1~ AD=-A0D67 976

UNCLASSIFIED

PUK (RICHARD F) ALBUGUERQUE NM F/6 9/2
HOST=COMPUTER IMPLEMENTATION GUIDELINES FOR THE THREE=DIMENSION==ETC (L))
MAR 79 R F PUK DACA39=T78=M=0053

ADAO679576

/]

-~

DDC FiLE copy

MISCELLANEOUS PAPER O-79-1

HOST-COMPUTER IMPLEMENTATION
GUIDELINES FOR THE THREE-DIMENSIONAL
GRAPHICS COMPATIBILITY SYSTEM (GCS)
by

Richard F. Puk

6401 Academy N. E., Apartment 45
Albuquerque, N. Mex. 87109

March 1979
Final Report

{ Aporoved For Public Relesse; Distribution Unlimited |

e SR S

Propured for om.., Chiof of Bughun, u.s Au-y
Washington, D, C. 20314
(Project No. 4A762725ATI)

MW“WW

Unelassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

|7 REPORT NUMBER

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

Miscellaneous Paper 0-79-1 /7

2. GOVT ACCESSION NO.| 3 RECIPIENT'S CATALOG NUMBER

\Ja. TITLE (and Subtitle)

.,}IOST -COMPUTER D&PIEMENTATION GU]DELINES FOR 'I'HE
'I'ImEE-DTMENSIONAL GRAPHICS COWATIBILITY/SYSTE
(GCs) s

6. PERFORMING

Z)

PE OF REPOR’IwRIOD COVERED

Final rep@t./

PORT NUMBER

Richa.rd F. IPuk

8. CONTRACT OR GRANT NUMBER(s)

/QQ Contract NQ._.__.-—/‘

DACA39-78-M-0053 | [

10. PROGRAM LEM PHOJ ECT TASK

K TNU

Project LAT62T25AT11 \ 4
?;6 ::

N __Jgggm

Marah D79

TS m"v.czs

33

15. SECURITY CLASS. (of this report)

Unclassified

Sa. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

%

VBERT
/7 {;(/

Phased sequence for implementing 3D GCS on a new computer system. ..

The following areas are discussed:

Functional specifications for each of the three-dimensional (3D) GCS

a computer system; oad

Unclassified

) /S

SECUMTY CLASSIFICATION OF THIS PAGE (Wiven Data Entered)

4

:

/ ‘;
¢
~ j ZEerts. W
9. ERFORMING ORGANIZATION NAME AND ADDRESS
Richard F) Puk, Srephies.lonsiulient- '\}5"‘ -
6401 Acari;emy N.E., Apartment 45 A//
Albuquerque, N. Mex. 87109
11. CONTROLLING OFF|CE NAME AND ADDRESS
Office, Chief of Engineers, U. S. Army _/ﬂ
Washington, D. C. 20314
. MONITORING AGENCY NAME & ADDRESS(!f different from Controlling Office)
U. S. Army Engineer Waterways Experiment Station
Automatic Data Processing Center
P. 0. Box 631, Vicksburg, Miss. 39180
16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; 4&: tributi_g_n__ug_]__imm__/
|2 YWEZ | QL p-0-77- -7
7. DISTRIBUTION STATEMENT (of m. abatrect ent¥fed In Block 20, If different from Report)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on reverse side if necessary and identity by block number)
Computer graphics
Computer systems programs
Graphics Compatibility System
Guidelines
n\nq;crm- otdn and identify by block ber)
his report gives guidelines for implementing the Graphics Compatibility
System (GCS) on a host-computer system.
~ 8. Graphics Status Area (GSA) values,
b.
7 —
computer-dependent routines,
sc. Factors involved in supporting 3D GCS on
d.
" DD ,an> WI3 eormow or 1 nov es is osoLETE
g |

i B

-

PREFACE

This report is the result of work performed under Contract No.
DACA39-78-M-0053, dated 25 January 1978, between the U. S. Army Engineer
Waterways Experiment Station (WES), Vicksburg, Miss., and the author,

Dr. Richard F. Puk, Graphics Consultant. The work concerned designing
host-computer implementation guidelines for the three-dimensional version
(2.0) of the Graphics Compatibility System (GCS). The task was directed
by the Automatic Data Processing (ADP) Center, WES, as part of Com-
puter Technology-Engineering Software, Project No. 4AT62T25AT11,
sponsored by the Office, Chief of Engineers, U. S. Army.

