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Planning Nets:
a representation for formalizing analogics and
semantic models of procedural skills

Kurt VanLehn* and John Seely Brown®
December 20, 1978

Abstract

At some time in our lives, we have all been forced to learn the procedural skills which
supposedly comprisc mathcmatical literacy (e.g.. place value addition) through the process of rote
memorization, perhaps, enhanced by the use of "models” (e.g.. the abacus). These modcls were
intended to provide an intuitive basis for a given procedure. But, what really is a "model” of a
procedural skill; how does it help in learning: how faithful can it be made to be; and, more
gencrally, how can it help a procedure take on “meaning?”

Altenpling to answer these questions led us to formalize the concept of an analogy between
procedures based on a Sacerdoti-like representation called planning mets. A planning net
represents the synthesis of a given procedure from a set of constraints that define the properties
of the arithemetic operation being implemented and the representation of the objects (numbers)
being manipulated.  An analogy between procedures is represented as a maximal partial
isomorphism between the planning nets of the two procedures.

‘The planning net representation turns out to provide an clegant framework for defining the
teleologic semantics of a procedure as well as for investigating how to construct a natural sequence
of models (or microworlds) for a student to use in “inventing” his own procedure.  Since both
utilize the same framework, we have an cxtraordinarily powerful way to explain (or teach) the
underlying telcology by showing how to relate it to a sequence of intuitively understood models.

This paper may be viewed at several levels: For the educational rescarcher it provides a
framework for investigaling the cxplanatory value of various manipulatory models for
mathematical skills; for the cognitive scientist it provides a glimpse at a representation technique
for formalizing prozedural analogies and for representing the “deep structure™ of a procedure;
and for the Al person it provides some novel uses of planning nets.

To appear in R. E. Suow, P. A, Frederico, & W. E. Montague (Eds.). Aptitude lcarming and instruction: Cognitive process
analyses.  Ulillsdale, N.J.: Lawrcnce Erlbaum Associates, 1979, and as an Office of Naval Rescarch report from Learning

Research and  Developement  Center,  University of  Pitisburgh,  Pittsburgh, Pa.
sCurrent address: Xcrox PARC, 3333 Coyote Ilill Road. Pslo Alto, California.
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1. Introduction

At some time in our lives, we have all been forced 10 learn the procedural skills which
supposedly comprise mathematical literacy (¢.g., place value addition) through the process of rote
memorization, perhaps, enhanced by the use of "models” (c.g., the abacus). These models were
intended to provide an intuitive basis for a giver: procedure. But, what really is a "model” of a
procedural skill; how does it help in learning: how faithful can it be made to be; and, more
generally, how can it hclp a procedure take on “mcaning?”

This paper is directed at understanding how procedures can take on "meaning”. It is intended
to provide a small step in that dircction by discussing a paiticular kind of “semantics” for
procedural skills, which we call teleologic semantics, in the context of the unambiguous and
totally specifiable procedural skills of clementary mathematics.

The teleologic semantics of a procedure is knowledge about the purposes of cach of its parts and
how they fit together. Such knowlege is the province of true masters of the procedure. lts value
is extolled by the proverb, "To really understand something, one must build it." Teleologic
semantics is the meaning possessed by one who knows not only the surface structure of a
procedure, but the dctails of its design.

This paper has two arguments. First we molivate the particular representation that we use for
teleologic semantics, which we call planning nets, by showing how it can capture analogies
between procedures as scen by an expert at those procedures. Secondly, we show that teleologic
semantics, as formalized by planning nets, is uscful by describing several potential applications in
the field of education. In particular, some consideration is given to how teleologic semantics can
be explained, and how it provides a uscful framework for developing “optimal” sequences of
"modcl” procedures (or microworlds) for guided discovery leamning.

1.1 Analogy Between Procedures

Before we delve into a technical discussion of procedural analogies, Ict us consider a simple
example of an analogy between the procedure for adding two multi-digit numbcrs and a “"model”
procedure for addition which manipulates physical objects that represent numbers. The model
procedure is a physical procedure in that it manipulates physical objects that stand for numbers.
Before we can describe the procedure, we will briefly describe the objects that it manipulates,
namely Dienes Blocks.
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The Dienes Blocks representation of numbers

Dienes Blocks provide an explicit representation of base 10 numbers -- namely a set of unif
blocks for representing the units; a sct of Jong blocks consisting of ten unit blocks molded into a
long stick for represcating the tens; a set of flat blocks consisting of ten long blocks laid next to

each other, thus forming a 10 x 10 square for representing the hundreds; and finally a set of

cubes in the form of 10 x 10 x 10 units for rcpresenting the thousands. A number (of 4 or less
digits) can be physically represcnted by sclecting the number of unit blocks to correspond to the
units digit, the number of long blocks to correspond to the tens digit and so on. Hence a
particular multi-digit number is represented by piles of units, longs, flats, and cubes. Here, for
example, is 123 represented in Dienes Blocks:

(2 77T —/
a7 o e o

The base-10 nature of the symbolic place-value scheme for representing numbers is then made
explicit since one can see the direct translation of a number represented as piles of Dienes Blocks
into a base-1 system (i.e. the total number of units comprising all the blocks in all the piles).

Dienes Block Addition

Addition of two multi-digit numbers represented as concrete Dienes Blocks involves forming set
unions, and "trading”. The units pile for cach of the two numbers is first unioned together.
This corresponds to adding the units column. Next, the resulting set is examined. If it contains
more than ten unit blocks, then ten blocks are removed from this sct and traded for a long block
(consisting of ten units) which is then placed in a pile of long blocks of the top number. This
corresponds to carrying from the units to the tens column in standard addition. The procedure
now rcpeats, unioning the longs piles, then the flats, ete,

L A theory of analogy between procedurcs, applicd to this case, should be able Lo capture not only
| the fact that Dicnes Block addition and standard additon produce the same answers given the
same inputs, but that their internal structure corresponds as well. Sct unions match with columa
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sums, trading matches carrying, and so on.
Two-pass addition illustrates differences in closeness

We were recently struck by the way Dienes Blocks were being used in a school. In particular,
the Dienes Blocks procedure being taught was not as described above but instead had the
students combining all the piles of blocks together and then returning to the units pile and
trading up and so on. Thus, in standard multi-digit addition, a carry is (potentially) performed
after each column operation, whercas in this version of Dienes Block addition the “trading” (or
carrying) operation was being dcferred until all the columns have been initially processed. One
intuitively feels that this sccond, two-pass procedure is not as closely analogous to standard
addition as the previous, one-pass Dienes Block procedure.

A theory of analogy should have some formal mcasure that can predict how close an analogy is.
The theory below has such a formal mechanism, called a closeness metric. The degree of
correlation between the predictions of the closeness metric and subject’s intuitive judgements of
closcness is one verification condition for the theory. (Sece note 1 for caveats on this claim.)

Why arithmetic?

The examples in the paper are all drawn from the computational procedures of arithmetic even
though the techniques we have developed have wide applicability. We limited our examples to
arithmetic for sevcral reasons. Everyone knows how (o add and subtract, so lack of familiarity
with the example domain will not hinder comprehension of these admittedly rather abstract
formalisms. Arithinctic is a highly cvolved, complex system of procedures. It has iteration,
recursion, tables of facts, and of course a rather non-trivial data representation, namely place-
valuc numbers. Lastly, arithmetic is taught in school. This means our thcories are more likely to
accruc the bencfits of thoughtful, experience-bascd criticism from those with a sincere interest in
putting the theorics to work.

1.2 Organizational Overview

The paper is divided into three parts. The first part (section 2) is an exposition of some of the
basic concepls of formal theories of analogy. We assume that an analogy can be represented as a
mapping between a deep structure representation of cach procedure which is cxpressed as a
maximal partial isomorphism between the two deep structures. Thus, after an analogy has been
comprchended, we would expect to find cognitive structures that could be modeled by three
components: two of which represent the abstraction or decp structure of the two procedurcs and
the third which rcprescnts the structure perscrving map (i.c., analogy) between these (wo
structures.
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The sccond part of the paper (section 3) motivates the planning net representation of teleologic
semantics by using it as the deep structure component of a theory of analogics between
procedures. Part three of the paper (scction 4) is an examination of some of the applications of
this theory to education. In particular, we discuss a paradigm for explaining the telcologic
semantics which involves using a sequence of analogies such that each analogy iilustrates exactly
one concept underlying the synthesis of the given "target" procedure (e.g.. place-value
subtraction). This paradigm is then augmented with a set of “naturalness” principles for
structuring a sequence of analogies thereby addressing the prablem of how to design an optimal
sequence of "micro-worlds” or models for enchancing discovery learning.

We caution the reader that our style of arguing with cxamples has led to the incorporation of a
great deal of detail into the subsequent pages. However, if Artificial Intelligence has contributed
anything to cognitive psychology, it is an appreciation that ignoring trivial detail often leads to
overlooking non-trivial problems.
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2. A General Theory of Analogy

This section presents a theory of analogy that is so general that it is almost vacuous. [t appears
that virtually any theory of analogy, including the theory of procedural analogies that is presented
below, can be recast as a special case of this general theory. Thus, this gencral theory is
apparently immune (o refutation. Nonetheless, it allows discussion of some concepts common to
all analogies, such as "closeness”, before becoming immersed in the details of procedures and

their representations.
2.1 Mapping between "deep structures.”

We view an analogy as a comparison of two "things" that can be broken down into three parts:
(a) an analysis of the first thing into some abstract description (or deep structure), (b) an analysis
of the sccond thing into another abstract description, and (c) a mapping betwecn the two
descriptions.  This tripartite breakdown is the foundation of the general thcory of analogy.
Exactly this breakdown is also found in Tversky's work on similarity, a domain which illustrates
the general theory more clearly because of the simpler "deep structures” that are used (Tversky
1977).

Much research on similarity has used pairs of gcometric figures or letters. A typical task is to
rate the similarity "o" to "c". Tversky's analysis of this task is to assume a feature space,
describc cach figure as a set of features, then predict the similarity judgements with some
“metric" on the overlap of the feature set of "o" with the feature sct of "c". The correlation of
the judgements with the predictions serves as a verification condition on the feature space and
the metric. Often, the features are not very abstract -- 0" might be mapped into the description
{curved, circular, closed} while "c" would become {curved, circular, open}.

