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SUMMARY

In this report spectral estimation , using Poisson distributed time samples which have
been time quantized , is considered. An expression for the probability density function for
the time quantized Poisson samples is derived. For a large class of nonbandlimited spectral
density functions the bias of the spectral estimates is determined and an asymptotic bound
on the variance is also derived. Numerical analysis of the bias and variance bound is per-
formed and graphs of the bias as a function of frequency are presented. Finally, examples
of spectral estimates are given with varying degrees of time quantization. Results show
small amount of bias introduced into estimates and variance remains almost unaffected.
The chief advantage of Poisson sampling theory is that it eliminates spectral aliasing on
nonband limited and undersampled time series data. Time quantized Poisson data results
from sampling constraints due to hardware implementation.
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I . INTRODU CT ION
Spectral estimation is a widely used method in the analysis of ocean data. Typically,

continuous time-data are sampled with equally spaced data points and the spectral density
function is then estimated via the discrete Fourier transform (DFT). A new approach has
been proposed for certain applications which use sample points that are Poisson distributed
in time ( I , 2] . The chief advantage of this approach is that it has been shown to be alias
free both by theoretical means (3] and by simulation [2 1.

In this report we consider Poisson distributed samples of a continuous time signal
which have been time quantized . Time quantization for the Poisson case can be explained as
follows. The random nature of the Poisson distributed sample points provides a probability
that two data points may be spaced arbitrarily close in time. If one were attempting to sam-
ple real world data with Poisson distributed data points the sampling device would most likely
be limited in the speed it could extract data samples. Thus, whenever the Poisson distribution
required two events or sample points to come some small epsilon (e) apart , the sampling device
would he unable to respond in time to collect both samples. This epsilon will be referred to
as the “quantization. ”

There are several cases of time quantization which could be developed , some of
which are listed below.

1. If an event occurs during the quantization time interval of the processor , it has
no effect whatsoever.

2. If an event occurs during the quantization time , it starts quantization time over
again.

3. If an event occurs during the quantization time , it starts the quantization time
over again with probability p.

4. The value of the quantization time (e) is added to the interval after each event
whether the event occurs during the quantization time or not.

The firs t thre e cases are very difficult problems to investigate analytically because
the time intervals between events would not be independent. The fourth case is the simplest
and is the focus of the work reported here .

In the following section the probability density function for the sampling times is
derived. In add i t ij n , using the spectral estimator proposed in [ I ]  and assuming tim e quan-
tized sample times , an exact expression for the bias of the estimator is derived for a large
class of spectral density functions. Finally , for the same class of spectral density functions ,
art upper bound on the variance of the spectral estimator of [1 ]  is derived and its properties
examined .

Section III demonstrates the behavior of time quantized data in performing spectra l
estimation with examples of estimation of a first order Gauss-Markov spectral density using
data with various degrees of tim e quantization . In addition , the behavior of the bias expres-
sion is examined numerically with graphs describing bias as a function of frequency for sev-
eral different situations. Finally, in this section the behavior of the variance bound is exam-
ined. Conclusions and a discussion of the time quantization problem are included in
section IV.

3
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II. THEORY
In this section a derivation of the probability density function for the time quantized

sampling times is presented. Also determined are the bias and a bound for the variance of the
spectral estimator of 1 1 1  for time quantized Poisson sampled data.

Let X = {X(t), — 00< t <00 } be a continuous parameter zero mean , second order ,
stationary random process with correlation function C(t) € L 1 and spectral density function
~p( 1~.)given by

~, (X ) =  
f0 0

C(t) e
_
~~tf . ( I )

The time quantized sampling instants are driven by a Poisson point process and are
given by

t 0 = 0

t n t n_ l + c~n + €  fl 1 , 2 , . . .

where the {~ n } are independent identically distributed random variables with a common
exponential distribution F(x )  = I _ e~13X . It is assumed that the sampling instants
are independent of the process X. Note that 13 is the average sampling rate and as shown
in [ I ] ,  almost every realization of a Poisson point process has a density of points 13. The
effect of the quantization (€ ) on the sequence {t n } is to enlarge each interval by € and there-
fore shift the ~th sample time t n by n€.

