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~~~At some time in our lives, we have all been forced to learn the proce-
dural skills which supposedly comprise mathematical literacy (e.g., place
value addition) through the process of rote memorization 1 perhaps, enhanced
by the use of ~“~odels”~~e.g., the abacus). These models were intended to
provide an intuitive basis for a given procedure. -~~ut, what really is a“model” of a procedural skill; how does it help in [earning; how faIt~Tf1rL ~ 
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Attempting to answer thes e questions led us co ’fornzalize~~ he concept of
an analo~~ between procedures based on a Sacerdoti-like representation called

~~planning nets.”~~A plannin net represents the synthesis of a given procedure
from a set of 4’constraint hat define the properties of the arithmetic oper-
ation being implemented and the representation of the objects (numbers) being
manipulated. An ana ogy between procedures is represented as a çmaximal
partial isomorphis etween the planning nets of the two procedures.

The p 1anning~~~~ representation turns out to provide an elegant framework
for defining the teleologic semancic?”~~ a procedure as well as for investi-
gating how to coastruct a ~~atural sequence1’ if models (or microvorlds) for a
studint to use in “Inv.nting”This own procedure. Since both utilize the same
framework, we have an extraordinarily powerful way to explain (or teach) the
underlying teleology by showing how to relate it to a sequence of intuitively
understood models.

This paper may be viewed at several levels: For the educational re-
searcher it provides a framework for investigating the explanatory value of
various manipulatory models for mathematical skills; for the cognitive scien-
tist it provides a glimpse at a representation technique for formalizing
procedural analogies and for representing the “deep structure” of a pro-
cedure; and for the At person it provides some novel uses of planning nets.
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Planning Nets:
a representation for formalizing analogies and

semantic models of procedural skills

Kurt VanLehn and John Seely Brown
December 20. 1978

Abstract

4t some time in our lives, we have all been forced to learn the procedural skills which
supposedly comprise mathematical literacy (e.g. place value addition) through the process of mte
memoni.ation. perhaps, enhanced by the use of “models” (e.g.. the abacus). l’hcse models were
intcnded to provide an intuitive basis for a given procedure. But , what really is a “model” of a
procedural skill: how does it help in learning: how faithful can it be made to be; and, more
generally, how can it help a procedure take on “meaning?”

Att empting to answer these questions led us to tbnnalize the concept of an analogy between
procedures based on a Sacerdoti-like representation called plann ing nets. A planning net
represents the synthesis of a given procedure from a set of constrain ts that define the properties
of the aritheinetic operation being implem ented and the representation of the objects (numbers)
being manipulated. An analogy between procedures is represented as a maximal part ial
isomorpliisus between the planning nets of the two procedures.

l’he planning net representation turns out to provide an elegant framework for defining the
gekologic semantic s of a pn cedurc as well as for investigating how to construct a natural sequence
of models (or microworlds) for a student to use in “inventing ” his own procedure. Since both
utilize the same framework , we have an extraordinaril y powerful way to explain (or teach) the
underlying teleology by showing how to relate it to a sequence or intuitively understood models.

This paper may be viewed at several levels: For the educational researcher it provides a
framework for investigating the explanatory value of various manipulatory models Ibr
mathematical stills; for the cognitive scientist it provides a glimpse at a representation tochnique
for formalizing p.wcdural analogies and for representing the “deep structure” of a procedure:
and for the Al person it provides some novel uses of planning nets.

To appcar In R. U. S,.~w. P. A. Frcdcdco. a w. U. Montague (Uth~). Apilf tiik lnwntng and iiuenicidon: Cogntttve pvcw
.w.(~ra Ilillidale, N.J.: Lawvessce Edbuurn AunctateL 197,. and as an Office of Naval Rciearch repast from Lsarnlng
Rcasareh and De,etopcmenl (‘enter. Untvcrii y of PtUzburgh. Piltzburgh, Pa.
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Planning Nets

1. IntroductIon

At some time In our lives, we have all been forced to learn the procedural skills which
supposedly comprise mathematical literacy (e.g., place value addition) through the process of rote
memorization, perhaps, enhanced by the use or “ models” (e.g., the abacus). These models were
intended to provide an intuitive basis for a glvclL procedure. But, what really Is a “model” of a
procedural skill; how does it help in learning: how faithful can it be made to be: and., more
generally, how can It help a procedure Lake on “mcanlngr

This paper is directed at understanding how procedures can take on “meaning”. It is Intended
to provide a small step in that direction by discussing a pafticular kind of “semantics” lbr
procedural skills, which we call teleologic semantics, in the context of the unambiguous and
totally specifiable procedural skills of elementary mathematics.

The teleologic semantics of a procedu re is knowledge about the purposes of cac.t of its parts and
how they fit together. Such knowlcgc is the province of true masters of the procedure. Its value
is extolled by the proverb. “To really understand something, one must build IL” Telcologic
semantics is the meaning possessed by one who knows not only the surface structure of a
procedure, but the details of its design.

This paper has two arguments. First we motivate the particular representation that we use for
tcleologic semantics, which we call planning nets, by showing how it can capture analogies
between procedures as seen by an expert at those procedures. Secondly, we show that teleologic
semantics, as formalized by planning nets, Is useful by describing several potential applications In
the field of education. in particular, some consideration is given to how teleologic semantics can
be explained, and how it provid!4 a useful framework for developing “opthnal” sequences of
“model” procedures (or microworlds) for guided discovery learning.

