or there is no corresponding parameter on the
*INCLUDE directive, then the delimiters are removed and the field is returned

to the record. Just as in the dynamic substitution, the first blank field
following each macro substitution is used to realign the following nonblank
character. (See the discussion at the end of the description of the dynamic
substitution processor.) In the case of macro PROCs, the realignment allows
correct placement of the character following a substituted FORTRAN statement
number, as well as tabulated COMMON and DATA statements.

b. Example of Macro PROC Usage
If we have the following records:

*PROC MACI(A,B,C)
"C"Y="A"+"B"X
€ "ATBnC
*ENDPROC
*PROC NORM(11,I,N,X,Y)
Yhe0
DU SYT* Rt owdy, S
o LR L AR T D L T &

nzu = SQRT("Y")
*INCLUDE MAC1("Y",D"Z"D,Q)
*ENDPROC

*INCLUDE MAC1(VV,UU,BV)

*INCLUDE MAC1(XX)

*INCLUDE NORM(3,J,NXTOT,F,FBAR)
*INCLUDE NORM(2015,M,P)

the SAIL executive would produce:

AFWL-TR-78-180

2015

BVY=VV+UUX
VVUUBY

CY=XX+BX

XXBC

FBAR = 0

D03 J = 1,NXTOT
FBAR = FBAR + F(J)*F(J)
Z = SQRT (FBAR)
QY=FBAR+DZDY

FBARDZDQ

Y =0

D0 20151 1,M

Y Y + P(I)*P(I)
Z = SQRT(Y)
QY=Y+DZD.

YDZDQ

39

AFWL-TR-78-80

SECTION V
CONSIDERATIONS ABOUT SAIL USAGE

1. LIBRARY GENERATION AND EARLY DEVELOPMENT

A user could convert an existing card-image file into a SAIL library by a
GENERATE run. The easiest way to proceed is to simply place a card containing

SAIL SYSTEM=name GENERATE

for a request area at the beginning of the file. If the file has been main-
tained by some other editing program in which special blocks that will become
PROCs have already been identified, it would save time if these blocks were
kept separate, especially if the equivalent of the *INCLUDE directive were kept
in the file input to SAIL.

Having created a SAIL library of the file, the user could then examine it
for sets of consecutive cards that appear in more than one place throughout the
file and consider making them into PROCs. Such PROCs could then be created and
the original sets replaced by *INCLUDE directives on one or more runs in UPDATE
mode. This idea would apply especially to such sets as COMMON blocks in
FORTRAN which are subject change as the routines develop and which must be the
same in each routine. The user could also find array dimensions, loop indices,
and other parameters for which it would be advantageous to use dynamic string
substitution. He could modify and flag cards containing this sort of data and
define OPTIONS to be used in the substitution during UPDATE runs. As he
developed the structure of the library, the user would always (barring errors)
be able to produce the original file on NORMAL runs both for production and for
testing of the developing library.

At some point in the development, the need for an alternate version might
arise. Without deleting any good lines from the original library, the user
could insert new cards for the alternate along with directives to skip thé
unneeded cards on NORMAL runs meant to produce either file. These directives
might be controlled by a new OPTION which identified the version. For instance,
READ statements of FORTRAN source code vary in format from one computer to . ﬁ
another. In particular, cards like

READ (8,100) A
[f (EOF(8) .NE.O.) GO TO 200

40 |

AFWL-TR-78-80

where one of the OPTIONs CDC, HONW, or IBM has been set nonzero (TRUE) and the
other two zero (FALSE). The same sort of structure, perhaps involving more
cards and employing the *LABEL directive, could be used to add a new capability
that was only needed for some runs. While the identical file could be produced
on a NORMAL run using deletions and insertions, the necessary change deck could
soon become cumbersome and the purpose of using SAIL defeated. If programming
errors were found in a part of the coding common to both versions, correcting
the library would correct both versions so two different change decks would be
unnecessary.

As a (somewhat overdone) example of what a routine in a SAIL library could
become, consider the following. Sixteen different versions of this routine are
contained in this library representing all possible choices of the OPTIONs
COMPLEX, GAUSS, DIM (odd or even - the variations due to simple dimension changes
are not counted in the sixteen), CDC, IBM, and HONW. The routine is supposed
to initialize the array F which might be either complex or real. The array
values are to represent either a Gaussian curve or a square. If F is real, the
absolute squares of the complex values that would have occupied the same array
position are needed. The machine-indicating OPTIONs are set as in the preceding
example.

*PROC /FIELD/

*KEEPTO *1 COMPLEX
COMPLEX F

$ COMMON /FIELD/ F(DIM)

*ENDPROC

*B SAMPLE

SUBROUTINE SETFLD
*INCLUDE /FIELD/

C READ POWER AND WIDTH OF BEAM
¢ AND WIDTH OF WORKING GRID
C

*KEEPTO *2 CDC
READ (5,200) POWER,WIDTH,GWIDTH
IF (EOF(5) .NE.O.) GO TO 100

L)

t AFWL-TR-78-80

*KEEPTO *1 IBM OR HONW
READ (5,200,END=100) POWER,WDITH,GWIDTH
IF (WIDTH.LE.GWIDTH) GO TO 20
WRITE (6,210) WIDTH, GWIDTH
STOP
$20 DX=GWIDTH/_DIM
*KEEPTO ENDGAUSS GAUSS

INTENSITY IS
I(X) = POWER*SQRT(2/PI)/WIDTH
* EXP(-2*X*X/(WIDTH*WIDTH)
.7979 = SQRT(2/PI)

O O O 0O 0O O

*SKIPTO *2 COMPLEX
FNORM= . 7979*POWER*DX/WIDTH
ALPHA=-2./ (WIDTH*WIDTH)

*KEEPTO *2 COMPLEX
FNORM=SQRT (. 797 9*PONER*DX/WIDTH)
ALPHA=1.414/WIDTH
X=.5%(-GWIDTH+DX)

*LABEL ENDGAUSS

*SKIPTO SQUARE GAUSS

*SKIPTO *1 COMPLEX
FNORM=POWER*DX/WIDTH

*KEEPTO *1 COMPLEX
FNORM=SQRT (POWER*DX/WIDTH)
XSTART=- , 5*WIDTH

=~ . 5*GWIDTH

*LABEL SQUARE

$ DO 80 I=1, DIM/2_

*KEEPTO *1 GAUSS AND NOT COMPLEX

*KEEPTO *1 GAUSS AND COMPLEX
F(1)=COMPLX(FNORMBEXP(ALPHA*X),0.)

*SKIPTO SQUARE GAUSS
IF(X. E.XSTART) GO TO 60
IF(X+DX.LE.XSTART) GO TO 40

42

AFWL-TR-78-80

c APPORTION INTENSITY IF BEAM EDGE NOT CELL EDGE
c
*KEEPTO *1 COMPLEX
F(I)+CMPLX(FNORM*SQRT((X+DX-XSTART)/DX),0.)
*SKIPTO *1 COMPLEX
F(I)=FNORM*(X+DX-XSTART)/DX
GO TO 70
*KEEPTO *1 COMPLEX
40 F(I)=(0.,0.)
*SKIPTO *1 COMPLEX
40 F(I)=0.
GO TO 70
*KEEPTO *1 COMPLEX
60 F(I)=CMPLX(FNORM,O0.)
*SKIPTO *1 COMPLEX
60 F(I)=FNORM
*LABEL SQUARE

o

C TAKE ADVANTAGE OF SYMMETRY ABOUT X=0 (GRID CENTER)
o

$70 F(_DIM+1_-I)=F(I)

80 X=X+DX

*DEFN EVEN DIM/2*2

THESE ARE SAIL COMMENT CARDS
THIS SECTION WILL BE SKIPPED IF DIM IS 0DD
IT SETS THE MIDOLE POINT

*SKIPTO ENDODD DIM EQ EVEN
*SKIPTO *1 COMPLEX
$ F(_DIM/2+1_)=FNORM
*KEEPTO *1 COMPLEXT
$ F(_DIM/2+1_)=CMPLX(FNORM,0.)
*LABEL ENDODD

RETURN

AFWL-TR-78-80

100 WRITE (6,220)
STOP
200 FORMAT (3E10.3) .
210 FORMAT(14H BEAM WIDTH (,E10.3,
1 30H) IS GREATER THAN GRID WIDTH (,
1 E10.3,1H))
220 FORMAT(38H END-OF-FILE ENCOUNTERED, NO BEAM INFO)
END

2. FREQUENTLY USED SAIL MODES

The three modes used most frequently during SAIL executions are NORMAL,
UPDATE, and LIST. NORMAL mode produces a card-image file to be used for some
task. It can be used not only when a well-established file is needed, but also
to test the effect of changes to the library before they are made permanent.

When UPDATE is requested, SAIL creates a new library, thereby making permanent
changes to an older library. In LIST mode, SAIL provides listings of the library,
as affected by the changes. It can be used both to discover the line numbers

for needed changes and to see the effects changes make on the library.

When a well-established library is used during a NORMAL run, the user will
probably need to make no changes. If the default OPTION and PROGRAM selections
are the ones that produce the desired file, the request area (in fact the whole
INPUT file) could be left empty. If modifications to the OPTION list of a
different set of PROGRAMs are needed, the INPUT file would consist of a request
area. If an error on the library has been detected, a set of changes would be
necessary on the NORMAL runs used to verify the correction. However, it is
possible to set the options from the alternate input file. This is used to
allow options to be set from other programs.

Development of a library could be handled by a combination of NORMAL, UPDATE,
and LIST runs. Until changes become so numerous as to make INPUT burdensome to
handle, NORMAL runs could be used to test out additions and corrections. When
INPUT becomes too large or when some major portion has been completed and checked,
an update run would create a new library. Normally, the line numbers would be

resequenced during an update. However, especially when several users are involved :

in parallel development, it might be convenient to have the lines not involved
in the change retain the numbers from an older stable version of the library.

-J_::F—

AFWL-TR-78-80

In this case, either no resequencing would be done or only those PROGRAMs on
which work was essentially complete could be resequenced using the SEQPROGRAM
request.

At times, especially during a development phase, users might need extra
listings of a library in addition to the one produced during the last UPDATE run.
This can be accomplished by LIST runs. The EDIT feature, as well as the change
set, is recognized during runs in LIST mode, so the library can be listed as it
would appear after an UPDATE run with the same INPUT file except for the obvious
change in the requests from LIST to UPDATE. The only advantages of this over
doing a trial update and discarding the new library if further corrections were
needed, are that the execution time to copy a temporary file onto the new library
is saved and one less file need be assigned. On the other hand, if all went well,
an UPDATE run would still be needed to create the new library.

3. USE OF REQUESTS

Most of the information the user needs concerning requests is presented in
other sections of this manual. The specifics of what each request does are found
in Section 3.1. Much of the test of Section V deals with choosing the operation
mode, PROGRAMs, and OPTIONs. This section reemphasizes points about the inter-
actions among the requests and warns about pitfalls that can arise while request-
ing EDIT.

The first thing to keep in mind is the general structure of the request area.
In general, request elements are free-field, that is they do not have to start in
any particular column; there can be any number on a card, and they are separated
by one or more SAIL delimiters (blank, comma, or equal sign). Any unrecognized
request is ignored. A character string that looks like a request may be treated
as an OPTION or PROGRAM name if it falls within a specification area or it may be
treated as a parameter if it follows a request that is the first member of a
request pair. In many cases, a request parameter can be overridden if the same
request recurs.

The very first request must be SAIL if any further requests or change cards
are to be processed. Following this, any file control requests (listed in
Section 3, para. 1) that refer to OLD must appear. As soon as a request that
cannot affect OLD is found, the old library is opened and any further file control
requests are applied to NEW. Unless the mode is GENERATE or NORMAL it is best to
specify the mode next. This is because many function requests, such as EDIT and

45

T SRS TN SRS T W o NAEIR T W e -

AFWL-TR-78-80 |

those which affect listing, are ignored unless the mode has been already |
selected. For GENERATE runs, mode selection must be the last request, because
SAIL immediately starts reading subsequent cards as lines for the library being
created.

Remember the following restrictions. Only one mode can be in effect for a
given execution of SAIL with the half-exception of LIST which is considered a
function request during an UPDATE run. If two or more mode requests occur, the
first remains in effect unless GENERATE occurs, which overrides all other modes.
The CONVERT function request automatically selects COPY mode when it refers to
OLD.

Finally, following the mode request if needed, the function requests and
file control requests referring to NEW may come in any order. Unless the SYSTEM
or VERSION requests explicitly appear in the part of the request area where they
reset these parameters for NEW, the values from OLD will be used with the
VERSION number incremented by one.

EDIT should be used with extreme care. A prior SCAN mode run with the same
cards will find and 1ist all the strings that will be substituted for. Remember
that all cards are processed by the EDIT routine, including those newly inserted
or modified by the column change feature. After an UPDATE or LIST run on which
he requests EDIT, the user should check each card from the SCAN listing, as well
as each card marked by an asterisk as newly changed, to insure that the desired
character changes were made.

