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INTRODUCTION

Light—scattering aerosol counters are used for determination of size
distribution and number concentration of aerosol particles. These de-
vices work on the principle that as aerosol flows through an illuminated
volume, light scattered by a single particle into a particular solid
angle is measured and used to determine particle size by electronically
classifying response pulses according to their magnitude. Determination
of particle size from the response is indirect because of the dependence
of the response on factors other than particle size, namely, particle
shape and complex index of refraction; lens geometry of the counter
optical system; and for broadband sources, phototube spectral sensitivity.
A number of theoretical and experimental studies of response characteris-
tics of light scattering counters have been done for several cotmnercially
available instruments [1—5] and those of special design [6—14]. In the
research discussed in this repor t, the response characteristics of four
models of “Knollenberg” (after R. G. Knollenberg, the developer) light
scattering counters that have recently become commercially available
(Particle Measurement Systems [PNS], Boulder , Colorado) were investi—
gated. These instruments are widely used for aerosol measurement, per-
haps indiscriminately and without adequate understanding of their
response characteristics and limitations. An understanding of these
factors is needed to assess errors in measurements made with them. In
this report an attempt is made to gain this understanding.

Measurements of known inonodisperse aerosols are highly desirable for in-
vestigating counter response. Thus, the next section gives a brief . -

account of techniques used for generation of bo th spherical and irregular
monodisperse aerosols. The third section presents a general description
of the optical systems of the four Knollenberg counters: the classical
scattering aerosol spectrometer probe (CSASP) , the active scattering
aerosol spectrometer probe (ASASP), the forward scattering spectrometer
probe (FSSP), and the axially scattering spectrometer probe (ASSP). The
fourth section presents the theoretical methods used for calculation of
these counters’ response for spherical par ticles, and the fifth section
presents a comparison of theoretical and experimental results for the
CSASP and ASASP using both monodisperse spherical and irregular particles.
Finally, theoretical response calculations of all the instruments are
presented for spherical particles with refractive indexes representative
of atmospheric aerosol constituents.

GENERATION OF MONODISPERSE AEROSOLS

To def initively measure the resporse characteristics of aerosol counters ,
one must be able to generate aeroso~.s of uniform size and different
composition (or refractive index). For these studies uniform particles
of nigrosin dye, sodium chloride, and potassium chlorate were generated
by the vibrating orifice technique described earlier (6]. In this
technique, the aerosol material is dissolved in a volatile solvent