1.1 Analogy Between Procedures

Before we delve Into a technical dIscussion of procedural analogies, let us consider a simple
example of an analogy between the procedure for adding two multi digit numbers and a “model”
procedure for addition which manipulates physical objects that represent numbers. The model
procedure Is a physical procedure In that it manipulates physical objects that stand for numbers.
Before we can describe the procedure, we will briefly dcicribe the objects that It manipulates,
namely Dienes Blocks. 

~~~~~~-~~-~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~ -~~~~~~_ _ __ _  _ _
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The Dienes Blocks rvpresenlalion of nwnbers

Dienes Blocks provide an explicit representation of base 10 numbers -- namely a set of unit
blocks for representing the units; a set of long blocks consisting of ten unit blocks molded into a
long stick (or representing the tens; a set of f la t blocks consisting of ten long blocks laid next to
each other, thus forming a 10 x 10 square for representing the hundreds; and finally a set at
cubes in the form of 101 10 x 10 unIts for representing the thousands, A number (of 4 or lees
digits) can be physically represented by selecting the number of unit blocks to correspond 10 the
unki digit, the number ot long blocks to correspond to the tens digit and so on. Hencc s
particular multi-dig it number Is represented by piles of units, longs, flats, and cubes. Here, for
example, is 123 represented In Dienes Blocks:

The baic-lO nature of the symbolic place-value scheme for representing numbers Ii then made
explicit since one can see the direct translation of a number represented as piles or Dienes Blocks
into a base-i system (I.e. the total number of units comprising all the blocks in all the piles).

Dunes Block Addition

Addition of two multi-digit numbers represented as concrete Dienes Blocks involves lbnnlng set
unions, and “trading”. The units pile for each of the two numbers is first unioned together.
This corresponds to adding the units column, Next, the resulting set Is examined. If It contains
more than ten unit blocks, then ten blocks are removed from this set and traded the a long block
(consisting ol tcn units) which is then placed in a pile of long blocks of the top number. This
corresponds to carrying from the units to the lens column in standard addition, The procedure
now repeals, unioning the longs piies, then the fiats, etc.

A theory of analogy between procedures, applied to this case, should be able to capture not oily
the fact that Dicncs Block addition and standard additon produce the same answers given the
sane thput~ but that their lnicrna l structure corresponds as well, Set unions match with column
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sums, trading matches carrying, and so on.

Two-pass addition illustrates dWerences in closeness

We were recently struck by the way Dienes Blocks were being used in a school. In particular,
the Dienes Blocks procedure being taught was not as described above but instead had the
students combining all the piles of blocks together and then returni ng to the un its pile and
trading up and so on. Thu s, in standard multi-digit addition, a carry is (potentially) performed
after each column operation, whereas in this version of Dienes Block addition the “trading” (or
carrying) operation was being deferred until all the columns have been initially processed. One
intuitively ~els that this second, two-pass procedure is not as closely analogous to standard
addition as the previous, one-pass Dienes Block procedure.

A theory of anal ogy should have some formal measure that can pre dict how close an anal ogy is.
The theory below has such a formal mechanism , called a closeness metric. The degree of
correlation between the predictions of the closeness metric and subject ’s intuitive judg ements of
closeness is one verification condition for the theory. (See note 1 for caveats on this claim.)

Why arithmetic?

• The examples in the paper are all drawn from the computational procedures of arithmetic even
though the techniques we have developed have wide applicab ility. We limited our examples to
arithmetic for sevcral reasons . Everyone knows how to add and subtract , so lack of familiar ity
with the example domain will not hinder comprehension of these admittedly rather abstract
formalisms. Arithmetic is a highly evolved, complex system of procedures. It has iterat ion,
recursion, tables of facts, and of course a rather non-trivial data representation , namely place-
value numbers. Lastly, arithmetic is taught in school. This means our theories are more likely to
accrue the benefits of thoughtful , experience-based criticism from those with a sincere interest In
putting the theories to work.

1.2 Organ Izational Over view

The pap er is divided into three parts. The first part (section 2) is an exposition of some of the
basic concepts of formal theories of analogy . We assume that an analogy can be represented as a
mapping between a deep structure representation of each procedure which is expressed as a
maximal partial isomorph ism between the two deep structures. Thus, after an analogy has been
comprehended, we would expect to find cognitive structures that could be modeled by three
components: two of which represent the abstraction or deep structure of the two procedures and
the third which represents the structure pcrscrvlng map (I.e., analogy) between these two
structures.

I i .

I  
_ _  

_ 
_ _
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Plannin g Nets

The second part of the paper (section 3) motivates the planning net representation of teleologic
semantics by using it as the deep structure component of a theory of analogies between
procedures. Part three of the paper (section 4) is an examination of some of the application s of
this theory to education. In part icula r, we discuss a paradigm for explaining the tclcologlc
semantics which involves using a sequence of analogies such that each analogy illustrates exactly
one concept underlying the sy nthesis of the given “t arget ” procedure (e.g., place-value
subtraction ). This paradigm is then augmented with a set of “naturalness” principles for
structuring a sequence of analogies thereb y address ing the problem of how to design an optimal
sequence of “micro-worlds” or models for enchancing discovery learning.

We caution the reader that our style of arguing with examples has lcd to the incorporat ion of a
great deal of detail into the subsequent pages. However , if Artificia l Intell igence has contributed
anything to cognitive psychology, It is an appreciation that ignoring trivial detail often leads to
overlooking non-trivial problems. 

_~~~~~~ -~~~~~~~~~~~~ - --- - _ _ _ _ _
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2. A General Theory of Analogy

This section presents a theory of anal ogy that is so general that it is almost vacuous. It appears

that virtuall y any theory of analogy, Including the theory of procedural anal ogies that Is presented
below, can be recast as a special case of this genera l theory. Thus, this general theory is
apparently immune to refutation. Nonetheless, it allows discussion of some concepts common to

all analogies, such as “closeness”, before becoming immersed in the details of procedures and
their representations.

2.1 Mapping between “deep structures. ”

We view an analogy as a compar ison of two “thi ngs” that can be broken down Into three parts:
(a) an anal ysis of the first thing into some abstract description (or deep structure), (b) an analysis
of the second th ing into another abstract description , and (c) a mapp ing between the two
descriptions. This tripartite breakdown is the foundation of the general theory of analogy.
Exactly this breakdown is also found in Tver sky’s work on similarit y, a domain which illustrates
the general theory more clearl y because of the simpler “deep structures” that are used (l’versky
1977).

Much research on similarity has used pairs of geometric figures or letters. A typical task is to
rate the similarity “o” to “c”. Tvcrsky ’s analysis of this task is to assume a feature space,
describe each figure as a set of features, then predict the similarity judgements with some
“metr ic” on the overlap of the feature set of “o” with the feature set of “c”. The correlation of
the judgcmcnts with the predictions serves as a verification condition on the feature space and
the metric. Often, the features are not very abstract -- “o” migh t be mapped int o the description
(curved, circular, closed) while “c” would become (curved , circular , open).

Much of the research on analogy has studied a task one often finds on intelligence tests, namely,
to fill in X in a statement of the form “A is to B as C is to X,” Most commonly, the four
elements A, B, C and X are either words or geometric figures. A simple example of a word
analogy problem is “Red is to Stop as Green is to (a. Go, b. Halt).” Superficially, this appears to
be a different sort of task than the similarity task since there are four things rath er than two. But
the two tasks become very much the same when one considers the analogy task to be a
comparison of relationships rather than directly apprehendable things. This Is a widely held view
of analogy. Indeed, the Instructions to “ne analogy test , as quoted by Evans (1968, pg 272) read
“Find the rule by which Figure A has been changed to make Figure B. Apply the rule to Figure
C. Select the resulting figure from Figures 1 to 5.”

Actually, these Instructions represent just one strategy for answerin g ~naIogy proble ms. Evans
ANALOGY program, for example, used a different strateg y, whereby It extracted an AU rule, then

~lL
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found five rules for pairs Cl . C2. C’3 . C4 and Cs. then finally chose one rule of the five as being
the most sim ilar to the AR rule. ‘l’he cxistance of many different strategies for solving analogy
problems also obscu res the parallels of this task to the similarity and metaphor tasks. And yet.
whefl one is done finding the analo gy, one possesses the same three maps: an abstraction from
AR , an abstraction from cx where x is the chosen answer, and the partial match (or mapping)
between the two resulting abstract descriptions.

In short, if one ignores the strategic differences between solving an analogy and evaluating a
similarity, and one puts relationships on an equal footing with letters and geometric figures , then
there is very little difference between the analogy task and the similarit y task . After either task is
completed , the cognitive structurcs can be modeled by three components: the two abstract
descriptions and the mapping (in the form of a match) betwee n them .

2.2 Basic definitions

In this subsection , several basic concep ts will be discussed. They all follow rather immediately
from the view of anal ogy described above. As above , they will be motivated and illustrated with
examples from Tversky ’s theory of similarit y.

Intersection and dj/frrence sets

A good way to summarize the outcome of the matching map is in terms of onc intersection set
and two dWèrcnce sets. As an example, take the similarity task mcnlinned above, to evaluate the
similarity of “o” and “c”. Their descriptions, let’s say, arc the feature sets (round, curved,
closed) and (round, curved, open), respectively. Call these sets A and B, the abstract
descriptions of “o” and “c”. ‘then, the intersection and difference sets arc

= ( round , curved )
A-B = ( closed }

B-A = ( open }.

This is not particularly startliug, to be sure, Indeed , there ar c stereot ypical ways of referring to
these sets in English similics: ‘A is like II in that AflIL ” or “A is like H except that A-B Instead
of U-A.”

AlaxI,nal partial graph morphisms generalize the notion qf “match”

With m ore complex languages than feature spaces for expressing abstract descriptions, one must
of course give a new definition of “match.” For example, consider the analogy (from Siernberg
1977) “Washing ton is to 1 as Lincoln is to 5.” Suppose semantic nets are the representat ion 

_- —__ -- 1_11y -— —~



Planning Nets

language. The abstrac t description of the relationshi p Washington:1 is a certain chain of
semantic links from the node “Washingto n” to the node “1” . The description of Lincoln:S is a
diffe rent chain. However , when one finall y fi nds the correc t way to view the two relationships
(whic h is rather non-trivial for this examp le), then the two chains end up bearing the same
sequence of link names, namely: Last-name, image-of, portrait -on , dollar-amount. That is,
“Was hington ” is the last name of the ma n NODE31, the image of NODE~t appears in the pictu re
NODE7, NODE7 is the portrait on the kind of dollar bill NODE~S, and the dollar amount of NODEbS
is ‘1” . The chain for the Lincoln:5 relationshi p is a completely distinct chain , but it has exactly
the same sequence of link labels. In this sense, the analogy is perfecL

To make these two chains match , the definition would have to be sensitive to (a) the order of the
links, and (b) the labels on the links. A definition in terms of intersection of sets of links would
be inappropriate because none of the links are identical , and because such a definition would
ignore the topology of the descriptions. A defini t ion of “match” that is appropriate for semantic
nets (or any other representation with the topology of a labeled directed graph , including
planning nets), can be defi ned in term s of a graph isomorphism:

Adjacency: Two links of a graph are adjacent if they are incident with a common node.

!so~norplmism: An isomorphism of labeled directed graphs is a 1-1 correspondence on the
links that preserves the adjacency, direction and label of the links.

The “match” of the two semantic net chains X and Y can now be defined to be the ,naximal
graph isomorphism from a subgraph (subsequence) of X to the subgraph of Y. By “maximal”.
we mean the isomorphism that pairs the largest number of links correctly. Unfortunately, use of
maximal ity precludes any mathematical guarantee of the uniqueness of the resulting isomorphism.
However, in practice we have yet to be plagued by a non-unique maximal isomorphism.

Note that we have defined “match” as a map which is an isomorphism between subgraphs of the
two deep structures. ‘l’h c map between deep structures is not necessarily total (i.e., onto) in
either direction (we are in the process of investigating a revision of this aspect of the definition as
well as the interesting situation where it is many-to-one and hence would have the properties of a
homomorphism). In other words, the analogy is a mapping which is a maximal partial graph
isoinorphism. However , we will abbreviate our terminology somewhat and say that the analogy
from A to B is form alized by the mp-morphism from A to II (i.e., we will speak of the analogy
as being this structure preserving map.)

To replace the terms “i ntersection set” and “differe nce set”, we will simply use “i ntersection
subgraph” and “difference subgraph” . ‘There are, of course, Iwo difference subgraphs for a mp-
morphism, namely the residue portions of each of the deep structures being compared.

_- - - J
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Throug hout this report , we will continue to use the symbology of sets for these concepts, even
though the designated entities are not sets, but subgraphs.

Closeness metrics

I3oth the similarity task and the analogy task involve the ranking of the match between two
things, or rather between their abstrac t descriptions. The subject is asked to rank the degree of
similarity or choose the closest analogy. We assert that both kinds of judg ements can be
modeled by a function over the intersection set (or subgraph) and two difference sets (or
subgraphs ). In similarity researe h , this three argument function is often called a “similarity
metric” even though there are cases when the function is not a proper mathematical metric (sec
Tversky 1977). With the same sloppiness, we will call the function that ranks the closeness of
analogies a closen~sz metric.

These metrics can be rather complex. Certain features might be more salient than others, and
one might model this difference by giving the former more weight in a summation over the
various sets. ‘these metrics might even be asymmetric (see note 2) which means they are not
proper “metrics ” in the strict mathematical sense. In short , detcumini ng the intersection set and
the two difference sets is not the end of the story for predicting similarity judgements : the metric
can play a decisive rob .

Af onotonicity . etc.

We take the position that a precise statement of the closeness metric for procedural analogies can
only be determined from detailed empirical studies. However, Tversky has shown that if certain
fonnal conditio n s cr the metric can be guaranteed, such as its monotonic ity over subsumption of
the intersection and difference sets, then the metric can have a simple, linear form (Tversky
1977). (One of us--VanI.ehn--has investigated some of the conditions for procedural analogies,
and will discuss them in a later report.)

Individual djfferences and learning

We have been speaking of the abstract description (or deep structure) of a thing as if th is object
is the s a m e  for all people. In some tasks , such as assessing the similarity of lette rs , It seems
reasonable for literate individuals to have roughly the same representation language and the same
abstraction functions for extracting descriptions from the letters, Hut this assumption is rather
implausible in m any other cases. In these cases, individual differences in conceptions of the
things being compared Is likely to Influence judgcmcnts of the closeness of analogy. ‘Ib is would
make verification of a theory significantl y more difficult. 

- -—~~~~~~~~~~~~~ ~~~~~---
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Individual differences affect analogy, but analogy also affects the individual differences. That is,
one can learn from analogies. More specifically, when an individual understands an analogy, be
or she may become aware of descriptive features that they were not previously aware of. So. a
complete theory of ana logy must allow for an evolution of an individual ’s conception of the
things being compared over the course of testing.

In this research, we will ignore these difficult methodological problems by assuming that the
subjects who are jud ging the closeness of the aflalogies are experts. That is, they all have a
complete representation of the things being compared, and hence can be assumed to have
roughly the same representa tions. and secondly, that they already know all there is to know about
the things being compared, and therefore learn very little over the course of the testing.

F 

. 

—-—--  - - - - - ---- -- --
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3. Finding the Right Representation for Pr ocedural Analo gies

In this section . several candidate repre semitations for procedures will be examined as a basis for a
theor y that pr edicts the closeness of procedural analogies (note 3). Possible representations range
from a very superficial one, namely a simp le chronological list of actions , on up to a very abstract
representa tion tha t involves goals, constraints and other planning knowledge, namely planning

nets. Our research has shown that pla nn ing nets a re the only serious contender , so the discussion
of the others will be quite brief. Uowcver, the more superficial representations are mentioned in
this section for a reason, namely, to show how a human (or machine) can construct a very
abstract representation of a procedure by ascending through several levels of representation. We
do not claim that the structure of this section models the abstraction process that a person
executes when assimilating a procedural analogy, but it does provide an indication of the
complexi ty that such a process would have to have.

3,1 I’raccs

The trace of a p rocedure is simply a chronological list of the actions it performed during one
particular execution. ‘Ibis representation of a procedure can he constructed direc tly from
observation of the execution of the procedure (althou gh , there are the usual problems in choosing
the “graili size” of primitives -. see note 4). However, traces are a highly inappropriate
representation for procedures, as the following example indicates.

Consider an analogy between I)ienes Block addition and written addition . These two traces
would probably have few, if an y, action labels that match. The action “write “4” would have to
be matched against a group of four actions labeled “place one block in the pile” , whereas the
action “write ‘1’”’ would have to be matched against a group of eight block placing actions.
Such sophisticated m atching could not be represented by a mup-morphism . Indeed, the match
seems to require the concept of “wrile is” and the coi,cepl of “repeat single block placement ii
times.” l’hese arc abstractions over action sequences , and so should be part of the representation
rather than the matching mechanism. Incorporating such concepts into the repres entation lifts us
to the nex t level of abstraction.

3.2 Flow charts

By generalizing over a large collection of traces, one could derive a notion of the observed
procedu re that could be represented with a programming language , such as flow charts. Granted ,
this generalization would be non -trivial: repetitious sequences of actions would become loops,
objects that arc manipulated sim ilarly become the contents of variables , etc. Nonetheless ,
constructing a program from examples Is well within human ability. 

—— ~-- - -
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However , flow charts would also be a poor representation for analogy. Consider a simple
subtraction procedure for numbers represented as base-i blocks as illustrated by the flow chart
below. l’he primitive terms used in th is flow chart are as follows. LH stands for somcones’s left
hand. TOP and hOT stand for placemnats on the ‘I’MILE The BO’l’ set of base-I blocks is
subtracted from the ‘(‘OP set of blocks by pairing off a bloc k from each, using the Primitive
actions PICK/FROM and PUT/ONTO , and tossing them onto the table. When the bottom
“number” is “zero” (i .e., empty), whateve r is left in the top “num ber” is the answer. However,
notice that by merely shuffling the order of the steps somewhat and using two hands instead of
one, a new procedure can be constructed that is intuitively very similar to the old procedure, and
yet its flow chart (see below) shares virtually no isomorphic subgraph with the old procedure’s
flow chart. Since the intersection graph is so small relative , to thc difference subgraphs, a
reasonable closeness metric would have to report that the two procedures are not very close a
false prediction. So for this and other reasons, flow charts also seem to be a poor representation
or level of abstraction for procedural analogies.

~~~~~~ 
__________ 4 RETURN (TOP) 

PUT RH ONTO T~~ ,E 1
PUT LH ONTO TABLE

PUT RH ONTO TABLE

JRH .- PICK/FROM (TOP) <~~~EMI~~~ (B0~~~~>~
E 

~
i. RETURN (TOP)

_ _ _ _ _ _ _  

1N0
[PUT RH ONTO TABLE •- PICK/FROM (TOP)]

. ~~~~ FROM (SOT)] ILH 4- PICK/FROM (DOT)

FLOW CHART FOR A SAM-I BLOCII SUBTRACTiON FLOW CHART FOR A BARE- i BLOCK SUBTRACTION
PROCEDURE USING OI~~’S ~~ STHA NO PROCEDURE USING TWO HANDS

33 Procedura l nets

On the basis of the example above. it might appear that flow charts are too committed to a set
order of perfoiming steps, since the two base-i flow charts have the same steps, but order them
slightly differently. Also, these charts lack the typical hierarchy of subproccdures that Is used in
compute r program s to modularize and osganize the procedure. This suggests using a structure
that emphasizes the subproccdure hierarchy, and dcetnphasizes the temporal sequence of
subpmccdures.

L
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Just such a structure has been developed for modeling children ’s bugs in arithmetic procedures”
namely Buccy s procedural isel representation (Brow n and Burton 1978). Although we will not
pause here to explain this representation, a procedural net for a very familar procedure , namely
standard subtr action , is included as figure 1. However , procedural nets also fail a~ a basis for a
theory of analogy, as illustrated in the following example.