4. SETTING UP SELECTION MECHANISMS

Three basic methods are available for selecting which cards from a library
will be written to the SAIL file during a NORMAL run. In order of increasing
flexibility, these are:

PROGRAM requests
Use of *KEEPTO and *SKIPTO
c. Combinations of *PROC and *INCLUDE

Not only its inflexibility, but the fact that it is independent of the OPTION
selections (although the converse is not true), puts PROGRAM selection into a low
priority among the available selection mechanisms. Nevertheless, it has some
utility. The original purpose of PROGRAM structure was to indicate the main
FORTRAN programs on a library of related programs. In the HULL library, SAIL

46

AFWL-TR-78-80

itself, a problem initializer, a preprocessor that managed interfaces with a
tape library, the main problem solving code, and a graphics package were stored
and selected by the PROGRAM request. A second form of library where PROGRAM
selection is useful is one consisting of modules, subsets of which can serve as
replacements for each other. Each module could be identified as a PROGRAM,
allowing it to be selected for individual output on NORMAL, LIST, or PUNCH runs.
This form of selection would work best on module libraries where strict module
interfacing rules were imposed on module programmers. Strict enforcement of
such rules would be less necessary if the modules were not used with ones not
supported by SAIL, for by tying OPTIONs to PROGRAMs (see the next section),
interfaces could be made dependent on which modules were in use. If OPTION
controlled selection were used on such a library instead of, rather than in
addition to PROGRAM selection, module separation for use within non-SAIL-
supported modules could only be accomplished on NORMAL runs, so only one
version of the module, not all those on the library could be obtained.

The remainder of this discussion is concerned with OPTION-controlled
selection mechanisms. Notwithstanding the comment at the end of the preceding
paragraph, it is in NORMAL mode where selections are usually wanted, so the
fact that these selection mechanisms work only in that mode is not a drawback.
In fact, if they worked on UPDATE runs, it would be impossible to change lines
containing SAIL executive directives.

The flexibility of the OPTION-controlled mechanisms resides basically in
the fact that they rely on logical expressions, not just single TRUE-FALSE
tests. It is further enhanced by the fact that the logical units in such
expressions can be relational tests on OPTIONs. Even more, it is OPTIONs that
are used in dynamic substitution so the choice of dimensions, for instance, can
be tied to the choice of cards. Finally, OPTION-controlled selection can inter-
connect with PROGRAM selection due to OPTION revaluing feature explained in the
next section.

Like PROGRAM selection, the *KEEPTO and *SKIPTO directives are sequential
in their operation. Each line or set of consecutive lines is either skipped
without processing or it is not. It is important to remember that *KEEPTO and
*SKIPTO either immediately initiate skipping or they are ignored. Once skipping
is initiated, it is stopped only if (1) the line count is satisified or a
matching or blank *LABLE directive is encountered, (2) the end of the current

47

"..—{ b — e

'IIllllllllll-'lll'l"-'lllll-lllll'.llll'-'lllllIlllIllllllllll!lllllllllIlullllllll-lll--u-u-puunuuupuuanq!!

AFWL-TR-78-80

PROGRAM is found. In particular, a *KEEPTO with a TRUE operand or a *SKIPTO
with a FALSE one will not nullify skipping initiated by a previous *KEEPTO or
*SKIPTO.

The great flexibility inherent in selection by *PROC and *INCLUDE manifests
itself in several ways. A block of cards can be placed in several places on SAIL
while only appearing once on the library. Blocks can be reordered by reordering
the *INCLUDE cards. PROCs can be nested within other PROCs. The macro pro-
cessing ability generalizes the concept of block of cards from strictly identical
set to one in which different character strings can occur for each *INCLUDE while
retaining the same basic structure. Augmenting all the above features is OPTION
control over whether to create a PROC, whether to honor an *INCLUDE, and which
PROC should be included.

The user must avoid two basic pitfalls when using PROCs. First, only
*INCLUDE (except the conditional expression is processed at PROC creation time)
and *E are honored within a PROC when it is included. The other executive direc-
tives, in particular *KEEPTO, *SKIPTO, *DEFL, and *DEFN, are honored when it is
first created. Second, SAIL aborts if a PROC has not been created at the time
an *INCLUDE for it is honored (see Section IV, para. 2b). This problem can arise
when using OPTIONs either to select a PROC name or to nullify creation of a PROC.

These situations might arise if a Tibrary contains several versions of a PROC.
with the correct one being selected by OPTIONs.

Having reviewed the properties of the OPTION-controlled selection mechanisms,
let us consider how and when to use them. As a general rule, if a block of
lines are to appear only one place on tie SAIL file, use *KEEPTO or *SKIPTO; if
it must or can appear in several different places, define it as a PROC.

It would be possible to create the same final SAIL file by using either only
the skipping directives or only PROCs, but either extreme would be cumbersome.
With only *KEEPTO and *SKIPTO, a line would have to appear on the library
explicitly in each position where it was needed for any single variation of the
i SAIL file. With only the PROC mechanism a large number of PROCs would have to
[be defined. On some computers, SAIL will abort if too many (about 500) PROCs
are created. By using a combination of selection mechanisms, the user can
create an efficient library that is easy to comprehend.

a8

- ——

AFWL-TR-78-80

5. REVIEW OF OPTION DEFINITION METHODS

Because OPTIONs play such an important role in producing task-oriented files
on NORMAL runs, a review of the means by which they are defined is warranted.
Each library file has a default OPTION 1ist which is set during GENERATE,
UPDATE, or COPY runs. On such runs, additions, redefinitions, and deletions
given in the request area modify the old default list to form the one written
out on the new library. Permanent changes of the default 1ist can be made only
in this manner.

No action involving OPTIONs, except editing the default OPTION list, occurs
during runs in modes other than NORMAL, so the rest of this discussion is con-
fined to that mode. Before any SAIL records are processed, the default OPTION
list is modified by the OPTIONS and DELOPTIONS requests just as in any other
run. Then SAIL reads the alternate input file (INPUT2) for PROGRAM and OPTION
directives. Finally, each selected PROGRAM name is compared with each OPTION
name. For each match where the option value is zero, it is reset to one. This
changes the OPTION effectively to TRUE if it was FALSE. Once processing begins,
new OPTIONs can be added to the list and old ones given new values by the *DEFN
and *DEFL directives. Note that changes to the OPTION 1ist by these directives
only affect the lines which physically follow them on the library.

The "DEF" operator gives the user a powerful tool for setting OPTIONs.
Consider the structure:

*SKIPTO *1 "DEF" OPTA
*DEFN OPTA operand

This could be more properly or readily handled by the default OPTION list of the
numerical operand were a simple constant. However, if one or more OPTION names
are used in the operand, these lines establish a default relationship between
OPTIONs which can still be explicitly overridden by setting OPTA with the
OPTIONS request. Obviously, OPTA should not appear in the default OPTION list
or the *SKIPTO would be useless. There is a case where even a constant operand
makes sense. That is where these two lines fall within the range of a longer
*SKIPTO that depended on another OPTION. An example of this usage occurs

within the library for SAIL itself where the OPTIONs are used to handle machine-
dependent features. The lengths of various I/0 buffers are set'by this struc-
ture to values best suited for the machine for which a source file of SAIL is
being produced.

49

'
YIRS AP ~BIIER, WAPRGE. WA\ £ T8 gy v 0F w8

AFWL-TR-78-80

Another use of "DEF" is possible if the user establishes the convention that
among a set of OPTIONs that are used mainly for TRUE-FALSE tests, that one appear
on the default OPTION 1ist, that those explicitly defined by the OPTION request
for a run (usually just by naming them with no paired value so they are set to
zero) should be reset to one (TRUE), and that those no otherwise defined should
be set to zero (FALSE). For each such OPTION, a SAIL record of the form:

*DEFL OPTA "“DEF" OPTA

would properly reset the values. Of course, each such OPTION could be left
undefined (by the library) and the logical unit "DEF" opta used for each test
instead of OPTA, but this might get cumbersome.

A slight modification of the convention might involve defining undefined
OPTIONs as zero (FALSE), resetting a-1 zero values to one (TRUE), and leaving
any larger values alone, thus allowing the OPTION to convey more information in
TRUE cases. A proper set of *SKIPTO or *KEEPTO instructions would have to pro-
] ceed the *DEFL. In particular, *SKIPTO *1 "DEF" OPTA
' *SKIPTO *1 OPTA
*DEFL OPTA "DEF" OPTA

6. NAMING OPTIONS

Any string of eight or fewer characters that contains no SAIL delimiter can
be used as the name during OPTION definition. Both the OPTIONS request and the
DEFL and *DEFN directives will establish or reset OPTIONs with such names. How-
ever, there are some practical restrictions on the actual names a user should
employ. Except for the special case of a table entry (which must be more general),
OPTION names should both begin and end with alphabetic characters.

This restriction is based first upon the concatenated OPTION name-integer
form of logical unit within a logical operand. While processing such an element
as A1B23, SAIL recognizes it as meaning A1B EQ 23. Thus, if an OPTION were
defined as A1B23, SAIL would be unable to test it for TRUE or FALSE or to use it
in a comparative test in a logical expression. Therefore, any OPTION name to be
used in a logical operand should not end in a number. Also, the letter combina-
tions that form logical or comparative operators should not be used as OPTION
names.

Another reason for restricting OPTION names arises from the actions performed
by the dynamic substitution processor. This applies mainly to cards identified

50

AFWL-TR-78-80

for such processing, and the general rule that OPTION names begin with alphabetic
characters prevents most problems. What has to be avoided is inadvertent substi-
tution. Because a left parenthesis or slash will initiate construction of a
string for possible substitution, and commas can delimit these strings, a field
may match an OPTION naire and be replaced by its value even though no such action
was intended by the user. The fields occurring in FORTRAN FORMAT statements may
present such a case if substitution is in effect. Usually, no character string
that both begins and ends with a letter will be a legal FORMAT specification,
although such things as A3/1X might still appear set off by commas. Another
possible inadvertent substitution situation is on cards marked for substitution
that contain a simple integer variable as a subscfipt. Because this is exactly
the syntax that occurs on declaration statements where substitution is desired,
the user should avoid giving an OPTION the name of a FORTRAN variable.

The use of a table in an OPTION 1list has been neglected in most of the dis-
cussion in this manual. SAIL uses these tables in two processes. One is dynamic
substitution where a field set off by the special delimiter begins with a doilar
sign. The other is in constructing a PROC name on *INCLUDE directives where the
name field is set off by elements consisting of dollar signs. Section IV,
para. 2b and 3b., respectively, explain how SAIL processes these fields.

PRAS T T BV A

What is of concern in this discussion is how to set up a table or tables to
implement these features, that is, how to use the "AFTER" request within the
OPTIONS specification area. Especially for dynamic substitution, the user might
want a general character string. He must remember and consider the reasons for
the restrictions on OPTION names presented at the beginning of this section. An
OPTION name, whether or not used as a character string to be substituted for
another, can neither exceed eight characters nor contain any of the SAIL
delimiters (blank, comma, or equal sign). It also should be chosen so that
inadvertent substitution does not occur. One interesting point is that an OPTION
name that appears on a table and ends with a numeric character will never be

TP 200 IS o TR VA i 2

confused with any logical element, because of the scanning rules within logical %
operands. é

Concerning the mechanics of the "AFTER" structure itself, several points h
should be reemphasized. First, the table-identifying OPTION that appears ﬁ

immediately after the "AFTER" request, must have already been defined. Second,]
as OPTIONs are placed on the table, if they are already on the OPTION list, they i
are moved from where they were to the current slot on the table. This applies H

|

51 ‘ §

AFWL-TR-78-80

even to OPTIONs that have been placed at previous positions on the table, they
are moved to the new position and removed from the old one. If an OPTION name
appears immediately following itself during table construction, the removal
takes place but it is not inserted back on either the table or the entire list.
This terminates table construction and the normal processing initiated by the
OPTIGNS request resumes, that is OPTION whose names already appear in the list
are redefined and new OPTIONs are added at the end of the entire list. There
is no particular reason to terminate "AFTER" processing, although it can be done
by placing an unused string, such as END, twice in a row. The table length is
specified when the user sets the value of the table-identifying OPTION, so all
the "AFTER" request does is insure that the OPTIONs are in the proper order.

In fact, another table or tables can be added by putting the table-identifying
OPTION with its value after the "end" of the previous table followed by its
table entries. Remember that the first OPTION on the table whose value agrees
with the desired value specified in the field that initiates table searching,

is used in the substitution or PROC name construction. If no match is found,
the original characters, minus the identifying delimiters, are used. The use of
*DEFN to modify the values of table members during executive processing gives
further flexibility {f it is needed.