- 
-
~~~~ (water) and the resulting solution is forced at high pressure through a

small (5~im to 2O~im diameter) orifice. A transducer is attached to the

_
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orifice, and at certain resonant frequencies the jet of solution squirt-
ing through the orifice breaks under the action of surface tension into
droplets of uniform size. The volatile components of the droplets
evapora te, leaving the residual aerosol.

The size of the aerosol depends on the concentration of material in
solution, orifice size, orifice pressure, viscosity of the solvent used ,
and resonant frequency. For example, one part per thousand nigrosin
dissolved in water forced through a lth.itu orifice at 20 psi results in a
resonance at 163 kllz and generation of aerosol of 2.121m radius following
evaporation of the solvent. An aerosol particle is generated for each
complete vibration of the orifice. The standard deviation in particle
size of aerosol made with this technique is on the order of 2 percent of
the mean diameter, not counting particles that coalesce before drying,
forming particles two, three, and four times larger in volume. This
aerosol generation technique is essentially the same as that of Bergland
and Liu [15]. In fact, a modified Bergland and Liu generator (commer-
cially available from Thermal Systems, Inc., Ninneapolis, MN) was used.
The modification consisted of replacing the syringe pump with a corn—
pressed air source held at constant pressure.

Monodisperse spherical aerosols of polystyrene, polyvinyltoluene, and
styrene divinylbenzene latexes available from Dow Chemical in the hydro—
sol were generated by nebulizing hydrosol samples diluted with distilled
water . Also, nearly monodisperse crown glass beads available from
Particle Information Services were generated by simply shaking the beads
from their vial container. A summary of monodisperse aerosols utilized
in this study is shown in table 1.

THE PARTICLE COUNTERS

Figure 1 shows a schematic of the CSASP optical system modified from a
drawing supplied by the manufacturer. The instrument is essentially a
dark—field microscope with silicon photodiodes used as the detectors.
Air containing aerosol being sampled is drawn through the focal point of
the collecting optics where individual particles scatter light into the
microscope and photodetectors. The source of illumination is a 5 mW
He—Ne laser tuned to a high order random mode. The optical system has
axial symmetry with respect to the direction of the laser source and
permits collection of light scattered 4 to 22 degrees from the direction
of forward scattering.

The output of the photodetector is a measure of the intensity of light
scattered by single particles and is fed into a 15—channel pulse—height
analyzer. Figure 2 shows a typical CSASP spectrum for inonodisperse
aerosol of nigrosin dye together with a scanning electron microscope
micrograph of several of these particles collected onto a Nuclepore
filter. The peak in channel 12 corresponds to the most frequently
occurring scattered intensity for this aerosol and its position is
proportional to the counter response. The spread in the peak is caused
by statistical broadening, nonuniform illumination of the sample volume,
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and variation in aerosol size. For irregular particles a broader spec-
trum of pulse heights is measured , as different particle orientations
result in distinctly different response pulses, even for particles
nearly identical in shape. The spectrum in figure 3 shows this effect
for uniform slightly irregular particles of sodium chloride; the figure
also shows a inicrograph of typical salt particles corresponding to this
spectrum. This spectrum would be more nearly Gaussian if pulse height
were plotted on the abscissa rather than channel number, as the channels
are not of equal width. The size resolution of the instrument is ob-
viously degraded for irregular particles.

The light—collecting optics of the ASASP instrument are identical to
those of the CSASP, but in this case the particle illumination source is
the intracavity standing wave radiation of a hybrid 2 mW He—Ne laser
[16]. An advantage of utilizing the open—cavity source is the high

energy density available (about 1 kW/cm2 according to PMS), permitting
measurement of p~ ticles down to about 0.l~im radius. Pulse height
spectra for mor.odisperse spherical and irregular particles for this
instrument are similar ~o those for the CSASP.

Only a smell fraction cf the particles which pass through the relatively
large Intakes of the CSASP and ASAS? instruments, which consist of a
conical horn with Ininimur diame ter i.3 cm, is counted . The relatively
small volume through which particles must pass before they are counted
is deterrined opto—electronically. Signals which derive from particles
that do not flow thrcugh a garticular volume which is within a suff i—
ciently ur.ifcrr~iy illuminated part of the laser beam are out—of—focus
and electronically rejected .

Both FSSF and ASSP instruments are similar to the CSASP in that Lh~y
are forward—scattering instruments and the illumination source is a
He—Ne laser. The optical systems permit collection of light scattered
3 to 13 degrees (for the FSSP) and 5.3 to 12.4 degrees (for the ASSP)
from the direction of forward scattering. in both instruments the
coincidence scheme for particle detection involves a time—of—flight
measurement of single particles traversing the laser beam and subsequent
rejection of particles passing through the beam edges.

Table 2 summarizes the characteristics of the light—scattering counters.

THEORETICAL RESPONSE CALCULATIONS

In this section the theoretical methods used for calculating particle
counter response are outlined by using Mie theory for the CSASP , FSSP ,
and ASSP instruments and a solution for scattering of standing wave
radiation by a spherical particle for the ASASP.

• From Mie theory for a polarized plane wave having wavenumber k inciden t
on a sphere with radius r, the scattering cross section (in cm2 per

5
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particle) for radiation scattered into a solid angle having axial
symmetry with respect to the direction of the light source is:

R = _-.

~~

. f ~ 1~il~ 
+ Is 2I

2
~ sin 0 d 8 (1)

where S1
(x ,ni,e) and S

2
(x,m,0) are the Mie scattering amplitude functions

corresponding to light polarized with electric vector perpendicular and
parallel to the plane of scattering. They depend on the particle size
parameter x = kr, the refractive index in, and the scattering angle e.
The angular integration is over the solid angle Si subtended by the light—
collecting optics.

Because the scattering for the ASASP is for a particle in a standing
wave , the scattering amplitude S’ Is calculated by adding the ~1ie scat-
tering amplitudes for plane waves traveling In opposite directions :
S’(ø) = S(s) + S(,~ — 0). The response for the ASASP is then

- —.
~~ 

f  ~f s 1( O)  + S (~ - 0)1
2 + j s~(e) + 

~~~~~~~~~ 
- 

~ 1
2 

sin e d
k2 Si~ 

1 — (2)

RE SULTS

Measurements of the CSASP and ASASP response to inonodisperse spherical
latex and nigrosin dye aerosols are presented in figures 4 and 5 as open
and solid circles. The radii of the latex particles are those adver-
tised by Dow Chemical; those for nigrosin were measured by scanning
electron microscope. The error in radius is not more than the width of
the circles marking the measurements.

