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RETURN POLICIES FOR AN INVENTORY SYSTEM
WITH POSITIVE AND NEGATIVE DEMANDS

Daniel P. Heyman

Bell Telephone Laboratories : ﬁ e e \\ \\
\1

Holmdel, New Jersey

ABSTRACT

We consider a single item inventory system with positive and negative stock
fluctuations. Items can be purchased from a central stock, » items can be re-
turned for a cost R + rn, and a linear inventory carrying cost is charged. It is
shown that for minimizing the asymptotic cost rate when returns are a
significant fraction of stock usage, a two-critical-number policy (a,b) is optimal,
where b is the trigger levei for returns and b — a is the return quantity. The
values for a and b are found, as well as the operating characteristics of the sys-
tem. We also consider the optimal return decision to make at time zero and
show that it is partially determined by a and b.

1. INTRODUCTION

For some types of telephone central office equipment it has been observed that disconnec-
tions, rearrangements, and so on, of the equipment occur frequently enough that net demand
(outflow minus inflow) may be negative in some time periods. This phenomenon may also
arise whenever a supplier receives new and repaired items to satisfy customers, for example
military depots. For these situations, inventory models that consider only positive demands are
inadequate.

The negative demands cause the inventory level to increase, perhaps to undesirably large
values. Thus, we are interested in finding a policy for returning inventory to another storage
facility — which is the subject of this paper. We wili consider the dynamic behavior of a single
inventory location which has the option, at any time, of returning any part of its stock to a cen-
tral warehouse.

The single inventory location model is of interest in its own right, but it is also important
as a building block for multiechelon, multilocation models. In the telephone central-office

i application, many central offices are supplied from a common central stock, which can place

orders on an external source. Clearly, the return policies followed at each central office should
be jointly determined for optimal performance.

In an unpublished report (3], the author studied such a two-echelon, multilocation model!
and found that the jointly optimized policies for the second-echelon facilities were approxi-
mately the same as the individually optimized policies obtained from a single-location model,
and so were the operating characteristics of the system, for reasonable values of the system’s
parameters. Furthermore, obtaining the jointly optimized policies is computationally prohibitive
(except for exploratory research), so individual optimization provides the only practical method
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582 D. P. HEYMAN

for obtaining return policies. The two-echelon model mentioned above requires a large amount
of detailed, but standard, manipulation to analyze; some numerical results obtained from it will
be reported in this paper.

The traditional inventory models that assume that demands are nonnegative and do not
permit stock returns are clearly not suitable for the problem considered here. The cash-balance
inventory models (see, e.g., [2] and [10]) explicitly consider negative demands but also allow
the stock level after a return to be negative, which is not appropriate for our problem. If the
cash-balance models are modified so the stock level is always nonnegative, one can obtain
optimal return policies for a single review-period model quite readily, but multiperiod problems
lead to intractable dynamic programs [11]. Whisler [14] studied a stochastic inventory model
for rented equipment. The decision to reduce the number of items rented in Whisler’s model
corresponds to the decision to reduce inventory in our model, but Whisler assumes that no ord-
ers can occur when the stock level is zero except between regularly spaced decision epochs,
which is not appropriate for our problem. Our formulation allows a fixed charge for returns to
be incorporated in the model with no extra work; fixed charges are very troublesome to add to
Whisler’s model. Heyman [4] considered the problem of setting a maximum stock level when
there are negative demands. That model can be interpreted as a special case of this model
where the return quantity is fixed at unity. Hoadley and Heyman (S] describe a one-period
model for the problem discussed here. It has not been found possible to extend that model to

a dynamic situation.

In section 2 we formulate our model and obtain some preliminary results for obtaining the
optimal long-run policy. Results for completely specifying the model as a nonlinear program
are given in section 3. This nonlinear program can be solved, in integers, using an unpublished
fixed point formulation due to R. Saigal [12]. Some numerical examples are given in section 4.
In section 5 we formulate the problem as a Markov-renewal program to study the return prob-
lem at time zero. Consequences of this formulation for the infinite horizon problems are given

in section 6.

2. MODEL FORMULATION

In this section we will describé the basic structure of our model and obtain some prelim-
inary results.

2.1 Basic Assumptions

To avoid confusion between items which are returned from the field and items which are
sent to the central stock, we will call the former disconnects and the latter returns. The demands
on the facility will be called connects, and items sent from the central stock to the facility will be

called shipments.
We will make the following assumptions about costs:

(i) The cost of returning n items is R + nr.
(ii) The cost of shipping n items is ns.
(iii) There is a holding cost rate of / per item per unit time applied to each item in inven-
tory.

A fixed cost is absent in (ii), because a warehouse activity should be preparing items for ship-
ment as a matter of course. The holding-cost rate reflects the usual collection of warehousing

expense, ad valorem taxes, tied up capital, and so forth.
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INVENTORY SYSTEM RETURN POLICIES 583

We will assume that the inventory facility always receives a shipment immediately after
requesting it from central stock, and that the connects and disconnects each form a Poisson
process with rates u and A\ respectively. To avoid trivialities we assume 0 < A,u < oo, These
Poisson assumptions are necessary for the analysis given in section 3; useful approximate
results can be obtained, if the processes are allowed to be arbitrary renewal processes, by the
methods described in [4].

Let us temporarily assume a two-critical-number policy denoted (a,b), with a and &
integers and a < b. The number b is the "trigger level" for making a return and a is the stock
level after the return of size & — a is made. In section 6 we will show that such a policy is
indeed optimal. For the present we will concentrate on finding the optimal values of a and b,
denoted a*and b*respectively, which minimize the asymptotic cost rate of the system, denoted
by C(a,b). Note that, by cost assumptions (ii) and (iii) and the assumption of zero lead time
for shipments, only one item should be ordered at a time from central stock and then only
when a connect occurs when the inventory is zero. We will let C* = C(a*b*).

2.2 Obtaining the Cost Function and
Some Conservation Laws

Let us examine the inventory process. A sample path of the stock level will have the
general behavior shown in Figure 1. The arrows at 7, and ¢ signify that a disconnect occurred
when the stock level was b — 1, so the stock level rose to b and then instantly was reduced to a
by a return. Note that the stock leve! is at b for only an instant, so b — 1 is the largest stock
level actually observed.

During the time intervals (¢o,¢,] and (¢,,7;] the stock level is zero, so connects occurring
during these time intervals will have to be satisfied by shipments.

STOCK

LEVEL

b -

- ﬂj
a =
E

I-J—l r
l 1 1 —>  TIME
o N 213 14 15 6

FIGURE 1. A typical realization of stock levels.
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584 D. P. HEYMAN

Let mo= mo(a,b) and w,_; = m,_, (a,b) be the asymptotic probabilities that the stock
level is zero and b — 1 respectively. Since the connects form a Poisson process, asymptotically,
the rate at which connects occur when the stock level is zero is w1, Since each such connect
generates a shipment which costs s, the cost rate for shipments is sumy Since the disconnects
form a Poisson process, the rate at which returns are made is Am,_,. Since each return costs
R + (b—a)r, the cost rate for returns is [R + (b—a)r]Am,_,. Let L = L(a,b) be the average
stock level in the steady state. Then /L is the asymptotic holding-cost rate. Thus, the total

cost rate, C(a,b), is

2.1 C(a,b) = spmy+ [R + (b—a)r]Am,_, + AL.

We can simplify (2.1) by establishing an equation relating 7, and 7,_,. The disconnects
occur at rate A and are used either to saiisfy future connect orders directly or are returned. The
rate at which the former use occurs is (1—mgu, because that is the rate at which disconnects
are satisfied from stock at the second echelon. The rate at which the latter use occurs is
(b—a)\m,_,, because Am,_, is the rate at which returns are made, and each return is of size

b—a. By conservation we obtain

2.2) A= (-mpu + (b—a)(A\m,_),

which relates mg to w,_,. Thus, C(a,b) can be specified once 7 and L are determined. Sub-
stituting (2.2) into (2.1) yields
(2.3) C(a,b) = sumo+ (R + (6—a)rlA - (A ~wul(b—a) ™" + hL.

Now let us consider the net demand rate (shipment rate minus return rate) a second

echelon facility places on the central stock. By conservation it must be u — A; if this quantity is
negative, then the facility returns more than it demands in shipments, on the average.

3. THE EVALUATION OF n, AND L

In this section we will solve for m, and L; substituting these results in (2.3) we obtain
C(a)b).

For a particular policy (a,b), let m, = m,(a,b) denote the steady state probability that the
stock level is i, i = 0,1, ... ,b—1. Let p = A\/u; p is the average number of disconnects that
occur between each successive pair of connects, and (1 + p)~' is the probability that the next
event (an event is a connect or a disconnect) is a connect. From standard Markov process argu-
ments (see, e.g., [9, Chapter 2]) we know that the ;s exist and are the unique probabilities

which satisfy

3.1) mo=0+p) 'm, +p(l+p) 'm,_, i=1,2, ..., =2, i #a,
3.2) mo = p"m, }
(3.3) myy = p(l4p) 'my_pif a € b2, |
|
(3.4) mo=U4p) 'wo +pU+p) (m,_y + m,), ;
|
and |
b-1
(3.5) =1 '
i=0 .
When a = b — 1 we ignore (3.3) and use (3.4) with the convention 7, = 0. ]
. |
| 1
B - ' |
]
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To solve these equations we first consider (3.1) as a difference equation for i = 1,2, ...,
a—1 with an initial-value condition given by (3.2). Solving in the usual way, we get

(3.6) wm,=pwm, i=0,1,...,a

Now we consider (3.1) as a difference equation for i = a+1, a+2, ..., b—2 with (3.3)
as a boundary condition. The general solution to (3.1) is

3.7 mo=cy+ cop’,
where ¢ and c, are arbitrary constants. In particular,
(38) Tp-1 = C) + Czpb—l
and
(39) Mp-y = C) + Czp"gz.
Substituting (3.9) into (3.3), we obtain
(3.10) Cy + Czpb_z - l_-:;ﬂ mMh—-|-
Solving (3.8) and (3.10) simultaneously yields
Tp-1
(3.11) ==Ly, cpm——,
S R i
substituting (3.11) into (3.7) we get
— pl=b+l
(3.12) ™, = P—pﬂ_—l— ooy, | =a+l, a+2, ..., b-1,
when p # 1. For p = 1, we apply L’Hospital’s rule to (3.12) and obtain
(3.13) o=y, i=a+l, a+2, ..., b-1.
Substituting (3.6) and (3.12) in (3.4) we get
2(1_ a—b) ga
(314) T, p2—1 hH-1 + 1+p o

From (3.6) we also have
(3.15) 7, = p°m,
From (3.14) and (3.15) we obtain

b—a_]

(3.16) - - p#E1L
o ph_l(p_l) Th-1» P

Forp = 1,

(317) mo = (b—a)"rh_l.

Together, (3.6), (3.12), and (3.16) express =, in terms of m,_, for i = 0,1, ..., b-2.
With these and (3.5) we obtain

l=e’
1 b P L L (p=1),
- bt 1-(b=a)p®1—p) — p*~° 4 :

e

ot gl s




586 D. P. HEYMAN

and

(319) Th (p-l).

2
" -a)(+a+d)’

The steady-state mean of the process

b-1
L = L(ab,p) = Y im,
i=1
can be obtained from the appropriate equations for m,, for example, (3.5), (3.11), (3.15) and
(3.16). Hence
a b=l _ _i~b+]
(3.20) L=n,Yip'+m, | 3 EL
0 axl - =L
a b—1 b—1
=my X ip'+ -ﬂ:ll Y ip~ptt Y ip'
; w0

P a+l a+l

for p = 1.

The summations in (3.20) are standard geometric ones, and closed form expressions can
be obtained with a reasonable amount of effort. Performing the summations yields

(3.21a) L=m—f— (1-poll +a(1 - p)]} + 22!
(1-p) p—1
~b+2
N Chh iy
5 (b+a)(b—a~1) (1=p)?

“fplal=p) + 11 = p*'[p + b(1 —p)]]l

fora < b — 1 and

(3.215) L= 725 15 =27+ -0 (-p)

-p -
for a = b — 1. Equation (3.21b) is the steady-state expected number of customers in an
M/M/1 queue when the queue is limited to b — 1 customers. By collecting terms, both (3.21a)
and (3.21b) can be written as

(3.22) L 2my—m, [(1—p) (B2 —a?) + (14p) (b—a)]}.

TR | (R,
2(1-p)?

Corresponding expressions for p = 1 can be obtained in a similar manner.

From these results for m, and L we observe that C(a,6) is a nonlinear function of ¢ and
b. Although my and L depend on A and u only through their ratio p , C(a,b) depends on the
magnitudes of A and u.

The cost function can be minimized, subject to @ < b, by a method due to Saigal [12).
This method uses a piecewise-linear approximation to the cost function and always produces an
integer answer. If the approximation is convex, the answer is the global optimum; otherwise, it
may not be (even if the cost function itself is convex ). In section 6 we give a test for global
optimality which can be used to check if the algorithm has produced the optimal solution.

S ——
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4. NUMERICAL EXAMPLES

Take R = $10, r = $2/item, s = $5/item and h = $2 per item per month for an item
which costs $100 to purchase. Different pairs of monthly connect and disconnect rates are
used. The results of some sample problems are shown in Tables 1 to 3. In these tables, the
entries marked "joint" refer to optimizing the three facilities in the example jointly, including
their effect on the central stock. The optimization was done by using a nonlinear programming
algorithm of Saigal {12}.

TABLE 1. Sample problem |

Cost
Facility | Discon. | Con. | a | b Prob. Prob. Avg. Rate
Rate Rate Empty Full Inv. ($/mo) ,
Joint 1 10.5 27.5 11| 50 0.618 0.0000 | 0.62 86.24 |
Ind. 4 | 33 0.618 0.0000 | 0.62 86.24 j
Joint | 2 065 | 135 | 1| 50| 0.519 | 0.0000 | 0.93 | 36.86 {
Ind. 5139 ( 0519 0.0000 { 0.93 36.86 &
Joint 3 03.5 4.5 4 | 11 0.252 0.0055 | 2.43 10.983
Ind. 4 [ 11 0.258 0.0077 | 2.29 10.980

Total Cost | CPU
Rate (sec)

Joint 134.64 >60.

Ind. 134.64 0.48 |
TABLE 2. Sample Problem [ 3
Cost f
Facility | Discon. | Con. a b Prob. Prob. Avg. Rate
Rate Rate Empty | Full Inv. | ($/mo)
Joint 1 10.5 275 | 48 | 50 | 0.618 | 0.0000 | 0.62 | 86.24
Ind. 4 |33 0618 | 0.0000 | 062 | 86.24 &
Joint 2 19.0 210 {10 [ 21 | 0.118 | 0.0023 | 5.70 | 25.16 ; :
Ind. 10 | 21 | 0.118 | 0.0023 | 5.70 | 25.16 i
] i
Joint 3 21.0 190 | 5|16 | 057 | 00133 | 6.41 | 27.13 :
Ind. 5116 057 | 00133 | 641 | 27.13
‘ 4
Total Cost CPU
Rate (sec)
Joint 139.65 112.
Ind. 139.65 000.45
e mp— o
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TABLE 3. Sample Problem [1]

Cost
Facility | Discon. | Con. a b Prob. Prob. Avg. Rate
‘ Rate Rate Empty Full Inv. | ($/mo)
Joint 1 19.0 21,0 { 10 | 22 | 0.116 | 0.0019 | 5.86 27.17
Ind. 10 | 21 [ 0.118 | 0.0023 | 5.70 27.16
Joint 2 1.0 210 [ 10 ) 22 | 0.116 | 0.0019 | 5.86 2517
Ind. 10 | 21 | 0.118 | 0.0023 | 5.70 25.16
Joint 3 21.0 19.0 | 05 ) 16 | 0.057 | 0.0133 | 6.41 27.13
Ind. 05 | 16 | 0.057 | 0.0133 | 6.41 27.13 |
Total Cost | CPU |
Rate (sec)
Joint 78.744 122.22
Ind. 78.749 0.49

The important feature of these results is that, for these data, individual optimization does |
just about as well as joint optimization, and the differences in the operating characteristics are f
small. Furthermore, individual optimization is done in a reasonable amount of computation
time and joint optimization is not.

Note that when the disconnect rate is much smaller than the connect rate, e.g., facility 1 |
in examples 1 and 2, two of the alternate optima for individual optimization are displayed.

5. THE TIME-ZERO RETURN PROBLEM AND A
DYNAMIC PROGRAMMING FORMULATION

Now we turn to the problem of the decision to be made when the stock control system is
first implemented. We call this the time-zero return problem. Since we are interested in
optimizing the first decision, it is natural to study this problem with dynamic programming; in
particular, we will use the structure of a Markov-renewal program [7]. Besides solving the
problem at hand, this formulation will lead to further results for the infinite-horizon model stu-
died in the previous sections.

- ‘!"‘.j_l

The time-zero return problem is simply stated. Suppose at time zero the inventory level
is k and the cost of returning » items at time zero is Ry + ron: how many items (< k) should
be returned to minimize the long-run costs? We allow R, # R and r, # r, but it is not neces- |
sary. :

5.1 Dynamic Programming Formulation #

In this section we formulate the model as a Markov-renewal decision problem. This will
be the cornerstone of our analysis for the decision to be taken at time zero.

Let an event be a connect or disconnect. Since the connects and disco..nects occur accord-
ing to independent Poisson processes with rates u and A respectively, the time between events
has a negative-exponential distribution with mean (A+u) ', and the probability that the next

b —— A
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INVENTORY SYSTEM RETURN POLICIES 589

event is a disconnect is A/(A + w). Since the negative-exponential distribution has the
memoryless property, there is no loss in generality of considering the system only at event
epochs. Let the state of the system at any time ¢ > 0 be the inventory level at time .

Let v, be the mean length of time the system stays in state / before changing state, p,; be
the probability that the next state entered is j, given that the current state is /i, and d be the
expected cost incurred during a visit to state /. To facilitate solving the model’s equations it is
convenient to introduce a maxiimwun inventory level; this does not affect our previous results
nor the theory behind the following resulis. Let N < oo be the maximum state that can be
entered; we can interpret N as the size of the storage facility. Assume we use the policy (a,b)
to make decisions in those states < b and the decision to return nothing in those states / where
b+ 1< i< N-1, and disconnects that arrive when the inventory is at level N are freely
disposed of. Then,

/A, i=0,
1+r), i=1.2, .... b=1.b#L, ... . N=1
.1 M i
1/w, i=N,
ws/\, i=0,
KifObp),  =1,2, ..., b-1,b41, ..., N-1
5.2 4 *lncta-gir iwh
AN/, i=N,
330} AM+p) Bp, j=i+1,
o Pii=\uw/n—p) A q j=i-1,

forl £ i< N-1,i# b,

(5.3b) Por = Pra = PnN-1 =1,
and p,; = 0 otherwise. It is clear that the policy (a,b) yields the single recurrent set of states
{0,1, ... .,b) when A > 0. When h > 0, then b* can be given an a priori finite upper bound

and we assume b* < N—1. Thus, none of the pathologies of Markov-renewal programs can
haunt us.

Let v, (1) be the total cost incurred by time ¢ when the inventory at time zero is k. Jewell
[7, eq. (2)] shows that, for large
(5.4) vw()=Ct+w,+0(), k=01, ..., N

where C is the cost rate (as before, which is independent of the initial state if there is only one
recurrent set of states) and w, = w,(a,b) is the bias in the total cost from starting in state k.
Let w’' = w,(a*b*).

For a stationary policy (i.e., one that depends only on the state) that results in a Markov
chain with transition matrix (p,;) with a single finite set of recurrent states, we have (7, eq.
(12)]

(5.5) w+ Cv,=d + Y pjw
/

for all states /.
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Now that we have formulated the model as a structured dynamic program, we will show
why it is useful for our current problem.

5.2 Relation to our Current Problem

The key to the solution to our current problem is (5.4). Since the decision at time zero
cannot affect the cost rate, the best one can do is affect the bias terms. If at time zero the
inventory level is kK and n > 0 items are returned, the cost incurred by time ¢, using the
optimal policy, is

(5.6a) Rp(n) +nry+ C +w,_, +0(1),
where 8(n) is the unit step function. Expression (5.6a) is minimized by minimizing

(5.6b) fi(n) A Rd(n) + nro+ w,_,,

and the value of n, n, say, that achieves the minimum return quantity for inventory level k at
time zero is the optimal number of items to return when starting in state k. Our remaining
work is to calculate the w,”’s.

5.3 Obtaining the Bias Terms and /,(n)

We shali divide our task of obtaining f,(n) into three parts. First, let us consider states
zero through b inclusive. The b + 1 equations given by (5.5) contain b+2 unknowns, includ- !
ing C. But we can find C* by the methods of section 2, so suppose we have done so. Now we
have only b + | unknowns. Let us write our system of equations in matrix form; using an
obvious notation we obtain, for any policy (a,b},

or
(5.7 (I-Pw, =d - Cu,

But P is a stochastic matrix, so / — P has no inverse, indicating that at least one of the b + 1
equations is redundant. From (5.3) ‘or by physical reasoning one can conclude that P consists
of one closed class of states. From the discussion in [7, p. 955] we know there is exactly one
redundant equation and any one of the equations can be discarded. We will choose the b"
equation as the redundant one. To reduce the number of variables by one define

(5.8) V=W, — W,

so that by replacing w, by v, in (5.5) and using (5.1) — (5.3) we obtain L
(5.9a) vo=0, : b
(5.96) C/N = pus/x + v,

(5.9¢) v + C/O\+p) = hi/(N+p) + pvyy +qvy, i=1,2, ..., b—1. -

This system has a unique solution for the relative biases v and (5.9¢) can be used to recur-
sively compute v, for i =2, ..., b.

One can obtain a closed form expression for the v, by regarding (5.9¢) as a second-order
difference equation with boundary conditions (5.9a) and (5.9b). Using standard methods (see,
e.g., [6, sections 1.7 and 1.8]) we obtain, for A #= u,

(5.10) v=alp™=1) +Bi+y% i=0,1, ..., b,
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where
(5.11a) = pl(C—us)/\ — B — yl/(1-p),
(5.1156) =C/\=p) + hA+wp)/[2(0 =),
and
(5.11¢) y=—h!/2(\—pw)].

When N = u, the solution to the difference equation can also be found by the same methods.
Since (5.10) holds for any policy (a,b), it must hold for the optimal policy (a*56*).

To demonstrate that the 5" equation is indeed redundant, we can substitute (5.10) into it
and show that we obtain an identity. The b equation is

(5.12) vy =R + r(b—a) + v,

substituting (5.10) into (5.12) and solving for C we obtain ‘ *
(5.13) C=npumys + Amy (R + r(b—a)l + 4L l
where m, m,_, and L are given by (3.16), (3.18), and (3.22), respectively. 'l)us (5.13) above |
and (2.1) are identical, so (5.13) is an ideatity. Notice that this developmerit emphasizes the {

fact that C cannot be picked arbitrarily, but that it must be given by (5.13) in order for (5.7) to
be a consistent system of equations. "

e

The second step in obtaining f,(n) is to consider those states larger than b. These states
are transient, because once a state k, say, with k > b, is entered no state larger than b is ever
revisited, and such a state k will be entered in finite time by a simple random walk analysis.
Thus the return decision used in these states cannot affect the cost rate. Since we are
interested in comparing the effects of different return quantities at time zero, it is fruitful to
compute the bias terms for these states when the decision used in these states is to return noth-
ing, as we have previously assumed. |

Let w, be the bias term for state /, and define

(5.14) yio=w — wy.

