AD=A06T 546

UNCLASSIFIED
lor)

DB7546

~

X
i) v

—_— ~
NEW YORK UNIV N Y COURANT INST OF MATHEMATICAL SCIENCES F/6 9/2
AUTOMATIC DISCOVERY OF HEURISTICS FOR NON=DETERMINISTIC PROGRAM==ETC(U)
JAN 79 S J STOLFO» M C HARRISON NO0014=75=C=0571

TR=007 NL

.
-

END
DATE
FILMED

79

oD

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DDC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

ABAQO67546

N

PY,

DOC FiLE co

0571,

LEVEL~

AUTOMATIC DISCOVERY OF HEURISTICS
FOR NON-DETERMINISTIC PROGRAMS

By

SALVATORE J. STOLFO
MALCOLM C. HARRISON

January 1979
Report No. 007

"This material is based upon work supported by the

(NR049-347) ."

Office of Naval Research under Contract No. N000l4-75-C-

o ST i e\ s s ki

READ INSTRUCTIONS
i BEFORE COMPLETING FORM

J 3. RECIPIENT'S CATALOG NUMBER

S. IYPEQ

([oeamion 213 |

Es upﬁ:u.ﬂs-cj’sn l

¥ (NR049-347) 5

" PERFORMING ORGANIZATION NAME AND ADDRESS T PROCRAN ELEMENT. FROJECT. TASK 1

Courant Institute of Mathematical Sciences ; |
New York University e b FIEO T :
251 Mercer Stree New YO d

11. CONTROLLING OFFICE NAME AND ADDRESS

Office of Naval Research

8 .NONI ORING AGENCY NAME & ADORESS(I! different from Controlling Ollice) 15. SECURITY CLASS. (of this report)

Department of the Navy' unclassified
Arlington, Virginia 22217 TS GECT ATSFICATIONGOWNGRAGING

‘P'c"". DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

QETAl

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different from Report)

none

18. SUPPLEMENTARY NOTES

none

19. KEY WOROS (Continue on reverse side if necessary and identily by block number)

4

Heuristics, Non-deterministic program, Pattern Recognition,
Production System, Trace Sequence

i
20. AQSTRACT (Continue on reverse side If necessary and Identify by dlock number)

During the last few years a number of relatively effective
Al programs have been written incorporating considerable amounts
of problem specific knowledge. Consequently, the problem of
encoding such knowledge in a useful form has emerged as one of the |
central problems of AI. In particular, Declarative roprecontation#‘
of knowledge have attracted much attention partly because of the
relative ease with which knowledge can be communicated in this

. FORM
DD ,an 73 1473 woimion oF 1 nov 6813 OBsOLETE

SECURITY CLASSIFICATION OF THIS PAGE mc—n Data Entered)

099 1% A

= oo b Ty A Pe—
Y e R . Y -
N " o .8.‘:.1 DR
B0 i TJ»—‘«‘”'}" “‘ ‘(' ",- YT o BA,

Srataty . 8

SECURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)

form. Unfortunately, implementation of Declaratively speci-’
fied knowledge corresponds to a non-deterministic program which
incurs enormous computational costs.

This paper discusses one way to limit this cost. The
approach we take is to develop control heuristics for a
family of problems from traces of sample solutions generated
during a training session with a human expert. Algorithms
have been developed which recognize a predefined set of
patterns in the sequence of 'knowledge applications' and
which compile descriptions of these patterns in a control
language, called CRAPS. More specifically, patterns of
repeating, parallel and common sequences are considered in
the analysis. The CRAPS descriptions generated are then used
for guidance in solving subsequent problems. We discuss the
utility of such an approach and give an example of a generated
CRAPS description.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

I R P Y g e g

B e T i,

Automatic Discovery of Heuristics

For Non-deterministic Programs |

Topic: Induction, Learning and Knowledge Acquisition

Keywords: Heuristics, Non-deterministic program, Pattern Recognition,
Production System, Trace Sequence

Authors: Salvatore J, Stolfo
and
Malcolm C. Harrison

Computer Science Department
F ¥ Courant Institute

New York University

; 251 Mercer Street

New York, N.Y, 10012

Abstract

’—_T:;‘During the last few years a number of relatively effective AI programs
have been written incorporating consid:ruble amounts of problem specific
knowledge. Consequently, the problem of encoding such knowlcdge in a useful
form has emerged as one of the central problems of AI. In particular,
Declarative representations of knowledge have attracted much attention partly
because of the relative ease with which knowledge can be communicated in :
this form. Unfortunately, implementation of Declaratively specified knowl-
edge corresponds to a non-deterministic program which incurs enormous compu-

| tetissal soacy.)
f This paper discusses one way to limit this cost, The approach we take

is to develop control heuristics for a family of problems from traces of
sample solutions generated during a training session with a human expert,
Algorithms have been developed which recognize a predefined set of patterns
in the sequence of 'knowledge applications' and which compile descriptions
of these patterns in a control language, called CRAPS. More specifically,
patterns of repeating, parallel and common sequences are considered in the
analysis, The CRAPS descriptions generated are then used for guidance in
solving subsequent problems. We discuss the utility of such an approach and
give an example of a generated CRAPS description,

t

1. Introduction

During the last few years, a number of relatively effective
Artificial Intelligence programs have been written incorporating
considerable amounts of knowledge, and the problem of encoding
such knowledge in a useful form has emerged as one of the central
problems of AI. Winograd [16] distinguishes between declarative
information which can be thought of as "knowing what", and procedural
information which can be thought of as "knowing how". He describes
the underlying problem as that of constructing representations
which can take advantage of the deéomposébility of the declarative
representation without sacrificing the interactive possibilities of
the procedural representation. Ideally, it should be possible to
specify information in a form which does not constrain thc way in
which it is to be used; unfortunately, a straightforward
implementation of such a declarative tepreséntation corresponds to
a non-deterministic program which makes a relatively blind search
through the solution space.