AFWL-TR-78-80

SECTION VI
MACHINE DEPENDENT INFORMATION

1. CDC CONSIDERATIONS
a. Invoking SAIL

An absolute load of SAIL is stored in a loader library in a permanent
file. At AFWL, the permanent file name and ID are HULLIB and DYMXCER. The
entry points DYTSAIL, DYTLAMB, DYTHUL, and DYMAST are currently active as
initiators of SAIL. Thus, the control sequence
ATTACH(HULLIB, ID=DYMXCER)

LIBRARY(HULLIB)

DYTSAIL(...)

will execute SAIL. The parameters ¢n the DYTSAIL or DYTLAMB control card are

of the form p=aaaa, where p identifies the parameter to be reset and aaaa is the
new value. Possible values of p, the default values, and the meanings of the
parameters are:

P Default Meaning
I INPUT Name of input file containing SAIL
control cards.
0 OUTPUT File to print diagnostics (and listings,
if requested).
S SAIL File for output of NORMAL and PUNCH runs.
NEW File for the new library.
D entry point used Base for permanent file names used in
internal attaches.
ID for entry point
DYTSAIL - DYTHULL
DYTLAMB - DYTHULL .

DYTHUL - DYTHULL
DYMAST - DYMXCER
DESHUL - DESHULL
CcY higher cycle Cycle number for permanent file attaches.

i e —
T ey oy

AFWL-TR-78-80

The D and ID parameters will be discussed more thoroughly in the next section
which covers library file access.

A few considerations of the input file are in order. The end-of-file is
detected using the FORTRAN function EOF. Unless this file is named INPUT, that
is unless it is the card file read in for the job, EOF detects end-of-partition,
not end-of-section (7-8-9) cards. It is the mark written by COPYBF or COPYP
that is recognized by the EQOF function. This permits concatenation of several
files into one for use as an input file for SAIL by use of COPYBR or COPYS.

For example, suppose a local file named SRS contains the compilable cards for a
routine the user wants to make into a SAIL library. The control card sequence
COPYBR(INPUT,A)

COPYBR(SRS,A)

ATTACH(HULLIB, ID=DYTHULL)

LIBRARY(HULLIB)

DYTSAIL(I=A)

CATALOG(NEW,...)

where the record copied from INPUT was one card long and consisted of

SAIL SYSTEM=name GENERATE

would set up the GENERATE run.

Bear in mind that SAIL always rewinds its designated input file and that
an empty record is valid for SAIL control. Thus, if SAIL is to be executed
two or more times during the same job with different requests and/or changes,
its control files must be something other than INPUT for all but one, because
the first record of SAIL control cards will be used over and over. The easiest
way to alleviate this situation is to copy each section of INPUT containing]
SAIL control cards to its own separate file. Also bear in mind that when SAIL
terminates, the file is left positioned just behind the marker recognized by
the EOF function.

b. Access to Library Files

On CDC machines, SAIL can go hunting for its old library file and can
allocate a device for its new library file.

The request TAPE applied to the OLD file tells SAIL to request a tape
from the operating system for OLD with VSN and density as described in
Section III, para. la. The request LOCAL will prevent SAIL from trying to
attach a permanent file even if no local file named OLD is known to the job.

T T ey

54

== o

AFWL-TR-78-80

If the TAPE request does not appear and a local file named OLD is known for the
Jjob by the CDC-SCOPE operating system, SAIL will first check if it conforms to
library format.

When neither the LOCAL nor the TAPE requests appear and OLD either does
not conform or is unknown, SAIL tries to attach a permanent file for OLD. The
permanent file ID parameter is either the ID parameter from the control card
that invoked SAIL or the installation default (DYMXCER at AFWL). The permanent
file name is constructed from a base that is defined in one of three ways. If
the SYSTEM request appears for OLD, that name is used for the base. If there
is no SYSTEM request, the parameter specified after the D= on the invoking
control card is used. And if neither of these is present, the base is the
default name of the invoking control card. The permanent file name is con-
structed by concatenating installation dependent characters onto the base. At
AFWL, no characters are concatenated on, so the base is the permanent file name
for the old library file. The cycle number is the number given by the VERSION
request if that was specified for OLD. Otherwise, the highest cycle for that
permanent file name and ID are attached.

Once an OLD file has been established, SAIL checks whether the SYSTEM
and VERSION parameters stored on the file agree with the requests. If either
request has not been made, that check is considered as passed. If the checks
fail or if the file is not in library form, a flag is set to abort SAIL unless
GENERATE mode is requested. Note that some file will be attached as an OLD
candidate if LOCAL is unspecified even on GENERATE runs, so if the checks are
passed (or not made), the OPTION list from that library will be set up for
modification. To avoid adding unneeded OPTIONs from some other library on a
GENERATE run, either the SYSTEM request should come first so the check will be
failed, or a LOCAL request made.

On UPDATE, GENERATE, and COPY runs, SAIL will write NEW on a permanent
file device unless either TAPE or LOCAL is requested for NEW. If TAPE is
requested, the file will be written on the tape specified by the request as
explained in Section II, para. la.

Because the SCOPE Record Manager routines for the various files have
been specified (on CDC 6600 systems) when the absolute load was created, a FILE
card will not be recognized for SAIL's files, in particular, SAIL or formatted
versions of NEW or OLD. If these files are needed in a different format so as

55

e —

AFWL-TR-78-80

to comply with the requirements of transporting to a machine of a different
manufacturer, as might occur when CONVERT is requested, the SCOPE control card
FILE would be useful. Currently, the files must be copied by reading each card
and rewriting it on a different file in a FORTRAN program so as to implement
the capabilities of Record Manager. There is no such problem on the CDC 7600,
for Record Manager is applied by all routines that interact with files, so FILE
cards are always recognized.

2. IBM CONSIDERATIONS
a. Invoking SAIL

The SAIL program is invoked on the IBM 360 or 370 by executing the pro-
cedure SAIL. The substitutable parameters for this procedure are:

LIBPRE - the prefix for the SAIL library. The current default is
'SAIL'.

LIB specifies the library data set name which contains the SAIL program
in a partition named SAIL. The default value of this parameter is HULLIB.

LIBU specifies the unit where the library data set is located. This
parameter has a null default and must be specified if the library data set has
not been cataloged.

LIBVOL specifies the VOLUME parameter for the 1ibrary data set. It has
a null default value and must be specified if the 1ibrary data set has not been
cataloged.

ALTI - The definition of alternate input file default is 'DUMMY,"'.

CHNBLK specifies the block size of the change file data set. It has a
default value of 3521.

CHLRL - The logical record length of the change file 3517.

DISPn specifies the disposition field for data set assigned to the nth

block of the SAIL file. The defaults are 'DISP=(NEW,PASS)' for all values of
n. :

EXP specifies the retention period for the NEW file data set. The
default is 'RETPD=720' and it should be changed to null if NEW is to be on an
unlabeled tape.

56

T T——— —

AFWL-TR-78-80

FILN specifies the file number on a tape where the NEW file data set is
to be written on a tape.

FILO specifies the file position of the OLD file data set on a tape. It
is given a null default and need only be specified if the old file data set is
on a tape.

GENDUM is a parameter which allows the user to dummy the OLD file DD
card for generation runs. It has a null default and should be set to 'DUMMY,'
for a generation run.)

GENN is the parameter which specifies further qualification of the NEW
file data set name. It has a default of '(+1)' so that it will be the next
generation of a generation data group. If the new file is the first of the
generation data group (i.e., this is the first time this data set name has been
placed on the system), then this parameter should be set to '.Gnn.V0O1' (where nn
is the VERSION number of the library). If the data set is not a member of a
generation data group this parameter must be set to an appropriate value.

GENO specifies the further qualification of the OLD file data set name.
The default value is '(0)' which assumes that the data set is the most current
member of a generation data group. This parameter must be set if the OLD file
is not a member of a generation data group.

LABN specifies the type of label for the NEW file data set. It has a
null default and must be set if the data set is to be written on a tape with
other than a standard IBM label.

LABO specifies the label type for the OLD file data set. It must be
specified if the OLD file is on a tape with other than an IBM standard label.
The default is null.

NEWPRE - the data set prefix for the new data file. Default is 'SAIL'.

NEWDCB is the DCB parameter for the NEW file. It has a default of
'(RECFM=VBS,BLKSIZE=7294)'. The block size may be changed to allow better
utilization of disk space. If the run is to produce a coded NEW file, this
parameter should be set to '(RECFM’FB,LRECL"]ZO,BLKSIZE=1200)'.

NEWDS is the disposition of the NEW file data set. Its default is '
(NEW,CATLG,DELETE) . |

57

e e e e e e et e

e e i e i o O e et e RS p—-

AFWL-TR-78-80

NEWDUM is a parameter which allows allocation of data sets for genera-
tion, update, and copy runs. It has a default of DUMMY and is used to dummy out
the NEW and TEMPF file DD cards. This parameter must be set to null to allow
the TEMPF and NEW files to be allocated to data sets on generation, update and
copy runs.

NEWP allows the user to specify password control for the NEW file data
set. It has a default of NOPWREAD for read only access.

NEWSPC is the SPACE parameter for allocation of the NEW file data set.
It has a default value of '(CYL,(10,20),RLSE)' and can be changed as needed.

NEWU specifies the unit on which the NEW file is to be written. It has
a default of TAPE, but may be set to other units.

NEWVOL is the VOLUME parameter for the NEW file data set. Since this
one has a null default, it must be specified on any generation, update, or copy
run.

OLDPRF - the prefix for the old data set name. Default is 'SAIL.'

OLD specifies the last simple name of the OLD file data set. The
default value of this parameter is SAIL to indicate the OLD file contains the
SAIL library. This parameter must be specified when running SAIL for any other
SAIL library.

OLDDCB is the DCB parameter for the OLD file data set. It has a default
value of '(RECFM=VBS,BLKSIZE=7294)'. This parameter may be changed to allow for
a better block size. When converting from a coded OLD file, it should be set
to *(RECFM=FB,LRECL=120,BLKSIZE=1200)'.

OLDDS specifies the disposition of the OLD file data set. The default
is SHR.

OLDU specifies the unit on which the OLD file data set resides. The
default for this parameter is null and it must be given if the old file data
set is not cataloged.

OLDVOL specifies the VOLUME parameter for the OLD file data set. It
has a null default and must be given if the OLD file has not been cataloged.

PROG - the member name for SAIL in the library. Cefault is SAIL.

PRCL - the number of bytes in random file used for PROCs. Defaulted to
length of record for SAIL generation.

58

AFWL-TR-78-80

PRCN - the number of records in the PROC file. Defaulted from SAIL
generation.

P1 specifies the routing of the normal output from the SAIL program.
The default is 'SYSOUT=A'.

P2 specifies the routing for the nonfatal error messages from the SAIL
program. The default 1is 'SYSOUT=A".

REG is the region size for the SAIL execution step. Its default is 160K.

SAILBLK specifies the block size for the card image data sets which are
produced on the SAIL file during a NORMAL run. The default is 800.

SAILR - the logical record length of the SAIL file used during NORMAL
runs. Default is 80.

SAILn specifies the allocation for the data set assigned to the nth
block of the SAIL file during a NORMAL run (n runs from 1 to 15). 'DSN=SAILCD,
UNIT=SYSDA,SPACE=(TRK,(10,20),RLSE)"' is the default for SAIL1. The default
value is DUMMY for all other values of n.

SCRTC specifies the generic unit name for the scratch disk area. The
default is SYSDA.

STIME is the TIME parameter for the SAIL execution step. Its default
is '(2,0)'.

TEMBLK specifies the block size used by the TEMPF file data set on a
generation or update run. The default is 7924.

TEMPLRL - the logical record length of the TEMP file set used in genera-
tion or update run. Default is 7290.

b. Examples of SAIL Runs

To copy the SAIL library from an unlabeled tape to a generation data
group member, the following would be used:

//CPY EXEC SAIL, GENN='.G50V00 ,NEWVOL= SER=SAILVOL',

/1l OLDU=TAPE9,0LDVOL= 'SER=SAILTAP ',
// OLDDS= (NEW,KEEP) ,
/] LABO=NL,FILO=1,GENO='. TAPE ',NEWDUM=

//SAIL.INPUT DD *

SAIL CONVERT COPY
/*

To perform a NORMAL run from SYSTEM LAMB the card would be:
//NRML EXEC SAIL,OLD=LAMB

//SAIL. INPUT DD *
SAIL

(SAIL change cards)
/

As can be seen from the examples, the procedure has one step name SAIL
and the input DD name is INPUT.

c. The SAIL Procedure

//************** SAIL***************

/*
//* NAME

/1% SAIL
IH*
//* FORMAT
//* // EXEC SAIL,...(OPTIONAL PARAMETERS AS REQUIRED)
/7% [/SAIL.INPUT 0D *
3. HONEYWELL CONSIDERATIONS
Invoking SAIL

A Toad module of SAIL is stored on permanent file. This load module is
invoked by the Honeywell control card PROGRAM. An example of the control cards
for a NORMAL run are:

$ PROGRAM RLHA,DUMP

$ LIMITS ,33K

$ PRMFL H*,R,R,USER/SAILHSTR

$ FILE 01,NULL

$ TAPE9 02,A2D,,tape number of SAIL library

60

AFWL-TR-78-80

$ FILE 03,A3R,20L

$ FILE 04,A4R,10L

$ FILE 10,BOR,20R

$ FILE 11,B1R,20L

$ FILE 12,B2R,40R

$ FILE 15,NOSLEW

$ FILE 15,B5S,50R

$ DATA I*, ,COPY,ENDFC
SAIL control cards

$ ENDCOPY 1*
Cards for utilizing file 15

$ ENDJOB

REEEOF

The control cards for files 3, 4, 10, 11, and 12 should remain unchanged
for any runs in any execution mode except for possible variation in the file-size
parameter. The control card for file I* should also remain unchanged. No con-
trol card is needed for P* which is commonly referred to elsewhere in this manual
as OUTPUT. Refer to Section II, para. 2 for the correspondence between other
file names appearing in this manual and the Honeywell file number.