When no returns are made in state /i, using the same arguments leading to (5.9), we obtain

(5.15a) Y T 0, ¥

(5.15b) PN, SN "

wooow b
and ‘
C hi

(5.15¢) HP S s o -1, | =b+1,b+2, ..., N—-1. ’

C Y e At it ay- i »

Equations (5.15) can be solved in the same way that (5.9) were solved. The difference
equation solution is

(5.16) yo=EpN T+ E,+ Bi + i, i =bb+1, ..., N,

for p # 1, where B and vy are as before,

PIR % T (N-—l)zll/(l =,
m

\— e
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and

- (‘:"N +Blp—DN +1] + ylpN? - (N‘“q,/“"’)'

We have now obtained v, i =0,1 ..., b,and y,, i = b,b+1, ..., N, let us now extend
the domain of definition of y, to i =0,1, ..., b~1. By definition v, = w, — w, and
y,=w, — wy for all i, so
(5.17) Yo— v, = wem wy =,

In particular, (5.17) holds for i = b, so

(5.18) Vo=V — Vs
hence y, can be obtained from our previous results, and so can y, by use of (5.17).

Let us review what we have just done. Fiist we found the bias terms relative to wy for

i=0,1, ..., b, these are the v's. Next we found the bias terms relative to wy for
i=0b,b+1, ..., N; these are the y,’s. Then we used (5.17) and (5.18) to convert the v,’s into y,’s
Jori=0,1, ..., b. Now we study f,(n).

From (5.6b) and (5.14) we obtain
filn) = R@(n) + nro+ y, , + wy,

where y, is y, evaluated for the optimal policy. Even though we do not know wy, it is only a
constant in f,(n), hence f,(n) can be minimized over n by minimizing

(5.19) R (n) + nro+ yi_,.

and doing so one will find the optimal return quantity when the inventory level is k at time
zero. Once the y,°s have been obtained, a search of k + | numbers given by (5.19) will yield
the optimal return quantity. Thus we have obtained a simple algorithm to solve our problem.

When there are alternate optima for @ and &, it is important to know wy because it and
¥; -, (and hence the optimal return quantity) will depend on the particular policy followed.
Jewell [8] shows how to obtain wy with simple calculations.

5.4 The Explicit Solution for an
Import:nt Special Case

An important special case of the model occurs when the movement costs are the same at
all times, i.e., when Ry = R and ry = r. For this case we can partially characterize the optimal
policy at time zero. Let k be the initial inventory and ix be the optimal inventory level after an
initial return. We define the function f by

A

fi=y' =ri, i=0,1, ..., N

From (5.19) we see that /, minimizes

(5.20) R8(k—i) + /,
fori = 0,1, ..., N hence, either i, = k or i, minimizes f, for i < k. A partial characteriza-
tion of i, is:

TR
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THEOREM:

)] if k < b* return nothing, i.e., iy = k;

(§10] if k = b* return down to a* i.e., ix = a*

() if k > b*and f, > f,.forall i > b* then
return down to a* i.e., iy = a*
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As usual, a* and b* denote the optimal infinite horizon policy, so the infinite horizon

solution partially provides the solution for the returns problem at time zero.

To prove part | of this theorem, we start by observing that since (a*5b* is optimal for the
long run, any state i, 0 < i < b* is recurrent (i.e., will be entered infinitely often) and if
returning a positive amount were optimal the first time / was entered it would improve the cost
rate if this amount were returned every time state / were entered (this statement is called
"Howard’s Improvement Routine" and is rigourously established in [13, Theorem 9.2]). But
this means that (@*5b*) is not optimal, which is a contradiction. Thus, returning nothing must
be optimal when the initial inventory is less than b* A similar argument proves the result for
i = b* i.e., part 1I. Note that from (5.12) we are actually indifferent between returning

b* — a*and nothing when the initial inventory is b*

To prove part III, note that part I implies a* minimizes f, for i < b* but since f, > ,i,,-,
a* minimizes f for all ;; hence, either j, = a*or i, = k. From (5.20) we see that, to show that
a*is optimal, we must show that R + f,. € f,. Equation (5.12) can be written f,.= R + f,-;

this, along with the hypotheses of part III, yields
]k > ih'= R +j‘ll.'
which completes the proof of part III.

6. FURTHER CONSEQUENCES OF THE DYNAMIC
PROGRAMMING FORMULATION

In this section we will show how the dynamic programming formulation of section 5.1 can
be used to prove the optimality of the two-critical-number policy we studied in section 3 and to

provide a test of the global optimality of the solutions found by nonlinear programming.

6.1 Optimality Properties of the
Two-Critical-Number Policy

We will prove that among the class of stationary policies, there is an optimal policy of the

Y form (a,b). We start by proving that an optimal stationary policy will make returns.

PROPOSITION: There is a finite state /. such that an optimal stationary policy insists on

making a return in state /.

PROOF: Suppose there were no such state. Then returns would never be made and the
inventory level would fluctuate exactly as the number of customers present in an M/M/1
queue, (see, e.g., [9] for the pertinant queueing results). From standard queueing theory it is
known that if p > 1, then L = oo, which is clearly not optimal because we constructed policies
with a finite cost rate in section 3, so /. exists when p = 1. For p < 1, when an optimal policy
is followed, let .C* be the cost rate, 7, be time required for the inventory to drop from ito i—1,
and g” be the costs incurred by the connects and disconnects that occur while the inventrory

{ drops from ito i—1. From (5.5) we obtain

S A R R IR R L
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6.1) w'=hi + E(g*) — C* E(T)) + w",

for an optimal policy.

From the theory of the M/M/1 queue, E(T,) is the expected length of a busy period, so
E(T)=(@-N", i=12, ....
Choose a state j so large that

6.2) (hj — C*/(u -\ + E(@g*) >R +r

From (6.1) and (6.2) we see that w,' — w,'.l is larger under the assumed optimal policy that it
would be if one item were returned. Howard’s Improvement Routine then asserts that the
assumed optimal policy can be improved, so that a contradiction is established, and the state j

in (6.2) is an upper bound on .

From this proposition it follows that if the inventory at time zero is no larger than /., no
state larger than j. will ever be reached. If the inventory at time zero is larger than j., either
state i, or a smaller one will be instantaneously reached by an initial return, or state j. will be
reached in finite time by the evolution of the inventory level when an optimal policy is fol-
lowed. Let b* be the smallest state where the optimal decision in that state is to return a posi-
tive amount, and let b* — a* be the optimal return quantity. Then when u > 0 (as it is for
any nontrivial problem) state b* will be reached by some finite time, and thereafter no state
larger than 4* will be reached. Thus, 6* and a* will determine the minimum cost rate and the
decisions in those states between b* + 1, and ., (a*b*) is optimal among all stationary poli-
cies.

This result can be strengthened to include the class of all policies when the maximum
inventory level N is finite and larger than /.. In this case the Markov-renewal program has only
a finite number of states with only a finite number of choices in each state, so it has an optimal
policy that is stationary [7].

6.2 Global Optimality Conditions

In section 3 we found a* and b* with a nonlinear programming algorithm. Since we did
not prove that the function being minimized is, in general, convex, we have no guarantee that
the algorithm will always find the global minimum. We can use the formulation of section 5.1
to devise a test that will determine if a given pair (a,b) is optimal.

Equation (5.13) shows that the cost rates studied in sections 3 and § are identical, so the
solution found by the nonlinear programming algorithm is a global optimum if, and only if, it is
an optimal solution to the dynamic program.

Suppose we have a policy (4,b) that we think is optimal. Associated with this policy is a
cost rate C and a set of relative bias terms §,i = 0,1, ..., N. Let »", d/" and p'” be the
expected duration of a visit to state /, the expected immediate cost of a visit to state i, and the
conditional probability that the next state will be j, when n items are returned in state /i, respec-
tively, i, j=0,1, ..., Nand n = 0,1, ..., i :

According to Jewell’s Markov-renewal programming algorithm (7], the policy (a,b) is
optimal if, and only if,

(6.3) [d,""+ o5, —y‘,l/ v S & amOl ooy b

for all /.
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50 -
If we take N =50, (6.1) would have to be tested Y i = 1275 times for each (4,b)

1
thought to be optimal, with 5 < 49 (policies with b = 50 may not be globally optimal and may
just indicate that 4* > 50 and that the chosen bound of 50 should be increased). Each test
involves only three multiplications, three additions, and one comparison once the parameters
are supplied.

If a policy fails the test there are several courses of action open. If the nonlinear pro-
gramming algorithm that is used is of the kind that different starting values may produce
different local optima, another starting value could be tried and tested, these iterations per-
formed until the test is passed. A second alternative is to solve the Markov-renewal program
by using the algorithm in [7], for example. The linear programming formulation given below
provides a third algorithm for obtaining the global optimal. Although the linear and dynamic
programs are mathematically identical, the availabilty of computer codes may make one of the
two formulations easier to use.

6.3 Relation to Linear Programming

It is known that Markov-renewal decision problems can be formulated as linear programs
and the dynamic-programming-based algorithms are the simplex algorithms with certain block
pivoting rules (see, e.g., [8]). Thus, (6.3) is just the statement that, for a vector to be optimal
in an LP, all columns must price out nonnegative.

The LP formulation of our problem is

minimize xy

Subje?t to 2 ls’l 2 p,‘,")lx 4 V > d(n)
/

for i =0,1, , Nand n = n, =0,1, ..., i, where §,, = | if i = j and is zero otherwise. In
the LP, x»“. takes the role of the cost rate C, and x; takes the role of the bias term

w, j=0,1, ..., N. Thus, the LP contains N + 1 unrestricted variables and 2 (i+1) ine-
=0
quality constraints.

51
For N = 50, this LP has 2‘/ = 1325 constraints. Since each of the N + 1 unrestricted

1
variables has to be expressed as two nonnegative variables, and slack variables have to be added

to each inquality constraint to apply the simplex method, this LP will have 1428 nonnegative
variables. It does not appear that the LP formulation will work as fast as the nonlinear formu-
lation, which has only two variables and one simple constraint. It is interesting to observe that
the problem of obtaining the optimal long run policy can be formulated as either a nonlinear,
linear, or dynamic program.
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ABSTRACT

This paper considers real-time decision rules for an inventory system where
items are repaired than "used up." The problem is to decide which user in the
system has the greatest need for the newly available inventory items coming
out of repair. The main result shows that two published approahes, the Tran-
sportation Time Look Ahead policy and METRIC, are optimal when the
number of users gets large. A useful byproduct of the proof is a lower bound
on the average backorder rate for a repair-inventory system ol any size.

1. INTRODUCTION AND SUMMARY

We consider a repair-inventory system where the inventory items are repaired when they
fail. This contrasts in a significant way with the standard inventory model in which a failure (or
demand) means that the item is used up and replaced by a new item. In the U.S. Air Force
inventory system which motivates this study, well over half of the multibillion inventory value
is in repairable items.

Study of a repair-inventory system consists of two problems: (1) How should the inven-
tory items be utilized in a system of a repair center and m consumption centers (the distribu-
tion problem)? (2) How many items should be purchased (the procurement problem)? Our
analysis is concerned with the distribution problem.

The model we will analyze has been investigated by several authors, and a survey of the
earlier work is included in the paper of Simon [5]. The most recent work in the distribution
problem is that of Miller [2] which is described in the next paragraph. The METRIC model of
Sherbrooke [4] is still the standard for the procurement problem. The METRIC model is also a
distribution procedure, and this paper ends with some positive results on METRIC for the dis-
tribution problem.

*This research was partially supported by the National Science Foundation under ENG 74-13494 and ENG 76-12230.
Most of the results in this paper came from the Ph.D. dissertation of Mohammad Modarres-Yazdi entitled, "Myopic
Decision Rules in the Optimization of Queueing and Inventory Models."
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The decision-making in the distribution problem is concerned with answering the ques-
tion: "To which consumption center should we ship the newly repaired item?" Our proposed
solution to the distribution problem, the Transportation Time Look Ahead policy, was intro-
duced in the RAND report [1]. It was presented as a heuristic policy which determines the
"neediest" comsumption center (Air Force base), and sends the newly repaired item to that
center from the repair center. This policy was tested by simulation, and it resulted on the aver-
age in 20 percent lower backorder rate than the METRIC model of Sherbrooke (4]. Further-
more, it was less computationally demanding. Calculating an optimal solution to the distribu-
tion problem is impossible, since formally it is a dynamic programming problem with many
state variables, representing the inventory level at the consumption centers, the number of
items en route to the consumption centers, the number of items in repair, and the number of
items en route to the repair center from the consumption centers.

A theoretical justification for the Transportation Time Look Ahead policy was obtained by
Miller [2). It was shown to be optimal for a modified version of the problem whose main
assumption was that there is no repair at all, that is, every failure at a consumption center is
matched by a repaired item simultanefously appearing at the repair center. Physically, this is
very far from reality, of course, but mathematically it represented a decision problem similar to
the true system. In this paper we will show that a modified version of the Transportation Time
Look Ahead policy is optimal for the true system when the number of consumption centers
goes to infinity. The criterion for optimality is the average backorder rate per unit time per
consumption center in an infinite horizon.

The proof of optimality is carried out by first obtaining a lower bound for the average
backorder rate using an arbitrary policy. This bound does not depend on the size of the system,
and therefore it is useful in itself as we can compare the backorder rate of a given policy
obtained by simulation with this lower bound. The second part of the proof entails showing
that the Transportation Time Look Ahead policy approaches this bound as the number of con-
sumption centers goes to infinity. This proof is also used to show that the METRIC distribu-
tion model is optimal.

2. THE MODEL

The model will be described in general (non-Air Force) terms for a single inventory item
The system has a repair center, m consumption centers, and N spare items.

Each consumption center supports activities which produce failures of the item according
to a Poisson rate A, of items per day. This is assumed to be the case even when the inventory
shortage hinders these activities, since it is assumed that the available units (aircraft in the Air
Force example) can be utilized at a higher rate to compensate for the shortage. In addition to
the parameter A,, a second parameter is needed to describe each consumption center, namely
T, the one-way deterministic shipping time between the consumption center and the repair
center. In order to limit the detrimental effect of these inventory shortages, the system
employs N spare units which are used to replace operational units when they fail.

When a unit fails at consumption center j, a spare, if available at the consumption center,
is used to replace the inoperative unit. If no spare is available at consumption center /, then a
backorder occurs. The failed unit is sent to the repair center at the instant of failure, and the
shipping time is 7,. The repair center repairs the items according to a general distribution func-
tion F whose mean is 1/u. There is no queueing or other interaction between items at the
repair center, so that the repair center can be thought of as an infinite-server queueing system.
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When the item comes out of repair, we must decide whether to keep it (temporarily) in reserve
stock at a repair center, or to ship it to consumption center /,1</<m. The items which are
held in reserve at the repair center may be sent at any time to a consumption center.

EXAMPLE 1: Let m=3A,=0.1T,= 10 days, A,=0027T,= 3 days,
A3 =03,T,=6.67 days, F be exponential with a mean of 7 days, and N = 9. Let each base
have 3 items at time 0. A simulation of the system is shown in Table 1.

TABLE 1

Time Event Consequence

0.15 Failure at C.C. 3 Inventory level drops to 2. Item will
arrive at repair center at 6.82.

2.37 Failure at C.C. 2 Inventory level drops to 2. Item will
arrive at repair center at 5.37.

4.76 Failure at C.C. 3 Inventory level drops to 1. Item will
arrive at repair center at 11.43.

5.37 Arrival at repair
center

6.14 Failure at C.C. 1 Inventory level drops to 2. Item will
arrive at repair center at 16.14.

6.72 | Completion of repair
al repair center.
Repaired item is
sent to C.C. 3 where
it will arrive at

time 13.39.

Let 5,(r) be inventory level at consumption center / at time r. Our objective is to find a
decision rule which minimizes

(1) B = . 8 lim — i J;’ s, (w) " dw)

where x = max(—x,0) and FE stands for expected value. The average backorder rate is B, and
it depends on the initial state as well as the policy used.

Let x (1) be the sum of s (1) plus the number of items en route to consumption center i.
Rather than use the objective function (1), it is preferable to perform a time translation as was
done in [2] and let ¢ [x (1)] be the expected inventory shortage at consumption center i/ at time
t+T,, given that the inventory level at time ris x, (). This term is well-defined since any deci-
sions made after time r will influence shortages at consumption center i only after time (+7,.
Thus ¢ [x,(1)] = E[s(14+T) "], and the objective function in terms of ¢, [x,(¢)] is to minimize

I A e Al
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m

" / 1l
(2) B = 1 lim 17 L‘ZI:J:, Cs(w) dw + j:, '(',lx,(w)]dw'

3 |-

| —oo [
=1

lim L £ N c‘,[.r,(w)]dw}.

Since 5 (1+T)) = x,(T)—D,, where D, has a Poisson distribution with a mean of AT, we
can calculate ¢ [x (1)) by

- el = % L=x0] pGIAT),

r=max|v,(r).0]

where p(i|A) = e * \'/i!, the probability that a Poisson random variable with mean A equals /.

We conclude this section with a section with an important observation about the model.

Let U(r) be the number of items en route to the repair center and in repair at time r, the sym-

bol U is supposed to suggest "unavailable." This number is independent of all of our past (and

of course future) decisions of where to send the repaired item. Define 4(r) to be the number

of repaired items held at the repair cenier, plus the items which are en route to the consump-

tion centers, plus the inventory levels at the consumption centers; the symbol A4 is used to sug-
A

" o
gest available. Then A(I)—2x1(1)= number of items held at the repair center. The basic
1=/

accounting equation is U(1)+A4 (1) = N,

THEOREM 1: Let the initial condition be U(0) = 0. (i) For r> 0, U(t) has a Poisson

m (¢ m
distribution with an increasing mean of AtP(r), where A=Y A, PQ) =l' A

i=] 1==]

A
—A—[l—G,(w)]dw, and G is the distribution function of T, plus the repair time

lie.Glt) = FGt-T)). (DU = lim EU() =Y AT + 1/u), where 1/u is the mean of the
[~+00

imf

repair time.

PROOF: The result follows with minor modification from a known result with an ir.fnite
server queue (see Ross [3,p.18] for example).

COROLLARY: 4 = lim E[A(1)] exists.

| =%

3. THE MAIN RESULT FOR THE DISTRIBUTION PROBLEM

This version of the Transportation Time Look Ahead policy begins with the marginal
analysis problem:

(4) minf ¢(x)
j=1

n -
subject to 3 x, = A, x; an integer.

AE S aax

g sl

i g

e

R
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The ¢, are defined by (3), and A4 is defined by the corollary to Theorem 1. (Since 4 = N-U.X

m

is an integer only if U = ZA, (T, + 1/p) is an integer, which is not generally the case, of
i=

course.)

In this section we will choose simplicity over generality in three specifics. We will assume
that 4 is a nonnegative integer. If this is not done we must resort to terminology such as the
greatest integer less than A, which lengthens all the arguments. Second, for some of our
results we will assume a convenient initial state for the model. Third, we will let the system get
large in a convenient way.

The problem (4) can be solved by a marginal allocation scheme beginning with

=0, i = I...,m, since the ¢, are discretely convex. The optimality conditions are that
(5) max[¢ (x")—¢ (x" + 1)] < minl¢ (x"~1)—¢ (x")]
and ¥ x' = A, where x°, i = 1, ..., m, are the maximizing values.

Example 2: We keep the same parameters as Example 1 and calculate x|,x,, and x;. As
U=174=2. The optimal allocation is x; =1,x =0, and x3 = 1. It can be verified that
mdxlc (x)=¢(x" + 1)] = 0.594 for i = 3 and minlc (x')—c (x'—1)] = 0.6221 for i =1.

The Transportation Time Look Ahead policy makes decisions when an item comes out of
repair and when there is a failure at a consumption center. When an item comes out of repair,
we determine the consumption center, say center k, which maximizes {c,[x,(1)]—¢,[x,(1) + 1]}
over consumpnon centers i such that x,(r) <x,, and send the item to consumption center k. If
x,(r) = x,"for all i, then the item is held at the repair center. The term myopic can be applied
to this rule since the ¢, are the immediate cost functions.

When a demand occurs at consumption center i, we check if both (a) x (1) <x" and (b)
there is at least one item held at the repair center. We send an item from the repair center to
consumption center llf and only if both these conditions hold. Of course, if both condmons
hold, then x; (1) > x; for all j # i. One property of the policy is that if x (0) < x for all i,
then x (1) < x  for d" iand t.

The first half of our proof of the optimality of the Transportation Time Look Ahead pol- :
icy is concerned with showing that for all policies and aIl starting states satisfying U(0) = 0,

the average backorder rate B is greater than or equal to 2 ¢ (x'). The idea of the proof is that
j=|

Theorem 1 ensures that regardless of the policy employed the long-run average of items avail- &

m
able is A, and when A4 items are available the minimum value of the cost rate is % olx’).
(=] +

Let Clx(1)] = f, ¢lx(¢)] and C(x") = f‘, ¢(x").

1= i=]

LEMMA 1: Let A be any value between the right-hand side of (5) and its left-hand side. !
If A(1) = A + n, then Clx(1)] = C(x")=n A . i
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PROOF: Consider the following variation of (4)

min z = i ¢ ()

(=]

m 2
subject to ¥, ), = A + n, y, an integer.

1=

m
The value of this problem, z, will be less than or equal to Clx(1)] when 3

- =]
x(1)<A(t) = A4 + n, since the x (¢) are a feasible solution to the problem. The inequality
z' 2 C(x*)—n A follows from the discrete convexity of the ;. (Q.E.D)

Let C(1) be the expected value of C[x(r)] conditioned only on U (0)=0.

LEMMA 2: For any decision rule,
C(1) 2 Cx*)+ {A-El4(D]}A.

PROOF: C(1) =¥ Clx()|A(1) = 4 + n] PLA() = 4 + n]

n

> YIC(x*)— A nl PlA(1) = A4 + n)

n

by Lemma {

=C(x*)+ AlA-E[4(D]). (Q.E.D)

TIHEOREM 2: For any decision rule with a starting state satisfying U(0) =0,
B > — Cx").

m

PROOF: By the corollary to Theorem 1, given any € > 0 there is a 7, such that for all
1>t,A-E[A(1)] > —e. We have

1
mB = lim L £ [ C(waw

t—o [

= lim 1 L"C(w)dw-*-j: C(w) dw

t—oo |

> lim [ (C(x") + A-El4()] &) aw

t—=o [

>C(x") —€ A. (Q.E.D)

The second part of the proof consists of showing that the Transportation Time Look
Ahead policy is optimal when the system gets large, which we define in the following way.

We index on the sequence of problems which are getting large by k, where k represents
the number of replications of m consumption centers. That is, for problem k there is one
repair center and km consumption centers, with k consumption centers described by the param-
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RECOVERABLE INVENTORY ITEMS 603
eters ( A, T}).k consumption centers described by the parameters (A ,,75), . . . , and k con-
sumption centers described by the parameters (A mTy) . We let UX,N*,4* | and B* refer to

those terms as applied to problem k, so that U' = UN' = NA' = 4, and B' = Bas k = 1
represents the original problem. We set NK = kN The replication characteristics of problem k
imply that U* = kU. Therefore A* = k(N=U) =

By Theorem 2 the value of kmB* is greater than or equal to

m

mmzzt(

=1 1=1

subject to ¥, ¥ x, = kA, x, an integer,
‘ J

where ¢ ,(:) = ¢ for j =1, ..., k. Itis not hard to see that the solution is x;, = x', satisfying

.

M T o e s
the optimality conditions (5), and consequently that B* > 7 C(x’).

LEMMA 3: Let Z*(¢+) = [U*(1)—U*]* . Then EZ*(1) < k'20"2.

