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This paper studies a “local” approach to reconfiguration
of networks of processors , in which new connections are
created only bctween pairs of processors that have a common
neighbor . Algorithms for transforming strings into cycles ,
trees, arrays, hypercubes , cliques, stars and wheels , and
vice versa are presented. The generation of all possible
configurations of a given set of processors is also discussed.

The support of the U.S. Air Force Office of Scientific
Research under Grant AFOSR-77-3271 is gratefully acknowledged ,
as is the help of Kathryn Riley in preparing this paper.

_ 79 04 ~12’~ 059



1 1 Netw:rks of Processors

A network of processors is often represented by a connected

graph where a processor is placed at each node and an arc between

two nodes stands for a direct connection between the processors

at the nodes. Whenever no confusion can arise, we will use “nodes”

and “processors,’t “arcs” and “connections” interchangeably . The

degrees of the nodes are usually bounded since the number of pro-

cessors one can be directly connected to is physically limited.

This restriction becomes significant if one wants to deal with

very large networks.

In the study of networks of processors, there is growing in-

terest in self-reconfiguration of the network [1-4]. Reconfigu-

ration may be required because, for example, (1) the processor at

a node is malfunctioning, (2) a communication line (arc) between

two nodes is broken, (3) a new node becomes available , or (4)

different computational tasks can be performed more efficiently

using different configurations. This suggests the design of

seif-reconfigurable networks of processors having a fixed permanent

connection structure, and also having the capability of generating

temporary structures without disturbing the permanent structure.

The permanent structure is desirable in order to insure that con-

nectedness is always preserved no matter what the temporary struc-

ture may be. It is desirable that the permanent structure be

multi-connected so that it can tolerated , detect and heal “faults”
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such as malfunctioning nodes or broken arcs in the system. The

temporary structures should be easy to obtain from the permanent

structure and be able to perform the desired tasks efficiently .
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1.2. Local reconfiguration

In many network systems, the interconnections of processors

are specified by a switching network [5,6]. However, this ap-

proach has several disadvantages: (a) If the control of the

switching network malfunctions, the interconnections are destroyed.

(b) A switch cannot handle a large number of signals simultaneously;

thus the possibility of a high degree of parallelism is lost.

(C) The many levels of switches required may cause delays; for

example, in (6] it is shown that the switching network of a hyper-

cube of 2~ nodes has n levels and needs n2~~~ switches.

This paper proposes a “local” approach to reconfiguration, in

which reconfiguration is achieved by repeated local arc creation

and deletion. (We assume, for the moment, that the node set does

not change.) Arc deletion is evidently a local process; the end

nodes of the arcs are marked to signify that the arc is considered

to be disconnected. (We assume here that the arcs at each node

have distinct identifiers, so the mark can indicate which of the

arcs is disconnected.) The addition of an arc by local processing

is more difficult, since the two nodes to be connected may be

very far away from each other. Furthermore, many nodes may all

want to be joined with the same node, so that it may not be pos-

sible to maintain boundedness of degree.

If we want to add arcs by local processing , we must first re-

quire that both end nodes agree that they are to be connected .

Suppose nodes m and n are at distance 2 apart with a common neighbor
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k. If node m wants to join to n, then it signals to node k

which checks with node n. When node k receives a positive repl

from node n, it signals nodes in and n , and a new arc is establi~ ‘ie d

between m and n.

Now suppose that node m wants to join to a node n which is

at distance p away. Let m ,k1,k21... ~k~=n be a path from m to n

Then m can first connect to k2 using k1 as the common neighbor.

Next , in connects to k3 using k2 as the common neighbor and dis-

connects the temporary arc to k2 at the same time. Continuing

in this way , m is finally joined to n. This process is i11ustr~ ted

in Figure 1.

Note that if a given bound d on the degrees of nodes is to te

preserved in the new configuration, a new arc should be created

only when the nodes involved (in and n) have degrees less than d.

However, there is no guarantee that the nodes along the path from

m to n all have degrees less than d; hence intermediate degrees

higher than d may have to be allowed . This is not serious, since

the intermediate degrees are still bounded and known. In case

there are multiple requests for new arcs to be created , they wilL

be processed simultaneously provided the degree restrictions (if

any) are satisfied; otherwise the processor must select the re-

quest to be filled at each step.