The control cards for files 1, 2, and 15-23 (NEW, OLD, and SAIL) depend
on the SAIL execution mode. During NORMAL runs, the SAIL file begins on file
15 and is incremented by one each time a *E directive (if any) is written.
Most NORMAL runs require only file 15. If additional files are required, control
cards for files 16 onward should be defined in a manner similar to file 15 in
the above example except that each file must have its unique logical unit desig-
nator.

The following example shows how to.set up the control cards for a run in
UPDATE mode. In this example the entire library is to be resequenced and the
default OPTION 1list altered.

$ PROGRAM RLHS,DUMP
$ LIMITS ,33K

61

AFWL-TR-78-80

$ PRMFL H*,R,R,USER/SAILHSTR
$ TAPE9 01,A1D,,tape no. of new library
$ TAPE9 02,A2D,,tape no. of old library
$ FILE 03,A3R,20L
$ FILE 04,A4R,10L
$ FILE 10,B0R,20R
$ FILE 11,B1R,20L
$ FILE 12,B2R,40R
$ FILE 15,B5R,20L
$ DATA I*, ,COPY,ENDFC
SAIL UPDATE SEQ
OPTIONS ... ENDOPTIONS
SAIL change cards

$ ENDCOPY I*
$ ENDJOB
***EQF

Finally, here is an example of creating a new library from cards. The
SYSTEM identifier for the library is to be NEWLIB. SECOND and PLOTTER are the
PROGRAMs to be written to file 15 by default on NORMAL runs. A default OPTION
list 1is also being stored on the library.

$ PROGRAM RLHS,DUMP

LIMITS ,33K

PRMFL H*,R,R,USER/

TAPE9 O01,A1D,,tape no. of new library
FILE 02 ,NULL

FILE 03,A3R,20L

FILE 04 ,A4R,10L

FILE 10,BOR,20R

¥ A v A v

62

r

AFWL-TR-78-80

$ FILE
$ FILE
$ FILE

DATA

11,B1R,20L
12,B2R,40R
15,NULL
I*,,COPY,ENDFC

SAIL SYSTEM NEWLIB

PROGRAM SECOND PLOTTER ENDPROGRAM

OPTIONS ... ENDOPTIONS GENERATE

Lines to be placed in library go here.
$ ENDCOPY I*

$ ENDJOB
***EQF

AFWL-TR-78-80

SECTION VII
HISTORY AND PHILOSOPY OF SAIL

1. HISTORY OF SAIL

Sail grew from the merger of two c1ose1y related programs used to manage the
HULL system of hydrodynamic programs at the Air Force Weapons Laboratory. The
older of these was the progenitor of the current SAIL executive. Its objective
was to produce card-image source code tailored to each problem to be solved.

In recognition of the fact that a particular section of code or a particular
routine could be used for several related problems, a library file was created
that held all coding for all treatments of each physical effect related to the
system of routines. The outstanding characteristic of both the original execu-
tive and the current SAIL is that this file was structured so that the accessing
program could produce efficient compliable code.

The construction of a library file that could handle a range of problems
involving similar coding that differed in a few details could have been achieved
in several ways. Let us consider the approach found in SAIL and compare it to
two alternatives that might have been used. On any particular execution, the
original executive processor set dimensions in FORTRAN declaration statements
and defined blocks of cards called PROCs, each of which could be inserted into
the resultant card-image file at any places where the *INCLUDE directive with
the matching name occurred. Dimension values and control over whether or not
to include a PROC were provided through pairs of parameters, consisting of a
character string and an integer value, called OPTIONs, SAIL reflects upgrades
to this processor so it now effectively selects only the cards appropriate to
the task at hand while producing a card-image file. Once all the needed por-
tions of code have been placed in a library, new programs can be constructed
merely by checosing the proper combinations of OPTION values.

Among the alternative approaches to library construction is a general N
program that consists of all coding needed for any task with flags that select
the appropriate portions during execution. To deal with varying array-length
requirements, the used could: (1) set all dimensions to their largest possible
values, (2) change all the array declaration statements and recompile, or

P Y s

64

AFWL-TR-78-80

(3) employ a complicated bookkeeping scheme to store this data in one or two
large arrays. A second alternative approach is to maintain a file containing
the version of the program oriented toward one of the tasks along with change
decks for each other task so an editing utility can build the appropriate ver-
sion.

SAIL has advantages over both these alternatives and, in a sense, combines
them in its library file structure which, like the general program, contains all
coding needed for any task, while its selection directives essentially define
built-in change decks. General programs suffer from overheads in both memory
space and computation time. Routines and sections of routines unneeded for a
particular task, and possibly unused array positions, require memory beyond that
needed by the tailored code produced by the other approaches. Extra time is
spent checking flags to determine which portions to skip and which to execute.
If a bookkeeping system is used to hold down array lengths, the coding becomes
less transparent to the users and it may take more time to calculate addresses.
The change deck approach, although it can produce code tailored to a problem,
often causes extra work. When coding errors are found or new features that
apply to several tasks are added, the user must not only modify several change
decks, he must first identify and locate those which are affected. Also, the
change decks can become obsolete if the 1ine numbers on the basic file are
resequenced. These problems are relieved in well-managed SAIL libraries, for
corrections can be made (after testing) directly to the library and the OPTIONS
which selected cards appropriate to a particular task will select the corrected
cards if they dealt with that task. If additions are made the selection mecha-
nisms can be set so that the OPTIONs either keep or skip the new cards, as
appropriate to each old task as wll as any new ones the additions make possible.

Even with only the two features mentioned in the above comparison, the
original executive processor provided a powerful tool for program management.
However, its libraries were fairly static. As users were presented with
different problems to solve, completely new portions of code were needed which
had not yet been added to the library. Thus, in December 1973, the need. for an
updating program became evident. The program was required to update the file in
such a way that the identifiers of the existing card images in the filed need not
be changed. It was desired that the order of the change sets could be random
rather than that in which the records they modified where found in the file. The

CDC system UPDATE did not satisfy the exact need, so the development of SAIL began.

65

AFWL-TR-78-80

The first version of SAIL was simply a2 FORTRAN program which updated a file
of SAIL records. Each SAIL record contained one card image and an identifier
which specified its block and card location. During the initial generation of a
file or during an update where resequencing was requested, the records were
assigned sequential block numbers and card numbers of zero. During other
updates, they retained their previous identifiers and added records were given
the block numer of the previous existing record with a unique sequential card
number.

To allow SAIL to identify instructions given to it, the convention was
adopted that the directive verb would immediately follow an asterisk (*) in
column one. Cards with an asterisk in column one but no understandable SAIL
directive were processed as ordinary card images to be added to the file. The
file was divided into groups of records called PROGRAMs which were identified by
a special directive in the file. These PROGRAMs could be selected for individual
processing. -

During execution of SAIL, the change sets were read and any cards to be
inserted were written onto a random file with information about the changes and
a pointer to the cards kept in central memory. The allowed modifications were
insertion of new cards and deletion with or without insertion. ‘A set of records
in the existing file could be copies to any place in the change set that a card
could be inserted. To accomplish this the original file was read and the sets
requested were copied to the random file while pointers were saved to allow these
records to be included in the correct change set. The insertion and deletion
pointers were then sorted into the order that the records they modified were
found in the original file. Then, all the changes were written in that order
onto a sequential file in a special packed format. It was then a simple matter
to modify the original file by merging it with the sequential change file.

While this first version of SAIL was being used, the capabilities of the

|

executive processor were being expanded. The ability to create PROCs was o
enhanced by making the creation and inclusion depend on the resuit of a logical

. string, rather than on the value of a single variable. In addition, while pro- r
ducing the card-image file, blocks of card images could now be skipped or kept : -E
depending on the result of the same type of logical string. The dynamic dimen- i3
sioning routine was expanded to allow numbers to be calculated from OPTION .

66

i f AFWL-TR-78-80]
values, encoded, and inserted in card images other than FORTRAN DIMENSION

statements. The routine was then described as a dynamic value substitution
routine.

The next requirement was to include the executive processor in the SAIL
program proper. Although when this was first done there were exactly four
OPTIONs fixed in the program, the executive portion was rewritten to allow the
user to add more OPTIONs with a default set provided in the header of the
original file being processed.

Next, the ability to resequence selective PROGRAMs during an update was
added. (This required the additional convention that each PROGRAM begin with
a block number which was a multiple of 10000.) The card images found in the
file before the first PROGRAM were designated as the PROLOGUE which was set to
be processed regardless of the PROGRAMs selected, thereby allowing PROCs to be
created and used by several PROGRAMS. Finally, the program was expanded to
perform automatic internal attaches of any CDC permanent files it needed.

In November of 1974, it became apparent that SAIL should run on computers
other than those with COC SCOPE systems, so work began on a new phase of SAIL
development. The dependence on the word length of the CDC computers was removed
from the program as well as the use of such COC system features as ENCODE and
DECODE.

At the same time, new capabilities were added bringing SAIL to its present
form. OPTION values could be set during processing using simple logical or
arithmetic expressions involving OPTIONs and constants. A new SAIL directive
controlled modification of just a portion of a card image (this is called the
column change feature). Finally, the ability to scan for or replace character
strings was added to the program.

2. SAIL SUPPORT AND MAINTENANCE CONCEPT

——————

i, P o0

One of the main strengths of SAIL has been its slow growth under the support
and control of users. This should continue in the future. If anything, further
development will probably be slower, for most of the really useful features have s
already been incorporated into the program. In any case, the following criteria §
should be strictly adhered to:

a. Any changes made to SAIL will be such that all existing libraries can be j
processed with the current results except for cases where obvious errors exist i
in SAIL. t

67

AFWL-TR-78-80

b. No existing feature will be removed from the program without unanimous
consent from the SAIL user community.

c. Any new feature will be added only with the approval of a majority of
the community and only if a significant number of users need the feature.

d. The official versions (as identified by the VERSION number) of each
SAIL library will be identical on all machines.

e. New VERSIONs of SAIL will be developed as new computers and operating
systems are added to the user community, or as better coding is written to
support the current features.

68

AFWL-TR-78-80

APPENDIX A
SAIL GENERATION

1. GENERATION OPTIONS

Sail is maintained on a SAIL library and is generated with options which
control its function. These options are:

INST - This defines the installation at which SAIL is being generated. The
default is in the sys SAIL library file header. The values are

INST

1 Air Force Weapons Laboratory
Kirtland AFB, New Mexico

2 Air Force Armaments Laboratory
Eglin AFB, Florida

3 McDonnel1-Douglas
Los Angeles, California

4 ABEMDA Research Center
(Brown Engineering)

5 ABEMDA Research Center
(SAI)

6 Atomic Weapon Research Establishment

United Kingdom

SYS - This option defines the computer system for which SAIL is to be generated.
The default is in the SAIL library file header. The values are:

SYS Computer

66 CDC 6600

76 CDC 7600

176 CDC Cyber 176
360 IBM 360

69

—wr o T " B e b mr—— — -

AFWL-TR-78-80

SIS ' Computer
370 IBM 370
6080 Honeywell 6080

VER - This option defines the version of the operating system being used. The
default is in the SAIL library file header and the values are:

VER Operating System
1 IBM 0S
2 IBM 0S/VS2
3 CDC SCOPE 3.3
4 CDC SCOPE 3.4

20 CDC SCOPE 2.0

LBUFF - This option defines the length of the random file buffer in character
wards. The defaults are:

¢bC - 510
IBM - 430

Honeywell - 160

NUMREC - This option defines the number of records in the random file on IBM
system. The default is 3000.

LENC - This option defines the size of the change file buffer in character words.
The defaults are:

cbC - 512
IBM - 450
Honeywell - 160

CARDBUF - This option defines the number of SAIL Tlines in a SAIL library block.
The defaults are:

chC - 113
IBM - 82
Honeywell - 20

"'.-|.-!l-'-u---uuu-um-u-l-un--l-----uun-ﬂ'-llul-uu---mnln-nun--u---nll-nL4 m——————————— ~1‘1
AFWL-TR-78-80 |

COMBUF - This option defines the size of the change command buffer. On IBM
Honeywell systems the maximum number of changes (i.e., commands) is COMBUF/2.

HX - This option defines the H extended FORTRAN compiler on IBM systems if
set to non-zero. Default = 0.

4 . LOPT - This option defines the maximum size of the option table.
Default = 150.