Consider two Dienes Block subtraction procedures: (A) In “big-pile” Dienes block subtraction, a
number is represented by one big pile of l)iencs Blocks. (B) In “sorted ” Dienes Block
subtraction, all the blocks arc kept sorted into little piles according to their shape. Intuit ively,
these two procedures are quite closely analogous. But when the procedural nets are formed, and
the matching is done, we find the following statistics:

Aflhi contains 6 nodes.
kU contains 10 nodes.
WA contains 16 nodes.

The intersection subgraph is far too small compared to the difference subgrap h for this analogy
to be rated “close” by any reasonable metric . So again , we must abandon a representation, and
look ti)r a higher level of abstraction ,

3.4 Planning knowledge scents necessary

Both flow charts and procedural nets arc at the “ prog ram ” level of abstraction. That is, they
both are close to the sorts of languages one sees for computer pro grams. ‘flie problem with this
level of abstraction seems to be that some design decisions which do not seem so consequential
to the Intuiti on have an enormously large effect on the “prograzn”. 1’l~c framework that analogy
seems to require is something that ciulacts these sorts of choices ou t  of their final mat isfestation,
makes them explicit , and rel.ucs them in a reasonable way to other, more im port ant elements of’
the design. In sho rt , what seems necessary is a representation of the design process behind a
procedure -

~ this allows one to say whic h choices arc important. amid which arc relatively minor.
The process of creating a procedure from a set of constraints is traditionally called “planning ” by
the Arti ficial Intelligence community . So, the abstract representation that analogy seems to
require appears to involve planning knowledge and planning imiferencing.

Planning knowledge Includes not only the functional decomposition of the surf ~ice structure of
the procedure but also the reasoning that was used to transform the goals and const raints which
define the intent of the procedure into its actual surface structure. ‘I’hc form alism that we use to
represent this knowledge we will call planning net& These planning nets are an extension of
Saccrdoti’s pioneering work on representing procedu ral knowledge for robotics (Sacerdati 1977),

I, 
— — —-—
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Before presenting the formalism (which lies at the heart of the remaining parts of the paper), it is
best to get some idea of what this “planning knowledge” is that is going to be incorporated into
the representation. To this end, we will plan out a very simple subtraction procedure, called
“base-i blocks subtraction ,” that represents a nu m ber as a pile of unit blocks. Later, we win
show how plannin g nets capture this knowledge in a summar y fonn.

3.5 Contraints and planning heuristic s

The basic idea of formal plannin g is to take a declarative , rule-like presentation of the goals of
the procedure and the world it is to be implemented in , and transform them into a surf~ c

structure that achieves the goals while remaining inside the constraints imposed by the world.
There is always an clement of common sense in planning. and since this is formal planning, use
of common sense must also be recorded.

These two knowledge sources are called constraints and heuristics. Both can be represented as
pattern action nales in some suitable formal language, but for our purposes, English will su f&e.

The constraints that characteriz e base-I blocks subtraction arc listed below:

1. Goal: If F .MPT Y (nOT) then return TOP as the answer (i.e., n-O~~n).

2. The decrease in roi must EQUAL the decrease in nOT (i.e.. a recursive definition of
subtraction).

3. a Is EQUAL to b (I.e., all blocks arc equal).

4. Over the action (Y .- PIcKInto M(X)), the decrease in X is I~QUAL to the increase In Y
(i.e., blocks are conserved over the picking up action).

5. Over the action (PUT Y omo x), the increase in X Is EQUAL to the decrease in y (I.e.,
blocks are conserved over the putting down action),

6. The action (Y . PIcK/FROM(X)) requires E MPTY (Y) beforehand (I.e., the hand must be
empt y before picking up a block),

7. The action (PUT Y ONTO x) entails EMPTY (Y) afterwards (i.e., the putting down action
always empties the hand completely),

8, — F.MPTY (x) before the action (Y I- PICK/FIkOM(X)) entails that afterwards there cxlstg
a, such that a is the contents of y. (i.e., the hand p icks up exactly one block).

L _________
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The meaning of the primitives is as follows. TOP and BOT are placemats on the TABLE. The
subtraction problem u-in would begin with n base-i blocks on TOP , and m on noT (n-b., this is not
the way base-i block subtraction is ordinaril y posed in the classroom. See note 5). There are two
hands. LII and alt , which can perform two kinds of actions, namely picking up one block
(PIC K/FROM ) or putting a block being held down (Ptrr/0NT0). The primitive predicate EQUAL
takes two piles of blocks and says whether they designate the same number. EQUAL II not
execu table, and can not appear in the final plan.

The constraints above describe the mathematical goals of the procedure, the objects It works with,
and the physical manifold that it operates within. The mathematical content of subtraction is
expressed in constraints 1 and 2: TOP minus noT is lOP whenever nor is empty of blocks, but
any changes in the number of blocks on nor must be echoed by an equal change in the contents
of TOP. The objects the procedure mani pul ates are base-i blocks. Since these are very simple,
constraint 3 suffices to describe them. (By convention , a lower case letter stands for an arbitrary
block, while an upper case letter stands for an arbitrary placemat or hand.) The remaining
constraint s define the physical manifold that the procedure will operate within. Constraints 4 and
5 ensure that blocks arc conserved by the actions PICK/FROM and PUT/ONTO. Constraints 6, 7 and
8 describe how the hands that manipula te the blocks work. A complete description of the
workspace would require several more constraints , but these will do for purposes ~f ii!ustration
(for some comments on how this particul ar set of constraints was chosen, see note 6).

The constraints describe domain-dependent knowledge. If the procedure ’s goals or implementation
environment change, then the constraints must be changed to reflect this. For example , if one
used Diencs Blocks instead of base- i blocks, then constraint 3 would be replaced by a new
constraint, namely

3’. a Is EQUAL to b If and only if SuAPl ~(a)=snAPE( b).

If one wished to plan an addition procedure instead of a subtraction procedure, then constraInt 2
would become

2’. The Increase in TOP must EQUA L the decrease in noT.

Heuristics are presupposed to be doman-independent knowledge. They represent common sense
planning knowledge , such as “when you need to accomplish two things, and It doesn’t matter
which comes fim-sI, then pick one arbitra rily, do It first, then the other ,” We Include his
distinction between constraints and heuristics only because It Is traditional; nothing In our theory
turns on this distinction.
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3.6 PlannIng a base-I subtraction procedure

The planning of the base-I subtraction procedure Involved 12 steps. Each step Is an application of
a constraint or a planning heuristic. The planning begins with a flow chart initialized to the
congraint that Is marked the “goal” of subtraction.

Qr .4 Goal’ If EMPTY (BOT) then RETURN (TOP)] 10

Planning proceeds by progrea~ve reftnement of goals to subgoals, or by checking the current plan
____ the constraints. (n-b., Because we are only interested In having a correct planning net Pr a
proccdurc~, not in f inding one, we are going to ignore a few of the subtle Issues -- ace note 7)~

1 
_ _  

_ _ _— _-t_~~
-_ .-I___ _ 

-. 
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.
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Step 1: At the outset the Implication Reduction planning heuristic which reduces an implication,
( A DB) to a sequence of subgoals, (A,B) can be applied. The second subgoal in this case Is a
primitive of the workspace. So the output of Step 1 is a plan with Just one subgoal:

0- -a~Goat: EMPTY (BOT)1 -{RETURN (TOP) 
~

Step 2: A venerable planning heuristic, traditionally called H ill Climbing (Newell and Simon
1972), reduces the goal to a loop. The loop test sees if the goal has been achieved, and if not, It
takes a step “up the hill,” so to speak.

Step 3: The goal matches part of constra int 4 -- the definition of P)CK/P1(OM. So the constraint ii
applied, and the plan is now fully reduced to primitives actions:

0— EMPTY (BOT) 
YES RETURN (1GM

NO

LH 0— PICK/FROM (801)

~

—--rn—— - .—- —~-——- — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - -- --~---~--—--~
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Step 4: Execution of this plan reveals a violation of constraint 6: the left hand must be empty
before one can pick something up. So a new goal Is created:

0— - ~ C’ IPTY (BO~~~~~~ES 
e’

~ 
RETURN (TOP)]— “0

~NO 
-

~~~~~~~~ ANO~~~~~~~~~

PICK/FROM (BOT1 Goo I:EMPTY (LP1~]
* I

Step 5: This goal is quickly dismissed by applying constrai nt 7 -- part of the definition of
PUT/ONTO. The left hand is now emptied before use.

~(~~APTY (B0T
~> ~~~~~~~~~~~~ 

RETURN (TOP)] no
—

~~~~~ j No

PUT LH ONTO TABLE j

PICK/FROM (801)
1 

_ 
-

Step 6: Execution of this plan uncovers a violation of constraInt 2. Since the bottom place mat is
not empty when PICK/FROM is executed , one knows from constraint 8 that the left hand comes to
hold exactly one block. Via constraint 4, one Infers that the bottom place mat has its contents
decreased by p,CK/ , :RO M . But there is no way to show that the Toe place mat undergoe s an equal
change. So, constraint 2 is violated , and a new goal must be created. The goal says that there
must bc a chan ge in roe to equal the change In noT.

- -

— — —- -------- — - - - -- — - — -  —- - - -~~~~ .-. .- - -.---
~

------. ----- -
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-

0— - -n(ii~~TY_(B!~~)_-!~
ES 

4~~ TURN (TOP)1 -‘-0
NO

~~~~~~~~AND~~~~~~~~

PUT LH ONTO TABLE Goal ; The change in BOT 1
- over step * must EQUAL

fr the change in TOP

* LH —~~~~~~~ PlC K/

Step 7: Part of this goal matches constraint 4, the definition of PICK /FROM. A new picking up
action is instantiated -for the top place mat. This reduces the goal of equal changes to the goal of
equal contents of the left and right hands.

C)— • PP(~MPTY BOT)~~~ 
YES ‘I RETURN (TO P]~~ PrO

I ~~N0
AND 

AND
[PUT UI ONTO TABLE y’ 

•

-b~

Goal : LH after step *1
ii EQUAL to RH after I

4LH — ~~~~~~ PICK/FROM (BOf~]** ~R H .— PICK/FROM (TOP)I step ** I

- -  - - _ - _ - 
_ - - _ _ 

- _--—-—--
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Step 8: Constraint 8 can apply twice now, once per hand. It says that only one block is picked up
by PICK/FROM . Thus, the goal of EQUAL contents is rep laced by equality of two arbitra rily chosen
blocks.

0

~~~ 

~~~~~~~~~~~~~~~~~~~~
Y ( B:T)P~~~~

RETURN (T
~~

)

AND 

~ AND

[PUT LH ONTO TABLE j 
~~~~~~ 

\~

\

[LH0— PICK/FROM (BOT)l (RH .— PICK/FROM (TOw] [~~oal: EQUAL (a,]~~~

Step 9: Of course, this new goal is trivially satisfied by constraint 3 -- all blocks count the same In
the base-i number System. So the goal is simply removed from the plan.

0— — -.P(iMPTY_(BOT~)- YES4~ ETURN (TOP) 
1 ‘0

NO

~~~~~~~~~~~~AND~~~~~~~

[PUT LH ONTO TABLE
RH o—PICK/FROM (TOP)

Iii.l..— PICK/FROM (BOll]

-4
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Steps 10 and 11: Execution reveals that constraint 6 is violated again, this time by the right hand.
So it must be emptied before use as well, in ~he same two-step fashion as Steps 4 and 5.

(>~ 
_.ø<~~ IPTY taó~ >YE S S4 RETURN (TOP) 

J— 
sQ

NO

~~~~~~~~~~~AND~~~~~~~~~~~

[PUT LI-I ONTO TABLE ] I PUT RH ONTO TABLE

LH’o— PICK / FROM (BOT)J RH~ — PICK/FROM (TOPI]

Step 12: A planning heuristic, call it Conjunction Reduction , removes the conjunction AND. The
AND node is for conjoining subgoals. It makes no statements abou t which subgoal to achieve first.
In this case, it doesn’t matter how the subgoals arc ordered since they turn o~ to be indcpendenL
So the rule arbitrarily chooses the following ordering:

p ./ PTY (8Oi i~~ 
YES RETURN (TOP)1 - -~O

- 

4N0

PUT RH ONTO TABL EJ

RHo—P1CK/ FROM (TOP) J
[PUT LI-I ONTO TABLE]

I Lft .—PICK/FROM (BOT)
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This Is the final plan. Every step is a primitive, and all the constraints check out. The planning
for base-i subtraction is complete. The final plan is exactly the flow chart representation of the
surface structure of the procedure.