PROOF: Since EUMN1) < U* for all ¢ > 0,241) < (UMD -E[UXD]}* and ZM1)? <
(UM -ELUMDY). We have [EZN1)]? < L[/Jm | < E{UMO—-ELUNDI? = Var UMD
=k A tP(1) < kU, by Theorem 1. Q.E.D.

THEOREM 3: Let B! be the average cost when there are & replications and we are using
the Transportation Time Look Ahead policy. Then B! < i [C(X) + k120,
m

PROOF: We assume that the initial state is x, (0) = x, 1 <i<ml<j< k,and that
k(N—A) items are held in reserve at the rcpa:r cemer With lhIS initial state the Transporlauon
Time Look Ahead policy satisfies x,(r) = x” whenever 4*(¢) > 4*. This implies that when

A*(1) = A* we incur a cost rate of kC(X") and A*(1)—A* items are held at the repair center.
When A4“(1) < 4* then the cost rate is less than or equal to kC(x") + A*—A*(1), since ¢(x) -

¢(x,+ 1) <1 for all iand x, . Thus the cost rate, given A*(r) , is less than or equal to
KC(x') + ZM1). By Lemma 3, C*1) < kC(x') + k"0 “for all . Therefore

Bf > L [C(x") + k12 g7 .
m

COROLLARY: Let & be an arbitrary policy and B, the average cost using 8. Then
lim BB < 0.

PROOF: Combine Theorem 2 and Theorem 3.

The proof of Theorem 3 does not use the fact that when A4 (1) < 4 we send an item to the
consumption center which maximizes [¢,(x)—c¢ (x, + 1)]. It only requires that we send it to a
center which has x,(1) <x, .

The result does require that the proper stock levels be used. Suppose that we use the
Transportation Time Look Ahead policy, but set x, = £,1 < j < k , where 2\ = A, and

C(X)>C(X*) The average cost of this policy, B* | is greater than or equal to ~|,; C (X), SO
: '
that
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lim B‘-B*<0.

k — oo

Theorem 3 also shows that the METRIC distribution model is optimal and we outline the
argument.

The METRIC distribution model takes the kN inventory items and allocates them to the
repair center and the km consumption centers. For d equals 0,1, . . . . kN, METRIC allocates «/
items to the repair center and AN —d items to the consumption centers. The allocations to con-
sumption center / are based on a Poisson demand of (the paragraph below Eq. (5) of Sher-
brooke [4])

(6) AT + A(d))

where A(d) is the average number of days an item is backlogged at the repair center. where
items are stocked at the depot, and equals [Egs. (4-5) of Sherbrooke]
Y G=d)pGlkU)/k A

r=d+1

Once the allocation which minimizes the sum of backorders at the consumption center is deter-
mined, METRIC operates in time by shipping to the consumption centers in the order demands
occur.

As k goes to infinity and d is set equal to kU, A (d) goes to zero. The remaining kA
items are allocated to consumption centers in the same way as the Transportation Time Look
Ahead policy (Eq. 3 and 4) since the marginal analysis is based on (6) which is the Poisson
demand A, 7. METRIC satisfies the requirement that items are sent to centers such that
x,(t)>x,. Therefore Theorem 3 also shows that METRIC is optimal.
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INVENTORY CONTROL SYSTEMS BY
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ABSTRACT

When an inventory-control system is designed to utilize statistical demand
information in computing an (s,S) policy, it may be necessary to use perfor-
mance forecasts to calibrate the relationship between control parameters and
performance measures. Using a simulation model to test prediction by retros-
pective simulation we estimated the bias and variance of forecasts for expected
costs and other operating characteristics. The results show the sensitivity of the
prediction bias to changes in demand, cost, and lead time parameters and to
choices made in system design.

When a new inventory control system is instalied, the design process typically involves
forecasting the system’s future performance. We investigate the statistical accuracy of forecasts
made by employing retrospective simulation. We examine the bias and dispersion in these
forecasts and how they vary with system settings, such as the length of the demand history
used for policy revision and forecasting, and with environmental specifications, such as the
underlying demand process, costs, and replenishment lead time. Extensive tests of the retro-
spective forecasting technique are made with a computer simulation model.

1. PERFORMANCE FORECASTS IN INVENTORY SYSTEM DESIGN

We assume that the analyst, in designing an inventory-control system, has selected a class
of decision rules. Specifically, we consider the (s, S) class of reorder point, reorder level rules.
The analyst also must choose a routine to calculate the values of s and S, and these computa-
tions depend on the specification of the demand process. If the available empirical information
about demand is only a historical sample with a limited number of previous observations, usu-
ally the analyst must settle for a computational approach that provides an approximately optimal
(minimum expected total cost) statistical policy, since optimal statistical policies are available
for only a very restricted class of situations (e.g., [9]). We investigate approximately optimal
statistical (s, S) policies that employ the normal distribution, as one simplifying assumption,
and estimates of the demand mean and variance computed from recent demand history.

In inventory systems an important trade off is between inventory investment and service,
that is, out-of-stock performance. In the classic (s, S) model ([1], [2]), this trade off is
influenced by the relative values of the unit holding and penalty cost parameters, the latter

*Currently Visiting Professor at Graduate School of Business Administration, University of North Carolina at Chapel
Hill, Chapel Hill, North Carolina.
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often being specified judgmentally. In fact, the assessment of the appropriate penalty cost value
may be done, partly, in view of its impact on inventory investment. For this and related rea-
sons, the analyst, prior to implementing an inventory-control system, wishes to predict the
system’s performance for one or more specifications of the parameter settings employed in the
computational process.

For an (s, S) type statistical system, the various approximations that are employed in the
computations make it highly quesli;)nable to use probability forinulas to provide accurate values
for the desired system performance forecasts of inventory investment, replenishment fre-
quency, service, and corresponding costs. Therefore, the analyst usually resorts to retrospective
simulation. That is, the analyst reuses the limited amount of past data, from which the demand
mean and variance are estimated and employed in the (s, ) computations, to predict (simu-
late) how the chosen rules will perform in the future. On the basis of the resultant statistical
forecasts, the analyst may adjust the penalty cost or other parameters. The trade off process via
retrospective simulation typically is carried out with aggregates for one or more groups of
inventoried items.

The common practice of employing retrospective simulation to provide forecasts of future
system’s performance raises the following questions.

1. How good are the statistical predictions of the system’s future operating characteristics?
Are the forecasts biased? What is their variability ?

2. How does the accuracy of retrospective simulation forecasts depend on the amount of
historical demand information available? On the system’s parameter specifications?
On the demand environment?

For a simplified one-period inventory model, MacCormick [6] showed that forecasts by
retrospective simulation do have prediction biases (for example costs are underestimated), and
analyzed the sensitivity of the bias to underlying model specifications, such as mean demand,
cost parameters, and length of demand history.

Here we treat a multiperiod environment and the complexity of the system necessitates
using computer simulation (MacCormick (7], Estey and Kaufman [4]) to investigate the ques-
tions posed above. We describe the inventory model in the next section and the design for the
simulation experiment in Section 3. Subsequently, in Section 4, by extensive simulation test-
ing, we analyze the properties of the forecasts.

2. A SINGLE-ITEM MODEL

Before recognizing the actual statistical environment that the system’s designer faces, we
describe an "ideal” single-item model that motivates the approach. Consider the (s, §) model
given in Veinott and Wagner [10]): every period the stock level (on hand plus on order) is
reviewed. Demand in each period is assumed to be independently, identically distributed, with
mean u and variance o?. Stockouts are backlogged and eventually filled, and rcpienishments
arrive a known fixed lead time A periods after ordering. There is a fixed ordering cost Cy, for
each replenishment action. (The purchase cost is directly proportional to the quantity ordered.
Since the optimality criterion is in terms of expected cost per period and all demand is eventu-
ally satisfied, this cost component can be omitted from further consideration.) The charges
applied to period-end inventory and backlog are linear, with unit holding cost C,, and unit
backlog penalty C,,, respectively. In any period the time sequence of events is review and
order, delivery, and demand. This stationary model assumes an unbounded horizon.

T



RETROSPECTIVE SIMULATION 607

Under the above ideal assumptions, an optimal rule is of the (s, S) form: if, on review,
inventory-on-hand-and-on-order x is below s, an order is placed for a replenishment quantity of
S—x units.

Wagner [12] gives an algorithm to compute approximately optimal (s, S); it is adapted
from Robert’s [8] algorithm by assuming that the upper tail of the lead time demand distribu-
tion is approximated by the normal distribution and incorporating a heuristic modification pro-
posed by Wagner, O’Hagen and Lundi: [13) for situations of frequent replenishment. Let P(-)
be the standardized cumulative normal distribution, and /() be the standardized normal loss
function:

P(u) = (Zn)"“f e ¥ x,

I(u) = (Zn)“'/zf(x —u)e 1y,

Further let the Wilson lot size be denoted as:
QW L (2[.‘. Cﬁ‘/(‘m)lﬂ,

and let w, = Z\+Du and o = (A+1)o? denote the mean and variance of demand over the
lead time plus one period (the interval between reviews). Values for « and v are set by the
solutions to

I(U) — (‘m Qw/(Coul‘rA)‘
P(V) S Coul/(Cm + Coul)-

If Q,/n is greater than 1.5, the (s, S) pair is determined by s = u, + vo, and S =5 + Q,;
otherwise,

s = u, + minimum (vo,,va,),
S = pu, + minimum (uo, + Q, va,).

With discrete demands, the values for s and S are rounded to the nearest integer.

The above approximately optimal values for s and S utilize only u and o? in specifying the
demand distribution. The system’s designer, therefore, can adapt the formulas to a statistical
environment by employing estimates of u and o? based on the available demand history.

Now we elaborate on the design approach in the statistical environment. Suppose that the
analyst has available n periods of demand history, and believes that the next n periods of
demand will be drawn from the same underlying demand process (at least approximately).
{Actually, » may be a design choice variable, and would reflect the analyst’s view of the limited
relevance of historical data.) The analyst, then, statistically estimates x and o from the past n
periods and calculates the (s, S) rule for the next n periods. To forecast performance over the
next n periods by retrospective simulation, the analyst initializes the system using the current
value of inventory-on-hand-and-on-order, and operates the system with the calculated (s, S)
rule and the previous n demands.

The system, when implemented, would operate in this fashion over an extended length of
time, that is, every n periods, the latest » demands would be utilized to calculate (s, S) for the
next n periods.
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3. EXPERIMENTAL DESIGN

The forecasting method just described has been tested for a large number of different
specifications of the inventory model.

Table 1 exhibits the full factorial design adopted to specify simulation inputs. There are

648 combinations, all of which were tested. If unit time is one week, the demand history
length values of 13, 26, or 52 correpond to quarterly, semiannual, or annual intervals.

TABLE 1. Inpu: specifications: a full factorial design

Factor Levels FQuer o
Levels

Demand distribution Negative binomial (o-%/u=9) 3

Mean = p ; Negative binomial (o-%/u=3)

Variance = o2 ) Poisson (o%/u=1)
Mean demand (u) 2,4,8,16 4
Unit holding cost (C;,) 1 1
Unit backlog penalty cost (C,,,) 4.9,99 3
Replenishment setup cost (Cg,) 32,64 2
Replenishment lead time () 0,2,4 3
Demand history length (n) 13,26,52 3

For each of the 648 cases, we replicated the retrospective forecasts 200 times to derive the
comparisons between actual and predicted values of several operating characteristics, including
expected costs and backlog frequency. In each replication, the sample values for the actual and
predicted performance characteristics are averages over the n periods of that replication. In
estimating actual expected costs and service performance, we made use of the conditional
expectation method of variance reduction (Ehrhardt [3]). To provide a set of initial conditions
for each replication, we employed ergodic statistical theory in the experiment as follows. For
each case, we let the 200 replications comprise a single historical time sequence. That is, the
(s,S) policy values were computed at periods n+1,2n+1,3n+1, ..., and the retrospective
forecasts were based on the initial inventory position at each of those periods. Thus, the entire
set of replications for a case represents 200n consecutive time periods. We treated the
sequence of 200 measurements on each operating characteristic as a covariance stationary
series, and derived estimates for the sampling variance by using an autoregression model
(Appendix B of Fishman [5]).

4. FORECASTS BY RETROSPECTIVE SIMULATION
Before presenting summary results for the 648 cases specified in Table 1, we examine

detailed results for a single case to get initial insight to the questions posed in section 1. The
case is
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Negative binomial demand (o ¥/u=9)

Mean demand . = 16

Unit backlog cost C,,, = 99

Replenishment set up cost C,,, = 64

Replenishment lead time A = 4.

Observe that each parameter is at its largest value in Table 1. For this single special case,

we employed 1200 replications, instead of only 200. Figure 1 shows five different operating
characteristics. On each plot the horizontal axis represents the demand history length n. Nine

different lengths are tested, ranging from 6 to 52. An asterisk (*) designates the estimate of

the actual n-period expected value of the operating characteristic; the corresponding cross (x)
shows the estimated average forecast value from retrospective simulation. Each estimate is an
average from 1200 n-period replications. (Table Al of the Appendix provides these estimates
of the expected value, along with the standard deviation of the n-period average operating
characteristic.) The prediction bias is represented by vertical differences between the pairs of
curves in each plot of Figure 1.

The horizontal line on each plot shows the level of the expected value of the operating
characteristic when control is by the normal approximation policy (Wagner [12]), with the
underlying demand mean 16 and variance 9x16 used to calculate the (s,S) parameters. Asymp-
totically, the actual and forecast characteristics for the statistical version tend to this value as
the demand history length increases, assuming that demands from consecutive pairs of n
periods are drawn from the same underlying distribution.

- For each of the operating characteristics, Figure 1 shows that the actual expected value is
systematically underestimated by a retrospective simulation forecast. The bias is negligible for
inventory quantity and replenishment frequency, even for n as small as 6 periods. But the bias
is severe for the backlog quantity and frequency, even for n as large as 52 periods. Most of the
prediction bias for expected total cost per period can be traced to the bias in the forecast of
backlog quantity. For each characteristic, the bias becomes smaller with increases in the
demand history length. With demand history length set at 13 periods, the value of expected
total cost is 179% of the expected value of the forecast. Likewise, the value of expected
period-end inventory is 101%, backlog frequency is 1174%, expected backlog is 2848%, and
replenishment frequency is 101%, of the respective expected forecast value. With demand his-
tory length at 52 periods, the corresponding ratios are: expected total cost 122%, period-end
inventory 100%, backlog frequency 197%, expected backlog 273%, and replenishment frequency
100%.

Note that the results in Figure 1 pertain to the expected values of the actual and fore-
casted n-period-average operating characteristics. It is also of interest to determine how accu-
rate a single forecast may be, by examining the distribution of the forecast error. To discuss
accuracy, we distinguish two values as possible objects of the forecast. When making a forecast
for the short-run performance of a policy being evaluated for one item, the object is to forecast
the exact n-period-average value which each operating characteristic will take when the policy is
implemented over the next » periods. In the second case, we envisage an ensemble of an arbi-
trarily large number of items with identical underlying specifications, no interdependence of
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demand and initial inventory positions randomly sampled from an equilibrium probability distri-
bution. The object of the forecast is to predict from the n-period history of an arbritrarily
chosen item the ensemble average or expected operating characteristics. By ergodic theory,
these expected values can be estimated as the long run operating characteristics obtained for
one item by time averaging when the policy is revised repeatedly every n periods in a stationary
environment. This second case will yield some insight to performance prediction for inventory
systems with many items.

To measure the accuracy of a single forecast, for each operating characteristic we con-
structed from the 1200 replications a sample distribution of the forecast error, expressed as a
percentage relative to the forecast. Tables 2 and 3 show these distributions at selected values of
the error percentage. Consider first the error distributions for n-period-average total cost.
When the object is a short-run forecast for one item and the history length is 13 periods, Table
2 shows an estimated 64.4% chance that the actual 13-period-average total cost will be outside
the range 10% below to 10% above the forecast value with odds of 51.2 to 13.2 (approximately
4 to 1), that the forecast will be on the low side of that actual value. When the history length
is 52 periods, the chance that the forecast of the 52-period-average total cost will be in error by
10% or more of itself is 62.5%, much the same as for n=13, but the odds for an underestimate

TABLE 2. Percentage error distribution for forecasts
of short-run operating characteristics

Table 2 shows empirical cumulative distributions of the percentage difference, measured rela-
tive to the forecast, between the forecast and actual n-period-average values realized for each
operating characteristic. The distributions are each obtained from 1200 replications for the sin-
gle item case having specifications: negative binomial demand (u = 16, o%u =9); C,,, =99,
Cix=64, C;y=1and A\ = 4.

EBETT et gttt LR I L e P e, o Erbeas b B s e e
Demand | Percentage of Forecast by which Actual| Forecast | Percentage of Forecast by which Actual
Operating History Value is Underestimated is at Least: Exactly Value is Overestimated is at Least:
Characteristic Length R £ — On i T s M
(n) 100% | 50% | 20% 10% 0 Target 0 10% | 20% | 50% 100%
Bl e = R —
Average 13 148 | 19.2 | 349 | 51.2 | 70.3 29.7| 13.2 | 05.1 0.8
Total Cost 52 123 | 194 | 29.2 | 41.7 | 63.7 363 208 12.6 1.5
— - s (S NGFSIIEE TSI TS S, S EN—. T— ,__,__-A_,*-.Afﬁ,_ﬂy SRS
Average T T
Period-End 13 36 25.3 393 | 518 4821 365 | 263 49
Inventory 52 07.9 | 24.1 51.6 484 | 25.7 | 09.3 0.3
, o Sty B Mol St Sciho e, b ol BT | et PO
Average \
Backlog 13 223" | 224 | 225 | 225 | 225 75.2 023 023 | 023 | 022 02.22
Quantity 52 36.7' | 376 | 380 L 382 L 386 | 327 28.7] 28.7 | 284 | 271 { 24.3
Backlog 13 219" | 219 | 219 | 219 | 219 75.9 T 022) 022 | 022 | 021 212 4
Frequency 92 357'4 36.2 | 363 | 363 | 36.3 38.0 l 25:0 257 | 253 | 256 23.52
- — — — 1 e ———— PR S— e ————— ﬁ.,—-_.k_ P—
Replenishment 13 45 124 | 31.7 | 3L7 | 31.7 36.3 320 320 | 320 | 03.4
Frequency 52 0.04 10.1 21.1 39.7 19.8 405 23.2 | 049
2 (R FEITONTRNS S ST AT TURT T S (TSR s (NECTERAR IS O, I S, SO e O

(1) (See Table 4). A zero forecast was followed by a positive n-period average backlog in 253 (21.1%) of the 1200
replications for n = 13, and in 332 (27.7%) of the replications for n = 52,

(2) (See Table 4). A backlog was predicted but did not eventuate in 25 (2.1%) of the 1200 replications for n = 13, and
in 282 (23.5%) of the replications for n = §2,
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TABLE 3. Percentage error distribution for forecasts
of expected operating characteristics

Table 3 shows empirical cumulaiive distributions of the percentage difference, meas-
ured relative to the forecast, between the forecast and the expected value of each
operating characteristic. The distributions are each obtained from 1200 replications
for the single item case having negative binomial demand (u = 16, o%/u = 9);
Con=99, Ciy=064, C,,=1and A = 4.

Demand Forecast Underestimates by Forecast Overestimates by
Operating History at Least: at Least:
Characteristic Length |-
(n) 100% | S0% | 20% | 10% 0 0 10% | 20% L S0% | 100%
1 13 396 | 814 | 968 | 98.2 | 99.0 | 01.0 | 006 | 00.6 | 0.1

Total Cost 52 00.2 237 | 727 | 824 | 882 | 11.8 | 080 | 047 | 0.3

Period-End 13 008 | 07.9 | 30.3 | 428 | 57.2 | 42.7 | 27.7 | 15.1 0.2

Inventory 52 093 | 27.7 | 553 | 44.7 | 195 | 03.8

Backlog 13 97.6* | 98.2 | 984 | 98.7 | 987 [ 01.3 | 008 | 00.7 | 0.6

Quantity 52 79.0* I 828 | 865 | 87.3 | 889 | 11.1 | 099 | 08.4 36
ISR ) NERER S BN TSty ST TSN AR SR b

Backlog 13 96.3* | 96.3 | 96.3 | 96.3 | 96.3 | 03.7 | 03.7 | 03.7 3.7

Frequency 52 59.8* | 59.8 | 59.8 | 59.8 | 87.0 | 13.0 | 13.0 [*13.0 32

Replenishment 13 01.8 120 | 128 | 496 | 49.6 | S0.4 | 504 | 088 “

Frequency 52 028 | 18.7 L 50.4 | 49.6 | 03.5 1
ST p— . s o S — SEEEWSIINS| SRS L - ;

*(See Table 4) Zero backlog was predicted in 1155 (96.3%) of the 1200 replications for n = 13, and in
718 (59.8%) of the replications for n = 52.

are only about 2 to 1. Table 3 demonstrates in similar fashion the errors when the object is to
forecast the ensemble average total cost. With the 13-period demand history the chance the
forecast is in error by 10% of itself, or more, is estimated to be 98.8%, an underestimate being
almost certain. With as many as 52 demands in the history, the chance is still high at 90.4%,
and the odds for underestimation are about 10 to 1.

Turning to operating characteristics which form the components of total cost, there is sub-
stantial dispersion in the forecasts for the average period-end inventory and the replenishment
frequency, but it is the prediction error in the backlog quantity, weighted by the unit backlog
penalty of 99, which is the main source for the bias and dispersion observed in the forecasts of
average total cost. Even with 52 periods of history, the chances of a short-run forecast (Table
2) being 10% of itself or more in error are 49.8% for inventory, 66.9% for backlog and 44.3%
for the replenishment frequency, and when forecasting expected values (Table 3), the
equivalent chances are 47.2%, 97.2% and 22.2%.

We found wide dispersion in percentage forecast error to be very common in the 648
cases of Table 1. Indeed the dispersion is so great that little reliance can be given to a single
forecast made from the demand history for one item. This conclusion applies with particular
force to forecasts of backlog performance, which we next examine in greater detail, before
considering whether an aggregation of single-item predictions can be useful for predicting sys-
tems performance.
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A reliable calibration of the important trade off between inventory investment and backlog
performance can be made only if there is an accurate method to forecast backlogs. But inven-
tory control systems are designed to make backlogs relatively rare events: indeed for the special
case we have been using for illustration, when the demand history length is 13 periods, on the
average a backlog actually occurs about once in 24 periods; with a history length of 52 a backlog
happens about once in 43 periods. Using demand samples with history lengths so short relative
to the average times between backlogs, it is hardly surprising that it is very difficult to predict
correctly the backlog frequency, let alone the magnitude of any backlogs. Table 4 illustrates
this problem for backlog frequency. As an example from Table 4(a), which shows results for
1200 replications with the demand history length set at 13 periods, consider the 126 in which a
backlog actually occurred once in 13 periods. In only 9 of these 126 replications was the one
backlog predicted correctly. Of the remaining forecasts, 116 predicted no backlog and one
predicted two backlogs. The nonzero off-diagonal entries in Table 4 represent replications in
which the forecast did not correctly predict the actual frequency, and show that when backlogs
occurred there was little chance of an accurate prediction. Indeed, for the case n=52, a chi-
square tesi on the sample distribution (aggregated to S rows and 4 columns) fails to reject the
hypothesis that forecast and actual frequencies are statistically independent, at a level of
significance of 90%.

TABLE 4. Sample frequency distributions for actual and forecast backlog frequency

I = number of periods with backlog during n-period retrospective simulation.
J = number of periods with backlog during subsequent n periods.