Much of the rescarch on analogy has studicd a task one often finds on intelligence tests, namely,
to fill in X in a statement of the form "A is to B as C is to X." Most commonly, the four
elements A, B, C and X are either words or geomctric figures. A simple example of a word
analogy problem is "Red is to Stop as Green is to (a. Go, b. Halt)." Superficially, this appears to
be a different sort of task than the similarity task since there are four things rather than two. But
the two lasks become very much the same when one considers the analogy task to be a
comparison of relationships rather than dircctly apprchendable things. This is a widely held view
of analogy. Indecd, the instructions to one analogy test, as quoted by Evans (1968, pg 272) read
"Find the rule by which Figure A has been changed to make Figure B. Apply the rule to Figure
C. Sclect the resulting figure from Figures 1 to 5."

Actually, these instructions represent just one strategy for answering analogy problems. Evans
ANALOGY program, for example, used a different strategy, whercby it extracted an AD rule, then

_—
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found five rules for pairs €1, €2, €3. ¢4 and Cs, then finally chosc one rule of the five as being
the most similar to the AB rule. ‘The existance of many different strategies for solving analogy
problems also obscures the parallels of this task to the similarity and metaphor tasks. And yet,
when one is done finding the analogy, one posscsses the same three maps: an abstraction from
AB, an abstraction from CX where X is the chosen answer, and the partial match (or mapping)
between the two resulting abstract descriptions.

In short, if onc ignores the strategic differences between solving an analogy and evaluating a
similarity, and one puts relationships on an equal footing with letters and geometric figures, then
there is very little difference between the analogy task and the similarity task. ARer either task is
completed, the cognitive structures can be modeled by three components: the two abstract
descriptions and the mapping (in the form of a match) between them.

2.2 Basic decfinitions

In this subscction, several basic concepts will be discussed. They all follow rather immediately
from the view of analogy described above. As above, they will be motivated and illustrated with
examples from Tversky's theory of similarity.

Intersection and difference sets

A good way to summarize the outcome of ithe matching map is in terms of onc intersection sel
and twa difference sets. As an example, take the similarity task mentioned above, to cvaluate the
similarity of "0" and "c". Their descriptions, let's say, are the feature sets {round, curved,
closed} and {round, curved, open}, respectively. Call these scts A and B, the abstract
descriptions of "o" and "c". Then, the interscclion and difference sets are

ANB = { round, curved }
A-B = { closed }
B-A = { open ).
This is not particularly startling, to be sure, Indeed, there are stercotypical ways of referring to

these scts in English similics: “A is like B in that ANB," or "A is like BB except that A-B instead
of B-A."

Maximal partial graph morphisms generalize the notion of "match”

With more complex languages than feature spaces for cxpressing abstract descriptions, one must
of course give a new definition of "match." For example, consider the analogy (from Sternberg
1977) "Washington is to 1 as Lincoln is to 5." Supposc scmantic nets are the representation
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language. The abstract description of the relationship Washington:1 is a certain chain of
semantic links from the node "Washington" to the node “1". The description of Lincoln:$ is a
different chain. However, when onc finally finds the correct way to view the two relationships
(which is rather non-trivial for this example), then the two chains end up bearing the same
sequence of link names, namely: Last-name, image-of, portrait-on, dollar-amount. That is,
"Washington" is the last name of the man NODE3L, the image of NODE31 appears in the picture
NODE7, NODE? is the portrait on the kind of dollar bill NODEe8, and the dollar amount of NODE68
is “1". The chain for the Lincoln:5 relationship is a completely distinct chain, but it has exactly
the same sequence of link labels. In this sense, the analogy is perfect.

To make these two chains match, the definition would have to be sensitive to (a) the order of the
links, and (b) the labels on the links. A definition in terms of intersection of sets of links would
be inappropriate because none of the links are identical, and becausc such a definition would
ignore the topology of the descriptions. A definition of "match” that is appropriate for semantic
nets (or any other representation with the topology of a labeled directed graph, including
planning nets), can bc defined in terms of a graph isomorphism:

Adjacency: Two links of a graph are adjacent if they are incident with a common node.

Isomorphism: An isomorphism of labeled directed graphs is a 1-1 correspondence on the
links that preserves the adjacency, direction and label of the links.

The "match” of the two semantic net chains X and Y can now be defined to be the maximal
graph isomorphism from a subgraph (subsequence) of X to the subgraph of Y. By "maximal®,
we mean the isomorphism that pairs the largest number of links correctly. Unfortunately, use of
maximality precludes any mathematical guarantee of the uniquencss of the resulting isomorphism.
However, in practicc we have yet to be plagued by a non-unique maximal isomorphism,

Note that we have defined "match” as a map which is an isomorphism between subgraphs of the
two deep structures. The map between decp structures is not necessarily total (i.e., onto) in
either direction (we are in the process of investigating a revision of this aspect of the definition as
well as the interesting situation where it is many-to-one and hence would have the properties of a
homomorphism). In other words, the analogy is a mapping which is a maximal partial graph
isomorphism. However, we will abbreviate our terminology somewhat and say that the analogy
from A to B is formalized by the mp-morphism from A to B (i.e., we will speak of the analogy
as being this structure preserving map.)

To replace the terms “interscction set” and "difference set”, we will simply use "intersection
subgraph” and "difference subgraph”. There are, of course, two difference subgraphs for a mp-
morphism, namecly the residuc portions of cach of the deep structures being compared.
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Throughout this report, we will continue to use the symbology of sets for these concepts, even
though the dcsignated entities arc not sets, but subgraphs.

Closeness melrics

Both the similarity task and the analogy task involve the ranking of the match bctween two
things, or rather between their abstract descriptions. The subject is asked to rank the degree of
similarity or choose the closest analogy. We assert that both kinds of judgements can be
modeled by a function over the intersection set (or subgraph) and two difference sets (or
subgraphs). In similarity research, this three argument function is oflen called a “similarity
metric" cven though there are cases when the function is not a proper mathematical metric (see
Tversky 1977). With the same sloppincss, we will call the function that ranks the closeness of
analogies a closeriess metric.

These metrics can be rather complex. Certain features might be more salient than others, and
onc might model this difference by giving the former more weight in a summation over the
various scts. These mctrics might even be asymmetric (see note 2) which means they are not
proper "metrics” in the strict mathematical scnse. In short, determining the intersection sct and
the two difference scts is not the end of the story for predicting similarity judgements; the metric
can play a dccisive role.

Monotonicity, etc.

We take the position that a precise statement of the closeness metric for procedural analogies can
only be determined from dctailed empirical studies. However, Tversky has shown that if certain
formal condilions en the metric can be guaranteed, such as its monotonicity over subsumption of
the interscction and diffcrence sets, then the metric can have a simple, linear form (Tversky
1977). (One of us--Vanl.chn--has investigated some of the conditions for procedural analogies,
and will discuss them in a later report.)

Individual differences and learning

We have been speaking of the abstract description (or decp structure) of a thing as if this object
is the same for all pcople. In some tasks, such as assessing thc similarity of letters, it scems
reasonable for literate individuals to have roughly the same representation language and the same
abstraction functions for cxtracting descriptions from the letters. But this assumption is rather
implausible in many other cases. In these cases, individual differences in conceptions of the
things being compared is likely to influence judgements of the closencss of analogy. This would
make verification of a theory significantly more difficult.
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Individual diffcrences affect analogy, but analogy also affects the individual differcnces. That is,
one can learn from analogies. More specifically, when an individual understands an analogy, he
or she may become aware of descriptive features that they were not previously aware of. So, a
complete theory of analogy must allow for an evolution of an individual's conception of the
things being compared over the course of testing.

In this research, we will ignore thesc difficult methodological problems by assuming that the
subjects who are judging the closeness of the aralogies are experts. That is, they all have a
complete representation of the things being compared, and hence can be assumcd to have
roughly the same representations, and secondly, that they already know all there is to know about

the things being compared, and therefore learn very little over the course of the testing.
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3. Finding the Right Representation for Procedural Analogies

In this section, several candidate represcutations for procedures will be examined as a basis for a
theory that predicts the closeness of procedural analogics (note 3). Possible representations range
from a very superficial one, namely a simple chronological list of actions, on up to a very abstract
representation that involves goals, constraints and other planning knowledge, namcly planning
ncts. Our rescarch has shown that planning nets are the only serious contender, so the discussion
of the others will be quite brief. However, the more superficial representations are mentioned in
this scction for a reason, namely, to show how a human (or machine) can construct a very
abstract representation of a procedure by ascending through several levels of representation. We
do not claim that the structure of this section modcls the abstraction process that a person
executes when assimilating a procedural analogy, but it does provide an indication of the
complexity that such a process would have to have.

3.1 ‘T'races

The trace of a procedure is simply a chronological list of the actions it performed during one
particular exccution.  This representation of a procedure can be constructed directly from
obscrvation of the execution of the procedure (although, there are the usual problems in choosing
the “"grain size" of primitives -- sec note 4). However, traces are a highly inappropriate
representation for procedures, as the following example indicates.

Consider an analogy between Diencs Block addition and written addition. These two traces
would probably have few, if any, action labels that match. The action “write "4"" would have to
be matched against a group of four actions labeled “place one block in the pile”, whereas the
action "write "8"" would have to be matched against a group of cight block placing actions.
Such sophisticated matching could not be represented by a mp-morphism. Indeed, the match
scems Lo require the concept of "write n" and the concept of “repeal single block placement
times." These arc abstractions over action sequences, and so should be part of the representation
rather than the matching mechanism. Incorporating such concepls into the represcntation lifts us
to thc next level of abstraction,

3.2 Flow charts

By gencralizing over a large collection of traces, onc could derive a notion of the observed
procedure that could be represented with a programming language, such as flow charts. Granted,
this generalization would be non-trivial: repctitious sequences of actions would become loops,
objects that are manipulated similarly become the contents of variables, cic. Nonctheless,
constructing a program from examples is well within human ability.
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’ However, flow charts would also be a poor representation for analogy. Consider a simple
subtraction procedure for numbers represented as base-1 blocks as illustrated by the flow chart
below. The primitive terms used in this flow chart are as follows. LH stands for somcones’s left
hand. TOP and BOT stand for placemats on the TABLE. The BOT sct of base-1 blocks is
subtracted from the TOP set of blocks by pairing off a block from each, using the primitive
actions PICK/FROM and PUT/ONTO, and tossing them onto the table. When the bottom
"number” is "zero” (i.e., empty), whatever is lefl in the top "numnber” is the answer. However,
notice that by merely shuffling the order of the steps somewhat and using two hands instead of
one, a new procedure can be constructed that is intuitively very similar to the old procedure, and
yet its flow chart (sce bclow) shares virtually no isomorphic subgraph with the old procedure’s
flow chart. Since the intersection graph is so small relative to the difference subgraphs, a
reasonable closencss metric would have to report that the two procedures are not very close -- a
falsc prediction. So for this and other reasons, flow charts also secem to be a poor representation
or level of abstraction for procedural analogies.

