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20. Abstract continued.

(“relaxation’) methods for solving large systems of linear ine-
qualities. (4) The subadditive characterization of facets of
integer programming polyhedra has been extended to a very general
:lass of pure integer problems. (5) Work has continued on use of
subadditive functions to give a satisfactory duality theory for
i.nteger programming, to provide pricing information , and eventu-
ally ‘to solve problems. (6) The theories of blocking pairs of
~~lyhedra and anti-blocking pairs of polyhedra have been extend-
~d, and we have characterized pairs of polyhedra which are, res-
ectively, the blocker and anti-blocker of some unspecified third
olyhedron.
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PREFACE

The “topics in mathematical programming” that constituted our
research under this contract are those of Nondifferentiable
Optimization (NDO) and Integer Programming, the specialties of
the two principal investigators. They are dealt with below under
separate headings.

1
RESEARCH IN NONDIFFERENTIABLE OPTIMIZATION

1. The IIASA Meeting
A meeting, titled “Task Force on Nondifferentiable Optimiza-

tion”, was held at the International Institute for Applied
Systems Analysis (I X A SA)  in Laxenburg , Austria, on March 28 -

April 8, 1977. It had its origins in the identification of the
subject of Nondifferenti~b1e Optimization (NDO) through thepublication of the vo1~mis Nondifferentiable Optimization&l andwas organiaed by C. Leinarechal and R. Miff lin of IIASA , with
the counsel of Balinski and Wolfe . In the format of a small
workshop, it was attended by R. Fletcher (U.K.), J. Gauvin
(Canada), J.-L. Goff in (Canada), Lemarechal, R. Marsten (USA),
Mifflin, B.T. Polyak (USSR). B.L4. Pschenichrtyi (USSR), and Wolfe.
Each day was devoted to the work of one of the attendees , who
presented it in the form of a lecture and then discussed it in
detail with the group. we all found the exchange of great value .
Of particular interest to our own work was Marsten’s detailed
report on his “Boxstep” method, Polyak ’s swnmar y of the work of
N.Z. Shor (the earliest user of subgradient optimization in real
optimization problems), and Lemarechal ‘ s report on computational
experience with subgradient optimization, Wolfe ’s arid his own
versions of “conjugate descent”, and Shor’s recent “dilatation”
method . Lemarechal reported that on the several problems tried
the methods ranked in efficiency in the order just listed . (His
observation is supported by our own experiments.) and indicate
what progress we made in them.

2. fication of conjugate descent methods
a compared in detail the conjugate descent procedures of

Let . :hal and Wolfe, two closely related methods which can be
vi as extensions of the method of conjugate gradients (used
f a minimization of smooth functions) to nondifferentiable
I .ions. Both ~rocedur es make essential use of the accumula-

£ of a “bundle of previously calculated subgradients which is

I
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ii M.L.BalL;ski and P. Wolf.. Nondifferentiable Optimization .

Mathematical Proqra ing Study 3. North-Holland Publishing
Co~~.ny, Amsterdam, 1976.
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used to determine a direction of descent. The methods differ in
the ordering of certain “resetting” steps that both algorithms
perform. We wrote a set of computer routines in which such
variants can readily be tried, and found almost no difference in
performance between the two methods when they were used in the
same context. Henceforth we can speak with some justification of
the conjugate descent method as a general procedure (involving
conjugation via a “nearest point calculation”, and a line search)
of which the particular schemes mentioned -- and others -— are
variant implementations.

3. Constraints in conjugate descent
We devised a means for using conjugate descent for

constrained optimization problems. Fo’ the problem
Mm f (x )  : g(x) 0

(we take a single constraint for simplicity), we minimize
F(x) f(x) + K Max 0 , g( x )

for sufficiently large K . If the point x is on the boundary ,
and b,c are respective subgradients of f,g there, then b+Kc
is a subgradient of F. We wish , of course , to make use of such
a subgradient when -g itself is not a feasible direction. The
new procedure is based on the observation that if both b and b+Kc
are members of the bundle of subgradients used to define the new
descent direction at x then for sufficiently large K that direc-
tion will be the projection of -b onto the tangent plane to the
constraint ; in our view , the most desirable outcome . The idea
works for any number of constraints. We have tested it on some
small-scale problems with linear constraints, and it seems to be
quite effective. The report “Constraints in Conjugate Descent”
describing the procedure is in preparation .

