
U— -

AD—A067 5146 NEW YORK UNIV N V COURANT INST OF MATHEMATICAL SCIENCES FIG 9I2
AUTOMATIC DISCOVERY OF HEURISTICS FOR NON—DETERMINISTIC PROGRAM—ETC (U)
JAN 79 5 a STOLFO, N C HARRISON N000114 75—C 0571

UNCLASSIFIED TR—007 NL
j t ~~~~~

ene S
- .

~S46 _________ _________ _________ _________ _________ _________ _________ _________ _________

•
I _c

END

/ -

-
~-~~~~~~~~~~~~~~~ --

~~-—-- -— — - ~~ r ’~~~~~~~~~~~~~~~~~~~~~
-’-

~~~~~~~ 
—,

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY {
PRACTICABL E. THE COPY FURNISHED
TO DDC CONTAINE D A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT I

REPRODUCE LEGIBLY.

S

‘:
~~~~ :~ 

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



______________________________________ _____________________________________ ___________________ 
—

- ~~~~~~~~~~~~~~ 

_ _  

LEVEV
is,.. r L~ lU ’tt Nis

~~~~~

AUTOMATIC DISCOVERY OF HEURISTICS
FOR NON-DETERMINISTIC PROGRAMS

By

0
~~~ SALVATORE J. STOLFO

MALCOLM C • HARRISON

January 1979
Report NOe 007

I

I
• •This material. is based upon work supported by the

Office of Naval Research under Contract No. N000 14-75-C-
0571, (N R049—347) , ”

• I 1WIaiI~IiOI4 STM~~~ IT A D D C
~~~ — I~~~~~~~~ UsUmit.d 

- 1U A,~ i~ 151$

~ ~1L (3
D

~~~~~~~~~~~ - .~~~
- ‘

. ,. •

______________________ ~....



--•
~~

---— •
~~~

--.. -
~
•-- --

~~~ 
- 

~~~~~~ •.-.-—- 
..—,-—--—

~~~
—--•,——--—•—————.——-.--,-.

~ 
—• —-,--.- •y

~~
— -

~

sICu~ rIv CI. A$$I FICATION OF THIS PAGE (U~uin D.l. £sU.r.)~~ __________________________________

REPORT DOCUMENTATION PAGE 
________________________

I. ~EPO~ T NUMSE~ . usi.rr - ISb N NO. 3. ~ ICIPICNT S CA1 *I.OG NUM~~I~

• 007 . •O 7tt-4
~~T _ _

_____
_ _4. 1IYL. ( (aid Si,OW1.) ______________________ I VP OF “s

I7~~ I Technical~~~~t Dt,)
~ ~~~tomatic ~~ scov.ry of ~~ uristic. fO(~~~ .. ~~~~~~~~ 

.
~~~~~~•

~~ n ~~~terniinistic Programs,
________________________)~ I ~~~ I _________

. •
~~~~
i- ~~~~COM*flJ1T ,. I1 ~~~~~~ .~JUII~t(-

f ~j  Salvatore J.IStolfo —, (j ~ 
)N f i,øfll4-75-.C-~ 571

Malcolm c.Laarrison L ~~TNR049- 347)
• ~. •I~~FORMING ORGA NIZATION NAM E AND ADDRESS ID. PROG~~AM ELEMiNY. PROJ1CT. TASK

Courant Institute of Mathematical Sciences
New York University 

— ~ 9 ct>• 251 Mercer Street, New York. N.Y.. 10fl12 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

AND ADDRESS 

ci~: —I 
-

Office of Naval Research 
~ “sr

14. MONItORIN G AGENCY NAME S ADORESS(St dUS.rint Iv.. CinirolUn4 OIflc.) IS. SECURITY Cl ASS. (.1 ff1. rSpOH)

Department of the Navy unc Lasaified
Arlington, Virginia 22217 14.. OICI.ASS,ç ICATION/OOWNGRAO ING

SCHEDULE

~S. DISI RISU flON STATEMENT (~I *9. R.p..SJ

~pproved for public release ; distribution unlimited.

17. DISTRISUTION STATEMENT r.t A. ob.tract .nt.v.d In hock 30. I I  dIII .r.nf Iroii R.povf)

none

II. SUPPLEMENTARY NOTES

none

IL KEY WORDS (C.nllnu. in v.v.ri• i4d II n c•a•.y aid Id.niSIy by block au.b t)

Heuristics , Non-deterministic program, Pattern Recognition ,
Production System , Trace Sequence

20. AU1~~ACT (Cr~lMia. an,. ~iri. .1*11 n.... ~~ y — I*nIU? by block ieu bof)

buring the last few years a number of relatively effective
Al program. have been written incorporating considerable azt~ unts• of problem specific knowledge. Consequently, th. problem of
encodinq such knowledge in a useful form has emerged as one of the
central problems of At. In particular , Declarative repr.sentation~of knowledge hav, attracted much attention partly b.ciuse of the
relative ease with which knowledge can be cøimeunicat•d in this

‘DO ~~~~~~ 1473 EflON OP $ wOv hS 5 OSSO~ IT*

sscus,rv cI.ausv.CA?,ON O~ THIS PASt (ISai

_ _  _ _  _ _  

011 ~~O ..Lfr ~~
-

k__ ~~~~~~~~~~~~~~~~~~~~ -~~~~~~~
—

~~-- -— —.-.~-- •-.-- ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ —- - - - --~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ 
‘ ---

~~~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ — - - ~—-~ ~~
__

~~~ •-~--~~~-— —.  __,__ j .___.



- -
~~~~~ • 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—w• —

~~~~~ --—- - - 
~

-
~

-- -—
~~~~~~

• 
~~~~~~~~ -- —..-- .— ---•--• •

SECURITY CLASSI FICATION OF THIS PAGC(WIi in D•a. Eni.r.d) - -

form. Unfortunately, implementation of Declaratively speci-
fied knowledge corresponds to a non-deterministic program whic
incurs enormous computational costs.

• This paper discusses one way to limit this cost. The
approach we take is to develop control heuristics for a
family of problems f rom traces of sample solutions generated
during a training session with a human óxpert . Algorithms
have been developed which recognize a predefined set of
patterns in the sequence of ‘knowledge applications ’ and
which compile descriptions of these patterns in a control
language, called CRAPS. More specifically , patterns of
repeating , parallel and conmion sequences are considered in
the analysis. The CRAPS descriptions generated are then used
for guidance in solving subsequent problems. We discuss the
utility of such an approach and give an example of a generated
CRAPS description .

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _-

SICURIVY CL*SSIcICATION OF THIS PAOt~~~.. 0:

~~~~~~~~ 
- . —- -- - ~~~- -~~~~- — :  - — -



_ _ _ _ _ _ _ _ _ _ _ _ _

— ~~~~~r ‘‘~~~~~‘~‘3~~~~- - 
~

_—
~~

._.___
~~~- -_ •— -. •‘,.—-r- —.

Automatic Discovery of Heuristics

For Non-deterministic Prog4ains

Topic: Induction, Learning and Knowledge Acquisition

Keywords: Heuristics, Non-deterministic program, Pattern Recognition,
Production System, Trace Sequence

Authors: Salvatore J. Stolfo
and

Malcolm C. Harrison

Computer Science Department
Courant Institute
New York University
251 Mercer Street
New York, N.Y. 10012

Abstract

During the last few years a number of relatively effective Al programs
have been written incorporating consid~rable amo9ts of probl em specific
knowledge. Consequently, the problem of encoding such knowl .dge in a useful
form has emerged as one of the central problems of Al . In particular ,
Declarative- representations of knowledge have attracted much attention partly
because of the relative ease with which knowledge can be cooinunicated in
this form. Unfortunately, implementation of Declaratively specified knowl-
edge corresponds to a non-deterministic program which incurs c~normous compu-tation 1 coat

This paper discusses one way to limit this cost. The approach we take
is to develop control heuristics for a family of problems from traces of
sample solutions generated during a training session with a human expert.
Algorithms have been developed which recognize a predefinod set of patterns
in the sequence of ‘knowledge applications ’ and which compile descriptions
of these patterns in a control language , called CRAPS. More specifical ly,
patterns of repeating, parallel and comon sequences are considered in the
analysis. The CRAPS descriptions generated are then used for guidance in
solving subsequent problems. We discus, the utility of such an approach and
give an example of a generated CRAPS description.

•

•—,--— —~--, --~—--- -,—-

1. Introduction

During the last few years , a number of relatively effective

Artificial Intelligence programs have been written incorporating

• considerable amounts of knowledge, and the problem of encoding

such knowledge in a useful form has emerged as one of the central

problems of At . Winograd [16] distinguishes between declarative

information which can be thought of as “knowing what”, and procedural
• information which can be thought of as “knowing how”. He describes

the underlying problem as that of conntructing representations

which can take advantage of the decomposability of the declarative

representation without sacrificing the interactive possibilities of

the procedural representation. Ideally, it should be possible to

specify information in a form which does not con~train thc way in

which it is to be used; unfortunately, a straightforward

implementation of such a declarative representation corresponds to

a non -deterministic program which makes a relatively blind search

through the solution space .

More recently, attention has turned towards mechanisms

which facilitate incorporating limited procedural or heuristic

information into a primarily declarative framework. For example,

Rychener ’s approach [9 3 is to build a rational “goal” structure

into declarative rule-based systems, while Davis [2 1 favors a

• separate set of “mete-rules” specifying control information. In

~om. ~~~~~~~ n’i~Ft ~~~c”t thztt t~c ~~curzt of ~rcccdural f~~~~t~c~
is of the same ~~~~ of inocu itude as the wnouht~ of c3~ c~1nr~ t ivø

information, and so i:uch approaches may be effective. However, in
-
~ - most cases the amount ot control information will be very -large

- 1—

— ——~~ -—— ~~~~~~~ - — — ~~~~~~— --

(e.g. theorem-proving, natural language understanding).

Thu s the problem of acquiring , debugging and extend~~g control

information will become increasingly important.

In general, we might expect that this control information

will embody very sophisticated principles requiring data—structures

not present in the declarative form of the program, or which are

only deducible by the use of considerable intelligence. For example,
-

-

it is clear that the incorporation of the heuristic principles of

evaluation and u—s search into a declarative chess program which

specifies only the rules of chess but no strategies for playing

will require an analysis which is considerably beyond the ability

of present techniques; even the optimization of the parameters in

a linear evaluation function involves highly sophisticated processing. -
-

However, we believe that there are a number of important

areas in which it might be possible to deduce control information

automatically from a declarative program. These include declaratively

specified problems: -

• for which there exists a relatively simple algorithmic

procedure;

• whose performance can be improved in frequently occurring

or particularly important special cases;

• in which particular subproblems can be solved by simple

algorithmic procedures

- 2 -
____________ - ~~ —~~~~-~~ —

~~ •- . - - -
~

-

~ - -~ -~~~ --~~~~~~——~~
_ _ _ _ _ _—‘ •

Some work on thisproblem was reported by Pikes, Hart and Nileson
(4]. In their system, STRIPS, aequencesof operator appliôations

used in solving sample problems were stored for possible

guidance (or planning) In solving subsequent problems. In this
• paper we report on a somewhat different approach , which stresses

the importance of a deeper analysis of the sequence of operator

applications . A similar approach has been adopted by Phillips [8] .

— 3 —

_______ ___________ - S
~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 

-
~~~ .. :~i - - •~~~~~~~~


- -~~-~~ -~ --- - -- - -V- — ---
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

2. A Sample Problem - 
-

As an example, consider the following problem. Suppose we

want to solve a (slightly idealized) jig—saw puzzle, in which each

piece has an average color , and four sides described by unique

integers (with side i fitting side —i). We consider below a

non—deterministic algorithm written in production language form.

An informal description of the productions we might use would

include:

START-PUZZLE: If there is no puzzle currently being built and
yuu are holding a piece, then you can make this piece the first
1~-:irt of the puzzle, leaving your hand empty. Notice that you
c~’ntinue to look at the piece.

LOOK-AT—PIECE—IN-HEAP : If a piece is in the heap then you can look
~tt it.

PICK-UP-OBJECT—IN-VIEW: If you are looking at an object and
holding nothing, then you can pick up the object. Its position
changes to being in your hand.

LOOK-AT-OBJECT-IN-HAND: If something is in your hand, then you
can look at it.

CLOSE-EYES: If you are looking at something which is not
NOTHING then jou can look at NOTHING.

OBJECT-IN-HAND-IN-VIEW: This production senses when the object
being held is in view without performing any actions .

FIND-COLOR-OF-PIECE: If you are holding a puzzle piece, you can
look at it and know its color.

PIECE-HAS-CURRENT-COLOR : This senses when the object being held
has the current color you are considering.

FORGET-COLOR-OF-PIECE: If a piece is in view and you know iti
color , you can look away from it and forget the color.

PIECE- HAS-STRAIGHT-EDGE : This production senses when the piece
in vic~ ha3 a straight edge.

PUT-PIECE-DOWN-IN-ffE7~p : If you are holding a puzzle piece, you
can ait it in t~h. h.~n ~nwj vn,’r hand is empty. Not~co that tho

- 
- 

piece continues to be in view.