Mr. James M. Jones II, R&D Software Group, ADP Center, WES, monitored
the contract under the general supervision of Dr. N. Radhakrishnan, Special
Technical Assistant to the Chief of the ADP Center, and Mr. D. L. Neumann,
Chief of the ADP Center.

Director of WES during the period of the contract was COL J. L.
Cannon, CE. Technical Director was Mr. F. R. Brown.

et P ———— At et

- : |
h ‘cw“, " '3 s i /
§oen White Settie 7

|

i

!

wit petw (O 4|
|

¥

R T A

SN

!&_,3 i R

e — —
CONTENTS

ERBRRCE S o e e e e .
I, INTRODUETION . . . @ . «c ¢ o o o
IT. GRAPHICS STATUS AREA INITTALIZATION . . .
ITI. 3D GCS COMPUTER-DEPENDENT ROUTINES
IV. 3D GCS IMPIEMENTATION FACTORS . . « « « ¢ + « &
V. PHASED IMPIEMENTATION SEQUENCE
VI. INSTRUCTIONS FOR INSTALLING GCS CHARACTER FONTS

o)
-F'wu)l-‘m
o

28
31
23

.

s e

I.

II.

HOST -COMPUTER IMPIEMENTATION GUIDELINES FOR

THE THREE -D IMENS IONAL, GRAPHICS COMPATIBILITY SYSTEM (GCS)

Introduction.

The followlng paragraphs develop guidelines for imple-

menting GCS on a host computer system.

definition of computer-devendent Graphics Status Area (GSA)
initialization values, functional specifications for each
of the 3D GCS computer-dependent routines, a discussion of
factors involved in supporting 3D GCS on a computer system,
and a description of a phased sequence for bringing up GCS
on a new computer system.

Graphics Status Area Initialization.

In this section, each of the computer-dependent elements
of the Graphics Status Area will be listed along with the
procedures required to calculate the value, 1f appropriate.

KTERM

KUCASE

KLCASE

KSUBCH

KSUPCH

KWRTFL

KRDFL

KOUTFL

GCS string terminator character. Default value is
the internal computer character set representation
of an ASCII backslash ("\") character.

Upper case shift character. Default value 1s the
internal computer character set representation of
an ASCII less-than ("¢") character.

Lower case shift character. Default value is the
internal computer character set representation of
an ASCII greater-than (")»") character.

Subscript escape character. Default value is the
internal computer character set representation of
an ASCII underscore ("_") character.

Superscript escape character. Default value is the
internal computer character set representation of
an ASCII pound sign ("#") character.

Standard alphanumeric output file. Default value
is the computer system default alphanumerlc output
Fortran file number.

Standard alphanumeric input file. Default value is
the computer system default alphanumeric input
Fortran file number.

Standard graphics output file. Default value is
the computer system default graphics output Fortran
file number if one exists.

Included will be the

LA el <

Josii et v vl SR

T T

III.

3D GCS Computer-dependent Routines.

This section describes the functions embodied in each of
the 3D GCS computer-dependent routines. This discussion
will include interface specifications and functioral speci-
fications. Since these functions are computer-dependent,
the requirement to implement these routines in ANS Fortran
is relaxed. However, use of a higher-level language for
implementation is recommended for ease of maintenance. The
functions are grouped into four categorles: packing, job
control, character set conversion, and I/0. Within these
categories, the routines will be listed alphabetically.

———————

Packing Routines

The packing routines provide for packing and unpacking
arbitrary length bit strings (GCSBIT, GCSBTR), for packing
and unpacking single characters (GCSICH, GCS1PK), and for
extracting the left-most n-character wide field from a
character string (GCSSTD). Two former computer-dependent
routines, GCSPCK and GCSUPK, have been rewritten to call
GOS1CH and GCS1PK and are now device and computer system
independent.

e —

T

T

GCSBIT (NEXT,IWIDTH,IWORD,IBITLC,IBUF)

NEXT

IWIDTH

IWORD

IBITLC

IBUF

Comments:

is a word containing the bits to be packed
right-justified, zero-fill.

is the number of bits to be packed (i. e., the
number of bits in NEXT).

is the word in the buffer in which packing will
occure.

is the number of bits currently used within
INORD.

is an array in which the bit string 1s accumulated.
The calling routine should provide a buffer one
word larger than the actual buffer size since
GCSBIT will leave overflow bits in this word.