[ PUT RHONTO TABLE
[ PUTLHONTO TABLE J
[Pur RHONTO TABLE J
&
,;H « PICK/FROM (TOP) J
PUT RHONTO TABLE J lRH + PICK/FROM (TOP) l
P ®
‘ ﬁ- PICK/FROM (BOT) I:H + PICK/FROM (BOT)
B b s
FLOW CHART FOR A BASE-1 BLOCK SUBTRACTION FLOW CHART FOR A BASE-1 BLOCK SUBTRACTION
PROCEDURE USING ONE'S Ric 8 T HAND PROCEDURE USING TWO HANDS

3.3 Procedural nets

On the basis of the cxample above, it might appecar that flow charts are too committed to a set
order of performing steps, since the two basc-1 flow charts have the same steps, but order them
slightly differently. Also, these charts lack the typical hicrarchy of subprocedures that is used in
computer programs to modularize and otganize the procedure. This suggests using a structure
that cmphasizes the subprocedure hicrarchy, and deemphasizes the temporal sequence of
subproccdures.
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Just such a structure has been developed for modeling children's bugs in arithmetic procedures --
namely BUGGY's procedural net representation (Brown and Burton 1978). Although we will not
pause here to explain this representation, a procedural net for a very familar procedure, namely
standard sublraction, is included as figure 1. However, procedural nets also fzil as a basis for a
theory of analogy, as illustrated in the following example,

Consider two Dienes Block subtraction procedures: (A) In "big-pile” Dienes block subtraction, a
number is represented by one big pile of Diencs Blocks. (B) In "sorted” Dienes Block
subtraction, all the blocks are kept sorted into little piles according to their shape. [Intuitively,
these two procedures are quite closely analogous. But when the procedural nets are forimed, and
the matching is done, we find the following statistics:

AND contains 6 nodes.
A-B contains 10 nodes.
B-A contains 16 nodes.

The intersection subgraph is far too small compared to the difference subgraph for this analogy
1o be rated "close” by any reasonable metric. So again, we must abandon a representation, and
look for a higher level of abstraction,

34 Plamning knowledge scems necessary

Both flow charts and procedural nets are at the "program” level of abstraction. That is, they
both are close to the sorts of languages one sees for compuler programs. The problem with this
level of abstraction scems 10 be that some design decisions which do not scem so conscquential
to the intuition have an enonmously large effect on the "program”. The framework that analogy
scems to require is something that extracts these sorts of choices out of their final manisfestation,
makes them explicit, and relates them in a reasonable way to other, more important clements of
the design. In short, what scems uccessary is a representation of the design process behind a
procedure -- this allows onc to say which choices are important, and which are rclatively minor.
The process of creating a procedure from a sct of constraints is traditionally called "planning” by
the Artificial Intelligence community. So, the abstract representation that analogy seems (o
require appears to involve planning koowledge and planning inferencing.

Planning knowledge includes not only the functional decompaosition of the surface structure of
the procedure but also the reasoning that was used o lransform the goals and consiraints which
define the intent of the procedure into its actual surface structure. The formalisin that we use to
represent this knowledge we will call planning nets.  ‘These planning nets are an cxtension of
Sacerdoti's pioncering work on representing procedural knowledge for rabotics (Sacerdoti 1977).
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Refore presenting the formalism (which lics at the heart of the remaining parts of the paper), it is
best to get some idea of what this “planning knowledge” is that is going to be incorporated into
the representation. To this end, we will plan out a very simple subtraction procedure, called
"base-1 blocks subtraction,” that represents a number as a pile of unit blocks. Later, we will
show how planning nets capture this knowledge in a summary form.

35 Contraints and planning heuristics

The basic idea of formal planning is to take a declarative, rule-like presentation of the goals of
the procedure and the world it is to be implemented in, and transform them into a surface
structure that achieves the goals while remaining inside the constraints imposed by the world.
There is always an clement of common sense in planning, and since this is formal planning, use
of common sense must also be recorded.

These two knowledge sources are called constraints and heuristics. Both can be represented as
pattern-action rules in some suitable formal language, but for our purposes, English will suffice.

The constraints that characterize basc-1 blocks subtraction are listed below:

1. Goal: If EMPIY (BOT) then return TOP as the answer (ie., n-0=n)

2. The decrease in TOP must EQUAL the decrease in BOT (i.c, a recursive definition of
subtraction).

3. a is EQUAL to b (i.e., all blocks arc equal).

4. Over the action (Y « PICK/FROM(X)). the decrease in X is EQUAL to the increase in Y
(i.e., blocks arc conserved over the picking up action).

5. Over the action (PUT Y ONTO X), the increasc in X is EQUAL to the decrease in Y (e,
blocks are conscrved over the putting down action).

6. The action (Y + PICK/FROM(X)) requircs EMPTY (Y) beforchand (i.c., the hand must be
cmply before picking up a block).

7. The action (PUT Y ONTO X) cntails EMPTY (Y) afterwards (i.c., the putting down action
always cmptics thc hand completely).

8. ~ EMPTY (X) before the action (Y « PICK/FROM(X)) cntails that afterwards there exists
a, such that a is the contents of Y. (i.e, thc hand picks up exactly one block).
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The meaning of the primitives is as follows. TOP and BOT are placemats on the TABLE. The
subtraction problem n-m would begin with n basc-1 blocks on TOP, and m on BOT (n.b., this is not
the way base-1 block subtraction is ordinarily posed in the classroom. See note 5). There are two
hands, LH and RH, which can perform two kinds of aclions, namely picking up one block
(PICK/FROM) or pulting a block being held down (PUT/ONTO). The primitive predicate EQUAL
takes two piles of blocks and says whether they designate the same number. EQUAL is not
executable, and can not appear in the final plan.

The constraints above describe the mathematical goals of the proccdure, the objects it works with,
and the physical manifold that it operates within. The mathematical content of subtraction is
expressed in constraints 1 and 2: TOP minus BOT is TOP whenever BOT is empty of blocks, but
any changes in the number of blocks on BOT must be echoed by an equal change in the contents
of TOP. The objects the procedure manipulates are base-1 blocks. Since these are very simple,
constraint 3 sufficcs to describe them. (By convention, a lower casc letter stands for an arbitrary
block, while an upper case letter stands for an arbitrary placemat or hand.) The remaining
constraints define the physical manifold that the procedure will operate within. Constraints 4 and
S ensurc that blocks arc conserved by the actions PICK/FROM and PUT/ONTO. Constraints 6, 7 and
8 describe how thc hands that manipulatc the blocks work. A complete description of the
workspace would require several more constraints, but these will do for purposcs ef iitustration
(for some comments on how this particular set of constraints was chosen, sec noie 6).

The constraints describe domain-dependent knowledge. If the procedure’s goals or implementation
environment change, then the constraints must be changed to reflect this. For example, if one
used Dienes Blocks instcad of base-1 blocks, then constraint 3 would be replaced by a new
constraint, namely

3. ais EQUAL to b if and only if SHAPE(a)=SHAPE(D).

If onc wished to plan an addition procedure instead of a subtraction procedure, then constraint 2
would become

2. The increase in TOP must EQUAL the dccrease in BOT.

Hcuristics arc prcsupposed to be doman-independent knowledge. They represent common sense
planning knowledge, such as "when you nced to accomplish two things, and it docsn't matter
which comcs first, then pick one arbitrarily, do it first, then the other.” We include this
distinction between constraints and heuristics only because it is traditional; nothing in our theory
turns on this distinction.
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3.6 Planning a basc-1 subtraction procedure

The planning of the basc-1 subtraction procedure involved 12 steps. Each step is an application of
a constraint or a planning heuristic. The planning begins with a flow chart initialized to the

constraint that is marked as the "goal" of subiraction.

Q—-l Goal' If EMPTY (BOT) then RETURN (TOP) |

—0

Planning proceeds by progressive refinement of goals to subgoals, or by checking the current plan
against the constraints. (n.b., Bccause we are only interested in having a correct planning net for a

proeodurc.notiaﬁnda’ngone.wemsoingtoignoreafewofthesubnemueg

-- sce note 7).
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Step 1: At the outsct the Implication Reduction planning heuristic which reduces an implication,
( ADB) to a scquence of subgoals, (A,B) can be applied. The second subgoal in this case is a
primitive of the workspace. So the output of Step 1 is a plan with just one subgoal:

O——={Goal: EMPTY (80T | RETURN (TOP) }—eQ

Step 2: A venerable planning heuristic, traditionally called Hill Climbing (Newell and Simon
1972). reduces the goal to a loop. The loop Lest sces if the goal has been achieved, and if not, it
takes a step "up the hill" so to speak.

Y
EMPTY (BOT) ES I ReTURN (TOP) —O0

Goal: Reduce BOT

Step 3: The goal matches part of constraint 4 - the definition of PICK/FROM. So the constraint is
applied, and the plan is now fully reduced to primitives actions:

' Y
O._‘_—.<E—JPTY (80T) ES JRreTurn (Top) |

lno

LH «— PICK/FROM (BOT)
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Step 4: Execution of this plan reveals a violation of constraint 6: the lefl hand must be cmpty
before one can pick something up. So a new goal is created:

O— EMPTY (BOT) >— > ol RETURN (TOP) |—+0)
NO
/AND\ |
# | LH<— PICK/FROM (BOT) Goal: EMPTY (LH)
before step # |

Step 5: This goal is quickly dismissed by applying constraint 7 -- part of the definition of
PUT/ONTO. The left hand is now emptied before use.

empTy B0T)H—=2 JfRETURN (TR —=0)

lno §

PUT LH ONTO TABLE |

!