3,7 PlannIng Nets

Planning nets are directed graphs. The nodes of the net reprcscnt plans, and the links represent
planning inferences. That is, each node of the net stands for a flow chart containing a mixture or
primitive actions and subgoals to be expanded. Two nodes are linked only if the application of
some constraint or heuristic to one plan results in the other plan. The link is labeled with the
planni ng rule that causes the change.

Sacerdoti developed a very simila r structure to aid in automated task planning and monitoring in
robotics. it is remarkable that we have found it useful for our research on procedural semantics
as has Greeno for his research on modelling the counting behavior of childre n (Orccno et. al
1978). However, we arc faced with a clash in nomenclature. Saccrdoti calls these sorts of
structures “procedura l nets”. We prefer to call them “planning nets ,” since their content has
more to do with the planning of a procedure than the procedure itself.

Planning ne~z are paflial orders

In fact, planning nets are generally not sequences, as the chronological presentation of the
previous subsection might lead one to believe. Often, two planning inferences can be applied In
either order, For example, step 6 could have preceded steps 4 and 5. To represent this
Independence , we allow the net to be a partial order.

Figure 2 shows the planning net for base-i subtraction. In addition to the names of the planning
rules, the steps have been labeled with the step numbers used in the previous subsection. ‘(ho
split at steps 4 and 6 occu rs because constraints 2 and 6 can be fixed independently, The other
split shows that constraint 6, applied this time to the right hand , can be fixed independently of
the sub goal reduction due to constraint 8.
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1 Implic atiOn ReductIon

2 P-ti ll Climbin g -

r
3 Definition of PICK/FROM

Violat e Constraint 6 Violate Constraint 2

Def init ion

Defini tion 5 
~
‘ of PICK/FROM

of PUT/ONTO

Violate Constr aint 6 
~o 8 Constra int 8

1
~~~~~~~~~~~~ I 1 9

T1
~~~~~~~~~

Constraint 3

- i f

12 ConjunCt ion ReductlOfl
Figure 2
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Planning nets are a complete representation

The previou s section may have left the impression that planning knowledge must be represented
in three parts: the contraints , the plan steps, and the ultimate surface structure , and that planning
serves as a transformation of the constraints into the surface structure. Although this is not a bad
way to think of planning, it is unnecessarily redundant. The planning nets alone capture all three
kinds of information . The constraints that are relevant to the procedure are exactly those
constraints that appear as edge labels. Similarly for the heuristics. The surface structure is the
contents of’ t& bottom node, the final plan. So, planning nets are a complete represen tat ion of
the design of a procedure.

3.8 Planning net mp-morph lsms formalize procedur al analogies

To form alize procedural analogies , one merely app lies the defin ition of “match” for dir ected
graphs that was given in the previous section. That is, a procedu ral analogy is formalized as a
graph theoretic mp-morphism between the planning nets of the two procedures. We will
illustrate this definition with an example.

Figure 3 shows the planning net for a “big-pile” Dienes Block subtraction procedure. This
procedure has ‘he same sort of pairing-off action as the base-i procedure discussed abovc, but it
represents a number as a big pile of Dienes Blocks. Although space does not permit labeling the
link s in the planning net with their planning Inferences, the step numbers should be sufficient to
describe the match with the planning net of base-i subtraction , which appeals In figure 2. Step 9
of flgurc 2 is replaced in figure 3 by a subgraph consisting of steps 9.0 through 9,7. So all the
li nks of figure 2 match the correspondingly numbered links in figure 3, except for link 9. The
reason why lInk 9 can’t be matched is simple: It is the application of the constraint which makes
base-I blocks all cou nt the same, namely constraint 3. In Dienes Blocks, all blocks do not count
the same. Only If they are the same size do they designate the same number. What the
subgraph of steps 9.0 through 9.7 is doing is planning out a way to get blocks that aren ’t the
same size to be the same size by doing the appropri ate trading. In fact, the planning leads off in
step 9.0 by noticing a violation of’ the constraint 3’, which says “only blocks that arc the same
size count the same.”

IL - - - - .- - - - - — - -  
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Y e
9.0

9.1

4 6 9.2

7 9.31. 9.3R
(

10 8 9.4L 9.4R

11 9.5L 9.5R

12 9.6

9.7

Figure 3
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The mp-morphism of the two planning nets results in the following intersection and difference
subgraphs (calling the Dienes Block procedure “A” . and the base-i procedure “II”):

AflO is almost the whole planning net for base-i subtraction , except the link for step 9.

A-B is the subgraph that replaces step 9, whose steps are labeled 9.0, 9.1, etc.

B-A is just step 9 of’ the base-i planning net.

The A-B subgraph is almost the same size as the intersection subgraph . indicating that the
closeness metric would probably give the analogy a rating of “moderate”, which corresponds with
the intuition nicely.

3.9 l)ifferencc generators are used to predict closeness

As we hinted above It is not always the case that the predictions based on the relative sizes of the
intersection and difference subgraphs correspond so nicely with the Intuition. However, In those
cases the problem has been immediately apparen t and was fixed utilizin g the fact tha t plannin g
nets are partial ora’crs.

To illustrate the problem, a new analogy will be introduced and compared to the one described
in the previous subsection. Whereas the earlier example was, intuit Ively , a moderately close
analogy, this new analogy is quite a bit closer still. However , the simple view of the closeness
metric as co’Tcsponding to the relative sizes of the intersection and difference subgraphs. leads to
the false prediction that the old analogy Is actually closer than the new one.

Suppose we compare big-pile Dienes Block subtraction to sorted Dienes Block subtraction, an
anal ogy that earlier provided a counterexample. For convenience , let us attach some letters to
these procedures and the ones used in the earlier analogy:

A: base-i subtacti on

II: big-pile Dicncs Block subtraction

C: sorted Dienes Block subtraction

The BC analogy is Intuitive ly rather close. However, when the planning nets are compared, we
find a huge subgraph of C that isn’t matched , namely all the design that has to do with
maInta ining the sort . Indeed, thIs difference subgr aph , C-B, Is much larger than li-A and A-ft
together. Subgrap h B-C is also quite large , Hence, even though B1~A is somewhat smaller than
UflC, any reasonable metric would predict that anal ogy AD should be closer than analogy UC,
cont ra ry to the intu ition that big-pile Dicncs Black subtraction is more slinilar to sorted Dienes
Block subtraction than to base-i block subtraction. There is a mismatch between predictions of
the theory and judgcmcnts of closcncu. 
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But closer examination of subgraph C-B reveals it has only one enteiing link , jus t like link 9.0 of
figu re 2. This link is labelled “Violates Constraint 11: keep blocks sorted by size”. In other
words, it appears that one plan inference is causing all the others. We can capture this notion of
causation by utilizing the lopology of planning nets.

As discussed above, planning nets are partial orders. Any subgrap h of a partial order is also a
partial order. In particular , the difference subgrap hs are always partial orders. Any partial order
has a unique set of min imal elements. This set is the smallest set of links that dominate all the
other links in the subgraph. These mathematical facts insure that the following terms are well-
defined:

Where X and Y are any two planning nets, let d(X-Y) be the links that are the minimal
elements of the difference subgraph X-Y , and let d(Y-X) be the links that are the
minimal elements of Y-X. Call these two sets the difference generators of mp-morphism
xY.

Difference generators are a formal representation of what is causing the difference between two
procedu res. Intuitively , what the difference generators of mp-morphism represent are the crucial
ideas that separate the two procedures. All the other differences between the two procedures
stem from these few crucial ones.

To illustrate this notion of “crucial ideas”, take the analogy between base-i and big-pile Dienes
Blocks, which we were calling analogy AR in the previous section. d(B-A) is a graph with just
one link , Labelled “Step 9: Constraint 3 -. all blocks are EQUAL ” d(A-B) is a link labelled “Step
9.0: Constraint 3’ -- two blocks are EQUAL if and only if they have the same SHAPE ” Replacing
constraint 3 by constraint 3’ is about as clear a statemen t of the difference between base-i blocks
and Dienes Blacks as one can hope to make.

Because difference generators capture the distinctions between procedures so succinctly, they
seem highly appropriate as the inputs (or arguments) to the closeness metric. They are
decoupled from the unimportant details that fill flow charts, procedural nets and planni ng nets,
details which obscure the essence of anal ogy by inflating difference subgraphs with derived, less
mcaningft il structure. Indeed, the comparison of’ analogy All to analogy BC (I.e. the big-pile vs.
sorted analo gy) now agrees with intuition: all four difference gcner .itors, namely d(A-B), d(B-A),
d(B-C) and d(C-B), arc about one link big. On the other hand , the intersection subgraphs are as
before, with AflB being smaller than BflC. Since the difference generators are about the same
size, the Intersection sets arc more important in the closeness metric. Hence , a reasonable metric
would report that BC is closer than AR . which corresponds with the intuition that big-pile Dicnes
Blocks subtraction is closer to sorted Dienes Block subtraction than to base-i blacks subtraction.
At last, we seem to have found a level of abstraction for procedures where intuitions of closeness
correspond to the relative sizes of the inputs to thc closeness metric.

- --- - - - - --~~~~ 
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3.10 DiscussIon

The main point of this section has been that planning nets provide a basis tbr a theory of’
analogy that can predict the judgements of experts on the closeness of analogies between
procedures. Moreover, all the aspects of the theory have very natural , almost elegant sources.
i’he deep structure used came naturally from Saccrdoti ’s work in robotics, mp morphisms are a
general purpose concept, and the notion of differ ence generators came naturally from the
topology of planning netS. -

We have always been struck by how much of’ the design of a procedure like subtraction Ii
governed by the design of the representation of the obj~c~ manipulated by the procedure (e,g.,
the place-value number system). In fict, many of the actions in any of the elementary ari thmetic
procedures concern not the mathematical operation per se but rather how the object
representatio ns are manipulated. Th is impression is reinforced by experience in computer
programming, which is often a constant inte r play between the design of the object (I.e., data)
representation and the code, even at the highest levels. Anyone who has tried to understand a
program that hc did not write can vouch for the importance of und erstanding the data
repre sentation. In the process of jud ging the closeness of an analogy, a popular strateg y is to first
look at each procedure ’s object representation , and then build the understandin g of the overa ll
analogy on the basis of the anal ogy between object representations. In short , it appears to us that
a large portion of the “understandin g” of a procedure consists of an understandin g of the
implications of the procedure’s object representation.

This view of procedural understand ing is entirel y consistent with the planning net formalism.
The constraints and heuristics that appear in the net represent are, in some sense, the essence of
the procedure. If object representations were unim portant , then none of the planning inferences
would be “about ” the object representatioü. Rut In fact, many planning infcrences do deal with
the object representation. Even In the base-i blocks procedure above, with its extremely simple
object representatIon, we find constraint 3 addressed solely to the object representation. In more
complex procedures, using Dicnes Blocks or written numeral s, an even larger portion of the
constraints concern the object representation. In short , although planning nets abstract out the
less Important aspects of a procedure, they leave behind the design of the object representatIon,
which is quite compatible with the view that, as a representation of “understanding” of
procedures, a fair portion of the constraints should model the “understanding” of the object
representation.

We have not discussed the cx~~t definition of the closeness metric, even though some definition
would be necessary to methodically verify the correlations we claimed above. There are many
difficulties and fine polnis involved in determining such a definition . In particular , It is plausibic
that the weight of some planning Inferences is quite close to zero. We have In mind the
common sense heuristics, such as Implication Reduction, that play an almost invisible role In the

I
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planning. Also, some planning rules are appli ed more than once in a planning net; one may
perhaps wish to avoid giving such rules an inappropriate prominence by only counting their first
occurrence in the difference generators or the intersection sets. These are ju st two of the many
points that one would have to consider in defining a closeness metric.

The reader has no doubt noticed the incredible amount of work that goes into analyzing a
procedure in terms of its planning. First one constructs the flow char t , then the constraints and a
sequential plan for the flow chart, and lastly calculates the planning net by noting which planning
inferences are not ordered with respect to each other. This large amount of work leaves much
room for error on the part of the theorists. However , each level of abstraction is well defined,
and can be checked for consistency by a computer. Thus, one next step is to build a computer
system of utilities to aid in the analysis of procedures. However, there is a certain amount of
intuition that goes Into some parts of the analysis, notably the formulation of a set of constraints,
that we doub t could ever be successfully mechanized.
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4. Analo gies and Teleologic Semantics in Educationa l Research

In this section we consider some of the issues involved in explaining (or teach ing) the knowledge
we explained in the first previous section--teluologic semantics. Briefly, teleologic semantics Is
the kind of knowledge that concerns the purpose of each part of the procedure as well as the
motivation behind the set of constraints that defines the particular representation for the objects.
in particular, we consider how an individua l piece of teleology can be explaine d, and how such
individual explanations can be combined into an integrated explanation.