Given the observation ~X (t k )}~~..1 we will consider the estimate IPN (X) of the spec-
tra l density ~p( A ) as proposed in [ I ] :

M N N—n
= X(t k+n ) X( t k ) cos X(t k+n — t k ). ( 2 )

n 1  k l

where MN > 0 is such that MN 00 and MN/ N -÷ 0 as N -* 00
The following Lemma will be needed in the proof of the bias and variance of the

time quantized spectral estimate (2).

Lemma I: Consider the probability density function for the distribution of the intervals of
a Poisson process.

f 5(s) = 13 e 13~ U(s)

where U( - )  is the unit step function. If the probability density function for intervals of a
Poisson process that have been quantized or time expanded by an amount c is

f5(s) j 3 e 13~~~~ U ( s — € )

then the probability density function for the time quantized Poisso n distributed sampling
times {t n } is given by

f t n ( t) = 13n (t en )~~~ e~~~t - en) U (t - en) . 
(3)4
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Proof: Since the intervals {Si } of a Poisson process are independent , the sampling times {tn }
can be represented by a sum of independent , identically distributed random variables. If
each interval is quantized by an epsilon , we then have

~1 ~l ~~
= S 1 + 5~ + 2€

t3 = S 1 + S2 + 53 + 3e

Now the characteristic function of the time quantized intervals can be expressed as:

(00

= J U(s — e) 13 ~~~~~~~ e
1
~~ ds

~00

=( ~- iw/

The characteristic function of the n th sam ple time ~t~ (w) will then be:

~Ptn (
~~

) E p ~(~,4]n 
=(13~~i~~) 

ele~)hl .

Finally, the density function ft~ (t) is the inverse Fourier transform of

ft~ (t) = 

f ( 

t3 )fl e~~
)(t en) dw

= ~~ 
( t-en) ’~~~ e~~(t~~~~) U(t - en). e ~ 0

Q.E.D.

It is easily seen that f t n(t) satisfies the properties of a prob ability density function
(4 J namely

ftn(t) ~~‘ 0 V t

(00

J ft n(t) dt =

~ 00
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Figure 1 is a graph representing the probability density function ft n(t) as a function
of time for several values of n.

STATISTICS OF THE SPECTRAL ESTIMATO R FOR THE TIME QUANTIZED CASE
Here we assume that the process X is a stationary , Gaussian process. For a large class

of spectral densities we will present an expression for the bias and a bound for the variance
of the spectral estimator (2) for time quantized sample points.

Let the covariance function C(t) have the following form

C (r )  = A e~~ TI (4)

with corresponding spectral density function

a ( 5 )
~ \~2 + x 2j

where A and a are fixed positive constant parameters , and define the bias of the estimate (2 )
to be

b [~~~(X) ] E [~~~(A)]  — p (X).

Theorem I : Let the covariance function C(t) be given by (4), then the bias of the estimate
( 2 )  for the time quantization c is equal to:

b [~~~( X ) ] ~~~ ~~~~ (i 
_
~~ )

(13e~~~)~ [(a +p) 2 + X 2 ] n/2

cos [ (X e n) ÷ n t a n 1 ( 1 3) ] _~~
( 2

a
2) .  ( 6)

Proof: Let EX and E {t n }  represent expectation with respect to X and {t n }. Then

M N N-n
b [pN Ot)J = E~t~~E~ ~~~ X(tk÷n ) X(t k ) cos X (t k+n —t k . ~~~~

n 1 k 1

= (N - n)f C(t) cos (Xt) ftn(t) dt 
- 

~~( 2  +

where ftn(t) is given by (3). Substituting for C(t) and ft~ (t ) we then have

= 
it13N ~~~(N - n) e~~t cos (Xt) ( t-  

13rt e~~
(t - e n )  dt

it (a2 + ~2)

6



—b: w- —~ 
- -- - .

