
Ia- v . — —-- _ — _ _ _ _

. 17 A 0 A067 976 PUK (RICHARD F) ALBUQUERQUE NM F/S 9/2
HOST—COMPUTER INPLCMENTATION GUIDELINES FOR THE THREE DIMENSION ETC ((I)
MAR 79 R F PUll OACA39 7S MeOOS3

UNCLASSIFIED WES—$ —O—79—I NI.

_

/

p 4

• —

‘
- w- - -—-- -

MISCELLANEOUS PAPER 0-79-I

HOST-COMPUTER IMPLEMENTATION
GUIDELINES FOR THE THREE-DIMENSIONAL
GRAPHICS COMPATIBILITY SYSTEM (GCS)

by

Richard F. Puk
6401 Acad.my N. E., Apar€m.nt 45

AIbuqu.rqu., N. M.x. 87109

D DC
March 1979
Rail R.port I tJ1~~~~~~

MAY 1 1919 1111
Pc, Public I.li... Dicttthtdlofl Uulbnit.d 1

I
_ _

•
_

_ _

F~upursd fir Offic., CMII ci Eng1n .m~ U. S. Army
lVasMngbii, D. C. 20314

(Prc~,g No. 4A762725ArIl)
U~ur Coaêj-,ct No~ DACA39.78-M.0053

MuIm~~~Au~oms~k Da*. Pr.cuskig C.M.r• U. S. Anny Engh~..r W.~ ,wsys i*p.rlmsi* 5(~~ n
P.O. Bcsc 631, Iá.burg,M1ss. 39180

, 1

-
-

:

• - - -

-p

D.stroy this rsport wh.n no longsr nisdsd. D. nit ri~um
It to th. orlglna*or.

Th. flndInqs In th is r.port irs not to be COn$$VU.d is on officIal
D.portmsnt of It. Army position uni.ss so d..Ignot.d

by oth.r authoriud docuinonts.

~ .% . •

—
~
-
‘ w — -

~
- — - -

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (Wb.n Dcl. E.et.r . 0

READ INSTRVCT tO N SREPORT DOCUMENTATION PAGE BEPORE COMPL.ETfl~G PORN
1. REPORT NUMBER 12. GOVT ACCESSION NO. .3. REç IPIENT S CATALOG NUMBER

Miscellaneous Paper 0-79-1 / (,

(:~~ 4. TITLE (,d Subtltl.) - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CO V E R E D

.4 ~.j~0ST~CoMPtYrER IMP lEMENTATION. GUIDE LINES FOR TI~iflTJD~EE -D ~ IENS IONA L GRAPHICS CO~~)A TIBILITY)YSTEM Final re~~~t
~ I

(GCs) ’~ 6. PERFORMiN~~~~~~~~~1JPORT NUMBER

~. AUTNQR(c) 6. CONTRACT OR GRANT NUMBER(a)

Qpnt~~ct~NQ. —(
~~ Richard F ./Puk

1 ~~~
DACA39-78-M-~~ 53

10. PROGRAM ELEMEPi T. PROJ ECT . TASK9.~~PERFORMING pROANI ZAT ION NAME AND ADDRESS
AREA & WORK UNIT NUMBERS(~ ichard F) Puk , iIj!IhtI ~‘~omci’i--~t

61401 Acanemy N. E . , Apartment 145 Proj ect ~~~~~~~~~~~~~~~~
—

Albuquerque , N. Mex . 87109

Office , Chief of Engineers , U. S. Army Ma.ro~ *79 /ii . CONTROLLINOOFFICE NAME AND ADDRESS

~~

,_I) ~~_U.FAa~.-aMe—

Washington , D. C. 203114 •~~. ‘eumnr-n~~~ ,~LGES

__
33

14. MONITORING AGENCY NAME B ADORE SS(Sf dill •omt f rom Con(,ollln4 0111..) 15. SECURITY CLASS. (of fAl . r.porf)

U. S. Army Engineer Waterways Experiment Station Unclassified
Automat ic Data Processing Center ___________________________

IS.. OECLA SSIPICATION /DOWNGRAO INOP. 0. Box 631, Vicksburg, Miss. 39180 SCHEDULE

IS. DISTRIBUTION STATEMENT (of Mi R.po,l)

~2’..2) ~ ‘2,

-

I F

Approved for public re1ease~~4t~tribution_un]~~~j fsd.—~(J ~~
T
~ J (~q,~Tp -

~~~~~~~-~~,
‘

Il. DISTRIBUTION STATEMENT (of lb. .b.I,. cI _,~h 2JWRl1.k 20. If dilf.,.nS f rom R.p of l)

IS. SUPPLEMENTARY MOTES

16. KEY WORDS (Conllnu. an r.v.r.. .14. If n.c..omy aid IdanIIly by block numb.,)

Computer graphics
Computer systems programs
Graphics Compatibility System
Guidelines

0