(a) HISTORY LENGTH n=13 (b) HISTORY LENGTH n=52
FORECAST FORECAST
1=0 [ 1 |23 | Total =0 1 [ 2|3 ]|4] Toul
J=0 | 902 |19 [4 [2 | 927 J=0 | 386 [ 189 [ 76 |13 | 4 | 668
1| 16| 91 126 1| 120 st |17 |4 [2] 19
2} 48] 2 50 2] @] izl @
al 3| 40} 2 2 < 3| W] Bl 6|6 89
Sl o4} 192 W =t 4 ;) @l il o#
Bl s] | 1]t Ml Bl 8] wl #4310 23
z| ¢ 2| 8] =| s| w| ] 2 17
7 I 1 Vi 8l o3 | 10
8 5| 2 7 vl 8] 1] 2 1
9 HENE 1 3
10 Wl A 1 4
11 1 1 I T 2
3
Total | 1155 | 37 [ 6 | 2 | 1200 -4 e

T8 B I
Total | 718 | 326 | 118 | 29 | 9 | 1200
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We consider now whether single item forecasts can be made more useful for systems
predictions by aggregation over items. Typically, a representative sample of items from the sys-
tem is employed to make aggregate forecasts. As more items are included in this sample, pro-
vided there is no interdependence between items and all have the same sign for forecast bias,
the bias of the aggregate forecast increases at a rate faster than the standard deviation of the
aggregate. Given a sufficiently large number of items, correction for bias will reduce appreci-
ably the mean square error of the system forecast. Since the bias may be sensitive to the
parameters (cost, demand, lead time) for each item in the sample, and will impact the aggregate

accordingly, we next explore the sensitivity of the bias in forecasts aggregated for different
groups of items.

We examine 9 groups of 72 items formed by partitioning the 648 cases in Table 1, so that
each item in a group has the same demand distribution, variance-to-mean ratio, and history
length. In Table 5, we show the extent to which prediction bias is sensitive to the demand his-
tory length and the demand distribution. To form the 72 items aggregates, we have used cost
components, which facilitate sensitivity comparisons. As we saw in the single-item case above,
the bias decreases as the history length increases. By comparing rows in the table, we see that

TABLE 5. Bias in Forecasts of Aggregate Operating
Characteristics by Retrospective Simulation

Each actual and forecast value is a sample average from 200 replications, obtained by partition-

ing the 648 items specified in Table 1 into 9 groups, each with a given demand distribution and
demand history length and by aggregating within each group.

Demand History Lengthn: | n = ’IJ o | e 2,2", h o e 5_2‘ =)
P o ‘ ] Actual T Forecast Bias Actual | Forecast Bias Actual | Forecast Bias
Value Value (%) Value Value (1] Value Value (%)
— et -
Negative Binomial Demands
2
o Ju =9 ]
Holding Cost 1874 1822 | (02.8) 1817 1788 | (01.6) 1804 1790 | (00.8)
Backlog Cost 1562 280 | (82.0) 1279 458 | (64.2) 1080 S98 | (44.6)
Replenishment Cost 670 658 01.8) 682 674 01.2) 683 679 (00.6)
Total Cost 4105 2760 (32.8) 3778 2926 (22.7) 3567 3066 l (14.0)
Backlog Frequency 108 070 | (34.6) 100 080 | (20.1) 093 083 | (11.5)
Negative Binomial Demands } T
allp =3
Holding Cost 1290 1271 01.5) 1274 1262 | (00.9) 1270 1265 | (00.5)
Backlog Cost 564 186 | (66.9) 457 242 | (47.1) 401 289 | (28.0)
Replenishment Cost 744 737 ({1} 750 745 | (00.6) 750 747 | (00.3)
Total Cost 2598 2194 | (15.6) 2480 2249 | (09.3) 2421 2301 | (05.0)
Backlog Frequency 101 082 | (23.7) 094 083 | (13.2) 092 086 | (06.9)
: ' et :
Poisson Demands
ou =1
Holding Cost 1024 1019 | (00.6) 1020 1018 | (0D.3) 1019 1017 | (00.2)
Backlog Cost 245 133 | (459) 207 149 | (27.9) 190 162 | (14.6)
Replenishment Cost - 715 7 (00.5) T 776 | (00.2) 777 776 | (00.1)
Total Cost 2046 1922 | (06.0) 2005 1943 | (03.1) 1986 1956 | (01.5)
Backlog Frequency 093 082 (13.0) 090 084 | (06.5) 088 085 | (03.0)
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the bias decreases as the group demand variance-to-mean ratio decreases. Most of the bias in
total cost is attributable to the backlog component.

Tables A2, A3, and A4 of the Appendix further split each group of 72 items to show the
sensitivity of the prediction biases to other system parameters. The bias in the forecast of
expected average total cost increases with increases in C,,, /C,,, replenishment lead time A and
demand u, but decreases with Cg,/C;,. The prediction bias is large for the backlog component
of expected total cost, but negligible for the holding and replenishment components. More
information about the properties of aggregate forecasts is' available in MacCormick [6) and
Estey and Kaufman [4].

We conclude that forecasts made by retrospective simulation have prediction biases, lead-
ing to underestimates of operating-characteristic expected values. The underestimation is par-
ticularly significant for backlog performance measures. The bias is due to the double use of
historical demand information in the statistical approximation policy: first to set the system
(s,S) parameters, and then to forecast the subsequent performance. Further, there is consider-
able dispersion in the distribution of forecast errors for individual predictions. Hence, the
system’s designer should be most cautious in making system’s predictions, especially with
regard to service performance and the trade off between inventory investment and service. The
results in this paper suggest that predictions bases on only a small sample of items may have a
large error. Thus, the analyst is advised to be generous in selecting the number of items to use
in a system’s design test. Similarly, the analyst is advised to use as long a demand history
length as is available and sufficiently representative of the future demand environment.
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APPENDIX

ADDITIONAL OPERATING CHARACTERISTIC DATA

Table Al contains the detailed operating characteristic data obtained for the single item

example discussed in Section 4. Tables A2, A3, and A4 display additional sensitivity data for
bias in cost forecasts.
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TABLE Al. Dependence of actual and forecast operating characteristics
on size of demand sample used at revision

Estimated Means and Standard Deviations, Aggregated over n Periods, of
Demand |—— -
Sample Total Cost Period-End Inventory Per_iod-End Backlog | Backlog Frequency | Replenishment Frequency
e A SRS RPC PSSP Ny, SYNREN) CISERSEREEDSRRS: S ~ E - s
n Actual Forecast | Actual Forecast Actual Forecast Actual Forecast Actual Forecast
6 206.4 93.1 79.7 78.2 1.127 0.002 0.0546 0.0006 0.236 0.230
(456.4) (31.7) (44.5) (29.5) (4.760) (0.040) (0.1559) (0.0096) | (0.139) (0.124)
8 191.5 929 17.2 75.4 0.993 0.014 0.0503 0.0020 0.251 0.251
(336.4) (29.8) (40.5) (25.7) (3.530) (0.148) (0.1323) | (0.0164) | (0.114) (0.099) !
| 13 168.0 93.6 74.7 73.9 0.769 0.027 0.0411 0.0035 0.268 0.266 ‘
(238.9) (26.5) (32.5) (19.1) (2.526) (0.196) (0.1002) | (0.0194) | (0.073) (0.067)
18 157.3 943 74.5 739 0.658 0.030 0.0359 0.0041 0.275 0.273
(165.4) (23.4) (28.8) (17.1) (1.771) (0.155) (0.0747) | (0.0158) | (0.056) (0.049)
24 143.7 97.6 74.3 73.8 0.523 0.063 0.0297 0.0064 0.276 0.275
(124.1) (29.7) (24.6) (14.2) (1.342) (0.259) (0.0628) | (0.0181) | (0.046) (0.040)
30 138.4 98.8 74.0 73.7 0.470 0.074 0.0272 0.0074 0.278 0.277
(110.2) (28.0) (22.5) (12.8) (1.198) (0.244) (0.0543) | (0.0175) | (0.039) (0.032)
36 134.0 101.8 74.0 73.8 0.426 ().164 0.0250 0.0091 0.278 0.277
(100.6) (32.1) (20.2) (11.4) (1.094) (0.290) (0.0466) | (0.0176) | (0.035) (0.028)
42 131.4 103.6 74.1 739 0.398 0.120 0.0235 0.0100 0.279 0.278
(922) (319) (18.9) (10.8) (1.005) (0.290) (0.0421) | (0.0175) | (0.032) (0.026)
52 127.8 104.8 74.2 73.9 0.361 0.132 0.0217 0.0110 0.279 0.278
(79.5) (29.2) (17.3) (9.6) (0.874) (0.266) (0.0372) | (0.0158) | (0.029) (0.022) y
= 3 n WPERISI, SR RNt B ey CENSLA T e

Model Specifications:

Demand distribution: Negative binomial with u = 16, 0%/ = 9; '
Cost parameters: C =99 C =64,C =1,
" i out fix in
Replenishment lead time: = 4,
’
PR
e
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TABLE A2. Percentages by which forecast underestimates expected costs per period,
Jor various classifications of 72 items under statistical control

{ Cost Component Total C. /C
out n fix n
4 { 9 | 99 | 32 | o4
Negative Binomial Demands
172/‘4 =9
Holding Cost 28 58 36 1.0 3:2 24
Backlog Cost 820 | 453 ) 657 | 940 | 82.7 | 81.4
Replenishment Cost 18 ‘ R ST S T S
| Total Cost | 28 ‘ 149 i 196 | 46.1 | 34.3 | 314
| |
} Negative Binomial Demands ‘ I
| o =3 |
[ [
| Holding Cost IR R ) R U R A R 0 I
Backlog Cost | 669 | 307 | 530 69 .S 693 645
Replenishment Cost ¥.1 13 10 ‘ 0951 0901 Ll
‘ (
‘ Total Cost 156 80 ‘ 10.7 | 23.1 17.8 37
Poisson Demands ‘
oy = | l
( Holding Cost 06 16 | 06 00 04 0.7
| Backlog Cost 459 180 36.1 81.7 | 506 | 41.4
| Replenishment Cost 05 03 0.7 0.6 0.7 0.4
|
i Total Cost 60 | 35| 44| 90( 73| S0
by e i

(Demand History Length: 13 Periods)

Input Parameters

|
|
{
|
|

|
Sy
0201023
589 | 832 |
28 1|
! |
\
013
377 | 654
oen ] i)
57| 149
02 02
16.6 | 44.0
0.7 04
i7l i\'

Lead time A

]
[
1
4 2
t
41| 17
898 | 878
09 42

17.8 | 335 | 403 | 405

|
2(\[
|

18
TTE§ 15
nt)‘( 952
227'20)(
|
1.2 0.8
58.2 S35
()4! 14
[
100 { 7.5 |

T
$ 1 H
30 30
B3 6 803
27 13
37.1 36
O 8 O
[ hm"
R T O

495 | 445
1.0 0.5 |

|
|
|
[ 08 [ 05
|

30
783
09
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TABLE A3. Percentages by which forecast underestimates expected costs per period,
Jor various classifications of 72 items under statistical control

| Cost Component
|

chg.Hl\u Binomial Demands
“172/[4 =9
| Holding Cost
Backlog Cost
| Replenishment Cost

|
Total Cost

Negative Binomial Demands
rr)/u =]
Holding Cost
Backlog Cost
Replenishment Cost

| Total Cost

Poisson Demands
olp = |
Holding Cost
Backlog Cost
Replenishment Cost

| Total Cost

I

RETROSPECTIVE SIMULATION

(Demand History Length: 26 Periods)

Total

1.6
64.2

227

09
47.1
0.6

9.3

03
219
0.2

31

3
28.0
1.0

8.7

2.1
Fr.3
0.6

44

0.9
1.9
0.2

out n

9

2.1
44.9
1.4

10
325
0.7

5.8

0.2
21.4
0.2

99

0.6
79.0
1.3

340

0.4
7l
0.5

14.8

0.1
624
0.1

48

C

fix

32

1.9
65.7
0.9

24.8

1.0
50.1
0.5

10.9

0.3
312
0.1

3.7

/C

in

64

09
44.1
0.6

8.1

0.2
251
0.2

2.6

Input Parameters

0.0
371
1.3

10.3

0.2
19.3
0.6

28

0.1
L
0.3

0.6

2

15
630
1.5

N
N
o

0.9
45.7
0.5

9.3

0.3
21.3
0.2

3.1

Lead time A

26
763
09

303

18
59.6
0.7

14.1

0.3
385
0.0

619

Mean Demand u

> l 4 8
|
7 (R T T B
744 | 68.3 | 59.8
42| 14| 08
| {
34.5 | 27.0 | 203
1 l
131 09| 09
583 | 46.0 | 449
19 | 06| 02
149 | 93| 86
04| 04| 03
344 | 276 | 272
07 ] 04| 00
IR

i
:
|
1
1
!

0.1
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0.1
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TABLE A4. Percentages by which forecast underestimates expected costs per period,
Jfor various classifications of 72 items under statistical control
(Demand History Length 52 Periods)

Cost Component

Negative Binomial Demands
ollu =9
Holding Cost
Backlog Cost
Replenishment Cost

Total Cost
Negative Binomial Demands
ol =3

Holding Cost
Backlog Cost
Replenishment Cost

Total Cost
Poisson Demands
olp =1

Holding Cost

Backlog Cost
Replenishment Cost

Total Cost

Total

0.8
4.6
0.6

14.0

0.5
28.0
0.3

5.0

0.2
14.6
0.1

"

1.6
16.2
08

112
8.4
0.3

2.2

5]
3u7
0.1

0.8

out

1.0
278
0.3

6.9

0.6
17.6
0.3

30

0.3
9.8
0.2

n

0.3
58.6
0.6

0.0
47.8
03

8.1

-0.1
39.0
0.0

24

fix

0.9
454
0.5

15.3

0.5
293
0.3

Sk

0.2
16.6
0.0

i

64

0.7
439
0.6

12.9

04
26.7
03

44

0.1
12.8
0.2

Input Parameters

0.2
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0.6

0.1
10.5
0.3

0.0
1.7
0.1

0.2

2

0.7
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0.5

13.6

0.4
26.6
04

48

0.1
14.1
0.1

1.4

1

Leac time A

4

1.3
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0.7

191

0.7
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|
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ESTIMATING VALUE IN A UNIFORM AUCTION

Francisco J. Samaniego and Lee D. Kaiser*

University of California, Davis
Davis, California

ABSTRACT

Consider an auction in which increasing bids are made in sequence on an
object whose value # is known to each bidder. Suppose n bids are received,
and the distribution of each bid is conditionally uniform. More specifically.
suppose the first bid X, is uniformly distributed on [0, #], and the ™ bid is un-
ormly distributed on {X, . 8] for + = 2, ..., » A scenario in which this
auction model is appropriate is described. We assume that the value # is un
known to the  statistician  and must be esimated from the sample
Xy Xy, ... X,. The best linear unbiased estimate of 0 is derived. The in-
variance of the estimation problem under scale transformations is noted, and
the best invariant estimate of @ under loss L(0. a) = [(a/#) — 11? is derived
It is shown that this best invariant estimate has uniformly smaller mean-
squared error than the best linear unbiased estimate, and the ratio of the
mean-squared errors is estimated from simulation experiments. A Bayesian
formulation of the estimation problem is also considered. and a class of Bayes
estimates is explicitly derived

1. INTRODUCTION

The bibliography on competitive bidding compiled by R. M. Stark [12] documents the fact
that there has been considerable recent interest in mathematical models for bidding processes.
For the most part, models proposed for such processes have been used for developing "optimal"
bidding strategies. For example, Griesmer and Shubik [4, 5, 6] and Griesmer, Shubik, and
Levitan [7] formulate bidding processes as n-person games, and obtain equilibrium solutions
under a variety of constraints on the amount of information on previous bids available to each
bidder. The only distinction among bidding processes made in our study is between sealed-bid
and open-bid auctions. In a sealed-bid auction, each participant submits a bid without knowing
the bids of his opponentis, while in an open-bid or progressive auction, bids are made sequen-
tially and all participants are fully aware of all previous bids. Models for open-bid auctions are
considered in [6]. There seems to be little work on probability models for an observed
sequence of bids, and, to our knowledge, inference questions concerning open-bid auctions are
essentially untouched. We present in this paper a probability model for an open-bid auction,
and we develop and compare several estimators of the parameter of the model.

We will consider an open-bid auction model to be any probability model which generates a
sequence of nonnegative, increasing chservations (X, }. Thus, the joint distribution of the order
statistics from any continuous distribution with support in IR" could be viewed as an auction
model. Similarly, the random-record models studied by D. Graver [3] and by M. Yang [15]
could serve as auction models. [t is clear that a definitive treatment of modeling and inference

“The second author 1s now at Celorado State University
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questions for open-bid auctions must deal with the stopping rule in the bidding process that
determines the size of the sample of bids to be examined. Much can be learned, however, by
examining the estimation problem as a fixed-sample-size problem, and this viewpoint is pursued
in section 3. An application is described in which such a simplification seems justified. In sec-
tion 4, we present a Bayesian formulation of the estimation problem in which the optimal esti-
mator is in fact independent of the stopping rule.

2. THE UNIFORM AUCTION

We will refer to the following probability model as the uniform auction. Let # be a non-
negative, real-valued parameter to be thought of as the value of the object being auctioned.
Let X, ~ Ul0, 0], that is, X, is uniformly distributed on the interval [0, #). For
i=2,...,n let X, ~Ul[X, ,, 0. Taking x, = 0, the probability density of the vector of
bids X is given by

n-1 1
2.1) SOy, X9 ooy x,|0) =120 0 =%, for0< x, <...<x,<8,

0 otherwise.

This probability model seems to be new in statistical literature, and has a number of interesting
characteristics. It is not an order-statistic model, and it differs from the distribution of the
order statistics from U[0, 6] in that the uniform auction typically produces a set of bids tending
much more to the right in the interval (0, ] than the set of bids from the uniform order-
statistic model. The uniform auction has an interesting statistical property that renders the esti-
mation of # a somewhat delicate problem. One can easily verify by the Lehmann-Scheffe tech-
nique [8] that the entire sample of bids (X, ..., X,) is a minimal sufficient statistic for 6.
Thus, in contrast with many bounded or semibounded order-statistic models, reduction by
sufficiency does not accomplish a simplification of the problem.

The probability model considered in this paper is supported by a number of intuitive con-
siderations. As discussed in section 3.3, the value # in the uniform auction is a scale parameter
of the distribution of bids. We are thus able to develop reasonable estimators of # that are
invariant with respect to scale transformations on the data. Such estimators have the property
that the estimated values are equivalent regardless of the monetary units in which # and the
bids are expressed. Stated informally, our estimate of # should not depend on whether the bids
are in dollars or in pennies, and each of the estimators obtained in section 3 satisfies our intui-
tion in this regard. It is possible to arrive at the uniform auction rather than other scale-
parameter models from an entropy argument, since the uniform distribution on [X,, #] maxim-
izes the entropy among all distributions on the interval. Thus, the uniform auction is a sequen-
tial formulation of maximum uncertainty concerning the bidding process.

Precedents exist in the literature on bidding processes for the probability model con-
sidered in this paper, as well as for the estimation problem we investigate. In a celebrated
paper, Vickrey [14] studied game-theoretic aspects of competitive bidding in a framework in
which bids were modeled as uniform random variables. He postulated that, in a sealed-bid auc-
tion, a random participant assesses the value of the object at auction according to a uniform dis-
tribution on some interval, taken as (0, 1) for simplicity. Under a linear utility function, the
unique equilibrium strategy is for each bidder to bid the amount

b= ﬁ'ﬁ—'— v tmd, e, N
where v, is the value the /" bidder obtains from the uniform distribution and N is the number
of bidders. Thus, when bidders employ the equilibrium strategy (which is also Pareto optimal),

©
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each bid is itself a uniformly distributed random variable. In an appendix, Vickrey briefly
discusses one possible extension to open-bid auctions — the uniform order-statistic model. We
believe that such an extension is inappropriate, since the distribution is not derived using a
sequence of conditional distributions based on past bids and is thus not patterned after a real
open-bid auction. [t is easy to see, however, that the uniform auction is a natural extension to
open-bid auctions of Vickrey's sealed-bid model. Suppose each bidder has an initial value
assessment v, drawn independently from a uniform distribution according to Vickrey's model
If a bidder emerges at random from the N participants, and he submits a bid according to the
aforementioned equilibrium strategy, the bid is uniformly distributed. After the first and each
successive bid, the bidders reassess the value of the object and, following Vickrey's model,
obtain new values according to a uniform distribution on an interval with a different lower
bound. Under such a mechanism for reappraisal, the resulting probability model is precisely
the uniform auction. The interpretation of # as the value of the object is consistent with
Vickrey's scheme, since it would represent the least upper bound on possible value assess-
ments, and, in theory, one could find a buyer willing to pay more than # — € for the object for
any € > 0. An estimation problem in competitive bidding was examined by Christenson [1].
In that paper, a multiparameter probability model was advanced as a distribution of an
opponent’s bids in a multistage sealed-bid auction. Among the parameters of the model was
the value of the object to the bidder. Bayesian linear regression analysis was used for estimat-
ing the parameters of the model.

While the uniform auction can be viewed as a natural extension of Vickrey’s scheme for
value assessment, it can also be motivated from a quite different scenario. Consider an auction
with a large number of expert bidders. The annual bull auction at Red Bluff, California, would
be an example (see Sosnick [11, page 1310] for a description). Each bidder knows 6, the value
(perhaps the market value or perhaps the break-even point in a marketing process after a pur-
chase) of the object at auction. Such an assumption is of course approximately true, at best,
but it should be sufficiently close to reality in some auctions to justify the use of our model. In
his summary section, Vickrey [14, page 28] discusses the validity of his model, stating

. these conclusions are based on a model in which a high
degree of rationality and sophistication is imputed to the
bidders; nevertheless, in many markets the frequency of the
dealings and the professional characteristics of the dealers are
such as to make such an assumption not too far from reality."

Given that / bids have been made, the (i + 1) bid is assumed uniformly distributed. This
assumption might be justified on behavioral grounds, since the bid that an aggressive bidder
would consider would be high in [X,, 0], while the bid that a conservative bidder would con-
sider would be low in [X,, 0], and hence the random bid that emerges from a large group of
bidders might quite reasonably be modeled as a uniform variable. Finally, while the sample
size in an open-bid auction tends to provide information about #, one might consider estimating
# after stopping artifically, that is, after » bids are made, even though the bidding actually con-
tinues. Estimating # from an artifically stopped auction could appropriately be considered a
fixed-sample-size problem when »n is not too large relative to the expected number of bids. In
fact, the primary application of the estimation procedures discussed in the next two sections
might well be the estimation of value by a nonprofessional (referred to henceforth as the statis-
tician) based on the early bids of expert bidders.

We now turn to the moment structure of the uniform auction that comes into play in
estimating #. By the recursive relations

e epp———
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0+ EX _,
EX = E[E(X|X_))] = e e,
together with £X| = 6/2, we obtain
(2.2) EX, = 1—%]9. Fol
Define
(2.3) u, = l——l-], a2 s
21
Similarly, we obtainfor | < /i < j < n
1 1
(24 coviX,, X) ={—— - —| 62
) 2/ :3: 2/0/]
Definefor1 < /i < j < n
- | 1

(2.5) y,=|— - —1

€ 2/ :31 2:&;'

and let X be the n x n matrix whose /" element is o .
3. ESTIMATING THE VALUE ¢ FOR A FIXED SAMPLE SIZE

We now treat # as a parameter unknown to the statistician. We will compare three
approaches for estimating # based on a sample of #» bids.