0

q

w

—

V

J~~~~~~~~~~~~~~~~

V
V

I . —
V

I V

V

I • 9
.
~~

:~
001 0’S 0 9  0~~ 0’~ 0’O

(~ ) u~

7

- 
, .•t .



• —
~~

- w - -—- -
~~~~ 

- -

= 
it13N ~~~( N  - n)~~~~~J ) ,  e13~~

f 
~~~~~~~~~ 

+ a) cos Mu + en) un-I du

it (a~ + x 2~

by a change of variable u = t — ne. Next expand the cosine function to give

- e13 :~~
n(13

~~~) { COS (Xen)f e
_u( 13+a) cos (Xu )

- ~~~ du - sin ( Xe n )f  e U(13+
~~ sin (Xu) u~~~ du }_ 

~~~~~~~ + ~2)

= (N  - n) ( I ) !  e J cos (X en ) F(n) [ (a  + 13) 2 + X 2r~~
2

• cos 
[

n t an l (  +~)] 
- sin Xc n ) F ( n ) I a + 1 3 ) +~

. 1 1 / x \ l  A a
- sin I n  tan I I I

L \ a+f 3/j  lT a2 + X 2

M N
= -

~~ > (I _
~~)

(Pc~~~~ [(~~~+ 1 3)2 +X 2
1

’2

1= 1

I -I ’ X A /  a
- cos l A e n + n t a n  I— 1I  — — I

L \a + 13Jj 1r \a 2 + X 2

where the integrals  were evaluated using 15 1.
Q.E.D.

An examination of (6) reveals that since the first few terms in the summation are
dominant  there is not a high dependence on N and MN . We see also that the bias decreases
as X increases at a rate of at least l/ X .

Next we consider the variance ‘ f  the estimate ( 2 ) .  We assume that the process X i s
stationary to order four and has covariance and spectral density functions as give n in (4) and
( 5) ,  respectively.

In the derivation of the variance hound we begin with the same procedure as in L I I .
Consider the fourth order cumulant function defined by

Q(r 1 ,  r - ,, r 3 ) = E (X ( t )  X(t + r 1 ) X(t + r 2 )  X(t + r 3 ) 1

— C (r 1 ) C(r 3 — r 2 ) — C ( r 2 ) C ( r 1 — r 3 ) — C(r 3 ) C ( r 2 — r 1 ) (7)

where X and ( ‘(r) ‘ire as previously defined.

8
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If we assume the process X to be Gaussian , then (7) becomes

E [X(t) X ( t + r 1 ) X ( t + r 2) X ( t + r 3) ]  C(r 1 ) C(r 3 — r 2 ) + C ( r 2 ) C(r 1 — r 3 )

+ C(r 3) C(r2 — r 1 ) .

Now , we look at the second moment of the estimate (2)

M N MN N-n N-n ’
E[~~~( X ) ]  

(it13N) 2 
~~~ n~~l ~~ l 

~~~ E(t~~{
C(t k+fl tk ) C(t k ’+fl h t k ’)

+ C(t k ’ - tk) C(tk÷fl - t k ’+n ’) + C(t k ’+n ’ - tk) C(tk’ - tk+n ) J
- cos X(t k+fl — tk) cos X(tk;+n ’ — tk’). (8)

The expectation with respect to t n in (8) makes its solution very difficult to obtain. In order
to solve the expectation in (8) and bound the variance of (2) we will break the summations
up and evaluate them in eleven disjoint regions corresponding to the different permutations of

{k , k ’, k + n , k ’ + n ’}.

Let E[~~~( X)I 2 be divided into the following three expressions

E [~~~(X)] 2 = 

~~l 
U~(X)

where -

M N MN N-n N-n ’

N 2 Et n C(t k+n t k ) C(t k ’+n~~~t k~)
(ir13 ) n 1  n ’ l k 1  k ’ l

• cos X(t k+n - tk) cos X(tk~+n~ 
- tkl)1 (9)

M N M N N-n N-n ’
U2(X) = 

(it 13N)2 
~~~ n~~l ~~ l ~~ I 

