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SUMMARY

The aerodynamic load ing for deformed wings in both subsonic and

supersonic flow has been under study for the past year. The basic solu-

tion technique falls into the potential flow category with appropriate

restrictions. A lifting surface kernel function formulation is used for

both subsonic and supersonic flow and results are obtained which agree

very well with experimental data. Subsonic solutions for deformed wings

with deflected elevons are obtained in a semi—closed form summation

manner. Cases under study which include gaps between the elevon and wing

are as yet incomplete but is presently being pursued. For supersonic flow,

a modified Evvard solution forms the basis for the planar wing cases and

vorticity paneling is added to account for local deformations in the wing

mean camber surface. Results are obtained which agree very well with

experimental data. The gapped elevon cases for supersonic flow is also

analyzed and preliminary results have identified thickness effect, as being

very important, at least for small elevon deflections.
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I. INTRODUCTION

The aerodynamic load ing for deformed wings in both subsonic and

supersonic flow has been under study for the past year. The problem of

wing loading solutions have generally been confined to potential flow

formulations. These solutions have been applied primarily to planar

wings but In some cases, such as vortex lattice, are applicable to the

deformed wing problem. The present formulation falls into the potential

flow category, but unlike vortex lattice techniques, is of the continuous

vorticity distribution type yielding continuous loading profiles.

Not only are local wing deformations included in the analysis but

for subsonic flow, the elevon loading is computed for displaced elevons

(gap between elevon and wing trailing edge). In all cases, sectional

as well as total loads and moments are computed in a “semi” closed form

manner. A comprehensive discussion of the basic formulation for subsonic

flow is presented in Ref. 1.

For supersonic flow, a similar kernel function approach is taken

leading to general functional forms for the localized loading on wings

in supersonic flow. A more complete derivation of the applicable

equations for supersonic flow is presented in Ref. 1. In ordc~. to

preserve continuity, however , the general equations applicable for both

subsonic and supersonic flow regimes are repeated in this report.

1

_____________________________ 
_____ 
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II. SUBSONIC FLOW

Fundamental Equations

For a planar lifting surface, the potential equation is

•(x,y, z) = ~ 
y(x , y )  

z (l + 

(x—x ) 

~~dx dy (1)
s (y—y ) +z \ 4(x_x0)

2+82(y_y0)
2+82z2/

The closed form integration technique for wing sub—elements as described

in Ref. 1 yields excellent results for planar wings with the assumed

pressure loading

~C ( ~ ,fl) = 

n~O 
—fT 

~ 

BL sin(2m+l)o~i~~t~~ (2)

Spanwise Chordwise

The applicable boundary condition is

w(x ,y) + sin cz(x ,y) — 0 (3)

and solutions are obtained for the various sectional coefficients as

M
cc~

(y0
) = ~~ E sin(2m+1)O . (4)