This paper discusses local reconfiguration in the context of

a formal model for networks of processors, called a cellular

d-graph automaton [ 9-15]. In this model, identical processors
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are interconnected uniformly into a graph . Each processor is a

node of the graph. The network is “autonomous” in the sense that

the next state of a processor (which operates in discrete time

steps) depends only on its own state and the state of its neigh-

bors in the graph. Thus communication between two nodes at distance

k apart takes k time steps; the message is relayed by the nodes

along a path connecting the two given nodes. A bound d is imposed

on the degree of each node, since it is not possible to connect a

processor directly to a very large number of processors. In this

case we may assume that the neighbors are all distinguished by

having the arc ends numbered 1 through d. The advantages of using

cellular systems as networks of processors are discussed in [7,8].

In [11-15] the cellular d-graph automata considered have a dis-

tinguished processor which is regarded as specially marked.

Cellular d-graph automata are studied in (9-15] . In these

papers, the automata are assumed to have fixed graph structure,

whereas in the present paper they are allowed to locally reconfigure

themselves. It is an open question whether this increases their

power as graph language acceptors.
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1.3. Some specific configurations

In this paper we investigate local reconfiguration algorithms

for transforming strings , cycles, stars, wheels, trees, arrays,

hypercubes and cliques into one another. Specifically , we show

how to transform a string into each of the other types and vice

versa. Thus one can get from any type to any other using a

string as an intermediate configuration . Algorithms for trans-

forming one type directly into another could also be given, but

will not be presented here. Note that stars, wheels, hypercubes

and cliques do not have bounded degree.

Any of these types of graphs might be appropriate as a temp-

orary configuration, depending on the tasks to be performed. In

particular, trees have the fewest possible arcs for a given

number of nodes (since we require connectedness), and also have

low diameter, which is advantageous for fast interprocessor com-

munication. On the other hand, a tree disconnects if an arc or

a nonleaf node fails, so that it would not be a good permanent

structure frozn the standpoint of fault tolerance. A cycle, being

biconnected, is a better permanent structure; and if bounded degree

is not a problem, a clique might be the ideal permanent structure .

Sections 2-7 present transformations between strings and

cycles, trees, arrays, hypercubes, cliques, and stars or wheels ,

respectively. Section 8 discusses how to generate all possible

temporary configurations systematically ; it assumes that each node

can count up to O(log n),where n is the number of nodes.
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2. String4--~Cyc1e

Ring (or loop) networks whose underlying configuration is

a cycle are of considerable interest in the design of local

computer networks [5]. In this section we will show how to

change a string into a cycle in diameter time, and also dis-

cuss reconfiguration when extra processors are available.

Given any string, it is easy for a network of proces-

sors with a distinguished node D to make one end of the string

the distinguished end as follows: If D is one of the ends, then

it is the distinguished end. Otherwise D has two neighbors and

it sends the lower numbered neighbor a signal which propagates t-~

its other neighbor. Eventually this signal reaches an end node

and this end node is the distinguished end. We will refer to

this distinguished end as the left end node. It is easy to de-

fine a consistent arc end numbering such that 1 leads to the

right neighbor and 2 leads to the left neighbor. All these steps

can be done in diameter time.

Once the left end node m of a string of length greater than

2 is identified , it is very easy for in to join itself to the other

end node n in linear time , since the path from in is fixed. The

string thus becomes a cycle.

From this it is easy to see that a cycle can detect and tole-

rate one fault, because it then becomes a string and can heal it-

self , i.e., reconnect into a cycle.
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It is also very simple to turn a cycle into a string, since

this simply requires the deletion of one arc , say the lower

numbered arc of the distinguished node.

If an additional processor becomes available to be attached

to one of the processors on the cycle, this processor can act as

the common neighbor to join the new processor to one of its neigh-

bors and disconnect its old link to this neighbor .~ The new con-

figuration is then a cycle including the new processor. See

Figure 2.
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3. String4-+Tree

Trees provide good control of message transmission since each

node has only one father node which may be specified as the sender

or receiver of particular messages. A balanced k-ary tree has

degree k+l and the distance between any two nodes is at most

2*Ilog~~(number of nodes)1. Hence a balanced k-ary tree is a

good temporary configuration.