3.1 Functions of the Maximum Likelihood Estimate

The maximum bid X, is the MLE for 4. Since X, is not sufficient for #, we would expect
to do better with estimators based on more information. We will, however, consider efficiency
questions at the end of this section for two estimators based on the MLE. Let 6, denote the
unbiased function of the MLE given by

3.1 0, =X,/ u,
where u, is defined in (2.3). Recall from (2.5) that
(3.2) T, = ) -l-n
3!! 4”
The variance (or mean-squared error) of the estimate i), may be shown to be
A ’rml”2
(3.3) var(§)) = ——.

u}

Let fi; be the multiple of the MLE with smallest mean-squared error. One may easily obtain
that

(3.4)

The mean-squared error of the estimate i); may be shown to be

(3.5) MSE (8 = | ———]| o2,
ul+ o ”m

n

|- et P———
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3.2. The Best Linear Unbiased Estimate

We now derive the best linear unbiased estimate of 6, that is, the estimate of the form

(3.6) g,. =alX
with minimum variance under the constraint

(3.7) a’EX =@
which may be rewritten as

(3.8) alu=1,

The BLUE derived in this paragraph is an improvement over f), since f), is itself a linear
unbiased estimate of #. The relative efficiency of 6, with respect to the BLUE is discussed at
the end of section 3. The variance of the estimator 6, is given by

(3.9) var(,) = #%a'3a

which is to be minimized over vectors a satisfying (3.8). Using straight-forward Lagrange
minimization, we have by differentiation

(3.10) 202%a = Au.

Since a must satisfy (3.8), we may identify A as

262
(3.11) A= m
so that the BLUE, which we denote by f);, is given by
; . Iy -1
(3.12) § - %“7’;—'1‘
The variance of f); is given by
- 92
(3.13) var(9;) = m

3.3 A Best Invariant Estimate

We note that 6 is a scale parameter of the distribution of X, that is, the density /given in
(2.1) may be written in the form

n = %
Xy X,
g =L 20

0 9.l

/'(A\'I, s ey X,,l”) = l-l'

X X X, : :
for 0 < -01 < 7’ & € —"L < 1. We develop in the paragraphs that follow a Pitman-type

estimate of # in a context to be explained shortly, We use the notation and approach of Fergu-
son [2, pp. 186-190] in this development.

We propose as a loss criterion the scale-invariant loss function

2
(3.14) Lo, u)=l%-—l].

With this loss function, the decision problem of estimating @ is invariant under the group of
scale transformations. Invariant decision rules are those rules @ which satisfy for all ¢ € IR*

(3.15) (/(('X|, ('X), Ve g ('X,,) = ('(I(X|. ey X,,).

T

h o :’-——." "
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Let
XI
(3.16) Y,=}T fori=2, ..., n
The distribution of (Y,, ..., Y,) does not depend on #. We will find the best invariant esti-
mate of @ in the conditional problem based on f(X,|Y,, ..., Y,. 8), where @ is still a scale
parameter. We are able to establish by the usual argument that this rule is best invariant in the
original problem based on f(X,, ..., X,|#). An invariant estimate in the conditional problem
has the form P
where b, = by(Y) is such that
2
bX
(3.17) £ ”7—‘ - 1] {vl

is minimized by b = b,,.

The transformation 7: (X, X,, ..., X,) — (X,, Y, ..., Y,) has Jacobian

(3.18) )= xp,
and thus
1 I
e 1 forl <y, <...<y, <
Xl ! n H i V—“] : 0
(3‘9) /.(.\'|. Pay win s ]r',,l”) - e ik and 0 < X\ < 7‘
0 otherwise,

where we take yy = 0 and v, = 1. Since the conditional density f(x,|y, #) does not come into
play in our calculations, it will not be derived. Since the risk function (3.17) of each invariant
rule is a constant independent of 6, we will take # = 1 for convenience. The conditional risk at
6 = 1 for the rule dy(X) = bX, is
' I/\” by — 2=

(3.20) W“—L’T)— " —(Ij—‘l—*—“—y——- dy,

e RS IHa-y»

1=

where x| has been replaced by the dummy variable p. Minimizing (3.20) with respect to b

yields
: I/ "
n Y
j:) n-\ (l'v

[Ha-yy
™

1/ nil
" 1%
T
0 n=1 . ¥
(1 -y
1=|

(321) b()=

We now proceed with the evaluation of b,

Consider the numerator in (3.21). The decomposition of the integrand into partial frac-
tions yields the following representation:

|/|,, V" |/|" F n-1 A,
v gy g
(1 =yy f=l A
/"l

dy

N TE———
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where 4,, ..., A, are the solutions of the system of linear equations
1 I 1 A, 1
a, Ty SRS R T A, 0
(3.23) 2
" where a, ,, 4a, 5% SR a, -1 A,, | 0
(3.24) a, = 3 I1 W,
- 1<k < <A,Sn'I r=|
k, =/ for all r
The elements {a,|i =1, ..., n =2} in the ;" column of the (n — 1) x (n — 1) matrix in
(3.23) are simply the elementary symmetric functions in the letters Vil e s e
Yisrr -0 Vy. We evaluate the integrals in (3.22) by repeated applications of the recursive
formula
.m =1 -
(3.25) f e dx = b 5 x"— L f — dx.
a + bx bm b a + bx
We thus obtain for any positive integer k
(3.26) e (/V
. )
A
1 1 1y, k=1
= - I_ - + l_ f __V’_* (/_V
y: K | Vu ¥y e 1=y
A 1 I 1 ] Vv,
,z,' vi| k=j+1 v,, 1 —yy
h =1+l A+l
1
‘ ¥ daE , _ &
; , & = f =T JiERl iy 32

The integral above can be indexed by the upper limit of integration, v, ', the exponent of the
numerator, k, and the bid ratio involved, y. We thus denote the expression in (3.26) by
I(y,', k, »). Recalling (3.21) and (3.22), we may write the best invariant estimate of  in the
conditional problem as

n-|
o At m y)

R

(3.27) Sl “p S
z YAlly, , n+1,yp)
&)

The optimality of 94 among invariant estimates in the unconditional problem may be esta-
blished by the usual argument (see, for example, [2, p. 187]).

3.4 A Comparison of{!,, i=1, 2,3, 4

It is easy to demonstrate the inadmissibility of 6, fiz, and 05 under any loss function of
the form

— W ’%*o - _-’
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L(O,a) = w(®)(O - a)’,
which of course includes squared error loss as well as the loss function of (3.14). The risk
function of each of these estimators is dominated (uniformly in #) by the risk function of #,.
One may argue as follows. The estimator #, is uniquely best invariant (up to equivalence)

under the loss criterion (3.14). Moreover, ¢ , for 1 = [, 2, 3, are scale invariant estimators of

6. Thus, for all 4,

E 2 I
(3.28) ‘19
for 1 = 1, 2, 3. Multiplying both sides of (3.28) by w(#)0” establishes the claim.

It remains to examine the efficiency of the estimates g, =1, 2 3. among cach other as
well as relative to 6, In other words, we week to answer the question: "How much is lost by
using an alternative to the very imposing estimator #,?" In Table 1, we present exact relative
efficiencies for #,, #, with respect to #,, that is, we list the ratios of their respective mean-
squared errors. [t is interesting to note that 8, is to be preferred to 5; for a sample of two bids,
even through it rapidly loses ground as the sample site increases.

TABLE 1

_n [ RE®/6) [ REG/6) |

2 0.964 1.048

3 0.917 0.943

4 0.868 0.876

3 0.824 0.826

6 0.787 0.788

7 0.758 0.758

8 0.735 0.735

9 0.718 0.718
o | oms | o705

The mean-squared error of f), is difficult to obtain analytically. We have generated 500
samples of sizes 2, 3, and 4 from the uniform auction with # = 10. MSE(#,) and MSE(8,)
were simultaneously estimated from these samples, and the estimated efficiency of #, relative 1o
04 appears in Table 2.

TABLE 2

It seems reasonable to conjecture even from this very small simulation study that the
BLUE performs adequately for samples of size n 2 3 and clearly provides substantial
simplification in the computations required. Combining Tables 1 and 2 for n = 2, one may
estimate RE(H,/6,) as 0.966.

4. A BAYESIAN FORMULATION OF THE ESTIMATION PROBLEM

In the last section, estimators of # were developed based on a sample of fixed size » from
the uniform auction. While there are situations in which one might reasonably ignore the stop-
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ping mechanism in an auction, a general treatment of the estimation problem should allow tor
the influence of random stopping. The estimation problem is perhaps best formulated as a
sequential decision problem, a formulation in which the stopping rule is dealt with explicitly.
We examine such a formulation in this section Sequential decision problems are discussed in
detail by Ferguson [2, Chapter 7]

A stopping rule in a sequential decision problem is a sequence of functions
®(x) = (b, & (x), by(x;, x)), ...], where ¢, (x,. ..., x,) represents the probability that
sampling is terminated after n observations, given that Xi=x, ..., X, = x, were observed.
A terminal decision rule is a sequence of functions d(x) = [d,, d,(x D, dy(xy, x5, .. ], where
d, represents the decision rule 1o be employed if sampling stops after n observations. In many
sequential problems, the statistician is able to select ® as well as ¢, so that the focus is on
choosing the pair (b, d) optimally. The auction setting we study here is such that & is not
completely controllable (for example, bidding may stop after one high bid) and is generally
unknown. We therefore are primarily interested in the selection of optimal estimators for given
fixed stopping rules.

It is well known that the Bayesian approach to sequential estimation results in estimators
that are optimal (in the Bayes sense) regardless of what stopping rule is in force, providing the
stopping rule does not depend on 6. A precise statement of this result may be found in Fergu-
son [2, page 314]. Thus, this approach is well suited to situations in which the stopping rule is
either unknown or beyond the control of the statistician. The more general (and substantially
more difficult) sequential problem with stopping rules which may depend on 6 will not be
treated here. We develop below a class of Bayes estimators relative to Pareto prior distributions
on # and squared error loss based on a sample of n bids from the uniform auction. The
sequential decision procedure which minimizes the Bayes risk for any given stopping rule ® is
the procedure which uses the Bayes estimator for the sample that becomes available, regardless
of size.

The Pareto density with parameters r and f, is given by
ré

o
0 otherwise,

if 6 > 0,
4.1) e@)r, 0) =

where #, > 0 and r > 0. If a random variable # has a Pareto distribution with » > 1, then

ré
ol A :
e - ,
e ;
and if r > 2,
rog
var(0) = T T T
(r=1D%r-2)
We derive in this section an expression for the Bayes estimate of # with respect to Pareto prior 4

distributions. The expression (4.2) involves definite integrals that are difficult to evaluate in
general. We evaluate the Bayes estimate only for positive integer values ol the Pareto parame-
ter r, but indicate a simple transformation which is helpful in evaluating the estimate for posi-
tive rational r.

The density function of the vector of bids in the uniform auction is given in (2.1). Thus,
taking # as a Pareto random variable with parameters r and #y, we obtain a posterior density
proportional to

———
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I

A

i

for 0 < x; < ... < x,<#, and # > 6, Letting w, = max(x,, 6, we may write the Bayes
estimate of 6 for squared error loss as

8717 \

4.2) by ——— =L

The evaluation of #5 involves steps quite similar to those followed in evaluating 64. We thus
include only those details needed in clarifying the notation used in our final expression for 6-.
We first obtain a partial fraction decomposition,

n -1

Bis

n -\

1
(4.3) e
5

X X,

where B, ..., B, ,are the solutions of the system of linear equations

1 Kot 0100 1 B, 0

by Pl e b B, 0
(4.4) : T : i

b TR (s ' ’
with n-2.1 n-=2.2 2 | B,, 1 1
(4.5) b, = p [H nl
1<k, < <k, <n-1 |r=1

k= for all s
We then have the represenlalion for the numerator of (4.2):
= el dae.
(46) ;I'u” ”/0| lq f ”I’I(H \) 5

Integrals of the type in (4.6) were studied by Chebyshev. whose famous result implies that
such integrals are elementary functions whenever 7 is a rational number (see Ritt (10]). We
develop here the exact expression for ¢ only for positive integers r; if ris the ratio of integers
s/t, however, the transformation # = X' reduces integrals in (4.6) to integrals of rational func-
tions of A. The integral of a rational function can ledys be obtained in finite terms by the
method of partial functions.

Using the recursive formula

de | 1 de ;
(4.7 T T e AT Y T A e s £
. f 0" — x)) (m — [)xg7 ! X, a” ’(ﬂ - \)

valid for m > 1, we obtain for any positive integer m

x f
48) Clx, m) = f“ -

Hm(H s \)
" ‘ l I “‘N o 1 ‘\-'
-y ———— 4 —n |
| (’" - l)-\./”‘,’y” ! X m “‘,:
\_;”':,, p—
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We may thus express the Bayes rule relative to the Pareto prior with parameters r € Z ' and 0,
ds

¥ BClx.r+1)

(4.9) (e

Z BC(x, r+2)
I

and a similar expression may be developed when ris a positive rational.

We close this section with two remarks. First, we note that Bayes estimates for the Pareto
prior and certain weighted, squared-error loss functions can be developed in a similar fashion.
In particular, the Bayes estimate relative to the Pareto prior, with parameters r € Z ' and A, and
the loss function of (3.14), is given by

"
2 BC(x, r +3)

By = <

1) I . WA £
BC(x, r+4)

]

=1
Secondly, for positive integers 7, one may obtain an interesting class of limits of Bayes rules as
#y— 0. The form of these rules is easily obtained — one simply replaces w, in the expression
for 65 or 0, by x,. One may show that these limits of Bayes rules are invariant under scale
transformations, indicating that the invariant procedures studied in section 3 are similar to
Bayes procedures for suitable choices of Pareto parameters.
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ABSTRACT

A model is developed which may be used to determine the expected total
cost of quality control per inspection lot under acceptance sampling by variables
where several characteristics are to be simultancously controlled. Optimization
of the model is accomplished through the application of a conventional search
procedure. The sensitivity of the model and the optimum solution to the shape
of the underlying probability distributions is discussed and associated analyses
are presented through an example.

INTRODUCTION

Over the past decade considerable attention has been devoted to the subject of cost-based
quality-control systems. Hald [12] and Horsnell [15] have developed and analyzed mathemati-
cal cost models for acceptance sampling for a single attribute while Duncan (S, 7], Gibra {10],
and Goel, et al , [11] have carried out similar research with respect to process control of a sin-
gle variable. Relatively little attention has been given to the problem of simultaneous control
of several attributes or variables. Schmidt and Bennett [29] have developed a cost-based model
for multi-attribute acceptance sampling. Ghare and Torgersen [9] have examined the simul-
taneous control of several variables where the basis for control is purely statistical.
Montgomery and Klatt [20] have extended the Hotelling 72 Model to include economic con-
siderations. However, the quality-control system resulting from the model by Montgomery and
Klatt identifies an out-of-control situation but does not specify the variable or variables causing
this condition. Latimer, Bennett, and Schmidt [18] have presented a model for multivariate
process control. However, an analogous model for cost-based acceptance sampling is not avail-
able. This is the topic of this paper.

THE SYSTEM MODELED

The problem addressed in this paper is that of multivariate acceptance sampling where the
quality characteristics of concern are independently distributed random variables. The
mathematical model developed measures the expected total cost of quality control per
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inspection lot where the sample mean for each characteristic is the statistic used to assess the
acceptability of the lot with respect to that characteristic. The decision variables included in the
model are the sample size and lower and upper acceptance limits for the sample mean for each
characteristic. The model applies to the case where inspection may be destructive or nondes-
tructive; rejection of the inspection lot on some characteristics results in scrapping of the lot,
while screening results when rejection occurs on others. The model developed takes account of
the costs associated with inspection, with screening and repair or replacement of defective items
when the lot is rejected and screened, with scrapping the lot when the lot is rejected and
scrapped, and with defects present in accepted and screened lots.

The model presented here is appropriate in cases where the acceptability of
manufactured-product lots is dependent upon the lot mean values of several measurable charac-
teristics. The lot means for the several characteristics are assumed to be independently distri-
buted random variables, and the mechanism used to assess lot acceptability is a variables
quality-control system for the lot mean of each characteristic. The problem is a familiar one in
the manufacturing industry, although the characteristic .ot means are frequently correlated.
However, cases where these characteristics are independently distributed are not uncommon, as
illustrated by the following exampie.

Consider a process for the production of collapsible metal tubes, such as tooth-paste
tubes. These tubes are manufactured on an automated line in lots of approximately 14,000.
Four characteristics are of particular concern: tube diameter, tube length, neck length, and cap
torque. Tube diameter is controlled by an extrusion process which results in a formed tube
about 1 in. longer than required. The end of the tube is then cut off, the final length being
controlled by measurement from the neck of the tube. Plastic necks are then automaticaily
inserted in the top of the tube; and the projection of the neck is controlled by the insertion pro-
cess. The final operation is capping the tube, and the torque required to remove the cap is
dependent upon proper adjustment of the canping operation. Analyses to date have indicated
that there is no significant correlation among these variables for the present process, although
the process used previously resulted in slight correlation between tube diameter and length.
The latter condition resulted when the extrusion process produced tubes which were shorter
than the desired final length. Howewer, this failure has not occured on the present process.

The model may appproximate reality even when mild correlation exists among the charac-
teristics of concern. However, this conjecture cannot be verified at this time, since cost models
for the case of correlated characteristics have not been addressed in the literature. Hence, the
model developed here represents only a first step in the analysis of multivariate acceptance sam-
pling for quality control.

The model assumes that the characteristics of concern may be classified into one of three
mutually exclusive categories. The first category, characteristic class I, includes those variables
for which inspection is destructive to the extent that the product is rendered unfit for its
intended use and for further inspection on other characteristics. The second category, charac-
teristic class I1, includes those variables for which inspection is destructive in the sense that the
product cannot be used for its intended purpose once inspection on these characteristics takes
place. However, inspection on characteristics in class 1l does not render the product unfit for
further inspection. The third category, characteristic class Ill, includes those variables for
which inspection is nondestructive. As the above discussion implies, rejection of a lot on vari-
ables falling into classes I or 11 results in scrapping of the inspection lot, while rejection on vari-
ables in class III only leads to screening of the inspection lot.
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Let ny < n £ ... < n,, be the sample sizes for variables 1 through k, in class I,
Moyt S M4y S0 S n, the sample sizes for variables k; + 1 through k, in class II, and
M € oo € n,, the sample sizes for variables k, + 1 through &, in class IIl. The inspection

procedure is sequential and can be summarized by the decision tree in Figure 1, where the
notation /[k, I, S(N)] indicates inspection of k units on characteristic / and the k units
inspected are drawn from set S, which includes N units.

1oy 1, Sq(ng) 1

SEJGET _] \ ACCEPT
r 1ing. 2, Sytng)l _J

REJECT ' ACCEPT

r oy k. Sy () ‘]
_u( JECT _ A______J ' ACCEPT

[y #1, kg +1, Sy ()

| - _ meecr 0] J[ ACCERT
L] “'L| Ky 2 !’h| "'E?H
REJECT
e — ‘ ACCEPT

gy, k. Sk (k)] '

FIGURE |. Decision tree for the inspection process
REJECT 4]

ACCEPT

|{n,,} 1, kgt Sy, Imax (g, gl
"“h? +2, k942, Sk, Imax |v|57 V.HH)
SCRAP LOT l‘““j; kg Sk? \m.lx[uk? nk,‘H}
REJECT l
I SCREEN LOT I

ACCEPT

[— ACCEPT LOT j

The costs arising from the implementation of a multivariate acceptance sampling plan may
be considered to fall into two categories: the costs incurred in reaching a decision to accept or
reject the inspection lot, and those costs arising from implementation of the decision to accept
or reject the lot. The cost of reaching the decision to accept or reject a lot is the cost of
inspecting the units included in the random sample drawn from the inspection lot. Specifically,
if C;, is the cost of inspecting one unit for the ith characteristic, and the number of units
inspected is n,, then the cost of inspection for the i th variable is C;, n,.

When an inspection lot is accepted, several cost components must be considered. First,
those units destroyed in the inspection process result in a loss of product value and a
materials-handling cost, and they may be replaced, resulting in an additional cost of replacing
the destroyed units. Secondly, those units in the sample which are not destroyed during inspec-
tion but are found to be defective as the result of nondestructive inspection may be repaired.
Finally, one cannot assume that an accepted inspection lot is defect free. Thus, it is assumed
that a cost is associated with each characteristic defect present in an accepted inspection lot.

p——F
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If the inspection lot is rejected and scrapped, the cost incurred is that resulting from loss
the investment in the lot as well as the cost of materials handling and carrying out the scrapping
operation. When the inspection lot is rejected and screened, the resulting costs are those of
screening the units included in the uninspected portion of the lot and in the nondestroyed por-
tion of the sample on the variable or variables for which screening is called, the cost of repair-
ing defective units found during screening, the cost of discarding and possibly replacing des-
troyed units, and the cost af units which are defective with respect to those variables for which
lot acceptance occurred.

The random variables considered in the system are the lot mean, the sample mean, and
the individual unit dimension for each variable of concern. If S,, and Sy, are the lower and
upper specification limits for the ith variable, and if X, is the measured value of that variable
for a given unit of product, then that unit of product is considered defective with respect to the
ith variable if X, < §;, or X, > §;,. Otherwise the product is acceptable with respect to the
ith variable. Acceptance or rejection of an inspection lot with respect to a given variable is
determined by the value of sample mean for that variable and the associated acceptance limits
for the sample mean. Specifically, if LCL, and UCL, are the lower and upper acceptance limits
for the sample mean for the ith variable, and if X, is the value of the sample mean for that
variable, then the inspection lot is accepted with respect to the ith wvariable if
LCL, £ X, £ UCL, and is rejected otherwise.

The purpose of the multivariate quality-control system modeled here is to detect, isolate,
and, in the case of screening, rectify those inspection lots where the lot mean for one or more
variables significantly deviates from its desired value. Since one cannot normally predict the
value of the lot mean for a given variable with certainty, the lot mean is considered 1o be a ran-
dom variable, as indicated above.

The model developed in this paper represents the expected total cost of quality control per
inspection lot and is a function of the decision variables mentioned above. The values of the
decision variables which minimize the expected total cost of quality control per lot are deter-
mined through the use of a conventional search technique, the pattern search [42].

Additional Notation

L = the number of items in an inspection lot.

(4., }) = mean and variance of product dimension for the i th variable in
an inspection lot.

m = the vector (u;, my, ..., My ).

Sfw,) = probability density function of u,.

g(xX|m,) = conditional probability density function of X for samples drawn
from an inspection lot with mean g, .

h(x|m,) = conditional probability density function of X for units drawn from
an inspection lot with mean w, .

S
P(D,\u,) = fu: hix|w,) dx.
P(Dy, |u,) = ﬁ.” hix|w,) dx.
P(G,I“,) =1-=P(D,|p,) — P(D,,,ly.,).

v,
P(Alp,) = J;“' g(x|u,) dx.

Yo
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G () = expected cost of sampling inspection given the vector 4.
Citis G = cost which results from the presence of the i th variable below the

lower and above the upper specification limit in an accepted lot.

C, (accept, u) = expected cost of accepting the inspection lot given acceptance

and the vector u.