FILMPR - This option defines the film output ability for listing if non-
zero. Defaults are:

INST FILMPR
1 1
Others 0

2. IBM GENERATION PROCEDURE

The control procedure for generating a new SAIL from the SAIL library file
is shown in the listing in paragraph 1. The procedure parameters are:

LIB - The partition data set name for current library. The full name is
LIBPRE/LIB. Default = HULLIB.

LIBPRE - The prefix for current library data set. Default = 'SAIL.'

LIBU - The unit for current library. Default is null.

LIBVOL - The volume parameter for the current library. Default is null.
NLIB - Primary name for new library data set. Full name is NLIBPRE/NLIB.

Default = HULLIBN.
NLIBU - UNIT field for new library data set. Default = SYSDA.

NLIBVOL
NLIBDS

VOLUME field for new library data set. Default is null.

Disposition of the new library data set for the Link Edit step for
generation of SAIL. Default = '(NEW,CATLG)'.

LDSPACE - Space for the new library data set when disposition is NEW.
Default = '(CYL,(20,5,5))"'.

APROG - The name of the assembler. Default = IFOX00.
AREG - The REGION size for the assembly step. Default = 187K.
APARM - Assembly step parameters. Default = 'LOAD,NODECK'.

n

AFWL-TR-78-80

ATIME
AMACL

AP1
CHNBLK
CHNLRL
FILO
FPARM

FPROG
FREG
FP1
FSPACE

FTIME
GENO

LABO
LPARM

LREG

LP1
LTIME

SGENSP

oLD
oLoocs
OLDDS

Assembly step time limit. Default = '(2,0)'.

The data set name for system assembler macro library.
Default = 'SYS1.MACLIB'.

The disposition of the assembler output. Default = 'SYSOUT=A'.

The BLKSIZE for the SAIL change file. Default = 3521.

The LRELL for the SAIL change file. Default = 3517.

The file number for the old SAIL file if on tape. Default is null.

The function step parameters in addition to 'NAME=SAIL'.
Default = 'MAP'.

The name of the FORTRAN compiler. Default = IFEAAB.
The REGION size for the compiler step. Default = 512K.
The disposition of the compiler output. Default = 'SYSOUT=A'.

The space for the object output from the compiler. Default =
'(CYL,(10,5),RLSE)".

The time 1imit for the compiler step. Default = '(1,0)'.

The version suffix for the old SAIL file. Total data set name is
OLDPRE/OLD/GENO. Default = '(0)'.

This defines the label tape for a tape old SAIL file. Default is null.

This defines the LINK-EDITOR step parameters in addition to 'QVLY'.
Default = 'MAP'.

This defines the REGION size for the linkage editor step. Default =
250K.

The disposition of linkage editor printed output. Default = 'SYSQUT=A'.

This defines the time 1imit for the linkage editor step. Default =
'(0,45)"'.

This defines the space for the source output from SAIL for the compiler.
Default = '(CYL,(5,5),RLSE)". ' |

This is the primary data set name of the old SAIL file. Default = SAIL.

This is the DCB field for the old SAIL file. Default is null.

This is the disposition for the old SAIL file. Default = SHR.
72

AFWL-TR-78-80

OLDPRF

oLou

oLovoL
PRCN

PRCL
PS1

PS2
SATLBLK
SAILR
SCRTC
SPRQG

SREG
STIME
WORKSP

This is the data set name prefix for the old SAIL file.
Default = 'SAIL'.

The UNIT field for the old SAIL file. Default is null.
The VOLUME field for the old SAIL file. Default is null.

The number of records in the SAIL random file. Default set for
current SAIL.

Number of bytes in SAIL random file. Default set for current SAIL.

Disposition for the primary printed output from SAIL.
Default = 'SYSOUT=A'.

The disposition for the error output from SAIL. Default = 'SYSOUT=A'.
The block size of the SAIL source data sets. Default = 800.

The record length of the SAIL source data sets. Default = 80.

The UNIT class for the scratch disk. Default = SYSDA.

The member name for the SAIL program in the current library.
Default = SAIL.

The REGION size for the SAIL execution step. Default = 175K.
The time 1imit for SAIL execution step. Default = '(2,0)'.

The SPACE field for scratch data sets used by the assembler and
compiler. Default = '(CYC,(5,5))".

AFWL-TR-78-80

.
e bt i el A A Al il

APPENDIX B

SAIL PROCEDURES

75

g T —
=

B Eo) — PO —

SLNdY¢ L ££00¢

SeNdYYe NSANIN LNIANOD A40D NSAGI0 34¥1 1I¥S 7£00§ m
SeydYL 3+ 1£00E ,
GLNdYL) *11¥S 0£00€]
SeNdYY *AH*TIVS 15303 62008
CLYdYL = 8200¢
SoNdYY 34Y1 01 A402 1¥3IAND) = £200§
CNdYYL = 9200¢
CeNdYY = czoef 4
CLUdYL 3¢ v200§
SLMdYL NSAMIN 34Y1 31Y04n NSAGTO 3dY¥L TIVS £200¢F
SLY¥dY/ 3¢ 2200€
S/NdYL *11vS 1200§
SCadY, *AHIIV¥S 153NB3IN 0200€
CLNdYL = 6100€
CLMdYL NNY 31904N = 8100§
SeNdYL = L1008
ceNdYL = 9100F
CL¥dYL 3+ c100¢
C/MdYL SNOT140AN3 SNOI140 TIVS v100€
SLydYL SNOT140GN3 SNOIL40 NSA 34¥1 1IVS £100€
S¥dYL 3¢ Z100€
& SLYdYL *11VS 1100€
D GLYdYL *AH*TIV¥S 1S3NDIN 0100
© SL¥dYL = 6000€
3 SeNdYY NNY TYNNON = 8000F
= SLudYe = £000F
M Q¥4 = 9000
& GLNdYL = S000f
SNdYL 1°Z ¥0 ¥°€ 34025 HLIM INIHIYN = ¥000€
S¥dYY = £000€
SNdYYL 000Z ¥0 0009 202 YNO G3SN 3¥¥ SA¥YD 10¥INOI ONINOII04 3NI = 2000€
CL¥dYL . - 1000€

GLM4YL SA¥YI T0Y¥LNOD J0D a8+ 0000f

AFWL-TR-78-80

BINNEEL
8INNCTL
g8NNret
8iNnrel
aZNnret
gNnrel
8iNnrcl
a/Nnret
aiNnrel
aZNnret
aZnnret
aZnnret
8iNnret
8ZNArCH
84NNrel
BZNNrEZL
8iNNrelL
8Nnrel
8iNNrel
8iNnre)
aZnnret
8inarel
84NNrEL
annrel
annrel
annrel
8NNrcl
8Jnnrel
aLNnrziL
8iNnrel
aNnrel
eiNnrei
8NNl
ainNnret
8NNrel
aiNnrei
8inNnrel
a/nnret
a/nNnrel
8JNNrel
aNnret
ainnret
gNnrel
aiNnrel
8Nnrel
8nNnrel
84NNrel

SITER]
‘=0714
=NT14

£,024=04138.=4%X3
4, (SSY4‘NIN) =dSTIA. =SI4SIq
,(SSYd NIN)=dSIa. =¥ 14511
,(SSY4“NIN)=dSId.=E 14STTI

,(SSYd‘NIN)=dSIM,=11dSIM

[]
é
¢, (55Y4“NIN)=dSI0,=Z 14SIM
[}
é

. (SSY4°NIN)=dS10.=01dSIQ
£, (SSYd“NIN)=dSI0.=64SI0
¢, (SSYd NIN)=dS10.=84S11
¢, (SSY4NIN)=dSTd.=/4SIN
‘,(SSY4 NIN)=dS10,=94514
¢, (SSY4*NIN)=dS1d.,=6dSIq
¢,(SSY4‘NIN)=dSI0.=v4SId
¢ (SSYd NIN) =4S, =£dSIM
‘,(SSYd“NIN)=dSI0,=2dSTi
¢, (SSY4 NIN)=4S10,=14S10

CLIGE=TNTNHD

$1288=XT14NHI

CANRNG=T1Y

=100 11
‘=ng17

4,198, =344411
‘4I7NA=417 J0¥d
¥ ¥ k¥ ¥k ¥ KX LK X ELEEEEEEEEEEEEEEEE T ESEEY Y/

7

/7
1/
//
24
//
//
//
//
//
17
/7
o4
//
//
//
//
/7
//
//
//
//
//
//
//

11YS//

t//

34N03J04d SIHL 40 L1¥Yd 10N INY WYNOONd +//
LNYLINS3IY 40 NOILNIIXI ANY NOILYIIAH0D (S3dAL NNY TYNNON N0 +//
“Ad0I“NYIS“LSTT1HINNG‘ ILVHINIO31¥adN) SNOTLINAY TI¥S 3HL 40 =*7/
ANY NY¥04N3d 0L ¥0S5320¥4344 1IYS IHL SIINIIXI I¥NGII0Nd SIHL +//
NOILINNY *//

(Q3YIN03IN SY SYILINYYYL TYNOILAO) " ‘1IVS

*

s//

aq INdANI°TIYS//7 =//
J3X3 /! %/)
LYHN04 +//

*//

TYSs x//

INYN 2//

*//

& ¥ E Er ek ettt | [YS*tes2xrreerr//

W3154S

0/F Y0 09€ WAL NY NO 1IVS NNN 01 435N SI J0¥4 ININO1T04 3HL

J0Yd-RAL WYY¥904d

8¢S

n

SJ0Y¥4-NAI g+

NOISYIA

900t
Choor
Pr00k
£v00b
Z000%
Ly00b
0v00¢
6£00%
8£00%
ZE00W
9£00¢
CEOOY
PEOCY
£E00%
2f00¢
1£00Y
0£00¢
6200¥
8Z00¢%
£200%
9200¢
G200V
¥Zoov
£200¢
czooy
1200t
0200%
6100%
8l100¢
£100%
gL00¥
S100%
vi00¥
g£1004
2ioov
1100¢
oLo0v
6000%
8000¢
£000%
9000¥
g000v
r000¥
g£000v
c000v
1000v
0000%

L B I N I N B B B B R N I I R R R N R I I R I

TIVS W3ILSAS 40 ONILSTT

14

77

e

AFWL-TR-78-80

aeNnret
8NN
8INNrTL
BLNNFZ)
8JNNrel
8Nnret
8NNreL
84NOFTI
a/Nnrel
AINNrZL

> > > > X > X > X X

‘av3INNdON=4n3IN

¢,°71vS.,=344N3N

§, 5 ANNNG =NNEN3IN

¢,(313131°971¥2°A3N) , =SANIN

¢ (v622=321SN194062£=123¥1°58A=N1D3Y) . =AIANIN
“91vS=n3N

‘=0491

f=Ng¥n

,(0).=0N39

S,014),=NN39

1/
1/
1/
/7
1/
1/
//
/7
/7
/7

9500V
SCoov
¥So0V
£500¥
2500¥
1500%
0S00%
6v000
8yooy
Zh00V

L B N B

78

BONICGE X “NNINY=1LiN /7 FOL0b 4
BINAFZE X G MUY TYART NSO UAAAING 20 100440147/ Ze10b 1
8INACZY t// 10I0F +
8/NNCT) ¥HS=4S1a 1/ 00100 +
BINNFEL X ‘70041718=104 1/ 66000 +
8NN X ‘NAIIE=1INN 7 B60OY ¢
8INACZE X ‘4171%3¥49118=NS0 a0 4114315// L6000 m
8¢NAFTI +// 9600F * 3 .
84NNCTH 93Y48=NOT93N“INILSE=INIL1‘90442=H94 IIX3 11957/ G600F g8 |
8iNretL 062/=1414W31 // V6008 * m
8INNAFTE X ‘V42L=019403L 1/ £6000 # -
BINNFTE X £.00%2),=3011LS /" Z600v * B
8NAFZL X ‘¥aSAS=21498 1/ 1600V ¢ 38
8INNFTL X CANHNA=S11IYS /7 0600 v =X
8INNFEL X CANNNO=¥ 1 TTYS /1 4800% * &z
gZNnrzL X CANNNA=£ 1 11YS // 8800 * =3
8INAFTE X “ANHN=Z111YS /7 800% 4 sm
8/NArEY X CANNNG=1171YS /1 9800 + e o
8INAFZL X CANNNA=0111VS // c800Y g%
BLNNPZL X CANHNT=4T1YS 1/ v800Y n 3
aNnree X CANNNA=811YS 1/ £8000 + = =
8INNFEL X CANNND=ZT1YS 1/ 2800 + GRS
8INNFTL X CANMNI=911YS 1/ 1800 *
BINArZL X CANNNA=5TIYS // 0800b + o
BLNAIZL X ‘ANHNG=¥ T1YS /7 62000 + i ,
8INNrCL X CANNNG=E£1YS 1/ 82000 + |
8INNFEL X ‘ANKNE=2T1YS /7 20008 » |
BINAFZE X “,((0Z°01)“MN¥1)=32V45 YaSAS=LINN ‘0D TIYSEP=NSA, = 1IVS 1 9,00V » ,H
BINACZE X ‘08=411vS 1/ c000 ¢ |
8INACZL X £008=X1411vS /7 Y000 ¢
_8Nnrze x ‘¥6/1=93Y /1 £200v ¢+