m O

cc (y ) N sin(2m+l) O
ccd ( Y )  = ° 

~~~ ~~~~~~~~ sin 00 
°

M N
cc (y ) = —c(y ) ~ ~ 

BL ‘n+l 
sin(2m+l) 0 (6)

ir’O n 0

where L Nm + n .

_ _

__  

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~ 
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Total forces and moments are then found by integration as

CL 2 S  
(7)

CD 
— 

~ 
(2Ifl+l)E~~ (8)

i m 0

M M
c~ — ~~ [(c

R
_c
T
) ~ F G — C

R 
F(l) —tan A ~ E G ]  (9)

Sc m O

Comparison with experimental data is excellent (Ref. 1) for a wide variety

of wing shapes.

Order of Polynomials

Before proceed ing, comments on the effect of polynomial order on the

solution is in order. The unknown constants, BL 
in Eq. (2) are really

coefficients for the various terms in the polynomial describing the

pressure loading on the wing. It has been suggested that if the polynomial

order is increased to a large number of terms (i.e., > 50) that the

sectional coefficients such as cc
~ 
will tend to “oscillate” in the span—

wise direction. For the formulation used in the present analysis, no

oscillations are observable at least up to 50 terms in the equation. How—

ever, oscillations do indeed occur if terms on the order of 80 or more are

used in the pressure loading. It does not appear that this is due to

“numerical” instability as would be the case if numerical integration were

used , but rather due to overkill. That is, the pressure loading function

is rather general and for most wings only a few terms (< 20) are required

for a solution. If more terms are used, it is analogous to fitting a 50th

degree polynomial to a linear curve; oscillations are the inevitable results.

.._ _ L”~~~* ~~~ . , . . 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . . ... .. . ,~~~~. 
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Elevon Loading and Hinge Moments

For the past year , concentration has been placed on predicting the

loading of a full span elevon placed in the wake of a lif ting surface and

on the associated elevon hinge moments. Displacement of the e].evon creating

a wing—elevon gap and its effect on the wing—elevon loading has also been

under study. It is apparent that when a gap exists between the wing and

the elevon, the loading distributions on each will change. For a gap, the

wing and elevon are treated as two wings with the requirement that the gap

is less than local wing chord , and therefore, the wing wake has no signif I—

cant rollup. Two loading functions are used, satisfying the infinite

pressure differential at the leading edge and the Kutta condition at the

trailing edge of both the wing and the elevon. The assumed loading for

both the gap and the gap—sealed cases are shown schematically in Figure 1.

The sectional lift for a wing with an elevon is

cc~ ( y )  f ~ AC (~ ,~ )dx ~ j T0 AC (~ ,n)dx (10)
x 0 w x(c +~) Ew

where the total chord length is

C
T 

= c
w 

+ CE + C (11)

and c denotes the gap width.

For the wing, the nondimensional chordwise variable is def ined as

= (x_xLE )/c
w 

(12)

~

. ~~~~~~~~~~~~ . , 
~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~ -:~~:~ ~~~ . ______
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I

AC 

I

I

a) gap—sealed case x/c = TE
w

I

AC Ip 

1

b) gap case x/ c — TE
~ 

LE
E

Fig. 1. Typical Chordwise Loading Functions.
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:t and the sectional lift for the wing becomes

.5c cc = C f AC (~ ,n) d~ (13)£ w p w
w ~~O w

Similarly, for the d evon,

= (x_x
~~~

)/c
E 

(14)

where the elevon leading edge is now

XLE XLE +C
w
+E (15)

The sectional lift is now given by

cc~ (y ) c f AC (~ ,n) d~ + c~ 5 AC (~ ,n) d~ (16)w p
~ ~E ° ~E

Each integral is treated separately and the integration is carried out as

with the wing alone analysis of Ref. 1. The total lift and moment is also

similarly found. It should be noted that the gap dimensions are small

and are excluded in defining all reference dimensions. Thus the total

wing area is

s = s  + s  (17)
w E

Extension of this analysis to include hinge moment computations was

also done in Ref. 1. However, by def inition the hinge line was located

at the leading edge of the elevon. For other hinge line locations, the

moment coeff icient becomes

c — c + c (x~~ /~ ) (18)
tmIIL tmLE LE E

1~

—~~
—I.-__-_____ --~--.~= ~~~~~~~~~~~~~~~~~~~~ 

. . — — .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,- — - - — - -— — - -
~~~~~~ 
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1
where x.~ is the chordwise location of the hinge line defined by

x. = x — x —c —c . It has been shown that the sectional lift for the
tiL i.E w

w
elevon is

cc
~ 

— C
E 

~E ~~ ~E I B
L 

sin (2q+l) 0 (19)
E p O  E q—0

where

I — 1T/2 (20)
0

and

= (2 P 1) i (21)
p 2p+2 p—l

and

L (N
E
) q + p. (22)

The total lift produced by the elevon is

CLE 
= 
5E 0 

(23)

Using (19) in Eq. (23) yields (after integration)

~ — -—2. (24)
L
E 

25
E

where
NE

~ 
B
L
I
P 

(24)
p—0

In a similar manner the moment produced about the elevon hinge line is

TM x.
c = c  + __.2.

~~~~. (25)
mHL mLE 2S

E C
E

where C and c are moments produced by the d evon only.
tmHL

_ _   ~~~. — - .“ , - .—~~~~~~~-~~~~-*- - . - ,-.-. - - - ,  - .. --. - ..

