
AD—A068 196 GENERAL ELECTRIC Co ARLINGTON VA F/S 9/2
FACTORS AFFECTING PROGRAMMER PERFORMANCE IN A DEBUGGING TASK. (U)
FEB 79 S B SHEPPARD. P MILLIMAN, B CURTIS NOOO1*&~77~C~ OI5eUNCLASSIFIED TR—79—388100—5 Nt.

I
_ _ _ __ _

-,

_ _

~~~~~~~~~~~ U
I nt
__ U r n

U END
OAT ’_____________________________________________________________ 

‘I t—A

I



1•0 ig~ 
HI~

L ~~~~~~ 2 2
I~~~~3.5

4 4 I~:. I.. 2 0
I~ .40 =
L • —

_____ 

I~-5 IIllI.!!.
* 

1WF25 

~1 r ’ ~
04#

NATIONAL BUREAU OF STAN~~ROS
~ GØOCOPV ~ESOL.U11ON TEST CHmT

I



QLEVEV
TR-79-388100.S

00

FACTORS AFFECTING PROGRA)I1ER
PERFORMANCE IN A DEBUGGIN G TASK

by

r~~~~

C-)
/ Sylvia B. Sheppard,

LU Pitil Milliman ,
and

~~ f I-’— Bill Curtis

D D C~
Pebruary l9l9 

~~~~~E~J J
I [DISTRIBUTION STATEMENT AI. I I

L DIa~fbut~cn Unllm~~~

I SOFTWARE MANAGEMENT RESEARCH

b SENERAL •ELECT IIIC
Y INFORMATION SYSTEMS PROGRAMS

ARLINGTON, VIRG INIA

° 5
_ _ _ _ _ _ _ _

I SIC R 1•V CLA IF~CA’rIO ,~ ~ I ~MlS R*~~I (W~aa, Die. tn e.t .4)

R~p’~°’ 1I~~E~~~ ATTnW DA1 ~E READ
~~~“ ~~~~~~~~~~~~ ‘~‘ ‘~~~ ‘ ‘~~~ ~ BEFORE COMPL.E~~~ G FORM

~~ 
r~~I... -I T - . __ __ __ Ta. ~ QVT AC CESSION ~O 3. •ICI.IEs~~ S CA 1A LD G ~~ ‘~ICI

I (
~ ~i~~~~~~~~~

’
~
” -

~~1’.’~ luIiStI.) $
~~.T!!LDE ~~~~Sfl T II . Ia1~

Factors Affec ting Programme r L. .1 TechnicalI —_ i Performance in. a Debugg ing Task I S. P(RF;Rame~ ~ RG. *EPOR1’ ~4U MS(~
—

~ 388100-S
1 AU ?$0Rf .~i S. CONIRAC1 OR 3RA NT

I S.B. Sheppard , 3. Curtis , P. Milliman —.
~
----—

~~~~N~~%l4-77-C-/ 158

I ~~. •IRFORMING ORGA NIZA TI ON NAME AN D ADORIU 10. •ROGRA M £L.&M(P47~ JRO J ICT . TASK
I General Electric Company ARIA A ~~ OR* UNIT NUMSIRS

1755 Jefferson Davis Highway NR 197-0371 Arlington , VA 22202 _________________________
~I. CON OL~~ING O,F!CL N A M E AN D A DDRESS ci; at,O~~T DA T E

Office of Naval Research 2/19/79
j 800 North Quincy Street a. NIJMUE* O~~ ’AGLS

I Arlington , VA 2221 7 ________________________
f4. MONIT RING AGENC’1 NAMft ~~ A3~~~ w (#IL ~ ~~~ L_ iHng OtSIc.) ¶5. $LC URIT? CLASS. (i~ ~hi. ,q ,~)

I ~~~~~~~~~ / ~~ ~~~
/ ‘ Unclassified

IS..
SCM ECU LI

j 5. DISr~~I•urIO p4 $TA ~’EMLMT ‘,f mi. R.p.rt)

Approved for public release; distribution unlimited.

I _
_ _

(/ ~~V7~__j
I Ji ‘r~

j ”” 1I~IIU~L1I,4~~

I _ _ _ _ _ _ _ _ _

Is . SUPØ~.(MLN A~~V NOrES

I This research was supported by Engineering Psychology Pro gram s ,
I Office of Naval Research.

1. N EY .ORDS C.ns~~u. ~, ,.~~.. .,d. ii n.c... ~~y d d.U~~ Dy D4.cA i~~~A.,)
- -

Debugging , Structured Programming , Software Psychology Metrics ,

1 Control Plow Complexity , Modern Programm ing Practices , ?ro gra m
I Errors.

I 20. DJ1 ’ NA C ‘C*uima. . ,...,a. aid. ~~~~~~~~~~ a~d id~~ iiI~ A, Di.4A m~~~•.v)

~i This report is the third. in a series invest].gating char-
acter istics of software which are related to its psychological

I complexity . Three independent variables , length of program ,
F I complexity of control flow , and type of error , were eva lua ted

for three different Fortran progra~is in a debugging task.

I Fifty-four experienced programmers were asked to locate a single -
~~ ~~~~~~~~

DO J A N 11 1473 ~ - tDITlOw ~ ‘ ‘~~ov s s s o . s ~~z i Unc l a s s i f i ed

I sm ~toi.oi..sso i
$ICIJRI ~~” C’..A S$I PICATI ON O~ YMI$ RA DE r*~.ø 3.,. &w.r.ø ,‘ (

—~4?O~ ~(4l e~

I~ ..~~ L.tJ I~~ ?’f CI_ AS1I~~lCA TION OF T$,5 RADItW!,.* 3.~. Lu.r.d)

~bug in each of three programs. Doc~imentation consisted. of input
files, correct output , and erroneous output. Performance was
measured by the time to locate and successfully correct the bug.

Small but significant differences in time to locate the bug
were related to differences among programs and. presentation
order. Although there was no main effect for type of bug , there
was a large program by error ~�i.t.eraction, suggesting the existenceof context effects. Among measures of software complexity,
Halstead’s~~,proved to be the best predictor of performance
followed by~M~Cabe ’s) ‘ and the number of lines of code. F

Number of programming languages known and familiarity with
certain programming concepts also predicted performance . As in
the previous experiments , experiential factors were better pre-
dictors for those particip ants with three or fewer years
experience programming in Fortran .

I.
I

~~1A
NTI S s~ t~n

B..~ Sec: on 0
0

JUS~i -.

I
U~ST~’ .~ ~~. ~ :~ .

Ii
Unclassified

$ICUUF” CLA1SIFJCA ~~ION ~~F ?~~i$ ~~~~~~~~~ ~~~~ ~~~~~

I- — - . --—- — - -~ -- —. ----- -~~~~~~~~~~ - — --.-
--- - —— -- — - -.- — .— ----- - — - —

—~~ ~iIi
- -

- ---

TR-79-388 100-5

F
FACTORS AFFECTING PROGRAMME R

PERFORMANCE IN A DEBUGGI NG TASK

H by

Sylvia B. Sheppard ,
Phil Milliman ,

I . , and
Bill Curtis

Software Management Research
Information Systems Programs
General Electric Company

1755 Jefferson Davis Highway
Arlington , VA 22202

Submitted to:

Office of Naval Research
Engineering Psychology Programs

Arlington , VA 22217

Contract: #N00014-77-C-0158
Work Unit: NR 197-037

February 1979

_________________ - —~‘-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~— :~~~~~~~~~~

- - — — —~
. _—. -

Software Complexity Research Program

Department of Defense (DOD) software production and main-
tenance is a large , poorly unders tood , and inefficient process.
Recently Frost and Sullivan (The Military Software Market, 1977)
estimated the yearly cost for software within DOD to b, as large
as $9 billion. DeRoze (1977) has also estimated that 115 major
defense systems depend on software for their success. In an
effort to find near-term solutions to software related problems ,
the DOD has begun to support research into the software production
process.

A forma l 5 year R~D p lan (Car lson ~ DeRoze , 1977) related
to the management and control of computer resources was recently
written in response to DOD Directive 5000.29. This plan requested ¶

research lead ing to the identification and validation of metrics
for software quality. The study described in this paper repre-
sents an experimental investigation of such metrics and is part

of a larg er research program seeking to provide valuable infor-
mation about the psychological and human resource aspects of the
S year plan.

DOD is also initiating the development of a more powerful,
higher order language for general use by all services (Department
of Defens e , 1977). With a language-independent measure of the
complexity of software , we can evaluate not only program A versus
progr am B , but also the individual constructs of a language (cf.
Gordon , 1977). Thus, an objective , quantitative theory based on

sound experimental data can replace idiosyncratic , subjective
11 evaluations of the psychological complexity of software. tong

term benefits of this effort involve improved software system

i. reliability and reduced development and maintenance costs.

The challenge undertaken in this research program is to
U quantify the psychological complexity of software . It is important

11
j

L I

I.. - — — - — - - -~~~~~~~~- -— — ---~ — - --- ---~~~~~~ — — - ~~— - -
~~~~~~~~~~~~~ -4



_ _ _ _ _ _ _  — —-—- --- -  
~
—-- - -

~~~~~~~~
- - ----- -- - --

~~~
- - - - - - - -— -

to distinguish clearly between the psychological and coinputa-
tional complexity of software. Computational complexity refers
to charac teristics of algor ithms or programs wh ich make their
proof of correctness difficult , lengthy, or impossible. For
examp le, as the number of distinct paths through a program in-
creases , the computational complexity also increases. Psycho-
logical complexity refers to those characteristics of software
which make human understanding of software more difficult. No
direct linear relationship between computational and psychologi-
cal comp lexity is expected. A program with many control paths
may not be psycholog ically complex. Any regularity to the branch-
ing process within a program may be used by a programmer to
simpl ify understanding of the program .

Halstead (1977) has recently developed a theory concerned
with the psychological aspects of computer programming. His
theory provides objective estimates of the effort and time
required to generate a program , the effort required to understand
a progr am, and the number of bugs in a particular program
(F it zs immons ~ Lov e, 1978). Some predictions of the theory
are counterintuitive and contradict some results of prev ious
psychological research. The theory has attracted attention
because independent tests of hypotheses derived from it have
proven amazingly accurate.

Although predictions of programmer behav ior have been
particularly impressive , much of the research testing Halstead ’s
theory has been performed without sufficient experimental or
statistical controls. Further , much of the data were based upon
imprecise estimating techniques. Nevertheless , the available
evidence has been sufficient to justify a rigorous evaluation
of the theory.

Rather than initiate a research program designed specifically
to test the theory of software science, a research strategy was Li

ii

L . . —~~~~~~~~~~~~~ ---- - - — —~~~~~~ - -~~~~- - -~~~~~~~~~~ - — - .- - -- — -— — ----- ~-—~~-



F 
_

chosen which would generate suggestions for improving programmer
efficiency regardless of the success of any particular theory .
This research has focused on four phases of the software life -cycle:
understanding, modif ica tion , debugging , and construction . Since
different cognitive processes are assumed to predominate in
each phase , no single experiment or set of experiments on a
particular phase would provide a sufficient basis for making broad

recommendations for improving programmer efficiency . Each experi-
ment in the series comprising this research program has been
designed to test important variables assumed to effect a partic--
ular phase of software development. Professional programmers

have been used in these experiments to provide the greatest pos—
sible external validity for the results (Campbell ~ Stanley ,
1966). In addition , Halstead ’s theory of software science and
other related metrics have been evaluated with these data.