— 4 —

~
-

- ~—-~—--~~~~ - -- - - - —-- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — —- -- -— - -



-
~~~

~- •—-- —~~~~--- - — - — - - - - — - -~~~~ ----- -

HEAP-IS-EMPTY: This senses if the heap is empty.

PIECE-FITS-IN—PUZZLE : This production senses when a puzzle
piece that is in view will fit another puzzle piece already
in the puzzle.

FIT—PIECE—IN—PUZZLE : If the piece being held and in view fits
in the puzzle, the sides of the matching pieces can be joined .

PIECE-PUT-IN-PUZZLE: If you are holding a puzzle piece, which
is being placed in the puzzle , you could put it down in the
puzzle.

PUZZLE— IS—FINISHED: If all of the pieces are in the puzzle, you
can halt .

-

The complete program is given in Appendix I.

It should be noted that this representation is highly

non—deterministic , and if executed would be hyper-exponentially

inefficient. It does not even “know” that it will f ind a

solution (i.e. terminate) if it can repeat the production

• PUT-PIECE-IN—PUZ ZLE as frequently as possible, so even the

crudest goal—subgoal structure is absent. (However , there is

no production to remove a piece from the puzzle , which serve:~ as

a clue to an intelligent observer) . It is even possible for the

program to pick up a piece and then put it down immediately

without doing anything with it.

The performance of this program could be improved to a

tolerable level if the following heuristic was added:

use the following sequence repeatedly

pick up a piece from the heap;

• insert it in the puzzle if it fits.

An alter jaLiv uj IkSULI$ti c would be:

use the f~llc’:inq ccqucnca repeatedly

locate a piece p in the puzzle with a missing neighbor;

pick up pieces from the heap until one matches p, and

— 5 —

L ~~ - T .. ~~~~~ __________

—

insert it in the puzzle.

Each of these heuristics is very simple , consisting mainly of

sequencing rules for the productions, and would seem to be

within the range of automatic inference. A further improvement

could be made by noting that the procedure for selecting a piece

from the heap is inefficient since the same piece may be selected

repeatedly (and in a production system such as that of Rychener

[10] which prefers to use recently referenced items in working

memory, in other respects a reasonable strategy, the search will

almost always be ineffective). If we add a few more productions,

it becomes possible for the system to search systematically

through the heap by constructing a pile from the pieces in the

heap, and putting a piece down in a different pile when it has

looked r~t i t.

MAXE-A-PILE: If you want to make a pile and you are
holding something, put it in the pile and your hand is empty.
The object continues to be in view.~

PICK-A-PILE: If you are not working with a pile, just pick
the first one.

PICK-OBJECT-FROM-PILE: To pick an object from a pile, if your
hand is empty reach in and pick up the first one you see.

PUT-OBJECT-IN-PILE : To put an object in a pile, if you are
holding something , just place it in the back of the pile and
your hand is empty .

FORGET-THIS-PILE: To forget a pile, just push the current pile
behind all the others.

PILE—IS-EMPTY: A pile is empty , if there is nothing on it.

~TRO~ -A--PIL~ : To de~ Lroy Lhe ~u~.j ~~nL pile, just strike it
from memory.

THERE-ARE—NO—PILES: There are no piles if all the piles were
destroyed.

~~~~~~~~~~~~~~~~ ~~~ 
• - 



_______________________ - .-,_, ‘r-!~~~~~~ --S,- ~~~~~~~~~~~~ •—- - —— • —•— - -

LOOK-AT-FIRST-IN-PILE: If there is an object at the front of
the pile, you can focus on it.

LOOK-AT-NEXT-IN-PILE: If you want to scan through a pile and
you are looking at the first object in it, focus on the next
one by placing the first object behind the last.

The actual pile productions can be found in Appendix II.

The pile productions are very general, aud might be
expected to be present in any system ; indeed , it seems likely

that productions for dealing with heaps and piles (i.e. sets and

tuples) and heuristics for implementing iinporLant operations such

as searching will be present in production cystcms as thcy are

in modern programming languages [3].

Carrying our jig—saw puzzle a step or two further, sufficient

productions are present now to permit simpY~e sequencing heuristics

to reflect the usual strategies used by expericnccd puzz~c-solvcrs:

work on the outside edge~ first (build a pile of outside

edges) ; repeat the PUT-PIECE-IN-PUZZLE sequence until this pile

is empty;

. separate the pieces in the heap into piles of the anrue

average color, and search the appropriate pile first;

search first for pieces which have more than one neighbor

of the same average color (e.g. work on the sky first);

It may appear that automatic detection of such heuristics is a

task of great difficulty. Below we outline an approach to this

problem which we believe can be quite successful, describe a

system which has been embeeded in PROSYS, an exteflsion of

OPS2 15i , and give some preliminary results.

- - -~~~~~~~~- - ~~~~~~~~~~ - - “ 
1i_ •~ •_ _ _  

~~~- -~~~~- 
_ _ _

_ _ _ _ _ _ ~~~ -— ~~~~- - ~~
- - -~~~~~~~~~- --

- -

3. Approach -

Our procedure is as follows: we sel3ct a ‘typical’ input

to the program and run the program repeatedly on this input,

recording the sequence of rules selected. This is repeated for

other typical inputs. We then attempt to describe the better

(i.e. shorter) successful sequences in a language, CRAPS,

designed for this purpose and described in the next section.

We then use this description to guide the program ’s subsequent

decisions.

Inherent in this approach iu the assumption that good

decision—making procedures or heuristics can be inferred fro’u

the performance of the program on only selected inputs. In

general, as suggoetcd by work or inductive inference [17] and

information theory (1,6,11], we will give preference to shor t

CRAPS dencriptions which will generate a high proportion of

short successful solutions and few lbng or unsuccessful solutions.

We anticipate that the selection of inputs will be critical and

that cventually we will want to be able to handle new inputs

incrementally, as was done in [17). Initially, however, we will

cov~centrate on the simpler problem of getting a good solution

for the non—incremental case.

As suggested by the example in section 2, the execution-time

of a completely declarative program will usually be too long to

perr~1t a solution ~ :ccpt in the aimpler cases. Accor~Iingly,

we will run thn prngri~m In r’iin’inrj m ode” in which its deci~ ions

can be observed and if necessary corrected . In initial experiments

this will be done by a trainer who is aware of the structure of
- -

-

~~~~~ — 8 —

L ‘
~‘f 

-— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


,- -—---— — - - - --- --‘--~~~~~~~ -—~- - - --- -- ---‘--— -- ----—-~~~--- - - — - ——- - - ------ - -----.-- - ---.- - - - —‘.--- -—

the program; subsequently we anticipate the necessity of using

techniques similar to those of Davis [2), which will enable

the trainer to deal only with the external behavior of the

program.

1t should be noted that we have deliberately chosen to exclude

information about sequences which end in failure. It is clear

that, as found by Winston in other inductive inference work (17] ,

counter—examples will be extremely valuable. However , as the

reader will note below, even this simpler problem poses considerable

technical difficulties, and it was our feeling that a clearer

picture would emerge from the simpler approach. Furthc’rmore,

initial experiments described in section 5 suggest that useful

results can be obtained without counter—examplec.

— 9 —

4. The CRAPS language

The CRAPS language provides a semantic framework with which

to specify or describe sequences of rule applications in the

execution of the non-deterministic program. The most basic

primitive of CRAPS is called a unit. A unit specifies either a

rule application with preconditions, or a control operation

applied to a sequence of units. The control operations are:

(1) Concatenation of units producing sequences;

(2) Repetition of a sequence of units controlled by

Doolean conditions ;

(3) Alternative (or conditional) selection of a sequence

from a set of sequences;

(4) Peimutatiun of a sot of sequences. (Thus, the

acronym CRAPS.)