LH < PICK/FROM (BOT)

Step 6: Exccution of this plan uncovers a violation of constraint 2. Since the boliom place mat is
not cmpty when PICK/FROM is executed, onc knows from constraint 8 that the IcA hand comes to
hold cxactly onc block. Via constraint 4, onc infers that the bottom placc mat has its contents
decreased by PICK/FROM. Bul there is no way 10 show that the TOP place mat undergocs an equal
change. So, constraint 2 is violated, and a new goal must be crcated. The goal says that there
must be a change in TOP o cqual the change in ROT,

m’!@-f% _—
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EMPTY (BOT)

YES IRETURN (TOP)

!

yNo

/AND \

PUT LH ONTO TABLE

Goal: The change in BOT
over step » must EQUAL
the change in TOP

% [LH<— PICK/ FROM (BOT)

Step 7: Part of this goal matches constraint 4, the definition of PICK/FROM. A new picking up
action is instantiated for the top place mat. This reduces the goal of cqual changes to the goal of
equal contents of the left and right hands.

it

PUT LH ONTO TABLE

1]

EMPTY (BOT) D—ES LI RETURN (TOP) e

.

l NO
AND\ e
\

Goal: LH after step
is EQUAL fo RH after

#*|LH «—PICK/FROM (BOT)

%* %

RHe— PICK/FROM (TOP)| | step #
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Step 8: Constraint 8 can apply twice now, once per hand. It says that only one block is picked up
by PICK/FROM. Thus, the goal of EQUAL contents is replaced by equality of two arbitrarily chosen

blocks.

o

EMPTY (8oT) Y= ol RETURN (TOP) —=0O)

| y No
/ i T

PUT LH ONTO TABLE

I

LH <— PICK/FROM (BOT) RHe— PICK/FROM (TOP}{ |Goal: EQUAL (q,b)

Step 9: Of course, this new goal is trivially satisficd by constraint 3 -- all blocks count the same in
the base-l1 number system. So the goal is simply removed from the plan.

O

EMPTY (80T) D—ES oI ReTURN (TOP) |—=)

NO
/ g
PUT LH ONTO TABLE
{ RH<— PICK /FROM (TOP)
LH<— PICK/FROM (BOT)
T
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Steps 10 and 11: Exccution reveals that constraint 6 is violated again, this time by the right hand.
So it must be emptied before use as well, in ihe same two-step fashion as Steps 4 and S,

EMPTY (BOT)

NO

RETURN (TOP)

PUT LH ONTO TABLE

]

PUT RH ONTO TABLE

LH<—PICK/ FROM (BOT)

:

RH<—PICK/FROM (TOP)

Step 12: A planning heuristic, call it Conjunction Reduction, removes the conjunction AND. The
AND node is for conjoining subgoals. It makes no statements about which subgoal to achieve first.
In this case, it doesn’t matter how the subgoals are ordcred since they turn out to be indcpendent.
So the rule arbitrarily chooses the following ordering:

EMPTY (80OT)

NO

PUT RH ONTO TABLE

'

RHe—FiCK/ FROM (TOP)

¥

PUT LH ONTO TABLE

Y

LH<—PICK/FROM (BOT)

RETURN (TOP)
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This is the final plan. Every step is a primitive, and all the constraints check out. The planning
for base-1 subtraction is complete. The final plan is exactly the flow chart representation of the
surface structure of the procedure.

3.7 Planning Nets

Planning nets are directed graphs. The nodes of the net represent plans, and the links represent
planning inferences. That is, each node of the nct stands for a flow chart containing a mixture of
primitive actions and subgoals lo be expanded. Two nodes are linked only if the application of
some constraint or heuristic (o one plan resulls in the other plan. The link is labeled with the
planning rule that causes the change.

Sacerdoti developed a very similar structure to aid in automated task planning and monitoring in
robotics. It is remarkable that we have found it uscful for our research on procedural semantics
as has Greeno for his rescarch on modelling the counting behavior of children (Greeno el. al.
1978). However, we are faced with a clash in nomenclature. Sacerdoti calls these sorts of
structures "procedural nets”. We prefer to call than "planning nets," since their content has
more 6 do with the planning of a procedurc than the procedure itself,

Planning nets are partial orders

In fact, planning nets are gencrally not sequences, as the chronological presentation of the
previous subsection might lead one to believe. Often, two planning inferences can be applied in
either order, For example, step 6 could have preceded steps 4 and 5. To represent this
indcpendence, we allow the nct to be a partial order.

Figure 2 shows the planning net for base-1 subtraction. In addition to the names of the planning
rules, the steps have been labeled with the step numbers used in the previous subsection. ‘The
split at steps 4 and 6 occurs because constraints 2 and 6 can be fixed independently, The othes
split shows that constraint 6, applicd this lime to the right hand, can be fixed independently of
the subgoal reduction due to constraint 8.
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R
Implication Reduction

S

2 Hill Climbing -

Definition of PICK/FROM

Violote Constraint 6 @ violote Constraint 2

Defmmon
Definition 5 of PICK/FROM

of PUT/ONTO
Violate Constraint 6 ‘

8 \ Constraint 8

Definition of constromi 3

PUT/ONTO

Conjunction Reduction

Figure 2
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Planning nets are a complete representation

The previous section may have left the impression that planning knowledge must be represented
in three parts: the contraints, the plan steps, and the ultimate surface structure, and that planning
serves as a transformation of the constraints into the surface structure. Although this is not a bad
way to think of planning, it is unnecessarily redundant. The planning nets alone capture all three
kinds of information. The constraints that are relevant to the procedure are cxactly those
constraints that appear as edge labels. Similarly for the heuristics. The surface structure is the
contents of tiie bottom node, the final plan. So, planning ncts arc a complete representation of
the design of a procedure.

3.8 Plamning net mp-morphisms formalize procedural analogics

To formalize procedural analogics, one merely applies the definition of "match” for directed
graphs that was given in the previous section. ‘That is, a procedural analogy is formalized as a
graph theoretic mp-morphism bctween the planning nets of the two procedures. We will
illustrate this definition with an example.

Figure 3 shows the planning net for a "big-pile" Dicncs Block subtraction procedure. This
procedure has the same sort of pairing-off action as the base-1 proccdure discussed above, but it
represents a number as a big pile of Dienes Blocks. Although space does not permit labeling the
links in the planning net with their planning inferences, the step numbers should be sufficient to
describe the match with the planning net of base-1 subtraction, which appears in figure 2. Step 9
of figure 2 is replaced in figure 3 by a subgraph consisting of steps 9.0 through 9.7. So all the
links of figure 2 match the correspondingly numbered links in figure 3, except for link 9. The
rcason why link 9 can't be matched is simple: it is the application of the constraint which makes
base-1 blocks all count the same, namely constraint 3. In Dienes Blocks, all blocks do not count
the same. Only if they are the same size do they designate the same number. What the
subgraph of steps 9.0 through 9.7 is doing is planning out a way to get blocks that aren't the
same size to be the same size by doing the appropriate trading. In fact, the planning leads off in
step 9.0 by noticing a violation of the constraint 3', which says "only blocks that are the same
size count the same."




Sl i

Planning Nets

Figure 3

27




T SRR .,

28

Planning Nets

The mp-morphism of the two planning nets results in the following intersection and difference
subgraphs (calling the Dienes Block procedure "A", and the base-1 procedure "B"):

ANB is almost the whaole planning net for base-1 subtraction, except the link for step 9.
A-B is the subgraph that replaces step 9, whose steps are labeled 9.0, 9.1, elc.
B-A is just step 9 of the base-l planning net.

The A-B subgraph is almost the same size as the intersection subgraph, indicating that the
closcness metric would probably give the analogy a rating of "moderate”, which corresponds with
the intuition nicely.

3.9 Difference generators are used to predict closencss

As we hinted above it is not always the casc that the predictions based on the relative sizes of the
intersection and difference subgraphs correspond so nicely with the intuition. However, in those
cases the problem has been immediately apparent and was fixed utilizing the fact that planning
nets are partial orders.

To illustrate the problem, a new analogy will be introduced and compared to the one described
in the previous subsection. Whereas the earlier example was, intuitively, a moderately close
analogy, this new analogy is quite a bit closer still. However, the simple view of the closeness
metric as corresponding to the relative sizes of the interscection and difference subgraphs, leads to
the falsc prediction that the old analogy is actually closer than the new one.

Suppose we compare big-pile Dicnes Block subtraction to sorted Dienes Block subtraction, an
analogy that carlier provided a counterexample. For convenience, let us attach some lctters to
thesc procedures and the ones used in the earlier analogy:

A: base-1 subtaction
B: big-pile Diencs Block subtraction
C: sorted Diencs Block subtraction

The BC analogy is intuitively rather close. However, when the planning nets are compared, we
find a huge subgraph of C that isn't matched, namecly all the design that has to do with
maintaining the sort. Indecd, this diffcrence subgraph, C-B, is much larger than B-A and A-B
together. Subgraph B-C is also quite large. Hence, even though BNA is somewhat smaller than
BNC, any reasonable metric would predict that analogy AD should be closer than analogy BC,
contrary to the intuition that big-pile Dicncs Block subtraction 18 more similar to sorted Dienes
Block subtraction than to base-1 block subtraction, There is a mismatch between predictions of
the thcory and judgemcnts of closencss.

e bl
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But closer examination of subgraph C-B reveals it has only one entering link, just like link 9.0 of
figure 2. This link is labelled "Violates Constraint 11: keep blocks sorted by size”. In other
words, it appears that onc plan inference is causing all the others. We can capture this notion of
causation by utilizing the (opology of planning nets.

As discussed above, planning nets are partial orders. Any subgraph of a partial order is also a
partial order. In particular, the difference subgraphs are always partial orders. Any partial order
has a unique sct of minimal elements. ‘This sct is the smallest set of links that dominate all the
other links in the subgraph. Thesc mathematical facts insure that thc following terms are well-
defined:

Where X and Y are any two planning nets, let d(X-Y) be the links that are the minimal
elements of the difference subgraph X-Y, and let d(Y-X) be the links that are the
minimal elements of Y-X. Call thesc two scts the difference generators of mp-morphism
XY.

Difference gencrators are a formal representation of what is causing the difference between two
procedures. Intuilively, what the difference gencrators of mp-morphism represent are the crucial
ideas that separate the two procedures. All the other differcnces between the two procedures
stem from these few crucial ones.

To illustrate this notion of "crucial ideas”, take the analogy between base-1 and big-pile Diencs
Blocks, which we were calling analogy AB in the previous section. d(B-A) is a graph with just
one link, labelled "Step 9: Constraint 3 -- all blocks are EQUAL." d(A-B) is a link labelled "Step
9.0: Constraint 3' -- two blocks are EQUAL if and only if thcy have the samc SHAPE" Replacing
constraint 3 by constraint 3’ is about as clcar a statement of the difference between base-1 blocks
and Dicncs Blocks as onc can hopc to make.