This routine accumulates a packed bit string of
arbitrary length within a buffer provided by the
calling program. This allows the formation of

strings of bits in which the storage of the bilts

i{gnores word boundariles.

A B

I —

GCSBTR (NEXT,IWIDTH,IWORD,IBITLC,IBUF)

NEXT

IWIDTH

IWORD

IBITLC

IBUT

Comments:

is a word in which the bits retrieved will be
vlaced right-justified, zero-fill.

is the number of bits to be retrieved (i. e.,
placed in NEXT).

is the word in the buffer from which bits are
currently being retrieved.

is the number of bits already retrieved from
IWORD.

is an array containing the bit string from which
bits will be retrieved. The calling routine
should provide a word of zero bits immediately
following the IBUF array.

This routine retrieves string of bits (up to one
word) from the packed bit string provided by the
calling program (i. e., the buffer IBUF). Word
boundaries will be ignored during retrieval.

GCS1PK(N,INCHAR,IBUFR)

N 1s the character position within the output
character string into which the KBYTEL-width
character is to be packed.

INCHAR 1is a word containing one KBYTEL-width character
right-jusc¢ified, zero-fill,

IBUFR 1s the output character string word into which
the KBYTEL-widht character will be inserted.

Comments: Thils routine inserts the KBYTEL-width character
contained in INCHAR into the N'A KBYTEL-width
character position of the output character string
IBUFR. Character positlons are numbered left to
right., Note that KBYTEL is not a fixed quantity
and may vary during execution.

N

GCS1CH(N,ISTRNG,NUCHAR)

N the character position within the input character

ISTRNG

NUCHAR

Comments:

string from which the KBYTEL-width character is
to be extracted.

1s the input character string (maximum length is
one word).

is a word in which the KBEYTEL-width character 1is
placed.

This routine extracts the N'B XKRYTEL-width charac-
ter from the input character string word and places
it in the output word (NUCHAR) right-justified,
Zero-fill. Note that KBYTZL 1s not a fixed quantity
and may vary durlng execution,

GCSSTD (N, ISTRNG ,NUSTRG)

N

ISTRNG
NUSTRG

Comments:

is the number of left-most characters from the
input character string to comprise the output
character string.

is the input character string.

is the left-justified output character string
padded with zero bits if necessary to fill the
word.

This routine places the left-most N characters

from the lnput character string in the output
character string word padding, if necessary, with
zero bits. Both the input and output character
strings may be of maximum length of four characters
or one word:whichever 1is greater.

10

——r~

|~

————— -

Job Control Routines

Only two Job control routines currently are required,
GCSJOB and GCSTBK. These routines are intended to access
operating system facilities for services or to obtain
information.

- — | —___iae S J

GCSJOB(JOBID,IDUSER,IROUTE,ICLASS,IDATE,ITIME)

JOBID

IDUSER

IROUTE

ICLASS
IDATE
ITIME

Comment:

is a word in which the job ID of the run will be
returned.

is a word in which the ID of the person executing
the program will be returned.

1s the routing address to which the output should
be sent.

is the job security classificatilon.
is the date of the run.
is the time of the call to GCSJOB.

The GCS terminator character is appended to the
end of each field of information being returned to
the calling program. The calling program has the
responsibility of insuring that the current termi-
nator 1s the default terminator.

A maximum of twelve characters including the GCS
terminator character are allowed to be returned
for each fleld. The only exception is that the
securlty classiflication may be up to eight words

long.