~~~~~~ — ,. umoc ~~~ ..~~~~..ay d ld.clI ~~~ by block numk r)

~~This report gives guidelines for implementing the Graphics Compatibility
System (GCS) on a host—computer system. The following areas are discussed :

a. Graphics Status Area (GSA) values~
,b. Functional specifications for each of the three—dimensional (3D) GCS

computer—dependent routines.
c. Factors involved in supporting 3D GCS on a computer systemJ ~~4 ~
d. Phased sequence for implementing 3D GCS on a new computer system.

yO~~~i~ ~~~ ~ W3 (DEflOll OP I NOV 11 Is OBSOLETE Unclose if ted
SECURITY CL*ISIFICATION OP TWIt P A E (mom Dcl. tnIac.~~

,~7L/ / / ~~~
~~~~~~~~~~ I— —— — 

___



• —h;- -

PREFACE

This report is the result of work performed under Contract No.
DACA39-78-M-0053, dated 25 January 1978, between the U. S. Army Engineer
Waterways Experiment Station (WEs) ,  Vicksburg, Miss., and the author,
Dr. Richard F. Puk, Graphics Consultant. The work concerned designing
host-computer implementation guidelines for the three-dimensional version
(2.0) of the Graphics Compatibility System (GCs). The task was directed
by the Automatic Data Processing (ADP) Center , WES , as part of Corn-
puter Technology—Engineering Software, Project No. ~4A762725ATll , s
sponsored by the Office, Chief of Engineers , U. S. Army .

Mr. James M. Jones II, R&D Software Group, ADP Center, WES , monitored
the contract under the general supervision of Dr. N. Radhakrishnan, Special
Technical Assistant to the Chief of the ADP Center, and Mr. D. L. Neumann,
Chief of the P~Dp Center.

Director of WES during the period of the contract was COL J. L.
Cannon , CE. Technical Director was Mr. F. B . Brown .

- 
~~~~~~~~~~~~~~~~~~~~~~~~ /

I IA ~~~’~ Li

L ~~~~~~~

.—- -- ---— -

~

.—.--..

~~~~~~ ~~~~~~~~~~~~ ~~~

‘
~~
: 

~~~~~ I

’

(

I
—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
V



—
5: w — --

~~ 
. . -  — —

CONTENTS

Page

PREFACE • 1

I. INTRODUCTION  3
II. GRAPH ICS STATUS AREA INIT IAL]ZATION 3
III. 3D OCS COMPUTER-DEPENDENT ROUT INES 14
IV. 3D GCS D~U’IEMENTATION FACTORS 28