8INNFZL X ‘,¥=1N0SAS.=2d 1/ 200V ¢
BZNNFZL X ‘,¥=1n0SAS. =14 1/ 100% *
8INNFTL X ‘11¥5=9044 1/ 0/00v =
8INACTL NUN# 4900y ¢
8INACZL X 7404918 =144 // 8900F =
a/NNrgL X ‘T234HNN " =NINd /7 29000 ¢
8INNPTH 0Lnys 9900¢

- * BINNFTL X ‘=100010 1/ G900y =

0 8INACTY X ‘=ng10 " ¥o00r ¢

© BLNACZL X ¢, 11YS.,=344010 /7 £9000 ¢

& gLNreL X ‘¥HS5=S1q70 /7 29000 #

- 8INNFTH X ‘=420910 1/ 19000 +

. 8CNNrTE X ‘1v8=110 /7 0900F

m BLNAFZL X ‘=700N3N 7. 65000+
aNNrZL X ‘YasAS=nn3IN /7 85000
8LNACZL X “.(3STW(Z01) A, =24SAIN 1/ 5000 #

4 3994 ¢ J044-HAT. NYYO0M4 8¢ NOISN3A TIYS W3LSAS 40 INTLISIT 1704

SE A Al A S PO B il 5 S i . £ et

80

. $

% BINNFZL X ‘500108=4S10 7. £1I0V o

B 8INNrZL X “(N1“‘04Y13°0714%)=134V1 7/ zZIoy ¢

i BINAPZL X ‘N010%=11INN 1/ Loy ¢

= 8LNNCZL X ‘ON39%07033¥40708=NST°WNANIOE Q0 10042014// oLIor ¢

< 8iNNrei v// 4010y =
8ZNNFZI 420n3INS =420 /7 8010V ¢
BINArZL X £245NINT=3I¥4S 1/ 0100 +
BNNCZL X ‘100n3INT=10A 7 90100 +
BINAFZL X ‘SANINT=4SIM 1/ color + :
8INNFZL X C(dXITELRD“ NINT NAYIT NI 42)=1349 17 rOLOF ¢

o
nﬁ
o0
b
o
g
=
=
w
<<

£

39vd

P TTTY
84NNrT)
a8Nnrel
8dNnre
aZNnrel
aZNnret
8NNret
8NNrcl
a/Nnreat
a/Nnret
8NNre
aiNnret
aZNnret
8NAretL
BLNNCE)
8NNrel
a/Nnrel
8INATE L
a/Nnret
8NNret
gJNnrel
a/Nnrzi
8/NNrel
a/nnret
a/nnret
8INNCT)
8NNFEH
ainnret
a/Naret
8NNrel
anNnrel
a/Nnret
aNNre L
8iNNret
8INATTL
8NNrTH
aiNnret
ginNnret
8aNnrel
8iNNrel
ainnrel
aiNnrel
8NNrel
8/NNrei
ainNnrel
adnNnrel
8iNnret

>

> > x

x

>

> > X

ISICIT

(N47I9S2=3ZISN 14 ‘¥ 11¥58=10347°44=0423¥) =220
‘8dsrug
‘811vSe

(N1911958=3Z1SN 19N TIVS8=12341°84=0423%) =420
‘245103
‘11458

(N1971¥S8=3Z15478“¥11¥58=123¥714.4=0403¥) =420
‘9ds10%
‘911ys%

(N187IYS2=3ZISN 14 ‘¥ 11¥S8=10341°44=H403¥) =420
‘cds1as
‘s1vse

(M197IYS8=3Z15414 411¥58=12341'd4=H423¥4) =420
‘vdSI0%
‘y114se

(NEIYSE=3ZISN14 ¥ T11¥S8=1034144=N403¥) =420
‘£dS10%
‘£1IvS?

(AETIYSE=3ZISN 144 1IY¥SE=12341“43=R1I3¥) =420
‘z4s1a%

‘Z1vs%
(M1811Y58=3Z1SN 14 ¥ 11YS2=12341°d4=H434) =430
‘145108

‘171vS8

14%

L104NT=3INYND]

zds

((0Z°02) “¥N1)=3294S
CONTANHIR=3ZISN G T4 INHI®=123N 1 SAA=N4I3¥) =421
$(3137130°N3IN=4510

£214253=1INN

420410%=421

£100070%=704

J0U4-HAT HYYO0Yd

1q

aa

i1a

aa

aa

aaq

aa

aq

8s NOTSM3A

60U 3600 4,/
1//

//

/7
80048014//
r//

//

//
£0048014//
+*//

//

//
900480147/
w//

//

//
00480147/
t//

//

//
004801477
+//

//

//
£0048014//
x//

//

//
20048014//
x//

//

//
100430147/
t//
100490147/
r//
1004€014//
x//
1004¥014//
x//

//

//

//
100480147/
t//

/7

/7

TIYS W3ILSAS 40 ONILSET 1INd4

09108
6510¥
8S10¥
(5100
95100
SS10¥
129544
£510b
cslov
1510¢
05i0%
6v10¥
8riov
4411
9viod
Sviov
kriob
£rioy
Zriov
Lviov
oriow
68100
8f10v
LELOY
9E10b
CLI0b
vELOW
£ELOV
ceioy
IEL0V
0E10v
610V
8cliov
210V
gziLoV
sciov
¥ZI0¥
£CLow
ccioy
1Zioe
0zZI0k
6110%
sLiov
ZLI0Y
L0V
SLIov
vLLOY

L N B B B N N I B N N N B B B A S N N B N B B B B N B e T R BT IR T I B R

a0 TO DDC

'
i

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM CU: Y FUSNISH

31

AFWL-TR-78-80

a/Nret
saNnret
8Nnret
8/Mret
8INrelL
amnrei
8NNz
8nnrey
ainNnrel
BINArZL

(X1971YS8=3Z15X 714 ¥11¥ST=123IN71°44=0323%) =424
‘1148148
‘1111vst 14

(NS TIYST=3ZISNTA°¥1I¥ST=13301 44=0433¥) =421
‘0145142

/"’

/7
11048014//
s//

77/

//

; ‘017'¥SY 91 010348013//

(X7971¥S3=3Z1SX 714 ¥11¥S3=123¥1 " 94=0373%) =421
‘44s11%

s//
/7
/7

oL10v
£910¢%
8910%
(9100
9910%
9108
o100
29100
9100
(900%

® % 8 5 8 8 88 a8

82

<o

AFWL-TR-78-80

4

3944

8ZNNrel
acnnrel
BINNrZL
8LNNrCL
8Nnrel
8NNFTI
8/NNreL
BLNNCZL
8/NNrZL
84NNrCH
8INNreL
8Nnret
aNnret
8ZNNret
84NNrCH
8LNNrZL
anNnret
8nNnret
8NNrei
84NNrel
BINNFZL
a/Nnret
8NNrEH
8LNNrTI
8/NNreL
8LNNrZL
8ZNNrCL
84NNrrei
8/NNrey
BLNNFZ)
8iNnret
8NNreL
8NNrel

>

>

>

>

+// £0Z0Y ¢

((Z2°C)*%¥1)=3294S // . Z0zZoOY o+
£(0021=3Z15X19°021=123471°44=W433%)=431 // 1020v *
‘(3137130°n3IN)=4SIM /7 00Z0F +

“314352=1INN A0 100421147/ b610%

+// B410F ¢

24SM3NT=3IY4S 1/ 610V ¢

C(N94NILR=3ZISH T T¥14NIL8=103471°S9A=H4D3%) =421 /7 96100 ¢
‘(3137131°n3IN)=4S11 // 610y ¢

“3143S8=1INN"WNANINS A0 10041114// voL0b ¢

: t// £610F ¢

((NJ¥4%) “1344%)=32v4S // 2610% o

‘(3137130°n3N)=4SI0 // 16100 ¢

“31435%=1INN A0 10040114// 0610

+// 4810% ¢

117¥% 40 10046014// 8810V ¢

t// 810V ¢

(N9 71YS8=3ZISN 1 “¥T1I¥S8=12341°44=W4I3¥) =421 1/ 9810% ¢
‘5145103 1/ ceI0Y o

‘G1IIYST 40 S1048014// vBLOY =

2// £810F ¢

(N191IYSE=3ZISNT“¥T11¥S8=12341“94=04D3¥4) =421 // 28100 ¢
‘vidsSIag /7 1810v =

‘Y171YS? A0 ¥1048014// 08l0F ¢

s// 6Z10F ¢

(A14711¥SE=3ZISN 1T HTIv¥S2=12341°44=W433%) =491 1/ 8LI0V ¢
‘145108 /7 LL10F ¢

‘€171¥S? a0 £1048014// 9L10% =

+// S0V ¢

(X71YS2=3Z1SH 19 ¥11vS2=123¥1°d4=H423%) =424 /7 (740 [2
‘2145119 1/ £L100 ¢

‘Z11IYSE a0 Z1048014// 108 e

t// LZ1oy ¢

J044-NEI WYN90Y4

o b e kb s I S U s S o s VG it 5 3 i s

8s NOISN3A © IYS W3ILSAS 40 9NIISIT 1n4

B s o

83

AFWL-TR-78-80

8iNQIret
8NNral
8NNrTI
a/Nnret
ainnret
8ZNNrel
84NNrCTI
aZNnret
aZNnrel
8iNnret
8Nnret
8NMtEl
8/Nnret
ainNnret
84NNrT
annrel
aZNnrel
8NNrCL
8NNFTH
8NNrel
8NNrTL
8NNrelL
8/NNrel
8ZNNret
B8LNNCZL
a/Nnret
8iNnret
8NNrTl
8NNreL
aNnrel
84NArCL
aJNnrel
8NNret
8LNNrCL
BINNrCL
84NNrel
aNnrel
BLNNre)
8LNNrel
8LNNrTt
8ZNNIC
8INNrCL
BLNNrTL
8INNrE)
8/NNrel
84NNITI
BINNFT

2 2 > XX 3 3 I X X 3 2 > X > 3 X 3 > > X X > > X

¥t E EE Y EEELES EEEE LTS ELSLELEELEESELEELEELTEEL

‘o(38TH(S01)*TAD) ,=3094S4 1/
‘,¥=1N0SAS. =144 //
‘NZ15=9344 1/
‘Avy341=90¥44 //

L AUN=HYYd 4 //

‘=0114 //

‘Z1SE=T4TINHI //
“1Z5E=XT14NHD /7
£,¥=1N0SAS.=1dY //
¢,41712VH" ISAS, =1JYNY //
‘,N3300N‘aY01. =HYYdY //
4,00°2).,=3N11Y //
“NB1=934Y //
‘00X041=90¥4Y //
£,006°6'02) 4 143) . =33¥4801 //
C,(971Y2°N3IN) . =SA4IIN 1/
£=70AG1N 1/
‘YasAS=nNdIIN 1/

4,198, =341 IN //
NGITINH=A1IN 1/
‘=10011 //

‘=411 /7

¢,01vS. =344 1 7/
‘4ITNH=411 J0M4d N39S//

+//

ANYNEIT TIVS %7/

*//

A3N ¥ SILYNINII ANV WYY00¥d TIVS 3IHL SILNI3IXI 3I¥NGII0¥d SIHI
NOILONNY #//

(Q3YINO3IN SY SHILINYHVY TYNOIL4O) """ ‘NIFS

*

x/

S3IINVHI TIVS
aa LN4NI°TIVS//
J3X3 //
1Ny

N39S
£l

t//
x//
+//
s//
%//
*//
/]
04 +//
+//
¢//
YN *//
t//

rereerereesesssttreNIOISs e/

W3L1SAS 0ZE ¥0 09€ WAI NY NO
TIVS 40 NOISY3IA NIN ¥ 3L1VY¥3NID 01 43Sn SI J0¥d ININOIT04 3HL

N39S INILNOYANS J0M4-WAT WYNODNd

8¢ NDISH3A

39S d¢

TIVS W3ILSAS 40 ONIISIT 1Nn4

LeOb
12417
8rZov
hZow
9¥Z0¥
ShZov
vrZov
grcoy
chiov
1¥ZO¥
0¥Z0¥
EC0F
8EZOY
PATA L]
9£20F
SECoy
148411
£ECOv
cEeov
1ECOV
0f£cov
4220¥
8zcov
220V
gecor
cZaov
vZeoov
£czov
oy
1zzov
ozeov
é1cov
gicov
2120V
91Z0¢
cizov
vicor
glcor
cicor
1Izov
0120%
6020%
8020¥
2020y
902Z0¢
gocor
vocov