The measured response Is expressed in cross section per particle normal-
ized to the computer calculated theoretical results (solid—line curves)
for best f i t to the theo retical response for latex aerosols. This single
normalization was used for all experimental results for each instrument.
Polystyrene, polyvinyltoluene and styrene divinylbenzene latex aerosols
actually have three similar but distinct indexes of refraction (see
table 1); however, the response curves for these indexes are not signif-
icantly different and therefore only the response curve for polystyrene
latex with index l.592—Oi is shown. Error in measurement of response is
due to the finite width of the instrument pulse height channels and
instrument drift. Repeated measurement of polystyrene latex particles
showed instrument drift to be ±10 percent in pulse height over a period
of 1 month.

Also shown in figure 4 is the CSASP response to relatively narrow poly—
dispersions of glass beads having refractive index 1.51—Oi. The
measured response is denoted by the squares and the theoretical response
by the dashed curve. The standard deviation in particle size of the
beads is indicated by the horizontal “error ” bars and at least 68 per—
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cent of the signals for these particles have pulse heights falling
between the vertical “error” bars.

Figure 4 indicates that the theoretical response for the CSASP is cor-
roborated by Tneasurer.lents on uniform aerosols with three markedly
differen t indexes of r~ -~~action and with radii O.3Oinn to lO~tm . There—
f ore the Nie theory calculated response according to equation (1) ade-
quately predicts the CSASP response for spheres , regardless of e f fec t s
that may be caused, as suggested by the manufacturer, by multimode
operation of the instrument laser source. The theoretical results
according to equation (2) for the ASASP instrument are also verif ied by
the response measurements in figure 5, with the exception of particles
with radii greater than about l~1n. The extinction cross section of
these larger particles is apparently sufficient to cause appreciable
reduction In laser power and consequent deviation fr om the theoretical
response curve.

The CSASP and ASASP response to slightly irregular randomly oriented
uniform particles of sodium chloride and potassium chlorate have also
been measured. These results , shown compared to theoretical response
calculations again according to equations (1) and (2) for spheres of
equivalent cross—sectional area , are shown in figures 6 through 9. As
before , the experimental results are normalized to the measured response
for polystyrene so that the comparison of experiment and theory here is
absolute. Measurements of uniform irregular particles with these instru-
ments result in a range of pulse heights and hence broader spectra than
for spheres, as can be seen by comparing spectra in figures 2 and 3.
Here the response plotted corresponds to the most frequent scattered
intensity for the randomly oriented particles and at least 68 percent
of the monodisperse aerosol counted have pulse heights falling between
the vertical “error bars.”

Figures 10 and 11 show micrographs of typical monodisperse particles of
sodium chloride and potassium chlorate collected onto Nuclepore filters.
Although it may not be obvious from these telescoping micrographs,
sodium chloride particles with equivalent radius less than 3pm (as in
figure 10, lower micrographa) consist of assemblies of cubes with a
hollow center; larger particles (as in figure 10, upper micrographs)
have five flat sides and one rounded side with a hole in the center.
Po tassium chlora te pa rticles are prola te ellipsoids with rough surfaces
and also some irregularly shaped voids within.

Thus, compar ison of measurements in f igures 6 and 7 ( for the CSASP) and
figures 8 and 9 (for the ASASP) shows comparable response for par ticles
of markedly different shape (sodium chloride and potassium chlorate).

Potassium chlorate is birefringent; however, no theory exists for cal—
culating scattering for birefringent particles. Consequently in figures
7 and 9 the measured response for potassium chlorate is compared to two
theoretical curves: one curve for homogeneous spherical par ticles
having index of refraction of the ordinary ray (in — 1.52—Oi), and one
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f or particles having index of refraction of the extraordinary ray
(a — l.409—Oi). These two response curves are only significantly dif-
ferent in the 0.Siun to 2pm radius range. It is noteworthy that both of
the theoretical curves are in poor agreement with the measurements for
particles in th. .i size range, although for smaller and larger sizes,
where the two theoretical curves are similar , the measures~ents are in
better agreement with the theoretical response curves .

For the CSASP both the sodium chloride and potassium chlorate results
show: (1) rough agreemen t of measuremen t and theory for equivalent
radii l.Spm < r < 4pm , (2) the resonance behavior in the calculated
response is not evident in the measured response, (3) slightly smaller
response measured than predicted for particles with equivalent radius
‘
~ 4pm , and (4) a resonance in the measured response for particles with
equivalent radius O.8pm which m ay be a consequence of the shell—like
structure of the particles.