-- -- -—---- , _— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . . . ~T~~ i - ’
~~~~ ~~~~..
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Wing Deformations

A wing which is warped such that all points on the wing do not lie

in the x—y plane presents a different view to the flow field from that

of the planar wing considered previously. To account for wing warpage,

it is necessary to consider the angle that each control point and each

grid element makes with the x—y plane.

For warpage in the chordwise direction, the downwash produced by

each grid element is proportional to the angle which that element makes

with the x—axis, or

Aw(x
~

Y) warped = [Aw(x
~

Y) unwarped] cos (26)

where is the wing slope angle relative to the x—axis and is given by

= tan’ 1 (dz/dx)
i (27)

The boundary condition is for no flow through the wing, or that the normal

component of velocity to the wing be zero. The angle that the control

point makes with the x—axis is given by

a = tan ’(dz/dx) (28)

so that the downwash from a sublement at a control point is

AW (X
~

Y) warped — [AW(X
~

Y) unVarped ] cos (c
u
_d
c

) (29)

Definition of a wing deformation function z (x) of the mean camber line

can therefore produce many variations and amplitudes of wing distortions

in the chordwise direction. However, the condition of no flow separation

still applies at all points.

a — - . 
~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~~~~~~~~~
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Subsonic Results

It has been shown (Ref. 1) that the preceeding wing—elevon analysis

produces results which agree well with experimental data. However, the

availability of experimental data for a gapped wing—elevon combination,

or for deformed wings is very limited; therefore, for the present time,

the investigation is restricted to predicting results and trends of the

theoretical analysis.

The research was conducted using two types of wings, a rectangular

wing, and a low aspect ratio delta wing. Four variations were used for each

wing planform; a planar chord, a wing with twist, a wing with circular arc

camber , and a wing with a sinusoidally deformed camber line. Hinge moments,

total moment, and total lift were then computed for varying gap sizes and

angles—of—attack.

The computations for the gapped elevon cases are as yet incomplete

and will therefore not be presented in this report. At present, it may be

stated that gaps at the wing—d evon juncture certainly change the loading

on both the wing and elevon. Quantitative calculations regarding this

effect will be presented in a later report.

For the non—gapped case, Fig. 2 illustrates CH 
and C

11 
for a planar

ci iS

versus a sinusoidally deformed wing. The hinge moment slopes for a deformed

wing is essentially the same as the planar wing, differing only by a

constant. It is seen also that the hinge moment decreased linearly with

increased leading edge camber angle.

Several other configurations are currently being investigated with

varying types of deformations as listed in the following table.

.1
—

- - . ~~~~~~~~~~~~~
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0.04 . UNDEFORNED

—0.04

—0.08 •

~ I_ 
~ I I I I ~ I

—10 —8 —6 —4 —2 0 2 4 6 8 10
Angle of Attack

0.16 .

UNDEFORMED
— — — — DEFORMED

0.08 . ~~~~~ . \~ 
c& O

H

-0.08

-0.16

-10 -8 -6 -4 -2 0 2 4 6 8 1 0

0.0 • 
Elevon Deflection Angle

Leading Edge Deflection Angle

Fig. 2. Hinge Moment Coefficient for Deformed and
Undeformed Wings.
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TABLE

1. Rectangular, planar wing.

2. Rectangular wing, 6° twist (washout) at the tip.

3. Rectangular wing, circular arc camber

z(x) [r2 (x - 
W)21

½

4. Rectangular wing, sinusoidal deformation

z(x) — A sin (2irx)

5. Delta, planar wing

6. Delta wing, 6° twist (washout) at the tip

7. Delta wing, circular arc camber

z(x) [r 2 —(x —

8. Delta wing, sinusoidal deformation

z(x)  A sin (2rx)

For each configuration, the dependence of the hinge moment coefficient

on the hingeline location and on the gap size is to be determined.

Dependence on Mach number and angle of attack is still under investigation

with results expected in the near future. Definitive efforts are also

under way to quantify the dependence of gap size, etc., on total lift and

pitching moment of the entire configuration.

I
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III. SUPERSONIC FLOW

The analysis used in the present research effort for wings in

supersonic flow is based in part on Evvards theory and in part on

vorticity paneling leading to simple expressions for the basic aero-

dynamic coefficients. As in subsonic flow, the wing is subdivided into

a number of small subpanels over which it is assumed that the panel

strength is constant. The vorticity panel is actually a continuously

distributed doublet panel which satisfies the supersonic potential

equation

y (x ,y ) / (x—x )
•(x , y ,z) = 

~~
— 

f.f 
0 0 z ° 

~ 
dx dy (30)

2ir s0 (y—y0
)2+z2 ~~%

!(x_x
0
)2_82(y_y

0
)2_B2z2) 

° ~