More recently, attention bas turned towards mechanisms
which facilitate incorporating limited procedural or heuristic
information into 5 primarily declarative framework. For example,
Rychencr's approach [9] is to build a rational "goal" structure
into declarative rule-based systems, while Davis [2] favors a
separate set of "mcta~-rules" specifying control information. In
fome cawne . we wiocht exnect that the pmount ¢f preocedural informaticn
is of the same ordex of maanitude as the amount. of declarative
information, and so ruch approaches may be effective. However, in

most cases the amount ot control information will be very large

- le

e —————————— A AR i ———

(e.g. theorem-proving, natural language understanding).

Thus thé problem of acquiring, debugging and extendiig control

information will become increasingly important. $
In general, we might expect that this control information

will embody very sophisticated principles requiring data-structures

f not present in the declarative form of the program, or which are
only deducible by the use of considerable intelligence. For example,

it is clear that the incorporation of the heuristic principles of

evaluation and a-B search into a declarative chess program which |]
specifies only the rules of chess but no strategies for playing f

will require an analysis which is considerably beyond the ability |
é » of present technigues; even the optimization of the parameters in

a lincar evaluation function involves highly sophisticated processing.

However, we believe that there are a number of important
arcas in which it might be possible to deduce control information i
automnatically from a declarative program. These include decléfatively
! specified problems: '
¢ for which there exists a relatively simple algorithmic

procedure; |

or particularly important special cases;

¢ whose performance can be improved in frequently occurring ‘

¢ in which particular subproblems can be solved by simple
algorithmic procedures.

Some work on thisproblem was reported by Fikes, Hart and Nilsson
[4]. In their system, STRIPS, sequencesof operator applicationa
used in soiving sample problems were stored for possible
guidance (or planning) in solving subsequent problems. In this
paper we report on a somewﬁ;t different approach, which stresses
the importance of a deeper analysis of the seqﬁencp of operator

applications. A similar approach has been adopted by Phillips [8].

e e e
o AR O Iia', e Vg ¥R Y Py
" ad e VR

Gt s R i it s ke A e

2. A Sample Problem

As an example, consider the following problem. Suppose we
want to solve a (slightly idealized) jig-saw puzzle, in which each
piece has an average color, and four sides described by unique
integers (with side i fitting side -i). We consider below a
non-deterministic algorithm written in production language form.
An informal description of the productions we might use would

include:

START-PUZZLE: If there is no puzzle currently being built and
you are holding a piece, then you can make this piece the first
part of the puzzle, leaving your hand empty. Notice that you
continue to look at the piece.

J.OOK~AT-PIECE~IN-HEAP: If a piece is in the heap then you can look
at it.

PICK-UP-OBJECT-IN-VIEW: If you are looking at an object and
holding nothing, then you can pick up the object. 1Its position
changes to being in your hand.

LOOK-AT-OBJECT-IN-HAND: If something is in your hand, then you
can look at it.

CLOSE-EYES: If you are looking at something which is not
NOTHING then you can look at NOTHING.

OBJECT~IN-HAND-IN-VIEW: This production senses when the object
being held is in view without performing any actions.

FIND-COLOR-OF-PIECE: If you are holding a puzzle piece, you can
look at it and know its color.

PIFCE-HAS-CURRENT-COLOR: This senses when the object being held
has the current color you are considering.

FORGET-COLOR~OF-PIECE: If a piece is in view and you know its
color, you can look away from it and forget the color.

PIECE-HAS~STRAIGHT-EDGE: This production senses when the piece

: -~ o~ - — -
in wvicw has a straight edge.

PUT-PIECE-DOWN-IN-HEAP: If you are holding a puzzle piece, you
can put it in the hean and yvonr hand ie emptv. Notice that the

-y

picce continues to be in view.

-~

*

= _'-& T »

st i e e e i PSS i sk

HEAP-IS~EMPTY: This senses if the heap is empty.
PIECE~-FITS-IN-PUZZLE: This production senses when a puzzle
piece that is in view will fit another puzzle piece already
in the puzzle.

FIT-PIECE-IN-PUZZLE: If the piece being held and in view fits
in the puzzle, the sides of the matching pieces can be joined.

PIECE-PUT-IN-PUZZLE: If vou are holding a puzzle piece, which
is beiny placed in the puzzle, you could put it down in the
puzzle.

PUZZLE-IS-FINISHED: If all of the pieces are in the puzzle, you
can halt.

The complete program is given in Appendix I.

It should be noted that this representation is highly
non-deterministic, and if executed would be hyper-exponentially
inefficient. It does not even "know" that it will find a
solution (i.e. terminate) if it can repeat the production
PUT-PIECE~IN-PUZZLE as frequently as possible, so even tl.e
crudest goal-subgoal structure is absent. (However, there is
no production to remove a piece from the puzzle, which serves as
a clue to an intelligent observer). It ic even possible for the
program to pick up a piece and then put it down immediately
without doing anything with it. .

The performance of this program could be improved to a
tolerable level if the following heuristic was added:

. use the following sequence repeatedly

pick up a piece from the heap;
insert it in the puzzle if it fits.
An alterualive heucistic would be:
. uee the fellowing ccquence repeatedly
locate a piecce p in the puzzle with a missing neighbor;

pick up pieces from the heap until one matches p, and

i et bl el A ok s

bttt adiblianie . Aoaib it

E)

insert it in the puzzle.
Each of these heuristics is very simple, consisting mainly of
sequencing rules for the productions, and would seem to be
within the range of automatic inference. A further improvement
could be made by noting that the procedure for selecting a piece
from the heap is inefficient since the same piece may be selected
repeatedly (and in a production system such as that of Rychener
[10] which prefers to use recently referenced items in working
memory, in other respects a reasonable strategy, the search will
almost always be ineffective). If we add a few more productions,
it becomes possible for the system to search systematically
through the heap by constructing a pile from the pieces in the
heap, and putting a piece down in a different pile when it has
looked at it.
MAKE-A-PILE: If you want to make a pile and you are
holding something, put it in the pile and your hand is empty.
The object continues to be in view.