V. PHASED IMPlEME NTATION SEQ~JENCE 31
VI. INSTRUCTIONS FOR INSTALLING GCS CHARACTER FONTS 33

- .  _



• -
~~~~~~~~ 

-

HOST-COMPUrER IMPlEMENTATION GUIDELINE S FOR
THE THREE -D IMENS IONAL GRAPHICS COMPATINILITY sysm~~ (Gcs)

I. Introduction.

The following paragraphs develop guidelines for ixnple—
menttng GCS on a host computer system. Included will be the
definition of computer—dependent Graphics Status Area (GSA)
initialization values, functional specifications for each
of the 3D GCS computer—dependent routines , a discussion of
factors involved in supporting 3D GCS on a computer system ,
and a description of a phased sequence for bringing up GCS
on a new computer system.

II. Graphics Status Area Initialization.

In this section , each of the computer—dependent elements
of the Graphics Status Area will be listed along with the
procedures required to calculate the value , if appropriate.

KTERZ(GCS string terminator character. Default value is
the internal computer character set representation
of an ASCII backslash (“\“) character.

KUCAS~ Upper case shift character. Default value is the
internal computer character set representation of
an ASCII less—than (“(“) character.

KLCAS3 Lower case shift character. Default value is the
internal computer character set representation of
an ASCII greater-than (M >

H) character.

ISUBCH Subscript escape character. Default value is the
internal computer character set representation of
an ASCII underscore (I l

_
I l) character.

~SUPCH Superscript escape character. Default value is the
internal computer character set representation of
an ASCII pound sign (“#“) character.

KWRTIL Standard alphanumeric output file. Default value
is the computer system default alphanumeric output
lortran file number.

KRDPL Standard alphanumeric input file. Default value i.
the computer system default alphanumeric input
Portran file number.

~OUTPL Standard graphics output file. Default value is
the computer system default graphics output Portran
file number if one exists.

I

—

• — -

III. 3D GCS Cornputer—dependent Routines.

This section describes the functions embodied in each of
the 3D GOS computer—dependent routines. This discussion
will include interface specifications and functional speci-
fications. Since these functions are computer—dependent ,
the requirement to implement these routines in iNS Fortran
is relaxel. However, use of a higher-level language for
implementation ie recommended for ease of maintenance. The
functions are grouped into four categories: packing , job
con trol , character set conversion, and i/O. Within these
categories, the routines will be listed alphabetically.

I ,

Packing Routines

The packing routines provide for packing and unpacking
arbitrary length bit strings (GCSBIT, GCSBTR), for packing
and unpacking single characters (GCS1 cH, GCS1PK), and for
extracting the left-most n-character wide field from a
character string (GCSSTD). Two former computer-dependent
routines, GCSPCK and GCSUPK, have been rewritten to call
GOS1 CH and GCS1P~ and are now device and computer systemindependent.

-
p

5

- -

GCSBIT(NEXT ,IW IDTH ,IWORD ,IBITLC ,IBtJP)

NEXT is a word containing the bits to be packed
right—justified , zero—fill.

IW IDTH is the number of bits to be packed (1.. e., the
number of bits in NEXT).

IWOB.D is the word in the buffer in which packing will
occur.

IBITLC is the number of bits currently used within
IWORD.

IBUJ’ is an array in which the bit string is accumulated .
The calling routine should provide a buffer one
word larger than the actual buffer size since
GCSBIT will leave overflow bits in this word .

Comments: This routine accumulates a packed bit string of
arbitrary length within a buffer provided by the
calling program. This allows the formation of
strings of bits in which the storage of the bits
~.gnores word boundaries.

.
4

6

- ;- ., — . I. • •‘

GCSBTR (NEXT , I’JIDTH • IWORD ,IBITLC, IBUP)

NEXT is a word in which the bits retrieved will be
I placed right—justified , zero—fill.

IwIDTH is the number of bits to be retrieved (i. e.,
placed in NEXT).

IWORD is the word in the buffer from which bits are
currently being retrieved.

IBITLC is the number of bits already retrieved from
IWORD.

IBUP is an array containing the bit string from which
bits will be retrieved. The calling routine
should provide a word of zero bits immediately
following the IBUP array.

Comments: This routine retrieves string of bits (up to one
word) from the packed bit string provided by the
calling program (i. e., the buffer IBtJF). Word
boundaries will be ignored during retrieval.

1~~~

• __5 ; • w•• - -—- — • • - —

GCS 1 PK (N , INCHAR ,IBtlFR)

N is the character position within the output
character string into which the KBYTEL-width
character is to be packed.

INCHAR is a word containing one KBYTEL-width character
right—jus~~fied , zero—fill.

IBUPR is the output character string word into which
the KBYTEL—widht character will be inserted.

Comments: This routine inserts the ICBYT EL—wt~i th character
contained in INCHAB into the Nth KBY TEL -wtdth
character position of the output character s t r ing
IBUPR . Character positions are numbered left to
right. Note that KBYTEL is not a fixed quant i ty
and may vary during execution.

8

— ~~— - ~ -~-.

• —- __ • w ----- -

G C S1 C H (N ,ISTRNG ,NUCHAR)

N the character position within the input character
string from which the KBYT EL-width character is
to be extracted.

ISTRNG is the input character s t r ing (max imum length is
one word) .

NUC HAR is a word in which t~ e K3 r TEL— w t dth character is
placed.

Comments: This rout ine ex t r ac t s t?.e N t n K B Y T E L - w i ~~th ~..hara c—
ter f rom the input char~~c~.er ~~~~~~ word and places
it in the ou tpu t wor~ ~N~~ PJtR r t~~ t — j u s t 1 f ie d ,
zero—fill. Note ~~~~ ~.V 3 f ~P~~~ _ is not a fixed q u a n t i t y
and may vary during execut~ or..

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -- I i.~

• _5; w ~~~~~
— ---

GCSSTD (N , ISTRNG ,NUS TRG)

N is the number of lef t—most characters from the
input character string to comprise the output
character string .

ISTRNG is the input character string .

NUSTR G is the l e f t—jus t i f i ed output character string
padded with zero bits if necessary to fill the
word.

Comments: This routine places the left—most N characters
from the input character string in the output
character string word padding , if necessary, with
zero bits. Both the input and output character
strings may-be of maximum length of four characters
or one word~whichever is greater.

10

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ——



• 5; - - -

Job Control Routines

Only two job control routines currently are required ,
GCSJOB and GCSTBX. These routines are intended to access
operating system facilities for services or to obtain
information.

,

1~1

— ~~~~—..--- — — - e
~~

--
~~~~ ..~~~~~~~ • .- : - . — —  •


• 5: W

GCSJOB(JOB~~ , IDUSER • IROUTE • ICLASS • IDATE , ITI~~~)

JOBID is a word in which the job ID of the run will be
returned.