Because difference generators capture the distinctions between procedures so succinctly, they
seem highly appropriate as the inputs (or arguments) to the closcness metric. They are
decoupled from the unimportant details that fill flow charts, procedural nets and planning nets,
details which obscure the cssence of analogy by inflating difference subgraphs with dcrived, less
meaningful structure. Indeed, the comparison of analogy AB to analogy BC (i.e. the big-pile vs.
sorted analogy) now agrecs with intuition: all four diffcrence generators, namely d(A-B), d(B-A),
d(B-C) and d(C-B), arc about one link big. On the othcr hand, the intersection subgraphs are as
before, with ANB being smaller than BNC. Since the difference gencrators are about the same
size, the intersection sets arc more important in the closencss metric. Hence, a reasonable metric
would report that BC is closcr than AB, which corresponds with the intuition that big-pile Dicnes
Blocks subtraction is closcr (o sorted Dicnes Block subtraction than to basc-1 blocks subtraction.
At last, we scem to have found a level of abstraction for procedures where intuitions of closeness
correspond to the rclative sizes of the inputs to the closcness metric,

s,
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3.10 Discussion

The main point of this scction has been that planning nets provide a basis for a theory of
analogy that can predict the judgements of experts on the closcness of analogics between
procedures. Moreover, all the aspects of the theory have very natural, almost elegant sources.
The deep structure used came naturally from Sacerdoti’s work in robotics, mp-morphisms are a
general purpose concept, and the notion of diffcrence generators came naturally from the
topology of planning nets. '

We have always been struck by how much of the design of a procedure like subtraction is
governed by the design of the representation of the objects manipulated by the procedure (e.g.,
the place-value number system). In fact, many of the actions in any of the elementary arithmetic
procedures concern not the mathematical operation per se but rather how the object
representations are manipulated. This impression is reinforced by experience in computer
programming, which is often a constant interplay between the design of the object (i.e., data)
representation and the code, even at the highest levels. Anyone who has tried to understand a
program that he did not write can vouch for the importance of understanding the data
representation. In the process of judging the closencss of an analogy, a popular strategy is to first
look at cach proccdure's object representation, and then build the understanding of the overall
analogy on the basis of the analogy between object representations. In short, it appears to us that
a large portion of the "understanding” of a procedure consists of an understanding of the
implications of the procedure’s object represcntation.

This view of procedural understanding is entirely consistent with the planning net formalism.
The constraints and heuristics that appear in the net represent are, in some sense, the essence of
the procedure. If object representations were unimportant, then none of the planning inferences
would be "about” the object representation. But in fact, many planning inferences do deal with
the objcct representation. Even in the base-1 blocks procedure above, with its extremely simple
object representation, we find constraint 3 addressed solcly to the object representation. In more
complex procedures, using Dicnes Blocks or written numerals, an even larger portion of the
constraints concern the object representation. In short, although planning nets abstract out the
less important aspects of a procedure, they leave behind the design of the object representation,
which is quite compatible with the view that, as a rcpresentation of "understanding” of
procedures, a fair portion of the constraints should model the "understanding” of the object
represcntation.

We have not discussed the exact definition of the closeness metric, even though some definition
would be nccessary Lo methodically verify the correlations we claimed above., There are many
difficullics and fine points involved in determining such a definition. In particular, it is plausible
that the weight of some planning inferences is quite close to zero. We have in mind the
common scnse heuristics, such as Implication Reduction, that play an almost invisible role in the
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planning. Also, some planning rules are applicd more than once in a planning net; one may
perhaps wish to avoid giving such rules an inappropriate prominence by only counting their first
occurrence in the difference generators or the intersection sets. These are just two of the many
points that one would have to consider in defining a closeness metric.

The reader has no doubt noticed the incredible amount of work that goes into analyzing a
procedure in terms of its planning. First one constructs the flow chart, then the constraints and a
sequential plan for the flow chart, and lastly calculates the planning net by noting which planning
inferences are not ordered with respect to each other. This large amount of work leaves much
room for error on the part of the theorists. However, each level of abstraction is well defined,
and can be checked for consistency by a computer. Thus, one next step is to build a computer
system of utilities to aid in the analysis of procedures. However, there is a certain amount of
intuition that goes into some parts of the analysis, notably the formulation of a set of constraints,
that we doubt could ever be successfully mechanized.
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4. Analogies and Teleologic Semantics in Educational Research

In this section we consider some of the issues involved in explaining (or teaching) the knowledge
we explained in the first previous section--teleologic semantics. Briefly, teleologic semantics is
the kind of knowledge that concerns the purpose of each part of the procedure as well as the
motivation behind the set of constraints that defines the particular representation for the objects.
In particular, we consider how an individual piece of telcology can be explained, and how such
individual explanations can be combined into an integrated explanation.

The section closes with a discussion of some issues involved in microworld-based curricula.
Thesc issues turn out to be intimately rclated to those involved in teaching teleologic semantics.

4.1 Local explanations: manifestation and motivation

An important property of the planning nct formalization is that there is a natural notion of how
to explain a small piece of a procedure’s teleologic semantics. By "piece” we mean a constraint
(or a small sct of constraints) that is used in the planning net. To "explain” it, one usecs a
minimal contrasting pair of procedures -- one with the constraint, and one without it -- that
compute the same "operation” as the given target procedure. In other words, we use analogies to
iliustrate constraints. We bclieve that using a concrete surface structure illustration for each dcep
structure concept to be cxplained is a very important explanatory technique that naturally falis
out of this devclopment. For example, this method of explanation frees us from having to
explain the planning formalism to the student--a task potentially more difficult than teaching the
procedure itself.

More formally, to illustrate some given constraini(s), onc uses !wo analogous procedures such that
one of the difference gencrators of the mp-morphism between them is exactly the given constraini(s).
If the pair of procedures forms a minimal contrasting pair then the mp-morphism constituting the
analogy is elementary.

Of course, this technique works just as well for explaining heuristics. However, heuristics are
often such common sense knowledge that an explanation of them is unnccessary. So we will call
the planning inferences to be explained “constraints,” avoiding the cumbersome phrase
"constraints or heuristics.” Also, our terminology will reflect the fact that it is often possible to
provide a minimal constrasting pair for cach constraint individually (this obscrvation is discussed
below); we use "constraint" in place of "a small sct of constraints.”

An important realization is that minimal contrasting pairs can be used in two different ways in an
explanation. They can be uscd to show how the constraint is manifested on the surface, and they
can also be uscd to motivate the inclusion of the constraint in the ultimate design of the
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procedure. Probably the best way to illustrate the differences between these two uses is with an
example.

Explaining the canonicity constraint

The particular constraint that will be used in this example is one of the most subtle and
influential in arithmetic, namely the canonicity constraint. To show how the planning net
representation can aid in explaining procedures, the constraint will be presented as the “answer”
to a non-trivial tcleologic question.

What is the purpose of carrying? More specifically, if the problem is 52+49, why bother to
carry ten? Why not leave 11 in the units place? It is not because therc is no symbol for the
"digit" eleven -- we could invent one if we wanted. In Dicnes Block addition, the question is
even clearcr. Why not leave the answer in the form of 9 longs and 11 units? Why bother
carrying?

The answer is that carrying maintains the canonicity of the rcpresentation of numbers. A
canonical representation puts the represcntational objects in one-to-one correspondence with the
real objects they represent. The Hindu-Arabic representation of numbers is canonical since there
is a unique, distinct numeral for each number. Dienes Blocks are not necessarily a canonical
representation, since most numbers can be represented several ways. For instance, eleven can be
rcpresented as a long and a unit, or as cleven units.  The purpose of carrying is to canonicalize
the sum, by making surc that there are no more than nine blocks of any given shape. In other
words, carrying is thc manifestation of the canonicity constraint.

But supposc the questioner rejoins by asking what the purpose of the canonicity constraint is.
The answer involves another arithmetic subprocedure -- comparison.

It is much more efficient to find out which numeral reprcsents a given large number if the
representation is canonical. Let us use a Dicnes Blocks comparison procedure to illustrate the
gain in efficiency. In a non-canonical representation, the comparison procedure must compare all
the piles, since a very large pile of small blocks can make up for a deficit of larger blocks. In a
canonical representation, the comparison procedure necdn't check all the piles. If it finds that
one numeral has more flats than the other numeral, then it needn't compare the longs or units;
even if the other numeral has the maximum number of longs and units allowed, namely 9 each,
the first numeral will still represent the larger number. Imposing the canonicity constraint makes
the comparison procedure much more efficicnt, because it allows the procedure to stop ecarlier.
But the canonicily constraint is a constraint on the rcpresentation of numbers, and so all
arithmelic proccdures must obey it. Even though the constraint makes part of the addition
procedure somewhat less efficient, it makes comparison so much more cfficient that it is worth
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having. This appeal to efficiency is the ultimate endpoint in the explanation of the motivation for
carrying and the canonicity constraint.

In this mini-explanation of carrying, we have seen two important facets of telcologic knowledge.
In the addition procedure, the canonicity constraint was manifested as a carry subprocedure. But
the motivation for adopting the constraint lay in another procedure, comparison. Each of these
two facets, which we will begin calling Jocal explanation since they explain just one constraint,
was illustrated with a minimal contrasting pair of procedures. One member of the pair was a
fully operational version of the procedure that lacked the constraint being discussed, while the
other member adopted the constraint. But the manifestation part of the explanation involved a
minimal contrasting pair which was different from the pair used to motivate the constraint (i.e.,
addition vs. comparison). As will be discussed later, it is preferable to have a pair of analogous
procedures which illustrates both the manifestation and the motivation of teleologic concepts but
this is not always possible.

It is our belicf that the concretencss of this minimal contrasting pair paradigm of explanation is
of crucial importance in making tclcologic scmantics clear. The learner can see in very concrete
terms how adopting a constraint effects the procedure. Winston show that a similar example-
based paradigm was sufficient Lo teach the abstract concepls necessary lo recognize toy block
constructions, such as an arch (Winston 1975, 1978).