Et~ { C(t k ’ - tk ) C(t k+n - t k ’+n ’)

• C05 X (t k+n - t k ) cos X(t k ’+n ’ - t k ’) ( 10)

M N MN N-n N-n ’
U3(A) = 

(it13N) 2 
~~ ~~ ~~ 1 ~~~l 

Et n C(t k ’+n ’ - tk ) C(t k ’ - t k+n )

- cos X(tk+fl - tk) cos Mtks÷nP _ t k’)J . (II)

9
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Lemma 2: If the process X is Gaussian and has a covariance function given by (4~ then an
upper bound on U 1(A) is given by:

MN
A2 

~~ (N _ f l ) W 2n + 2A 2

(it/3N) 2
n =l (irl3N)2

M M
1 

N N 
e~~ L~~~1Xj ~n 

e~~ [~~~ X I n
• ~~ 13fl+fl R

~ ([( +13) i

~~~~~~) 
RQ(L( 13) iX I)

n i n  1

- [ ( N _ n ) ( N _ n ’ _ n +  l ) -~~ ( N - n ) ( N - n  + 1)] l ( N - n  - n ’ - 1 )

M N MNI M N N-n N-n ’-k
+ ( N — n ’) W ’~ (n ’ — l ) +  W~th

n l  n ’ lLn i+n ’ k N—n ’_n s n—n ’

M N n+l 1
+ ~~~ ( N _ n ’ _ n _ l ) W ~~h1j

n 1+n ’ s n—n ’

+~~~~ (N~~fl) Wn[!~. . + 2 _ ~~fl] I
where

Proof: See appendix.

Lemma 3: If the process X is Gaussian and has a covariance function given by (4) then an
asymptotic bound of U2(A)  as N -÷ 00 is give n by:

U2(X) ~ Y2(X) = 
A 2 

—~~~ RQ 1(a + 13 - iAr 1 ( 2(a + 13)
(~13)

2 N 2 L \(a+(3)2+X 2

MN MN N-n’-l

~~ ( N — n ’ — s ) W~~~ [ ( N - n  — n — I )
n l  n ’ l s n

+ R Q  I (a+13-iX) 
~~ 

2 [(a+13)2 +1~
2 i -13e~~~ [ 2(a+ 13)cos(eX)-2Xsin(eX)J

L~~
a—ix _13e~ _ iX)J [1 (a+13)2 + ~2 

~~~~~~~~~~~~ 
2(a+ 13)cos(eX ) - 2X sin (eX ) J+ 132e 2

~~

10
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2(a+ 13) — 213e~~~ cos (ea)
- 213e~~~[(a + 13) cos ( e A ) - X s i n (eX)] + 132e 2~~ ]

E 
a + j 3 - i A  1

~~ 2~~ +~~) _________
_________________  _________ 2(a+ 13)  \1

+ Rl~ _________

( a + 1 3 _ i X ) _ 1 3 e
_e( tX)j~~a+ 13)2 + X 2 ] [~~~~

1 3 ) ( ( a+13)2 ÷X 2 )j

+ 2RQ
E 

a +j 3 iX 12
(a+13~~iA)~~pe_e(

~~~
1X)] J

Proof: See appendix.