ID USEB is a word in which the ID of the person executing
the program will be returned.

IROUTE is the routing address to which the output should
be sent.

ICLASS is the job security classification.

IDATE is the date of the run.

ITIME is the time of the call to GCSJOB.

Comment: The GCS terminator character is appended to the
end of each field of information being returned to
the calling program. The calling program has the
responsibility of insuring that the current termi-
nator is the default terminator.

A maximum of twelve characters including the GCS
terminator character are allowed to be returned
for each field . The only exception is that the
security classification may be up to eight word s
long .

If a parameter is not defined on a particular
operating system , a valid GCS text string consist-
ing of only the default GCS text str ing terminator
must be provided.

~~** This routine is still under development. ~ **~~***** The description above is subject to
****** change. Providing this routine is opt- ~~***‘*
~~~~~~~~~~~ ional until development is completed.

p 
12

— ~~~~~~~~~~~~~~~~~~~~ ——~~~-~~~~~ -,  
— —



• __5 ;  
~~~ ~~~~~~

-

GOSTB~ C IERROR)

IERROR contains the GCS error number.

Comments: This routine invoke s the computer sy stem error
traceback routine . It is implemented so that
tracebacks can occur when GOS errors have been
identified. It is important that the traceback
not abort execution of the program. If no
traceback function exists or the traceback
aborts execution of the program, this routine
should be null

.I

• -

Character Set Conversion Routines

These routines provide for converting between the GCS
internal character set ASCII and the host computer internal
character set. Note that even if the host computer character
set can support both upper and lower case characters , the
mechanism must still be provided to support the GCS case
shifting function. This may require that duplicate conver-
sion tables be included whose only difference is that all
upper case characters be mapped to lower case when lower
ease has been specified. If the host computer character set
does not support the entire ASCII special character graphics,
then some special characters may also differ between upper
and lower cases. If this occurs , however , the special charac-
ters (,) , +, — . =, *, /, (, >, and \must be supported In
both cases. Only the printable characters need be converted ;
control characters and character indecies with no graphtc~symbol associated with them need not be handled unless desired.
It should be emphasized that every attempt should be made to
accommodate the standard mapping between ASCII and the host—
computer character set defined by the host—computer manufac-
turer for the operating system being utilized.

114

•

• — -
u
- W~ ~~~~

Gcscvl (IN ,xou’T)
IN is the charcter to be converted in host—computer

internal character set right—justified , zero—fill.

lOUT is a word in which the character will be placed
after being converted to ASCII right—justified ,
zero—fill .

Comments: This routine converts from host—computer internal
character set to ASCII. The ease—shifting constant
will have been added to the host—computer character
before this routine is called. Therefore , the
case shifting should be recognized by the magni-
tude of the character bit value.

• -•--
~~
- w — - —

GCSRVT(IN , IOUT)

IN is the character to be converted in ASCII
right—justified , zero—fill.

lOUT is & word in which the character will be placed
after conversion to host—computer internal
character set.

Comments: This routine converts from ASCII to host—computer
internal character sit. Since ASCII supports
both upper and lower case, it may be necessary
to map lower case characters into upper case
characters if the host—computer character set
supports only upper case.

16

• --
‘.
- w

GCSOPS(IPILCD)

IPILCD is the Fortran file number of the sequential
file to be opened.

Comments: This routine opens a file for sequential access.

I

f •

tI •
-*

I
17

- —
— 1.L ... T . . # ~~~~~~~

-- ‘- w —

IuDut/Output Routines

Three classes of I/O routines are included in this
category : sequential f i le I/O , random file I/O , and
telecommunications interface routines.

The sequential file I/O routines GCSOPS , GCSRPS, GCSWPS,
and GCSOFS are required for use by devices which place plot
output on sequential files. Use of these routines is
required since Fortran I/O may place undesirable control
information on a file when using unformatted I/O (Formatted
i/O canno t be used since it is line—orIented with line
length restrictions on some computers).

The random file I/O routines GCSOFR , GCSRPR , GCSWPR , and
GCSCPR are required for supporting GCS segmentation and
structure facilities. These routines are required since
iNS Fortran does not have random file I/O capabili ty.

The telecommunication routines T INP UT and TOUTPT are
required for communication between GCS device—dependent
routines and devices connected to the host—computer via
telecommunications lines. These are required since the
interface may connect directly to the operating system
telecommunications service routines.