L I L I B B L R I TR R I B R IR B B I R R IR TR I I R IR IR R R I B N I

e bt bl

84

AFWL-TR-78-80

84NNrei
8innrel
ainnret
8INNrTL
8iNnrel
84NNrel
8LNNTC)
aZNnret
BLNNrZIL
amnret

X > XX 3 > > X > X X

‘11¥S=010
4,(35M(S*S)“I1I) . =45N39S
CL(8%'0) . =301
¢,¥=1N0SAS. =141

‘N0S2=9341

IN31=90441

¢, dYN. =N3Yd

‘=0qv1

¢,(0),=0N39

< 00, =3I LS

//
1/
/77
1/
24
/7
//
/7
/7
/7

0920¥
6520V
104 1
(STOV
9ccor
GLeot
¥SZov
£sor
Zseor
1520%

L L I I

85

8INIYEL (O£E1=32ISN 1 EL1=10347 va4=N4234) =401 // L L050Y 1
3 8INNCEE X ‘154% 40 10049014// 90800 ¢
BSNNTZL t// SOLOy ¢
BNACZL INANI=3WYNGD 40 10045014// vOEOY ¢
8INNFTE +// £0L0Y ¢ |
8ZNNFTY (0EE1=3ZISNM‘EE1=123471"va4=0423¥) =421 // 2080y ¢
BZNNFEL X 4254% a0 1004v014// 10£0v ¢
8NN L t// 00£0b +
8ZNNCZL ((02°02) ‘N¥1)=3IvdS 1/ 6620F ¢
B8NNCTE X CONTIENHIT=3ZISN 4 1N INHI®=123¥1°SAA=N4D3¥) =420 // B6ZOV *
8SNAFTE X “(313130'03N)=dS10 1/ L6200 .
8/NNFZL X “914958=1INN A0 100450147/ 9620 *
8ZNACZL +// G420V +
8INNCT I 431110%8=821 // v6ZOV
8ZNAFCL X “900110%=100 // £4200 M
8JNArTE X ‘50010%=4511 // Z6T0
8ZNArZL X “(NT*‘04Y1%°0114%)=134¢1 /7 16200 *
genNnreL X ‘na10s=11INN // 06200 *
8NAFEL X ‘0N39%07083440108=NST A1 10042014// 4820 ¢
8ZNNFEH %// 88Z0¢ *
8/NNrEL ANNNG a0 100410147/ (870 ¢
8/NArel +// 98206 *
84NNFEL ¥HS=4S1a 1/ CBZOV *
8INACZL X £70A411%=104 // v8ZOb ¢ 2
8INNIZL X ‘NAI18=LINN /7 £8Z0V ¢
8ZNArTE X ‘41133444178=NST @@ 9114315// Z8Z0V ¢
8/NACTL +// 18200 ¢
BINAFZL 93458=NOT93Y‘INTL1ST=INI1“9044S8=N9d I3IX3 1vs// 0820 *
BINAPZE #mm == e e e e e e e e e e /] s220F ¢
8INNFE N ,((84S) “TA2) . =dSNH0N 1/ 8/20v *
8NACZL X $,00°2),=301LS // 44 |2
8INACZL X “NS/1=934S 1/ 9L20V ¢
8INArTE X ‘11¥5=9044dS 1/ SLT0F * f
8INNFEL X ‘YasAS=2143S /7 viZOV ¢
8NNFZL X 108=311YS // £L200 ¢
BINRMZL X ‘008=X1411VS // zLZ0V ¢
8N X ‘,¥=1N0SAS,=25d // 120y ¢
8sNNCEL X ‘,¥=1N0SAS. =154 1/ 0/20v *
o 8INArZL : s i NUN* 6920 ¢
o BINRCZL X 744n971+8_=1044 1 89Z0v ¢
© 8/NNCZL X £T233HNN" =NINd 1/ £920F #
& 8INNFE Y 01Ny 9920y +
= 8INNFTY X ‘=70n070 /7 c9Z0y +
=2 8INNTZL X ‘=na10 // YozO0F ¢
mm 8INAFEL X ‘¢, *71Y¥S,=3440110 1/ £9Z0¢ ¢
8/NACZL X ‘YHS=50010 /7 9200 ¢
8NACZE X ‘=g20010 1/ 19209 ¢

N39S INILNOYENS JD0Nd-WAT WYND0Ud TIVS NHALSAS 40 OINILSIT 1n4

8% NOTSH3A

9

AFWL-TR-78-80

8iNnret
aNnrel
8NNret
BLNNTTL
B4NDFTL
aNnrel
ainnret
8ZNNrel
8ZNNred
8INNFEL

> Xx

X > X X

£31¥25%=1INN 1/

$(SSY4NIN)=4SIM 1/

“11vSYTe=NSO Qa4 Z0048014//

*//

(¥187IYSe=3ZISNTIE“¥1I¥SE=12341°94=0403¥) =420 1/
‘45N395%=3IV4S /1

$31935%=11NN 7

$(SSYd‘NIN) =4STI /1

‘1yS438=NST G0 10048014//

" . v//

ZIE0V
gi1E0V
Sigov
vigoe
g1£0V
cigov
LIEOK
0LEOV
60£0¥
80£0%

L B R I B

87

it

[T W

-

BLNQIEL X . : ‘U¥448=WY4 23X LAU4// eYrow 1

P B T T T e 77/ £9£00 o
BINATZL (0091=3Z1S%14°08=12341°d4=W433¥4) =434 17 29500 ¢+
8NOFZL X $32v45 42=3v45 1/ 19500 3
8eNAret X ‘(5Svd‘a0N)=4S11 // 09£0% s -
BINNTZL X $314358=11INN /1 45E0F ¥ g
BINAFZL X ¢1350¥013%=NS0 ad NIISAS// 8SE0F ¢ s
8INNFTL r// L5500 |
8/NNFTH NITSAS=3WYNGE ad 095457/ 9CE0b ¢+
BLNAFTE s// . SSEOY ¢
8¢nNnree d=1005AS @0 HINNJSAS// YSEOY ¢
8/NNIZ1L t// £oE0bF ¢
8INNrEL dSANONE=3I94SI1NISE=1INN a4 £1NSAS// Z0E0V ¢
8ZNNFTH . t// 15600 ¢
8INNITH 4dSX¥0NE=3IVd45°314358=1INN Q4 ZINSAS// 05E0F #
ACNNrZL +// hE0V ¢
a/NNreL 4SN40N%=3IVd4S‘I14258=1INN 00 LINSAS// BYEOY ¢ |
8ZNNFTI *// LPEOY #
8INNrTI (0£E1=32ISN19 EL1=12341°Vd 4=04234) =421 /1 vE0Y ¢
8/NNrZL ‘1dY¥3 40 ININASAS// CeEOY ¢
8INOCTH +// PrEOY # ,
8eNAreL (313730°010)=4S10°11YSY28=NSA 4d NISAS// £YEOL ¢ |
8/NNFZL s// ZVEOY ¢ _
8INNFZL ¥HS=dSIM‘1IVHYE=NSa ad 411SAS// IbEOV ¢
8INNFTL +// ovEOY @
8ZNArTL (TI¥8'11°8)=aNG2 /7 4EEOF ¢ o
QNS X ‘INTLYE=3N]L 1/ 8LE0Y #
a/NareL X ‘933v3=N0I9IY‘ NYYJYT, =HYY4‘9044Ye=HId I3X3 HSY// SE0Y %
Y| A B e s 24/ 9800 ¢
8INATI ANNNG 40 100421147/ CEEOY ¢
8/NNFZI t// VEEOY ¢
8/NACZL ARNNE @@ 100401147/ EEEOY + 3
g/Nnrel +// FA Y | 2
8INNrEL ((NIY¥43) * 1I44%)=32V4S // IEE0F #
BZNNFTY X $(3137130°n3N)=dS10 // 0EEOY ¢
8INAFTH X €31495%=1INN G 10030114// 6280F ¢ :
8INNrZL s// 8ILoy ¢
8INNFZL *// 280F ¢ |
& 8CNAFTE ANNNG 00 10046014// 9zE0y #
© 8NAre) (¥47IYS8=3Z15X18 ¥ 11¥S2=12341°a4=0423¥) =430 1/ CIEOF ¢
© BNACZL X ' 4SNI958=32V4S /7 rZEOF # !
& 8INAFZL X €31438%=1INN // £2F0V
- 8LNAMZL X $(SSYd‘nIN)=dSIa 7/ 2280% ¢
= goNnrel X ‘II¥S198=NSa 00 £0048014// 1250y ¢ m
mm 8INAFZL /1 0zZEOY ¢ @
BINNIZL (N1971YS8=3Z1SX 19 ¥11v¥S2=12341‘44=0423¥) =421 1/ 6150V +
1 8INNFTH X ‘ 4SN395%=3v4S 17 8IE0Y ¢
E
5
i 39v4d N39S INILNONANS J0M4-RAI NV¥O0Nd 8¢ NDISH3N IYS W3ILSAS 40 ONILSIT 14 _

AFWL-TR-78-80

8INNre
84NNFC Y
84RNre1
aZnnre
aZnNnret
BINOFTL
84NNrTl
8NNreL
8iNnrel
BLNNrZL

x X x

f(SSYd‘dON)=dS1a 1/

$1350Y018%=NSd a1 NITSAS//

+//

(0ELI=3ZISHNTIE‘EC1=10341° ¥ 4=W433¥) =42q 1/
‘144% 00 INT¥4SAS//

t//

(1I¥S°11°8)=aN0) 1/

‘INIL4T=INIL 1l

NNV 1TYS=INYN, =HYY4 A 7

’ . ‘9344%=N0OI93Y 7

LA N L R

89

e

-

e

AFWL-TR-78-80

8NNret
8JNNrct
8NNrel
84NNrel
8LNNrT)
8NNnrel
8Nrel
8Nnret
8NNret
siNnret
BN
84NNrEl
8Nnret
8NNrT1
annrel
a/nnret
8/NNret
8JNNrEl
8iNnres
8NNrelL
anNnrel
8JNnret
8Nnret
a/nNnret
8iNNreH
8ZNNrCL
BNNTH
adnNnret
:74,[) | 4!
8iNnNrel
84NNFC I
8NN

> > > >

e T 77 9060 +
(313130a10)=4SI1A°1I¥ST18T=NSA 0Q /7 SOrOY #
(313130°010)=4S10°1350Y0188=NS0 0q NI1SAS// Yoroy
t// £OVOL ¢
33Y45018=32V4S 1/ Z0v0F +
‘SUgIINE=4dSIa 1/ 10v0Y ¢
‘10A81IN2=100 17 00VOr ¢
‘NAIINE=LINN 1/ 5650V *
‘AIINTINJAIING=NSO A0 AONISAS// 84S0V ¢
v// L6500 ¢ =)
((02°002)°¥Z01)=32945°2142S8=1INN 00 LLNSAS// 9650y ¢
+// C4E0F #
YHS=dSTA‘AITLH04° 154AS=NSd dd 41154877 V650V ¢
£// F6E0V ¢
(OEE1=3ZISNIG“EE1=13341 v 4=H43¥) =421 /7 T6E0Y ¢
‘1478 Q0 ININdSAS// 1650F ¢
£// 04£0y + _
LHYY4IT 44100, =HAYd /7 4850V #
CONSY11°8)“(11¥S“11°8)“ (1404°11%v)) =aNOD // 88E0F ¢
‘INILTIT=INIL 93¥TIT=NOIOIN 9044 12=H9d I3XI 43INV// (BEOV ¢+ b
e e e T Y 98£0F * m
ANNNG Q0 WY3LSAS// GaLOr # {
£// ¥BEOY ¢ i
4SN40N%=3Ivd45°214I5%=1INN a4 ZINSAS// £850Y » !
¢// 28800 ¢ w
dSANONE=3I¥dS“I1¥258=1INN 04 LLINSAS// IBE0Y ¢
¢// 08E0F ¢ !
(3137130°010)=4S14°11¥S438=NST a4 NISAS// 680V o !
*// BLEOY ¢ m
(0091=3Z15¥14°08=133¥41° 44=W433¥) =420 17 LE0F ¢ i
433945 43=3I¥4S /7 9LE0F ¢ _
£21435%=1INN 17 C/E0F ¢ |

N39S INILNOYENS J0Md-WET WYY90Md 8s NOISH3A TIVS W3LSAS 40 INILSIT 74

AFWL-TR-78-80

Iwd

annrel

WYXI-WET WVY90N4

8s

9

$374NYX3-NA1 ds 0000S +

NOISH3A

TIVS W3LSAS -40 ONIESIT 1N4

SRR e

—

B T " e
“l“‘
GLAYNY | . 21005
CLAUNT | = 11005
8INNFZ) */ 01005 +
= BLNNFZL % 60005 +
“ o 8¢NNrzL SIINYHI T1¥S " 80005 +
© BNNFZL " L0005 +
& BLNRCZL + A0 LN4NI*11YS// 90005 +
e BINNFZ) N39S 23X3 NIN// 50005 +
s SLAYNG L . #0005
= CLAVH L WYN90¥d TI¥S MIN ¥ ILYNINIG . £000S
SLAUNS L = 20005
SLAUNS L . $314NYXI d¢ 10005