Lemma 4: If the process X is Gaussian and has covariance function (4) then an upper bound
on U3(X) is given by:

Wn+n ’2 
M

N [M
N

U3(X) ~ Y3(X) = 
2A 

2 > (w
N+i 

(1 - ~~-N+n+n 
~ 
- 

- 1 
(N - n - n ’

))(irI3N) n l  n ’=l (W—1 ) 2

M N N-n M N ,

+ W - I (W N k  - W~~) + (N - n ’ - 
wn (Wn +n— l 

-

n + i )
Wn _ l

n ’ n k=N—n ’—n+2 ~

÷Wn [3n2N _ 6 n N + 6n 2 _ 
~~~ 

_
~~~~]+ ( N  - f l )  W 2n + [ 4 N-2 ]  Wn]

+ 
2A~- >

M N E M N
(it13N) 2

n ’ I ‘ W~ — 1
= n n

M N N-n ,1
+ ~~ ~.~_1 (w N—k+ 1 _ W n ) + ( N _ n ~)(n ’ _ I ) W n ] .
n n ’ k N—n—n ’+2

Note that Y3( - )  does not depend on A.

Proof: See appendix.

Theorem 2: If X is a continuous parameter zero mean , fourth order , stationary, and Gaussian
random process with covariance function given by (4), then an asymptotic bound on the
variance of the estimator in (2) is given by

I l
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Var [~~~(X )] = U 1( X) + U2(X) + U3(A) — E 2[~~~(X ) j

~ J Y 1 (X )I + 1Y 2(X) I + Y3(X) I — JE 2 L~ N(A) 1 (12 )

asN~~
oo,MN~~

o0,MN/N~~
O.

Proof : The proof follows from Lemmata 2, 3, and 4.

The forms of Y 1(X), Y2 (A)  and Y3(X) are unfortunately very awkward and as a
result , it is not easy to see how these equations behave . The summations in Y j (A) and Y3(X)
may be eliminated through the long and tedious procedure of using geometric expansion
type identities. This is presently being performed and when accomplished will greatly sim-

• plify the variance expression and provide an insight to the behavior of the variance. In addi-
tion , if the bounds Y j (X ) and Y3(X) can be shown to be maximized at e = 0, then they can
be bounded by the results in [ 1 J :

U 1(A) — E2 [~~~(X ) ] = 0(1/N)

U3(A) 0( 1/N)

uniformly in A as N -~~ 00~

12
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III. NUMERICAL AND SiMULAT iO N RESULTS
Since the theoretical analysis , in Section II , showing the bias and variance of the time

quantized spectral estimator , is somewhat involved and not easily interpreted , this section
will provide insigh t into their behavior. Here we will present graphs of the bias as a function
of frequency for several €113 ratios , a numerical evaluation of the variance , and examples of
time-quantized spectral estimates using simulated time series data.

Figure 2 is a graph of the spectral density for the process X where covariance function
parameters a and A have been set equal to 1. This is representative of a nonbandlimited ,
low-pass spectrum. The peak of this spectrum is at A = 0, the half power point at A = I , and
the spectrum decreases at a rate proportional to i/ A 2 . By adjusting the parameters a and A ,
the shape of the spectrum can be changed to broaden or narrow the peak. This spectral
density will be used in the following numerical analysis of the bias and variance. The
basic form of the covariance function C(t ) used here which results from the solution of a
first order homogeneous differential system can be com bined [6] by addition to form the
solution to a homogeneous differential system of arbitra ry orde i .

BiAS:
Let the bias of the spectral estimator (2) be given by (6). We then define the per-

cent bias as:
b[~~~(A )]

% b [~ N( X ) ]  = 
p(X)

Figures 3 through 8 are graphs of both the bias and percent bias as a function of fre-
quency A for several values of the average sampling rate f3 and time quantizat ion e. Three average
sampling rates were used for the calculations of the bias. Figure s 3 and 4 were generated with
13=1 rad/sec , Figures 5 and 6 were generated with j 3 — 5  rad/sec and Figures 7 and 8 were generated

0 0  2.0 1.0 8.0 8,0 20.0 22.0 21.0

LAM BDA

Figure 2. Spectral density function simulated for numerica l analys&s .

13
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with 13 = 10 rad/sec. Each of the graphs contains 4 curves. These curves represent time quan-
tization epsilons of 0.01 , 0. I , I .0 and 10.0 percent of the average sampling rate 13. The hori-
zontal axis of each graph represents frequency and the bias and percent bias are computed
at frequency increments of I .  The value of M N used is 6 for 13 = 5, 10 rad/sec and M N =
fo r 13= I rad/sec.