-

~~~~~~~ ii
[1

iii

—~~~~~~~~~~~~~ —~~~~~-- -——-


~~~

- 

~~

-

~~~~~~~~~~~~~

- -

~~~~~

-- -— , -

ABSTRACT

This report is the third in a series investigating char-
acteristics of software which are related to its psychological
complexity . Three independent variables , leng th of program ,
complexity of control flow , and type of error , were evalua ted
for three different Fortran programs in a debugging task.
Fifty-four experienced programmers were asked to locate a single
bug in each of three programs . Documentation consisted of
input files , correct output , and erroneous output . Performance
was measured by the time to locate and successfully correct the
bug.

Small but significant differences in time to locate the
bug were related to differences among programs and presentation
order. Although there was no main effect for type of bug, there
was a large program by error interaction suggesting the existence
of context effects. Among measures of software complexity,

Haistead ’s E proved to be the best predictor of performance ,
followed by McCabe ’s v(G) and the number of lines of code.

Number of programming languages known and familiarity with

certain programming concepts also predicted performance. As in

the previous experiments , experiential factors were better pre-
dictors for those participants with three or fewer years experi-
ence programming in Fortran.

—

— H _(
~ 

~~~‘“

1]

_ -~~~-—~~
- -

_ _ ~~~ — -

TABLE OF CONTENTS

Page

Software Complexity Research Program i

Abstract iv

Introduc tion 1

Method 4
Participants 4
Experimental Design 4
Proc edure 4
Independent Variables 7

Program 7
Length 7
Complex ity of control flow 7
Type of Bug 8

Ind iv idua l D i f f e r ences Mea sures 12
Complexity Metrics 12

Haistead’s E 12
McCab e ’s v (~) 13
Length 13

Dependent Variable 13
Analysis 13

Resu lts 15
Pre liminar y Tasks 15
Experimental Manipulations 15
Software Complexity Metrics 18
Exper iential Factors 22

Discussion 28
Software Complexity Metrics 30

Acknowledgements 34

References 35

Append ices
App endix A - Instructions to Participants 37
Appendix B - Pretests 41
Appendix C - Experience Questionnaire 47
Append ix D - Subroutines With Errors

-______ —

~~~~~~~~~~~~~~~~~~~~~~~~~~~~I L PAQI ~~iir~-~~~ tURD
- —-

—-~ -~~



r~ 
_ _ _ _  

-

INTRODUCTION

Debugg ing programs is one of the most expensive , time - H
consuming activities in the development of a software system.

Only a few laboratory experiments have investigated the
relative difficulty of locating different types of bugs or
the most effective search strategies. Youngs (1974) found
that experience contributed to differences among types of
errors made in a construction experiment. Wescourt and Hemphill
(1978) described a model of the debugging process , but the model
was not entirely supported by the available data. Gould and
his associates (Gould and Drongowski , 1974 ; Gould , 1975) found
that the type of bug influenced debugging performance on short
programs . Specifically, assignment bugs were more difficult
to locate than array or iteration bugs , probably because the
former required a greater understanding of the algorithm used
by the program .

The difficulty of debugging a program may be associated
with coding practices used during its development . One factor
which may influence the ease of finding a bug is the complexity
of a pro gram ’s control flow. Two previous experiments by the
authors investigated the effects of structured control flow in
understanding and modification tasks (Sheppard , Curt is , Borst ,
Mil l iman , ~ Love , 1979). Programmers performed their tasks
more efficiently on code which exhibited a straightforward ,
top-down control flow than on an unstructured , convc’luted
control flow . A rigorously structured control flow (Dijkstra ,
1972) did not produce significantly better performance than a
naturally structured version which allowed limited unstructured

constructs (e.g., exits from loops). Thus the overall top-down
quality of the control flow appears to influence performance ,
while mino r deviations from the tenets of structured code do
not appear to influence performance significantly. This result

1



- - -
~~

--- — .- ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~ -L~~ r~ ~~~~~~~~~~~~~ 
~~~~~~~~~

may reflect the innate awkwa~ ~ness of implementing strictly
structured code in standard Fortran.

Factors other than the structuredness of the control flow
may influence the complexity of a computer program and , thus ,
the difficulty programmers experience in performing their tasks.
Some of these factors have been quantified in the software com-
plexity metrics developed by Haistead (1977) and McCabe (1976).
Halstead’ s metric purportedly represents the number of mental
discriminations involved in developing a program , while McCabe ’s
metric measures the number of elementary control path segments
comprising a program . In experiments on understanding and modi-
fication , these software complexity metrics were evaluated for
their usefulness as predictors of programmer performance (Curtis ,
Sheppard , Milliman , Borst , ~ Love , 1979). The results observed
in those experiments were modest. The correlations in the raw
data were not large , and the number of lines of code usually
pred icted programme r performance better than the Haistead or
McCabe metrics. Several limitations in the experimental pro-
cedures employed to obtain the data may have produced these
results . First , all of the programs studied were short (35-55
lines of code). The limited range of metric values calculated
on programs of this length may not have been sufficient for an
adequate test of the predictive worth of the metrics. Second ,
individual differences among programmers exerted significant
effects on the results obtained. When the data from the first
experiment were transformed in an attemp t to control for dif-
f erences among programs and programmers , a correlation of - .73
(p < .001) was obtained between the performance criterion and
Halstead’ s E. However , the issue is not whether theories can
be validated with mystical transformations of data , but whether
the results of these heuristic transfo rmations can be rep ’Jcated

in an experiment designed to overcome the limitations of p rev ious
research.

2

- — - - -

p

The present experiment evaluated the difficulty o locating
three types of errors under controlled programming conditions .
In order to compare the effects on performance of different
methods of structuring code , programs in the present experiment
were implemented in three types of control flow , all of which
exhibited a generally top -down flow. This experiment also
evaluated the ability of software complexity metrics to predict
performance over a wider range of program sizes. To investigate
the effects of length , the three programs in this experiment
were subdivided into functional subroutines so that they could
be presented in three different lengths : approximately SO ,
125 , and 200 lines of code . Finally , the present experiment
attempted to relate programming performance to experiential
factors , such as familiarity with other programming languages
or relevant programming tools and concepts.

ii
3

-

-
— •~~--=-—- .- — ---

~~~~~~~~~~~~~~~~~~~~~~~~~ ----~~~.=-.~~rr~ r-~~~~ ’f l~~ —-——---—

METH OD

Participants

Fifty-four professional programmers at six different loca-
tions participated in this experiment. Thirty were civilian
employees , while 24 were employees of the military. The partic-
ipants averaged 6.6 years of professional experience programming
in Fortran , ranging from 1/2 year to 25 years (SD = 6.1).

Experimental Design

In order to control for individual differences in perform-

ance , a within-subjects , 34 factorial design was employed. Three
types of contro l flow were defined for each of three programs ,
and each of these nine versions was presented in three lengths
with three different bugs , for a total of 81 different experi-
mental conditions. The first 27 participants each saw three of
the programs , exhausting the 81 conditions (Figure 1). The
second set of 27 participants replicated the conditions exactly
except that the order of presentation of the tasks was different
in each case.

Learning effects were expected on the basis of results
obtained in previous experiments of this type (Sheppard , Curtis ,
Borst , Milliman , ~ Love , 1979; Sheppard ~ Love , 1977). There-
fore , the order of presentation of conditions was counterbalanced
to assure that each level of each independent variable appeared
as the first , second , or third task an equal number of times.

Procedure

A packet of materials prepared for each participant in-

cluded: 1) written instructions on the experimental tasks
(Appendix A), 2) a short tutorial of commands used in Fortran

4

L _ _ _ _ _ _  -—



piur 
- —-- r<z - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~~~~~©

— — a — — — — — —
0

M% ~~ N. ~~ — ~~ — rd%
c.—J — c.—J — .-l C~-~

____ — — — — — — —
C4 ~~~ C ‘.0 1J% C~ N.

~sj — .4 C~~1 — —
I-.

C z
~~ — ~~

.
~~~ ~~~ N.

~~ — e—.i —
U 0

N~ fr~ V. r~~ C
c.-J -1 — — ~~ —

___ 
-~~~~ 

¶1.
~

0 ,..

- i.-. ~~ — ~~ — ~~ 
—

— C~-4 C~’1 ‘~~~ ~~~ —
.,

~~~
A

= — — — — — — — — — — — 0 -ri
‘.~ . _ u ~o.: — C ‘.0 N. P’~ N. — ~~

‘0 C — J — C- 4 — — ~~ ~
.,

~~~U, ~— — — —  ~~

~~ N. N. — Lf’ C .J ‘.0 ~~
.,

— ~~ c—a — ~~ — ~~~~— — — — —  I—

fr_I — ~~ 00 ‘.0 ~~~ N . r~~ C ~~

= =5 c—’J — c.—J — — —
—~~~~

I~~
~~~ V) 0 ~~~~~

— , ~~ c- .a tfs ‘0 z E
— — — C4 C~-4 — 0 ~— — — — U,

—

=
z u/I

— — — = — ~
— ‘.0 — — ‘0 u~ < 0

C ~~~ C = ~~LU = ‘.~ ~~ = ~~ © = ~~
-~ v~ ~~ i c/ ~~ -~ “~ .-~~ w

— — — — a — — — — U —
-J
‘U ~)U

~~

C,,
I— — LU

—
~~~~

C
‘0

0~

L I

_



--  --

77 (Append ix A) , 3) a short preliminary task (Appendix B),
4) three experimental tasks , and 5) a questionnaire concerning

previous experience (Appendix C).