As f or subsonic flow, the vorticity distribution y(x , y )  may be replaced

by the pressure loading coefficient ~AC~ (x
0~
Y). The downwash equation

is obtained by differentiation in the standard manner and when evaluated

in the z0 plane (planar flow) becomes

AC (x , y )  (x—x )
w(x,y) = ~~~~ ~

, 0 ~ ° dx dy (31)
n 
~0 (y—y

0
)~ ~ (x_x0

)2_B2(y_y
0
)2 0 0

where the area S is that contained on the wing surface in the upstream

running Mach cone emanating from the field point (x,y).

The assumed pressure loading differs from that previously reported

in Ref. 1 and is written as the sum of two expressions as

AC (x , y )  = P(x ,y )sin(a+0 ) + P(x ,y ) ~ ~ 
B
L 
~m cos 9-~

- (32)
n 0 m’O

12
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The first term on the right—hand side is a modified Evvard solution

to account for local wing deformations and is valid for both subsonic

and supersonic leading edges. The second term uses the pressure functions

P(x ,y)1 as a weighting function whtch, when multiplied by the unknown

coefficient B
L~ 

and the series ~~ cos 9-~accounts for small deformations

in the wing surface in the upstream Mach cone from the point (x,y). The

order of the terms in the second expression seldom exceeds 3 or 4 and

for planar wings, the entire second term is unnecessary. Increasing the

order for larger wing deformations or higher angles of attack does not

seem to provide better agreement with experimental data.

As in subsonic flow, the AC term is removed from the integral in

Eq. (31) and the resultant expression is integrated in closed form over

a small subpanel. Results of this integration over various shaped sub—

elements is presented in Ref. 1.

It is convenient to define the value of this integral as BAK so that

the total downwash at a point (x ,y) becomes

w(x ,y) = ~ (AK)~~[AC~G ~~~~~ ~ 
(~~)

i=l

where I is the total number of subpanels in the region (cone) of integra—

tion. The boundary condition is

w(x,y) + sin (ci+O ) = 0 (34)

where 0 is the local deformation angle at a control point. Rearranging

and combining Equations (32), (33) and (34) yields

- .  

-~~
. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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I

~ (AK)
1

[P(x ,y) sin (cx+0 )]~ +
i—l

I N M
~ (AK)~ (P(

0~~0
) ~ ~ 

B~ fl cos
1=1 n 0  m=0

= — sin(ci+O ) (35)

where as before L = n + mN. The above expression, Eq. (35), is con-

veniently arranged in matrix form for a Gaussian reduction solution of

the unknown coefficient, BL
.

Body volume effects on the wing loading are accounted for by

assuming that the body is cylindrically shaped. The cylinder is generated

with an infinite line doublet whose axis is in the z—direction perpen-

dicular to the wing planform. (Lifting interference effects are not

accounted for in the present analysis but Is under study for inclusion

in future work.) The result of adding the body volume to the analysis

simply adds another term to the right—hand side of Eq. (35) which after

a little manipulation becomes

4ira2 sin cx
—

where a is the nondimensional body radius defined by a = rb / (b/2 ) .

Unlike the subsonic analysis, the (supersonic) sectional proper ties

• 
cannot be integrated in closed form but must be done numerically.

Results for Supersonic Flow — Planar Wings

Several wing planform shapes were analyzed for which both undeformed

and deformed data were available. k sketch of the four planforms are

- - ,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I1T 11T . ~~~~~
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shown in Fig. 3. Results of the pressure loading on these wings in an

undeformed state are presented in Figs. 4—9 for Mach numbers of 1.61 and

2.01. In these figures, the theoretical solution is that taken from

Refs. 2 and 3. Minor improvements could possibly be made using vorticity

paneling; however , since agreement with experimental data is excellent,

this is unnecessary. Experimental data for both the planar and deformed

wings are obtained from Ref s. 4 and 5.

It is apparent from Figs. 4 through 9 that the linear theory is

excellent for subsonic and supersonic leading edges. Th~ disagreement near

the leading edge and wing tip is to be expected and is due to wing thick-

ness, shocks and wing twist; the latter, of course, is not significant

for the low aspect ratio wings.

In Figs. 8 and 9 , the error is attributed primarily to wing twist

where the wings under wind tunnel tests experienced up to 1.5° aeroelastic

twist (washout) at the wing tips. Washout in the vacinity of the tip

would tend to lower the AC distribution which is indicated in the experi—

mettal results.

Deformed Wings

These same wings under various kinds of deformation were also

analyzed by including vorticity paneling as well as the previous theoretical

- . loading terms in the AC~ distribution. Deformation shapes of three of

these wings are shown in Fig. 10. The delta wing (#1) in Pig. 3 was

cambered with a mean camber line curve fitted and defined by

(z/CR
) — tan 30(1 — (n+~(l—n)— .5) 2I (36)