If a parameter 1s not defined on a particular
operating system, a valid GCS text string consist-
ing of only the default GCS text string terminator
must be provided.,

a2 a2 2222222222222 2222222222222 2222 2y
#nunu® This routine is still under development, ###ess

##nn#n The descriptlon above is subject to 0300 4
#%unu® change. Providing this routine is opt=- 93
#unuu® ional untlil development is completed. haadof bl

FE 30003 309 S0 696 36 30 6 36 36 36 46 96 36 46 36 3036 6 35 96 3030 3095 30 36 36 35 36 96 96 35 36 - 90 90 3 3 90 9 30 3 30 9 3 96 4 9

GCSTBK (IERROR)
IERROR contalns the GCS error number.

i Comments: This routine invokes the computer system error
traceback routine. It is implemented so that
tracebacks can occur when GCS errors have been
identified. It is important that the traceback
not abort execution of the program. If no
traceback function exists or the traceback
aborts execution of the program, this routine
should be null.

13

B

Character Set Conversion Routines

These routines provide for converting between the GCS
internal character set ASCII and the host computer internal
character set. Note that even if the host computer character
set can support both upper and lower case characters, the
mechanism must still be provided to support the GCS case
shifting function. Thls may require that duplicate conver-
sion tables be included whose only difference is that all
upper case characters be mapped to lower case when lower
case has been specified. If the host computer character set
does not support the entire ASCII special character graphics,
then some speclal characters may also differ between upper
and lower cases. If this occurs, however, the special charac-
ters (,)y +5 =5 =, *, /o, <, 7, and \ must be supported in
both cases. Only the printable characters need be converted;
control characters and character indecles with no graphic
symbol associated with them need not be handled unless desired.
It should be emphasized that every attempt should be made to
accommodate the standard mapping between ASCII and the host=-
computer character set defined by the host-computer manufac=-
turer for the operating system being utilized.

L

———p———

GCSCVT(IN,IOUT)

IN 1s the charcter to be converted in host-computer

IoUT

Comments:

internal character set right-justified, zero-fill.

is a word in which the character will be placed
after being converted to ASCII right-justified,
zero-fill.

This routine converts from host-computer internal
character set to ASCII. The case-shifting constant
will have been added to the host-computer character
before this routine is called. Therefore, the

case shifting should be recognized by the magni-
tude of the character bit value.

15

—————T

GCSRVT (IN,IOUT)

IN 4s the character to be converted in ASCII
right-justified, zero-fill.

IOUT 1is a word in which the character will be placed
after conversion to host-computer internal
. character set.

Comments: Thls routine converts from ASCII to host-computer
internal character set. Since ASCII supports
both upper and lower case, it may be necessary
to map lower case characters into upper case
characters if the host-computer character set
supports only upper case.,

16

B i R . e S BB e o)

o S0 w1

i

GCSOFS (IFILCD)

IFILCD 1is the Fortran file number of the sequential
file to be opened.

Comments: This routine opens a file for sequential access.

Igggt(Qgtgut Routines

Three classes of I/0 routines are included in this
category: sequential file I/0, random file I/0, and
telecommunications interface routines.

The sequential file I/0 routines GCSOFS, GCSRPS, GCSWFS,
and GCSCFS are required for use by devices which place plot
output on sequential files. Use of these routines 1is
required since Fortran I/0 may place undesirable control
information on a file when using unformatted I/0 (Formatted
I/0 cannot be used since 1t is line-oriented with line
length restrictions on some computers).

The random file I/0 routines GCSOFR, GCSRFR, GCSWFR, and
GCSCFR are required for supporting GCS segmentation and
structure facilities. These routines are required since
ANS Fortran does not have random file I/O capability.

The telecommunication routines TINPUT and TOUTPT are
required for communication between GCS device-dependent
routines and devices connected to the host-computer via
telecommunications lines. These are required since the
interface may connect directly to the operating system
telecommunications service routines.

18

i ——

-

GCSRFR (IFILCD,INDEX,IRECNR,IRECLN,IRECRD)

IFILCD
INDEX

IRECNR
IRECLN
IRECRD

Comments:

is

is
be

is
is
is

the Fortran file number of the random file.,

an array in which the random file index may
maintained.

the record number of the record to be retrieved,
the length of the record to be retrieved.

an array into which the record will be read.

This routine performs a random (direct) read of

the
the

desired record from the specified file. If
record is larger than the buffer array

IRECRD, only the first IRECLN words will be placed
in the buffer area., If the record i1s smaller than

the

buffer area, the remaining words of the buffer

will be unchanged. If the record does not yet
exist, the buffer array will be zero-filled.