The section closes with a discussion of some Issues involved in microworld-based curricula.
These issues turn out to be intimately related to those involved in teaching teleologic semantics.

4.1 Local explanations: maitilestation and motivation

An important property of the planning net formalization is that there is a natural notion of how
to explain a small piece of a procedure’s telcologic semantics. By “piece” we mean a constraint
(or a small set of constraints ) that is used in the planning net. To “explain ” it , one uses a
minimal contrasting pair of procedures one with the constraint , and one wi thou t it -. that
compute the same “operation ” as the given target procedure . In other words, we use analogies to
il lustrate constraints. We believe that using a concrete surface structure illust ration for each deep
st ructure concept to be explained is a very important explanatory technique that natural ly falls
out of this development. For example , th is method of explanat ion frees us from having to
explain the planning formalism to the student--a task potentially more difficult than teaching the
procedure itself.

More for mally, to illustrate some given constraint(s), one uses Iwo analogous procedures such thai
one of the d:jjèrcnce generators of the mp-morphis’n between then~ is exactly the given constraint(’4
If the pair of procedures forms a minimal contrasting pair then the mp-morphism constituting the
analogy is elementary.

Of course, this technique works just as well for explaining heuristics. However , heuristics are
often such common sense knowledge that an explanation of them is unnecessary. So wc will call
the planning inferences to be explained “constraints,” avoiding the cumbersome phrase
“constraints or heuristics. ” Also, our terminology will reflect the fact that it Is often possible to
provide a minimal constrasting pair for each constraint individually (this observation Is discussed
below); we use “constraint ” in place of “a small set of constraints.”

An important realization is th at minimal contrasting pairs can be used in two different ways in an
explanation. l’hey can be used to show how the constraint is man j(estcd on the surface , and they
can also be used to motivate the Inclusion of the constraint In the ultimate design of the 
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• procedure. Probably the best way to illustrate the differences between these two uses is with an
example.

Explaining she canonicity constraint

The particular constraint that will be used in this exam ple is one of the most subtle and
influential in ari thmetic, namely the canonicity constraint. To show how the planning net
representation can aid in explaining procedures, the constraint will be presented as the “answer”
to a non-trivial teleologic question.

What is the purpose of carrying? More specifically, if the problem is 52+49 . why bother to
carry ten? Why not leave 11 in the units place? It is not because there is no symbol for the
“digit” eleven -- we could invent one if we wanted. In Dicnes Block addition, the question is
even clearer. Why not leave the answer in the form of 9 longs and 11 units? Why bother
carrying?

The answer is that carrying maintains the canonicily of the representation of numbers. A
canonical representation puts the representational objects in one-to-one correspondence with the
real objects they represent. The Hindu-Arabic representation of numbers is canonical since there
is a unique, distinct numeral for each number. Dienes flocks arc not necessarily a canonical
representation , since most numbers can be represented several ways. For instance , eleven can be
represented as a long and a unit , or as eleven units. The purpose of carrying is to canonicalizc
the sum, by making sure that there are no m ore than nine blocks of any given shape. In other
words, carrying is the manifestation of the canonicity constraint.

But suppose the questioner rejoins by asking what the purpose of the canonicity constraint is,
The answer Involves another arithmetic subprocedure -- comparison.

ft is much more efficient to find out which numeral represents a given large number If the
representation is canonical. Let us use a I)ienes Blocks comparison procedure to illustrate the
gain in efficiency. In a non-canonical representation, the comparison procedure must compare all
the piles, since a very large pile of small blocks can make up for a deficit of larger blocks. In a
canonical representation, the comparison procedure needn’t check all the piles, If it finds that
one numeral has more flats than the other numeral, then It needn’t compare the longs or units;
even if the other numeral has the maximum number of longs and units allowed, namely 9 each,
the first numeral will still represent the larger number. Imposing the canonicity constraint makes
the comparison procedure much more efficient , because it allows the procedure to stop earlier,
But the canonicity constraint Is a constraint on the representation of numbers, and so all
arithmetic procedures must obey It, Even though the constraint makes part of the addItIon
procedure somewhat less efficient, It makes comparison so much more effic ient that it is worth
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having. This appeal to efficiency is the ultimate endpoint in the explanation of the ~noIiva1ion for
carrying and the canonicity constraint.

In this mini-exp lanation of carrying, we have seen two important facets of teleologic knowledge.
In the addition procedure, the canonicity constra int was manifeste d as a carry subprocedure . But
the motivation for adopting the constraint lay in another procedure, co,nparison. Each of these
two facets, which we will begin calling local exp lan ation since they explain just one constraint.
was illustrated with a minimal contrasting pair of procedures. One member of the pair was a
hilly operational version of the procedure that lacked the constraint being discussed, while the
other member adopted the constraint. But the manifestation part of the explanation involved a
minimal contrasting pair which was different twin the pair used to motivate the constraint (i.e.,
addition vs. comparison). As will be discussed later , it is preferable to have a pair of analogous
procedures which illust rates both the manifestation and the m otivation of teleologic concepts but
this is not always possible.

It is our belief that the concreten ess of this minimal contrasting pair paradigm of exp la nation Is
of crucial importance in making teleologic semantics clear. The learner can see in very concrete
terms how adopting a constraint effmxts the procedure. Winston show that a similar cxample-
based paradigm was sufficient to teach the abstrac t concepts necessary to recognize toy block
constructions, such as an arch (Winston 1975, 1978) .

In fact , many minimal contrasting pairs that manifest the given constraint are available,
dependi ng on which of the remaining constraints are adopted. If all the constraints of a given
ta rget procedure arc adopted , then one member of the pair is the target procedure itself.
Otherwise, the contrast is exhibited across a pair of ,nodei procedures which still satisfy the
m athematical constraints of the target procedure . Using model procedures often highlights the
cont rast . making it much easier to see the constraint under discussion. Such was the case with the
canonicity constraint , where Dienes blocks allowed us use non-canonical numbers without
inventing new digit symbols.

However , model procedures must be used with some care, as the following example illustrates.

The impact of efficiency metrics on loop Jamming ”

Consider the difference between the standard carry subprocedure and the twO-pass version
de~ ribcd In the Introduction , where carrying was deferred while all the columns were added.
then performed on a second pass over the columns. This difference Is a constraint that was
called loop jamming, after the compiler optimization technique of the same name which weaves
two loops into one (Allen and Cocke 1972).
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• One can not use Dienes Blocks procedures to motivate loop jamming, since exactly the same
number of hand motions, fact table lookups. etc. are required by each procedure. So, Dienes
Blocks are an inappropriate model domain for discussing this constraint.

However, when implemented with written numerals , loop jamming does create a difference in
efficiency. (See note 8 for details) The two-pass implementation of carrying requires more
writing than the standard implementation. Thus written arithmetic turns out to be an appropriate
domain for discussing the loop jamming constraint.

The important point to notice about this example is that the choice of the model has some
impact on the local explanation. In particular , a model which clearl y displays the marnjèstation
of the constraint in the procedure may not be able to demonstrate the motivation for the
constraint. For example, since one doesn’t have to worry about how to write the intermediate
column sums which may be greater than nine with l)ienes Blocks, we can use them to implement
both the one and two pass addition procedures and thus use them to illustrate the manifestation
of loop jamming . But , unfortunatel y, they cannot be used to motivate loop jamming since the
resulting procedure is no more efficient.

Another point to notice about the preceding example is the use of efficiency metrics in motivating
design choices. An efficienc y metric is some weighted stun of hand motions, fact table lookups,
table s u e , amount of paper used, etc. The weighting of efficiency metrics is very important. For
exampl e, if reducing memory load is mouc desirable than decreasing the nu m ber of write
operations, then the discussion of loop jamming ends with the opposite conclusion , that two-pass
carrying is better than the standard subpro ccdure (see note 9 for details). The two-pass version
uses less short term memory but more pencil lead. So, exactly what efficiency metric is used
greatly affects the local explanation. We do not look upon efficiency metrics as a regrettable new
variable that must be tied down and parameterized with careful experimentation , but rather as a
source of flexibi lity that can be used to tailor the teaching paradigm to the needs of particular
stude nts,

4.2 Principl es for sequencing local explanations

For moderately complex procedures, such as subtraction , the number of constraints can bc high
enough to cause problems of presentation. Our current best estimate of the number of
const raints of subtraction is 17. To explain thus many constraints, each with its own manifestation
and motiv ation, may seem a difficult t ask. However, with the pl ann ing net formalism, we can
investigate how to “opti mally ” sequence a collection of “model” procedures: the first procedure
(or “model”) in the sequence would be a very , very simple version of the skill , and the last
procedure in the sequence would be the target procedure. For example , in subtraction the first
procedure might be base-i block subtrxtion and the last, standard written subtraction. But how
should the Intennediate models be sequenced? 

- - -  - - ---- ~~-- - — ‘---- 
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Using the formalisms developed above, pri nciples for sequencing local explanations can be stated
precisely. Several such principles are stated below that we believe will lead to sequences that
bette r enable assimilation of the overall teleology of a procedure from the explanations of its
parts. l~ach one of them falls out quite naturall y from the planning net formalism.

It will be convenient in what follows to say that such sequences run from left to right -- the
ta rget procedure is the procedure on the far right. This allows us to talk of the left and right
procedures of a mp-morphism . Also, we will speak of the left and right difference generators of
a mp-morphism : if A is left of B, then d(A-B) is the left difference generator.

Introduce each constraint

As we saw in the previous subsection , it is best to illustrate each constraint with a minimal
const rasting pair of analogous procedures. This is probably the most important sequencing
principle, that each const raint be illustrated individually. However , it is probably also true that it
is better to introduce the constraint rather than take it away. This gives the sequence an air of
progression toward the target procedure. Puttin g this principle formally, we have: each
constraint is the sole contents of the right difference generator of some mp-inorphism in the
sequence. That is,

Principle 1. For each constraint C in the target procedure’s planning net.
there cxists i such that d(P m - P~~) = ( C ),

where the procedures are numbered from left to right (first to last).

Starting with a very simple procedure would, hopefu lly, tap a person’s intuitive understanding.
Then , since each of the analogies (inp-morphisms) is very close (or at worst , moderate -. we are
gua ranteed only that one of difference generators is a singleton set, namely the constraint being
int roduced), it slrnuld be easy to transfer that understanding along, auginenling it only slightly as
each new procedure is presented.

Only iniroduce target procedure constraints

Occasionally, it Is nccessary to “bu ild” a left procedure to Illustrate some constraint. This occurs
when one can not adjust the sequence so that the right procedure of some other constraint is this
constraint ’s left procedure . In this case, one ends up with an adjacent pai r of procedures that do
not illustrate a constra int from the target procedure . Although t h e  person (or computer) doing
the explaining can mention that th is analogy isn ’t so important, it would be better if the sequence
did n’t have such pairs. So, another optimization principle to shoot for is:

Principle 2. For each I In the sequence, there cxist~ a constraint C In the target
procedure’s planning net, such that d(P~ P1.1) = ( C 1.

L 
_ _  _ _ _  ______  ___  ___
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Min imize redundancy

One should not remove a constraint that has been introduced previously, or introduce a
constraint twice. Although one could argue that the redundancy of seeing the constraint
illustrated in several different contexts (i.e. with different model procedures) serves to reinforce
the local explanation , we are of the opinion that this would create confusion , rather than dispel
it , and in addition , it would create the impression that the sequence was meandering.

More formally, we propose that the sequence obey the following conditions:

Principle 3. For any i*j d(P 1 - P 11 ) fl d(P~ - P~1) = 0

Principle 4. For any i*j d(P1.1 - P1) (“I d(P11 - P~) =
Principle 5. For any ii d(P 1 - P 11 ) fl d(P~1 - P~) = 0

The first condition advises one not to introduce a constraint twice , and the second condition
advises one to avoid removing a constraint twice. The third condition says that once a constraint
is introduced (the first term) it can never be taken out (the second term). Actually, it also says
that once a constraint is removed, it shouldn ’t be reinserted , which is also a plausible condition to
impose for aiding the cogency of the sequence.

Efficiency should increase nionotonically

We mentioned above th at a minimal contrastin g pair for a constraint does not necessarily show
an increase in efficiency . That is, all ways of manifesting a constraint do not necessarily motivate
it as well . One condition on a sequence is that the model procedures be chosen and sequenced so
that efficiency always increases as the target constraints are adopted. That is,

Principle 6. For all i, P1 is more efficient than P1.1.