Conditions in the above are DNF expressions of rules, with a

rule being considered true if it is fireable. -

The operators of CRAPS correspond to control primitives of

conventional programming languages. Concatenation corresponds to

sequential execution of statements, and repetition corresponds to
iteration statements with ‘while ’ and 4ntil’ termination condi—

tions. The alternation operator specifies alternative sequences

of actions much like an ALGOL-68 ‘case ’ statement or LISP ‘cond’

expression . The permutation primitive represents a form of

concuzrent execution similar to the specification of collateral

expresfionc In ~LCOL-6C .

An example of a CRAPS dfiser lpt lrm can)‘e found in section 5
- -

— 1 0 —
_________ — — — —

— V

— —

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ —~~~~~~
_________ _______________ - ~~~~~~~ 

~ L-~~~~~~~~~ ~~~~~



-‘---,.. __ -.,.._..-- ~~~~~~~~ —
-------- - —— --_-F. - -

~~ 
- -V--

5. An Example:, Binary Tree Traversal

The program in figure 1 has the ability to scan a binary tree in

any order . No control information is specified in any of the

productions. The productions have been chosen to encode all of

the relevant information about scanning a binary tree without

specifying direction.

A binary tree is represented in working memory by the following

data format. The root of the tree is represented by (ROOT —X)where

—X can be bound to any symbol. If node B ha~ a left son A , it is

represented by (LEFT B A) and similarly (RIGHT B C) represents C as

the right son of B. The father of a node (either left or right) is

represented for example by (FM HER B A ) .  The current node being

scanned is represented by (NODE =X) . In scanning binary trees, nodes

can be printed only once. If mde A has been scanned and printed ,

then (ALREADY-P A) is deposited in working memory .

Several binary trees were placed in working memory and then the

progran was initiated and directed by a human to scan in-order each

tree. A trace for each execution was produced (see figure 2 for

examples) . The entire set of traces was presented to the pattern

recognition algorithms, which produced the CRAPS description

presented in figure 3 • The integers labelling the rule names in

the final description are meant to differentiate particular in-

stances of rule applications . For example (l5. PRINT) is a

completely d±ffcrcnt applicatIon of PP.I!~TT thnn Ic (17. PflIN?).

In this part~cu1ar cat’ie the CRAPS desc~r4 pH nn J~ ~ pr~~I.iø

definition of an in-order balanced binary tree scan program. That

4-
—

- 
~~~~~~~~ ~~~~~~ 

;~ I

— -
~~

--‘
~~-

—

— ~~~~~ - 1 . -.~. — — ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — — — ~ ~

is, given a working memory specifying a balanced binary tree, the

shortest execution sequence of the program which would result

in an in-order print of the nodes would belong to the set of

sequences specified by the CRAPS description; furthermore, the

CRAPS description provides enough information to determine which

production should be fired at every point in the execution of

the program. Thus a non-deterministic program has in effect

been reduced to a deterministic program.

In general, we cannot assume that the CRAPS description will

be as effective as this. With poor training sequences, or incorrect

analyses of execution traces, CRAPS descriptions may imply heuristics

which are not helpful , or which are helpful for some examples and

harmful in others. The initial approach we implemented was that

of Rychener ’s. The existing p~-ogram was altered by

including special ‘tag ’ or ‘control elements’ in both sides of

the rules to reflect the control information in the description.

This approach appeared to impose too high a level of control

affecting much of the quality of the production system representa-

tion which makes it attractive. Although the original trees

used in the training sequence and other trees were able to be

traversed correctly, several other instances of trees were not.

This has led us to consider Davii ’ approach of ~meta-rules” with
-

-
a probabilistic component to them. In this direction, a CRAPS

description would be transformed to a set of rules which suggest

preferences oP rule. over others during the testing and selection

process on each execution cycle. We are currently looking at ways

of doing this.

i
— 1 2 —

— — - - -~~ —- — _ - . l_ -
- - -

‘ -
-

~~. . ~~~~~~~~~~~~~~~~ — -
. ——- -——- —- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — —.~~ - —~~-~~~~ -- - — ~~~~ - - - — ----~ - --~--



-

- ~~~~~~~~~~~~~~~

-

~~~~~~~~~~

- -

~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- -
~~~~~~~

-

Figure 1, Binary Tree Scanning Production System 
-

START-POINTING
I (ROOT —x~ — (NODE — anything) -—> (NODE —x ))

CO-LEFT -

((NODE -x) (LEFT — x — y )  --> (<delete> (NODE =x) ) (NODE —x) (FATHER — x y) g

• CO-RIGHT
( (NODE —x ~ (RIGHT =x y) --> (<delete> (NODE =x)) (NODE —y) (FA’PJTh~R —x

CAN-T-GO-LEFT
I (NODE ax) - (LEFT —x—anything) --> I

CAN-T-GO-RIGHT
( (NODE — x ~ -(RIGHT — x — anything) --> I

PRINT
I (NODE —x) -(ALREADY-P —x )  -—> (<write> r~~~)  (ALREADY-P y) 3

GO-UP
( (NODE -x~ (FATHER — x =y ~ 

--> (<delete> (NODE ~x3) (NODE =y3 ]
- 

STOP
L (NODE =x) (ROOT —x) —-> (<delete> (NODE =x)) (<halt>))

- 

—13 —

_ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _  _______________________ _______ ~~~~~~~



______________________ — - - - -~~~,———---—---—-—-—--- ~
—-

~
,——--.——-— --- —,---— •- - 

I

FIGURE 2. SAMPLE TRACES FROM IINARY TREE PS RUN.

(START-POINTING NIL (1) (2 2))
(PRINT (STOP CAN-T—GO-RIGHT CAN—I-GO-LEFT ) (1 2) (3 4))
(STOP (CAN—I-GO—RIGHT CAN-I—GO-LEFT) (1 4) (5 6))
>>

(START—POINTIN G NIL (9) (10 10))
(GO—LEFT (STOP PRINT GO—RIGHT ) (9 10) (11 13))
(PRINT (GO-UP CAN—T—GO-RIGHT CAN—I—GO—LEFT) (12 13) (14 15))-
(GO-UP (CAN-I- GO-RIGHT CAN-I-GO-LEFT) (12 15) (16 17))
(PRINT (STOP GO—LEFT GO—RIGHT) (9 17) (18 19))
(GO—RIGHT (STOP GO-LEFT) (9 19) (20 22))
(PRINT (GO-UP CAN-T-GO-RIGHT CAN-I-GO-LEFT) (21 22) (23 24))
(GO—UP (CAN-T--GO—RI GHT CAN—T—GO-LEFI) (21 24) (25 26))
(STOP (GO-LEFT GO—RIGHT) (9 26) (27 28))
>>