The following geometrical optics argument is offered to explain the
general agreement of the measured response for irregular particles and
that predicted for spheres of equal cross—sectional area, providing
equivalent radii are between l.5iiin and about 4pm. First, particles
must have equivalent radii r ~ l.5pm (or size parameters x ~ 15) for
geometric optics to apply . Thus , if particles have r ~ l.5pm , axi .~ if
light scattered within the forward lobe is sensed, diffraction is domi—
nant; and to the first order only the projected area of the particle
is important. Thus , low—angle scattering constitutes a somewhat reliable
measure of particle projected area for particles of irregular shape, pro—
viding they are sufficiently large Cr ~ l.5pm). On the other hand , they
cannot be too large, since if light scattered primarily outside the for—
ward lobe is sensed , as it is for particles with equivalent radius r
4pm, reflection and refraction contributions are liable to produce a
response which deviates considerably from tha t of a sphere of equal
area , as the measurements show in figures 6 and 7. These measurements
suggest that the CSASP response to even larger (

~ 6pm equivalent radius)
irregular particles might result in significant underestimation of
particle sizes. Response measurements for more irregular and larger
particles is an obvious deficiency of this work.

For the ASASP the irregular par ticle measurements show agreement of
measured and theoretical response for particles with equivalent radius

~ O.5pm but disagreement for larger sizes and virtually no size resolu-

tion for particles with r ~ 0.5pm.

For the special case of spherical par ticles, the measurements corrobor ate
the theoretical response curves for both the CSASP and ASASP, with the
exception of particles having radius ~ 1pm for the ASASP, which appar—

• ently cause significant reduction in laser power. Confidence can thus
be placed in response calculations for materials with r~~ractive indexes
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different from those studied here. Response calculations for refract ive
indexes typical of atmospheric constituents at A — 6328A ranging from
the refractive index of water (a — l.33—Oi) to carbon (m — l.95—0.66i)
were consequently carried out and are presented in figures 12 (CSASP)
and 13 (ASASP). The pulse height discriminator levels, as set by the
manufacturer for our particular models of these instruments, are shown
by the tick marks in these figures. There are 15 particle size channels
for each “range” of the instruments; channels 1, 5, 10, and 15 are
labeled between the appropriate tick marks. Changing range is merely an
adjustment of amplifier gain for the CSASP (for the ASASP both amplifier
gain and discriminator level settings are different for each range) and
has the effect of shifting the size range of sensitivity.

Users of these counters are warned that discriminator levels for dif-
ferent CSASP and ASASP instruments are not necessarily set as shown in
f igures 12 and 13, as the manufacturer has a number of differen t schemes
for setting these levels. Nevertheless, the manufacturer utilizes
several sizes of polystyrene, polyvinyltoluene and styrene divinylbenzene
latex par ticles and glass beads in the factory “calibration,” Identified
according to what channel they are counted as per the instrument manual
supplied with each instrument. This information enables the user to in-
fer positions of discriminator level settings relative to the theoretical
results presented here.

Comparison of the CSASP and ASASP theoretical response curves for both
absorbing and nonabsorbing aerosols show they are quite similar , the
ASASP having high frequency wiggles in its response for particles in the
resonance region (i.e., in the region where particles have sizes compa-
rable to the wavelength),which are not found in the CSASP response.
This result for a particular refractive index can be seen in figure 14,
where the CSASP and ASASP response to particles with m — 1.54—01 are
compared.

It is hardly necessary, in light of these results, to stress the fact
that for spherical particles both the CSASP and ASASP responses are sensi—
tive to aerosol refractive index over the range of realistic values for
these indexes. For example, for the CSASP (figure 12), water par ticles
(a — 1.33—Oi) with radii 5~m have identical response to dust particles
(a — l.50—0.005i) with radii 10pm. Even for aerosol of known composi-
tion there are, on some ranges of the instruments, discriminator levels
set in regions of multivalued response. Thus for the CSASP, water parti-
cles with radii 0.63pm, 0.94pm, and l.3pm all have the same response.
Nevertheless, size distribution information for a polydispersion of
homogeneous particles can be determined by reducing the number of
channels to avoid these regions.