PICK-A-PILE: If you are not working with a pile, just pick
the first one.

PICK~-OBJECT-FROM-PILE: To pick an object from a pile, if your
hand is empty reach in and pick up the first one you see.

PUT-OBJECT-IN-PILE: To put an object in a pile, if you are
holding something, just place it in the back of the pile and
your hand is empty.

FORGET-THIS-PILE: To forget a pile, just push the current pile
behind all the others.

PILE-IS-EMPTY: A pile is empty, if there is nothing on it.

COTROY-A-TILE: To desiroy the curreni pile, just strike it
from memory.

THERE-ARE-NO-PILES: There are no piles if all the piles were
destroyed.

e S e

LOOK-AT-FIRST-IN-PILE: If there is an object at the front of
the pile, you can focus on it.

LOOK-AT-NEXT-IN-PILE: If you want to scan through a pile and
you are looking at the first object in it, focus on the next
one by placing the first object behind the last.

The actual pile productions can be found in Appendix II.

The pile productions are very general, and might be
expected to be present in any system; indeed, it seems likely
that productions for dealing with heaps and piles (i.e. sets and
tuples) and heuristics for implementing impoitiant operations such
as searching will be bresent in production cystems as they are
in modern programming languages [3].

Carrying our jig-saw puzzle a step or'tw6 fucther, sufficient
productions are present now to permit simple scquencing heuristics
to reflect the usual strategies used by expericnced puzzlc-solvers:

. work on the outside edges first (build a pile of outside
edges) ; repeat the PUT-PIECE-IN-PUZZLE sequence until this pile
is empty;

. separate the pieces in the heap into piles of the same
average color, and search the appropriate pile first;

. search first for pieces which have more than one neithor

of the same average color (e.g. work on the sky first);

It may appear that automatic detection of such heuristics is a
task of great difficulty. Below we outline an approach to this
problem which we believe can be quite successful, describe a
system which has been embeeded in PROSYS, an extension of -

OPS2 (5], and give some preliminary results.

3. Aggroach

Our procedure is as follows: we selzct a 'typical' input
to the program and run the program repeatedly on this input,
recording the sequence of rules selected. This is repeated for
other typical inputs. We then attempt to describe the better
(i.e. shorter) successful sequences in a language, CRAPS,
designed for this purpose and described in the next section.

We then use this description to guide the program's subsequaent
decisions.

Inherent in this approach is the assumption that good
decision-making procedures or heuristics can be inferred from
the performance of the program on only selected inputs. 1In
gencral, as suggestced by work on inductive inference [17] and
information theory [1,6,11], we will give preference to shqrt
CRAPS descriptions which will generate a high proportion of
short successful solutions and few long or unsuccessful solutions.
We anticipate that the selection of inputs will be critical and
that eventually we will want to be able to handle new inputs
incrementally, as was done in [(17). 1Initially, however, wec will
corcentrate on the simpler problem of getting a good solution
for the non-incrcmental case.

As suggested by the example in section 2, the execution-time
of a completely declarative program will usually be too long to
permit 2 eoluticn onicept in the simpler cases. Accoidingly,
we will run the program in "training mode" $n which ite decicione
can be cbserved and if necessary corrected. In initial experiments

this will be done by a trainer who is aware of the structure of

the program; subsequently we anticipate the necessity of using

techniéues similar to those of Davis [2), which will enable

the trainer to deal only with the external bechavior of the

program. :
‘It should be noted that we have decliberately chosen to exclude

information about sequences which end in failure. It is clear

that, as found by Winston in other inductive inference work (17],

couhter-examples will be extremely valuable. However, as the

| - rcader will note below, even this simpler problem poses considerable
technical difficulties, and it was our feeling that a élearer

E picture would emerge from the simpler approach. Furthcrmore,

| initial experiments described in section 5 suggest that useful

: results can be obtained without counter-examplers.

O Caa e POy S P e

—— . — —
. e g " o S
: : ; ST p———————— S

4. The CRAPS language

The CRAPS lanquage provides a semantic framework with which
to specify or describe sequences of rule applications in the .
execution of the non-deterministic program. The most basic
primitive of CRAPS is called a unit. A unit specifies either a
rule application with preconditions, or a control operation
applied to a sequence of units. The control operations are:

(1) Concatenation of units producing sequences;

(2) Repetition of a sequence of units controlled by]
Boolean conditions;

(3) Alternative (or conditional) selection of a sequonce

from a set of sequences;

(4) Permutation of a sct of sequences. (Thus, the |
acronym CRAPS,)

Conditions in the above are DNF expressions of rules, with a
rule being considered true if it is fireable.

The operators of CRAPS correspond to control primitives of
conventional programming languages. Concatenation corresponds to
scquential execution of statements, and repetition corresponds to
iteration statements with 'while' and /until' termination condi-
tions. The alternation operator specifies alternative sequences
of actions much like an ALGOL-68 'case' statement or LISP 'cond'
expfession. The permutation primitive represents a form of
concurrent execution similar to the specification of collatcral

evpreseions in ALCOL-€9.

An example of a CRAPS description can he found in soction §.

S. An Example: Binary Tree Traversal

The program in figure 1 has the ability to scan a binary tree in
any order. No control information is specified in any of the
productions. The productions have been chosen to encode all of
the relevant information about scanning a binary tree without

specifying direction.

? A binary tree is represented in working memory by the following
data format. The root of the tree is represented by (ROOT =X)where

=X can be bound to any symbol. If node B has a left son A, it is

represented by (LEFT B A) and similarly (RIGHT B C) represents C as
: { the right son of B. The father of a node (either left or right) is

represented for example by (FATHER B A). The current node being

scanned is represented by (NODE =X). In scanning binary trees, nodes
can be printed only once. If mode A has been scanned and printed,

§ then (ALREADY-P A) is deposited in working memory.

g Several binary trees were placed in working memory and then the
t % programwas initiated and directed by a human to scan in-order each
tree. A trace for each execution was produced (see figure 2 for

: ; examples). The entire set of traces was presented to the pattern

recognition hlgorithms, which produced the CRAPS description

pr&sented in figure 3 . The integers labelling the rule names in
the final description are meant to differentiate particular in-
stances of rule applications. For example (15.PRINT) is a
completely difforont application of PRINT &khan ig {17.PRINT).