All tasks included input files , a listing of the Fortran
program with the embedded bug , a correct output , and the erro-
neous output produced by this program. All differences between
the correct and erroneous output were circled on the erroneous
output. Also included were explanatory descriptions of any
subrout ines or functions not presented in the listing but
referenced by the program.

The 54 participants were divided into two groups of 27 ,
each of which represented a complete replication of the design .
Within a group all participants were given the same preliminary
task. Group 1 worked with an algorithm to find the greatest
common divisor of two numbers and Group 2 was given a simple
sort algorithm. These preliminary tasks were provided to reduce
learning effects on the experimental tasks and to provide a
basis for comparing the abilities of the partici pants to perform
a task of this nature.

Following the initial exercises , participants were pre-
sented with three separate programs comprising their experi-
mental tasks . Participants were allowed to work at their own
pace , signalling the experimenter when they believed they had
identified and corrected the bug. The experimenter verified
all corrections , and in the case of a mistake the participant
was instructed to try again until the task was successfully
comp leted. The maximum time partici pants were allowed to work
on a particular program was 45 minutes for the preliminary
task and 60 minutes for each experimental task. Time was mea-
sured to the nearest minute.

_  

6



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -  - — — — -  — _ 
-

Independen t Var iables

Program. Three programs were selected for the generality
of their content and their understandability to programmers.
The first program sorted and categorized alphabetic response
data to a questionaire (Veidman , 1967). The second program ,
an accounting routine , produced income and balance statements

(Nolen , 1971). Program 3 kept track of students ’ test grades
and calculated their semester averages (Brooks, 1978). All
programs were tested prior to the experiment.

Length. The inclusion of additiona l subroutines made it
poss ible to present each program in three different lengths .
The shorter programs had 25-75 statements , med ium program s
contained 100-150 statements , and the longer programs contained
approximately 175-225 statements. (One Fortran 77 version
exceeded the 225 line limit by 8 lines because of the number of
ELSE and ENDIF statements required) .

Program listings included a two or three line explanation
of any routine or function that was called by a program but not
presented in the experimental materials. Participants were
told to assume that missing routines worked correctly. All of
the input and output files were presented regardless of the
length of the program. That is , for the shorter version , some
of the input was read in and some of the output was produced
by subroutines which were not presented.

Complexity of contro l flow. Three versions of control
flow performing identical tasks were defined for each program.
Two types of structures were implemented in Fortran IV , naturally

structured and graph-structured. A third version was written

H in Fortran 77 (Brainerd , 1978), which includes the IF-THEN-ELSE ,
H DO-WH ILE , and DO-UNTIL constructs.

The Fortran 77 version of each program was implemented in

a prec isely structured manner. All flow proceeeded from top to

7

____ --~_- _ —~-~---

bottom , and only three basic control constructs were allowed :
the linear sequence , structured selection , and struc tured
iteration (Figure 2).

The graph-struc tured version of each pro gram wa s imp lemen ted
in Fortran IV from the Fortran 77 version , replacing the special
constructs but produc ing code for which the control flow graphs
of the two versions were identical. All nested relationships
could be reduced through structured decomposition to a linear
sequence of unit complexity. A full discussion of reducibility
is presented by McCabe (1976).

Structured constructs are awkward to implement in Fortran
IV (Tenny , 1974). In order to test a more naturally structured
f low , limited deviations were allowed in a third version of
each program . These deviations included such practices as
branch ing into ot out of a loop or decision and multiple returns.
Contro l flow graphs and the code for a section of a routine
implemented in all three versions of control flow are presented
in Figures 3 and 4.

Each program was indented following the nesting patterns
presented in the code. Thus , all DO loops and branching in-
structions were indented. For naturally structured versions ,
decisions were made arbitrarily about the importance of various
constructions , and indenting was necessarily less standardized
than for the graph-structured and Fortran 77 versions.

Type of Bug. Three types of semantic bugs were chosen
from a classification developed by Hecht , Sturm , and Trattner

(1978): computational , logical , and data errors. Bugs in each
category were defined for each of the three programs in order
to max imize the similarity of bugs from a single category across
programs . Computational bugs involved a sign change in an
arithmetic expression . Logic bugs were implemented by using the
wrong logical operator in an IF condition . Data bugs involved

8

-_~ -~~

SEQUEN CE :

SELECTION (IF-THEN-ELSE):

ITERATION (DO WHILE):

(DO UNTI L):

Figure 2. The Basic Structured
Constructs9

_ _ _

_ _ _ _

Naturally structured

Fortr an 77 and
Graph-Structured

For t ran IV

Figure 3. Control Graphs for All Versions of Contro l Flow

10

—-- -- -~~ -~~~~ -~~~~ -- .-- ~- - - - - - - --- ~~-
----— — - . -- -—. - -

-V

NATURA LLY STRUCTURED

1? ~Am~~~ • £7. 1 0*.. A~1W1 • C?. CO TO 420
CO 400

11 (C5110 .10. D (X)) CO TO 440
400 -

?R~~I?41$ PO31S~A? (1*0 ,30z, ’ ID IOXI U 110? 13 ?ILt a , I$)
CO TO 430

42$ P$X*? 410.
43$ J’OIIIAT (1i0.303.’ID ,Zi.11J.ZCA . A3SX~~4flZW! .I3)

440 SCOU (L.A33C~) ’v~L
431

--

GRAPH- STRUCTU RED

11
£7 (UP~~ .1.7. 1 •c*. AS~ WU •~~~~~ . U.U~~ I CO TO 42$

400 It (~~~~X$.Z~~. W(1) .0*. 1 .0?. ISTODI) CO TO 40.5

CO TO 400
403 17 (7 .1.1. NSTOD$) CO TO 413

PP.231? 410 .C~ P.XO
41$ rOMAT (1I0 .30X . ID NC~IUZ 110? IX ?ILX~

.111)
431

413 SCCJZ (X.A3)IWI) —V&&
CO TO 430

420 P123? 430. ~~~~I~~,A S1lWI
430 ?OPIIA ! (1J0,307. 2D ~Z*, Z 2CA1. A5SX~~ 11~~1? .I3)

FORT RAN 77

1.l.
I! (A$N~# .~~~~~. 1 .A3O . AS3~~S .Z.Z . 11ASS~~~)

OQ 400 dI ILZ (C~~~X.D .111. £~D (P.2 .j .ro. ~ .1.1 . ~~T~~3I

£1 (1 .01. ISTODII) T3E3
PP.13? 41G.C~*ID

41$?0PIlA? (100,30*, ID N UII O EP NOT £3 ~tLZi
11.33

S~D*t (3 ,AS3IWI) .11*1.

• I ZLIZ
- PP.2W! 430, CU1XD.ASN~~I

430 ?OMA? (11O.30X. ’tD .Z l. X LLZC~’Z. A.S3I~~ MVft ,13)
£3102?

“

H Figure 4. Examples of the Three Types of Control Flow

-

~~~~~~ 11



wrong index values for variables. Examples of these bugs and
the routines in which they were inserted are presented in
Append ix D.

Each bug in this experiment was purposely designed to
affect only a limited area of code . That is, each calculation
containing a bug occurred near the corresponding WRITE and
FORMAT statements. In no case did a bug produce errors in
routines other than the one in which it was embedded , and
each bug appeared in only one line of code.

Ind iv idua l Diff erences Measures

Scores on the preliminary exercise were used as a measure
of programming ability related to the experimental task.
Participants were also asked to complete a questionnaire about
their programming experience. The information requested in-
cluded specific type of experience , number of years programm ing
professionally in Fortran , number of statements in the longest
Fortran and non-Fortran programs written , the first programming

language learned , and number of languages learned. In addition ,
various programming concepts that appeared relevant to the
experimental programs were listed , and participants were asked
to mark those with which they were familiar.

Complexity Metrics

Halstead ’s E. Using a program based on Ottenstein (1976),
Halstead ’s effort metric (I) was computed from the source code
listings of the 27 experimental programs , representing three
distinc t programs at three levels of structure and three dif-

ferent lengths . The computational formula was:

12

______________________-A



-- - — - - v -~~~r~~~~~~~~~cra  - .  -- - - - -.~~- -~~~- .- _— - - - - —

E ~1N 2 (N1 + N 2) log 2 (n1 +

where ,

~ number of unique operators
* number of un ique oper ands

N1 - total frequency of operators
N 2 — total  frequency of operands

McCabe ’ s v(G ) .  McCabe ’ s metr ic  is the classical  grap h-
theory cyclomatic number def ined as:

v(G) = # edges - # nodes + 2 (# connected components).

McCabe presents two simpler methods of calculating v(G):
the number of pred icate nodes plus 1 or the number of regions
computed from a planar graph of the contro l flow.

Length. The length of the program was the total number

of Fortran statements , excluding comments. The total number
of executable statements was found to be highly correlated
with number of statements (r .99, ~ < .001).

Dependent Variable

The dependent variable was the number of minutes necessary
for the participant to locate and correct the bug .

Analysis

The analysis of data was conducted in two phases. The

first phase was an experimental test of the independent variables ,

wh il e the second phase evaluated the software complexity metrics.

1 : In the first phase , exper imental data were analyzed in a
hierarchical regression analysis. In this analysis , domains
of var iables were entered sequentially into a multiple regres-

sion equation to determine if each successive domain significantly

13

- - -

~

- - - -

~  

- - --  - -~~~~~ - ---~~~ —~~~~~~~-- - . -



improved the predictive capability of the equation developed
from domains already entered. Thus, the order in wh ich domains
were entered into the analysis was important. Variables repre-
senting the different conditions of experimentally manipulated
variables were effect-coded (Kerlinger ~ Pedh azur , 1973).

The second phase of analysis investigated relationships
between the time to find the bug and the metrics , Halstead’s

E, McCabe ’s v(G), and number of statements in the program .

All correlations are Pearson product-moment correlations.

I

i

14

— 
- — -- -

Ii. - -.—- - ---- - — — —-— ---- ——------— --——~
--—-- - __

~__ __  
— —•— — — - .  -



-—_____ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

RESULTS

Preliminary Tasks

Group 1 (Part icipant s 1-27)  and Group 2 (Pa r t i c ipan t s
28 - 54)  were given d i f f e r e n t  pre l iminary tasks .  The two a lgor i thms
were of varying d i f f i c u l t y , producing s ign i f ican t  d i f f e r ences
in both time to completion and percent of completions. Finding
the bug in the greatest common divisor algorithm required an aver-

age of 23.8 minutes with 22% failing to find the bug in 45
minutes , while the sorting algorithm required only 14.6 minutes
with only 4% failing to find the bug. However , no significant
differences in performance between the two group s occurred on
the experimental programs .

Experimental Manipulations

The average time to locate bugs across all experimental
conditions was 20.1 minutes (SD = 16.2). All but six of the
162 experimental tasks comprising this experiment were completed
successfully during the allotted 60 minutes. These six condi-
tions were not associated with any particular factor.

Desp ite the use of a preliminary task to familiarize the
participants with the experiment , a significant order effect

occurr ed (~ 
< .04), indicating that learning took place during

the first of the three experimental tasks (Figure 5).

Results of a hierarchical regression analysis of the
independent variables on the time to find the bug are presented
in Table 1. Differences in solution time for the three programs
were significant (~ 

< .01). Finding the bug in the accounting
program required an average of 15.1 minutes , 20.0 minutes in
the program that sorted questionnaire data , and 25.0 minutes in
the grade-scoring program . Increasing the length of the programs
had a modest effect (2 < .06) on the time to locate and correct

15

_ _ _ _  
_____ - -  . — --~~~~~~-  ~~~~~

- . -



_ _  - _ _ _

ORDER OF PRE SENT ATIO N

Figure S. Order E f f e c t  on the Three
Experimental  Tasks

i
16

4k