(START—POINTING NIL (14) (15 15))
(GO—LEFT (STOP PRINT GO-RIGHT) (14 15) (16 18))
(GO-LEFT (GO--UP FRINT GO—RIGHT ) (17 18) (19 21))
(PRINT (GO-UP CAN-I-GO-RIGHT CAN—I—GO—LEFT) (20 21) (22 23))
(GO-UP (CAN—I-GO-RIGHT CAN-T-GO—LEFT) (20 2~) (24 2~ ))(PRIN T (GO—UP GO—LEFT GO—RIGHT ) (17 25) (26 27))
(GO-RIGHT (GO-UP GO-LEFT) (17 27) (28 30))
(PRINT (GO—UP CAN—I-GO-RIGHT CAN—I—GO—LEFT) (29 30) (31 32)) D
(GO—UP (CAN-I-GO—RIGHT CAN-I—GO—LEFT ) (29 32) (33 34))
(GO-UP (GO-LEFT GO—RIGHT) (17 34) (35 36))
(PRINT (STOP GO—LEFT GO—RIGHT) (14 36) (37 3H)) p
(GO-RIGHT (STOP GO-LEFT) (14 38) (39 41))
(GO—LEFT (GO-UP PRINT GO-RIGHT) (40 41) (42 44))
(PRINT (00-UP CAN-I-GO-RIGHT CAN-I-GO-LEFT) (43 44) (45 46))
(GO-UP (CAN—I—GO—RIGHT CAN-T-GO—LEFT) (43 46) (47 48))
(PRINT (GO-UP GO-L.EFT GO-RIGHT) (40 48) (49 50))
(GO-RIGHT (GO—UP GO—LEFT) (40 50) (51 53))
(PRINT (GO-UP CAN-I-GO-RIGHT CAN-I-GO-LEFT) (52 53) (54 55))
(GO-UP (CAN-I-GO-RIGHT CAN-I-GO-LEFT) (52 55) (56 57))
(GO-UP (GO-LEFT GO-RIGHT) (40 57) -(58 59))
(STOP (GO—LEFT GO-RIGHT) (14 59) (60 61))
>>

—14 —
______- - - - - - - - - -  - - - - - - _ ___

— ~~~ t ~~~~~~



r~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

FIGURE 3. SAMPLE CRAPS OUTPUT FROM BINARY TREE PS RUN.

((0 • START-POINTING) NIL)
(IF (GO-LEFT STOP PRINT GO-RIGHT) THEN

(REPEAT (WHILE (GO-LEFT GO—RIGHT))
(UNTIL NIL)

(REPEAT (WHILE (GO—LEFT GO-RIGHT))
(UNTIL (CAN—T—GO—LEFT CAN—I-GO-RIGHT))

(( 13 • GO—LEFT) (STOP PRINT GO—RIGHT))
H >>

2
(REPEAT (WHI I.E (CAN—I-GO—LEFT CAN-I—GO—RIGHT))

(UNTIL (GO—LEFT GO—RIGHT))

((15 • PRINT) (GO-UP CAN-I—GO—RIGHT CAN-I—GO—LEFT))
(REPEAT (WHILE (GO-UP))

(UNTIL (PRINT STOP))

(( 16 • GO-UP ) (CAN-T-GO-RIGHT CAN-T-GO-LEFT))
>>

2
((17 • PRINT) (GO-UP GO-LEFT GO-RIGHT))
((18 • GO-RIGHT) (GO—UP GO—LEFT))

>>
2

>>
>>

ELSEIF TRUE THEN

>>
2
((1 • PRINT) (STOP CAN—I—GO—RIGHT CAN—I-GO—LEFT))
(IF (GO-UP CAN-I-GO-RIGHT CAN-I--GO-LEFT) THEN

• (REPEAT (WHILE (GO-UP))
(UNTIL (STOP))

((30 • GO—UP) (CAN-I-GO-RIGHT CAN-I-GO-LEFT))
>>

I
>>

ELSEIF TRUE THEN

>>
2
((2 • STOP) (CAN—T—G0-RIGHT CAN-I-GO—LEFT))

— 1 5 —

________________ ____________ ~~~~~~~



6. Algorithms

In this section we outline the algorithms which produce

CRAPS descriptions from a set of sequences of rule applications

which solved a particular family of problems. The exact form

of an input sequence is << P1 P2 •... >> , where Pi is of the

form (Pj (
~i1~i2’•~~jm

) 
~~ii~j2•’•~ ij

) (ojloj2)), where Pj is the

rule which was applied on the i’th cycle of execution. (P j 1Pj 2..

~~im
1 is the list of rules which were applicable on the ith cycle

and describes the data environrient at that point in the execution.

(i~iinj2...nj~~is the list of unique numbers associated with the

instances of data elements which matched the rule Pj, and (oj loj 2 )

is the range of numbers associated with the data elements deposited

in working nemory by the application of rule Pj.. The sequence

presented is an exact history of the execution of the program and is

therefore already partially ordered by the back dominance relation.

This makes the subsequent pattern reeongnizing easier.

The initial approach we considered to finding permutations of

rule applications in the sequences was to do a static analysis of

the rules to determine which rules were permutable , i.e. , which

rules produced output that could not be input by other rules.

This approach was found to be too difficult and not general enough.

Instead , we use techniques similar to those developed for program

optimization. Using the input/output information contained in the

trace, a data flow directed acyclic gri’uph (r)N ) is conetructe&i

whose nodes correspond to rule applic3-tions ~nd whose edges represent

tho flow of data from one rule to another . This DAG completely

spo~iflso all ot Uaw clatit Ii~peniIwicies arid therefore all of tne
Fr:

— 1 6 —
~~ - - a- ..

— — -  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ - - - ---j--— ~~-



— - _ - - Y ~~~~ 
— —~~-.r——-

possible execution sequences. After the DAG is cleansed of

irrelevan t forward arcs (see Tar jan [13,14,15]), it is linearized to a

CRAPS description employing permutation and simple units only. The

construction of permutations is based on the observation that if

a node has two or more entering edges then the subsequences

associated with its predecessors can be permuted . A simple

sequential scan of the nodes in the !.AG according to the partial

ordering is sufficient to produc e a linear descri ption in linear time.

The next processing is the detection of repeating subsequences

and formation of repetition units. Unlike the permutation

detection problem, which is well-defined, and which is solved by

the algorithm described above , some sequences may have several

equally acceptable descriptions using the repetition operator. The

algorithm we use gives one description. We first scan the sequence

identifying all unique units. All such units cannot be part of a

repetition and thus divide the sequence into shorter subsequences to

which the entire procedure can be applied recursively. Once a

cand idate subsequence is found (every unit in it appears at least

twice) , we scan from left to right repeatedly looking for equivalent

adjacent subsequences replacing them by repetition units. The

procedure stops when it consider s lengths greater than one half the

current length of the sequence.