3.1. String-~-~Balanced Binary Tree

A balanced binary tree is a binary tree such that at each

node, the numbers of nodes in its left subtree and its right

subtree differ by at most 1. For any d-graph having more than

five nodes to be a balanced binary tree, d must be at least 3.

In this section we will show that for any string, the arcs

can be reconnected into a balanced binary tree in diameter (of

string) time. The basic idea is to identify the midpoint in of a

string as the root of the tree and then reconnect it with the

roots of the left and right subtrees (if any), which are the mid -

points of the substrings on the two sides of in . This process is

then repeated .

To identify the midpoints , one end of the string sends out

two signals, U at unit speed and T at 1/3 speed. When U reaches

the other end of the string, it bounces back. Signals U and T

will meet at the midpoint , i.e., a node at distance F-e/21-l from

the node sending out the signals T, U. The midpoint is marked

and both of its neighbors send out signals T and U to find the
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midpoints of the corresponding substrings. Moreover , the signal

T can also serve to guide the intermediate temporary iinks so

that when the new midpoint is identified , it is connected to its

father node in the tree. When a just identified midpoint is con-

nected to a new node, its link to the common neighbor is discon-

nected. The process of finding midpoints and reconnecting stops

when the substring has length 1. Figure 3 illustrates the process.

It takes 3t/2 steps to identify the midpoint of a string , and

then both sides can identify their own midpoints simultaneously .

Since + ~~~~~~ ~-L ~- +  ... + - —~4i~--- < 3 e , a string can b~.
reconnected into a balanced binary tree in O(diameter) (of strinr~)

time.
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3.2. Binary Tree-~.String

Any node having fewer than three neighbors in a binary

tree can serve as the root. The distinguished node sends out a

signal to find such a node; the first one (ties broken by choosing

the lowest numbered one) to return a “found” message will be

designated as the root. Once the root node is determined , it

sends a signal to implicitly renumber the arc ends consistently ,

using 1 to denote the arc leading to the father node, and 2 and

3 to denote the arcs leading to the sons. We will think of the

second neighbor as the left son and the third neighbor as the

right son. From the new arc end numbering , a node is able to

tell if it is the left or right son of its father. Now the root

creates a signal A which propagates down to its descendants.

When a node n receives signal A , and it is the left (right) son of

its father f, then n knows f wants to join to n ’s rightmost

(leftmost) descendant, if any. The reconnection process starts

and f is disconnected from n and joined to n ’s right (left) son k.

Now node k has an extra temporary arc numbered 4, and k knows node

f wants to join to its right (left) son. This process continues

until f is joined to a node m with no right (left) son. Figure

4 shows an example of this transformation. Note that the trans-

mission of signal A continues while f tries to establish a con-

nection with its rightmost (leftmost) descendant. Upon completion ,

the string gives an inorder traversal of the binary tree. If the

tree was obtained by the method of Section 3.1 using the midpoint

of the string as the root, then the above will produce the original

string.
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The time it takes to change a binary tree into a string is

proportional to the height of the tree. It depends on the chosen

root. However, it is always no larger than the diameter of the

graph.

• 
_ _  

j
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3.3. String÷- k-ary tree

Given any integer k�2, it is straightforward for a net-

work of processors, in O(diameter) time, to mark k nodes, n0,

of a string such that n0 is the left end node of

the string, and such that the number of nodes between n~ and

(including n~ but not n~~1) for 0~ i<k-l and the number of nodes

from n1_1 (inclusive) to the right end of the string differ by

at most 1. The method of changing a string into a k—ary tree

is analogous to that for the binary tree in Section 3.1. The

left end node of the string is used as the root. The rest of

the string is divided into Ic (almost) equal length substrings by

the marked nodes nO, nl,...,nk_l as above, where n0 is the neigh-

bor of the left end (root) node. Nodes nO,..,nk_l become the sons

of the left end node and each n~ (O<i~k) is disconnected from its

left neighbor. The nodes between n1 and not including n
~

are then divided into k substrings whose leftmost nodes are the

Sons of n1. This is repeated until the substrings have length

less than or equal to k; then each node is a son of flj and the

nodes are disconnected from each other. Si~nce the divisions of

the substrings are independent of each other, they can be done

simultaneously and the construction of th~ k-ary tiee can be

achieved in O(diameter) (of string) time.