-
~~~~~~~~ ~~~~~~~ ~ - - —--— —- — — —-—--- ~~ — - —~~~~--~~ -~~~~~ - - --- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

TABLE 1

Hierarchical Regression Analysis
for Time to Find Bug

Variable df R
2

~R
2

(1) Program 2 .06** .06**

(2) Presentation order 2 .04* .04*

(3) Type of bug 2 .00 .00

(4) Program X bug
interaction 4 ~~~~~ .26***

(5) Complexity of control flow 2 .02 .02

All variables 12 .38***

Note: n = 162. R column represents the separate regression____ — for each domain.

*n < .05
~ . 111
< .001

17

- -~----~~~~~ - -— —

~

the error. The average time for the short program was 16 minutes ,
while the medium and long programs required a mean of 21 and 23
minutes , respectively.

Averages for the three error categories were not signi-
ficantly different from one another. However , a very large
interaction occurred between type of bug and program (Figure
6). This interaction accounted for the largest percent of
variance (26%) of any of the experimental relationships studied.
No significant differences in performance resulted from the
three types of control flow .

Software Complexity Metrics

Intercorrelations among the three measures of software
complexity were computed from the 27 different versions of the
programs at both the subroutine and program levels (Table 2).
Substantial intercorrelations were observed among Haistead’ s E ,
McCabe ’s v(G), and length at the subroutine level. When com-
puted on the total program , the correlation between length and
McCabe ’s v(G) increased , while the correlations for Halstead ’s £
with these two measures were substantially smaller , especiall y
with lines of code .

Correlations between time to find the bug and the com-
plexity metrics were calculated for unaggregated data (three
experimental tasks for each of the 54 participants , ii = 162)
and for data averaged over the six scores obtained for each
program (Table 3). Correlations for the aggregated data were
much higher than those for the unaggregated scores. All three
metrics predicted performance equally well at the subroutine
level. At the program level , however , I was the best predictor ,
accounting for more than twice the variance in performance than did
the length (56% versus 27% , respectively). The variance accounted
for by ~~~ fell between these value s (42%). A stepwise multiple

18

II_ -~~~~~~~~~ -~~ ~~~~ -,--- - - — - .- — -—
~~- -

________ -~~ - —-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

40
- PROGRAM 3

a

LU

a

U.

~ 
2(

1-
C,,
Lii
I.-

z
PROGRAM

ii 
P ROGRAM

COMPUTATIONAL LOGIC DATA

TYPE OF ERROR

Figure 6. Pr ogram by Error  I n t e r a c t i o n

- 1_i

19

L~ . - -~~~~
— - -

~~~~~~~~~~~~~ -------_ _ _ _ _ _ _ _ _ _ _


TABLE 2

Intercorrela tions among Complexity Metrics

Correla tions

Metrics
—

-

v (G)
Subrou tine :

v(G) .92***

Length .89***

Program :

v(G)

Leng th .56 ’~~ ~~~~~

Note: n 27.

~~~~ a� .001.

20 
•

~ 

- — - 

—

_  - -~~~~-~~~-- -- - - -  - ----- V



- ------—--—— --- —

TABLE 3

Correlation Between Performance Time
and Complexity Metrics

—_ ~~Qrre1ations
Unaggrega ted Aggregated

Metric (n — 162) (n — 27)

Subroutine:

Hais tead ’s E .25***

McCabe ’s v(G) .24***

Length .25*** .67***

Program :

Ha].stead’s E .28*** 75***

McCabe ’s v(G) .25***

Length .20** .52**

** 2 <  .01

*** 2. < .001

Ii
- r

21

- -



regression analysis indicated that length and v(G) added no in-
crements to the prediction afforded by I.

The scatterplot of performance with Halstead ’s I presented
in Figure 7 suggested the existence of a curv i l inear  trend in
the data.  The s igni f icance  of this trend was tested using the
second degree polynomial  regress ion approach suggested by both
Cohen and Cohen ( 1975) and Ker l inger  and Pedhazer (1973) for
inves t iga t ing  curv i l inear  r e la t ionsh ips .  A mul t ip le  cor re la t ion
coe f f i c i en t  of .84 indicated that  the curv i l inear  trend accounted
for an additional 15% (2 < .001) of the variance beyond that
accounted for by a linear relationship. The prediction equation
generated from these data was:

minutes to find bug 9.837 + .002391 - .000000000791 2

However , with few data points in the right tail of this distri-
bution for Halstead’ s I, it is difficult to extrapolate to the
exact shape of the curvilinear trend. ~o curvilinear trend

was detected with either the lines of code or McCabe ’s v(G).

Experiential Factors

The relationship between complexity metrics and performance
was investigated within groups of programmers differing in years
of professional experience programming in Fortran. As a heuris-
tic , the participants were divided into two groups of approxi-
mately equal numbers: those with three or fewer years experience
and those with more than three years experience. The results
presented in Table 4 indicate that the complexity measures were
more predictive of performance for less experienced programmers ,
especially when computed at the subroutine level.

Two measures of experience were also found to be related

to the performance of less experienced programmers (Table 5),

but not to the performance of experienced programmers. The
first such measure was the number of programming languages the

22 



p—--

T

40

30

.
‘/,

S

~~20

I I p
- 

50K l O O K  1 50K 2 00K

HALSTEAD ’ S E

Figure 7. Scatterplot of Halstead’ s I and Perfo rmanc e

23

—



- - - _
~~ 

- _ - -- _ _ -
~~~~~~~

-- -.-
~~~~
-- -—----- -.—---- --- —- - - — —--_--

TABLE 4

Correlations between Performance and Complexity Metrics
Moderated by Years of Fortran Experience

Correlations

(3 years >3 years
Metrics Tn 75) (n — 87)

Subrou tines:

Hals tead ’s E 39*** .11

McCabe ’s v(s) 37*** .07

Length 33*** .17

Program :

Haistead ’ s I .38*** .20*

McCabe ’s v~~) .29*** .21*

Length .18 .22*

Note: Dividing the data into groups of programmers
required that scores be analyzed on individual
tasks ra ther  than on tasks averaged by program .
Thus , this analys is was performed on the 75
experimental tasks performed by the 25 parti-
cipants with 3 or fewer years of Fortran
experience and the 87 tasks performed by the
29 participan ts with more than 3 years experience.

*a �  .05

< .01

<. .001

I

______ 

24

- ——



TABLE S

Relationships of Experiential Factors to Performance
for Programmers Differing in Fortran Experience

<3 years >3 years Total
Relevant experience Tn — 25) (ri 29) (n — 54)
• of programming ...49** - .03 - .19

languages

Questionnaire score - .48** l1

**2.. .01

25
1 .

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _



• 

—--- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ — _ _ 
- _ — 

I

par t ic ipan t  knew. The second metr ic  was the number of items
checked on the experience questionnaire (Appendix C). The moder-
ating effects of programme r experience may have been the result
of greater variability in performance for programmers with less
experience (Figure 8). This greater variability would increase
the ab i l i t y  of cor re la t iona l  tests  to detect s i gn i f i c an t  rela-
tionships (Cohen ~ Cohen , 1975).

26



- - -r- - -= .--- r~n .U~~~~~~r’r- - — - - -~~r - .-~~ ~--~ —- - - ~T- -~- j~ r r  — ~~~~~~“ 

_ 
-... .__ -— _. ‘~~

4 0 ’

S• •S .

• S
La •I .

~~ 3 0 ’  • •
S

.

La
S

• : :

I : : 

:•~~~~

:: •

FORTRA N EXPERIENCE (YEAR S)

L Figure 8. Scatterplot of Experience and Performance

I- I

27



- -
~~~~~~

-
~~~ 

-

DISCUSSION

Four factors  were found to influence the speed with which
programmers could find a bug in a computer program. These fac-
tors were order of presentation , specific program , a program
by error interaction , and the complexity of the code as measured
by software complexity metrics. Type of bug and type of control
flow , however , did not account for a signficant proportion of
the variation in performance.

Variance in programme r performance associated with dif-
ferences among the programs replicated results from two previous
experiments in this series (Sheppard et al., 1979). However ,
a much larger percent of the variance in performance was
accounted for by a program by error interaction . It appeared
that some quality of the algorithm in which the bug was embedded

influenced a programmer ’s ability to locate it. The time required
to detect similar errors contained in similar statements depended
on the program in which the error was embedded. This result
has implications for the usefulness of various schemes for cate-
gorizing software bugs . The implied value of these taxonomies
is to identify properties of bugs which suggest how they are
created or how difficult they are to detect. Simple taxonomies
based on syntactic relationships will probably not prove suffi-
cient for this purpose. The results of this experiment suggest
that the detectability of a bug depends on the context of the
algorithm surrounding it. This contextual. effect may determine
the optimal search strategy for finding the bug , and it is this
search strategy that needs to be understood if debugging performance
is to be improved.

In the last section of the post-session questionnaire , the
participants were asked to describe their searching strategies
for locating the bugs. Typically, one of two approaches was

28

S 

-

~1



described.  In the f i r s t  s t ra tegy  the programmer tr ied to under-
stand the whole program from begini~ing to end before searching
for the section wi th  the bug . In the second s t ra tegy  the pro-
gramme r used appropriate  clues in the output to go di rec t ly
to the section containing the bug . The la t te r  appeared to be
a much quicker strategy for  debugging,  but there were insuff i -
cient data for a meaning ful statistical analysis. In order to
improve the debugging performance of programmers it will be
important not only to ~.dentify effective search strategies , but
also to identify conditions under which they will be differenti-
ally effective .