C, () = expected cost of accepting the inspection lot given the vector W.
Gur 1€ = unit cost of production and materials handling respectively.
Ck (scrap, w) = expected cost of scrapping the inspection lot given rejection and the
vector u&.
Cp (@) = expected cost of scrapping the inspection lot given the vector M.
€ = unit cost of performing the screening inspection for the jth
variable.
Cotiv Crn = cost of repairing one unit of product found to have the i th
variable below the lower and above the upper specification limits respectively.
Co () = expected cost of screening the inspection lot given the vector W.
@ = total expected cost of quality control per inspection lot submitted
for control.
N* = total number of items removed from the inspection lot for the purpose of

sampling inspection.
Ky k|
maxi{y n, + Ny 21 n o+ oy,
=

=1

Ny, =min{n, —n,,, n, — nkz}. i=ky+1, ..., ky

N, = max{n, — Miy 0l i=ky+1, ...k
1, Ny, > Ny,

8(1= 0, II“S ”A?
1, M > ny,

8I1= 0' 'I,S";.) I=k2+....,k3
1, units destroyed during sampling inspection are replaced in accepted or
screened lots

5, =
0, units destroyed during sampling inspection are not replaced in accepted or
\ screened lots

Additional Assumptions

The random variables y,, ..., wy , are independently distributed, as are A_’,, el XA‘ and
Xl . v oy /n l‘
Errors, if any, which occur in sampling or screening inspection are assumed to be negligi-
ble.

A single defect type can occur only once in a unit of product.

L g e
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4. A unit that has been rendered unfit for its intended use during sampling inspection is
scrapped, but it may or may not be replaced if the inspection lot is accepted or screened.

5. In an inspeciton lot that has not been scrapped, a unit that has not been destroyed during
sampling inspection but has been found defective during subsequent sampling or screen-
ing inspection on a nondestructible variable type is assumed to be repaired.

6. A unit that has been accepted, or repaired, but has multiple defects will incur the cumula-
tive cost of accepting, or repairing, each characteristic type.
’ -
7. If the inspection lot is accepted on all destructible characteristic types, and the policy is to
replace all units destroyed in sampling inspection, replacement units are screened on all
nondestructible characteristic types and defectives are repaired accordingly.

8.  When screening for multiple characteristic types, the inspection of any one unit is carried
out to completion even though a defect in the unit may be detected prior to the inspection
of all characteristic types on that unit.

9. An inspection lot which is accepted on all destructible characteristic types cannot be
scrapped. If the inspection lot is subsequently rejected on one or more screenable charac-
teristic types, the remainder of the inspection lot is screened for those variable types only.

MODEL DEVELOPMENT
Inspection Cost
If sampling is conducted on the / th variable, the cost of inspection is C;, n,. For variables
in classes I and II, i = 1, 2, ..., k,, the conditional probability that inspection is carried out,
1 l
given i, is unity for i = 1 and [] P(4,|n,) for i=2,3, ..., k,. Inspection is carried out on
j=1

variables in class III only if the inspection lot is accepted on all variables in classes I and II.
Hence, the conditional probability that inspection is carried out on variables in class I, given

ka
i, is [T P4, ).

j=1

Thus

ks ky
+1 ¥ Cun] [I P4ln).

1=kytl j=1

=1
Cyn, T1 P(A, )

f=1

Ky
(1 (v/(ﬁ) C (‘“”| 52 2
=2

Acceptance Cost

The first cost considered when an inspection lot is accepted is that resulting from units
destroyed (classes I and II) and units repaired (class IIl) in the sample. Thus, the conditional
expected cost of units destroyed or repaired given lot acceptance and u is given by

e m——
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(2) E(cost of destroyed and repaired units | accept, i),

ol

2 n + ﬂl\)

(=1

A3
+CG1 Y My

1=hytl

= (C, + C)

K3
e H P(Glll-‘-/)
Ed

Ay

+ ¥ Ny [Cop P(Dylp) + C,pp P(Dy ).

1=hy+1

It is assumed that units destroyed during sampling inspection may or may not be replaced
if the inspection lot is accepted. The policy to replace or not to replace is defined by 5,. All
replacement units are screened, and repaired where necessary, on class III variables. However,
replacement units which are defective with respect to class I or Il variables pass undetected.

Hence,
[C",
ky

A 2 [Cw it CuU/P(DUIW'I) 7+ C«rIJP(DLIh“I)]

1=ky+1

; ks
(3) E(replacement cost | accept, x) = 82l In+ ny,
J=1

Ky
+ E[CIIUIP(DUII“I) i Cal.lP(Dl.l|”'l)] ’

=1

When an inspection lot is accepted, there may be some units in the sample which have
not been destroyed and which have not been inspected on some of the variables of concern.
Such units may contain defects with respect to those variables for which inspection was not
conducted and the associated expected cost, given acceptance and i, is given by

(4) E(cost of defects in uninspected and nondestroyed portion of the sample | accept, 1)

ks =1
" X, [ E [Cur@ulnd + G Py
1=hytl /=1 i
The final cost component arising when an inspection lot is accepted is that resulting from

the presence of defective units in the uninspected portion of the lot, which is comprised of L-

N* units. N*is the total number of items removed from the lot for the purpose of sampling
inspection. Then

(5) E(cost of defects in the uninspected portion of the lot | accept, &)

ky
= (L =N X [CrPDylu) + CaPDLIn)),

=]

The conditional expected total cost of acceptance, given acceptance and u, is then given
by
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(6) C,(accept, u) = E(cost of destroyed and repaired units | ace~pt, &)
+ E(replacement cost | accept, )
+ E(cost of defects in uninspected and nondestroyed portion of the
sample | accept, &)
+ E(cost of defects in the uninspected portion of the lot | accept, m)

and the conditional expected cost of acceptance, given i, is

ks
(7) Cy(w) = C,laccept, @) [IP4,|).

j=1

Scrapping Cost

An inspection lot is rejected and scrapped only if the lot is rejected on one of the variables
in classes I or II. The conditional expected cost of scrapping, given u, is

kg
(8) Cew) = L(C,+ C) |1 = TIP4|n)

f=]

Screening Cost

An inspection lot is screened whenever it is accepted on all variables in classes I and Ii
but is rejected on one or more variables in class IlI. Screening inspection then occurs only for
those variables in class Il for which rejection occurs. The expected cost of carrying out the
screening operation, given acceptance on class I and Il variables and K, is

(9) E(screening cost | acceptance on I and 11 variables, )
k3
=(L-NY ¥ C,/01-P4u)l

t—Kzfl

In addition, the units in the sample which were not destroyed during sampling inspection and
which were not inspected on the rejected variable must afso be screened, if any such units exist.
Hence, the total conditional cost of the screening operation, given acceptance on class | and Il
variables and u, including the quantity given in (9), is

(10) E(total screening cost | acceptance on I and II variables, )

Ay
= Y CJiL-N*"+ 8,18, (n, = m) +n ~ n 1= P4 )]

r=hqytl

As in the case of lot acceptance, the cost of units destroyed (classes I and II) and rejected and
repaired (class III) during inspection must be accounted for. The cost of units destroyed
(classes I and 1) or rejected and repaired (class IiI), given acceptance on variables in classes I
and I and g, is
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(11) E(cost of destroyed and repaired units | acceptance on I and II variables, ™)

A3
Z 8]: Nll 1

=kyt1

+-C,

ky
= [((‘,, +C) | X n + m,
(=1

K3
o H P(Glll"/)

A |

Ky Ay
e z N21 [CUYIJIP(DUll‘L/) + (‘lIL/P(D/.Illl'/)]] 1= I-l P(A,l[l.,) J

1=kt 1=hy+1

Those units not destroyed in the sample but which have been screened and rejected on a
given variable must be repaired. This cost is given by

(12) E(screening and repair cost for the sample | acceptance on class I and II variables, w)

k
i ZJ CISII("AJ i "1) [l e P(thy'l)] + [all(”kj = "1) + (l i 8Il) (”AJ oF nlxz)]

1=ky+1
K [CUUtP(DUflﬂ'/) sy (1471./P(DL/|”'/)] (1 - P(AIIM'I) ;

Since the screened lot is eventually treated in a fashion similar to that in the case of lot
acceptance, units destroyed in the sampling inspection may or may not be replaced and, as in
the case of lot acceptance, are screened on class III variables but may contain undetected
defects with respect to variables in classes I and II. Hence

(13) E(replacement cost | acceptance on class I and Il variables, i)

ks
= 82 C‘: F 2 [C\l 7 C(rUIP(DUtll"'/) i ("ULIP(DI.IIM'I)

i=kytl

ky
Yn+ i,
J=1

ka k3

+ Y [Cop,P(Dy, 1)) + (',,,,,P(D,_,lul)]} 1- I PA,|p)]

j=] /'-k2+l

In addition to undetected defects contained in replacement items, undetected defects with
respect to a given variable may occur in units which have neither been destroyed nor inspected
on that variable. This component of cost arising from screening the inspection lot can be
expressed as

(14) E(undetected defects in the sample | acceptance on class I and 11 variables, u)

ks

=8 X {5, N,

1=hy+l

Ay
1= J1 P4lu)

I=hytl

hy 4
2 ('IIU/P(DU)IM’/) + C:II,/P(DlJlﬂ';)

/=1

+ I&,,(nh —n)+ (1 =8,) (n, ~ n“)l ’(;,,,,,P(D,,,lm

| —— e




642 S. C. CHAPMAN, J. W. SCHMIDT AND G. K. BENNETT

ky

+ Coy PDy|p) | PA ) N = [T P4|u)
J=kytl
%

The final two components of cost associated with screening an inspection lot are those
relating to the repair or replacement of defects found during screening of the uninspected por-
tion of the lot and the occurence of undetected defects in the uninspected portion of the lot.
The conditional cost of handling and repairing defects found during screening inspection of the
lot, given acceptance on class | and Il variables and u. is

(15) E(retification cost for the screened lot | acceptance on class I and 11 variables, i)
ky
= (L - N*) Z Cll = PG Iu ) + CouP(Dylu) + Cor PD )

1=k,+1
2

(1 = P(A,[u)].

The cost of accepted defects in the uninspected portion of the lot, given acceptnce on all vari-
ables in classes [ and II and u, is

(16) E(cost of undetected defects in the uninspected portion of the lot | acceptance on
class I and Il variables, ) = (L — N¥

Ky ks
Z[('AI"IP(DUI‘#/) + C&ll.lP(DLIh"I)I l 7! H P(A/,p'/)

=1 I"‘l\2+l

Ky K3
= (L = N.) 2 [CIIU/P(DU(““I)+Clll,lP(Dl,ll“I)]P(All“l) J l B H P(AII#I)
1=ky+1 i=kytl
V&

Summing (8) through (16) yields the conditional expected total cost resulting from
screening, given acceptance on class I and Il variables and u, Cg (acceptance on class I and Il
variables, &) and

ka
(17) Cy(w) = Cylacceptance on class I and I1 variables, x) [] P(A4,[n).

1=

The total expected cost of quality control per inspection lot, C, is then given by

Ry 2o
(ls) (‘[ - H f % [(‘,([7) 4= (‘4(1:;) e (‘R(ﬁ) =t CS(lI)] /(#,) dﬂ,

=1

RESULTS
Application of the model and its optimization are illustrated in the following example.
EXAMPLE I: A control device is composed of three fuses, each of which controls the

flow of current in a different circuit. The device is a component of a piece of electrical equip-
ment which will fail if either too much or too little current flows in any circuit, resulting in
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repair of the equipment at final testing. Inspection of the control device consists of measuring
the current at which each fuse burns out. Burn out of fuses 1 or 2 normally results in damage
to the device sufficient to render inspection on any other variable impractical. However, testing
the third fuse does not damage the device sufficien:ly to eliminate testing on the other vari-
ables. A fourth variable inspected is the diameter of the device, to make sure it will fit into the
final assembly. The data for this example are given in Table 1, current is measured in milliam-
peres and diameter is measured in 10 % meters. The following approximate relations hold:

a?

—| u ~N

i

a?
Mo, ._]. fi— ], 2. 3. 4.
Y

1

x ~ N, ), X ~ N|u,,

TABLE 1. Parameters for Example |

T e =T R e I o
‘I ‘”I“b" Class I o I s, v i L,, [ Gl c I Coc I ol | [ C |
— — — — = f et
[ 1 (fuse) 11| 7840 | 8160 | 1.67 | 80.00 | 0.50 | $55.85 | $55.85 | — | - [ — I s000s
| 2 (fuse) 11| 4580 | 5420 | 1.67 | S0.00 | 1.40 | 34.75 | 3475 | — = = 0.005
| 3 (fuse) 1| 2300 [ 2700 | 1.67 | 2500 | 080 | 1200 | 1200 | — 5 = 0.005
% 4 (diameter) 1| 212.30 | 217.70 | (167 [ 21500 {100 { 500 [ 500 | $4.75 | $4.75 | $0.005 | 0.005
| k=2 ky=3 ky=4  L=10000 C,=$200 =000 8 =1

Optimization of the model can be achieved through application of an iterative search pro-
cedure, in this case the pattern search. The purpose of the search is to define values of the
decision variables which minimize the total cost of quality control. Because of the exploratory
nature of search procedures, the "indicated" optimum may not be the true optimum. However,
for those cases investigated in this research, the cost at the indicated optimum was always
within 0.10% of the least-cost solution optained by subsequent enumeration about the "indi-
cated" optimum identified by the search procedure.

Two approaches have been explored in applying an iterative search technique to optimiza-
tion of the model. In both approaches a starting point representing no sampling and implying
lot acceptance on all variables (n, = 0, i = 1, 2, 3, 4) was chosen. In the first approach the
pattern search is applied directly to the multivariate model with the starting point represented
by lot acceptance on all variables. The second approach consists of applying the model to each
variable separately, as though the remaining variables were not to be considered. The pattern
search is then applied to each single-variable model, using lot acceptance as the starting point in
each case. The least-cost solution for each variable treated independently is then used as the
starting point for optimization of the model when all variables are considered. The latter
approach has been found to be more efficient with respect to execution time on a digital com-
puter, and it is the approach presented here.

The results of the application of the pattern search to the model when each variable is
treated separately is summarized in Table 2. The components of the expected cost of quality
control €, Cy, Cy, Cg, and Cy, where C, = E[C) ()], C, = E[C, (D)), Cx = EICx()],
and Cy = E[Cy(p)], given for each variable are those costs which arise when the variables are
treated independently and are therefore misleading. As already indicated, in the second stage
of the search, the least-cost solution for sample size and lower and upper control limits given in
Table 2 for each variable are used as the starting point for the search for the optimum when all
variables are represented in the model. The second stage of the search is summarized in Table
3. The total expected cost of quality control per inspection, Cy, and the components thereof,
Cp €4, Cg, and Cg, for the starting point for the second stage of the search (optimum points
in Table 2) and for the final optimum indicated by the search are given in Table 3.

L~ ”._ o e
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TABLE 2. Optimization of each variable treated independently

V"‘“iab'c Point | n | LCL, | UCL, W C; o €, W & | c, &,
1 Start | 0 i — | $0.00 | $6367.62 $0.00 | 000 | 6367.62 ]
Opt. |30 | 7925 | 80.75 | 0.15 | 3879.90 | 1189.01 0.00 | 5069.06
2 Start | 0 - — | 000 | 6147.27 0.00 0.00 | 6147.27 |
| Jopt. |32 4794 | 5206 | 0.16 | 390591 | 1274.14 0.00 | 5180.21
3 |start | 0 " — 1 000 577203 | 000 000 | 5772.03
| [ Oet. 22 2370 | 2630 | 0.11 | 4573.38 | 86195 0.00 | 5435.44
Start | 0 1 ~ | 000 | 1639.23 0.00 0.00 | 1639.23
| | opt |36 | 21440 | 21560 | 0.18 303.00 | 0.00 | 1292.69 | 1595.87
TABLE 3. Final optimization of the model
variable | poine | m, | Lcr, | vet, | ¢ c, Cp Cs c;
1 30 | 79.25 | 80.75 e
2 & 32| 4794 | 5206
3 $.55 | $6344.28 | $3146.50 | $6016.18 | $15.507.51
3 22| 2370 | 26.30
4 36 | 214.40 | 215.60
1 36 | 79.42 | 80.58 =
2 g 34 | 4834 | 51.66
= 1.13 | 412735 | 6846.35 | 3653.21 | 14,628.04
3 & 28 | 2398 | 26.02
4 214 | 21437 | 215.63

Existence of a Unique Minimum

In applying a search procedure to the optimization of a mathematical model, one tacitly
assumes that the model possesses a single minimum or maximum, as opposed to several local
optima. In some cases this condition can be verified analytically. In many cases, however, the
existence of a single minium (or maximum) cannot be proven analytically but may be demon-
strated by examination of representative example cases. The latter approach was taken in the
case of the model presented here. It should be noted that examination of a representative sel
of example problems does not "prove” that the model possesses a unique minimum (or max-
imum), but it can indicate that uniqueness of the optimum can be expected in a large number
of cases. In this research the authors were not able to identify a case for which the model pos
sessed several local minima.

Two approaches were taken to determine whether local minima existed for several exam
ple problems analyzed. First, several starting points were chosen for application of the search
procedure. For each example, the optimum indicated by the search for the various starting
points clustered in the same neighborhood and resulted in total costs of quality control which
were within 0.10% of one another.

The second approach to the analysis of the behavior of the function requires the selection
of a random point in the solution space and evaluation of the function on the line segment
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between that point and the optimum indicated by the search procedure. This process was
repeated for five different randomly selected points for several examples. Specifically, let A, be
the maximum deviation from u,, analyzed for the lower and upper control limits, M, be the
maximum sample size for the / th variable, and the r|,, r,,, and ry, be random numbers associ-
ated with the sample size and the lower and upper control limits for the i th variable, and n,’,
LCL ', UCL, be the associated optimum sample size and lower and upper control limits. Let X
and X * be the vectors defined by

ny
my ry .
mio— Ay ry LCLy
o+ Ay ry UcL,
mjry )
Mo — Ay ry LCL,
[.L)()'f‘ A) ry UCL;
X = X* =
m/\!r“_‘ ”A’;
Koy 0= Ay, rok, LCLkJ-
My 0+ Ay, 13
| k3.0 ky T3.ky ! UCLA;

Then a convex combination of X and X* AX + (1 — A) X*(0 < A < 1), yields a point on the
line segment joining X and X *

For each example problem examined the total cost of quality control associated with
AX + (I — x) X* proved to be greater than at X * indicating that the search technique does in
fact identify a point as optimum which is close to the true global optimum. In addition, this
analysis showed that

(19) Cray X+ (1 —A) X*] < CrA X+ (1 =2y X*]

for A; > X, Equation (19) implies that the cost model probably possesses only one iocal
minimum, at least for the examples treated.

As a corollary to the analysis just described, the authors have analyzed several examples
by varying each of the decision variables, one at a time, from their optimal values and evaluat-
ing the total cost of cuality control as a function of these deviations. This analysis indicates
cost is most sensitive 1o departures of the control limits from optimal for those variables for
which inspection is destructive (classes I and II) and least sensitive to departures of sample size
from optimal for variables for which inspection is nondestructive (class I11). The variation of
total expected cost with variation of the decision variables (one at a time) is illustrated in Fig-
ures 2 and 3 for the problem in Example 1. For Figure 2, the abscissa is the ratio n/n, i = 1,
2, 3,4 In Figure 3 the abscissa R is the multiple of w o, i = 1, 2, 3, 4, such that

(20) U(‘L,'u,;,"' Rﬂ.,“
and
(21) LCL, = p o= Rp,p

and R = 0.0375 yields the optimum values of UCL, and LCL,.
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FIGURE 2. Total expected cost of quality control per lot as a function of the
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FIGURE 3. Total expected cost of quality control per lot as a function of devia-
tion of UCL from UCL* and LCL from LCL* for the problem in Example |

Sensitivity Analysis

To apply the model presented in this paper, several system parameters must be estimated
and probability distributions identified. One of the most difficult estimation problems is that
associated with identification of the density function of the lot mean for each of the variables
considered. In general, the parameters of these density functions can be estimated through the
collection of a moderate volume of data. However, identification of the shape of each density
function may require an extensive and expensive data-collection effort.

The research of Latimer, Bennett, and Schmidt [18] and Schmidt and Bennett [29] has
indicated that in many cases the optimal sampling plan and the total cost of quality control are
not sensitive to the shape of the distribution of the random variables which are subjected to

TR 5 ai - B |

R e e
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control. However, a method for analyzing the sensitivity of the model to distributional shape is
necessary if this analysis is to be carried out in specific applications of the model. The result of
such an analysis will indicate the extent of the data-collection effort required. That is, if the
model proves to be insensitive to distributional shape for a given application, then the analyst
will require only a rough idea of the shape of the density functions involved. On the other
hand, if the model proves to be sensitive to distributional shape, then an extensive data collec-
tion effort may be in order to specify precisely the density function of the lot mean for each
variable to be controlled.

If we let

f(n,) = p.df. of w,,

C; = total expected cost of quality control per lot under the optimum set of
: sampling plans if f(w,) is known,
f(w,) = assumed p.d.f. of u,,
f, = total expected cost of quality control per lot under the optimum set
of sampling plans derived when f(w,) is assumed, but evaluated using f(u,),
then
(22) P = —(—'—(—(L (100)

/l

is the percent loss realized as a result of using the assumed density function i‘(u,) instead of
the actual density function f(w,). To illustrate the sensitivity analysis suggested here, consider
the following example.

EXAMPLE 2. The problem cons_idered here is the same as that presented in Example 1.
The assumed density function of u,, f(u,), is normal, with mean and variance given in Table
1,i=1, 2, 3, 4, it is assumed that the mean and variance have been estimated with reasonable
precision. Now we choose a density function f(w,) having the same mean and variance as
f(u,) but a different shape for all i. For this example we will choose distributions having the
shapes shown in Figure 4. ﬂThat is, Cy is evaluated when f(u,), i = 1, 2, 3, 4, has the shape
given in Figure 4b. Then C; is evaluated with this same set of density functions, f(u,), i = 1,
2, 3, 4. The percent loss realized is then calculated by equation (22). The process is then
repeated with f(w,, i = 1, 2, 3, 4, taking on the shapes given in Figures 4c, 4d, and 4e succes-
sively. Since the distributional shapes given in Figures 4b, ¢, d, and e represent rather
signficant departures from the assumed shape given in Figure 4a, calculation of the percent loss
in each case should indicate the sensitivity of the model for the application given in Example |
to significant errors in identifying the true shape of f(u,), i = 1, 2, 3, 4. The results of this
analysis are summarized in Tables 4 and 5. Table 4 presents the optimum cost of quality con-
trol per lot when f(n ) is known for each of the distributions shown in Figures 4b, c, d, and e.
Table 5 gives the percent loss due to determination of the optimum sampling plan when the
density functions of w, are assumed to be normal, i = 1, 2, 3, 4, but actually assume the
shapes given in Figures 4b, ¢, d, and e.

The results summarized in Tables 4 and 5 indicate that errors in identifying the shape of
the distribution of the lot mean are not serious, at least for this example. While general con-
clusions cannot be drawn regarding the sensitivity of the model and.the optimum soluion to
distributional shape, these resuits are not surprising in light of similar results given by Schmidt
and Bennett [29] and Latimer, Bennett, and Schmidt [18). In any case, the method presented
for sensitivity analysis may be applied to any specific case where the modef is used.
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the sensitivity analysis in Example 2.