In this particular case the CRAPS description is a preciase

definition of an in-order balanced binary tree scan program. That

is, given a working memory specifying a balanced binary tree, the
shortesf execution sequence of the program which would result
in an in-order print of the nodes would belong to the set of
sequences specified by the CRAPS description; furthermore, the

CRAPS description provides enough information to determine which

g production should be fired at every point in the execution of

the program. Thus a non-deterministic program has in effect

been reduced to a deterministic program.

In general, we cannot assume that the CRAPS description will
be as effective as this. With poor training sequences, or incorrect
analyses of execution traces, CRAPS descriptions may imply heuristics
which are not helpful, or which are helpful for some examples and
harmful in others. The initial approach we implemented was that

of Rychener's. The existing program was altered by

including special 'tag' or 'control elements' in both sides of

the rules to reflect the control information in the description.
This approach appeared to impose too high a level of control
affecting much of the quality of the production system representa-
tion which makes it attractive. Although the original trees

used in the training sequence and other trees were able to be
traversed correctly, several other instances of trees Qere not.
This has led us tc consider Davis' approach of "meta-rules" with
a probabilistic component to them. 1In this direction, a CRAPS
description would be transformed to a set of rules which suggest
preferences of rules over others during the testing and s2lcction
process on each execution cycle. We are currently looking at ways

of doing this.

Figure 1, Binary Tree Scanning Production System

START-POINTING

[(ROOT =x) ~-(NODE =anything) ==-> (NODE =))

GO-LEFT : :

[(NODE =x) (LEFT =x =y) —-——> (<delete> (NODE =x)) (NODE =x) (FATHER =x -'y) j
GO-RIGHT

[(NODE =x) (RIGHT =x =y) --> (<delete> (NODE =x)) (NODE =y) (FATHFR =x =y)]

CAN-T-GO~-LEFT
[(NODE =) - (LEFT =x =anything) ~->]

CAN-T-GO-RIGHT
((NCDE =x) -(RIGHT =x =anything) -->]

PRINT

[(NODE =x) -(ALREADY-P =x) =--> (<write> =x) (ALREADY-P =x)]
GO-UP -

[(NODE =x) (FATHER =x =y} --> (<delete> (NODE =x)) (NODE =y)]
STOP

[(NODE =x) (ROOT =x) =--> (<delete> (NODE =x)) (<halt>)]

S ——

———— B

FIGURE 2. SAMFLE TRACES FROM EINARY TREE FS RUN.

<< .

(START-POINTING NIL (1) (2 2))

(PRINT (STOF CAN-T-GO-RIGHT CAN-T-GO-LEFT) (1 2) (3 4))
(STOP (CAN-T-GO-RIGHT CAN-T-GO-LEFT) (1 4) (S 6))

>>

<<

(START-FOINTING NIL (9) (10 10))

(GO-LEFT (STOF FRINT GO-RIGHT) (9 10) (11 13))

(FRINT (GO-UF CAN-T-GO-RIGHT CAN-T-GO-LEFT) (12 13) (14 195))
(GO-UF (CAN-T-GO-RIGHT CAN-T-GO-LEFT) (12 15) (16 17))
(FRINT (STOF GO-LEFT GO-RIGHT) (9 17) (18 19))

(GO-RIGHT (STOF GO-LEFT) (9 19) (20 22))

(FPRINT (GO-UF* CAN-T-GO-RIGHT CAN-T-GO-LEFT) (21 22) (2% 24))
(GO-UF (CAN-T-GO-RIGHT CAN-T-GO-LEFT) (21 24) (25 26))

(STOF (GO-LEFT GO-RIGHT) (9 26) (27 28))

>>

<<

(START-FOINTING NIL (14) (15 135))

(GO-LEFT (STOF FRINT GO-RIGHT) (14 135) (1é 18))

(GO-LEFT (GO-UF FRINT GO-RIGHT) (17 18) (19 21))

(FRINT (GO-UF CAN-T-GO-RIGHT CAN-T-GO-LEFT) (20 21) (22 2X))
(GO-UF (CAN-T-GO-RIGHT CAN-T-GO-LEFT) (20 23) (24 2%5))
(FRINT (GO-UF GO-LEFT GO-RIGHT) (17 23) (26 27))

(GO-RIGHT (GO-UF GO-LEFT) (17 27) (28 30))

(FRINT (GO-UF CAN-T-GO-RIGHT CAN-T-GO-LEFT) (29 30) (31 32))
(GO-UF (CAN-T-GO-RIGHT CAN-T-GO-LEFT) (29 32) (33 34))
(GO-UF (GO-LEFT GO-RIGHT) (17 34) (35 36))

(FRINT (STOF GO-LEFT GO~-RIGHT) (14 36) (37 38))

(GO-RIGHT (STOF GO-LEFTY) (14 38) (39 41))

(GO-LEFT (GO-UF FRINT GO-RIGHT) (40 41) (42 44))

(PRINT (GO-UF CAN-T-GO-RIGHT CAN-T-GO-LEFT) (43 44) (45 44))
(GO-UF (CAN-T-GO-RIGHT CAN-T-GO-LEFT) (43 44) (47 4R))
(FRINT (GO-UF GO-LEFT GO-RIGHT) (40 48) (49 50))

(GO-RIGHT (GO-UF GO-LEFT) (40 50) (S1 S3))