No significant differences were evident among the three
types of top-down control flow tested in this experiment . This
finding agrees with previous results (Sheppard et al., 1979)
where differences were found between top -down and convoluted
contro l flow , but not between types of top-down control flow.
The minor deviations from strictly structured coding allowed
in the naturally structured version of this experiment did not
adversely affect performance. Summarizing the combined results
of the three experiments , it would appear that the overall top-
down quality of the control flow is important to performance ,
but careful attention to strict structuring does not appear to
improve programmer performance significantly.

Since no difference was found between the graph-structured
and Fortran 77 program versions , it would appear that the newer
constructs provide little additional aid in a debugging task
beyond that provided by a top-down flow. Only five of the 54
participants had previously used Fortran 77 , so a lack of

- 

- 
familiarity with the new constructs may have prevented them
from finding the bug more quickly in Fortran 7 than in Fortran
IV . However , immediately prior to the experiment a short train-

• ing sess ion was conducted with each group of participants in

29



- - ~~~~~~ — - -
~~~~~~

-
~~~~~

-
~~~~~~~~~~

- - -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

--  — - -- 

. 

_ 

I
which the new Fortran 77 constructs were discussed in detail.
These constructs were similar to those implemented in Fortran
IV , and the participants ’ previous lack of familiarity with
them was probably not a significant factor in their performance.

Most laboratory studies exhibit a certain degree of arti-
ficiality that is necessary for experimental control. In this
experiment participants were told there was only one bug in
a program . While this situation differs from a normal program-
wing environment , it should not have affected participant ’s ability

to perform the tasks. These experimental tasks may have been
simpler to perform than typical debugging problems since there
was greater certainty about the bugs. Further , differences
between the correct and erroneous output were clearly marked on
the erroneous output , reduc ing the amount of comparison neces-
sary to discover what problems had occurred.

During a typ ical debugging problem a programmer could
refer to the functional specifications for a program or to
comments included in the code. However , no such aids were
made available in this experiment . The participant ’s compre-
hension of the program ’s function had to be gleaned from the
code or from the input and output listings. The latter were
designed to be seif-explantory , with each section labeled appro-
priately; e.g., “F INAL COUR SE GRADE ” or ”TRIAL BALANCE” . Al-
though adding some artificiality to the experimental situation ,
the absence of documentation was an attemp t to equalize the
amount of information provided by materials other than the code.

Software Complexity Metrics

The results of this experiment not only replicated the
results obtained in our previous research , but also demonstrated
that more viable results could be obtained when limitations in
our earlier experimental procedures were overcome . For instance ,

30



• - -~ -—-•- -~ - - - - - - -—----- - -- ~~~~~~~~ --~~~~~~~~—~~~~~~~~ - - - -- _ - _ -~------
- - ---~~~~~

our previous research was conducted exclusivel y on small-sized
(35-55 lines of code) programs , which seems to have limited
the results in three ways . First , the range of values on the
factors studied in those programs seems to have been too
restricted to detect the size of relationships observed here.
Second , the curvilinear relationship observed in this experi-
ment between Haistead’ s I and performance would not have been
observed if longer programs had not been used in the experimental

tasks. Third , the extremely high intercorre lation between len;th
and Halstead’ sE at the subroutine level suggests that both are
measuring program volume . With larger programs the information
measured appears to differ; that is , Haistead’ s I measures
something in addition to , but inclusive of , factors measured
by length.

Many small-sized programs can be grasped by the typical
programme r as a cognitive gestalt. The psychological complexity
of such programs is adequatel y represented by the volume of the
program in terms of the number of lines of code. When the code
grows beyond a subroutine , its complexity to the programm~~
is better assessed by measuring constructs other than the num-
ber of lines of code. This may result partly because programmers
cannot grasp the entire program within their mental spans at
a single time . For larger programs the difficult programmers
experience is better represented by counts of operators , operands ,
and control paths . Thus , as the size of a program increases ,
Haistead ’ s I seems to be a better measure of its psychological
complexity.

One possible explanation for the superior predicti ve

ability of Haistead ’ s I is that the relat ionship between program

size and performance is curvilinear , and the algorithmic
transformation with the Haistead measure captures this relation-
ship while line s of code does not. There was no evidence in

31 

- -  - —~~~~~.- ~~~~~~______t



- - - -~~r -~~~~~ ~~~~~c~~~-

these data of a curvilinear relationship between line s of code
and performance. On the other hand , a curvilinear relationship
did exist between Halstead ’s I and performance. This trend

F suggests that as Halstead ’s I grows larger , a program becomes
more psychologically complex , but the increments in difficulty
grow smaller and smaller. In the experimental task used in
this debugging experiment , there seemed to be an amount of
time that was typically required to locate a bug within a sub-
routine once the correct subroutine had been identified
(approximately 16 minutes). Added to this baseline rate was
the time required to identify the proper subroutine . The cur-
vilinearity of the relationship between time to find the bug
and Haistead’ s I appeared to result from the time required to
isolate the problem subroutine .

The moderating effects of experiential factors also
rep ’.icated the results found in the earlier experiments. The
metrics again proved -to be better predictors of performance for
programmers with three or fewer years experience in Fortran
than for those with more than three years experience. It was
also possible to predict the performance of an individual
programmer from job history data. Several important factors
seemed to be the number of languages a programmer had used and
familiarity with certain programming concepts. These predictions
from job history were also more valid for programmers who had
three or fewer years of experience in Fortran. Future work
is needed to r e f i n e  the use of expe r i en t i a l  ques t ionna i re s  for
use in personnel  func t ions  such as se lec t ion , assessment  for
training needs , and placement.

Code which is more psychologically complex may also be
more error-prone and difficult to test. The results of this
experiment provide evidence that the software complexity metrics
developed by Haistead and McCabe are related to the difficulty

32

— —_ - _ _ _ __ _ _a_____ _~~ . ... — -— — • _ 
— _ _~~~~ _ ________________



- - - 
- ~~~~~~~~ ~~ 

~r~~~~ =-~~-— .,- ~~~~~~~~ 
-- 

~~~~~~

programmers experience in locat ing errors in code. Thus these
metr ics appear to be capable of sa t i sf ying several prac t ica l
appl icat ions . They can be u sed in providing feedback both to
programmers about the complexi ty of the code they have developed
and to managers about the resources that wi l l be necessary to
maintain particular sections of code. Further evaluative

research needs to assess the validity of these uses in ongoing

sof tware p ro j ec t s .

- ‘

I 33

ii

___ — -— -—~~~— - - -~~ _ _________

- -
-,-- .- -—---.--- - - __________________________

ACKNO WLEDGEMENT S

The authors are grateful to Judy McWilliams and Mary Anne
Borst who helped with this experiment and to Beverly Day for
manuscript preparation . We are also grateful to Dr. Gerald Hahn
for advice on experimental design , to Drs. Tom Love and Ben
Shneiderman for advice on the experimental tasks and procedures ,
and to Dr . John O ’Hare for his carefu l review of th is repor t .
We are especially appreciative of the efforts of Earl North and
Leo Pompliano of General Electric ; Jan Gombert of Applied Urba-
netics; Mrs. Joan Shields , Cols. William Eglington , Earl Goetze
and Richard Blair , and Lt. Col. Pat Harris of the U.S. Air Force;
and Capt. Webster and J. Rehbehn of the U.S. Navy in providing
the partici pants for this research. The support and encourage-
ment of both Gerald Dwyer and Lou Oliver has been vital to the
success of this research.

a
34

_______ - - - —-—---- -- ---- -~~~~~~--~~ -_ _-~~~~~--~~~~~~~~- - _ _ -

- - -. ~~~ -: - -, —- ~~~~~~~~~~~ - — - - —

REFER ENCES

Br ainerd , W. Fortran 77. Communications of the ACM. 1978, 21 ,
806-820.

Brooks , R. Unpublished algorithm. Irvine , CA: Un iversi ty of
Cal ifornia at Irvine , Computer Science Department , 1978.

Campbe ll , D., ~ Stanley, J.C. Experimental and quasi-experimental
designs for research. Chicago : Rand -McNally, 1967 .

Car lson , W .E ., ~ DeRo :e , B. Defense system software research and
development plan. Unpublished manuscript , Arlington , VA:
Defense Advanced Research Projects Agency, September 1977.

Cohen , J., ~ Cohen , P. Applied multiple regression/correlation
analysis for the behavioral sciences. New York: Wiley,
1975.

Curt is , B., Shepp ard , S.B. , Milliman , P., Borst , M.A. , ~ Love , T.
Measuring the psychological complexity of software maintenance
tasks with the Haistead and McCabe metr ics. IEEE Transactions
on Software E n g i n e e r i n g , 1979 , 5 , 95-104.

Department of Defense requirements for high order computer program-
ming languages: Revised “IRONMAN” . SIGPLAN Not ices, 1977 ,
12 , 39-54.

DeRo:e , B. So ftware research and development technology in the
Department of Defense. Paper presented at the AI IE Conference
on Software , washington , D.C. : December 1977 .

Dijkstra , E.W . Notes on structured programming . In Structured
programming, O.J. Dahl , E .W . Dijkstra , and C.A .R . Hoare ,
(Ed.) New York : Academic , 1972 .

Fit:sirnrnons , 1.3., F~ Love , L.T. A review and evaluation of
software science. ACM Computing Survey, 1978 , 10 , 3-13.

—
Gordon , R .D. A measure of mental effort related to program c l a r i ty .

Unpublished doctoral dissertation , Purdue University, 19 7 7 .

Gou ld , J.D. Some psychological evidence on how people debug corn-
puter progr ams. International Journal of Man-Machine Studies ,
1975 , :~

151-132.

Gould , J .D ., ~ Dro n g o wsk i , P. An exploratory study of computer
pro gram debugging. Human Factors , 1974 16 , 258-2” .

Haistead , ~l.H. Elements of software science. New York :
Elseiver North-Holland , l9~~ .

35

Hecht , H . , Sturm , W . A . , ~ T ra t tne r , S. R e l i a b i l i ty measurement
during sof tware development. Redondo Beach , CA: Aerospace
Corp . , 1978.

Kerlinger , F.N. , ~ Pedhazur , E.J. Mult ip le re~ ression in
behavioral research. New York : Holt , Rinehart , ~ Winston ,
1973.

McCabe , T.J. A complexity measure . IEEE Transactions on Soft-
ware Engineering~ 1976 , 2, 308-3~20.

Nolen , R . L . For t ran IV computing and app l i ca t ions . Read in g ,
MA: Addison-Wesley , 1971.

Ot tens te in , K.J. A program to count operators and operands for
ANSI-FORT RAN modules (Tech. Rep. CSD-TR-196). West
Lafayette , IN : Purdue University , Computer Science
Department , 1976.

Sheppard , S.B., Curt is , B., Borst , M.A. , Milliman , P., ~ Love ,L.T. First year results from a research pr ogram on
human factors in software engineering . In Proceedings
of the 1979 National Computer Conference, Montvale , NJ:
AFIPS , 1979.

Sheppard , S.B. , ~ Lov e, L.T. A preliminary experiment to test
influences on human understanding of software. In
Proceedings of the 21st Meeting of the Human Factors
Society. Santa Monica , CA: Human Factors Society,
1977.

Tenny , T. Structured programming in FORTRAN . Datamation,
1974, 20 , 110-115.

The m i l i t a r y so f tware market (Rep . 4 2 7) . New York : Fros t &
Sul l ivan , 19 77 .

Veidman , D . J . For t ran pro gramming for the behaviora l sciences.
New York : Ho lt , R inehar t , ~ Wins ton , 1967.

Wescourt , K . T . , ~ Hemp h i l l , L. Represen t ing and teaching know -
ledge for troubleshootin~/debug~ ing (Tech. Rep . 292).
Stanford , CA: S tanford Un ive r s i t y , I n s t i t u t e for
Mathematical Studies in Social Science , 1978.

Youngs , E . A . Human e r rors in programming . International Journal
• of Man-Machine Studies, 1974 , 6 , 361 -376 .

-

36

, - —