Since there are many minimal contrasting pairs that manifest a constraint , it is usually not
dirncu lt to find sonme pai r that motivates it as well , but putting that pair into a sequence with the
other constraint ’s pairs can be somewhat difficult. We know of only one constraint for addition
or subtraction , namely the canonicity constraint , whe re the motivation pair must be distinct from
the manifestation pair. This is inevitable since canonicity is basically designed to improve the
efficiency of comparison , not the other arithmetic operations. Thus, if one were only interested
in a sequence of addition procedures or subtraction procedures, then the pair for the canonicity
constraint would necessary violate this sequence principle. However , with this one exception, it
has been easy to f ind some minimal contrasting pair that serves to both manifest and motivate a
constraint for subtraction.
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However , pu tting such pairs into a sequence requires some care. Switching the order of two
constraints in a sequence often alters the relative efficiency of the minimal contrasting pair of
procedures that manifest the unit. Unde r one ordering, both constraints might improve
effici ency. But under the reverse order , adopting one of the units may result in no increase In
efficiency, or even a decrease in efficiency. This might seem strange, so let us pause a moment
for an example.

Consider ordering the canon icity constraint versus the constraint that Dienes Blocks be kept
sorted by size. First, suppose that the canonicity constraint precedes the sort-by-size constraint in
the sequence. Under this ordering, the efficiency increases between each procedure : imposing
the canonicity constraint forces the procedure to search through the big pile of Dienes blocks to
chec k that there are no more than ten blocks of any given shape. Hence, adophing the son-by-
size const raint greatly improves efficienc y by eliminating rumaging around throu gh the big pile in
favor of simply counting up the number of blocks in each of the small piles.

Now suppose the order in the sequence were reversed , and sort-by-size were imposed before
cano mmicity . The minimal constrastin g pair for sort-by-size consists of (a) adding two big piles of
Dienes Blocks together by simply forming the union , versus (b) adding each of the small piles
together in a series of separate union operations. Now the introduction of the constraint actually
decreases the efficiency of addition. Since no carrying is required (canonicity not being imposed
yet), the re is no use in the separation by size. Maintaining the constraint creates extra work with
no reward . So, modifying the order of two constraints in the sequence can impact the ability to
motivate theni.

Although it may be a diffic ult condition to achieve , if a manifestation-based sequence has
monotonically increasing efficiency, the viewer can see with no additional examples not only wha t
each constraint is, but why it exists (i.e. what good it is).

Telescoping sequences

Occasionally, one finds mp-morphisms which introduce a constraint but don ’t need to remove
any constra ints. The canonicity constraint can be illustrated with a mp-morphism whose left
diffe rence subgraph is null (fur addition , one could use the two-pass addition procedure
described in the introduction as the right hand procedure, amid the first pass of it for the left
procedure). That Is, the mp-morphism is total with respect to the left planning net. It seems
plausible that mp-morphisms which iievcr removed constraints would create a very strong sense
of progression toward a target procedure. Such sequences are characteri zed by the condition

Principle 7. Ior any 1, d(P 1.1 - P1) = 0
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• 4.3 A space of nmp morphisms

Needless to say, it will rarely be possible for a sequence to satisfy all the sequencing principles
mentioned above. Indeed , we mnay only be able to satisfy somne p rinciples along part of its
lcngth , and different princi ples along another part. We need some way to stud y the relative
contributio n of the variou s princip les to ease of explanation.

Ultimately, we would like to develop a representation of all pri ncipled sequences to a given
target procedure. These sequences could be represented in an economical way by a directed
graph whose nodes would represen t plannin g nets. There would be a link trom node A to node
B only if they appeared as an adjacent pair in some sequence that was considered a plausible
exp la nation sequence , per haps because it met some mini m um number of the r. ’inciples listed
above. (In particular , ofl~: might inc lude all (known) minimal cmmst r ast ing pairs for the target
constraints -- this would correspond to using princ iple number one as a th reshold for inclusion in
the space.) This directed graph has the property that any sequence from a “most primitive
version” node to the “ targe t ” node would be a possible sequence for explaining the teleology of
the target procedure. We tend to think of this graph as a space of mp-mnorphlsrns.

One clea r problem that could be attacked with such a space is improving on the naturalness of
telcologic explanations . Presenting the 17 or so mp-morphisms (or procedural models) for place-
value subtraction is hound to be very confusing umiless they cami somehow be ali gned along the
individual’ s own cognitive structures (see Append i x I for a det ailed exa m ple of one such chain of
models). We have al ready mentioned seven principles that probably contribute to better
comprehension of such explanations. Fach of these principles would be incorporated into the
space, perhaps as annotations on the basic paitial order. Hopefully, experience and experiment
will lead to the discovery of other factors that im prove the na:uralness of teleologic cxplanations.

4.4 Using the mp-merph lsms space in nmicrowor ld-based curricula

In a microworld-based curriculum , the studen t ex p lores a rich environment, hopefully inventing
something analogous to the target skill. For example , a student mi ght be given I)ienes Blocks
and a puzzle which requires using mu t ti -~igit a rit hmetic to solve it. Actua lly, how students are
motivated to do the arithmetic is no~ an issue here. The point is that students are not given the
sequence of actions that implement arithmetic for the given representation of numbers. Instead,
they must invent it themselves. Lnvi ntion is the essence of a microworld’based curriculum.

Tracking a indent ’s discovery process

The space of mp-znorphi sms could be quite useful as a way to “ track ” a student ’s discovery
process. The basic Idea is that an observer (pos~ibIy a computer) analyzes the procedures that

- -_
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the student invents in enns of planning nets. The nodes in the space that correspond to the
plans of these procedures arc marked. The student’s progress is then expressed as the shortest
sequence along the constraints that connect the marked nodes. l’his provides a strong hypothesis
concerning what the student has learned during the discovery process.

Such a tracking study would provide an empirical way to verify conjectures about “natural”
sequences for teleologic explanations. That is, observing that students generally followed
sequences that increase the efficiency of’ the procedure would support the conjecture that
monotonically increasing efficiency is important for cogent, na tural explanations.

Sequencing micro worlds

A persistent problem in mic rowor ld-bas ed curricula is how to sequence the microworlds so as to
maximize the cumulation of intuitions built up while exploring the microworld and enable them
to be transferred to the target procedure. One ready answer is provided by the space of mp-
morphism sequences, assuming it has been annotated to show which sequences are most natural.

Sequencing microworlds obviously imposes an order on the traversal of the nodes in the mp-
morphism spaca. Although there arc many Dicnes Block procedures and abacus procedures, one
can’t move from a Dienes Block procedure to an abacus procedure’s node until one leaves the
Dienes Block microworid and enters the abacus cimicrowor ld. So, the most natural sequence of
microworlds is the one that enables traversal of the most natural sequences th rough the constralin
space. Let us illustrate this conjecture with an example.

Suppose one tried to teach addition with the following sequence of microworids:

base-i blocks, the abacus, Dienes Blocks, wri ttcn numbers

One would expect the students to become frustrated when they find that the teleology associated
with place-val ue encodi ng of numbers, which they laboriously invented for the abacus , Is
obviated by the shape-value encoding of Dienes Blocks. And when they find they must resurrect
this place-value notion to move fromn I)icnes Blocks to written numbers, one would expect them
to becomne disgruntled , or worse yet, apply “teacher psychology” and guess that place-value
couldn’t possibly be part of the design because “ we already had that.” In comparison, reordering
the sequencc to be

base-I blocks, Dienes Blocks, the abacus, written numbers

allows Invention of the notion of place-value just once, In transistion from Diencs Blocks to tho
abacus, and then maintenance of the notion throughou t the abacus microworid and on into the
wri tten numbers. 
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These ordering results could be predicted on the basis of one of the naturalness principles
mentioned above , namely, that constraints ought to accumulate along the sequence. They should
be added once and never removed. In the first sequence of microworids, there is no sequence of
procedures that can avoid adding the constraints that express place-value encoding during the
first transition, and dropping some of them during the second transition.

What is the closest possible procedure in a given micro wo rid to the target proc&ure?

Just exactly how close to standard arithmetic procedures can procedures built around a particular
representation of numbers, say Dienes Blocks, be made to be? Can a Dienes Block procedure be
devised that is totally isomorphic to a standard written procedure? This Is a question of interest
to educators. For example, it bears on the question of just how much a child can learn about
standard arithmetic by inventing a good arithmetic procedure in a given microworld, such as
Dienes Blocks. This In turn bears on the question of how many microworlds, and which ones,
arc necessary to allow the student to easily converge upon the target skill. With a formal theory
of analogy between procedures, we can now precisely determine how close the best possible
procedure defined over a given microworld can be to the target procedure.

Take any procedure that uses the given representation of numbers. Examine the difference
generator of the analogy between it and the target procedure (e.g. written addition). If this set
contains constraints can not be met because of the basic physics of the representation, then one
can not construct a model procedure that is isomorphic to the target procedure. An example
should make this a little clearer,

A careful examination of the planning net has shown that it is Impossible to construct a Dienes
Block addition procedure whose analogy with written addition is perfect (i.e. an isomorphism).
One constraint that Is always present in Dienes Blocks involves the shape-value encoding that Is
the hallmark of Dienes Blocks. There is an encoding of the relationshi p between position and
place-value that is present in both written addition and sorted Dienes Block addition, but It Is
redundantly coded by the visual appearance of Dicncs Blocks, If one got rid of this redundancy
by evening out the sizes of the blocks, then they wouldn’t be Dienes Blocks anymore. So the
redunda ncy is inherent in the representation , and will be part of the difference generator of the
analogy to written addition no matter how clever one Is about Inventing Dienes Block addition
procedures.

As a consequence, ccrlain subtle zh~fls in representation which occur in the standard procedure
tbr adding writtCn numbers can not be duplicated In any Dienes Block addition procedure (sea
note 10 for details). ‘lliis deficit gives some bite to the inherent incompleteness; the subtlety of
these shifts m akes them likely candidates for misunde rstandings which Dicnes Blocks arc
apparently helpless to prevent. This essential inadequacy can be directly diagnosed It’ not
predicted using the theory of analogy between procedures.
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in similar fashion, other microworids can be evaluated. This evaluation is, however , quite
constructive. Once the inherent mismatch with the target procedure has been indenti fled , the gap
can be filled by modifying the microworld, or adding another microworld to the curriculum , if so
desired.

In short , many of the same issues appear to be involved in the teaching teleology and discovery-
based teaching. Planning nets seem to provide a formal tool for investigating this relationship
further. 
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5, Conclusions

The major claim of this paper is that planning nets provide useful formalisms for capturing the
teleologic semantics of procedures . However , probably the most important thought to take away
from this exposition Is the Importance and util ity of using planning knowledge in the deep
structure analysis of procedures.

In contrast to other work on analogy, we have ignored the process of solving an analogy problem.
Instead , we have concentrated on an Intuitive determination of what representation most closely
models the way experts conceive of procedures in order to understand analogies. This
methodology has arrived at the same conclusion that was reached by completely different method.
In particular , our planning nets are very similar to Sacerdoti’s “procedural nets” (Sacerdoti 1977),
Sacerdoti has shown his procedural nets to be a suff icient representation for designing procedures,
and indeed much better than other known representations. We have tried to show a similar
representation to be a suff icient representation for judgin g the closeness of analogy, and Indeed
much better than other known representations. In short, evidence is accumulating that planning
net-like representations are good for many purposes. However, we should point out once again
that neither Sacerdoti nor ourselves make any cl~siins that the process of buildin g a planning net,
eithe r for analogy or design. exactly models the human process of buildin g a planning net.

Since telcologic knowledge is a part of a certain kind of expertise , one naturall y wonders how It
can be taught . Planning nets prov ide a precise framework for constructing explanations and
curricula to explicate teleology. In particular . the formalism helps answer the question of how to
sequence a set of “model” proced u res, with certain formal properties. Moreover , many of these
same formal properties seem useful in discovery learning curricula.

Our last comment should undoubtedly be that this research is just beginning. There arc many
deficiencies and questions that must be addressed . Reliable empirical measurements of closeness
and transferabilit y m ust be made. ‘l’hc general precision of the theory must be improved, and Its
inordinate amount of detail must be tamed, hopefully with the aid of a computer. In particular,
we would like a complete, precise space ot’ mp-morphisms for all five arithmetic operations. The
limitations of the theory should be tested by exercising it on ex amples from other domains. In
other words, this paper Is more a proposal to investigate a promising line of thought than a report
on completed research.
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Notes

Note 1: h I s  safe to assume that individuals will differ in their judgements of the closeness of
analogies. We take the position that this is due to the different deep structures that they assign
to procedures. For example , someone who is just learn ing addition may not find the analogy
between one-pass and two-pass addition particularl y close. This might be due to a lack ot’
distinct concepts for “carr ying ” and “column addition ” , So, how one understands a procedure
affects the data that the theor y of analogy will be verified against. Since we are interested In
telcologic semantics and since telcologic unde rstanding is a mark of expertise, it was important to
use experts as subjects.