(FRINT (GO-UF CAN-T-GO-RIGHT CAN-T-GO-LEFT) (52 S3) (54 §5))
(GO~UF (CAN-T-GO-RIGHT CAN-T-GO-LEFT) (52 S5) (S6 $7))
(GO-UFP (GO-LEFT GO-RIGHT) (40 57) (S8 59))

(STOF (GO-LEFT GO-RIGHT) (14 59) (60 61))

>>

T it b s cdilin i e

it St b A i i

FIGURE 3. SAMFLE CRAFS OUTFUT FROM BINARY TREF FS RUN.,

<<
(€0 . START-FOINTING) NIL)

CIF (GO-LEFT STOF FRINT GO-RIGHT) THEN
<<

CREFEAT (WHILE (GO-LEFT GO-RIGHT))
(UNTIL NIL)
- <<

CREFEAT (WHILE (GO-LEFT GO-RIGHT))
(UNTIL (CAN-T-GO-LEFT CAN-T-GO-RIGHT))

<<
((13 . GO-LEFT) (STOF PRINT GO-RIGHT))
>>
2 :
CREFEAT (WHILE (CAN-T-GO-LEFT CAN-T-GO-RIGHT))
(UNTIL (GO-LEFT GO-RIGHT))
<<

((15 + FRINT) (GO-UF CAN-T-GO-RIGHT CAN-T-GO-LEFT))
CREFEAT (WHILE (GO-UF))
(UNTIL (FPRINT STOF))
<<

((16 « GO-UP) (CAN-T-GO-RIGHT CAN-T-GO-LEFT))
>>

]

(€17 . PRINT) (GO-UF GO-LEFT GO-RIGHT))
((18 + GO-RIGHT) (GO-UF GO-LEFT))

>

]

>>
]
>>

ELSEIF TRUE THEN

<<
>>

p)

((1 « FRINT) (STOF CAN-T-GO-RIGHT CAN-T-GO-I.LEFT))

CIF (GO-UFP CAN-T-GO-RIGHT CAN-T-GO-LEFT) THEN
<<

CREFEAT (WHILE (GO-UF))
(UNTIL (STOF))

<<
((30 . GO-UF) (CAN-T-GO-RIGHT CAN-T-GO-LEFT))
>>
3
>>
ELSEIF TRUE THEN
<<
>> /10

(2 + 8TOF) (CAN-T-GO-RIGHT CAN-T-GO-LEFT))

>

N A

e Wﬁ b g

6. Algorithms

In this section we outline the algorithms which produce
CRAPS descriptions from a set of sequences of rule applicatiéns
which solved a particular family of problems. The exact form
of an input sequence is << Pl P2 ,... >>, vwhere Pi is of the
form (Pj (P§1Pj2+++Pyn) (R43n55...n54) (0i1053)), where Pi is the
rule which was applied on the i'th cycle of execution. (Pj3Pj3..
«Pjm) is the list of rules which were applicable on the ith cycle
and describes the data environment at that point in the execution.
(uilniz...nij\is the list of unique numbers associated with the
instances of data elements which matched the rule Pi, and (0330j42)
is the range of numbers associated with the data elements deposited
in working memory by the application of rule Pi. The sequence
presented is an exact history of the execution of the program and is

therefore already partially ordered by the back dominance relation.

This makes the subsequent pattern recongnizing easier.

The initial approach we considered to finding permutations of
rule applications in the sequences was to do a static analysis of
the rules to determine which rules were permutable, i.e., which

rules produced output that could not be input by other rules.

This approach was found to be too difficult and not general enough.

Instead, we use techniques similar to those developed for program
optimization. Using the input/output information contained in the

trace, a data flow directed acyclic araph (DAG) is constructed

whose nodes correspond to rule applications and whose edges represent

the flow of data from one rule to another. This DAG completely

specilies all of the data dependencies and therefore all of the

- 16 -

e s ot ¥ e AT aia

.-

LAY il

possible execution sequences. After the DAG is cleansed of

irrelevant forward arcs (see Tarjan [13,14,15]), it is linearized to a
CRAPS description employing permutation and simple units only. The
construction of permutations is based on the 6bservation that if

a node has two or more entering edges then the subsequences
associated with its predecessors can be permuted. A simple

sequential scan of the nodes in the DAG according to the partial
ordering is sufficient to produce a linear description in linear time.

The next processing is the detéction of repeating subsequences
and formation'of repetition units. Unlike the permutation
detection problem, which is well-defined, and which is solved by
the algorithm described above, some sequences may have several
equally acceptable descriptions using the repetition operator. The
algorithm we use gives one description. We first scan the sequence
identifying all unique units. All such units cannot be part of a
repetition and thus divide the sequence into shorter subsequences to
which the entire procedure can be applied recursively. Once a
candidate subsequence is found (every unit in it appears at least
twice), we scan from left to right repeatedly looking for equivalent
adjacent subsequcnces replacing them by repetition units. The
procedure stops when it considers lengths greater than one half the
current length of the sequence.

The final operation to be done is the coalescing of several
descriptions produced by the above processing into one description
employing the alternation operator. The construction we consider inr
utl{lut to that of Winston and Bayes-Roth, From two or more
descriptions of some object we identify the points of similarity

and alternate the differences. OSince Lhls problem is equivalent

- 17 =

- L PrevSne a4 O
KR SR, P

to the Longest Common Subsequence problem, which is known to be
NP-Complete (See Maier [7]), our approach is highly heuristic.
The computation of a common subsequence is performed by a
concurrent left to right scan of all sequences with a heuristic
weighting function which gives preference to repitition units over
' ‘ permutation units and simple rule application units.
The conditions for repetition and alternation units are
computed by simple set expressions on the list of applicable rules
((P43Pj2...Pjpn) above) at the time a set of subsequences are

collapsed into a unit. The final output of these algorithms is

fed back to the production gystem interpreter and used for

—————— A SR e

further problem solutions. Complete details of these algorithms
can be found in Stolfo [12].