GCSRFS (IFILOD,ILENG,IBUFFR,ISTAT)

IFILCD
ILENG
IBUFFR

ISTAT

Comments:

is a Fortran file number.
specifies the length of the input buffer.

is an array of size ILENG words into which
the data will be read.

is a status indicator. Valid values are:

O = End of file "
>0 = Actual number of words read
{0 = BError occured during the read operation.

Absolute value 1s actual number of words
read. -

This routine reads the next physical record from
the file into the buffer. If the number of words
read 1s less than the buffer size, unused buffer

- locations will not be modified. If the number of

words read 1s greater that the buffer size, only
the first ILENG words of the record will be placed
in the buffer. Excess words are discarded. Note
that in all cases, the number of words read will
be indicated in ISTAT. If an end-of-file 1is
encountered, ISTAT is set to zero.

20

e ——

GCSOFR (IFILCD,INDEX,INDXSZ)
IPILCD 1is the Fortran file number for the random file.
INDEX 1s an array in which the index for the random
file can be maintained if not maintained by
the operating system.
INDXSZ 1is the number of words in the INDEX array.

Comments: This routine opens a flle for random access and
initializes the index for the file if necessary.

21

GCSWFS (IFILCD,LENGTH,IBUFFR,ISTAT)

IFILCD 1s a Fortran file number.

ILENG specifies the number of words of data to be

written,

IBUFFR 1s an array containing the ILENG words of

data to be written.

ISTAT 1s a status indicator. Valid values are:

Comments:

O = No error during processing.
1 = Error during processing.

This routine writes the ILENG words of data in
the buffer to the flle. No other information
may be placed on the file. This means that it
may not be possilbe to use unformatted Fortran
I/0 since control information is frequently
written to the flle along with the data. Also,
1t may not be possible to tuse formatted Fortran
I/0 since the number of characters which can be
written is often limited to one 1line and end- »
of-line symbols may be inserted within the data

stream. Since flles written using GCSWFS are

often read by tave drives attached to other than

the host-computer, it 1s important that the

information written to the file contain no

computer-system dependent control information. |

GCSCFS (IFILCD,IEQOF)
IFILCD 1is the Fortran file number of the sequential
file to be closed.

IEOF 1s an end-of-flle request flag. If set to one,
an end-of-file mark is written on the end of
the file. All other values inhibit writing of
an end-of-file.

Comments: This routine closes the file specified in IFILCD

I ———

if required by the computer system. An end-of-
file mark must be written if IEOF has value 1.
The close operation takes place with no rewind.

a3

GCSWFR (IFILCD,INDEX, IRECNR, IRECLN, IRECRD)

IFILCD

INDEX

IRECNR
IRECLN

IRECRD

Comments:

is the Fortran file number of the random file
to be written upon.

is an array which may be used to maintain the
index for the random file.

is the number of the record to be written.

indicates the number of words in the record to
be written.

is an array of IRECLN words containing the data
to be written.

This routine writes or rewrites the record
indicated. If the record did not exist before,
the record will be written. If the reccrd already
exists and is being modified, the record should

be rewritten in place.

T

2L

el -

GCSCFR(IFILCD)

IPILCD 1is a Fortran file number.

Comments:

This routine closes the random file indicated
by IFILCD. Clsoing a random file may require
invocation of an operating system support
routine to write the index on to the file.

25

e

TINPUT (ICOUNT ,IBUFFR, IPRMPT)

ICOUNT

IBUFFR

IPRMPT

Comments:

is the number of ASCII characters to be accepted
from the terminal.

is a buffer into which the ASCII characters will
be placed one character per word, right-justified,
zero-f1l1l. The buffer 1s considered to contaln
ICOUNT wordss

is an array containing a prompt sequence which
is used to 1initiate the input operation. The
first word of the array contains a count of the
number of characters in the prompt sequence and
1s also the number of words in the IPRMPT array
minus 1, The prompt characters are in the same
format as would be passed to TOUTPT.