The behavior of the bias for the larger values of epsilon is oscillatory and increases
with  sampling rate. The values of the bias , although larger for A < 10 , are overall fairly small
b u t as expec t ed , increase as € becomes larger. This is probably due to spectral aliasing of high
frequency components.

In order to show the relationship of the bias to the spectral density , Figures 4 , 6,
and 8 represent percent bias. The percent bias is the percent of the amplitude of the spectral
density which is offset due to bias. The parameter values in these three graphs are the same
as for the bias graphs. Each of Figures 4 , 6 and 8 shows a percent bias which increases with
epsilon. The graphs also show a divergence of percent bias as frequency increases. This can
be misleading unless interpreted correctly. It should be clear that the spectral density becomes
smaller as frequency becomes larger which means that a constant value of bias becomes a
larger percent of the spectral density as frequency increases. These graphs also show that the
amplitude of the spectral density decreases at a rate greater than the bias.

VARIANCE

The asymptotic variance bound for the time-quantized spectral estimates given in
( 12)  is very cumbersome. There is li t t le that can be said about it in its present form . There-
fore , in order to provide some insight to its behavior , it has been evaluated numerically for
several sets of parameters . Two values of epsilon and two sampling rates were chosen in the
numerical evaluation with N = 1 000 and M N = 6. Table I shows the bound on the variance
of ~N (X ) along with Y 1 ( A), Y-,(A), Y 3(X) for f3 = 1 and €1 13 = 0.0001. The values of the inter-
mediary funct ions Y 1 ( X), Y 2( X), Y 3(A ) are shown in order to give the reader a feeling for their
relative contr ibut ions to the bound of the variance ( 12).  Note that the major contribution
to the variance comes from Y 2(X) as predict ed in I l l .  In addition , the variance is almost
invariant with A except at A = 0. Tables 2 , 3, and 4 provide numerical results for 13 = I rad/ sec ,
€ = 0.01 ; 13 = 10 tad/sec . € = 0.00 1 ; and 13 = 10 rad/sec , € = 0.1 , respectively.

Table 1 Numerical results showing second moment component bounds of spectral estimator
~N( A )  and the asymptotic variance bound of estimator for 3 l  tad/sec . € =0. 000l .

A Y 1 (A) Y2 (A) Y3 ( X)  Var (I~N(X) ) bound

0 2.40 1 X 10 -2 0 243 4.065 X lti3 1.733 X 10~
10 5 . 3 l 3 X  l0~~ 4 9 5 2 X  10-2 4.06 5 X  l0~~ 5.411 X 10 2

20 5.326 X I0~~ -‘ ,45 X l0 2 4.065 X l0~~ 5.305 X I0~~
30 533 1 X I0~~ 4.825 X I0 2 4.065 X l0~~ 5. 285 X I0~~
40 5.333 X l0~~ 4.8 18 X io .2 4.06 5 X lO~~ 5.278 x l0~~
50 5.333 X l0~~ 4.8 15 X 1o 2 4.065 X l0~~ 5.275 X 10 2

60 5 333 X l0~~ 4.813 X 10 2 4.065 X l0~~ 5.273 X l0~~
70 5.333 X l0~~ 4 . 8 l 2 X  l0 _2 4.065 X I0~~ 5. 272 X 10—2

80 5.332 X l0~~ 4.81 1 X lO _2 4.065 X lO~~ 5.271 X lO
_2

90 5.33 1 X l0~~ 4.81 1 X 10 -2 4.065 X l0~~ 5.271 X 10 2

100 5.330 X l0~~ 4 .8 10X 1o 2 4.065 X I0~~ 5.270 X 10-2
20
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Table 2. Num erical results showing second moment component bounds
of spectral estimator ~N (A) and the asymptotic variance bound

of estimator for (3 = 1 rad/sec , € = 0.01.