~~~~ 

—

~~~~~~~

----- - - - - — - - - - -

~~~~~~~~ 

- - - - -

APPENDIX A

I NST RUCT I ONS TO PARTIC I PANTS

37 

~ - - - - - - - -- - - --_-~~~~~~~~~~~~~~~ -- • —-



- 
~~~~~~~~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~ - -  -- 

•—.
-=..—.~~~.—. - - _ .

Instructions To Participants

HELLO

Today we are going to ask you to participate in an experiment
which we hope wi l l be both entertaining and challenging . This study is
being sponsored by GE and the Office of Naval Research to examine the
properties of bugs in computer programs. To accomplish this , we will
give you several different programs and ask you to find a bug in each
one. Our purpose is to evaluate characteristics of programs wh ich make
them easier to debug . It is not to evaluate computer programmers. Your
performan ce on a pro gram will be compared only to your performanc e on
other programs , and no form of competition is involved . We hope you will
assist us in what we believe is important research in software engineer-
ing. However , your involvement is voluntary and you are free to with-
draw from participation at any time . All programs and papers that you
wil l be handed are carefully numbered so it is not necessary for you to
put your name on any of these. These numbers are solely for the purpose
of identifying d i f fe ren t programs and cannot be used to identify you
as an individual . Your work wi l l remain completely anonymous and data
collected in this study wi l l be used for research purposes only.

For each task , you wi l l be given a program , the input files ,
and both the correct and incorrect output produced by the program you
have . Your job is to identify the bug and correct it. Each bug can be
corrected by inserting , deleting or correcting one line of code. When
you believe you have corrected the bug , please T~Torm the monitor byra i s ing your hand .

During this experiment , each of you wi l l be working on a dif-
ferent program . If others seem to finish earlier than you, don ’t be
concerned. They may have been working on a program which did not require
as much t ime .

We wi l l begin wi th a short in t roductory program . Raise your
hand as soon as you have found the bug and corrected it. Because of
the concentration required for this task , we ask you to make an extra
effort to remain quiet so that others will not be distracted . When you
have completed all three experimental programs you are free to leave ,
but please do not discuss any of the programs you worked on with anyone
else until after we have completed all experimental sessions. We request
th is of you only to insure that our results are valid.

If there are any questions , please ask them at this time .

39
-— - — -w~

.-- - ____
_ _ _ _

PA~~ BLA1IC.4~ ? 7ILJS~

- - — --4

L ~~~~~~~
-
~~~~~~~~~~~~~~

--• —
~~~~~~~~~~~~~~~~ - _ _ _ _  _ _ _ _


FORTRAN 77

One of the programs you see will be in Fortran-77. It is very

similar to standard For tran excep t for the addi t ion of three con-

structs.

F77 allows :

1. j~: IF (condi tion) ThEN

any statement

END IF

or: IF (condition) THEN

any statement

ELSE
any statement

END IF

2. do while DO statement R WHILE (condition)

any statement

statement I

3 . repea t until:
DO statement I UNTIL (condition)

any st atement

statement I .

40

— —----i~e. ~~~~~—

— -
- -

Mi scellaneous:

input and output files may be referenced by a string

spaces a re no t impor tan t

line lengths are not important

~ after the line number indicates a continuation line

For tran 77 IF’ s can be nes ted

program order will be the fo llow ing :

inpu t

program

correct output

incorrect output with bad results circled

41

-

~

. - . - _ _ _ _

APP E NDIX B

PRETESTS

43

Greates t Common D ivisor Algor i thm

SOURC E CODE LISTING
11. 0 t NTEGE R O CO , R EN AIN
115 taO
120 RE~w (’~~uC D A r , L) M ,N
130 1 FOPP.A T(2 15)
140 IF (M .E Q .O) T HEH
130 GC~~~N
160 EL.SE
170 1? (N . E Q . O) THEN
130 GCD M
190 ELS E
200 IG M/N
210 R EM AI N.M —N’I G
220 00 2 WHILE (R E M A I N . N E . O . AND. I . L T . 1 0 0)
230
240 REN AIN
250 IG M/N
260 RENAIN.M—N IG
265 I .I-~1
270 2 C0~?~INUE
275 GCO—N
280
290 ENDL ?
294 I? (t .Z . T . 1O U) THEN
295 ~aiwr 3,GC o
296 i PO~~IAT (~~~ • . I 5)
297 ELS E
298 PRINT 4
299 4 FORtIAT C TOO N ANY LTE R AT IO N S)
300 s:mtr
301 STOP
310

:MPUT

Et C AT

30 25

~NC3RREC)L ’J

c~~~~~~
ANY ZTERA~~~~~S

::PP E: UTP’J T

GCD a 5

I i ,
_

_ _

—

_ _ 1,
Sorting Algorithm

IN PUT
100 IMPLICIT INTEGER (A— Z)
110 DI MENSION A (50) ,8l-50)

DA TAPRE 115 READ (DATAPRE ,1O) N
116 00 5 1 • 1, N
120 5 READ(DAT&PRE ” .1O) A (I)

25 130 10 FOR MA T (13)
140 DO 100 3 • 1, ~110 160 SMALL a A (l)

30 170
180 DO 20 ~ 2 . N

31 190 15 I F (A (k) . 1.? . SMAL L) GO TO 20
1 200 SMf ~LL a

210 N •153 223 20 CONTINUE
193 230 3 (J) a SMALL

240 A (M) - — 1000
62 250 100 CONTINUE
78 251 00 101 I • 1, N

260 101 P R I N r - 1 1 0 , 8(I)
16 26 1 110 FO R ~l A T (2 X , I 4)
1 270 STOP

193
280 END

62
78

74
168
192

CORRECT IN CORRECT
199 OUTPUT OUTPUT
999

/
•__

‘

1 / 99 9 \
7 1 / 1000

3 I 1000
79 5 / 1000

9 1 1000
16 I 1000

9 30 I 1CO0
C 7 31 1000

56 1000
3 57 1000

62 1000
62 1000
74 1000
78 j 1000
78 1000
78 1000
79 1000

110 1000
153 1300
168 1000
192 1000
1~~3 1000
193 1000
199 - 1000
999 \ 1000

46

_

_ __

~~~~~

_ _ _ _ _ _ _ _  - —---- -- -

APPE NDIX C

EXPE R IENCE QUESTIONNAIRE

47

_ -_ _ - - - - - -_ •_

~

- - —-- — _- — - --_ - _ - • _ _ 
-~~~~~~~~~~~~~~ - _ - - -



r

SUMMARY

QUESTIONNAIRE

We would like you to answer the fol lowing questions for our research purposes:

I . low long have you been progranining in FORTRAN pro fessionall y?

years 
________

months

2. Please circle one of the following: Has your experience primaril y
been wit h

a. Engineering
b. Statistical
c. Non-Numeric
d. Business
e. Other (Please describe

____________________________________________

Al so, please briefl y descri be your speci fic areas of progranmting experi~ ”ce.

3a. Aoproximately hOw many source code 1nstruct~Ons mere in the longest
FORTRAN program that you hav e ever ~.ritt en ? Please exclude bla nk lines
and conIt~entS__________________

b. Ahat is the length ~ f the ~ongest non-FORTRA N ~rcgran~ you have ever
written ?___________________________

~hat lanquage?_______________________

4. Place a check ~ the appropria te blank for  each of the ‘Dllowlnq languages
you have used :
a. FORTRAN 

__________

~~ . FORTRAN 77 
__________

c. COBOL 
__________

~~. °L/ l ___________

a. SAS IC 
__________

f . ?Ø~SCAL 
__________

g. AP(. 
__________

h. ALGOL 
_________

1. JOVIAL 
_________

j. assembler 
__________

k. RPG 
__________

- ~NC8CL 
___________

-

n . other 
__________

r 
- - - - — - .—- — -- - - --

~

-

PAGI BL&MC..M)T FII24~T) ]
- -



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - _ _ _ _

5. What was the fi rst prograim1~ing language you learned?_________________

6. Place a check in the appropriate blank for each of the follow i ng JOu 
—

have used when coding:

DO statement ____________ 
DATA statement 

___________

arrays ___________ 
conversion from alpha to

CAL L with pa rameters ___________ 

string variables 
__________

COM?~ M ___________ 

IF of more than 1 condition 
__________

REA D statement 
decimal to integer conversions 

__________

PRINT statement ___________ 

percentile Computation 
__________

~RVE statement 
— 

DO WHILE (concept) 
__________

FOR2~AT statement 
00 UNTIL (concept) 