Note 2: Tversky (1977) weighted the features in the set A-B more heavil y than the features in the
set B A  in order to account for certain experimental data , e.g. that “Red China is similar to
North Korea ” has a lower degree of intui t ive similarity than “North Korea is similar to Red
China. ”

Note 3: The judg ements of closeness are those of experts on arithmet ic, and so can be taken to
reflect the Icleologic semantic s of ari thmetic .

Note 4: The fblklor e abou t protocol takin g, supported by a few experi m ents (Card 1978), Is:
when in doubt, use a finer grain size. If the grain size Is too large , one might miss distinctions.
If one errs the other way, and makes the grain size too fine , then one creates more work for
onesel f, yet if one is tenaci ous, the relevant distinctions will ultimately appear , probably as
relations between groups of actions instead of sInglc , individual actions. So, it app ears that the
grain size issue (and a very similar issue, iiamely the choice of primitive actions) appea rs to be
more a practical t radeoff than an insunn ountab ie source of uncertaint y in the theory.

Note 5: Dienes Block subtraction and other block subtraction procedures are usuall y taught using
oral or written presentat ions of the problems. Thus , to solve n-rn, the first step is to translate n
into blocks , using some “bank” as a source of blocks. Next , one translates m into blocks, but uses
the f irst pile as the source. When one Is finished translatin g, the first pile contains n-nm blocks.
This procedure for doing block subtraction is so dissimilar to written subtraction that we have
avoided using It In this paper.

Note 6: In formulatin g constraints , It is very important to put as little into each constraint as
possible. For example , we could have replaced constraint 2 by “decrementing DOT by 1 must
echoed by dccrement lng TOP by 1.” Although adequate ftr  base-i subtraction , this Ii not the
most general statement of the constraint , and indeed , this constraint would have to be replaced to
handle Dienes Block subtraction , The basic Idea Is to split the declarative description of the world
and the goal as finely as possible, so that small variations on the procedure can be modeled by

I. - - --~~~~~~~~~~- --~~~~- - - --~~~~~~~~~ —- -  -~~
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replacement of one constraint among man y small ones, rathe r than modification of one clause of a
large, special purpose constraint.

Note 7: We have glossed over a number of very difficult issues in the presentation of the
planning steps. For instance , why was the TARLE~ chosen in Step S as the location for emptyIng
the LH? How did we know not to empty it on ‘to P or noT? Only the successful reasoning has
been presented -- the alternatives that didn ’t work weren’t mentioned. Most of the research In
planning for robotics has gone into impro ving the search for correct plans by recognizing
unworkable alternatives and recoverin g from them gracefully. All these difficult questions
involving search can be ignored because we are only interested in having a correct planning net
for a procedure , not in f inding one.

Note 8: In the standard version of subtraction , where the carr y loop is jammed together with the
add-column loop, one must write i i i  in digits , where n is the length of the longest addend , and
m is the number of carries required (it is assumed that one writes a “ 1” above the columns one
carries into). In the two-pass version . one must wri te ii ~ 2ni digits: one must re m ember from the
fi rst pass which columns are overflo wing, and this requires in notes to oneself, say in the form of
writi ng a “ 1” above the overflowing column. l’he second in operations come from rewriting the
answer digit of the columns th at are carried into. There may be even more rewritin g if the
answe r car ri ed into is a 9.

Note 9: In the column carried into , the standard subproccdure requires adding three digits , one
of which is of course t Im e carried “ I ” . But adding three digits requires remneinberin g the sum of
the first two digits while accessing the third digit. ‘ftc two-pass suhproccdur c doesn ’t load
memory this way , si nce the intermediate sum is written down instead.

Note 10: When one adds tw o large digits from a given column, one gets back a non -digit . e.g.
“ 14” . The first shift in representation is to brea k this numbe r down into units and (cils. Nex t.
the units must be converted into a digit in the colum ns being added , while the tens must be
converted into an a rgu mnem it to the carr y suhpr occdur c. Iii l)icnes Block addition , the second
conversion is supe rfluous, since the result of the columnn addit ion is already scaled up to the
value of the column , so to speak. That is, an add in the tens coltm inn yields “140” in the form of
14 LON(JS, not 14 UNI ’rs.

_ _  _ _ _ _ _ _
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Appendix I

An explanation of the teleologic semantics of subtraction

To give a feel for how an explanation based on paths of minimal contrasting pairs of analogous
procedures might go, an example of such a path is presented here. H begins with base-i
subtraction model , passes through some Dienes Block subtraction proc edures. and ends with the
standard procedure for subtraction of written numerals. Although reading these rather abbreviated
descriptions can have nothing like the impact of actually handling the blocks and doing the
procedures, the power of this technique to explain telcologic semantics should nonetheless be
apparent. -

Throughout the path , there is a certain ambivalence about the particular material that Is used in
the representation of number. In fact, the primitives and constra ints used to describe an~t
implement procedures reall y can ’t differentiate rea l , wooden Dienes Blocks from, say, drawings of
Dienes Blocks, as long as they are mani pulated the same way. In fact, there is no particular point
where adoption of the constraints of the ta rget procedure (written subtraction) forces us off the
counting table and onto pap er -- one can actually implement standard subtraction with cards
bearing digits.

However , the material does make a difference to the efficiency metrics, in particular, some of the
later constraints can only be motivated by assuming that erasing is more work than writing , which
is tru e of paper, but hard to emulate with mnani pu latory materials.

We start with base-i blocks because the mathematical semantics of this subt raction procedure are
simple and concrete.

1. Polynomial Base-I numerals are rather bulky for representing large numbers. One solution to
the block managenment problem is to let some counters stand for a fixed number of the unit
counters. This is the polynomial constraInt (3 in the text). The next procedure of this mp-
morphism Ii a simple version of big-pile Dicocs Block subtraction.

L Search Instead o( Random Choice ThIs mp-morphism adds the notion that searching for two
blocks of the same shape is more efficient than picking two blocks at random, then trad ing to
make them the same shape,

3. Chose Larger to Trade Down The Idea here Is to trade down the larger of the two blocks. It
one picks an arbItra ry block to trade down, but not the unit bloc k , then eventually one will be
able to match their shapes, but it will often take more tradin g than always picking the larger one
to trade d3wn. This range procedure requires memorIzation of which of two shapes stands ftx a

( 
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larger mult iplier.

4. Search for Next Larger Before Trading When One can ’t fi nd two blocks of equal shape, and
instead has two blocks of unequal shape, then before trading down the larger one , replace it with
a block that is the nr.~I size larger than the smaller block. If the search succeeds, omme only has to
t rade down once. ‘l’his plan step requires memorizing which shape is the next larger one than a
given shape.

5. Choose lot’ to Trade flown This model is motivated by observing that when the block that is
traded down comes from DOT (the bottom numeral ), the subtraction as a whole takes more time
than it would if the bloc k had come front LOP (the numeral that is being subtracted from). When
a block from DOT is traded down , the nine smaller blocks that are left over go back into DOT. So
the main loop must i-u n nine t im es more . If a bloc k comes from Tot’, the nine extras go back Into
TOP. If HOT runs out soon, they m a y  never be touched . So trading down a bkx± from Top is
more efficient than trading down a block fr u m m m DOT.

The goal of choosing moP blocks creates a subgoal that the TOP block be larger than the DOT
block. This subgoa l is satisfied by a subgr aph which is already a part of the domnam planning net,
namel y, the union o1 the subgraphs generated by mnodcls 2 , 3 and 4. So, the new part of the
planning net underlying this p rocedur e is just the part that satisfies the goal “chose oar block”
exclusive of the part which satisfies the subgoal.

6. Canonicity This constraint was described in the text.

7. Base Ten The canonicity constraint produces a trading pattern which is nwch easier to
remcnther if all the multipliers arc powers of ten (or some other base). For examp le, in canonical
American money, which is a polynomial representation but not a base-lU representation of
number, a citize n would canonicalize their pocket clmangc by trading in five pennies for a nickel ,
two nickels for a dime, three dunes for a quarter and a nickel , etc.

8. Sort by Power Canonical izat Ion ( = carrying) and decanonicalization (= borrowing) arc
somewhat easier If numerals are wmied so that all counters of a certain power are accessible at
once. Dienes Blocks, as we observed them being used In schools, lacked th is constraint. In fact,
Dlcncs Blocks also lack thc canonical and base-tO constraints as well. However, teachers usually
require their students to obey these two.

L Power Represented by l ocat ion Only Numerals must takc up space, either on table tops or on
paper. Once powers arc sorted, location In apace redundantly represents the power of a counter ,
In th is mp-morphism, that redundancy is removed by making all coefficient tokens (I .e. ~dlgllsH)
look the sam e, regardless of the power. The abacus , for example , obeys this constra int , ibis
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allows one to represent much larger numbers, since one need not Invent new token shapes when
one needs to use a new, higher power. That Is, one can make an abacus of arbitrary width, but
Dienes Blocks, which arc inherently unable to obey this constraint, are limited in practice to at
most four poweli.

10. Zero To use location to represent power, a prearranged pattern of locations must be used.
But, such flied patterns, like the abacus or columnar ruled paper, can’t represent numbers that are
larger than they have been designed to represent. Moreover, producing the patterns accurately is
difficult to do free hand. A good solution to this problem is represent power with relative
locations, which amounts to using zero as a place holder. A “relatIve-location abacus” could be
built which lays out piles of beads in a line on the table; It would use a clear plastic bead as a
place holder and piles of colored beads as non zero “digits,”

11. Mlgnment In setting up the subtraction problem, one Insists that the numerals be aligned so
that digits of the same power are in the same column. This reduces the effort necessary to locate
the digits of matching power when subtracting.

12. Non-countable Coefficients It Is quicker to arrange counters on a table or write coefficients
symbols on paper if the number of counters or strokes Is small. This motivates replacing
countable coefficients with symbolic ones (e.g., digits). However , with symbolic coefficients, the
PJ CX/FLL OM operation mi radically altered. It Is no longer possible to decrement a coefficient by
picking up a piece of it (I.e., picking up a block or erasing a hash mark). Instead, a
dccrcmcntation table must be memorized. That is. one must be able to count backwards from
twenty.

There is no particular point where the target constraints force us off the counting table and onto
paper. Manipulatory systems can be devised which use non-countable coefficIents. One such
manipulatory system is simply a act of card s bearing digits, which are laid out in a line on the
table.