18

-
~~~~~ w

GCSRFR C IPILCD ,INDEX , IRECNR , IRECLN , IRECRD )

IPILCD is the Fortran file number of the random file.

IND EX is an array in which the random file index may
be maintained.

IREONR is the record number of the record to be retr ieved.

~~ECLN is the length of the record to be retrieved.

IRECRD is an array into which the record will be read .

Comments: This routine performs a random (direct) read of
the desired record from the specified file. If
the record is larger than the buffer array
IRECRD , only the first IRECLN words will be placed
in the buffer  area. If the record is smaller than
the buffer area , the remaining word s of the buffer
will be unchanged. If the record does not yet
exist , the buffer  array will be zero—fi l led .

19 •

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~- ~~~~~~~


• —
i: w- - — - — — -

GCSRPS (IPILOD ,ILENG , IBUPPR • ISTAT)

IPILCD is a Fortran file number.

ILBNG specifies the length of the input buffer.

IBUPPR is an array of size ILENG word s into which
the data will be read .

ISTAT is a status indicator. Valid values are:

0 = End of file
>0 = Actual number of words read
<0 = Error occured during the read operation.

Absolute value is actual number of words
read. -

Comments: This routine reads the next physical record from
the file into the buffer. If the number of word s
read is less than the buffer size , unused buffer

- locations will not be modified. If the number of
words read is greater that the buffer size , only
the first ILENG words of the record will be placed
in the buffer. Excess word s are discarded . N ote
that in all cases , the number of words read will
be indicated in ISTAT . If an end—of—fi le is
encountered , ISTAT Is set to zero ,

I t

• 20

GCSOPR (IFILOD • INDEX , INDXSZ)

IP ILCD is the Fortran file number for the random file.

INDEX is an array in which the index for the random
file can be maintained if not maintained by
the operating system.

INDXSZ is the number of words in the IND EX array .

Comments: This routine opens a file for random access and
initializes the index for the file if necessary.

2] .

—HI _

•
~ II W ~~~~

— -

GCSWFS (IPILCD ,LENGTH , IBTJPPR , ISTAT)

IPILCD is a Fortran file number.

ILENG specifies the number of words of data to be
wr itten.

IBUPPR is an array containing the ILENCT words of
data to be written.

ISTAT Is a status indicator. Valid values are :

0 = No error during processing.
1 = Error during processing .

Comments: This routine writes the ILENG words of data in
the buffer to the file. No other informat ion
may be placed on the f i le . This means that it
may not be possIlbe to use unformatted Fortran
I/O since control information is frequently
writ ten to the file along with the data. Also ,
it may not be possible to tuse fo rmat ted Fortran
I/o since the number of characters which can be
writ ten is often limited to one line and end—
of—line symbols may be inserted within the data
stream . Since files written using GCSWFS are
often read~ by tape drives attached to other thanthe host—computer , it is important that the
information written to the file contaIn no
computer—system dependent control information.

22

• — -
~~~ w •— -

GCSCPS (IPILCD , IEOP )

IPILCD is the Fortran file number of the sequential
file to be closed.

IEOF is an end—of-file request flag. If set to one ,
an end-of-file  mark is writ ten on the end of
the fil e. All other values inhibit writ ing of
an en d—o f-± ile .

Comments: This routine closes the f i le  specified in IPIL CD
if required by the computer system. An end—of -
file mark must be wr i t t en  if IBOP has value 1.
The close operat ion takes place with no rewind .

•

23
—

~~~~~~

_ _

~~~~~~~~~~~—“--~~~~- 
. ,— —



• —,
~
- w -

GCSWFR ( IFILCD , INDZX , IRECNR , IRECLN , IRECRD )

IFILCD is the Fortran file number of the random fi le
to be written upon.

INDEX is an array which may be used to maintain the
index for the random file.

IRSCNR is the number of the reoord to be written.

IRECLN indicates the number of words in the record to
be written.

IRECRD is an array of IRECLN words containing the data
to be written.

Comments* This routine writes or rewrites the record
indicated . If the record did not exist before ,
the record will be wri t ten.  If the record already
exists and is being modified , the record should
be rewritten in p]~~~e.

214

_ _ _ _ _



---‘  w -~~- 
-

GCSCPR (IPILCD)

IYILCD is a Fortran file number.

Comments: This routine closes the random file indicated
by IPILCD. Clsoing a random file may require
invocation of an operating system support
routine to write the index on to the file.