This routine initiates an input operation which
asks for ICOUNT ASCII characters to be read from
the terminal. If less than ICOUNT characters
are received, the remaining buffer positions are
zero=-filled. If more than ICOUNT characters are
recelved, excess characters are ignored. The
input operation 1s prefixed by sending the proampt
sequence to the terminal (if IPRMPT(1) is not
equal to zero). Preferably, this would occur as
part of the 1input request but,on some systems,
1t may be necessary to call TOUTPT to send the
prompt to the terminal. The important thing is
to make the delay between the time the prompt

is apparent to the terminal operator and when
input can be accepted by the operating system
indetectable to the terminal operator.

Note that input characters placed in IBUFFR must

be ASCII. If ASCII originates at the terminal,
the characters must not be modified before being
placed 1ln the buffer. It is also important that
any characters being buffered within TOUTPT or
the operating system be sent to the terminal
vrior to the prompt sequence.

26

B i e

-\,._".E, e

wuh

-

TOUTPT (ICOUNT,IBUFFR)
ICOUNT 1is the number of characters to be transmitted
to the terminal.
IBUFFR 1is an array of ICOUNT words. Each word contalns
one ASCII character, right-justified, zero-fill.
Comments: This routine transmits the ASCII characters

within IBUFFR to the terminal unmodified with

no additional characters inserted. If desirable,
the characters may be packed into buffers before
sending to the terminal. In this case, the
buffer should be sent when full or when TOUTPT

1s called with ICOUNT equal to zero.

4

—Cp—

R ———p . G AL
Iv. 3D GCS Implementation Factors.

3D GCS makes few assumptions about the capabilities of
the computer and operating system in whose environments it
will function. Essentially, 3D GCS (or even 2D GCS) can
be successfully and easily supported on any computer system
which has the following characteristics:

a) A word size of 32 bits or larger.

b) A loader which allows several libraries to be searched
during the linkage edit of the user programn.

¢) A capability for reading and writing direct access
(random access) files.

d) A capability for sending arbitrary length strings of
ASCII characters to a display device (required for
interactive devices only).

With these capabilities, it 1s a relatively straight-forward
task to bring up 3D GCS. Sectlon V contains a phased sequence
for accomplishing this.

Circumventing the lack of any of these capabilities or
characteristics can be a laborious undertaking and, in the
case of direct file I/0, may not even be possible. The
following paragraphs are designed to assist the implementor
in modifying 3D GCS to accommodate limitations in the host-
computer system.

Word Size

GCS was originally developed for computers whose words
consist of at least 32 bits 2nd in which may be stored at
least four host-computer characters. There are onrnly three
areas in 3D GCS where this limitation is critical.

Wherever GCS mode and option names are specifled, only
the first four characters of each mode or option name are
significant. 3D GCS assumes these four characters occupy
positions in the same word. The processing of these modes
and optlions takes place in many GCS routines. Besides
USBT and UPSBET, included in these routines are UCOLOR,
UDOIT, UFORMT, UQUERY, all user-callable segmentation
routines, and all user-callable structure routines. These
routines all call the computer-dependent routine GCSSTD to
extract the first four characters of the option. GCSSTD
can be written to process multiple-word character strings.
However, the comparisons which take place in USET, UPSET,
UQUERY, and the others will require code modification to
cause correct matching. An easler solution, if avallable,
1s to use double word integers. ¥

28

TP

e

There are several areas within GCS in which character
string constants are define and initialized by DATA
statements (e. g., UTAXIS). These will have to be located
and modified as necessary. They can frequently be found by
looking for the character strings "“/4H" and "“,4H".

The third area in which GCS requires this restriction
is in the storage of character descriptors for the GCS
character set. Bach stroke of a character is stored in a
24-bit fleld in the lower vortion of a computer word as
follows:

{000 MMM&E{ Xmag PBY Yoag

This 24-bit fleld is split into the three 8-bit subfields
shown above. The X and Y bytes represent percentages of a
character enclosing box in sign/magnitude format.(3=1!
represents negative). The MMM field has value O for a
visible stroke and has value 5 for a move. The T fileld
flags the last stroke in the character when set to 1.
While it is possible to store the character stroke in a
three-byte field, unless a computer is byte-addressable,
such a packing scheme is too inefficient to be acceptable.
Once again, use of double-word integers is indicated, 1if
available. If not, each stroke may be stored in two-word
table entries with the appropriate changes made to the
referencing code in GCSSIM and GCSSYM. The recommended
split is to place the opcode (MMM), termination (T), and

X flelds in one word and the Y fleld in another., The
termination field should be moved down so that it does not
make the contents of the word negative when referenced
arithmetically.