__________

X, forma t sp ec ifi cat ’Ofl ____________ 

weight ng numbers ___________

‘A ~orrat specif~cat’on ____________ 

rounding numbers when dcn t
have rounding function 

__________

I format specl” cati on
- 

used an array refererce as an
format spec i-’ catio rl ___________ 

index to another array 
__________

continuatio n lines ___________ 
finding Maximum value in array 

__________

H format ~~~~~~~~~~ __________ 
fi nding mean of values

implicit data types in an array 
__________

F THEN ELSE (co ncept ) 
__________ 

printing titles in an outOut 
__________

CRED ITS in monetary trans. 
__________ 

Computing frequencies of i ters 
__________

DEBITS in monetary transactions ~~~~ SUMS __________

Financial transactions Bubble SORT 
__________

TRIAL BALANCE computation 
__________ 

~mp1ied DO __________

GENERAL LEDGE R Accounting 
___________ 

equivalenced arrays 
___________

REAL IOTATION (Ø jl) 
__________ 

String iariables 
__________

~ax comOutat~on 
used the binary equivalent

of cna racters ___________

carriage control ~oleritn __________

2 or note -~~ne’,s,onal arrays 
Interactive debugger 

___________

~sing in output formats 
symbo li c deb~g~e~ _________

MPLICIT statemen t 
TRACE rnechanism 

__________

~~~ sorts 
Octal or ~ex dumps __________

stacks
Doub le ~rec~s 4 on

tree sear:’,
‘rae f i e ld i;o

NA MELZST s~are,.,~nt ~atrix inversion

‘o~~~at soecF~~~a : on
:~~~:er’, ~d C ~~~flC ___________

l te ruot nand~ers
:ev ’oe ~r~ iers

parsers ~a tcn systems

~en~ C 31 anai j :ers
n te r3 ct ~ -,e 5y s~ emS

-~r3Dhic s dr~~ier s and -a rdlers
l~ st ~ n :lin g 1 anguages

50

K - :Ks r trJ c~— _____ _
~~~~~~~ __& __ —-



- - 
- - _ _ _ _ _ _

7. Please indicate in the space provided any other particulars which
you feel may have an effect on your performance( for in stance , if
most of your work Is involved in debugg ing systems we would like to
know that).

8. Please indicate your re~ctions to the experiment and anything that
might help us understand how you undertook the task. Please includ e
any problems or insights you may have had.

51

¶ t.~

L.



n 

- - -

~~~~~~~~~~~

- - -

~~~~~

AP PENDIX D

SUBROUTINES WITH ERRORS

H 
~~~~~~

— .-- --— —-

~~

--—-.

~~~~~~~

——-----.

~~

---- -—--

- 
- -

~~~~~~~~~
- -- I ~~ CZDD4G p~~ ja~~~~ ~~~~~

- -_ _ _

r - -T1~~~~~-r- ~~~~~~~~~~~~~~~~~ - - .

Ques t ionnai re Scor ing Program

2500 SUBROUTINE SCORE (LX , M SE X . L)
2510 INT EG ER M SE X (1 0 0 , 2) , CA T(1 00) , R L E N G (1 0 0)
2520 ALPHA L X (1 0 0 ,, 3) , ROOT (100 ,3), XA~ K B , XC
2530 DIMENS ION F (2 5 , 2) I
2550 RE A O (0A TC 12 , 4) NR , NC
256 0 4 F O L M A T (2 13)
2570 S FORMAT (12 , 1X , 3A4)
2590 00 10 I — 1, NR
2600 READ(DATC12 , 5) CAT(I), (ROOT(I,J) , J 1,3)
2620 10 CONT INUE
2640 00 20 I • 1 , NR
2650 R L E N G (I) — LGTH (RO OT(I , 1), ROOT(I , 2) , ROOT (I , 3))
2670 20 CONTINUE
2680 PRINT 1
2690 P RINT 6
2700 1 F OR NA T (// / 17H O E C RO INPUT R OOTS)
2710 6 FORMAT (180 , 11X, 5H RC OT S , BX , 8HCA TE GO R!)
2720 7 FORZ4 A T (1O X , 3 A 4 , 1 1 0)
2740 00 30 I • 1, NR
275 0 PRINT 7 , (ROOT(I ,J) , .1 • 1, 3) , C A T (I)
2770 30 CONTINUE
2790 DO 40 I • 1, NC
2800 F (I , 1) • 0.0
2810 F (I , 2) — 0 . 0
2830 40 CONTINUE
2850 00 6 0 1 1, L
2860 KA — L.X(I, 1)
2870 KB — L X (I , 2)
2380 XC — LX (I,3)
2390 LI. • LGTR (XA, KB, XC)
2900 CALL ROOTER XIN DEX .ROOT , RL.ENG , NR, K A . K B, XC, LI.)
2910 IF (KINOEX .tJE. 0) TREN). ~~~~~~~~~~
2920 .7 - CA KIND EX)
2940 DO 50 11— 1, 2
2950 F(J,II) • F(J. II) + M S E X (I , ~~~) * ~~~~~~ ~~Al~4
2970 50 CONTINUE
2930 E N D IP
3000 60 CONT INU E
3010 PRINT 3
3020 3 FOR2IAT (///10X .31HCATEGORY TOTAL MALE FEMALE)
30 00

0 ~~3060 PRINT 8 , I , T , F (I,1), P11 ,2)
3080 90 CONTINUE
3090 8 FORMAT (13.X.11.2(4X,F5.0), 2X ,F5.0)
3100 RETURN
311 0 END

NOTE : The program is :orrec t as printed. Handwritten changes
indica te the errors the participants saw .

55
— — - - --—---—.--- -z - -’~

W~CWING PAQ~ BLA1~~..NO? 11USD
- -

~~~~_~ _ 1~~

~~~~~~ 


I

Account ing Prqgr am

SUBROUTINE TRSAL.
COMMON IACC T1(100) , I A C C ? 2 (1 0 0) , I A C C T 3 (1 0 0) , I A C C T 4 (1 0 0) , B A I . (1 0 0) , N
PRINT 400

4U0 FORMAT (1R0 ,2 0X ,2 5H~’” TRIAL . BALANCE ~~~~~ I/I)PRINT 410
410 FORMAT (iN ,5BACCT .,23X ,SHDEBI T ,9X, 6HC REDLT)

SOEBIT—0 .0
SCRD O .0
PRINT 420

420 FORMAT (iN .70(111—))
00 480 I •1,N

I? (BAL(X) 0.0) 00 TO 430

~~~ 
Lo~ i~1? (I  .GT . 20) 00 TO 450

IF (I .EQ. 4 .OR. I .EQ . 13 .OR. 
_____

& I .EQ. 15 ) GO TO 460 — ~i1 ~ 4TM430 SDEBIT—SD ~ 3IT 48A I )
PRINT 440, I,IACC ),IACCT2 (I),IACCT3 (I),IACCT4(I) ,BAL(I)

440 PORtIA? (1ff ,I3 , 2X ,4A4 ,5X ,F12.2)
GO TO 480

450 CONTINUE
1? (I .GT . 60) 00 TO 430

IF (I .EQ. SI) GO TO 430
460 SCRDaSCR~~$AL. (I) )- —

PRINT 470 , I,IACCTI(I), IACCT2 (I),IACCT3(fl.IACCT4(I ),BAL(I )
470 FOR M AT (3. 11 ,13,2X ,4A4 ,20X ,F12 .2)
430 CONTINUE

PR INT 420
PRINT 490 , SDE3IT , SCRD

490 ?ORMA i ( LB ,2 6X , F 1 2 . 2 , 3 X , F 1 2 . 2 )
PRIN T 420
PRINT 420
RETURN
END

56

• - ‘ L4  ~~~ ~~~~~~~~~~~~~

— -

~

----—-—---— -

~

_ - _ _



- - - ~~~~~~~~~~ - - -

G r a d i n g -P r o g r a m

2694 SUBROUTINE GRADR2(SCOR!,PG RAOE ,F’REQ,HIGB,PERCNT ,P? ,TOTAL)
2695 I MP L ICIT I NT E G ER ( A—Z )
2696 COMMON NSTUDN , NASSGN , t D , C U R I D
697 DIMENS ION SCORE (300,20) ,PERCNT( S) ,PGP.AD E ( 5 )  ,L3 (5)

2698 & TO?AL(100),FREQ (100) ,ID(300)
2700 PRINT 680
2705 560 FORMAT (111 ,// /)
2710 680 FORMAT (1N0 ,33X , OVERA LI. SCORE ,3Z , FREQUENCY )
2720 I—HIGB
2730 690 IF (FREQ (I) .0?. 0) PRINT 700, I,FREQ (I)— — c . i i  Lo~ ’c2740 700 FORMAT (1110 , ,13 ,IOX,13 )
2750 I—I—i
2760 1? ( I  .0? . 0 ) GO TO 690
2770 PRINT 560
2780 PRINT 710
2790 710 FORMAT ( 1H0 , 30X , LO WER BOrJNDS FOR CACB GRADE )
2800 SUM—FREQ (RIGN )
2810 CUT—BIOS
2820 DO 760 ?T—1,4
2830 720 QUOTAaIPIX (FLOAT (SUM) /FLOAT (NSTUDN ) 100+ .S)
2840 IF (QUOTA .GE . PERCNT (P’t)) GO TO 740
2850 730 CUT CUT—l
2860 IF (CUT .L.T. 1) GO TO 770
2870 IF (FREQ(CUT ) .LT . 1) GO TO 730
2880 SUM— SUZ ’~~ REQ(CUT ) —

2890 00 TO 720
2900 740 L3 (PT ) CUT
2910 PRINT 750,  ?GRADE (PT),L3(PT)
1920 750 FOR.1AT (1H0,4 1X ,A 1, 2X,13)
930 SUM ’O

29 40 760 CONT INUE
2950 P?— PT+1
2960 GO TO 790
2970 770 DO 780 I—PT,4
2980 780 L8 (PT) 0
2990 790 L 5 ( 5 ) — 0
3000 PRINT 750 ,PGRA DE(PT} ,LB ( PT )
3010 PRI N T 560
3020 PRINT 800
3030 800 FORMAT i 1 N 0 . 3 6 X , PI NA L COURSE GRA DC )
3040 00 850 !- l ,NS TUDN
3 050 PRINT 810 , ID(t),(SCORk (I ,J),J 1 .NASSGN )
3060 810 FORM AT (1H0 ,3 1X ,18 ,20(1X,13))
3070 DO 820 J•1. 5
3080 1? ( T O TALC I )  GE. 1.3 ( J ) )  GO TO 8 3 0
3090 320 CONTINUE ___________________ 4•r
3100 830 PRINT 840,  TOTA L~~~~, PGRADE (J ) ~ 3~)
3 110 340 FORMAT ( 1 H 0 . 32X ,~~~~VEULL SCORE • , 13, GRADE • , A1 )
3120 850 CO NT INUE
3130 GTOT&L 0
3140 DO 860 1 1 , NSTUON
3150 860 GTOTAL TOTAL.TOTAL(I)
3160 M E A N - Z F I X ( P L O A? ( GT OT A L ) /FLO A T (NSTUO N)+ . 5 )
3170 PRINT 370 , MEAN
‘180 370 FOR M AT ( 1 R U , 31X , MEAN SCORE —
J1 90 RETURN
3200 END