• — -- - : ‘  — 
~~~~

• - — — - - - —

T INPUT (ICOUN T , IBIJPFR , IPR~~ T)

ICOT .JNT is the number of AS CII characters to be accepted
from the terminal .

IBUPPR is a buffer into which the ASCII characters will
be placed one character per word , right—justified ,
zero—fill. The buffer is considered to contain
ICOUNT wordb~

IPR~~T is an array containing a prompt sequence which
is used to initiate the input operation. The
first word of the array contains a count of the
number of characters in the prompt sequence and
is also the number of word s in the IPR1~ T arrayminus 1. The prompt characters are in the same
format as would be passed to TOUTPT.

Comments: This routine initiates an input operation which
asks for ICOUNT ASCII characters to be read from
the terminal . If less than ICOUN T characters
are received , the remaining buffer positions are
zero—fil led . If more than ICOUN T characters are
received , excess characters are ignored. The
input operation is prefixed by sending the prompt
sequence to the terminal (if IPR~~T(1) is not
equal to zero). Preferably, this would occur as
part of the input request but, on some systems ,
it may be necessary to call TOUTPT to send the
prompt to the terminal. The important thing is
to make the delay between the time the prompt
is apparent to the terminal operator and when
input can be accepted by the operating system
Indetectable to the terminal operator.

Note that input characters placed in IBUP FR must
be ASCII. If ASCII originates at the terminal,
the characters must not be modified before being
placed in the buffer. it is also important that
any characters being buffered within TOUTPT or
the operating system be sent to the terminal
prior to the prompt sequence.

I-

• —--
,•

- w - -—- - - — - -

TOtJTPT (ICOUN T , IBUflR)

ICOTJNT is the number of characters to be transmitted
to the terminal.

IBUFFR is an array of ICOUNT words. Each word contains
one ASCII character, right—justified , zero—fill.

Comments: This routine transmits the ASCII characters
within I3UPFR to the terminal unmodified with
no additional characters inserted .,. If desirable ,
the characters may be packed into buf fe rs before
sending to the terminal. In this case , the
buffer should be sent when full or when TOTJ TP T
is called with ICOUNT equal to zero .

c 1

I

• -
‘•
-

_
w — - - - .

~~
- -

~~~~~~~~~~
- -- - -

IV. 3D GCS Implementation Factors.

3D GCS makes few assumptions about the capabilities of
the computer and operating system in whose environments it
will function. Essentially, 3D GCS (or even 2D GCS ) can
be successfully and easily supported on any computer system
which has the following characteristics:

• a)  A word size of 32 bits or larger.

b) A loader which allows several libraries to be searched
during the linkage edit of the user program.

a) A capability for reading and writing direct access
(random access) files.

d) A capability for sending arbitrary length strings of
ASCII characters to a display device (required for
interactive devices only).

With these capabilities, it is a relatively straight—forward
task to bring up 3D GCS. Section V contains a phased sequence
for accomplishing this.

Circumventing the lack of any of these capabilities or
characteristics can be a laborious undertaking and , in the
case of direct file I/O, may not even be possible. The
following paragraphs are designed to assist the implementor 

-

•

in modifying 3D GCS to accommodate limitations in the host—
computer system.

Word Size —
GCS was originally developed for computers whose words

consist of at least 32 bits and in which may be stored at
• least four host—computer characters. There are only three

areas in 3D GCS where this limitation is critical.

Wherever GOS mode and option name s are specified , only
the first four characters of each mode or option name are
significant. 3D GCS assumes these four characters occupy
positions in the same word. The processing of these modes

p and options takes place in many GCS routines. Besides
tJSET and UPSET, included in these routines are UCOLOR ,
UDO IT, UPOR1~T, U~UERY , all user-callable segmentation
routines , and all user—callable structure routines. These

• routines all call the computer—de pendent routine GCSSTD to
extract the first four characters of the option. GCSSTD
can be written to process multiple—word character strings.
However , the comparisons which take place in USET, UPSET,
UQU~~~, and the others will require code modification to
cause correct matching. An easier solution, if available,
is to use double word integers.