Cyclic Library Searches

GCS 1s organized into device-independent routines,
computer-dependent routines (which are device-independent),
and device-dependent routines. Normally, all device-
independent routines are stored in one device-independent
library, and each set of device-dependent routines are
stored in a separate device~dependent library. The
appropriate device-dependent library is selected at load
time for the device to be used. A linkage editor or loader
which can search several libraries as if one (actually,
logically concatenate the libraries) i1s a great ald in
using GCS on a computer system. Such an editor will perform
a cyclic search to satisfy all external references. Some
linkage editors and loaders cannot search a library a second
time. Frequently, this effect can be achieved by listing
the device-independent and device-dependent librarles twice

causing each to be searched twice. A more practical approach

might be to store the computer-dependent routines and GCSSIM
in each of the device-dependent libraries.

29

————

T

Direct Access I[O

It will be very difficult to support GCS on a computer
system which does not support direct access file I/0. This
1s because both the GCS structure capability and the GCS
segmentation capablility require direct access files for
storing the data. (It 1s also intended that the planned
support for Hershey characters will require that these also
be stored on a direct file). The best attempt to support
GCS on such a computer system would be to simulate direct
access files using sequential files. It should not be
expected that GCS will function efficiently when using
structures or segmentation in this case.

Telecommunications Protocol

When sending graphics commands to a display device
connected via a telecommunications line, GCS assumes that
any number of characters can be transmitted to the display
device without sending some system-dependent end-of-line
terminator character such as a carriage return character.

At times, such lines may exceed the capacity of an operating
system buffer. This is not critical provided the operating
system does not insert such an end-of-file character arbi-
trarily within the logical stream of data. If it does, the
correctness of the picture being displayed may be thwarted.
Bvery attempt should be made to provide such a transparent
flow of characters to the termlnal. If it cannot be accom-
plished, the device-dependent routines within GCS must be
modified to bracket the inserted end-of-line characters with
commands that keep the end-of-line characters from effecting
the visual output. Note: 1input operations do not require

an unlimited line length.

30

JLif . i“ . @v.-‘!b‘w’""’ P NP —

B v

h

ek

V..

Phased Imvlementation Segquence.

The following steps describe the sequence of actions

necessary to bring 3D GCS up on a new computer system., It
1s assumed that 3D GCS source is available on tape in the
form of card images.

1)

2)

3)

4)

5)

Read the source tape on to disk in a form in which the
source can be manipulated using the host-computer
standard source program library maintenance procedures.
Note that for proper organization later into object
libraries, 1t may be necessary to store the device-
independent source programs in one file and each set of
device-dependent source programs in separate flles.
Other computer systems may allow all the source programs
to be kept together. If an INCLUDE, COPY, or #CALL
capability is avallable, the Graphics S%atus Area (GSA)
should be placed in a module which can be included and
the code in the source programs replaced with COPY's,
INCLUDE's, etc.

Establish the computer-dependent initializations for the
Graphics Status Area. Then edit these values into the
appropriate places in the source code where the GSA
initialization statements are located.

Implement the computer-dependent routines described in
this document. These should be thoroughly tested before
attempting to use them within GCS. Once debugged, the
source code should be placed with the other device=-
independent source programs.

Compile all device-independent routines into one object
library in a form which can be searched by the loader or
linkage editor. If compilation errors are detected,
they should be corrected and this step repeated until no
compilation errors occur.

Compile all device-dependent routines for the device
upaon which development will occur into another object
library in a form which can be searched by the loader

or linkage editor. If compllation errors are detected,
they should be corrected and this step repeated until

no compllation errors occur. It is highly recommended
that the development device selected be one for which a
set of GCS device-dependent routines already exists

even if this must be an alphanumeric device (alphanumeric
terminal or line printer).