~~~: 
=-

~
-

~~
-

~~~~~~~
-- 

_ _
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where n”y/(b/2) and F1.(x_xLg)/c. The camber (See Fig. 10) is uniform in

the spanwise direction and produces a maximum deflection angle of three

degrees relative to the chord line. Although this seems like a small

task, this is actually a severe test of the theory and its agreement with

experimental data. In Figs. 11 and 12, results are presented for the

cambered delta wing at Mach numbers of 1.61 and 2.01. Agreement at the

inboard stations are relatively good while outboard agreement is rather

poor. However, note that in the regions where most of the wing

loading occurs, the agreement is satisfactory. Additionally, the inclusion

of the doublet paneling terms in the mathematical formulation provides the

correct trends and an added degree of accuracy.

For the same planform shape, linear spanwise twist is added to the

camber deformation such that the mean camber surface is now defined as

(z/cR) — — .5(tan 8°)(n)(n+~(l—n))
2 (37)

Results of this configuration are shown in Figs. 13 and 14.

Similar results are obtained for these cases as was observed for the

cambered (alone) case. Agreement is acceptable at the inboard stations

but is questionable at the outboard stations.

In observing the experiulertal data for both the cambered alone and

the cambered and twisted wings, the outboard stations (n > .5) appear to

have a supersonic leading edge. Whereas the high leading edge sweep angle

gives rise to a subsonic leading edge. In addition, at the n — 0.5 station,

a weak shock appears to be located near ~ — .4 for M — 1.61 but is not

present for M = 2.01. Since the theory does not account for shocks, the

disagreement in this region is not surprising. 
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The next wing subjected to the theoretical analysis was a “warped”

trapezoidal wing (See figs . 3 and 10) . For both M — 1.61 and 2.01, the

leading edge is supersonic and multiple “fold over” regions occur because

of the low aspect ratio and the fact that the wing is trapezoidally

shaped . The equation governing the mean warped camber surface is

(z/c) ij 
— .033454 sin (371n 12) i cos (lt Oj  (38)

Results for this wing are presented in Figs. 15 and 16. Considering

the wing deformation, the agreement is remarkably good over the entire

wing for both Mach numbers. Note also that the addition of vorticity

paneling to the AC distribution predicts the right trends and correctly

accounts for local wing deformations in the upstream running Mach cones.

Gapped Elevon—Thickness

For supersonic flow, the gapped elevon case was also studied in the

present effort. Little experimental data is available for comparison

purposes; however, ore previous ef fort6 did study this particular problem

using a vortex lattice approach. Conclusions were drawn that the dis-

agreement between experiment and theory was attributed to viscous effects.

It is the contention of the authors of the present report that disagreement

between theory and experiment is due not only to viscosity, but also to

thickness effects and blockage of part of the elevon immersed in the wake

of the “thick” wing.

To validate this contention , the missile configuration used in Ref . 6

was analyzed with the present theoretical approach which was modified for

the thick wing—elevon configuration. A general configuration which includes
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a wing—body and full span d evon has not as yet been completely analyzed

and hence requires additional research.

The missile configuration under study consists of a slender circular

body with unwarped , fixed , low aspect ratio , rear mounted , cropped delta

wings and constant chord elevon s (Fig. 3 , wing #2) .  Since the configura-

tion operates at high Reynolds number , viscosity should not dominate the

pressure field so that potential flow theory should be applicable. Since

both the wing and elevon are thin , the effects of thickness on the l ift

are negligible and both may be treated as planar lifting surfaces.

For this particular analysis, body interference effects are accounted

f or with slender body lif t ratios as

CN CN (K (B)~ ~ (39)
w(B)

where CN is the normal force on the wing in the presence of the body
w(B)

and K (B) is the l ift  ratio factor for the wing—body at angle of attack .

The wing is assumed to lie along the body centerline. Lift ratios are

based on total loads so only the net effects of the body on the wing or

d evon can be determined .

The elevon is located immediately aft of the wing as shown in Fig. 17.

The flow just aft of the wing trailing edge is turbulent, as with any

blunt trailing edge and impacts on the elevon. The details of the flow

field are not well known and are consequently difficult to handle. However,

for purposes of this analysis, it was assumed that the wake pressure coef—

ficient is zero such that essentially freestream conditions exist where

the wake impacted on the elevon. In short, part of the elevon was

L— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -—5-- . - - -— - - - 5 - -
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“blanked out” from the rest of the flow field by the wing wake. Thus the

elevon was broken up into two separate, smaller lif ting surfaces , B1 and

E2 
as depicted on Fig. 17.

The flow was assumed to be tangent to the surface of the af t portion

of the wing for all angles of attack. Thus the size and location of the

“blanked region” on the elevon was the same for all the no—gap cases.

When the wing is at an angle of attack, the downwash it creates

reduces the angle of attack of the flow that the elevon experiences. No

wing wake roll—up occurs for this case and thus the wake of the wing

downwash was assumed to be flat. Elliptic wing loading and angles of

attack were assumed so the normal force and lift were approximately equal.

The downwash angle created by the wing in the presence of the body is

given as
N

= — 
w(B) (40)

w ir AR
5 

V

The net elevon angle of attack is then

a a + c  . (41)
E w

The angle of attack contributions of the elevon characteristics are distinct

from the deflection angle contributions. However, since linear aerodynamics

is assumed , the two contributions can be superimposed to determine the

overall elevon characteristics.

The strip of the elevon forward of the “blanked region,” E1, also

generates downwash as it is assumed to be a separate airfoil. However,

calculations indicate the induced angle to be negligibly small in com—

parison to the elevon deflection angle.

The elevon normal force and hinge moment equations with the thickness

effects included , are

ii
~~~~~~ 
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C
N 