The final operation to be done is the coalescing of several

descriptions produced by the above processing into one description

employing the alternation operator. The construction wt~ conside~- 1~

sLmflsr to that of Winston and-)ayes—Roth . From two or more

descriptions of some object we identify the points of similarity

and altcrn~tc the d~ ffcrances. ~~~~~ .h1~ pi.oblem is equivalent

— 1 7 —

_ _  - - -*  -- - -- ~~ - -- -~~—________ — -. 
p

— ~~- —--
— •—~~~ — —~--‘.-——--—-——- ——-. —-- J



-, — — - — —y — - —~~~~~~~~ 
- 

~~~~~~~~~~ r- ~~~~~ 
-—

to the Longest Common Subsequence problem, which is known to be

NP—Complete (See Maier [7]) , our approach is highly heuristic.

The computation of a cor~non subsequence is performed by a

concurrent left to right scan of all sequences with a heuristic

weighting function which gives preference to repitition units over

permutation units and simple rule application units.

The conditions for repetition and alternation units are

computed by simple set expressions on the list of appl icable rules

~~~~~~~~~~~~~ 
above) at the time a set of subsequences are

collapsed into a unit. The final output of these algorithms is

fed back to the poduct ion Wstem interpreter and used for

further problem solutions. Complete details of these algorithms

can be found in Stolfo [12].

_  

-

— 1$ —

F L~ -- —



7. Conclusion

It is believed by many researchers that an important quality

of intelligent behavior is the ability to improve performance

with experience, and that generalizing a concept is a critical

aspect of learning . In CRAPS, a form of generalization occurs

when a repeating subsequence is collapsed into a repetition unit.

Although quite restricted in scope, CRAPS shows how a system might

learn procedures , a form of learning which we believe is very

important. Although there are a number of very difficult technical

problems, it seems to us that with more powerful pattern recogni-

tion techniques and more powerful generalizations of control

statements, this approach could be very fruitful.

With less ambitious designs, CRAPS can be viewed as a

programming aid for the designer and iinplexnenter of a large RI

problem-solving knowledge base. The CRAPS approach might be

useful in fine—tuning a declarative knowledge base as opposed to

‘hand-compiling ’ control elements to effect competent performance

in such a system. -

The power of the descriptions produced is limited by both

the expressive power of the CRAPS pr imitives, and the level -of

sophistication of the pattern recognition algorithms that have

been developed. For example, during repetition detection no

notion of similar subsequence is used; rather, a subsequenc. must

appear e,~aetly4 ‘-‘hich prov onts ~~~~~~~~~~~ ~~itz frc~rn appc ari ng

within repetitions. Despite this the i.1gnr4+ -hm~ ~re po’-’erful

enough to detect interesting patterns and subsequently interesting

heuristics.

—19 —

__ _ _ _ _ _ _ _ _ _ _



Our experiments suggest that this approach will have the

best chance of success when the encoding of the knowledge of the

problem domain is such that on any execution cycle a small number

of productions and only one instantiation of each production is

applicable. This suggests one way in which CRAPS should evolve:

the execution traces should include not only productions but

also the instantiatione of productions. However, recognizing

patterns in the sequences which include data is a much more - 
-

difficult problem. We view our approach as an initial step in

the understanding of this more general problem.

— 2 0 —

- - - - -  - - - -
- 

- -- 

- 

-

~~~~~~ — •—--~~~~ __~*____
0 -~ --— —~~~~~~~ L~~~

- -
—

~~~~~
‘_

~“ -- -

APPENDIX I
== = = == = =

JiSsaw Puzzle Production Swetem

In what follows, data elements cars be ars9 LISP data structure.

- : 
Are atomic data element must match e>cact1~ arid a list must match a

list with the same structure arid corster.t. A s~imbol preceded with

art eouals si~ ri (=) represents a variable which c~ ri match ar.’i d~ t~
— structure. The $ s~smhol corstair~ed irs pi’oductiorss has the sam e

function as the SNOBOL4 conditional assi~ rimenst operator ( . ) .  Where

a rule is fired, the data elements are riot dc~leted front workir,ø

memorw unless they are included as ar~~umer e t s to the ~delete> s~ stes~s

function ire the right hand side of the rule. The other ~~stem

funct ions con ta in ed in the ru les are re~ reserited ire lower case arid

enclosed h~ pointed brackets ~< >). Their function, is descriLed

b~ the i r names. The s~mbo l ! is are operato r whith matches the

entire re~airiir.� ~ortioni of the list followir~ it. Where it.

a~~ ears ire the right hand side, it deposits the list that matched

but it strips away the on,closire~ parentheses,

Work ir~ Mensor~ Data Elemer~ts:

1. (PIECE p C)  represents a puzzle piece where p is a ureicue in,te~er
associated with a piece arid c is its average color. We will assume
the machine ku-cows at anew time where piece p is located arid so we
i�rsore location in the representation.

2. (SIDE s p n c) represents the side of a puzzle piece. s is either
LEFT. RIGHT. TOP or BOTTOM of piece p. Since location is ignored ,
rotation of a piece j~ c~ace is also ignored. re is are inte~er
re~ regentin5 the shape of the side where +n mates with -n and 0
represents a straight ed~ e. c is the color of’ the edge. The
representation could easilw be extended to reeresent a vector of
colors for a series of coirits or, the edge.

3. (NUMBER-OF-PIECES n) states that n is the total number nt ei,~~~lp
pieces. -

4. (JOINED (sidel side2) (side3 .id.4)...) re~ resersts the s~nuence
~ 4 ~~I 4 ~ 4 ~~ 

- — — — — - - — ~~ t — - -~~ - — - - — - -
Ci — ~~~ . ._ • c ~~~~ ~~.. , N•~~~ • . • • •e ~~~~~~~~~~~~~~ a ~~~

is of the form 2 above . ~ 
- - 

- 

-~~~ -~~~~~

I t ~~~
- - , : - ~~~~~, 

1.1 -
-i

-- - - - -

- 

~~~~~~~~

S

— —~~ ~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~ ________________



— 
~~~r ’~-

I - 5. (IN—PUZZLE (PIECE i~ c)) states that. piece e is ire the puzzle,

6. (NUMBER-- IN—PUZZLE ri) states that r. is the numbe r of euzzle ~ iece~that are ins the euzzle.

7. (CURRENT-COLOR c) reereseret; the current color of ~r. object beire~considered.

8, (HOLDIN G p) s ta tes that ~ is the current obJect beire~ held (for
e>~ansple a puzzle eiece). If the hand is emetw, (HOLDING NOTHING) is
in wo rkini~ meneorw.

9. (IN-HEAP (PIECE p C)) represents puzzle piece p as being in a heac
with nsa implicit ordering of’ edSes.

10. (LOOKING—AT x) states that object x is ire view. If nothin~ is in
view there (LOOKING—AT NOTHING) is ire workine~ m~ ivsorw.

11. (BEING—FUT—IU--F’LIZZLE ~<) rep res ents the curreiet piece x that is
activelw heine~~

placed ire the puzzle.