To change a k-ary tree into a string, as in Section 3.2, the

root is determined and the arc ends are renumbered consistently
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so that a node can always tell which neighbor is its father and

which is its ith son. In case a node has less than k sons , they

are numbered 1 to j for some j<k. The root node creates a signal

A which propagates down to its descendants. When a node n receives

signal A and it is the ith son of its father f for some i>l then

n first joins to its i-lst brother in, and disconnects its link

to f. In subsequent steps, n joins to the highest numbered son

of in , and disconnects from m. This is repeated until n is joined

to a leaf. In the resulting string , the root is the left end node.

A node ’s right neighbor is its first son if it is not a leaf.

Figure 5 shows a 3-ary tree and its resulting string . The time

it takes to change a k—ary tree into a string is proportional to

the height of the tree, i.e. O(diameter) (of tree) time.
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4. String- --~array

Given any string such that its t-th node m from the left end

has a special mark R, it is easy to design a network

which marks the i*t_th nodes for l<i and i*t~length of string.

As shown in Figure 6, the left end node sends out two signals,

cx at unit speed and y at 1/2 speed; node m also sends out a sig-

nal 8 at 1/2 speed. When cx meets 8, cx has passed 2t nodes and 8

has passed t nodes, so that they meet at a node m 1 at distance

t from node in, and the special mark R is made on node in1. Signal

cx disappears and signal B continues. When signal ci meets 8

at node m1, signal y also reaches node rn. Whenever signal y

reaches a specially marked node, a new signal cx travelling at

unit speed is created. After 2*length (string) steps, every t-th

node of the string is rt~arked with R, the rightmost node knows

whether the length of the string is a multiple of t, and a message

is sent back to the leftmost node.

All the nodes marked with R can be considered as the right

border nodes of a rectangular array of which each row has t nodes .

To make the string into a rectangular array, every node simply

has to connect itself to the node at distance t to its right.

The left end node initiates a signal tS at 1/2 speed to be propa-

gated to the right. When a node a receives signal 5 , it starts

to try to join itself to a node b at distance t away. Here b

will be the first node past an R node that still has only two

neighbors , since the arc from node a reaches node b before any
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arcs from the nodes to the right of a because 6 is transmitted

from left to right. After an R node receives 6 and is temporarily

connected to a node at distance 2 to its right , the R node is

disconnected from its right neighbor. If an intermediate temporary

link reaches the right end node then the temporary arc is elimi-

nated. Figure 7 shows the first few steps of the process. If

the length of the string is a multiple of t then the resulting

structure is a rectangular array; otherwise , it is an almost

rectangular array of the form

The above shows how to change a string into a rectangular

array in linear time when one of its dimensions is given. We

next show how to change a string into a square array , again in

linear time .

We first show that given any string , say of length r, then in

time 0(r) the network of processors can place a mark R at the

pth node from the leftmost node , where p=1I~1. The left end node

first sends a signal to mark the second node N and the fourth

node S. When a node is marked S, it is the n2th node from the left

for some n and the distance between the nodes marked N and S is

n. The node marked N sends out two signals , a at unit speed and

8 at 2/3 speed. The node marked S sends out signals y at 1/3

speed and 6 at 2/3 speed as shown in Figure 8. 8 and y reach the

same node after 3n steps, when 8 has travelled distance 2n and

distance n. cx and 6 also meet after 3n steps when a has travelled



—u- W -- - - - - —

distance 3n and 6 distance 2n. At the next step, the node where

8 and y meet is marked N and the left neighbor of the node where

cx and 6 meet is marked S. Then N and S send out the signals again

and repeat the process. Note that the distance between the two

S nodes is 2n+l, and that between the two N nodes is 2n, so that

the distance between the new N and the new S nodes is n+l. By

the relation (n+l)2 = n2+2n+l, the new S node is the (n+l)2th

node from the left. The process stops when the signals reach the

right end of the string. Clearly the rightmost node can tell if

the length of the string is a perfect square and the distance

between the last pair of nodes N and S = i /length of stringi . It

is then straightforward to transmit this to the left end of the

string and mark the F /length of string~th node with R. Now usinq

the same method as for rectangular arrays, the string can be

changed into a square array or n+1

i[,Ji_i where i=n or ni-i.