TR TS

~y

———

7. Conclusion

It is believed by many researchers that an important quality
of intelligent behavior is the ability to improve performance
with experience, and that generalizing a concept is a critical
aspect of learning. 1In CRAPS, a form of generalization occurs
when a repeating subsequence is collapsed into a repetition unit.
Although quite restricted in scope, CRAPS shows how a system might
learn procedures, a form of learning which we believe is very
important. Although there are a number of very difficult technical
problems, it seems to us that with more powerful pattern recogni-
tion techniques and more powerful generalizations of control
statements, this approach could be very fruitful.

With less ambitious designs, CRAPS can be viewed as a
programming aid for the designer and implementer of a large AI
problem-solving knowledge base. The CRAPS approach might be
ugeful in fine-tuning a declarative knowledge base as opposed to
'hand-compiling' control elements to effect competent performance
in such a system.

The power of the descriptions produced is limited by both
the expressive power of the CRAPS primitives, and the level of
sophistication of the pattern recognition algorithms that have
been developed. For example, during repetition detection no
notion of similar subsequence is used; rather, a subsequence must
appear exactly, vhich prevents aclicrnation uniis from appearing
within repetitions. Despite this, the algorithma are powerful
enough to detect interesting patterns and subsequently interesting
heuristics.

Our experiments suggest that this approach will have the
best chance of success when the encoding of the knowledge of the
problem domain is such that on any execution cycle a small number
of productions and only one instantiation of each production is
applicable. This suggests one way in which CRAPS should evolve:

the execution traces should include not only productions but

also the instantiations of productions. However, recognizing
patterns in the sequences which include data is a much more
difficult problem. We view our approach as an initial step in

the understanding of this more general problem.

e VL
e A SR,

R

|
i
!
i

AFFENDIX I

Jigsaw Fuzzle Froduction Sustem

In what followsy datas elements can be any LISKF dats structure.
An atomic data element must match exactls and 3 list must match 3
list with the same structure and content. A sumbol Freceded with
an equals sign (=) rerresents s varisble which can métch eny data
structure. The $ sumbol contained in rroductions has the.same
function a3s the SNOEOL4 conditionzl assigrnment orerator (.). When
8 rule is fireds» the data elements are not deleted from workins
memory unless thew sre included zs arguments to the <deletel sustem
function in the right hand side of the rule. The other sustem
functions contained in the rules are rerrvesented in lower case and
enclosed by rointed brackets i< >), Their function is described
by their rnames. The sumbol ! is an orerator which matches the
entire remaining rortion of the list followinsg it, Where it
arrears in the right hand sidey it derosits the list that matched

but it strirs awaw the enclosing rarentheses.

Working Memorws Datz Elements!

1. (FPIECE # c) rerresents a8 ruzzle riece where &= is 3 unique integer
associated with 2 riece and c is its averase color. We will sssume

the machire kriows at any time where riece v is located and so we
igriore location in the rerresentation.

2. (SIDIE s # n c) rerresents the side of a8 ruzzle riece. s is either
LEFTy RIGHTy TOF or ROTTOM of riece . Since location is isnored,
rotation of a3 riece in srsce is also idrioreds n is an integer
rerresenting the share of the side where +n mates with -n and 0
rerresents a3 straight eddge., ¢ is the color of the eddge. The
rerresentation could essily be externded to resresent 8 vector of
colors for & series of roints omn the edse.

3 (NQ"BER—OF-PIECES n) states that n is the total rumber af srurrle
rieces, 3

4, (JOINED (sidel side2) (side3d sided)...) rerresents the seauence
of cidoz thot were Jdeined doe fovainsg the ruzzlay The asmbol sided

is of the form 2 above.

I.1

Se (IN-FUZZLE (FIECE » c¢)) states that riece » 15 in the ruzzle.,

&e (NUMBER-IN-FUZZLE n) states that n is the mnumber of ruzzle rieces
that are in the ruzzle.

7; (CURRENT-COLOR c) rerresents the current color of ern obJect beins
considered.,

8. (HOLDING r) states that = is the current obJect beins held (for
examrle a8 ruzzle riece). If the hand is emptyy (HOLDING NOTHING) is
in working memors. .

?+. (IN-HEAF (FIECE ¢ c)) rerresents ruzzle riece F 3s beinsg in 3 hear
with no imrlicit ordering of edses. ’

10. {(LOOKING-AT ¢) states that obdect % is in view. If rothing is in
view then (LOOKING-AT NOTHING) 1is in working mcemory.

11+ (REING-FUT-IN-FUZZLE) rerresents the current riece x that is
actively beins rlaced in the ruzzle.

Froduction Memors:! 5

LOOK-AT-FIECE-IN~-HEAF
C(LOOKING-AT =obdect) ¢ =cli
(IN-HEAF (FIECE =r =c¢) $ =obdect) ¥
- &
(< deleter =cl)
(LOOKING-AT =ob.ect)]

LOOR-AT-0BRJECT-IN-HAND
CCLOORING-AT =somethinsg) ¢ =cl |
(HOLD'ING =obJect) {1
..._> |
({delete> =cl) |
(LOOKING—-AT =ob.dect)] |3

CLOSE-EYES
[(LOOKING-AT =somethins) ¢
-~ (LOOKING-AT NOTHING)

cl

-
({delete> =cl1)
(LOOKING-AT NOTHING)]

OEJECT - IN-HANDI-IN-VIEW

C(HOLDING =ob.Ject)
(LOOKING~-AT =obJect) i

-(LOOKING-AT NOTHING)

PICK-UFP-OBJECT-IN-VIEW

LC(HULDING NOTHING)

(LOOKING-AT =obdJect)

KTW=HFAF —iinis) $ =03

—-——>
({delete> =c¢3)
CLOOKIMB-AT =chdécet)
(HOLDING =obJect))
1.2

” x:a-’r'-"jﬁ'f','b,f.'_‘” Moy Y b

FUT-PIECE-DOWN-IN-HEAF
C(HOLDING (FIECE =r =c)) $ =ci
(LOOKING-AT =obdJect)