In fact, many minimal contrasting pairs that manifest the given constraint are available,
depending on which of the remaining constraints are adopted. If all the constraints of a given
target procedure are adopted, then one member of the pair is the target procedure itself.
Otherwise, the contrast is exhibited across a pair of model procedures which still satisfy the
mathematical constraints of the target procedure. Using model procedures often highlights the
contrast, making it much easier to see the constraint under discussion. Such was the case with the
canonicity constraint, where Dienes blocks allowed us use non-canonical numbers without
inventing ncw digit symbols,

However, model procedurcs must be used with some care, as the following example illustrates.
The impact of efficiency metrics on "loop jamming”

Counsider the difference between the standard carry subprocedure and the two-pass version
described in the introduction, where carrying was deferred while all the columns were added,
then performed on a second pass over the columns. This difference is a constraint that was
called loop jamming, after the compiler optimization technique of the same name which weaves
two loops into one (Allen and Cocke 1972).
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One can not use Dienes Blocks procedures to motivate loop jamming, since exactly the same
number of hand motions, fact table lookups, etc. are requircd by each procedure. So, Dienes
Blocks are an inappropriate model domain for discussing this constraint.

However, when implemented with written numerals, loop jamming does create a difference in
cfficiency. (See note 8 for details) The two-pass implementation of carrying requires more
writing than the standard implementation. Thus written arithmetic turns oul to be an appropriate
domain for discussing the loop jamming constraint.

The important point to noticc about this example is that the choice of the model has some
impact on the local explanation. In particular, a model which clearly displays the manifestation
of the constraint in the procedure may not be able to demonstratc the motivation for the
constraint. For cxample, sincc one doesn't have to worry about how to write the intcrmediate
column sums which may be greater than nine with Dicnes Blocks, we can use them to implement
both the one and two pass addition procedures and thus use them to illustrate the manifestation
of loop jamming. Bul, unfortunately, they cannot be used to motivate loop jamming since the
resulting procedure is no more efficient.

Another point to notice about the preceding example is the use of efficiency metrics in motivating
design choices. An cfficiency metric is some weighted sum of hand motions, fact table lookups,
table size, amount of paper used, etc. The weighting of cfficiency metrics is very important. For
example, if reducing memory load is more desirable than decrcasing the number of write
operations, then the discussion of loop jamming ends with the opposite conclusion, that two-pass
carrying is better than the standard subprocedure (see note 9 for details). The two-pass version
uscs less short term memory but more pencil lead. So, exactly what efficiency metric is used
greatly affects the local explanation. We do not look upon efficiency metrics as a regrettable new
variable that must be tied down and paramcterized with careful experimentation, but rather as a
source of flexibility that can bc used to tailor the teaching paradigm to the nceds of particular
students.

4.2 Principles for scquencing local explanations

For moderately complex procedures, such as subtraction, the number of constraints can be high
cnough to causc problems of prescntation. Our current best estimatc of the number of
constraints of subtraction is 17. To cxplain this many constraints, each with its own manifestation
and motivation, may scem a difficult task. However, with the planning nct formalism, we can
investigate how to "optimally" sequence a collection of “model” procedures; the first procedure
(or "modcl”) in the sequence would be a very, very simple version of the skill, and the last
procedure in the sequence would be the target procedure. For example, in subtraction the first
procedure might be base-1 block subtraction and the last, standard written subtraction. But how
should the intermediatec models be sequenced?
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Using the formalisms developed above, principles for sequencing local explanations can be stated
precisely. Several such principles are stated below that we believe will lead to sequences that
better enable assimilation of the overall teleology of a procedure from the explanations of its
parts. Each one of them falls out quite naturally from the planning net formalism.

It will be convenient in what follows to say that such scquences run from left to right -- the
target procedure is the procedure on the far right. This allows us to talk of the left and right
procedures of a mp-morphism. Also, we will speak of the left and right difference generators of
a mp-morphism; if A is left of B, then d(A-B) is the Icfl diffcrence generator.

Introduce each constraint

As we saw in the previous subscction, it is best to illustrate each constraint with a minimal
constrasting pair of analogous procedurcs. This is probably the most important scquencing
principle, that cach constraint be illustrated individually. However, it is probably also truc that it
is better 1o introduce the constraint rather than take it away. This gives the sequence an air of
progression toward the target procedure. Putling this principle formally, we have: each
constraint is the sole contents of the right diffcrence generator of some mp-morphism in the
sequence. That is,

Principle 1. For cach constraint C in the target procedure’s planning net,
there exists i such that d(P, - P;;)) = { C },

where the procedures are numbered from left to right (first to last).

Starting with a very simple procedurc would, hopefully, tap a person’s intuitive understanding,.
Then, since each of the analogics (mp-morphisms) is very close (or at worst, modcrate -- we are
guaranteed only that one of difference generators is a singleton set, namely the constraint being
introduced), it should be easy to transfer that understanding along, augmenting it only slightly as
cach new procedure is presented.

Only introduce larget procedure constraints

Occasionally, it is nccessary to "build" a left procedure to illustrate some constraint. This occurs
when one can not adjust the sequence so that the right procedure of some other constraint is this
constraint’s left procedure. In this case, one ends up with an adjacent pair of procedures that do
not illustrate a constraint from the target procedure. Although the person (or computer) doing
the cxplaining can mention that this analogy isn't so important, it would be better if the seduenoe
didn't have such pairs. So, another oplimization principle to shoot for is:

Principle 2. For cach | in the sequence, there exists a constraint C in the target
procedure’s planning nel, such that d(P; - P)) = { C )
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Minimize redundancy

One should not remove a constraint that has been introduced previously, or introduce a
constraint twice. Although one could argue that the redundancy of seeing the constraint
illustrated in several different contexts (i.e. with different model procedures) serves to reinforce
the local explanation, we are of the opinion that this would crecate confusion, rather than dispel
it, and in addition, it would crcate thc impression that the sequence was meandering.

More formally, we propose that the sequence obey the following conditions:
Principle 3. For any i#j d(P; - P)) N d(F; - Pyy) = 2
Principle 4. For any i%j d(P;, - P) N dP, - P) = @
Principle 5. For any ij dP; - Piy)) N dP, - P) = B

The first condition advises one not to introduce a constraint twice, and the second condition
advises one to avoid removing a constraint twice. The third condition says that once a constraint
is introduced (the first term) it can never be taken out (the second term). Actually, it also says
that once a constraint is removed, it shouldn’t be reinserted, which is also a plausible condition to
imposc for aiding the cogency of the sequence.

Efficiency should increase monotonically

We mentioned above that a minimal contrasting pair for a constraint does not necessarily show
an increase in efficiency. That is, all ways of manifesting a coustraint do not nccessarily motivate
it as well. One condition on a scquence is that the model procedures be chosen and sequenced so
that cfficicncy always increases as the target constraints are adopted. That is,

Principle 6. For all i, P, is more cfficient than P;,.

Since there are many minimal contrasting pairs that manifest a counstraint, it is usually not
difficult to find some pair that motivates it as well, but putting that pair into a scquence with the
other constraint's pairs can be somewhat difficult. We know of only one constraint for addition
or subtraction, namely the canonicity constraint, where the motivation pair must be distinct from
the manifestation pair. This is incvitable since canonicity is basically designed to improve the
efficicncy of comparison, not the other arithmetic operations. Thus, if onc were only interested
in a sequence of addition procedurcs or subtraction procedurcs, then the pair for the canonicity
constraint would nccessary violate this sequence principle. However, with this one exception, it
has been casy to find some minimal contrasting pair that serves to both manifest and motivate a
constraint for subtraction.
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However, putting such pairs into a sequence requires some care. Switching the order of two
constraints in a scquence often alters the relative efficiency of the minimal contrasting pair of
procedures that manifest the unit. Under one ordering, both constraints might improve
cfficiency. But under the reverse order, adopting one of the units may result in no increase in
efficiency, or even a decrease in efficiency. This might scem strange, so let us pausc a moment
for an example.

Consider ordering the canonicity constraint versus the constraint that Dienes Blocks be kept
sorted by size. First, suppose that the canonicity constraint precedes the sort-by-size constraint in
the sequence. Under this ordering, the efficiency increases between cach procedure: imposing
the canonicity constraint forces the procedure to scarch through the big pile of Dienes blocks to
check that there are no more than ten blocks of any given shape. Hence, adopling the sort-by-
size constraint greatly improves cfficiency by eliminating rumaging around through the big pile in
favor of simply counting up the number of blacks in each of the small piles.

Now suppose the order in the scquence were reversed, and sort-by-size were imposed before
canonicity. The minimal constrasting pair for sort-by-size consists of (a) adding two big piles of
Dicnes Blocks together by simply forming the union, versus (b) adding each of the small piles
together in a serics of scparate union operations. Now the introduction of the constraint actually
decreascs the efficiency of addition. Since no carrying is required (canonicity not being imposed
yet), there is no usc in the separation by size. Maintaining the constraint creates extra work with
no reward. So, modifying the order of two constraints in the sequence can impact the ability to
motivate them.

Although it may be a difficult condition to achieve, if a manifestation-based sequence has
monotonically incrcasing efficiency, the viewer can see with no additional examples not only what
each constraint is, but why it exists (i.e. what good it is).

Telescoping sequences

Occasionally, one finds mp-morphisms which introduce a constraint but don't need to remove
any constraints. The canonicity constraint can be illustrated with a mp-morphism whose left
differcnce subgraph is null (for addition, onc could use the two-pass addition procedure
described in the introduction as the right hand procedure, and the first pass of it for the lcft
procedure). That is, the mp-morphism is fofal with respect to the Icft planning net. It scems
plausible that mp-morphisms which never removed constraints would create a very strong sense
of progression toward a target procedure. Such sequences are characterized by the condition

Principle 7. For any i, d(P;, - P) = @
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43 A space of mp-morphisms

Necedless to say, it will rarely be possible for a sequence to satisfy all the sequencing principles
mentioned above.  Indeed, we may only be able to satisfy some principles along part of its
length, and diffcrent principles along another part. We need some way to study the relative
contribution of the various principles to ease of explanation.

Ultimately, we would like to develop a representation of all principled sequences to a given
target procedure. These sequences could be represented in an cconomical way by a directed
graph whose nodes would represent planning nets. There would be a link trom node A to node
B only if they appearcd as an adjacent pair in some sequence that was considered a plausible
cxplanation sequence, perhaps because it met some minimum number of the principles listed
above. (In particular, on¢ might include all (known) minimal consirasting pairs for the larget
constraints -- this would correspond to using principle number onc as a threshold for inclusion in
the space.) This directcd graph has the property that any scquence from a “most primitive
version” node to the "target” node would be a possible sequence for explaining the teleology of
the target procedure. We tend (o think of this graph as a space of mp-morphisms.