4. Univariate optimization
Finding the minimum of a convex function of a single varia-

ble (to a specified degree of approximation) is an essential
subtask of an efficient conjugate descent procedure . Our proce-
dure for the piecewise-linear convex function has been further
polished , exercised on a variety of problems, and seems t~ befoolproof. (It was the subject of IBM Invention Disclosure
Y08—77-0033, January, 1977.) It has been extended to general
convex functions using some of the ideas of our previous algor-
ithm for smooth functions, as reported in “Minimization of
nonsmooth univariate functions” (see Publications .) The proce-
dure is extraordinarily robust and , we think , efficient, although
there is no question that the piecewise-linear minimizer should
be used when a problem is known to have that character .
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5. Benchmark problems
In collaboration with Lemarechal and Miff lin (while they

were at IIASA) and Gof fin at the University of Montreal we have
defined a set of four (at the moment) test problems that we agree
are representative and important and will serve as a basis for
comparing results. They will be maintained in machine-readable
form and are available to anyone.

6. The solution of large systems of linear inequalities
The 1957 work of Agmon and of Motzkin and Schoenberg on

“relaxation” methods for the solution of linear inequality
systems was the first application of what we now call “subgra-
dient optimization” to mathematical programming. It did not have
much impact at the time because the simplex method proved more
effective for the small problems of that era. Our first work
specifically aimed at NDO problems
reestablished the importance of that approach for large-scale
optimization generally; subsequently , a nur~ber of important
applications emerged which can be modeled as requiring the
approximate solution of systems of many thousands of (very
sparse) linear inequalities in many thousands of variables:
electron-beam photolithography and x-ray tomography are two such
applications we have worked on. Such problems seriously tax, or
even exceed, the capabilities of any curren t implementation of
the simplex method , which further can benefit but little from the
fact that in many cases only approximate solutions are needed.
Our work has been direc ted both at seeking to unders tand what
problem features are important for successful use of the method
and at improving on standard implementations. We have experi-
mented with (1) randomly generated problems of a certain type,
(2) the constraint sets defined by some standard small and
medium-size linear programming problems, and (3) some small
models of the E-beam photolithography problem. Quite unexpected-
ly, for random problems with a given number of variables , the
method converged more rapidly for problems with many inequalities
than for few . We now think we can explain that : the degree to
which the set defined by the inequali ties “approximates” a sphere
increases with the number of inequalities, and the method can be
shown to solve such “spherical” problems with nearly perfect
efficiency. We have devised a simple estimation procedure which
can eliminate the need for calcuating many of the inequalities in
some large systems (this is the subject of IBM Invention Disclo-
sure Y08-77-0202, April, 1977; a research report on this is in
preparation). We have also proved the feasibility of a certain
method of efficiently handling inequalities in small “blocks”,
making use of our very quick algorithm for finding the nearest
point in a given polyhedron to a given eternal point In our test

N. Held, P. Wolfe, and H.P. Crowder: “Validation of Subgra-
dient Optimization”, Mathematical Programming 6 (1974), 62-88)
r. Wolfe. Finding the Nearest Point in a Polytope. Matheinat-
ical Programming 11 (1976) 128—149.
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problems these tachniques have shown an order-of-magnitude
improvement in computing time as compared with our implementation
of “standard” methods.

7. Bibliography
We have continued the maintainance of a Bibliography of

papers related to NDO which now runs to some 260 items.

Summary of the two-year effort in NDO

We began our work concentrating on the exploitation of
conjugate descent methods, which at the time seem to hold the
greatest promise for efficient solution of general NDO problems,
and we feel that their success has been demonstrated for problems
of middling size when calculation of the function being minimized
is expensive.