__ 1- --F --



• —
‘
- - -

~~~~~~~~

There are several areas within GCS in which character
string constants are define and initialized by DATA
statements (e. g., TJTLX I S) . These will have to be located
and modified as necessary. They can frequently be found by
looking for the character strings N/4H N and “,4H ”.

The third area in which GCS requires this restriction
is in the storage of character descriptors for the GCS
character set. Each stroke of a character is stored in a
24—bit field in the lower portion of a computer word as
follows :

I T~O00~ M~~ Xma g ~ma~

This 24—bit field is split into the three 8—bi t subfields
shown above. The X and ~(bytes represent percentages of a
character enclosing box in sign/magnitude format (S=1
represents negative). The M�4M field has value 0 for a
visible stroke and has value 5 for a move . The T f ield
flags the last stroke in the character when set to 1.
While it is possible to store the character stroke in a
three—byte field , unless a computer is byte—addressable ,
such a packing scheme is too inefficient to be acceptable.
Once again, use of double—word integers is indicated , if
available. If not , each stroke may be stored in two—word
table entries with the appropriate changes mad e to the
referencing code in GCSSIM and GCSSYM. The recommended
split is to place the opoode (MMM), termination (T), and
I fields in one word and the y field in another. The
termination field should be moved down so that it does not
make the contents of the word negative- when referenced
arithmetically.

Cyclic Library Searches

GCS is organized into device—independent routines ,
computer—dependent routines (which are device—independent),
and device—dependent routines. Normally, all device—
independent routines are stored in one device—independent
library, and each set of device—dependent routines are
stored in a separate device—dependent library. The
appropriate device—dependent library is selected at load
time for the device to be used. A linkage editor or loader

• which can search several libraries as if one (actually,
logically concatenate the libraries) is a great aid in
using GCS on a computer system. Such an editor will perform
a cyclic search to satisfy all external references. Some
linkage editors and loaders cannot search a library a second
time. Frequently, this effect can be achieved by listing
the device—independent and device—dependent libraries twice
causing each to be searched twice. A more practical approach
might be to store the computer— dependent routines and GCSSL ’(
in each of the device — dependent libraries.

I
29 j

-—