For examp le, if the CSASP is used to measure fog drople ts, the channels
can be grouped according to the response curve for water to avoid regions
of multivalued response. This channel grouping is indicated by the

14 heavy tick marks in figure 12. The channels are grouped with less size
resolution than the response curve dictates because, in practice,
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statistical spectra broadening effects result in some channel cross
sensitivity. As was pointed out previously, even measurements of mono—
disperse spherical aerosol result in a range of pulse heights, and
identical par ticles are not counted entirely in one particle size chan-
nel. Therefore, use of discriminator levels set near regions of multi—
valued response has been avoided. This scheme reduces the number of
size channels for each range from 15 to 8. SpecIfic channel size limits
for the different ranges of the instrument can be determined for figure
12 by noting at what radii on the water response curve the appropriate
heavy tick marks correspond.

A comparison of channel size limits determined in this way compared to
limits advertised by the manufacturer is given in table 3. Not only is
the size resolution of the CSASP generally reduced , but the channel
limits differ by as ñiuch as a factor of two from the advertised values.
Measurements of spherical particles having refractive indexes different
from water would of course require different channel groupings and size
definitions.

If the manufacturer’s calibration is used in determination of size dis-
tribution of polydispersions of spherical particles, artificial knees
or bumps in the distribution will appear in regions of multivalued re-
sponse. These knees or bumps appear because in these regions particles
with a relatively large range of sizes produce response pulses in a
small range of pulse heights; whereas, between regions of multivalued
response, particles with a relatively narrow range of sizes produce
response pulses in a comparable range of pulse heights. The resulting
artifacts have been seen in the manufacturer calibration—derived distri-
bution for the CSASP both in measurements of atmospheric fog and in
measuremen ts of labora tory generated polydispersions of oil droplets.
The positions of these knees in the distributions are of course different
for particles with different refractive indexes. Recently reported measure-
ments of atmospheric aerosols by Livingston [17] with the Knollenberg
ASASP show knees in the distribution in the region of multivalued response
for water droplets (as per figure 13) which we suggest are simply arti-
facts of the instrument response, and not real.

The FSSP and ASSP light scattering counters are similar to the CSASP;
the essential difference being geometry of their light—collecting optics
(see table 2). Theoretical response calculations for these instruments,
again according to equation (1), are presented in figures 15 and 16.
Like the CSASP, the response is sensitive to particle refractive index
over a range of indexes characteristic of atmospheric aerosols ; the ASSP —

has par ticularly poor resolution in the 1pm to 4pm radius range. The
positions of the factory—adjusted discriminator level settings relative - 

-

to the theoretical results presented here can be determined by noting in
what channel sodalime glass beads or polystyrene spheres of a par ticular
size are counted . This information is given in the manual supplied with
each instrument. The position of the channel in question can then be

• determined from the theoretical response curves. In the case of glass
beads , the response curves for refractive index m l.50—Oi in figures
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15 and 16 can be used (although the refractive index of the glass beads
is m = 1.51—01, the response curve for in 1.51—01 is well approximated
by that for in = l.50—Oi). In the case of polystyrene or polyvinyltoluene
latex spheres, the response curves for m 1.592—01 given in figure 17
may be used.

Both the FSSP and ASSP instruments utilize near—forward scattering and
as argued previously should offer a somewhat reliable measure of particle
cross section for irregular particles less than a certain size. Other-
wise, measurement of their response to known irregular particles is
needed.

A terse summary of findings for the four Knollenberg light scattering
counters is given in table 4. For the CSASP and ASASP instruments, the
manufacturer generally specifies more particle size channels than can be
justified , particularly for particles with radii greater than 0.5pm. The
theoretical results suggest the same is true for the FSSP and ASSP, al-
though the authors do not have information on the discriminator level
settings for these instruments.

Fi nally , a l t h o u g h  the que stion of the counting efficiency of these light
scattering counters is not addressed in this report, the authors are
aware of two potential problems with the CSASP instrument that might be
important for the other instruments too. The first problem concerns the
coincidence scheme utilized in the CSASP to reject or accept particles
depending on whether or not they pass through the relatively small
“sample volume.” Only a small fraction (~O.003 percent) of particles
flowing through the instrument are actuall y measured . The purpose of
the coincidence scheme is to reject particles which are not within a
sufficiently uniform part of the laser beam by opto—electronically
discriminating against out—of—focus particles. According to the manu-
facturer there are on the order of ten particles rejected for every one
counted. There is evidence to suggest that this scheme results in a
sample volume that  is somewhat dependen t on particle size. In other
words, the instrument flow rate may be different for different size chan-
nels. however, simultaneous measurements made on uniform aerosols in
our laboratory with both the CSASP and a particle counter of a special
design developed by Rosen [18} show agreement in absolute aerosol con-
centration to within 30 percent for particles with radii of about 1pm.
Some preliminary results on the ASASP Indicate much larger errors for
submicron particles.