Unfortunately, the amount of work per step required by such
methods increases at least linearly with the number of variables
in the problem, and they do not seem feasible for the very
interesting problems mentioned above involving thousands of
variables. Subgradient optimization shows little dependence on
number of of variables ; its speed of convergence depends much
more on specific features of the problem we are just beginning to
understand. We do know, though, that the calculations required
for it can be performed with great economy in the typical case
that the data of the problem are very sparse. Our work so far
has shown that large improvements in the procedure can be made
using rather simple devices, and we think that there is a great
deal more along that line to exploit.

_ _ _ _  
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RESEARCH IN INTEGER PROGRAMMING

1. Subadditive Functions for Describing Facets of Additive
• Systems

The thrust of the work here has been to obtain a central
theory offering some description of polyhedra for pure integer
programming problems. The subadditive function characterization
of facets has been extended to a very general combinatorial
optimization problem involving an additive system. The paper,
“On the Generality of the Subadditive Characterization of
Facets”, describes this work. The theory encompasses, in the
same framework, antiblocking (or packing) type problems, as well
as blocking, so that trere is no necessity, as in Araoz , for a
separate development employing superadditive functions.

The increased generality in treating semigroups not only
takes us away from the group relaxation in allowing us to direct-
1y represent integer programming problems, but allows us to
represent problems of a nonconunutative nature without having to
write down a linear programming relaxation, which may be awkward.

This work also raises a whole set of questions as to what
results from Gomory’s original group paper carry over to this
more general framework. The mapping notion there, for deriving
facets of a problem front its subgroups, can be generalized to
give results relating facets for different additive systems. For
example, for a non-Abelian finite group, simply requiring conimu-
tativity as a relation gives a mapping T on an Abelian group such
that T(g+h) — T(g)+T(h~ for all g,h in the non-Abelian group.
Thus, facets for the Abelian group give valid inequalities and,
in many cases , facets, for the non-Abelian problem.

2. Algorithmic implications
The theory developed provides a framework into which compu-

tational methods can be placed. For one special case, the
knapsack problem , we have indicated how traditional methods fit
into this framework. However, the “lifting methods” , using
subadditive functions, open up many new algorithmic directions.
In addition, a reasonable satisfactory duality theory is finally
provided for integer programs • This duality theory is based on
linear programming duality and provides optimality criteria for
an integer primal solution and a dual subadditive function.

As far as solving problems, the effort has been redirected
toward finding suitable subadditive functions to apply directly
to the original problem. Two classes of functions have been
identified as being potentially useful for solving the knapsack
problem. The paper “Subbaditive Methods for the Knapsack Prob-
lea” discusses these functions and relates our methods to previ-
ous methods.
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3. The NSF-CBMS Regional Conference
A series of ten lectures was presented at an NSF-CBMS

regional conference at the State University of New York in
Buffalo in June 1978. The lecture notes from that conference,
“Integer Programming: Facets, Subadditivity, and Duality for
Group and Semigroup Problems” will appear in the SIAM series.
The lectures detailed the extension of the subadditive function
approach to semigroup problems and related them to the blocking
pair theory of Fulkerson .

4. Mixed Integer Programming
The extension of the subadditive approach to the mixed

problem should be possible once the gains made on the pure
problem have been consolidated and put to algorithmic use.

Summary of the two-year effort in integer programming

In combinatorial polyhedra, the main results are in the
paper “Support functions, blocking pairs, and antiblocking
pairs ”. There, a unified framework is provided allowing many
more combinatorial optimization problems to be viewed as either
blocking pairs or anti-blocking pairs. A main result is neces-
sary and sufficient conditions for two polyhedra to be, respec-
tively, the blocker and antiblocker of some given polyhedron.

In mixed integer programming , the main results are in the
paper “Duality and pricing in multiple choice right-hand side
problems” . There , subadditive functions are shown to provide an
adequate dual problem but not complete pricing information.
Computational efforts for the mixed problem have been delayed by
new results on the pure problem as outlined below.

The subadditive function approach for pure problems has been
pushed forward in two directions. First, it has been seen to be
applicable to a wide variety of problems, even non-Abelian and
nonas’~ociative addition systems. Secondly , some new functions
have been developed in order to directly attack pure integer
problems without going through the linear programming relaxation .
This work has been detailed for the knapsack problem.

6
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