~~~~~~~~~~~~~~~~~~~~
- - -

~~~~~~~~~~~~
, — —

• -•-—‘.- w- --—- - - - - — - - - • - - - • • -•

Direct Access I/O

It will be very difficult to support GCS on a computer
system which does not support direct access file I/O. This
is because both the GCS structure capability and the GCS
segmentation capability require d irec t access files for
storing the data. (It is also intended that the planned
support for Hershey characters will require that these also
be stored on a direct file). The best attempt to support
GCS on such a computer system would be to simulate direct
access files using sequential files. It should not be
expected that GCS will function efficiently when using
structures or segmentation in this case.

Telecommunications Pro tocol

When sending graphics commands to a display device
connected via a telecommunications line, GOS assumes that
any number of characters can be transmitted to the display
device without sending some system—dependent end—of—line
terminator character such as a carriage return character.
At times, such lines may exceed the capacity of an operating
system buffer . This is not critical provided the operating
system does not insert such an end—of—fi le character arbi-
trarily within the logical stream of data. If it does , the
correctness of the picture being di splayed may be thwarted.
Every attempt should be made to provide such a transparent
flow of characters to the terminal. IA’ it cannot be accom-
pli shed. , the device—dependent routine s within GCS must be
modified to bracket the inserted end—of-line characters with
command s that keep the end—of-line characters from effecting
the visual output. Note: input operations do not require
an unlimited line length.

F 4

30
- p 4

_ _—~~~~~~ -
— - --- --, •

• •-
-‘•

- w ~~~~~~~~~~~~
- —

V. . Phased Imnlementation SeQuence.

The following steps describe the sequence of actions
necessary to bring 3D GCS up on a new computer system. It
is assumed that 3D GCS source is available on tape in the
form of card images.

1) Read the source tape on to disk in a form in which the
source can be manipulated using the host—com pute r
standard source program library maintenance procedures.
Note that for proper organization later into object
libraries , it may be necessary to store the device—
independent source programs in one file and each set of
device—dependent source programs in separate files.
Other computer systems may allow all the source programs
to be kept together. If an INCLUD E , COPY , or *CALL
capability is available , the Graphics Status Area (GSA)
should be placed in a module which can be included and
the code in the source programs replaced with COPY ’s ,
INCLUDE ’s , etc.

2) Establish the computer—dependent initializations for the
Graphics Status Area. Then edit these values into the
appropriate places in the source code where the GSA
initialization statements are located.

3) Implement the computer—dependent routines described in
this document. These should be thoroughly tested before
attempting to use them within GCS. Once debugged , the
source code should be placed with the other device—
independent source programs.

4) Compile all device—independent routines into one object
library in a form which can be searched by the loader or
linkage editor. If compilation errors are detected ,
they should be corrected and this step repeated until no
compilation errors occur.

5) Compile all device—dependent routines for~the devioeupon which development will occur into another object
library in a form which can be searched by the loader
or linkage editor. If compilation errors are detected ,
they should be corrected and this step repeated until
no compilation errors occur. It is highly recommended
that the development device selected be one for which a
set of GCS device—dependent routines already exists

• even if this mus t be an alphanumeric device (alphanumeric
terminal or line printer).

31 ‘
~ H

— •—--••- “—-,-•~~~~~~

•
~
—‘- w ~~~~~

- - - —

6) Write a test program which invokes the basic GCS functions.
A typical such program might be as follows:

CALL USTAR T
CALL USET(”PERCENT UNITS”)
CALL t7DAREA (O.,100.,O.,100.)
CALL UI~ VB(0.,O.)CALL UPEN(100 ., 10 0.)
CALL tJPRINT(50.,50.,”TEX T I’)

CALL UEND
STOP
END

This program will draw a diagonal tine from the lower
left corner of the display surface to the upper right
corner of the display surface and will display the
word “TEXT” at a location where the lower left corner
of the first character position is at the center of the
display surface with the characters extending to the
right. Continue testing GCS until it is apparent that
GCS is functioning satisfactorily for the development
device. Note that to use GCS, it will be necessary to
insure that the BLOCK DATA subrout ine for the display
device selected be loaded since it is the subroutine
which initializes the GSA.

7) Repeat steps 5 & 6 for each display device to be supvorted.
Read the 3D GOS Device—Dependent Implementation Guidelines
if a device not already supported by GCS is to be used.

8) Design and implement a control card proce dure or other
mechanism which makes device selection convenient for
the user. Typically, this can be accomplished by passing

• the name of the device to the control card procedure as
a parameter. The control card procedure will then cause
the appropr iate control cards to be processed so that
the appropriate device—dependent library will be used by
the linkage editor or loader. While this step is optiona l,
it is strongly recommended since it greatly facilitates
-using GCS.

32

—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—



—-‘-. w 
- -—-

VI. Instr uctton~ for Insta11tri i~ GC~ Character Fonts.

There are four compo n en t s  r equ i red  for installing GCS
cha racter  fon t s .  Each componen t  should be placed in a
sepa rate f i l e  as desc r ibed  below.

1)  Character  Locat i on  Records - -These  are card images
of the form :

DATA LCXXXX ( Yl )/RRJDDD/

where : XXxX is the font name .
YY is the font character ASCII index—3 1

RRDDD D is the record n u m b e r  and record
d i sp l acemen t  of the star t  of the
charac te r  d e s c r i p t o r .

These record should be placed in Fort ran f i l e  number  1.

2) Character Width Records-—These are card images of the
form:

DATA LWXXXX ( YY ) / ZZZZ /

where : XXXX is the font name .
- 11 is the font character P~$~~II i n i e x — 3 1 .
ZZZZ is the cbar~ c te r ~:idth p e r c e n ta ~~e for

p ropo r t i ona l  sp a c i ng .

These records should be placed in For tra n f ile num ber 2.

3) Character Descriptor Records—— These are card images of
the f o r m :

DATA ICXXXX (YYYY)/ zzzzzzz /
whe re: XX XX is the fon t  name .

YYYY is the stroke displacement from the
be~ inoir~ of the f o n t .

ZZZZZZZ is the font character stroke descriptor.

These records should be placed in Fortran file number 3.

4) Pont File Construction Program—-This is a GCS For t ran
program which , when comp iled and e xecu t ed , reads  data p..
from Fortran files 1 , 2 , and 3 and c rea tes  the d i r e c t
access font file using the GCS c o m p u t e r - d e p e n d e n t
random file routines. The first statement of this
program is a PR OGR ?L 4 s t a t emen t  r e qu i r ed  by some
com~~ter systems for main progra.ns. If this statement
is~xbcquired , it may be deleted • The program places
the output on Fortran file 1 1 • This is a random file
which should be saved an a read—only file in the
computer system library. Users of the GCS character
font facility will need to access this file using a
Fortran file number they specify with the UPSET
(“FNTFILE ”,filenr ) command .

33

F — —  — -— •—-— • - ‘



3
In accordance with letter from DAEN-RDC , DAEN-ASI dated
22 July 1977, Subject : Facsimile Catalog Cards for
Laboratory Technical Publications , a facsimile catalog
card in Library of Congress MARC format is reproduced
below.

Puk , Richard I:
Host-computer implementation guidelines for the three-dimen-

sional Graphics Compatibility System (GCS) / by Richard I . P11k ,
Albuquerque , N. Mex . V icksburg , Miss. U. S. Waterways Ix-
periment Station ; Spring field , Va. : available from Nationa l
Technical Information Service , 1979.
33 p. ; 27 cm. (Mi scellaneous paper - 11. S. Army Engineer

Waterways Experiment Station 0-79-1)
Prepared for Office , Chief of Engineers , U. S. Army , Wash-

ington , 0. C. . under Contract No. I)ACA3~ -78-M-00S3 .

1. Computer graphics. 2. Computer systems programs. 3. Graphics
Compatibility System. 4. Guidelines. I. United States. Army .
Corps of Engineers. II. Series: United States. Waterways Ex-
periment Station , Vicksb urg , Mis s . Miscellaneous paper ; 0-79-I.
TA7.W34m no.0-79-I

‘I.

I

~~~~~~ 

-—

- -
. -