Since in each case the rightmost node knows whether the length

of the string is a multiple of the given dimension or a perfect

square, if a complete rectangular or square array is desired, then

the process continues only when the rightmost node allows it to

do so.

To change an (almost) rectangular array into a string, the

network of processors first identifies a convex corner node as

the root and then builds a spanning tree of the array. The spanning

tree is binary , and using the n~ethod in Section 3.2, a string can
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be obtained from it. The time for all these operations is

proportional to the diameter of the array .

I ,
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5.. String-’--’hypercube

In each of the structures considered above, the degrees of

the nodes are always bounded regardless of the number of nodes.

In this section, we will study changing strings into structures

whose degree depends on this number.

A hypercube of degree n has 2~ nodes. We now describe a net-

work of processors.that can tell whether the length of the string

is a power of 2 in real time. When the answer is affirmative ,

it can proceed to reconnect the nodes into a hypercube . Suppose

the length of the string is 2~ and the nodes are numbered 1 to

from left to right. Node 2ni~~ , being the midpoint of the string ,

can be identified in linear time. When this has been done, the net-

work connects node 2n-l to node 2~~, node 2nl 1 to node ~~~~~~~~~
n-i . . n—inode 1 to node 2 +1. First of all, a new arc joins node 2

to node 2~~~~~~ +2 .  In the next step, this new arc is eliminated , a

new arc joins node to node 2n-1+3 and a new arc joins node

21
~~
1_ l to node Proceeding in this way , each node k stops

and joins to a node in as far to the right as possible , such that

in is not already joined to any node to the right of Ic. After 1

is joined to 2~~~ ÷l , nodes 2
!
~~ and 21

~~~+l become boundary nodes,

and the connection between them is broken. Now , the above can be

repeated for each substring of length 2n-l simultaneously. We

continue subdividing and reconnecting, allowing signals to be

transmitted through the unbroken original arcs only , until the

strings have length 2. Figure 9 indicates why this gives a hyper—

cube.
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The time it takes to get a hypercube from a string is

C~ 2
n 

+ ~~~~~ + + - . .  + c~i = 
C ( 2 ~~~~~

1-l) 
= 2~~ 2n for some

constant C, i.e. = O(diameter(string)) time .

Given a hypercube of degree n , a breadth first spanning tree

can be constructed in O(diameter)~~O(n) time ; it is an n-ary tree

of height n. Using the result of Section 3.3 , this tree is in

turn changed into a string in 0(n) time .

-. _ _ _ _ _  
_ _ _ _ _ _  

j )
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6. String~--~Clique

A clique is a completely connected graph. It has the advantages

that it remains a clique even when faults occur. It also has the

disadvantage that each processor in a clique of size t needs 1-1

connections.

Given a string, we showed in Section 2 that a network of

processors can make one end of the string the distinguished left

end and define a consistent arc end numbering such that 1 leads

to the right neighbor and 2 leads to the left neighbor in diameter

time. Then the nodes having a common neighbor and not already

neighbors of each other will be joined. Some of the nodes at

distance more than 3 apart originally have a common neighbor be-

cause of the new arcs. Thus in the subsequent steps, these nodes

are joined . Continuing in this way , after O(diameter) steps all

the nodes are joined to each other and the connections define a

clique. In order to have good control of the addition of new

arcs, we require that a common neighbor signal the joining of two

nodes only if one of the nodes is its left neighbor in the origi-

nal string. This avoids a node having to process an unbounded

number of signals. Figure 10 shows an example of changing a

string into a clique.

Given a clique, the neighbors of the distinguished node D

know which neighbor of D they are. D sends signals to the neigh-

bors to protect the connections from the ith neighbor to the i+lst

neighbor (l~ i~d). All unprotected arcs except D’s first arc are

disconnected and the connections define a string.
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7. String~-÷Star and Wheel

In a star graph, all the communications between processors

involve the center processor, which is sometimes considered to be

the control or switch center.

Figure h a  shows the process of a string changing into a

star, with the left end node becoming the center node of the

star, in O(diameter) (of the string) time. In each step the left

end node is joined to a node n at distance 2 away and node n is

disconnected from the common neighbor. When the left end node is

joined to the right end node , a star is formed. The degree of

the center node is one less than the number of nodes.