()

FIGURE 4. Assumed (a) and true (b,c,d,e) density functions used for

TABLE 4. Optimum sampling plans and expected total cost of quality
control per lot for the distributions shown in
Figures 4b, ¢, d, and ¢

d

Number

Variable | Sample
Size

1 38

38

38

48
46
42
136
0

0

0
234
0

0

0
326

B W — D LWN—= B W — & wWN
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Control Limits

(Lower, Upper)

(19.393, 20.606)

(48.266, 51.733)
(3.978, 6.021)

(14.224, 15.784)

“Total Ex pecl_éd
Cost

$14,837.43

(19.410,20.591) |

(48.303, 51.695)
(4.026, 5.974)

(14312, 15.694)

(14.433, 15.554)

$15,358.03

$16.061.91

$15,739.88

(14,298,15.700)

TABLE 5. Percent loss due to assuming that w,, i = 1, 2, 3, 4,
is normally distributed when w, has the density

function [(w,), i =

given in Figures 4b, ¢, d, and e

1, 2, 3, 4, for each of the shapes

f(w) Cy Cr P
b $14,837.43 | $14,872.21 | 0.23%
c 15,358.03 | 15,402.16 | 0.29%
d 16,0.61.91 | 16,261.81 | 1.24%
e | 15739.88 | 16,316.37 | 3.66%
) ‘;;”?'f‘i” —
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ABSTRACT

A computationally feasible matrix method is presented to find the first-
passage probabilities in a Markov chain where a set of states is taboo during
transit.  This concept has been used to evaluate the reliability of a system
whose changes in strength can be thought of as a Markov chain, while the en-
vironment in which it is functioning generates stresses which can also be en-
visaged as another Markov chain

1. INTRODUCTION

The "strength" X () of a system can be thought of as a random process, and the "stresses"
Y (1) acting on the system can be thought of as another stochastic process. The system will
work as long as X (¢) > Y(¢), and will fail at ¢ * defined by

X(t) 2 Y(t), t < t*and X(1*) < Y(t*)

The reliability problem we are proposing here is: Find the probability distribution of ¢*,
the time to failure of the system, given an adequate description of the stochastic processes X ()
and Y(r).

The problem can also be thought of as the time to first zero-crossing of the difference
process Z (1) = X(1)—Y(t), Z(1) being positive. The problem considered in the present study
is a discrete version of the above problem, and can be described as follows: We replace the
continuous stochastic processes X (1) and Y(r) by discrete Markov chains X(r) and Y(r),
r=20,1,2, ..., with stationary transition probabilities, where X(r) and Y(r) take values from
discrete sets.

We assume that, at each step r = 0,1,2, ..., the system will have one of the possible
strength levels identified by the numbers 1,2,3, ...,n. The system strength X (r) transits from
one step to the next as a Markov chain with stationary transition probabilities matrix P =(p,),
BB S
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Similarly, at each r, the "environment" impinges a stress Y(r), identified by the numbers
1,2, ...,m, which is again a Markov chain with stationary transition probabilities matrix
Q i (q“‘), I, kK = 1,2, .o oM.

Let us define the "compound state” of the system as the pair (a,B), where « is the
strength state and B is the stress state; it gives the state of the system at any step.

Let Z ={z(i/; jk)} = P xQ, the Kronecker product of P and Q. It is a square matrix
of order N = n x m and gives the one-step transition probabilities of transition from the com-
pound state (/,/) to the compound state (/,k).

The compound states of the system are classified into "survival" set S and "failure" set Fas
follows:

G, eSifi>land (i) € Fifi <1

The problem is to find the system-survival function, i.e., the chance that the system does
not enter Fset in the first rsteps, r = 0,1,2, ..., o, conditional to a specified initial state.

The question essentially is one of determining the first-entry probabilities with respect to
Z, taking the failure states as taboo states.

The first-entry problem with a prescribed taboo-state set is, of course, not new. For
instance, the well known relation [2)
r
o W B e (r+1-k)
L =0p ~ T S b,
k=1
giving the probability for the first entry to state B at the (r+1)th step, gives the answer to our
problem when the taboo set is just the single state 8. However, it is obvious that the above
formula cannot be used when the taboo set consists of more than one state.

Chung [1] has given a recurrence relation

& I
pnﬁ(r: F) o I),,,;(f. kU F) + 2 p,,;(l/, kU F) /?“,(r—l/, F)

v=1

where Fis the taboo set and k € F,

However, this relation is essentially conceptual and is of no help at all in the actual deter-
mination of failure probabilities; it is obvious that the computation of p,4(r, F) by this method
requires a knowledge of p,;(r, kK U F) as well as of p,s(v, k U F) and p(r —v, F) ; thus beg-
ging the question itself. Hence the need for a constructive procedure to solve the problem.

2. FIRST-PASSAGE PROBABILITIES IN THE PRESENCE OF A TABOO SET

We shall now present a matrix approach to solve the problem. The relevant concepts are
introduced first and then the procedure is developed. It is then illustrated by a simple numeri-
cal example. Let Z be a transition probability matrix of order N and let F =[a;,a; ..., a;) be
the set consisting of k states, among N states, which are taboo in transition.

s p————
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We define a deficient matrix Z' relative to the taboo set F. Z'is obtained from Z
={z(il; j.k)} by replacing all z(;,/; j,k) by zeros when i < lor j < k or both; only those z ([,
J.k) when i > land j >k will remain nonzero in Z'

Then, obviously, p,(r+1,F), the probability of the system initially at / reaching state j at
the (r+1)th step, avoiding visits to states in F during the first r steps, is given by
p,(r+l, F) = (Z) Z

Now Z'is a nonnegative matrix with each of its row totals < 1, since by assumption P
and Q are positive matrices. Hence , by an extension of Frobenius' theorem [3], all charac-
teristic roots of Z'are necessarily less than 1 in magnitude. Consequently

2.1) lim (2" =0

and (/—2’) is nonsingular.

Since (Z')" gives the probabilities of r step transitions from a nontaboo state to a nonta-
boo state, avoiding entry into taboo states during transit, we have (Z')’Z giving transition pro-
babilities of reaching from a nontaboo state « to any state 8 in r+1 steps, avoiding taboo states
in the first r steps.

Let U(S) be a column vector of order N having 1 in places corresponding to nontaboo
states S and zero elsewhere, and let U(F) be another column vector of order N with 1 in places
corresponding to taboo states F and zero elsewhere. Then (Z')'~' Z U(S) gives the probabili-
ties that starting from state «, « = 1,2, ..., N, the system does not fail in the first r steps. Simi-
larly, (Z')"' Z U(F) gives probabilities that starting from state a failure occurs for the first
time at the r th step.

As lim (Z)"=0, the system must fail ultimately. Hence, the event of nonfailure in the

r—s00

first r steps is identical with the event of (first) failure in one of the steps r+1, r+2, ..., .
Thus we have,

(Z) ' ZU(S) =% (Z)* Z U (F)
=0

Since,
Z U(S) = Z' U(S)
(21 ZU(S) = (ZVE (Z) Z U(F),
=0
i.e.,
(2.2) (Z)) U(S) = (2 (1-2)"' Z U(F)

We remark that for computational purposes we can delete the zero rows and columns of
Z' with corresponding changes in the other matrices. We see that the deletion of the
corresponding rows from the column matrix Z U(F), along with Z', will not change the right-
hand side of equation (2.2). Let U,(S) be the abridged form of U(S) obtained by deleting
zero rows in U(S). Let Z’, be the abridged form of Z' Then Z', is nonsingular; and so is
(I-27'), as Z/, has all its characteristic roots less than 1 in magnitude. Hence from equation
(2.2) we have
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(2.3) U8) =(1-2')"'Z,U,(F)

In equation (2.2) ris a random variable representing the number of steps up to which the
system does not fail. Its conditional probability distribution on condition that the system starts
in state a (a = 1,2, ...,N), is given by the row corresponding to state « of the column vector
sequence 2

(Z° V2, ULF), r=0,1,2, ...00.

Hence, for a given r and the Z matrix, conditional reliability of the system can be evaluated
from (2.2) on condition that the system starts in state «. Unconditional reliability R (r) of the
system for r steps is then given by R(r) = p,, (Z,)" U,(S), where p, is the row matrix of order
N giving the probability distribution of initial states of the system, and Poa 18 its abridged form.

The moment generating function of r is given by

M@©) =3 ¢ p, (Z,) Z, Uy(F) = p,, (=& 2.)" Z, U, (F).
r=0
The conditional vth-factorial moment of r can be directly obtained as
) =Elelr=1) ... (r —v+1) /a)
(2 C=Z, )" Z, U, ()
=(Z,) (I-2Z,)" U,(S), by (2.3).
The vth unconditional factorial moment is
wiy = pa(Z,) (U=-2,)" U,(S).

An Illustration

" Let us consider an example with strength and stress transition probabilities matrices P and
Q, respectively, as follows:

3 07 0.6 0.3 0.1
P = (I’,,) _ 02 08 and Q - (l]/k) =104 0.4 0.2{.
0.1 0.6 0.3
Then,
Z=PxQ

States

1 2 3 4 5 6
0.18 0.09 0.03 0.42 0.21 0.07
0.12 0.12 0.06 0.28 0.28 0.14
0.03 0.18 0.09 0.07 0.42 0.21
0.12 0.06 0.02 0.48 0.24 0.08
0.08 0.08 0.04 0.32 0.32 0.16
0.02 0.12 0.06 0.08 0.48 0.24

= T S
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Clearly states 2, 3, and 6 are failure states. Hence the abridged deficient matrix is,

0.18
Z,=10.12
0.08

and
0.2768
(1 -2, "'=10.1008
0.0800

657

0.42 0.21
0.48 0.24
0.32 0.32

0.3528 0.2100
0.5408 0.2220
0.2960 0.3760

+ 0.167840.

US)=(100110), and U(F) =(011001), where U(S) and U(F) are tran-
sposes of U(S) and U (F) respectively.

It can be easily verified that
1
u-z,)"'z, U,(r) = |1},
1

where rows corresponding to the failure states are deleted.

We may note that to calculate the probability of success in the first r steps it is not neces-

sary to calculate the powers of Z, . The following recurrence relationship can be used:

Let (z,) U, (S) =q(r,S)

=the reliability vector at the rth step,
then q(r+1,8) =2, 4q(, 5)

=the reliability vector at the (r+1)h step.
Obviously q(0, S) = transpose of (1,1,1).

For the given example, for r = 0, 1, 2, 3, 4, we have

q(r, s)
Lo r=0|r=1 r=2 r=13 r=4
0.18 042 0.21 1 0.81 0.6490 | 0.518148 | 0.412641
0.12 048 0.24 1 0.84 | 0.6732 | 0.536472 | 0.427178
0.08 0.32 0.32 1 0.72 0.5640 | 0.447885 | 0.356447

Let the initial-state probabilities of the system be given by p, = (0.3, 0.1, 0.2, 0.1, 0.2,
0.1), and the abridged form by p,, = (0.3, 0.1, 0.2).

Then R (r), reliability at the rth step, is given by
R(1) = 0.471, R(2) = 0.375060, R (3) = 0.298669, R (4) = 0.237799.

sss———
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The conditional expectation of r on the condition that the system starts in state « is given
by

4.002383
E(r/a) = Z', (I-Z) ' U,(S) = [4.145377.
3.480458

Hence the unconditional expectation of ris given by
E(r) = 12007149 + 0.4145377 + 0.6960916 = 2.3113442.
Simifarly, E£(r?) = 20.3167038.
Hence V(r) =14.9743918,
and S.D.(r) = 3.8696759.
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ABSTRACT

This paper examines right-hand side sensitivity analysis in linear program-
ming as a problem in optimal sampling. Specifically, the insensitivity point of a
solution is defined as the point at which the expected gain from increased accu-
racy in the prediction of a resource level is equal to the expected cost of procur-
ing the information. The problem is structured using the rudiments of optimal
stauistical decision theory.

INTRODUCTION

This paper is concerned with sensitivity analysis in linear programs. Usually, when we
have considered a solution’s sensitivity, we have found (for example) the range that the right-
hand sidc could vary before a change in basis was required. The implicit motivation was that if
the right hand side changed, and the range of values over which the optimal basis was applica-
ble was in some sense "small," then we would be operating with a solution to the wrong prob-
lem. In this paper we will attempt to formalize this notion.

We will argue that the real problem is to find the value for the right-hand side that best
trades off potential losses (for using an incorrect value) with the cost of obtaining the improved
solution. We will limit ourselves to changing only one element of the right-hand side, which
will be a sample mean instead of the unknown, true value.

Two problems will be discussed. In the first we assume some data has been used to form
an estimate and we formulate the function to be minimized that indicates how much more data
should be gathered so as to "desensitize" the optimal solution. We will then examine the prob-
lem of finding the overall sample size in order to produce an insensitive solution.

THE BASIC PROBLEM

Consider the following linear program:
(LP) max  px
subject to  Ax < b,

x 20,
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where p and x are k-vectors, b is a nonnegative m-vector and A4 is a m X k matrix. We will
assume that p and A4 are perfectly known, as are all elements of b except for b, which will have
to be estimated. Finally, we assume that # data points are used 1o construct an unbiased esti-
mate of &, which we shall symbolize as b, (n). While we have in mind the sample mean as the
estimator, it will be seen that other estimators (such as regression coeflicients) could also be
used. However, for simplicity we take

i~ - 2
bh(n) ~ N|b '.ril an_ exp =a |9’L"),:_b'] ]
U (R IJ ’

= Ino 2

h

where b, is the true value of the amount of the " resource on hand. Let the optimal solution
to (LP) when I;,(n) is usedt for b, be & with associated basis matrix B. Further let the optimal
solution to (LP) when the true value of the /" resource (namely b,) is used be x * with associ-
ated basis matrix B *.

In general, our intuitive feeling is that a solution is sensitive to the right-hand side value
if "small" changes in the value might require a change of basis. We will assume that the
changes in the value of b,(n) came about from changes in the data used to estimate b, as n is
changed.

Figure 1 illustrates the problem to be discussed. The solid lines represent constraints
while the dashed line represents the objective function. Two bell-shaped curves are drawn,
centered about the true value of the right-hand side of the third constraint. If this value were
known then the optimal solution would occur at point A. Let the curve labelled | represent the
density function of the sample mean given that n data points have been used to form the sam-
ple. For this right-hand side the solution is sensitive in the sense that the sample mean might
easily place the constraint considerably to the left or right of the true location, e.g., it might end
up at B or C.

There are basically two approaches to the problem. One method would be essentially to
chance-constrain the program. This would include increasing the sample size until the
estimated variance of the sample mean were in some sense "small", i.e., the probability of a
sample mean occurring outside of some interval about the true value would be less than or
equal to «. This is represented in Figure 1 by the curve labeiled 2. This requires the setting of
« at some arbitrary level and thus really does not clarify the sensitivity problem at all. Now the
solution is sensitive to «, which was arbitrary.

A second approach is available if the cost of gathering data is expressible in the same
units as the objective function, e.g., dollars. We will examine this approach in detail in the rest
of the paper. We will assume that a data cost function can be obtained and that it faithfully
reflects the costs of acquiring, processing, storing and providing sample-mean estimates. We
assume that costs are a function of the amount of data only and thus ¢(n) is the cost for pro-
viding };,(n).

In what follows we will develop loss functions and state the sensitivity problem as finding
the sample size that minimizes expected loss pius cost. Thus, rather than setting an arbitrary
parameter, we will consider a solution to be insensitive when the marginal expected gain from
extra information is just balanced by its marginal cost.

+ We refer to the whole right-hand side in this case as hn)

7
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X2

FIGURE |
CONSTRUCTING AN Ex Ante LOSS FUNCTION

Consider a decision maker who wishes to solve (LP) with b(n) as the right-hand side.
He may choose to produce the activities associated with B on the assumption that b(n) is avail-
able. In this case he will either not use b — b(n) resources or he will run out early (when
b < bin)).

y Let b be the true vector of resource levels with " element b, and b be the vector with
b, =b, j # iand b = b (n). We define the loss associated with using b instead of b as L (b,b)
and will take it to be:

{max px|Ax < b, x > 0)
* — {max px|Ax < b, x> 0}, if b 2 b,
L(bb) = {max px|Ax < b, x > 0)
— {max px|Ax < b, x5 20, x5 =0}, ifb < b.

where (x; 2 0, x5 = 0) means that only those vectors represented by B are free to be nonne-
gative. The loss function indicates that when b > b the ex ante loss will be taken to be the
difference between the profit that would have been obtained if it were known that the resource
were actually b and the profit that is expected to be obtained by using the program associated
with B and resource level b. The left over resources will be considered waste and will be
charged to the solution as loss. If & < b then we have overestimated the amount of resource.
[he ex ante loss that will be incurred is the difference in profit between what would have been
obtained if the resource had been properly estimated and what is expected to be obtained given
that we will use the basis matrix B but have only b in actual resources.

Let 7 be the vector of simplex multipliers associated with the optimal feasible basis (-).
Then the loss function can be written as:

myeb — 17,-,/;.

f b =b
L(bb) = b &

n,,-h ' ‘n’,‘,h‘ f;

This may be further rewritten as

'—"‘*"'t:f—/‘%""' - e
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(1) s (mge —mp)b + (b~ B)my. b > p,
: i (ﬂ'g' = W(;)b, b < b

Thus. the loss function can be viewed as being composed of the loss due to using the wrong
basis plus the loss due to overestimation of resource availability.

We of course do not know b. We therefore assume that the decision maker or analyst has
some prior information about b, namely that b, ~ N(b,a%). Thus, the posterior density func-
tion on b, given b, is:

) £1b,16,(n)) = N(nb,(n)&* + ba?l / (n5* + 02,77 (nT? + o).

With the above in mind we are in a position to make the general statement in the intro-
duction more concrete. We will consider a solution to (LP) to be insensitive relative to
b,(n + s) if the expected loss associated with b,(n + s) plus cost of sampling s data points c(s)
is minimal. Thus, we wish to choose s such that we minimize loss plus cost, i.e.,

min f L(bb(n +5)) flb|b (n + s)]db + c(s).
3) ;

The solution to (3), s*, would be the amount of data to add as to make the optimal solu-
tion to (LP) insensitive. However, in that we do not know how & (n + s) will change with s,
we must use our best estimate of the mean, namely the mean of the posterior Elb|b(n)).
Thus we will find s* so as to minimize

(4) J -LGEWBI6MD £, 1516 (m)]db + c(s),
where

£ 1616 (m)) = N(ELB B (M), & ¢/ [(n +5) 3 + ')

Minimizing (4) is a heuristic approach to solving (3). In (4) we have used the best esti-
mate of the mean and are only altering the variance of the posterior density function. Using a
parametric programming routine on the linear program optimization package will yield the sim-
plex multipliers for all values of b. Thus, as is typical in these formulations (see [2]), one
would compute the value of (4) for different values of s and select that s that yields at least a
local minimum,

A MORE GENERAL PROBLEM

The above procedure raises a significant point, nqmely the fact that it assumes that n data
points have already been sampled and used to form b,(n). We would in fact like to find the
total sample size in a one-shot approach, thereby avoiding the possibility of having oversampled
to begin with.

We will assume here that both parameters of the independent normal process (i.e., b, and
o?) are unknown and must be treated as random variables. A sample of n data points
(b, ..., b,) will be taken, from which the following statistics could be computed:

TETTRTE St s
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m = 3 E b
T on 7 o
v = ! 2 (b, — m)?
n — 1 : 1
v=n—1

Thus, we wish to find » that again minimizes expected loss plus cost ¢(n). To formulate the
expected loss we assume that the prior distribution of (4,,1/0?) is normal-gamma (see the
appendix) where 4, = 1/o'? and the parameter of the prior is (m', v', n', v'). Thus one might
use previous estimates of b, to form (m', v', n', v') oruse m' = b, v' = 2. As mentioned in
the appendix, the posterior distribution will also be normal-gamma with parameters
(m", v", n", v"); the unprimed parameters reflect the sampling-distribution values. Since we
are most interested in the posterior distributions associated with b, we will use the marginal dis-
tribution of fy, (bh{m", v, n”, v") which (see appendix) is the Student’s distribution

g(b|lm", v', n", v"). Therefore the expected loss is
E (n) = fff L(b, m") g(b|lm", v, n", v')D(m, v|m', V', n', v's n, v)dmdvdb,

where D(-) is the sampling distribution (see appendix) and the updating equalities above are
used. Finally, this means that the optimal sample size #* is the number of data points that
solves:

min E; (n) + ¢(n)

Evaluating E; (n), while tedious, will not be difficult, especially since L (b, m") is piecewise-
linear.

OTHER ISSUES

First, it should be obvious that a similar aproach can be taken, via duality, for changes in
one element of the price vector p. More important, however, is the problem of restricting the
analysis to one element of the parameter set, be it b or p. One would normaliy expect to see a
sensitivity discussion which considered changes in the entire vector, not just one element.

A moment’s reflection will bring to light why this has not been pursued. In standard s2n-
sitivity analysis the right-hand side is parameterized on a scalar and ranging is performed by
varying the scalar. This amounts to requiring the right-hand side to expand along a ray, which
does not make sense in the present application. On the other hand, while the loss function for
such a procedure is well understood and easy to compute for various values (this being a direct
extension of the material in the previous sections), the loss function to be used for the problem
at hand (where b would not expand along a ray) is not known. In fact, we would not have the
benefit of not having to solve the program for each b, but would essentially have to solve an
infinite number of programs in order to find the optimal b.

The obvious heuristic is to vary one element at a time. This is clearly not optimal. It
should be clear that each element of the right-hand side would be a function of all other ele-
ments and that, for example, the "optimal" b would be sequence dependent, i.e., would change
depending on the sequence of b, examined.

SUMMARY

This paper is an attempt to apply basic decision theory to sensitivity questions in linear
programming. We have taken the position that a solution is sensitive only if the expected gain
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from improving the solution exceeds the cost of improvement. This would seem to be an obvi-
ous and intuitive approach, but it does not seem to be the approach commonly used in sensi-
tivity analysis.t

While closed form solutions do not appear possible, locally optimal solutions are clearly

possible if the user has the facility to do basic sensitivity analysis and has access to (or will
acquire) a computer routine for numerical integration.

ACKNOWLEDGMENTS

The author expresses thanks to V. Balachandran, D. P. Baron, S. Deshmukh, S. Meyer
and D. J. Roberts, who are in no way responsible for remaining errors.

REFERENCES
[1] Cunningham, A. A., and D. M. Frances, "A Data Collection Strategy for Estimation of
Cost Coefficients of a Linear Programming Model" Management Science, 22, No. 10, 1074-
1080 (1976).
[2] Raiffa, H., and R. Schlaiffer, Applied Statistical Decision Theory, (MIT Press, Cambridge,
1961).
APPENDIX
The following is shown in [2]:
1. If 4 is distributed Gamma-2 then we mean that
vr/2
r|=
Thus, if (u, h) is distributed Normal-gamma then fy, (u, hlm, v, n, v) = fy (u|m,
/m),/'yz (hlv, v).

L
./;/;(/)]V, p) = e VI []? vuh]z

2. If the prior distribution of (x, #) is Normal-gamma with parameter ( m', v', n', v')
and if a sample then yields a sufficient statistic (m, v, n, v), the posterior distribution of (u, h)

" "

is Normal-gamma with parameters (m", v"', n", v"):

"

m

]

(n'm" 4+ nm)/(n" + n),

"

n

n' 4+ n,

v'=v +v+8n)+8(n)—=8n")),

vVi= (v + n'(m)?] + v + nm?l = n" (m"?) /",
where
0 ifx=0,
BxI=Y x>0

tA recent exception is [1]

e e——
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3. If the joint distribution of (u, ) is Normal-gamma as defined above. then the margi-

nal distribution of w is the Student distribution
2 n/2
u+£(u—m)2] \/-E
v v

glwlm, v, n, v) = ———= 2 _
1) |1

4. If a sample of size n > 0 is to be taken from an independent Normal process with
parameter (u, h) having a Normal-gamma distribution with parameter (m', v/, n', v'), with
(v', n', v" > 0), then the unconditional joint distribution of the statistic (m, v) is

(Vv)u/zfl
WV +vv+n, [m—m2)y2’

VV/Z l‘[ﬁ

D(m, vim', V', n'; n, v) = A(n)

where

n,=n'n/(n +n'),

vV'i=v' +v+1,
v'/2
RAE
4(n) .—_———-””“/2) ol ek '"’". - __[ = o
Y = 1 n+n' 2 ] 2w r@'/2) .' :
2
I'(x) = gamma function of x.
S - o




TWO QUEUEING SYSTEMS SHARING THE SAME FINITE WAITING ROOM

M. J. Fischer

Defense Communications Engineering Center
Reston, Virginia

ABSTRACT

In this paper, we consider the analysis of two M/G/1 queueing sys-
tems sharing the same finite waiting room. An exact analysis is given for
several special cases, and then an algorithm is developed which approximates
the system behavior for the general problem. Comparisons are made between
the special cases and the algorithm.