One clear problem that could be attacked with such a space is improving on the naturalness of
teleologic explanations. Prescnting the 17 or so mp-morphisms (or procedural modcls) for place-
value subtraction is bound (o be very confusing unless they can somchow be aligned along the
individual's own cognitive structures (secc Appendix 1 for a detailed example of onc such chain of
models). We have alrcady mentioned seven principles that probably contribute to better
comprchension of such explanations. Each of these principles would be incorporated into the
space, perhaps as annotations on the basic partial order. Hopefully, experience and experiment
will lead to the discovery of other factors that improve the naturalness of telcologic cxplanations.

44 Using thc mp-morphisms space in microworld-based curricula

In a microworld-based curriculum, the student explores a rich environment, hopefully inventing
something analogous to the target skill. For cxample, a student might be given Dicnes Blocks
and a puzzlc which requires using multi-Zgit arithmetic to solve it. Actually, how students are
molivated to do the arithmetic is no? an issue here. The point is (hat students are not given the
sequence of actions that implemem arithmetic for the given representation of numbers. Instead,
they must invent it themsclves. Invention is the essence of a microworld-based curriculum.

Tracking a student’s discovery process

The space of mp-morphisms could be quite uscful as a way to "track™ a student’s discovery
process. The basic idea is that an obscrver (postibly a computer) analyzes the procedures that
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the student invents in terms of planning nets. The nodes in the space that correspond to the
plans of these procedures arc marked. The student’s progress is then expressed as the shortest
sequence along the constraints that connect the marked nodes. This provides a strong hypothesis
concerning what the student has lcarned during the discovery process.

Such a tracking study would provide an empirical way (o verify conjectures about “natural"
sequences for teleologic cxplanations. That is, observing that students gencrally followed
sequences that increase the efficiency of the procedure would support the conjecture that
monotonically increasing efficiency is important for cogent, natural explanations.

Sequencing microworlds

A persistent problem in microworld-based curricula is how to sequence the microworlds so as to
maximize the cumulation of intuitions built up while exploring the microworld and enable them
to be transferred to the target procedure. One ready answer is provided by the space of mp-
morphism sequences, assuming it has been annotated to show which scquences are most natural,

Scquencing microworlds obviously imposes an order on the traversal of the nodes in the mp-
morphism space. Although there are many Diencs Block procedures and abacus procedures, one
can't move from a Dienes Block procedure to an abacus procedure’s node until one leaves the
Dienes Block microworld and enters the abacus microworld. So, the most natural sequence of
microworlds is the one that enables traversal of the most natural scquences through the constrainy
space. Lect us illustrate this conjecture with an cxample.

Suppose one tried to teach addition with the following scquence of microworlds:
basc-1 blocks, the abacus, Dicnes Blocks, written numbers

One wouid expect the students to become frustrated when they find that the teleology assoclated
with place-value encoding of numbers, which they laboriously invented for the abacus, is
obviated by the shape-valuc encoding of Dicnes Blocks. And when they find they must resurrect
this place-value notion to move from Dicnes Blocks to written numbers, one would expect them
to become disgruntled, or worse yct, apply "teacher psychology” and guess that place-value
couldr't possibly be part of the design because "we atready had that." In comparison, rcordering
the scquence to be p

base-1 blocks, Dicnes Blocks, the abacus, written numbers

allows invention of the notion of placc-value just once, in transistion from Diencs Blocks to the
abacus, and then maintenance of the notion throughout the abacus microworld and on into the
written numbers,
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These ordering results could be predicted on the basis of one of the naturalness principles
mentioned above, namely, that constraints ought to accumulate along the sequence. They should
be added once and never remaved. In the first sequence of microworlds, there is no sequence of
procedures that can avoid adding thc constraints that express place-value encoding during the
first transition, and dropping some of them during the second transition.

What is the closest possible procedure in a given microworld to the target procedure?

Just exactly how close to standard arithmetic procedures can procedures built around a particular
representation of numbers, say Dienes Blocks, be made to be? Can a Dienes Block procedure be
devised that is totally isomorphic to a standard written procedure? This is a question of interest
to educators. For example, it bears on the question of just how much a child can learn about
standard arithmetic by inventing a good arithmetic procedure in a given microworld, such as
Diencs Blocks. This in turn bears on the question of how many microworlds, and which ones,
arc necessary to allow the student to easily converge upon the target skill. With a formal theory
of analogy between procedures, we can now precisely determine how close the best possible
procedure defined over a given microworid can be to the target procedure.

Take any procedure that uses the given representation of numbers. Examine the difference
gencrator of the analogy betwcen it and the target procedure (e.g. written addition). If this set
contains constraints can not be met becausc of the basic physics of the representation, then one
can not construct a model procedurc that is isomorphic to the target procedure. An example
should make this a little clearer,

A careful examination of the planning net has shown that it is impossible to construct a Dienes
Block addition procedure whose analogy with written addition is perfect (i.c. an isomorphism).
One constraint that is always present in Diencs Blocks involves the shape-value encoding that is
the hallmark of Dienes Blocks. There is an encoding of the relationship between position and
place-value that is present in both written addition and sorted Dienes Block addition, but it is
redundantly coded by the visual appearance of Dicnes Blocks. If one got rid of this redundancy
by cvening out the sizes of the blocks, then they wouldn't be Dienes Blocks anymore. So the
redundancy is inherent in the representation, and will be part of the difference generator of the
analogy to written addilion no matter how clever one i8 about inventing Dienes Block addition
procedures.

As a conscquence, certain subtle shifls in representation which occur in the standard procedure
for adding writtcn numbers can not be duplicated in any Dienes Block addition procedure (see
note 10 for details). This dcficit gives some bite to the inherent incomplcetencss; the subtlety of
these shifts makes them likely candidates for misunderstandings which Diencs Blocks are
apparently helpless to prevent. This cssential inadequacy can be dircctly diagnosed if not
predicted using the thcory of analogy between procedures.
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In similar fashion, other microworlds can be evaluated. This evaluation is, however, quite
constructive. Once the inherent mismatch with the target procedure has been indentified, the gap
can be filled by modifying the microworld, or adding another microworld to the curriculum, if so

desired.

In short, many of the same issucs appear to be involved in the teaching teleology and discovery-
based teaching. Planning nets seem to provide a formal tool for investigating this relationship

further.
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§. Conclusions

The major claim of this paper is that planning nets provide uscful formalisms for capluring the
teleologic semantics of procedures. However, probably the most important thought to take away
from this exposition is the importance and utility of using planning knowledge in the deep
structure analysis of procedures.

In contrast to other work on analogy, we have ignored the process of solving an analogy problem.
Instead, we have concentrated on an intuitive detecrmination of what represcntation most closely
models the way cxperts conceive of procedures in order to understand analogies. This
methodology has arrived at the same conclusion that was rcached by completely different method.
In particular, our planning nets are very similar to Sacerdoti's "procedural nets” (Saccrdoti 1977).
Sacerdoti has shown his procedural nets to be a sufficient representation for designing procedures,
and indced much belter than other known representations. We have tried (o show a similar
representation to be a sufficient representation for judging the closeness of analogy, and indeed
much better than other known representations. In short, evidence is accumulating that planning
net-like representations are good for many purposes. However, we should point out once again
that neither Sacerdoti nor ourselves make any claims that the process of building a planning net,
cither for analogy or design, exactly models the human process of building a planning net.

Since tclcologic knowledge is a part of a certain kind of expertise, one naturally wonders how it
can be taught. Planning nets provide a precise framework for constructing cxplanations and
curricula to explicate teleology. In particular, the formalism helps answer the question of how to
sequence a set of "modcl” procedures, with certain formal propertics.  Moreover, many of these
same formal propertics seem uscful in discovery learning curricula.

Our last comment should undoubtedly be that this research is just beginning. There are many
deficiencics and questions that must be addressed.  Reliable empirical measurements of closeness
and transferability must be made. ‘The gencral precision of the theory must be improved, and its
inordinate amount of detail must be tamed, hopefully with the aid of a computer.  In particular,
we would like a complete, precise space of mp-morphisms for all five arithmetic operations. The
limitations of the theary should be tested by excrcising it on examples from other domains. In
other words, this paper is more a proposal o investigale a promising line of thought than a report
on completed rescarch.
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Notes

Note 1: It is safe to assume that individuals will differ in their judgements of the closencss of
analogies. We take the position that this is due to the different deep structures that they assign
to procedures. For example, someone who is just lcarning addition may not find the analogy
between one-pass and two-pass addition particularly close. This might be due to a lack of
distinct concepts for “carrying" and "column addition”. So, how one understands a procedure
affects the data that the theory of analogy will be verified against. Since we are interested in
telcologic semantics and since telcologic understanding is a mark of expertise, it was important to
use experts as subjects.

Note 2: Tversky (1977) weighted the features in the set A-B more heavily than the features in the
set B-A in order to account for certain experimental data, e.g. that "Red China is similar to
North Korea" has a lower degree of intuitive similarity than "North Korea is similar to Red
China."

Note 3: The judgements of closencss are those of cxperts on arithmetic, and so can be taken to
reflect the (eleologic semantics of arithmetic.

Note 4; The folklore about protocal taking, supported by a few experiments (Card 1978), is:
when in doubt, use a finer grain size. [f the grain size is too large, one might miss distinctions.
If one errs the other way, and makes the grain sizc loo fine, then one creates more work for
oneself, yct if one is tenacious, the relevant distinctions will ultimatcly appear, probably as
relations between groups of actions instead of single, individual actions. So, it appears that the
grain size issuc (and a very similar issue, namely the choice of primilive actions) appears to be
more a practical tradcoff than an insunnountable source of uncertainty in the theory.

Note 5: Dicnes Block subtraction and other block subtraction procedures arc usually taught using
oral or written presentations of the problems.  Thus, to solve n-m, the first step is Lo translate n
into blocks, using some "bank" as a source of blocks. Next, one translates m into blocks, but uses
the first pile as the source. When one is finished translating, the first pile contains n-m blocks.
This procedure for doing block subtraction is so dissimilar to written subtraction that we have
avoided using it in this paper.