D
({delete> =ci1)
(LOOKING~-AT =ob.ect)
(HOLDING NOTHING)
(IN-HEAF (FIECE =p =¢)))

FIND-COLOR-OF-FIECE
C(LOOKING-AT (FIECE =p =¢))
(CURRENT-COLOR =angthing) $ =c2
o
(<delete> =c2)
{CURRENT--COLOR =¢c))

FORGET-COLOR-OF-FIECE
CCLOOKING-AT (FIECE =r =c)) $ =cl
(CURRENT-COLOR =¢) % =¢2
-2
(<delete> =cl =c2)
(LODKING-AT NOTHING)
(CURRENT-COLOR NOTHING)]

FIECE-HAS-STRAIGHT~-EDGE
CC(LOOKING-AT (FIECE =& =¢))
(SIDE =3ny =f 0 =cC)

-->
3
FIECE~-HAS-CURRENT~COLOR
[(LOOKING-AT (FIECE =¢ =c))
(CURRENT-COLOR =c)
-=>
b
HEAF-IS-EMFTY
C~C(IN-HEAF =anuthing)
< -=>

START-PUZZLE
C=(IN-FUZZLE =anwthing)
(HOLDING (FIECE =p =¢) ¢ =obdect) $ =c2
(LOOKING-AT =obJect)
==>(JOINED)
({delete> =c2)
(HOLDING NOTHING)
(IN-FUZZLE =obJect)
(LOOKING-AT =obJect)
(NUMBER-IN-FUZZLE 1))

FPIECE-FITS-IN~FUZZLE
C(LOOKING-AT (FPIECE =p =c) ¢ =obJect)
=(IN-FULZLE =poDuccl)

C(IN-PUZZLE (PIECE =p»2 =otherc) $ =otherr)

(SIDE =pnw =p =r =¢)

(EIDE -cnothor ~rd (Lncastived =n) ~i)

—-=>)
I.3

bl e

—————— A

———— S - -

FIT-FPIECE-IN-FUZZLE
C(HOLDING (FIECE =r =c) $ =obdJect)
=~(IN-FUZZLE =obJect)
(LOOKING-AT =obJect)
(IN-FUZZLE (FIECE =p2 =otherc) $ =others)
(SINE =any =r =n =¢) $ =c4
(SIDE =another =r2 (<nedative> =n) =k) ¢ =c95
(JOINED ! =rest) ¢ =cé
-
(<{delete> =c4 =¢S5 =cé)
(REING-FUT~-IN-FUZZLE =obJect)
(LOOKING-AT =obdJect)
(JOINED ! =rest (=c4 =¢5))]

FIECE-FUT-IN-FUZZLE
CC(HOLDING (FIECE =¢ =c) $ =obJect) $ =ci
(NUMERER-IN-FUZZLE =m) $ =c2
=(IN-FUZZLE =ob.ect)
(EEING-FUT-IN-FUZZLE =ob.ect) $ =c4
-
(<delete> =cl =c2 =c4)
(HOLDING NOTHING)
(LOOKING-AT NOTHING)
(IN-FUZZLE =obJect)
(NUMBER-IN-FUZZLE (<addl> =m))]

FUZZLE-IS-FINISHED

L (NUMRER-IN-FUZZLE =n)
(NUMEER-OF -FIECES =n)

-(IN-HEAF =snuthing)

-->
(<halt>)]

AFFENDIX II

éxtonsions to Jidsaw Fuzzle Froduction System

Working Memorw!
1, (NUMBER-OF-FILES m) m is the rumber of riles we have (initizlly 0).
2. (CURRENT-FILE n) rerresents the current rile we zre using,

3. (ALL-FILES P1 ¢#2 ,..) rerresents 3ll of the riles we’ve made
where pi is 3 uniue inteder associated with 3 rile.

4, (PILE i t1 t2 ...) rerresents the contents of rile i where tJ can
be ang obdect.

Froduction Memorwu!?

MAKE-A-FILE ;
CC(HOLDING (<rnot> NOTHING) $ =obJect) $ =ci
(LOOKING-AT =ob.Ject)
(NUMEER-OF-FILES =m) ¢ =c¢3
(ALL-FILES ! =r) ¢ =c4
(CURRENT-FILE NONE) $ =¢%5

({delete> =cl1 =c3 =c4 =c5)
(NUMBER-OF-FILES (<addl: =m))
(LOOKING-AT =ob.ect)
(ALL-FPILES (<addl> =m) ! =r)
(CURRENT-FILE (<addl> =m))
(PILE (<addl> =m) =obdJect)
(HOLDING NOTHING)1]

FICK-A-FILE
C(CURRENT-FILE NONE) $ =c1
(ALL-FILES =fr1 ! =p)

>
({delete> =c1)
(ALL-FILES =p1 ¢ =p)
(CURRENT-FILE =p1)]

PICK-OBJECT-FROM-FILE
C(CURRENT-FILE =rl1)
(HOLDING NOTHING) $=c2

(ALL-PILES =p1 ! =p) ;

(PILE =¢1 =obJect ! =rest) $ =c4 %¢)

(LOOKING~AT =obJect)
-3

(<{delete> =02 =c4)
(LUK LNG=-NT —obhutet)
(HOLDING =obdect)
(PILE =p1 ! =prest)]

i

o —r

i
{,
i
|
|
|
i

FUT-0ORJECT-IN-FILE
C(CURRENT-FILE =¥1)
(HOLDING (=not:> NOTHING) $ =obdJect) $ =c2
(LOOKING-AT =obJect)
(ALL-FILES =r1 ! =p)
(FILE =p1 ! =rest) $ =¢S5

-3 :
(<delete> =c2 =c5) 1
(LOOKING-AT =obJect)

(HOLDING NOTHING) .
(PILE =rl | =rest =obJect))