Production, Mernorw

LOOK-AT-PIECE-IN—HEAF
((LOO t~Ii1G—AT =obJect) $ =cl(IN—HEAP (FIECE =e =c) $ ~obJect)--.->

(<delete)- =cl)
(LOOKING-AT obJect)]

LOOK—AT—OBJECT—IN--HAN D
((LO OKING—AT =som ethi ns5) $ c1

(HOLI’ING =oh~ect) —->
(<delete> c1)

~.LOOKING—AT object)]

CLOSE-EYES
((LOO KING—AT =somethin~~) $ c1
-(LOOKING—AT NOTHING)

—->

(<delete> c1)
(LOOKING-AT NOTHINO)3

• OBJECT-IN-HAND-IN-VIEW
((HOLDING object)
(LOOK ING—AT object)

- (LOOKING-AT NOTHING)
—— >

tk~- PICK-UP-OBJECT-IN-VIEW
L (HULIuING NO1HING) -

(LOOKING-AT object)
- C T;3—HFAF —ith. it.m~~ I. $ ~~r-3

—— >) -~~~~~~
- -

.
- -

(<delete> c3) - - -

~LOD~ IP?C•-Ai ~cbJ~ ct)
-

- - (HOLDING -obJect))
- - •

~~~
- - - 1.2

-~~ ~~~~~~~~~~~~-~~~~- ~i TT~ T1~ ~L.1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



—-•~~~-- - -•- _ _ _ _ _ _ _ _ _ _  

• PUT—PIECE-DOWN—IN-HEAP
((HOLDING (PIECE e =c)) $ =cj
(LOOKING—AT object)

• (<d elete> c1)
(LOOKING—AT ~obJect)
(HOLDING NOTHING)
(IN—HEAP (PIECE =e = c) ) ]

FIND-COLOR—OF—PIECE
C (LOOKING—AT (PIECE =e —C))
(CURRENT-COLOR =anwthire~~) $ =c2

—->
(<delete> =c2)
(CURRENT—COLOR c))

FORGET—COLOR-OF-PIECE
((LOOKING—AT (PIECE =e c)) $ c1• 
(CURRENT-COLOR ~c) $ =c2 -

—->
(<delete> c1 c2)
(LOOKING—AT NOTHING )
(CURRENT-COLOR NOTHING).]

PIECE—HAS-STRAIGHT-EDGE
((LOOKIN G-AT (PIECE p c ) )
(SIDE =anew p 0 c)

—— >

PIECE—HAS-CURRENT—COLOR
( ( LOOKING—AT (FIECE =e c))
(CURRENT-COLOR =c)

)

HEAP-I S-EMPTY
(— (IN—HEAP anwt hin~ )

START-PUZZLE
(— (IN—PUZZLE aniwthine~~)
(HOLDING (PIECE e c) $ —obJect) $ =c2
(LOOKING—AT object)

——> (JOINED )
(<delete> c2)
(HOLDING NOTHING)
(IN—PUZZLE =object)
(LOOKING-AT obJect )
(NUMBER-IN-PUZZLE 1))

PIECE-FITS-IN—PUZZLE
* C (LOOKING-AT (PIECE •e c) $ —object)

— ( Lr ~—ruL~Lt =oD~cct)
(IN—PUZZLE (PIECE e2 otheic) $ —othere)
(SIDE —sow •p —n c)
(SIDE —:noth~r --r-2 C<rsc~~ tivc> —n~ -!~.)— — > )

1.3

~~ ~~~~~~~~~~ - - ~~~~~ — — —  - ~~~~ ~~~~—— — -• — -  -~~~~ ~~~~~- - - •~~~~~~
—- -

~~~
-

~~~~ -- - - -  — ii



-~~ —• • -~~. .—• —- 
- -: - -

F IT—PIE CE—IN-PUZZLE
((HOLDING (PIECE =e —c) $ =ob~ect)—(IN—PU ZZLE —object)
(LOOKING—AT -object)
(IN-PUZZLE (PIECE e2 otherc) $ othere)
(SIDE anw C n c) $ c4
(SIDE another e2 (<r.e~ativ~> r,) k) $ c5
(JOINED ! =rest) $ c6

—— >
(<delete> =c4 c5 ~ic6)
(BEING—PUT-IN—PUZZLE object)
(LOOKING-AT object)
(JOINED ! rest (c4 =c5))3

PIECE-PUT—IN-PUZZLE
((HOLDING (PIECE =e c) $ obJect) $ —ci
(NUMBER—IN-PUZZLE m ) $ c2

- (IN-PUZZLE —object)
(BEING—pUT—IN—pUZZLE object) $ c4

(<delete> c1 c2 =c4)
(HOLDING NOTHING)
(LOOKING-AT NOTHING)
(IN—PUZZLE obJect)
(NUMBER—IN-PUZZLE (<addi> m))]

PUZZLE—IS—FINISHED
C (NUMBER-IN-PUZZLE ~)
(NUMBER—OF-PIECES ne)

— (IN-HEAP anwthine~ ) —- >
(<halt>)~3

1.4

- • ~~::~~j~ 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~


_ _ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~

APPENDIX II

Extensions to Ji�saw Puzzle Production Swste.

Working Memorw:

1. (NUMBER-OF—PILES m) is is the n umber of eiles we have (initialiw 0).

2. (CURRENT—PILE n) reeresents the current pile we are usir.~ .

3. (ALL—PILES el p2 ...) reeresents all of the piles we’ve isade
where ci is a unic~ue inete~~er associated with a pile.

4. (PILE i ti t2 ...) reeresenets the contents of c u e i where tJ care
be arew object.

Production. Memorw

MAKE-A-PILE -

((HOLDIN G (<riot)- NOTHING) S =obJect) $ —ci
(LOOKING-AT object)
(NUMBER-OF-PILES —m) S =c3
(ALL—PILES ! =r) S =c4
(CURRENT—PILE NONE) $ c5

-->
- (<delete> c1 c3 ~c4 ~c5)(NUMBER—OF—PILES <:addi> 1 e))

(LOOKING-AT -obJect)
(ALL—PILES (<addi> m) ! r)
(CURRENT-PILE (<a ddi> =m))
(PILE (<a ddi> m) ~nbject)(HOLDING NOTHING))

PICK-A-PILE
((CURRENT-PILE NONE) S c1
(ALL-PILES e1 =r)

—- > (<delete > —ci)
(AL L—PILES —ci ! r)
(CURRENT-PILE p1)3

PICK—OBJECT—FROM—PILE
((CURRENT-PILE ci)
(HOLDING NOTHING) $c2
(ALL—PILES p 1 I — v) -

• (PILe pi —object I iest) $ —c4
(LOOKING-AT object))

•
——> e--

•
-

(<delete> -c2 -e4) -

t~ uur. thu-n I 0t’JCCt)
(HOLDING —object)
(PILE api *pest)~

11.1
1

PUT-OBJECT- IN-F ILE
C (CURRENT-FILE —ci)
(HOLDING (<riot> NOTHING) S object) S c2
(LOOKING-AT =object)
(ALL—PILES —ci I =r)
(PILE ci I -rest) S c5

—- >
(<delete> c2 =c5)
(LOOKING-AT -object)
(HOLDING NOTHING)
(PILE ~ci —rest =obJect))

FORGET—THIS—PILE -
((CURRENT-PILE ci) S c1
(ALL—PILES ~-c1 I =rest) S =c2

(<delete)- =ci c2)
(CURRENT-F ILE NONE)
(ALL—PILES I rest —ci)

PILE-IS-EMPTY
((CURRENT—PILE =ci)
(ALL—PILES =cl I =re st)
(PILE ci)

——>
3

DESTROY—A—PILE
((CURRENT-PILE c1) S c1
(ALL—PILES =ci I =rest) S c2
(PILE ci I r) S c3

(<delete> c1 c2 =c3)
(CURRENT-PILE NONE)
(A L.L—PILES I r est)3

THERE-ARE-NO-PILES
((CURRENT-PILE NONE)
(ALL—PILES)

3

LOOK-AT-FIRST-IN-PILE -

((LOOK ING—AT anwthire~) S —ci -

(CURRENT-PILE c1)
(PILE c1 object I —re st)

—->
(<delete> c1)
(LOOKING-AT ob iect)3

LOOK-AT-NEXT-IN-PILE
L (LUUKIN%t-A I object) S cI
(CURRENT-PILE —c i)

- (r ILE —,.1 —..;—.-t. —....~~ — •- S

-—>
(<delete> -ci c3)
(LOCKI”G—AT —r4e~t)

-
(PILE —ci r,ext I si obJec t)3

11.2

—

I

-

Referenc es

(1) G. Chaitin, A Theory of Program Size Formally Identical
to Information Theory, J. ACM, Vol 22 , 1975.

[2] R. Davis, Applications of Meta-Level Knowledge to the
Construction, Maintenance and Use of Large Knowledge

• Bases, Ph.D. Thesis, Stanford U., 1976.

(3] R. Dewar, The SETL Programming Language, Courant Institute
NYU, 1978, (unpublished preprint).

• [4] R. Pikes, P. Hart and N. Nilsson, Learning and Executing
Generalized Robot Plans, A13, 1972.

[5] C. Porgy , 7. McDermott, The OPS2 Reference 1’1~inua1,Depar tment of Computer Science , CMU, 1977.

(6] A. Kolmogorov, Three Approaches to the Quantitative
Definition of Information, Problems in Information
Transmission 1, 1965.

(7] D. Maier, The Complexity of Some Problems on Subsequences
and Supersequences, .7. ACM 25—2 , 1978.

[1 .7. Phillips, Program Inference from Thacoc uriing Multiple
Knowlcdgo Sources, Proc. IJCAI 5, 1977.

[9) N. Rychener, Control Requirenonts for the Design of
Production System Architectures, Proc. Symp. on Al
and Programming Languages, 1977 . -

•

(10] M. Rychener , Production Systems as a Programming Language
for Artificial Intelligence Research , Ph.D. Thesis ,
Computer Science, CMU, 1976.

(11) R. Solomonoff, A Formal ‘theory of Inductive Inference,
Information and Control 7, 1964.

(12) S. Stolfo, Automatic Discovery of Heuristics from Sample
Execution Traces for Non—deterministic Programs,
Ph.D. Thesis, Courant Institute, NYU, 1979 (in preparation).

(13) R. Tarjan, Depth-first Search and Linear Graph Algorithms,
SIAM 7. Ccinput., 1972.

(14) R. T~’~ cn, P4’-P1ii~ng Dnminator~ j - i Di ~c’to~i (ra~hR 1 STM4

- -

J . Coinput., 1972 .

- •
- (151 R. Tarjan, Testing Flow Graph Reducibility, .7. Comput.

and Systems Sci., 1974.

Rb) T. Winogrod, Vr .me tt pr...ntation and the ueclarat ve/
Procedural Controversy, in Representation and Understanding ,
Bobrow and Collins (ad.), Academic Press, 1975.

- ______ - — .~~ - ‘ - - ~r -~~~~~~~~~~~~~~~~~~~~~~
-