Changing a string into a wheel in 0(diameter) (of string) time

is similar to changing it into a star except that the nodes are

not disconnected from the common neighbor , and after the left end

node is joined to the right end node, the left end node serves as

the common neighbor to join its original neighbor (in the string)

to the right end node. This is illustrated in Figure lib .

A star changes into a string by first connecting the ith neigh-

bor to the i+lst neighbor of the center node C and then disconnect-

ing C from every node but one, say the first, neighbor. A wheel

changes into a string by having the center node signal its lowest

neighbor to disconnect from one of its neighbors and then discon-

nect the center node from all the neighbors except the lowest

numbered one.
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8. Generating all possible configurations

In this section we discuss how a network of in processors

can systematically change itself into all possible connected

configurations. Of course the permanent structure remains fixed ;

only the temporary reconfigurations are changed .

Given any network of processors, a cellular d-graph automaton

with a distinguished node can order the nodes and connect them

into a string according to this ordering [12]. Suppose that d ,

the maximum number of nodes a node can be connected to , is greater

than or equal to m, the number of nodes in the network . Using the

method of Section 6, the string can be reconfigured into a clique.

Clearly each processor can store an rn—h bit binary number. Start-

ing with the first node in the ordering , each processor systemati-

cally generates the rn-i bit binary numbers from 1 to 2”~~ —l . The

number at a node is used to select a set of arcs at the node;

namely , the ith bit being 1 indicates that the ith arc at the

node is chosen. When a number j is generated at node n , if j is

consistent with the numbers at all the nodes preceding n in the

node ordering , then the node immediately following n generates its

number; otherwise, node n generates the number j+l and again checks

with the nodes preceding it. When the last node successfully

generates a number and selects a set of connections accordingly, a

new graph is formed. The connectedness of this new graph is 2asily

be checked by sending signals through the new graph and through

the connected permanent structure. If it is connected , then it
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is a reconfiguration . Otherwise , the next graph is generated .

This is done by adding 1 to the number in the last node ; if

this number is 2m 1 _1 , 1 is added to the number in the second to

the last node, and the last node starts again with the number 1;

and so on. In this way , all the possible reconfigurations will

be generated .

In the above construction , we assume that a processor can be

joined to all the other processors simultaneously . This is usually

not practical unless the number of processors is small. A more

realistic assumption is that each processor can be connected to

a maximum of d processors, and each processor can store d+l binary

numbers of [log ni bits. In this case , each processor can system-

atically generate d numbers of [log ni bits each. Of the d numbers ,

up to d-l may be 0’s and the rest are all distinct. A non-zero

number i at a node indicates that the node is connected to the

ith node to its right in the ordering , with the last (rightmost)

node joined to the first (leftmost) node. When a nonzero number

j is generated at a node n , a copy of j is made and is decremented

by 1 at each step until it is zero; for each decrease , the node k

connected to n serves as the common neighbor to join n to k’s

right neighbor in the string, while initially n is considered to

be connected to itself. After j steps , the copied number becomes

zero and n is joined to a node at distance j to its right . This

can be done for each non-zero number at a node. Again the numbers

at each node are generated systematically from 1 to n starting with
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the left end node. Consistency and connectivity can be checked

as before. Therefore , all the reconfigurations of the network

can be generated.

If the processors have memory of bounded size and the number

m of processors is very large, it is not clear whether a network

of m processors, allowing at most degree d , can change itself

into all possible configurations. One reason to suspect a negative

answer is that an rn-node graph of degree d has up to dm/2 arcs,

which seem to require O(n log n) total memory to specify .
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9. Concluding remarks

This paper has studied local reconfiguration • of networks of

processors. It suggests that a reconfigurable network should

have a permanent structure for connectivity and fault tolerance ,

and temporary structures which are reconfigurations of the perm-

anent structure for performing specific computational tasks eff i-

ciently. Local reconfiguration algorithms were presented for

transforming strings into and from cycles , trees, arrays , cliques,

hypercubes , stars and wheels. As a corollary , any of these can

be reconfigured into any other using a string as an intermediate

configuration. Finally, it was shown that if each node can store

numbers of length O(log n) where n is the number of nodes, then

a reconfigurable network can systematically generate all possible

temporary configurations.
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