- KE(B) CN ~ E 
+ k (B) [C + CN ~

6
E

1 2 5

C
RE (wB) 

= K
E(B) 

C
}Ict
E~
E 
+ kE(B) [CH6 

+ CH6
]IS

E 
(42)

In terms of the wing angle of attack and downwash angle,

CN ~~~~~ CN ~~~~~~~ 
+ kE(B ) [C

N 
+ CN ~~~

1 2

C~~ ~E(B) Ec, w w  + kE (B) 
[c

H6 
+ C

H~~~
]t
~E

The first comparison of the theory with experimental data is shown

in Fig. 18. For this case, both the wing and elevon are modeled as zero

thickness flat plates. The analytical results fall below the experimental

values but the theory does give the correct trends for normal loading

and hinge moment. Figure 19 presents the results for the wing thickness

effects. The angle of attack trends are the same as in Fig. 18. Now,

however, the analytical results agree with the experimental results much

better, particularly the normal force coefficients. Wing thickness,

therefore , exerts substantial influence on the elevon aerodynamic charac—

teristics, The discrepancies in magnitude and slope indicate that the very

simple flow model used here is not completely accurate.

An investigation of possible wing downwash effects on the size and

location of the “blanked region” was made. For this model it was assumed

that the induced downwash at the wing trailing edge caused the blanked out

region to shift locations on the d evon. The results are presented in
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Fig. 19. Normal and Hinge Moment Coefficient for an Elevon
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Fig. 20. The poor agreement with experimental data indicates that the

assumed flow model is not valid and that physically changes in angle of

attack, i.e., changes in dowuwash, do not cause significant alteration in

the blanked out region on the elevon.

As a means of reducing the elevon hinge moment , a four—inch cut was

made into the trailing edge of the wing so that a gap was formed between

the wing and the elevon. In this instance, the d evon was treated as if

it were not “blanked out.” A comparison with the no—gap configuration is

shown in Pig. 21. The theory predicts the experimental results well, if

somewhat conservatively. Thus the wing thickness effects are only sub—

stantial if the elevon is very close to the wing trailing edge. Addition—

ally, it was observed by Selden6 that the elevon behaves as if it were in

freestream flow when it is deflected ~200 or more. Therefore, the wing

thickness effects appear to be important only when the elevon is immediately

aft of the wing and when it is slightly deflected.

In conclusion, it is quite apparent that wing trailing edge thickness

does indeed have significant influence on the loads experienced by the

d evon. However, it should be noted that these computations are only

preliminary and that a complete model of the flow field has not been

established. Further research using numerical techniques (non—potential

flow) may be required before the problem is finally solved.
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Fig. 21. Hinge Moment Coefficient for an Elevon With and
Without a Four—Inch Gap.
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