~~~~~~ 
- - - - T T - ~

•--—-——~~~~~•‘---— •~4__~_• —•-—-----~‘. —*•~~~ ---~ ••-- ~~~ ~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - — ---~ -~~~~—--- ~~~~~~~~- - --- - --—— - - -

I

— - -

(17] P. Winston, Learning Structural Descriptions from
- Examples, MAC TR—76, MI?, 1976. -

-

_____ —~~~~ — ‘ -44 - t~~~ ~~~~~~~~ -

~~-. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

p.—-- - -

~ ~~
•—.-- -- - --•-- —- -- - - --- ----- ——‘

Distribution List for Contract No. N00014—75-C-0571

Defense Documentation Center
Cameron Station
Alexandria , Virginia 22314 12 copies

Office of Naval Research
Information Systems Program
Code 437
Arlington, Virginia 22217 2 copies

Off ice of Naval Research
Code 1021P
Arlington, Virginia 22217 6 copies

Office of Naval Research
Branch Office, Boston —

495 Summer Street
Boston , Massachusetts 02210 1 copy

Office of Nava l Researc h
Branch Office, Chicago
536 South Clark Street
Chicago, Illinois 60605 1 copy

Office of Naval Research
Branch Office, Pasa~A’~~.a
1030 East Green Street
Pasadena , California 91106 1 copy

New York Area Office
715 Broadway - 5th Floor
New York, New York 10003 1 copy

Naval Research Laboratory
Technical Information Division, Code 2627
Washington, D.C. 20375 6 copies

Dr. A. L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps (Code RD-i)

• Washington, D.C. 20380 1 copy

Office of Naval Research
Code 455
Arlington, Virginia 22217 1 copy

Naval Electronics Laboratory Center
Advanced Software Technology Division - -

• Cods 5200
San Diego, California 92152 1 copy

4 Mr. 5.11. Gleissner
Naval Ship Research & Development Center
Cosputat ion and Jlatheastics Department
Bethesda, Maryland 20084 1 copy

- - 4 ,

___ - - -4-- •~-~——
-‘—-—-- a- ~~~~~~~~ - - - _-.-~~~—- - — ---- -. - — - ~- ~~~~~~~~ •—‘— -. _-_z____ -~ ~ ‘

- - - taSr _ t~A ’ - ~j , ~~~~~-

•

- — _______ _______________

Captain Grace 14. Hopper
NAICOM/MI~ P1~nning uranch (OP-9 16D)
Off ice of Chief of Naval Operations
Washin gton, D.C. 20350 1 copy

Mr. Kin B. Thompson
Technical Director
Information Systems Division (OP—9 1T)
Of f ice of Chief of Naval Operations
Washington , D.C. 20350 1 copy

Dr. R.T. Chien
University of Illinois
Coordinated Science Laboratory
Urbana, Illinois 61801 1 copy -

-

Off ice of Naval Research
Code 432
Arlington , Virginia 22217 1 copy

Professor John Birk
University of Rhode Island
Department of Electrical Engineering -

Kelley Hall
Kingston, Rhode Island 02881 1 copy

I

- ~~~~~~~

1- -

—- - - —- - - -.- -- - -_____ •~~~ - -___________________________________
— ~~~~~——~~~~~I—--•—•-•.—--- — .- -~ ~ ••— —•-—--