A y 1(A ) Y 2(A) Y 3(A) Var (~N (X )) bound

0 2.400 X 10 -2 0.239 3.942X l0~~ 1.728 X io 1

10 5.313 X l0~~ 4.8 57X 10 2 3.942 X l0~~ 5.304 X 10 2

20 5.326 X l0~~ 4.7 5 2 X  10 2 3.94 2 X  5.l99 X lO _2

30 5.33 1 X l0~~ 4.733 X 10—2 3 .942X l0~~ 5.180 X l0 2

40 5.333 X l0~~ 4.727 X 10-2 3.942 X l0~~ 5. l 74 X 10-2

50 5.333 X 1O~~ 4.725 X ~~~ 3.942 X io~~ 5 1 7 2 X io 2

60 5.333 X l0~~ 4 7 2 5X 10-2 3.942 X l0~~ 5.172 X 10 2

70 5.333 X I0~~ 4.726 X 10-2 3.942 X I0~~ 5.173 X io 2

80 5.332 X l0~~ 4.727 X 10-2 3.942 X l0~~ 5.174 X 10-2

90 5.331 X l0~~ 4.729 X 10-2 3.942 X l0~~ 5.176 X io _2

100 5.329 X l0~~ 4 .732X 10-2 3.942 X l0~~ 5 I 7 9 X l0 2

Table 3. Numerical results showing second moment component bounds
of spectral estimator IPN (A) and the asymptotic variance bound

of estimator for i3 = 10 rad/sec , e = 0.001.

A Y 1(A) Y 2(X) Y 3(X) Var (~ N ( X))

• 0 4.779 X l0~~ 5.74 1 7.626 X l0~~ 5.765

10 6.187 X l0~ ~~~ x ~~-2 7.626 X l0~~ 4.506 X 10~~
20 6. 193 X l0~~ 4.435 X 10-2 7.626 X l0~~ 4.467 X 10 -2

30 6.l87 X l0~~ 4.598 X 10-2 7.626 X l0~~ 4.680 X 10-2

40 6.187 X ltY5 4.654 X l0 2 7.626 X l0~~ 4.736 X 10-2

50 6.l87 X l0~~ 4.680 X 10-2 7.626 X l0~~ 4.762 X 10-2

60 6. 188 X l0~~ 4.693 X 10 2 7.626 X l0~~ 4.775 X 10-2

70 6.l88 X lO ~ 4.70 2 X  10-2 7.626 X l0~~ 4.784 X I0 2

80 6.l88 X l0~~ 4.707 X io 2 7.626 X I0~~ 4.789 X 10-2

90 6.l88 X I0~ 4 .7 11 X 10 2 7.626 X l0~~ 4.793 X 10 -2

100 6.188 X 10~~ 4 . 7 l 4 X  io -2 7.626 X l0~~ 4.796 X 10-2
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Table 4. Numerical results showing second moment component bounds
of spectral estim ~~ IPN (A) and the asymptotic variance bound

of estimator for 13 10 rad/ sec , € = 0.1.

A Y 1(X) Y 2(X) Y 3(X) Var (
~N(X))