57

- -



_____ —

OFFICE OF NAVAL RESEARCH
Code 455

TECHN I CAL REPORT S DISTRIB UTION LIST

OSD

CDR Paul R. Chatelier
Military Assistant for Training and

Personnel Technology
Off i ce  of the Deputy Under Secretary

of Defense
OIJSDRE (E~ LS)
Pentagon , Room 3D129
Washington , D . C .  20301

Col.  Richard L. Blair
Director of OSD Systems
AFDSC/ GN
Pentagon
Washin gton , D.C. 20330

Mrs .  Shields
Director Systems Support
AFDSC / S F
Room 1 Delt a 1039
Pentagon
Washington , D . C .  20330

Col . Goetze
AFDSC / ( GL)
Pentagon
Washington , D.C. 20330

Col E g l i n g t o n
Head quarter  USAF , AF/PACA
Pentagon
W a s h i n gt o n , D.C. 20330

Lt .  Col .  Pa t r i ck  L. Har r i s
AFDSC / GNP Room 20279
Pentagon
Washington , D . C .  20330

_ _  
-



ONR, Code 455, Technical Reports Distribution List

Department of the Navy

Director Commanding Officer
Engineering Psychology Programs ONR Branch Of f i ce
Code 455 ATTN: Dr. C. Davis
Office of Naval Research 536 South Clark Street
800 North Quincy Street Chicago , IL 60605
Arlington , VA 22217 (5 cys)

Commanding O f f i c e r
Director ONR Branch Office
Information Systems Program ATTN : Dr. E. Gloye
Code 43’ 1030 East Green Street
Office of Naval Research Pasadena , CA 91106
800 North Quincy Street
Arlington , VA 22217

O f f i c e  of Nav al Research
Scientific Liaison Group

Director American Embassy, Room A-407
Physiology Program APO San Francisco 96503
Code 441
Officc of Naval Research
800 North Quincy Street Director
Arlington , VA 222l~ Naval Research Laboratory

Technical Information Division
Sp ecial A s s i s t a n t  for  Marine  Code 2 6 2 7

Corp s Matters Washing ton , D.C. 20375 (6 cys)
Code lOOM
Office of Naval Research
800 North Cuincy Street Dr. Bruce W~1dArlington , VA 22217 Communications Sciences Division

Code 500
Naval Research Laboratory

Commanding Officer Washington , D.C. 203~ S
ONR Branch O f f i c e
ATTN : Dr. J. Lester
Building 114 , Section 0 Dr. Robert G. Smith
666 Summer Street Office of the Chief of Naval
Boston , MA 02110 Operations , OP987H

Personnel  Log i s t i : s  Plans
Washington , D.C. 20350

_  -



- - 
.~~~~~~~ .—~~ - --—-— — -- - — -

~
---- --

~~~~~~~ 
—

~~~~

-— - — -— — —--
~~

- 

~~~~~~~~~~~~~~~ 

- - -- --

ONR , Code 455, Technical Reports Distribution List

Depar tment of the Navy

Mr. Arnold Rubinstein Capt. Horace M. Leavitt
Naval Material Command Naval Electronics Systems Command
NAVMA T 98T24 Room 554 JP1
Washington , D.C. 20360 W ashington , D.C. 20360

Commander Bureau of Naval Personnel
Naval Air Systems Command Special Assistant for Research
Human Factors Programs Liaison
NAVAIR 34 0F P EPS - OR
Washin gton , D.C. 20361 Washington , D.C. 20370

Commander CDR R. Gibson
Naval Air Systems Command Bureau of Medicine ~ SurgeryCrew Station Design , Aerospace Psychology Branch
NAVA I R 5313 Code 513
Washington , D.C. 20361 Washington , D.C. 203~ 2

Mr. Phillip Andrews LCDR Rober Biersner
Naval Sea Systems Command N aval Medical R~D Comm and
NAVSEA 0341 Code 44
Washington , D . C . 20362 Naval Medical Center

Bethesda , MD 20014

Dr. James Curtin
Naval Sea Systems Command Dr. Arthur Bachrach
Personnel ~ Training Analysis Behavioral Science Department

O f f i c e N aval Medical Research I n s t i t u t e
NAVSEA 074C1 Bethesda , MD 20014
Washin gton , D.C. 20362

LCDR T. Berghage
Commander Naval Medical Research Institute
Naval Electronics Systems Command Behavioral Sciences Department
Human Factors Engineering Branch Bethesda , MD 20014
Code 4701
Washin gton , D.C. 20360

ONR , Code, 455, Technical Reports Distribution List

Department of the Navy

Dr. George Moe ller CDR P. M. Curran
Human Factors Engineering Branch Human Factors Engineering Division
Submarine Medical Research Lab Naval Air Development Center
Naval Submarine Base Warmins ter , PA 18974
Groton , CT 06340

Mr. Stephen Fikas
Dr. H. G. Steubing NOSC
Naval Air Development Center San Diego , CA 92152
Code 5030 -

Warmins ter , PA 18974
Human Factors Section
Systems Engineering Test

Mr. John Rehbehn Directorate
NARDAC , Bldg . 196 U.S. Naval Air Test Center
Wa5hington Navy Yard Patuxent River , MD 20670
Washington , D.C. 20374

Human Factors Engineering Branch
Mr. Frank F i g l o z z i Naval Ship Research and Development
NARDAC - Code 44 B Center , Annopo lis Divis ion
Washing ton Navy Yard Annapolis , MD 2 140 1
Wash ington , D.C. 20374

Naval Training Equipment Center
Chief ATTN: Technical Library
Aerospace Psychology Div i s ion Orlando , FL 32813
Naval Aerospace Medical Institute
Pensacola , FL 32512

Human Factors Department
Code N215

Dr. Fred Muckler Naval Training Equipment Center
N avy Personnel Research and Orlando , FL 328 13

Development Cen ter
Manned Systems Design , Code 311
San Diego , CA 92152 Dr. Alfred .F. Smode

Training Analysis and Evaluation
Group

Naval Personnel Research and Naval Training Equipment Center
Developmen t Center Code N-OUT

Code 305 Orlando , FL 32813
San D iego , CA 92132

Navy Personnel Research and
Development Center

Management Support Department
Code 210
San D iego , CA 92152

_ _ _ _ _ ~~~ - - ~~~ --~~~~ - - -~~~ - - - --

I

ONR Code 455, Technical Reports Distribution List

Department of the Navy Department of the Army

Dr. Gary Poock Mr. J. Barber
Opera t ions Research Depar tmen t HQS , Department of the ArmyNaval Pos tgradua te School DA?E-PBR
Monterey , CA 93940 Washington , D.C. 20546

Dean of Research Administration Dr. Joseph eidner
Naval Postgraduate School Technical Director
Monterey , CA 93940 U.S. Army Research Institute

5001 Eisenhower Avenue
Alexandria , VA 22333Mr. Warren Lewis

Human Engineering Branch
Code 8231 Direc tor , Organiza tions and
Naval Ocean Systems Center Systems Research Laboratory
San Diego , CA 92152 U.S. Army Research Institute

5001 Eisenhower Avenue
A lexandr ia , VA 22333

Dr. A. L. Slafkosky
Scientific Advisor -
Commandant of the Marine Corps Dr. Edgar M. Johnson
Code R D 1 Organizations and Systems Research
Washington , D.C. 20380 Laboratory

U.S. Army Research Institute
5001 Eisenhower Avenue

Commanding Officer Alexandria , VA 22333MCTS SA
Marine Corp s Base
Camp Pendleton , CA 92055 Technical Director

U.S. Army Human Engineering Labs
Aberdeen Proving Ground , MD 21005

L -—

~~
-
~ —— -

~----~~~
—

~ ~~~~~~~~~~~~~~~ -- - - ~~~~~~~~~~~~~~~
——--

~~~~~~ 
—,

ONP, Code 455, Technical Reports Distribution List

DeDartment of the Air Force Other Organi:ations

U . S .  .ttr Force Office of Dr. William A. McCleiland
Scientific Research Human Resources Research Office

Lire Sciences D irectorate , NL 300 N. Washington , Street
Boiling Air Force Base Alexandr ia, VA 223 14
Washington , D.C. 20332

Dr. Jesse Orlansky
Dr. Donald A. Topmiller trtstitute for Defesne Analyses
Ch ief , Systems Engineering Branch 400 Army-Navy Dr ive
Human Eng ineer ing D iv is ion Ar lington , VA 22202
USAF .~J4RL/HES
Wright-Patterson AFB , OH 45433

Dr. irther I. Siegel
Applied Psychological Service , Inc .

Air University Library 404 East Lancaster Street
Maxwell Air Force BAse , AL 36112 Wayne , PA 19087

Victor H. Richard
Other Government Agencies Room 602

Business Administration Bldg.

Defense Documentat ion Center Pennsylvania State University

Camer on Station , 3ld g . ~ 
University Park , PA 16302

.Uexandria , VA 2 314 (12 cys~

Dr. Stephen J. Andriole
D:rector , Cybernetics Technology

Ortice
Defense Advanced Research ?rcjects

Agency
1400 Wi~.so~ 3lvd —

Ar .ington , ‘;~~ ~~
‘-

~~~~~ 
~orei~~ AddresSeeS

Directcr , Human Fac:~ rs Wing

Dr. Staneiv Deutsch
Defen se ~ Civil n5ti~U e of

O f f i c e of ~i f e Sciences Environmental Med :t ine

Na:i:nal Aercnauti :s and Soac~
Post O .ce 3ox 200

Admjnjstrat~~n
.:r0n 3 , - n a . -~~~

500 Independence Avenue
~Vash:ng:cn, D . C . 2 546

~trec :cr , : n r ~at:~~. Pr~-:essing Techni~ues

:~3o ;~i:~~~ 3L’; d
.Ar i . in g t -~rt , ~~ ~~~~-9

L ~~~~-
- -

~~~~~ 
_ _