1. INTRODUCTION

In this paper we consider the case in which two classes of traffic arrive at the same finite
waiting room (K spaces). There are two.servers, one for each type of customer. A server is
allowed to service one and only one class of customer. We assume that the customers arrive in
accordance with two independent Poisson processes with parameters A,, i = 1,2. The random
variables §, representing the time to service a class / customer, are assumed to have a general
distribution function, which is independent of each other and of the arrival processes. If the
server for a given class of customer is busy upon the customer’s arrival and all the K spaces are
full, the customer leaves the system without receiving service. We will be considering the sys-
tem in the steady state.

The case of only one class of customers has been considered previously [3,4,6] and
recently there has been some additional interest in the single-server case [5,7]. However, to
the best of our knowledge no work has been done on the case where there are two classes of
customers and a server for each class.

Such a system could serve as a model for the buffer in a data telecommunications system.
In designing a data telecommunications network, the buffers (waiting rooms) are usually sized :
for a negligible probability of overflow [8]. The effect of buffer size (where the entire buffer '
contents are served by a single server) has been considered [1,2]. However, in a real system a
buffer may store messages (customers) for several nodes (servers). Thus, the buffer is a
shared resource for messages destined for these nodes and the service each type of message
receives depends on the level of traffic of the other messages using the buffer.

For the system considered in this paper, the analysis of the general-service-distribution
case is complicated and not amenable to a straightforward analysis. In section 2, we give an
analysis for some special cases. An algorithm which approximates the steady-state behavior of
the system with general service-time distributions is presented in section 3. Comparisons with
the results obtained in section 2 are given at the end of section 3 and in the numerical exam-
ples considered in section 4.
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668 M. J. FISCHER

2. SOME SPECIAL CASES

Three special cases are considered in this section. Let Q,, i = 1, 2, be the steady-state
number of class /i customers in the system (in service and waiting), and define
P,=PrlQ, =i Q,=j). We note when i = 0, 1, then P, =0 for /2K + 2, and when
2<i<K+I,then P, =0 for j > K +3 — i Within a class, service is rendered on a

first-come, first-served basis.

a. K = 0. For the case where there are no waiting spaces (K = 0) each class of custo-
mer behaves independently of the other and as a single-server loss system. Thus, if
p, =\, E{S} (i=1,2), then, for i = 0, 1 and j = 0, 1, we have

pip’
1 P = .
( ) 1 i (l +p|) a1+ pz)

b. Exponential Service for Both Classes. For the case where each class has an exponential
service distribution, with E{S,} = 1/w,, i = 1, 2, the steady-state equations for P, are

(2) (N 4+ X)) Poo=m Piog+ua Py

(}\|+X2+}l.2) PO,/=‘LIP|/+A2P0‘/~I+M2P0,[+l’ 1 </<K.

Oy + 1) Pogor =t Prga+ 02 Pk

W+ X+ u) Po=M P o+ m Paotm Py

Ny + N+ +u) Py=N Pyt NP+ P+ P,

oy + p) Pigszi =M Py ga2-i + Xy Pigr-in
O+ pmy) Peyyo=N Pgot+ iy Pyyrns
(uy+ 1) Peyy =N Pgy+ Xy Piyy
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The solution to these equations is (p, = A /u )

(3 P, j=Puypipy’,

pE (l—Pn)(l‘Pz)(Pz"Pl)
i (1 ‘Plk *2)(P1‘Pl) —-py (1 _Pl)(l’zl”z‘PlK”) +p1py(1 —p)( ‘Pz)(szﬂ“PIKH)

v From equation (3) the marginal probability distributions of 0, and Q, are obtained in a
standard manner. We present results for Q, (the analogous results can be obtained for Q, via
symmetry):

1 —pk+2
Po.o 1 =i =0,
: = P2
(4) PT{Q|=’}= 1 szl\w}—:
1 =1,2 ....K +1
0.00] =

From (4) we get the expected number of class-1 customers in the system E{Q,} to be
(1 = pf*2) — (K +2) (1 —p)) pkH! ]

() E{Q)= lP_"";’ Ip.[

(1 - P|)2
2 (sz‘” i PIK”) - (K +2) PIKH (Pz = p1) ”
—P1 P 2 .
(p, — py)

Another measure of performance for class 1 customers is the probability of blocking upon
arrival, PB,; this quantity is given by

K+l
(6) PBy =Pyio® 3 Pyr

=1

= Py

Pt (py=p) +pypy (pEH = p Kt
(p2 = py) '

It is interesting to note that the probability of blocking for class 2 customers is not the same as
PB,, even though their arrival processes are Poisson. This stems from the fact that the states
of the system under which customers are blocked are different for different classes of traffic. A
final measure of performance for the class I customer, the expected waiting time E{w\}, is
given by Little’s Formula

(7 E{w,} = E{Q}/(1 — PB) \,.

¢. K =1, Class 1 Service Exponential, Class 2 Service Erlang 2. As mentioned in section

1, the analysis of the case of general service times is not straightforward. Using standard

methods of analyzing such systems, i.e., supplementary variables or embedded Markov Chain,

L does not yield results directly. It does appear, however, that the case of Erlangian or hyperex-
ponential service-time distributions can be handled using the method of phases [9]. We will

s Db oo
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demonstrate how one could go about the solution of this system for the special case of K = 1,
exponential service distribution for class 1, E{S,} = 1/u,, and an Erlangian service distribution
with shape parameter equal to 2 (E{S,} = 2/u,) for class 2. Thus, every class 2 customer who
is accepted into the system brings in two phases.

Let R, represent the probability of Q| =/, and let the number of class 2 phases in the
system equal j. The steady-state equations for the nonzero values of R, are

A\ + X)) Rog=p; Ryg+ uz Ry,

N+ X+ ) Ry=p Rig+ 12 Ry,
8) Ny + Xy +u) Ryy=p Riz+ Ay Rog+ 1y Ry,
A1+ m) Roy=wy Riz+ Ay Roy 2 Roy

N+ w) Ryg=pi Rig+ AR5

N+ A+ m) Ryg=py Ry+ pa Ry A1 Ry,
Ny + N+ uy+e)d Ryy=N Ro+ 1 Ry + 1y Ry,
@ Qi+r+p+tu) Rp=MRp+u Rp+ M Rp+uyRys,
(w1 +m) Riz=A Rog+ Ay Ry +uy Ry,
(wy+ ) Rig=A Ros+ N2 Ry
and
(\y+m) Ryg=A Rygt Ry,
(10) (w14 p2) Ry =\ Ry + py Ry,
(w4 1) Rp=A Ryt MRy,

Nowletn, =A/u, (i = 1,2), a = uo/u,, and

R R Ry
g R o Ry B Ry
R0= R02 § R|= R|2 ¥ and R2= Ru v

R Ry; 0

R Ry 0

From equation (8) we get the following matrix equation:

(l l) El o~ A; Eo
where
ntan, —a 0 0 0
0 nitan;ta ~a 0 0
A =| —am, 0 ntanta  —a (B
0 —amn, 0 mta —a
0 0 —am, 0 mMmta

——




QUEUEING SYSTEMS SHARING FINITE WAITING ROOM 671

and from the first three equations in (9) and equation (11)
(12) EZSAZEI—BZEO
- (AZA]—BZ) Eo,

where
n+an,+1 —a 0 0 0
0 Nitantl+ta —a 0 0
A, = —amn, 0 ntan,tl+a —a 0
0 0 0 0 0
0 0 0 0 o
and
m 0 0 00
0 m 0 0 O
By,=10 0 n 0 0
0 0 o 0O
0 0 o 0O

From equations (11) and (12) one can see that the solution rests on determining the five
unknowns, Ry, j = 0, 1, 2, 3, 4. Thus we need to generate five independent equations in
these unknowns. From (8), (9), and (10) there are still five equations (the last two from (9)
and the three from equation (10)), but one of them is redundant. Dropping the fourth equa-
tion of (9) gives us four independent equatjons; the final one can be found from the normaliz-
ing condition 3, R, =1. Denote C, = 4, and C, = 4, A, — B, and C, (i,j) as the /,j th entry

Ll
of C; then from equations (11) and (12) for j =0, 1, ... ,4 we have
4
(13) R,= X C (in) Ry, 1=1,2.
n=0

The required five equations now become

4
2 [(1 + a) C] (4,”) —a M), Cl (2,”)] Ron i/ B R04 =0,

n=0

4
Y [lam, + 1) G, (0,n) — a«C, (1,n) —my C, (0,n)] Ry, =0,

n=0

i ;
(14) YI+a) C,(0,) —aCy (2,)) =1, C, A,DI Ry, =0,
n=0
4
z [(1 + (1) C2 (2,'1) = n;aC; (0,”) - M C| (2,’)] ROn =0,

n=0

4

b2

n=0

1+

g

4
C, (J,”)I R(),, -],
j=0

Thus, the solution to this special case rests on solving the five independent equations
given by (14). It appears that one could generalize the method just described for solution of
the case of Erlangian service distribution and general K. But use of this method would require
solution of a large system of equations. In the next section we present an algorithm which can
be used to approximate quickly and efficiently the steady state performance for general service-
time distributions.
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3. AN ALGORITHM APPROXIMATING THE GENERAL
SERVICE TIME DISTRIBUTION CASE

The algorithm approximating the case of general service-time distributions is baszd on the
following observation: When there are j( > 1) class 2 customers in the system until the next
class 2 arrival or departure, whichever is first, the system behaves like an M/G/1/K +1-j sys-
tem for the class 1 customers. Analogously, the same sort of phenomenon happens with

" respect to the class 2 customers.

Now, from the definition of conditional probability, we have

(15) Pr{Q, = i|Q,=Jj} Pr{Q,=j} =Pr{Q, =i, 0, =]

Pr{Q,= |0, =i} Pr{Q, = i},

or
Pr(Q,~i|Q,= /)

(16 - —

) Pr(Ql I} Pl’{Qz /|Q| I} Pr{QZ ./}¢

Aij Pr{Q,=i}=1,andsoforj=0,12, ..., K+1

K+l P = = j}
(17 Pr (0, = J) —[ p::gl;,-ﬂgi:i}
Analogously, for i =0, 1, K=+
(18) Pr(O, = i) "“ Pr(Q,= /|0, =i}
i PT{QI_ ilQ,=

The algorithm uses equations (17) and (18) to generate an approximation to
Pr{Q, =/, Q,=j}. However, the conditional probabilities Pr{Q, = i|Q,=j} and
Pr{Q,=j|Q, =i } are not known. As stated earlier, when Q, = j the system instantaneously
behaves as an M/G/1/K + 1-j system for the class 1 customers, and so we use known results for
these systems to approximate Pr{Q, = i|Q, = j} (see [3] or [4]). That is, when Q, = j we use
the state probabilities obtained from an M/G/1/K+1-j system where only class 1 customers are
arriving. We note when j = 0 and 1 the conditional probabilities are obtained from the state
probabilities for an M/G/1/K queueing system. Analogously, Pr{Q, = jlQ, =i} are approxi-
mated using the class 2 results from an M/G/1/K+ 1-i system. Let us denote these approxima-
tions by P,.Q - ;and P,W _,, and all other approximate probabilities by the use of a circumflex

)

The algorithm first approximates Pr{Q, = i, Q, = j} by conditioning on the number of
class 2 customers in the system. Since class 2 results are being used, we denote this approxi-

mation by P'?; it is given by

(19 PP = Pyo,- PriQ: =)
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where R 1
e K+1 P,|Q =
s 2
(20) P = H ] o
1=0 P/|Q, -

For j =0 and j =1 we use equation (20) to determine Pr[Q2 = j}. Once these quantities
have been obtained, P2 (for i =0, 1, 2, ., K +1and j =0,1) can be found from equa-
tion (19). When Q, =2, Py +1]0,~2 and leg -k + do not make sense, but from the definition
of conditional probability we have

(21) i’ml!()z«z Pr{Q, = K +1)

PZI()|=I\'H Pr{Q, = 2}

Using equation (20) we now get
K P,mfz

(22) Pr{Q,=2) =

/=0PZ|()|=/
Since for j = 0 and j = 1 we have generated P{?), , and P{?, |: we have

PriQ, =K +1) = R

and so
" 1— P30 — PP
(23) PT{QZ=2}= K410 I\+I I
K P 110,=2
=0 PZIQ =
Using equations (19) and (23), we now can approximate ‘,2 for i =0, e KL FAE
J 2 3, we can sequentially develop an expressnon for Pr{Qz J} using equauon (20) and the
results previously generated for P,‘,,z’, n=20,1, ..., j—1. Forj=2, ..., K, one gets |
K+ K+2-n ~ (%)
] = 2 2 P/I,/
(24) Pr{Q, = j} = —=K =0
) K+2-j P,‘()jz.,
1=() i)/’()]:/

and P‘r{QZ= K + l} =] - kzp'r{02=
0

j=

In a similar fashion we can use equations (18) and (19) to generate an approximation to

Pr(Q, =i, Q,=j} conditioned on the class 1 customers in the system, denoted by 2V, In
general, it turns out that A" = P® and the final approximation to Pr{Q, =i Q,=/), .
denoted by P,l,. is given by
x P/ +p Pm
(25) P, = ELl T P2
Pt

where p, =\, E(S), i = 1,2,
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The steps of the algorithm can now be summarized:

STEP L Use equation (20) to determine lfr{Qz = j} for j =0,1. Use equation (19) to
determine 2P for j=0,1and i =0, 1, ..., K + 1.

STEP 2: For j =2, 3, ..., K use equation (24) to determine Pr{Q, = j} and equation
(19) to determine P;¥ for i =0, 1, ... K +2 —j.

- LA
STEP 3: Set PriQ,= K +1} =1— Y Pr{Q,=j} and use equation (19) to determine
1 3 -0
Pk and PR

STEP 4: Return to step 1 to determine the approximation to Pr{Q, = i, Q, = j} based on
class 1, PV

p ( p (
1 Pl,/l) +p2 P(./'Z)
Pt P2

STEP 5: Once P, and £,? have been determined set P, , =

Once f’,, has been determined, all the desired measures of performance can be obtained by the
use of standard results.

Several comments regarding the accuracy of the algorithm can be made. For the case
where K = 0, the algorithm is exact. We have, for i =0, 1and j =0, 1,

5 Pi
(26) P,{QZ_,' - —1 % p—l
and
2 - P4
27 Pjg,~i = 1—_*72'

Using equation (20), for j =0, 1, we get

~ =]

A 1 PIIQ =1
Pr{Q,=jl=|X = :
i=0 P/lQ\"
; -1
s '2' P 14 ps
i=0 1 +p plj
PO . AL
1+p,’

so,fori =0, land j =0, 1,

T m—— pi
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! /
b s
H (l +p|)(l +p2)

pipy’
L+pi+p,+p1p;°

which is equation (1). Analogously, one can see that PP =P and so the algorithm gen-
erates the exact results for the case when K = 0.

For the case of exponential service-time distributions and general K, section 2b, it can be
shown that P = P and the algorithm generates exact results, Using the results of section
2b to obtain an expression for Pr{Q, = j|Q = i} (for i > 1 and J 2 1), we have

Pr{QI ~ iv sz_/}
Pr{Q, =i}
Py p p;

l_p2A+3—l]

[

(30)  Pr{Q,=|Q, =i}

Poo pi

Il
©
N

>

+

w
|

But equation (30) is exactly the result we would have obtained for f’,‘(,l=, by using the
state probabilities for an M/M/1/K+1-i. Thus, P,;Q]=, is exact and can be used along with
quite a bit of algebra to show that the algorithm generates exact results for this case.

In the next section we give numerical comparisons of the algorithm for the situation
where K > 0 and service distribution is not exponential. There the algorithm is not exact, but
it performs very well.

4. NUMERICAL RESULTS

In the first part of this section we give some numerical comparisons of the algorithm for
some situations where K > 1 and the service distributions are not both exponentially distri-
buted. The section closes by using the results of the analysis of section 2b to answer the ques-
tion as to whether or not to have separate waiting facilities for each class.

Table 1 is a comparison of the algorithm presented in section 3 and the special case of K
= 1, one service-time distribution exponential, and the other £, (section 2¢). For a fixed com-
bined load of 0.9, comparisons between the exact (E) and the approximate (A) results are
presented for various measures of performance. It is immediately discernible that the algorithm
is quite accurate for all the cases presented. In a relative sense, the algorithm seems to be
worse when the traffic intensities are equal. Furthermore, when one of the traffic intensities is
zero the algorithm gives the exact results.

" NS e e s

i e -




676

TABLE 1.

M. J. FISCHER

Comparison of algorithm and the case
where one service time distribution is exponential
and the other Erlangian (K =1, w, = 2u,)

Traffic
Intensities E(Q) E(Q,) PB, PB, COoV (Q,, 0,
1 2 s
E 0. 0.92731 0. 0.27306 0.
0 0.9
A 0. 0.92731 0. 0.27306 0.
E {| 0.10407 | 0.84445 | 0.02824 | 0.23825 -0.00511
0.1 0.8
A || 0.10406 | 0.84470 | 0.02827 | 0.23851 -0.00474
E || 0.21437 | 0.75031 | 0.05825 | 0.20491] -0.01563
0.2 0.7
A || 0.21433 | 0.75100 0.5835 0.20557 -0.01474
E (| 0.32799 | 0.64783 | 0.08987 | 0.17306 -0.02557
0.3 0.4
A |l 0.32789 | 0.64884 | 0.09001 | 0.17391 -0.02456
E || 0.44204 | 0.53987 | 0.12288 | 0.14264 -0.03098
0.4 0.5
A || 0.44189 | 0.54095 | 0.12303 | 0.14334 -.03033
E || 0.49834 | 0.48469 | 0.13982 | 0.12789 -0.03170
0.45 | 0.45
A || 0.49819 | 0.48571 | 0.13997 | 0.12842 -0.03101
E || 0.55373 | 0.42914 0.15702 0.11343 -0.03017
0.5 0.4
A || 0.55358 | 0.43003 | 0.15714 | 0.11374 -0.03011
E || 0.66049 -| 0.31804 | 0.19199 | 0.08510 -0.02363
0.6 0.3
A || 0.66038 | 0.31861 | 0.19207 | 0.08502 -0.02405
E || 0.76002 | 0.20857 | 0.22750 | 0.05720 -0.01373
0.7 0.2
A || 0.75997 | 0.20881 | 0.22753 0.5693 -0.01426
E || 0.85036 | 0.10223 | 0.26323 | 0.02909 -0.00429
0.8 0.1
A || 0.85035 | 0.10227 0.26323 0.02909 -0.00454
E || 0.92989 0. 0.29889 0. 0.
0.9 0
i A 1] 0.92989 0. 0.29889 0. 0.
*E = exact; A = approximate
N — e ——————
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QUEUEING SYSTEMS SHARING FINITE WAITING ROOM 677

In Table 2 a comparison of the algorithm and the results of a simulation are given for the
case K = 5, with one service distribution E, and the other E,. For various combinations of
loads, comparisons between the simulation (S) and the approximate (A) results are presented
for various measures of performance. Although the approximation does very well, it does not
appear to be as accurate as in the previous comparisons. To some extent, this may be attri-
buted to the fact that this comparison was against a simulation, with its own inherent inaccura-
cies. However, the results are certainly representative and the approximation appears to be
quite suitable for most applied work.

TABLE 2. Comparison of algorithm and the case
where one service-time distribution is E,
and the other E4 (K =5, E(S) = E(S) =1)

Traffic
Intensities E(Q, | E(Qy | PB, | PB,
1 2 .
S || 0.117 0.103 | 0.000 | 0.000
0.1 | 0.1
A || 0.108 0.108 | 0.000 | 0.000
S || 0.857 0.108 | 0.003 | 0.000
0.5 | 0.1
A || 0.854 0.107 | 0.003 | 0.000
S It 2557 0.114 | 0.081 | 0.005
09 | 0.1
A || 2.539 0.112 | 0.077 | 0.006
S || 0.103 2.656 | 0.005 | 0.073
0.1 | 0.9
A || 0.107 2.545 | 0.007 | 0.068
S || 0.807 2.350 | 0.038 | 0.070
0.5 | 0.9
A || 0.766 2416 | 0.040 | 0.074
S || 2.130 1.980 | 0.128 | 0.120
09 | 0.9
A Il 2.055 2.032 | 0.121 | 0.119

*S = simulation; A = approximate

Part of the reason for investigating this queueing system was to try to answer the follow-
ing question: "Are there conditions under which it is better to give each class of customer his
own waiting spaces and not allow the other class to use them?" We have used the results
obtained for the exponential service-distribution case, section 2b, to investigate this question
numerically. Table 3 gives the results of this investigation. For different values of K, three
basic cases were considered: p, > 1, i=1,2,p, < 1,p, 2 1;andp, < 1, .= 1, 2. For
p1» P2 and K fixed, the total load carried for the case where both classes are allowed to use all
K spaces (same) is compared with the load carried for the case where the K spaces are
optimally divided among the classes and a customer may only use the spaces allowed to his
class (sep.). The optimal allocation of the K spaces to each class (given in parentheses) was
found by formulating the problem as a dynamic programming program, where the objective
function was to maximize the total load carried for the system. From the table, one sees that if
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both traffic intensities are greater than 1, use of separate waiting facilities for each class is
optimal, and for the case where one class’s traffic intensity is less than 1 and the other’s greater
than 1, the solution depends on K and on the traffic intensities. For the case where both traffic
intensities are less than 1, it is better for both classes to use the same spaces. It should be
pointed out that a more detailed study of the optimal operation of this system has been given
by Latouche [10].

M. J. FISCHER

TABLE 3. Comparison of same or separate waiting

Jacilities for each class of customers

Total load carried for separate and same spaces
(and optimal allocation for separate spaces)
K=3 K=35 K=17 K=9

Py Py Sep. Same Sep. Same Sep. Same Sep. Same

1.6310 | 1.6150 | 1.7610 | 1.6820 | 1.8330 | 1.7070 | 1.8750 | 1.7170
1.1 1.9 @2,1) 3,2) 4,3) (5,4)

1.6480 | 1.6390 | 1.7810 | 1.7170 | 1.855 1.7520 | 1.8980 | 1.7690
1.2 1.8 2,1 3,2) 4,3) (5,4)

1.6590 | 1.6560 | 1.7940 | 1.7440 | 1.8690 | 1.7890 | 1.9130 | 1.8140
1.3 1.7 2,1) 3,2) (4,3) (5,4)

1.6650 | 1.6670 | 1.8010 | 1.7620 | 1.8750 | 1.8150 | 1.9200 | 1.8470
1.4 1.6 2,1) 3,2) (4,3) (5,4)

1.6650 | 1.6690 | 1.8010 | 1.7680 | 1.8760 <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>