FORGET-THIS-FILE
[(CURRENT-FILE =p1) $ =ci
(ALL-FILES =¢1 ! =rest) $ =c¢2
-3
(<{delete:r =cil =c2)
(CURRENT-FILE NOMNE)
(ALL-FILES ! =rest =pl) :

FILE-IS-EMFTY
C(CURRENT-FILE =r1)

(ALL-FILES =prl1 ! =rest)
(FILE =p1) 1
—-—>
J E
E
DESTROY-A-FILE
C(CURRENT-FILE =rl1) $ =ci
(ALL-FILES =¢rl1 ! =rest) $ =c2 : 1
(FILE =r1 ! =pr) ¢ =¢3 i
__> 9

({delete> =cl1 =¢2 =¢3J)
(CURRENT-FILE NONE)
(AlLL-FILES ! =rest))

THERE-ARE-NO-FPILES
C(CURRENT~FILE NONE)
(ALL-FILES)

-2
J
LOOK-AT~-FIRST-IN-FILE
C(LOOKING-AT =anwthing) $ =cl1
(CURRENT-FILE =#1)
(FILE =r1 =obJect ! =rest)
-—>

(<delete> =cl1)
(LOOKING-AT =obJect)]l

LOOK-AT-NEXT-IN-FILE |
L(LUURING=AT =obJject) $ =c1 i

_(CURRENT=-FILE =r1)
(TILE —rl —winisl =tmexi. 8 =) 3 =03
—-——>

({delete> =c1 =¢3)
(LOOKIMNEG-AT -nont?
(PILE =p]l =next | =p =gbJect))

I1.2

. ‘ aicl

1 1)

(2]

(3]

(4]

a1 (5]

[6)

T -

(7}

(8]

a (10]

[11)

(12}

{13)

(14)

(18]

(15

References

G. Chaitin, A Theory of Program Size Formally Identical
to Information Theory, J. ACM, Vol 22, 1975.

R. Davis, Applications of Meta-Level Knowledge to the
Construction, Maintenance and Use of Large Knowledge
Bases, Ph.D. Thesis, Stanford U., 1976.

R. Dewar, The SETL Programming Language, Courant Institute
NYU, 1978, (unpublished preprint).

R. Fikes, P. Hart and N. Nilsson, Learning and Executing
Generalized Robot Plans, AI3, 1972.

C. Forgy, J. McDermott, The OPS2 Reference Manual,
Department of Computer Science, CMU, 1977.

A. Kolmogorov, Three Approaches to the Quantitative
Definition of Information, Problems in Information
Transmission 1, 1965.

D. Maier, The Complexity of Some Problems on Subsequences
and Supersequences, J. ACM 25-2, 1978.

J. Phillips, Program Inference fyrom Traces using Multiple
Knowlecdge Sources, Proc. IJCAI 5, 1977.

M. Rychener, Control Requirements for the Design of
Production System Architectures, Proc. Symp. on Al
and Programming Langquages, 1977.

M. Rychener, Production Systems as a Programming Language
for Artificial Intelligence Research, Ph.D. Thesis,
Computer Science, CMU, 1976.

R. Solomonoff, A Formal Theory of Inductive Inference,
Information and Control 7, 1964.

S. Stolfo, Automatic Discovery of Heuristics from Sample
Execution Traces for Non-deterministic Programs,
Ph.D. Thesis, Courant Institute, NYU, 1979 (in preparation).

R. Tarjan, Depth~first Search and Linear Graph Algorithms,
SIAM J. Comput., 1972.

R, Tarian, Finding Dominators in Directmrd Graoha, STAM
J. Comput., 1972,

R. Tarjan, Testing Flow Graph Reducibility, J. Comput.
and Systems Sci., 1974.

T. Winogrod, Frame Kepresentation and the bLeciarative/
Procedural Controversy, in Representation and Understanding,
Bobrow and Collins (ed.), Academic Press, 197S5.

N e Y P e v

e st Sl 3 i i a0

e i

g

(17}

P. Winston, Learning Structural Descriptions from

Distribution List for Contract No. N00014-75-C-0571

Defense Documentation Center
Cameron Station
b’ : Alexandria, Virginia 22314 12 copies

Office of Naval Research
Information Systems Program
: Code 437
Arlington, Virginia 22217 2 copies

Office of Naval Research
- Code 1021IP ' ;
Arlington, Virginia 22217 6 copies

‘ Office of Naval Research
Branch Office, Boston
495 Summer Street
Boston, Massachusetts 02210 1 copy

Office of Naval Research

Branch Office, Chicago

536 South Clark Street

Chicago, Illinois 60605 1 copy

Office of Naval Research
Branch Office, Pasau2na

1030 East Green Street :
Pasadena, California 91106 1 copy

New York Area Office
715 Broadway - 5th Floor -
New York, New York 10003 1 copy

Naval Research Laboratory
Technical Information Division, Code 2627
Washington, D.C. 20375 6 copies

Dr. A. L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps (Code RD-1)
! Washington, D.C. 20380 1 copy

Office of Naval Research
Code 455
Arlington, Virginia 22217 1l copy

Naval Electronics Laboratory Center

Advanced Software Technology Division

Code 5200

San Diego, California 92152 1 copy

s

Mr. E.H. Gleissner
Naval Ship Research & Development Center

tation and Mathematics Department »]
Bethesda, Maryland 20084 1 copy

Captain Grace M. Hopper
NAICOM/MIS PYlanning usranch (OP-916D)
Office of Chief of Naval Operations
washington, D.C. 20350

Mr. Kin B. Thompson

Technical Director

Information Systems Division (OP-917)
Office of Chief of Naval Operations
wWashington, D.C. 20350

Dr. R.T. Chien

University of Illinois
Coordinated Science Laboratory
Urbana, Illinois 61801

Office of Naval Research
Code 432
Arlington, Virginia 22217

Professor John Birk

University of Rhode Island
Department of Electrical Engineering
Kelley Hall

Kingston, Rhode Island 02881

copy j

copy ;

copy v g

copy

copy