P

- -

= -rféfl"

6)

7)

8)

Write a test program which invokes the basic GCS functions.
A typical such program might be as follows:

CALL USTART

CALL USET("“PERCENT UNITS")
CALL UDAREA(O.,100.,0.,100.)
CALL UMOVE(O.,0.)

CALL UPEN(100.,100.)

CALL UPRINT(50.,50.,"TEXT ")
CALL UEND

STOP

BND

This program willl draw a diagonal line from the lower
left corner of the display surface to the upper right
corner of the display surface and will display the
word “TEXT" at a location where the lower left corner
of the first character position is at the center of the
display surface with the characters extending to the
right. Continue testing GCS until it is apparent that
GCS 1s functioning satisfactorily for the development
device. Note that to use GCS, it will be necessary to
insure that the BLOCK DATA subroutine for the display
device selected be loaded since 1t is the subroutine
which initializes the GSA.

Repeat steps 5 & 6 for each display device to be supported.
Read the 3D GCS Device-Dependent Implementatlion Guldelines
1f a device not already supported by GCS 1s to be used.

Design and implement a control card procedure or other
mechanism which makes device selection convenient for

the user. Typically, this can be accomplished by passing
the name of the device to the control card procedure as

a parameter. The control card procedure will then cause
the appropriate control cards to be processed so that

the appropriate device-dependent library will be used by
the linkage editor or loader. While this step 1s optional,
1t is strongly recommended since it greatly facllltates

using GCS.

32

T

VI. Instructions for Installing GCS Character Fonts.

There are four components required for installing GCS
character fonts. Each component should be placed in a
separate flle as described below.

1)

2)

3)

4)

Character Location Records--These are card images
of the form:

DATA LCXXXX(YY)/RRDDDD/

where: XXxX is the font name.
YY is the font character ASCII index-31.
RRDDDD is the record number and record
displacement of the start of the
character descriptor.

These record should be placed in Fortran file number 1.

Character Width Records--These are card irages of the
form:

DATA LWXXxx(YY)/z2222/ : '

where: XXXX 1s the font name.
YY is the font character ASCII index-31.
222Z is the charzacter width percentage for
proportional spacing.

These records should be placed in Fortran file nuamber 2.

Character Descriptor Records--These are card 1mages of
the form:

DATA IoxXxxx(yyyYy)/ 2222222/

where: XXXX is the font name.
YYYY is the stroke displacement from the
beginning of the font. b
22222272 is the font character stroke descriptor. -

These records should be placed in Fortran flle number 3. 4

Font Flle Construction Program--This is a GC3 Fortran
program which, when complled and executed, reads data
from Fortran files 1, 2, and ? and creates the direct
access font file using the GCS computer-dependent
random file routines. The first statement of this
program i1s a PROGRAM statement required by some
computer systews for main programs. If this statement
19§ cquired, 1t may be deleted. The program places
the output on Fortran file 11, This 1s a random file
which should be saved as a read-only file in the
computer system library. Users of the GCS character
font facllity will need to access this flle using a
Fortran fille number they speclfy with the UPSET
("FNTFILE",filenr) command.

33

In accordance with letter from DAEN-RDC, DAEN-AST dated
22 July 1977, Subject: Facsimile Catalog Cards for
Laboratory Technical Publications, a facsimile catalog
card in Library of Congress MARC format is reproduced
below.

Puk, Richard F

Host-computer implementation guidelines for the three-dimen-
sional Graphics Compatibility System (GCS) / by Richard F. Puk,
Albuquerque, N. Mex. Vicksburg, Miss. : U. S. Waterways Ex-
periment Station ; Springfield, Va. : available from National
Technical Information Service, 1979.

33 p. ; 27 cm. (Miscellaneous paper - U. S. Army Engineer
Waterways Experiment Station ; 0-79-1)

Prepared for Office, Chief of Engineers, U. S. Army, Wash-
ington, D. C., under Contract No. DACA39-78-M-0053.

1. Computer graphics. 2. Computer systems programs. 3. Graphics
Compatibility System. 4. Guidelines. I. United States. Army.
Corps of Engineers. 1I. Series: United States. Waterways Ex-
periment Station, Vicksburg, Miss. Miscellaneous paper ; 0-79-1.
TA7 .W34m no.0-79-1