13. MemorIze Pairing Of! The next few minimal contrasting modcls are designed to minimize
the manipulat ion of the cards in a manipulatory system, or erasing a digit and writing a new one
in a written system. In the previous number systems, column subtraction was realized by pairing
off decrements of the top and bottom digits. A NmnOvIc~ of the card procedure doing 1$-3 would
be

DE~J ~~D0 ~~~~~ ~~D0
LB LB D 0

_ _ _



-~~~~~ —~~-- -

50

This model replaces this pairing off loop with a table lookup. A “movie” of the modified card
procedure doIng 25-7 Is

DEl DEl
D~~~~D~~~~D

14. Memorize Comparison This model procedure replaces the two step borrowing (see movie
above) with a one step borrow by looking ahead. That is, it looks ahead to see which digit will be
zero -- the top or the bottom. This amounts to memorizing the greater-than table for digits. Now
the movie for 25-7 ii

DEl DEl DEl
[iI

_

~~~~~~D

15. Memorize Teens Facts Two table lookups can be reduced to one, and tw o digit rewrites can
be saved if a new facts table is provide d for the teens facts. The new table is 10 by 9 and
contains facts like 15-7=8. The movie reduce s to

DEl
El 0

16. Sequence Columns In the previous systems, columns are processed in random order.
However, this necessitates marking the columns that are done by zeroing the bottom digit. ‘This
digit rewrite can be saved if the columns arc processed in some set order -- either left to right or
vice versa. The planning heu ristic , that is the right difference generator of this mp-morphism,
could be called “ordering independent operations reduces mark ing ”.

17. Answer Register If a separate place is provided for writing the answer , then crasures of the
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top digits can be reduced. This Is motivated by the fact that writing a digit is easier than
erasing -- a property peculiar to paper.

18. Right to Left If the columns are processed right to left , one borrows from the top digit. If
the columns are processed left to right, one borrows from the ans wer. The numeral that gets
borrowed from ends up with crasures, while the other one has no erasures. If one erases by
scratching out the digit and writing the new digit above , then the numera l that’s borrowed from
can become a real mess. The motivation for this analog y is that there is more need for the answer
numeral to be legible than the top numeral. Hence, subtraction is more efficient if one processes
the columns from right to left.

At last, we have arrived at the standard subtraction algorithm via a sequence of procedures/models
where each model in this sequence has a mp-morphism between it and its immediate successor
thus creating a well structured sequence of analogous models converging to the dc’sired target
procedure.

- ~~- ~~—--—-------- ~~~
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• orr •~r .~y ,  CL 9~~~40
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A i r  Force t~2ar ines

Dr.  ~arty Ro ckway (A FHRL/TT ) D i rector , Off ice  of :~~npowe r U t i l i z a t i o n
Lowry A FE HO , ‘larine Corps (1’IPU)
Oolor~do 302 30 ~CB , B ldg . 200 9

Cu ont i co , VA 22 1 3 14
Jack A .  Thorpe , Capt , USAF
Program Manager 1 ~CDEC
Li fe  Sciences Di rec torate  Ouant ico t~~r ine Corps E~~se
AFC SR ~u a n t i c o , VA 22 13 14
Boll inE AFE , DC 20332

I DR. A.L. SLAFKOSKY
SCIENTIFIC LDVISC~ (CODE RD_ I)
H O , U.S. 1’~AFINE CC9.PS

~ASHING1CN , DC 2)333

1~~~~~~~
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CoastGu ard Other DoD
I

~~~ JOSEPH J. CC,. A N , CHIEF 1 Dr. Stephen .4ndriole
PSYCEOLCOICAL HESEARCH (G_P_ I/62) AD VANCED RESEARCH PROJECTS ~GENC 1
U . S .  CCAS T G UA R D EQ 11400 ~ ILSOi~ BLVD .

~A~~ IN CT ON , DC 2 590 ARLINGTO N , VA 22209

12 Defense Docuaentation Center
Cameron Sta t ion , Bld g.  S
Ale xandri a , VA 22 3 1 14
P t t n : TC

I Dr.  t ect er  ?L- ~tcher
ADVANCED RESEARC H PROJECTS AGENCY
1 1400 WILSON ELVD .
ARLINGTO N , VA 22209

I N il i ta ry  Assist ant  for Tra in ing  and
Personnel Technology

Office  of the Under Secretary of De fense
fo r Research & Engineering

Roo m 3D 12 9 , The Penta gon
washington , CC 20 301
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Civil  Govt Non Govt

j) r . Susan Chip~ian 1 Dr .  Earl A.  Allui si
i~asic Skil ls  Program HQ , A F E RL (A FSC )

• Nationa l Inst i tute  of Education BrooKs AF B , TX 7 E 2 35
1200 19th Street NW
Wasnington , DC 20203 1 Dr. John R. Anderson

Department of Psychology
Dr. Joseph I. Lipson Carne gie t-~ellon Univers i ty
Division of Science Education Pi t tsbur gn , PA 1~~2 13
Roon v- — 6~ P
National  Scier.ce Found ation I DR. MiCHAEL ATWCCD
Washin gton , DC 20550 SCIENCE A P PLI CAT ~ O~S IN STITUT E

140 DENVER TECH . CENTER ~B~T
~~~ ~~~~ j~ays 79°5 B. PRENTICE AVEI-JUE
‘lational Institute of Education ENGLEWCCD , CC 0 110
12 13 11th Street NW
,ashington , CC 2020 3 1 1 psycholog ical research  uni t

Dept. of Defense ( Ar my Cf f i c e )
Dr.  A r thur  ~elmed Campbell Park Cf f ic es
National  In t i t u t e  of Educa tio n Canberra ACT 2600 , Au st ra l ia
I2r~3 19th Street N W
Wa sh ington , DC 2020 3 I Dr.  Al an Ead del ey

Medical ~~sear ch Council
Dr. An drew R .  Molnar Applied ?sycholo~y Uni t
Science Educ atio n Dev. I~~ Chaucer hoaa

~nd Res ea rch Carnbr io~ e CE2 2EF

~at i ona l  Science Found at io n E NGL A ND
nashi r.~ton , DC 2O5~0

I Dr. ~.icnola~ .. E cn c
Dr. Thomas C . Sticht Dept. of Psycr .o 1o~ y
Easic Sk: l s  Pro~ r~ r. Sacr amento S t ’t e  Collere
~.~ tional Institute of Ecucation s-D O J~ y Street
1230 l°tn Stree t ~~~~. Sacramento , CA C~~~~ I 9

.sasr.iroton , DC 20273
Dr. Lyle Ecurrie

Dr. Josech L. Young , Director ~ep3rtment of Psycnology
M °mo ry ~ acni tjve Processes University of Cc i ar~ -ic

~a tiorai Science Foundation Boulder , CC 7 0 37 2
Wasnin~ ton , CC 205~0 1 Dr. Ker.net~ Eowles

institute for Information Sciences
U n i v e r s i t y  of’ California at San Di~~ c
La Ja ila , CA 92 3 7~
Dr.  Jonn S. F r own
X Er ~CA z~aio 1 .:c Re search Cc l er

Coyo te Roa~.
Palo Al to , C? 914 04.

_ _  
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Non Govt Non G0VP-

I

DR. C. VICTOR EUI-;DERSON I Dr. Ed Feigeribaum
‘nICAT NC. Department of Computer Science
UN IVERSITY PLAZA , SUITE 10 Stanford U n i v e r s i t y
1160 50. STATE ST. Stanford , CA 14 335

ORE M , UT 814057
1 Mr.  Wal lace  Feurz e ig

Charles ~.yers Libr ary Bolt Eeran ek & N ewman , Inc.
Living stone House 50 ~oulton St .
Livingston e Road Cambridge , M.A 02 13~
Stratford
London E ’5 2LJ 1 Dr .  Vic tor  F ie lds
ENGLAND Dept. of Psycnology

Montgomery College
Dr. Will iam Chase Rockvi l le , N D 20350
Department of Psycholo gy
T hr r~~-~j e ~-!ello n Univers i t y  1 Dr. John R .  Frederiksen
Pittsburgri , PA 1~ 213 Bolt B eranek & N ewma n

50 Moul ton Street
Dr.  M ichel ina Chi Cambridge , NA O213~Learnin g R & D Center
University of Pittsburgh I DR. ROBERT GLASER
3979 O’Hara Street LRDC
Pit tsburgh , PA i52I~ UNIVERSITY OF PITTS2URGH

3939 O ’HAR A STREET
Cr .  A l l an  ~~~. Coll ins PITTS BUR GH , PA 152 1 3
Bolt  Beranek & Ne~~~~n , Inc .
c~ ~-.oul ton Street I Dr. Ira Golest ein
Car~ ricg e , N~a 72 1 3 6  )ERCX Palo .~ i t O  R e s± - ir c h Center

33 3 3 Ccyot ø Ho-~-~Cr .  ~eredith Crawford Palo Alto , CA ~143014
Depar tc~~nt of Engineering Ad~~inistrationGeorge .~a snington Unive r s i ty  I Dr. Ron ~ambleton
Suite 6)~ Scnool of Education
2 1 7 1 L Street N. W . University of Nassechuset’s
W~ snir.zton, DC ?00~7 Amhe rst , !A 01732

D r .  Pu~ ert Dr~ yfus 2 Dr. Rarbara Ha yes—Roth
3epartment of Philosoohy The hand Corporation
Univers i ty of Cal i fornia  1 77Q ~:1j n Street
~erkely, CA 9~~ 2O Santa Monica , CA 90 14C~
NAJO R 1. ~~~. ~vs~;ic I Library
cA ~A3: ;:: FC~ CE -~ REPS . .tPPLIE.D &E5~.AR C H HunRr ~C-/~~ st ern Division
1 1 1 7  AVENUE tiC.A C 27257 Berwick Drive
I~~ C .TC , CN T A~~IC , C~

..NACA C~ r~ e1 , CA 392 1
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Dr. zarl Hunt 1 Dr. Michael Levine
D~pt. of Psychology Department of Psychology
Un ivc~rsity of Washington University of Illinois

~ ‘a ttle , ~A 9~ I05 Champaign , IL 61~ 20

~r. Gary Irving I Dr. Robert .. Levit
Data Sciences Division Manager , Behavioral Sciences
Techno1c~ y Services Corp or ation Th’ ~DM Corporat Ion
2 3 11  ~.i lsn ire B lvd .  7 9 15  Jones Branch Drive
Santa Monica CA 901403 ~4cClean , VA 22131

Cr. Steven 14. Keele I Dr. MarK M i U e r
Dept. of Psychology Systems and Information Sciences Laborat
University of Oregon Central Res~arch Uaboratories
au~~r.e , CR 97403 TEXA S IN ST UM~ NTS , l I C .

~-ail Station 5
Dr. ~aIter Kintscn Post Cffice Box ~935
Department of Psychology Dallas , TX 75222
University of Colorado
Eould~r , CO 33302 

1 Dr. Rieflard B. t’~illwa rd
Dept. of Psychology

Cr. Davic Kieras Hunter Lab.
Department of Psychology Brown University
University of Arizona Providence , RI a2912
Tuscon , AZ 6572 1

I Dr.  Allen ~!urtro
:~r . Ntarlin Kroger Ur.:;. of So. Ca l i forn ia
1 1 17  Via Goleta Eeh~ vioral Technology Labs
Pal os V~ r~es Estates , CA 97 27 U 37 1 7 South H op e Str eet

Los Angeles , C~ 90C07
LCOL. C . R . J .  LAFLEUR
PERSON NE L APPL I ED RES E A P CH 1 Cr.  Don ald A Norman
N A T I T h A L  DEFENSE HCS Dept .  of Psychclo gy C— 00 9
1 3 1  COLONEL BY DR:VE Univ . of California , San Diego

~TT A ~~A , C A N A D A  K I A  0K2 La Jolla , CA 92093

Er. Jill Lark in I Dr. Seymour A. ?apert
Massachusetts  In s t i t u t e  of Technology

0/c F~ ys ic3 Department Artificial irtelligence Lab
Univ ers i ty  of Cal I forni a  5145 Techno logy Square
~erkely, CA 9u723 Cambridge , MA 02139

~y. A lan Leszold I Dr. James ?. Pa u zcr.

~e cr n i n ~ R~ D Center Port l~ nJ Stat a  Univer s i ty
Un iv e r s i t y  of P it t sbur ga P .O. ~ox 75 1

P:t tsour ~ n , PA I~ 2~7 Po r t l and , CF 97237

S
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Non Govt Non Govt

~R. LUIGI PETRULLC 
1 Dr.  John Thomas

21451 ~~~. ED GE W CCD STREET IBtl Thomas J. Watson Researen Center
AHLINGTCN , VA 22207 P.C. Box 21~

~orktown heignts , NY 10598
DR.  PE~ ER POLSON
DEPT . OF PSYCHOLOGY I DR. PERRY rHORNDYKE
UN1V~.RSITY OF COLORADO thE RAND CORPORATION
B CU LDE R , CC 80302 170 0  ~A 1~ ST RE E T

SANTA MCNICA , CA 901406
Dr. Peter B. Read
Social Science Research Council I Dr. Dav io J. ~eiss
605 Third Avenue t’~630 E l l io t t  Hel l
U~~ Yor~< , NY 10016 University of Ninr.ezota

75 ~~~. River Road
Dr.  Fred Reif ~inneapo li s , V.~. ~5~55
SESAI IE
d o  Physics Department I Dr. Karl Zir.n
University of California Center for research on Learning
F-erkely, CA 914720 an~ Tecohing

University of Micaigan
Dr. Ernst Z. Rothkopf Ann Arbor , ~I 143 10 14
Bell Laboratories
52-3 ~iountain Avenue
‘urray Hil l , NJ 179714

Dr. All~’n Schoenfel d
SESAME
d o  Physics Depart~ entUni v er s i ty  of Caii~ orr~Ia
~erk ely , CA 914720

Dr. Robert Sternberg
Dept. of Psychology
Yale Univers i ty
Box 11 A , Yale Sta ti on
~~ —aven , CT 0652C

DR. ALBERT STEVENS
SOLT EE RA ~:E K & ~~~~~~~
~O t:CULTC~; STREET
CA :~!ERIDGE , ~A 22I~~

JR . PATRICK SUPPES
F R ~A rFE~.AT:c~ L STU D IES  iN

THE S C I A L  S CI E ~1CES
S T A N F C !~C
S7ANFD ~C , CA ?~~ 7~