The second potential problem concerns errors due to nonisokinetic
sampling. Air containing aerosol sampled under a no—wind condition with
the particular aspirated CSASP the researchers used flows at 340 liters
per minute through a conical intake tube 45 cm l ong with maximum diam-
eter 10 cm and minimum diameter 3.3 cm . The fr~ction of particles lost
in this tube due to gravitationa l settling depe-1 s strongly on size and
is estimated 7 percent for l5pm radius particles , increasing to 18 per—
cent for 25pm radius particles , under the assumption particle density is

J 11
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1 gctn 3. The magnitude of errors due to nonisokinetic sampling during
windy conditions is unknown.

CON CLUSION S

Theoretical response calculations for two models of Knollenberg light
scattering aerosol counters (the CSASP and ASASP) have been compared to
measurements of monodisperse aerosols of different size and refractive
index. The theoretical predictions for the CSASP, which are based on
Mie theory, are verified by the measurements on spherical particles with
radii O.3pm to 10pm . The ASASP predictions are derived from a solution
for scattering by a sphere in a stand ing wave and are also validated by
measurements on spherical particles with radii 0.l2pm to 1pm . Particles
larger than 1pm radius , which is near the upper limit of detectability
for the ASASP , apparently have sufficiently large extinction cross
section to cause significant reduction in laser power and disagreement
of predicted and measured response results. In any case both instruments
show sensitivity of response to aerosol refractive index over the range
of values of indexes realistic for atmospheric aerosol. This sensitivity
results in poorer size resolution than advertised for these counters, as
two aerosol particles differing in size by as much as a factor of three
may be counted in the same size channel. For aerosol of known composi-
tion, size resolution is much improved , although not as good as adver-
tised since size channels must be grouped to avoid regions of multi—
valued response. As might be expected , measurement of irregular parti-
cles causes fur ther degrada tion in resolution, because of the importance
of particle orientation.

For the Knollenberg FSSP and ASSP light scattering counters, the theoreti-
cal pred ictions of response for spheres again show sensitivity to aerosol
refractive index and the attending loss of size resolution.

Generally, the best size resolution is obtained with these instruments
for measurement of homogeneous spherical aerosols such as fog and some
military smokes (such as FS, RP, fog oil, nitric acid , diesel oil, and
silicone oil). However, measurement of battlefield—debris aerosol , which
tuight contain irregular dust and high explosive debris particles of mixed
composition, would result in relatively poor size resolution.
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Figure 2. A typical CSASP pulse height spectrum for monodisperse aerosol.
This particular spectrins is for solid particles of nigrosin dye
with mean radius 1.l8pm; a scanning electron microscope micro—
graph of several of these particles collected onto a Nuclepore
filter is also shown.
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calculated using Mie scattering theory (curves) for single
spherical particles versus particle size. The measurements have
been normalized for best fit to the calculated response for
polystyrene latex particles with refractive index m — l.592—Oi.
The theoretical curve for glass beads with refractive index
l.51—Oi extends down only to about 5~im radius.
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particle counter for water particles with refractive index
1.33—01, ajimionium sulfate with approximate Index 1.5—01,
atmospheric dust with indexes 1.50—0.0051 and 1.5—0.051, and
carbon with index 1.95—0,661. The tiek marks indicate the
pulse height discriminator levels as set by the manufacturer
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TABLE 2. CHARACTERISTICS OF ICNOLLENBERG LIGHT
SCATTERING AEROSOL COUNTERS

Light-collecting
• optics~ Flow rate or

Instrument Light source a—fl active area

CSASP 5mW H e—Ne laser 4—22° 0•lScm 3/sec
ASASP 2mW He-Ne laser 4—22° 0.1 cm 3/scC

lintra-cavily)
FSSP 5mW He-Ne laser 3-13° 0.25 m&t
ASSP 5mW He—Nc laser 5.3—12.4° 0.4 m&t

~ All instruments have sau l symmetry with respect to the direction of the laser
source and the polar angues a, $ refer to a cone subtending angles a through $ from the
direction of forward scattering.

t Flow rate can be determined from active area by multip lying by the speed at which
air Icontaining aeroaol) passes through the instrument.
: The manufacturer has prod uced two models of the ASSP having different optics.

but onl y one of these has been studied here. The other collects light scattered 67° - 14.4°
from the direction of forward scattering.
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