Note 6: In formulating constraints, it is very important to put as little into each constraint as
possible. For example, we could have replaced constraint 2 by "decrementing BOT by 1 must
echoed by decrementing TOP by 1." Although adcquate for base-1 subtraction, this is not the
most gencral statement of the constraint, and indecd, this constraint would have to be replaced to
handle Dicnes Block subtraction. The basic idea is to split the declarative description of the world
and the goal as finely as possible, so that small variations on the procedure can be modeled by
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replacement of one constraint among many small oncs, rather than modification of one clause of a
large, special purpose constraint.

Note 7: We have glossed over a number of very difficult issues in the presentation of the
planning steps. For instance, why was the TABLE chosen in Step § as the location for emptying
the LH? How did we know not to cmpty it on TOP or BOT? Only the successful rcasoning has
been presented -- the alternatives that didn't work weren't mentioned. Most of the rescarch in
planning for robotics has gone into improving the search for correct plans by recognizing
unworkable alternatives and recovering from them gracefully. Al these difficult questions
involving scarch can be ignored because we are only interested in Aaving a correct planning net
for a procedure, not in finding one.

Note 8: In the standard version of subtraction, where the carry loop is jammed together with the
add-column loop, one must write n+ m digits, where n is the length of the longest addend, and
m is the number of carries required (it is assumed that one writes a 1" above the columns one
carries into). In the two-pass version, one must write n-+ 2m digits: one must remember from the
first pass which columns arc overflowing, and this requires m noles to oneself, say in the form of
writing a "1" above the overflowing column. The sccond m operations come from rewriting the
answer digit of the columns that are carricd into. ‘There may be cven more rewriting if the
answer carricd into is a 9.

Note 9: In the column carried into, the standard subprocedure requires adding three digits, one
of which is of course the carried "1". But adding three digits requires remembering the sum of
the first two digits while accessing the third digit. The two-pass subprocedure docsn’t load
memory this way, since the intermediate sum is written down instead.

Note 10: When one adds two large digits from a given column, one gets back a non-digit, e.g.
“14". ‘The first shift in representation is to break this number down into units and tens.  Next,
the units must be converted into a digit in the columns being added, while the tens must be
converted into an argument to the carry subprocedure.  In Dienes Block addition, the second
conversion is superfluous, since the result of the colunn addition is alrcady scaled up to the
value of the column, so to spcak. That is, an add in (he tens column yiclds “140" in the form of
14 LONGS, not 14 UNITS.
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Appendix 1

An explanation of the teleologic semantics of subtraction

To give a feel for how an explanation based on paths of minimal contrasting pairs of analogous
procedures might go, an example of such a path is presented here. It begins with base-1
subtraction model, passes through some Dienes Block subtraction procedures, and ends with the
standard procedure for subtraction of written numerals. Although reading these rather abbreviated
descriptions can have nothing like the impact of actually handling the blocks and doing the
procedures, the power of this technique to explain ielcologic semantics should nonetheless be
apparent.

Throughout the path, there is a certain ambivalence about the particular matcrial that is used in
the representation of number. In fact, the primitives and constraints used to describe and
implement procedures really can’t differentiate real, wooden Diencs Blocks from, say, drawings of
Dienes Blocks, as long as they are manipulated the same way. In fact, there is no particular point
where adoption of the constraints of the target procedure (written subtraction) forces us off the
counting table and onto paper -- one can actually implement standard subtraction with cards
bearing digits.

However, the material does make a difference to the efficiency metrics. In particular, some of the
later constraints can only be motivated by assuming that erasing is more work than writing, which
is true of paper, but hard to emulate with manipulatory materials.

We start with base-1 blocks because the mathematical semantics of this subtraction procedure are
simplc and concrete.

1. Polynomial Basc-1 numerals are rather bulky for representing large numbers. One solution to
the block management problem is to lct some counters stand for a fixed number of the unit
counters. This is the polynomial constraint (3 in the text). The next procedure of this mp-
morphism is a simple version of big-pile Dicnes Block subtraction.

2. Search Instead of Random Choice This mp-morphism adds the notion that searching for two
blocks of the same shape is more efficicnt than picking two blocks at random, then trading to
make them the same shape.

3. Chose Larger to Trade Down The idea herc is to trade down the larger of the two blocks. If
one picks an arbitrary block 1o trade down, but not the unit block, then eventually one will be
able to match their shapes, but it will often takc more trading than always picking the larger one
to tradec down. This range procedure requires memorization of which of two shapes stands for a
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larger multiplier.

4. Scarch for Next Larger Refore Trading When one can't find two blocks of equal shape, and
instcad has two blocks of unequal shape, then before trading down the larger one, replace it with
a block that is the next size larger than the smaller block. If the scarch succeeds, one only has to
trade down once. ‘This plan step requires memorizing which shape is the next larger one than a
given shape.

§. Choose TOP to Trade Down This model is motivated by observing that when the block that is
traded down comes from BOT (the boltom numeral), the subtraction as a whole takes more time
than it would if the block had come from TOP (the numeral that is being subtracted from). When
a block from BOT is traded down, the ninc smaller blocks that are left over go back into BOT. So
the main loop must run nine times more. If a block comes from TOP, the nine extras go back into
TOP. If BOT runs out soon, they may never be touched. So trading down a block from TOP is
more cfficient than trading down a block from BOT.

The goal of choosing TOP blocks creates a subgoal that the TOP block be larger than the poT
block. ‘This subgoal is satisfied by a subgraph which is alrcady a part of the domain planning net,
namely, the union of the subgraphs gencrated by models 2, 3 and 4. So, the new part of the
planning net underlying this procedure is just the part that satisfies the goal "chose BOT block”
cxclusive of the part which satisfics the subgoal.

6. Canonicity This constraint was described in the fext.

7. Base Ten The canonicity constraint produces a trading pattern which is much easicr to
remember if all the multiplicrs are powers of ten (or some other base). For example, in canonical
Anicrican money, which is a polynomial representation but not a base-10 representation of
number, a citizen would canonicalize their pocket change by trading in five pennics for a nickel,
two nickels for a dime, three dimes for a quarter and a nickel, etc.

8. Sort by Power Canonicalization (= carrying) and decanonicalization (= borrowing) arc
somewhat easier if numcrals are sorted so that all counters of a certain power are accessible at
once. Dienes Blocks, as we observed them being used in schools, lacked this constraint. In fact,
Dicncs Blocks also Jack the canonical and basc-10 constraints as well. However, tcachers usually
require their students to abey these two,

9. Power Represented by Location Only Numerals must take up space, either on tablc tops or on
paper. Omnce powers are sorted, location in space redundantly represents the power of a counter,
In this mp-morphism, that redundancy is removed by making all cocfficient tokens (i.c. "digits")
look the same, regardless of the power. The abacus, for example, obeys this constraint. This
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allows one 1o represent much larger numbers, since one need not invent new token shapes when
one¢ necds to use a new, higher power. ' That is, one can make an abacus of arbitrary width, but
Dienes Blocks, which arc inherently unable to obey this constraint, are limited in practice to at
most four powers.

10. Zero To use location to represent power, a prearranged pattern of locations must be used.
But, such fixed patterns, like the abacus or columnar ruled paper, can't rcpresent numbers that are
larger than they have becn designed to represent. Moreover, producing the patterns accurately is
difficult to do free hand. A good solution to this problem is represent power with relative
locations, which amounts to using zero as a place holder. A "relative-location abacus” could be
built which lays out piles of beads in a linc on the table; it would use a clear plastic bead as a
place holder and piles of colored beads as non-zero "digits."

11. Aligament In setting up the subtraction problem, onc insists that the numerals be aligned so
that digits of thc same power are in the same column. This reduccs the effort necessary to locate
the digits of matching power when subtracting.

12. Non-countable Coeflicients It is quicker to arrange counters on a table or write coefficients
symbols on paper if the number of counters or strokes is small. This motivates replacing
countable cocfficicnts with symbolic ones (c.g., digits). However, with symbolic cocfficients, the
PICK/FROM operation is radically altered. It is no longer possible to decrement a coefficient by
picking up a piece of it (i.e, picking up a block or erasing a hash mark). Instead, a
decrementation table must be memorized. That is, one must be able to count backwards from
twenty.

There is no particular point where the target constraints force us off the counting table and onto
paper.  Manipulatory systems can be devised which use non-countable coefficients, One such
manipulatory system is simply a set of cards bearing digits, which are laid out in a line on the
table.

13. Mcemorize Pairing Off The next few minimal contrasting modcls are designed to minimize
the manipulation of the cards in a manipulatory system, or erasing a digit and writing a new one
in a written system. In the previous number systems, column subtraction was realized by pairing
off decrcments of the top and bottom digits. A "movie” of the card procedure doing 15-3 would
be
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This model replaces this pairing off loop with a Lable lookup. A "movie” of the modified card
procedure doing 25-7 is

14. Memorize Comparison This model procedure replaces the two step borrowing (sec movie
above) with a one step borrow by looking ahead. That s, it looks ahead to see which digit will be
zero -- the top or the bottom. This amounts to memorizing the greater-than table for digits. Now

the movie for 25-7 is

15. Memorize Teens Facts Two table lookups can be reduced to one, and two digit rewrites can
be saved if a new facts table is provided for the teens facts. The new table is 10 by 9 and

contains facts like 15-7=8. The movie reduces to

16. Scquence Columns In the previous systems, columns are processed in random order.
However, this necessitates marking the columns that are donc by zcroing the bottom digit. This
digit rcwrite can be saved if the columns are processed in some set order -- cither left to right or
vice versa. ‘The planning heuristic, that is the right difference generator of this mp-morphism,

could be called “ordering indcpendent operations reduccs marking”,

17. Answer Register If a scparate place is provided for writing the answer, then crasurcs of the




top digits can be reduced. This is motivated by the fact that writing a digit is easier than
erasing -- a property peculiar to paper.

18. Right to Left If the columns are processed right to left, one borrows from the top digit. If
the columns are processed left to right, one borrows from the answer. The numeral that gets
borrowed from ends up with erasures, while the other one has no erasures. If one erases by
scratching out the digit and writing the new digit above, then the numeral that's borrowed from
can become a real mess. The motivation for this analogy is that there is more need for the answer
numeral to be legible than the top numeral. Hence, subtraction is more efficient if one processcs
the columns from right to left.

At last, we have arrived at the standard subtraction algorithm via a sequence of procedurcs/models
where each model in this sequence has a mp-morphism between it and its immediate successor
thus creating a well structured sequence of analogous models converging to the desired target
procedure.
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