4 39vd S3T4WYX3 INILNOYANS NYXI-WAT NV¥90Yd 8s NOISY3N VS W3ILSAS 40 9NILSIT 104

- LB T

93

CLAYND | */ £200S
SLAYND | = 22005
& GLAYHI L SANYD JONYHI 11YS = 12005
® CLAYNG L = 02005
® CLAYNG L SNOILd0AN3 “** SNOIL4O TIVS 61005
o CLAYNG | * Q0 (NANI°TI¥S// 81005
= 8ZNNFE Y8 23X3 N¥// £1005 ¢
e CLAVND | : = 91005
& CLAYND | " 6¥¥D 40 NILLINA 3714 3INO AINO HLIA NAY TYNNON = 51005
- CLAYN L - ¥100S
CLAYHI L d¢ £100S

£ 39vd " S37dHYX3 INILNONANS WYXI-HAT HY¥90dd 8¢ NOTSH3N TIYS WILSAS, 40 ONILSIT TIN4

2w (S i A SN G s B

SZAUNYI */ 2E00S

..w SLAYNG L SNOT140aN3 " SNOILdD 4403 1IYS 1£005
® SZAYNG L + 00 LNgNI*TIYS// 0£005 ;
& BLNNIE) VIEZ=NNIN‘,10AT1¥S=Y35, =10AN3N /" 62005 * i
v BZNNFZE ‘=HNANIN‘=3¥4NIN' NIN°=NNI91IVYS D3XI AdDD// 82005 ¢
g SCAYN9 L = 42005 | 4
w SCAYNG | SNOIL40 17nY430 3ONYHD ANV 3714 1I¥S ¥ 140D : 92005 _
QLAY L = $200S
? SLZAYND L ¢ ¥200S

4 39v4 S37dNYX3 INILNOYENS WYXI-HAI WYNI0Ud 8% NOISY3A TIYS W3ISAS 40 ONILSIT 1nd

95

SLAYNY L +/ ¥r005

CLAVNS L 143AN0D A402 11¥S £v005

SZAYHD L + 00 LNANI*TI¥S// Zv005

s SZAVH9L 634Y1=NNIN*,0I11¥S=¥3S, =10ANIN 7 1v005

L SLAYNY L ‘=HNIAIN, 3dY1°, =NNI9 7 0v005

© SLAUNS I ¢, (0v0S=3ZISH1840Z1=12341°4=H423¥) , =420NIN 7 4£005
& 8ZNAFZL “,(433N°NIN), =SANIN* IN=NAYT* 1=N114*11¥S 23X3 ANDD// BEO0S ¢

= SZAYNS | . ££008

= SLAVHIL 3d¥1 ¥ NO 3714 1S¥I4 SI 3114 4300) - 9£005

o SLAUNG L 3714 €300 Y 01 3714 A3NI¥4 ¥ 1¥IANOD = S£00S

SLAYNY L = v£00S

SZAYNY L ds ££005

S 3vd : $374NYX3 INILNOYANS WYX3I-WAT HY¥O0Ud 8s NOTISY3A TIVS WILSAS 40 ONILSTT TN4

AD=AOG8 519

UNCLASSIFIED

AIR FORCE WEAPONS LAB KIRTLAND AFB NM

SAIL»
JAN 79 L P GABY: D C GRAHAM: C E RHOADES

AFWL-TR-78-80 SBIE-AD-E200 258

292 END
o FIMED

Il 6-/9

[11:1 44

F/6 9/2
AN AUTOMATED APPROACH TO SOFTWARE DEVELOPMENT AND MANAGEM==ETC(U)

NL

-

T

SLAYNS | : *+/ 95005
SLAUND | Ad0J 1¥3ANDD IVS 55005
SLAVHS L + Q0 LNJNI°TI¥S// ¥5005

- SLAYNY L - TI¥5=435,=10AN3N‘634¥1=N010° , 0211¥S=¥35,=10A110 /7 £500S

© SZAVND| ‘=HNANIN‘,00A¥Y009° , =NNID*,3dV1 ", =0NI9 1" 2500

o SZAWND L ‘,(0v0S=3ZISN1°021=123¥71"94=N423¥), =400 10 /" 15008

) 8LNNrEI ‘,(d33X°0710),=80010° IN=08Y1° 1=0114° 1I¥S IIX3 ANOI// 05005 +

Lo SZAUNDL = 64008

Mm SLAYND L 3d¥1 ¥ NO 3714 1S¥I4 SI 3714 03002 = 8Y00S

& SLAVND) 3714 @3X2vd 01 3714 43000 ¥ 1¥3AN0I = £v008
SZAYNDL = 9v00S
SLAVND L de Sr00S

9 39vd §374NYX3 INILNONANS WYXI-NET WVYOON4 8S NOISMIA VS WILSAS 40 ONILSIT 1N4

AFWL-TR-78-80

L

9vd

GSZAVN?L
SZAVH? L
SLAVND L
SZAUND |
CLAUNDL
SZAVN?I
GZAVNY L
8NNAFCH
GSLAVND L
SLAVNS |
SLAUNS L
SLAYNY |

§374NYX3 INILAOYANS

EXEESEEEELEEIEELREREE LS LS
* *
* 1SI7 40 aN3 *
* *
EREREREREREREREREL R EEE

+/

SAY¥YI 39NVHI TIVS

3§ 31vadn 1Ivs
*+ 00 ININI®TIYS//
VIEZ=NNIN‘, 11YS=Y43S.=100N3IN //
‘=NNanIN‘IIVS 23X3 31vadn//

3714 VS ¥ 10 31vadn

de

NYX3I-REI WYY90Ud 8¢ NOISYH3A

89005
£900S
99005
S900S
¥9005
£9005
29008
1900S
0900S
65008
8500S
£5008

TIVS N3ILSAS 40 ONLLSIT 104

97

AFWL-TR-~78-80

GLOSSARY OF TERMS

Block - On the SAIL file(s) output during a NORMAL run, a set of card images "
that belong to one logical portion of the file(s). On CDC, this is a
logical section; on IBM, those cards identified by FTO8FOOn for some n;
on Honeywell, one of the files 15, 16, 17, etc.
On a library, a group of cards with the same block number.
There is no relationship between these two meanings of block.

card - One physical card or one line of information corresponding to a physical
card on INPUT.

One line appearing on the SAIL file from a NORMAL run.

In general, the set of characters read or written as a single record by
formatted FORTRAN I/0 statements.

The part of a SAIL record containing data or a SAIL directive.

card-image - The same as card, but usually with the implication that the infor-
mation is stored on some device other than physical cards.

change set - A consecutive set of cards appearing on INPUT, the first of which
is one of the SAIL directives *A, *C, *D, or *I, and the last, the card
preceding the next such card or the end-of-file.

COPY - SAIL execution mode in which an old library is copied to a new one,
usually with a conversion between the coded format used for intermachine
transport and the packed format used for SAIL records on a particular
machine.

delimiter - A.character used to mark the beginning or end of a character string.

On free-field cards, one of the characters blank, comma, or equal sign,
which are referred to as SAIL delimiters.

One of the characters (" or =), $, or (_ or +), which are used as delimiters
on some data cards and directives.

directive - A character string following an asterisk in column one, which is
recognized by SAIL as a command to perform an action. The command may be
modified or ignored due to the effect of SAI1 requests. Directives fall
into two classes: general and executive. .

directory - Those SAIL records occurring after the *DIR directive and before the
*EDIR directive. .

A Type of listing in which only SAIL records occurring in directory sections
are printed.

98

AFWL-TR-78-80

element - On free-field chards, a contiguous string of characters appearing
after the beginning of the card or a SAIL delimeter and before the end of
the scanned portion of the card (column 72 by default) or another SAIL
dalimiter.

ERROR - The name used in this manual for a file on which SAIL writes error
messages.

executive - The processor section that operates during NORMAL runs to select
cards within PROGRAMs to be written to the SAIL file.

field - A contiguous set of columns on a card or card-image. Field is used as a
general term to describe such a set that has been set aside for a particular
purpose by a computer program.

free-field - The characteristic of the request area on INPUT and of the cards or
SAIL records which are recognized as SAIL directives, that elements can be
separated by any number of SAIL delimiters without having either to appear
1? particular columns or a certain number of columns after the previous
element.

GENERATE - A SAIL execution mode in which the cards appearing on INPUT following
the request area are used to create a new library.

global 1ist type - On LIST runs, either directory or full. (The latter causes
SAIL to list all cards in the selected PROGRAMs.) This is used as the list
type for any PROGRAM that is not explicitly selected opposite.

identifier - A pair of integers used to identify SAIL records. One is the block
number and the other the card number within the block.

include - On a NORMAL run, to place the contents of a PROC on the SAIL file.

INPUT - The name used in this manual for the file SAIL uses for control informa-
tion and changes to the library.

Tibrary - A file containing SAIL records which together contain each possible
data card that can appear on the SAIL file during a NORMAL run along with
directives to select among them under OPTION control. Default lists of
PROGRAMs and OPTIONs are also stored on a library. SYSTEM and VERSION
parameters allow the user to verify the identity of the library.

line - In this manual, a term used synonymously with SAIL record.
LIST - A SAIL execution mode that 1ists selected PROGRAMs from a library.

list type - For each PROGRAM on a library during a LIST run, the choice between
listing the entire PROGRAM (full) or just the directory cards (directory).

macro processing - During inclusion of a PROC, the substitution of new character
strings given on the *INCLUDE directive for those indicated on the *PROC
directive. The characters to be replaced must be flagged inside the PROC.

mode - The choice of processing function to be accomplished during a SAIL execu-
tion.

99

AFWL-TR-78-80

name field - The second element or set of elements on a card interpreted as a
SAIL executive directive.

NEW - The name used in this manual for the new library file created on GENERATE,
UPDATE, and COPY runs.

NORMAL - A SAIL execution mode in which the executive processor selects cards
from the library under OPTION control and writes them to the SAIL file.

OLD - The name used in this manual for the library file used in all modes as a
basis for processing.

operand field - The third set of elements on a card or cards containing a SAIL
executive directive. If it is not omitted, it is usually a logical
expression combining logical units composed of comparison tests or TRUE-
FALSE determinations on OPTIONs. For the *DEFN directive, it is an arith-
metic expression involving OPTIONs and constants.

OPTION - A pair of parameters consisting of a character string (the name) and a
nonnegative integer value used to control card selections and character
string substitutions during NORMAL runs.

OUTPUT - The name used in this manual for the file on which printable output is
placed.

PROC - A set of SAIL records identified by the SAIL executive directive *PROC
so they can be included at any point by an *INCLUDE directive with a
matching name field.

PROCF - The name used in this manual for a file used to store the PROCs from the
PROLOGUE during NORMAL runds on CDC machines.

PROGRAM - The SAIL records beginning with one *B directive and ending with either
the end of the library or the card preceding the next *B.

PROLOGUE - The SAIL records preceding the first PROGRAM on a library.

PUNCH - A SAIL execution mode in which the card portion from SAIL records within
the selected PROGRAMs are written to the SAIL file ready to punch or to use
source cards or changes for another library.

request - An element in the request area used to control processing during SAIL
execution.

request area - The cards on INPUT preceding the first card (if any) with an
asterisk in column one, except on GENERATE runs where the card with the
GENERATE request terminates the request area.

request pair - Two consecutive requests, which must occur on the same card, the
first of which specifies a parameter to be set, and the second, the value
to be given it.

SCAN - A SAIL execution mode in which the library is searched for SAIL records
containing any of a set of character strings designated by the user.

100

AFWL-TR-78-80

SAIL - The program described in this manual. The name used in this manual for
{ the file on which task-oriented card images are written during a NORMAL run
' or on which source cards are written during a PUNCH run.

SAIL delimiter - One of three characters (blank, comma, or equal sign) used to
separate elements on cards or SAIL records written in free-format.

SAIL directive (general) - A directive recognized by SAIL that is processed not
only on NORMAL runs, but during executions in at least one other mode.

SAIL executive directive - A directive recognized by SAIL that is processed
(by the executive processor) only on NORMAL runs. In other modes, such a
SAIL record is trated as data.

SAIL record - One card-image along with its identifier stored on a library or
printed on QUTPUT.

specification area - Those requests that fall between the requests OPTIONS and
ENDOPTIONS, DELOPTIONS and ENDOPTIONS, or PROGRAM and ENDPROGRAM. If the
terminating directive does not appear sooner, the specification area ends
at the end of the request area.

SYSTEM - A character string stored on a library that identifies it by name.
The request that specifies the name of a library.
table - A subset of the OPTION list starting with the OPTION after the one

designated as the head and consisting of as many consecutive OPTIONs as
the value of the head.

task - A problem for which the user needs a card-image file either in the form
of input to a compiler or as data.

UPDATE - A SAIL execution mode in which changes to an old library are made
permanent by creating a new library.

verb field - The first element of an executive directive. The first character
must be an asterisk and it must appear in column one of the card or card-
image portion of a SAIL record.

VERSION - An integer stored on the library to distinguish it from other libraries
with the same SYSTEM name.

The request that specifies this integer for a library.

101/102