0 2.604 X l0~~ 1.550 3 403 / l0~~ l 543

10 644 1 X l0~ 2. 109 X 10-2 3 403 X 10~~ 2 139 X 1 0—2

20 5 .8 10X l0~~ 2.509 X i0 2 3.403 X l0~~ 2. S4l X 10—2

30 5.427 X l0~~ 3.344 X i tr2 3.403 X l0~~ 3.381 X l0 2

40 4.002 X l0~~ 5.624 X 10 -2 3.403 X 10~~ 5.66 1 ~ I0~~

50 4.942 X l0 5 7.090 X 10 -2 3.403 X l0~~ 7. l 24 X 10-2

60 4.853 / l0 5 5.252 X io 2 3.403 X l0~~ 5.291 X 10-2

70 3.925 X 10~~ 4 1 1 3 X  io _2 3.403 X 10~~ 4. lSO X 10-2

80 4.046 / I0~~ 3.890 X io 2 3.403 X I0~~ 3.927 x

90 3. 867 X I0~~ 4.276 X io _2 3.403 X l0~~ 4 . 3 l 4 X  10-2

tOO 3.820 X 10~~ 5 130 X 10 -2 3.403 X l0~ 5.168 X 10-2

For the sake of i l lustrat ion we generated time series data as in 12 1 for the spectral
densi ty  of ( S )  wi th  •\ = a = I , sampled it using several values of epsilon and , using the esti-
mator ( 2 ) .  computed spectral estimates. The results are shown in Figures 9 , 10 . and I I  for
13 = I , 5. and 10 rad/sec , respectively. Here the epsi lons used are the same as those used in
comput ing  the bias and percent bias. In these graphs the true spectral density p (A ) is repre-
sented by a solid curve wi thout  symbols. The vertical axis rep resents ampli tude , while
frequency is along the horizontal axis. Any negative es t imates  generated are set equal to
zero since the spectral density by definition is everywhere positive. The number of data
points used Was N = 1 000 and M N was ch ose n by generating spectral estimates using several
values of M N and selecting t 1~ M N which provided the best estimate ( based on mean squared
error).

In Figure () where the lowest average samp ling rate was used (13 = I rad/ sec), the peak
of the spectral density is generally estimated quite well. As the average sampling rate is
increased (Figures 10 and II). the values for the estimates of the peak become biased. Thi s
bias is predicted in F igures 3, 5. and 7 where bias near the origin increases both as a functio n
of e and as a function of (3. It also appears in I’ igures 9. 10, and II that spectral estimates
for  A > 5 improve with increasing the value of 13. There is no periodic type structure in any
of the es t imates  that  would suggest spectral aliasing as one might expect , especially for the
larger epsilons.

Spectra l estimates for the case when e = 0 were computed and observed to be almost
identical for the case €/13 = 0.01%. For this reason , spec tral es ’una t es for e = 0 are not
shown on the graphs.
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IV . CONCLUSIONS

This report has shown results of an examination of the spectral estimator proposed
in (11 for time-quantized Poisson distributed sampling intervals. The probability density
function for the time-quantized Poisson samples as well as the bias and a bound for the
variance of the spectral estimator for a large class of spectra have been derived.

On performing a numerical analysis , the bias of the spectral estimator was seen to
increase with increasing average sample rate (3 and decrease wi th  frequency A at a rate be-
tween A and A 2 . In all cases examined the bias appeare d to he largest in the region around
A = 0 and increased with epsilon .

The bound for the variance of the spectral estimator. which was derived throu gh a
complicated procedure , resulted in a cumbersome asymptotic expression . With use fu l
info rmation difficult  to extract from this bound , it was evaluated numerically and found
to be small with respect to the spectral density except near the origin. In addition , except
near the origin , it was found to have small dependence on the value of the average sampling
rate.

It was shown , using synthetically-generated data , that the behavior of the time
quantized spectral estimator was similar to that predicted by the theoretical bias particularly
near the origin and not adverse to that of the variance bound. This simulation also showed
that degradation of the spectral estimates was small for €113 ratios of less than 0.1%, hut  for
larger €/13 ratios the effect was quite pronounced. The measure of degradation used was
integrated mean squared error over the range of the graphs. It is not clear if mean squared
error is the best measure of degradation since other measures were available , but it was used
in order to be consistent with 12 1. Another measure of degradation which could be used is
the quality of estimates of the peak of the spectrum. For this measure the results are the
same; larger epsilon yields more degradation.

The results in this report indicate that for the class of spectral densities examined , a
time quantization of the Poisson sample point of up to 0.1% of the average sampling rate
may perhaps be tolerated.

There are several questions which remain unanswere d concerning this time quantized
Poisson sampling problem and should be pursued. Firs t of all , the asymptotic bound for the
variance of the estimator should be simplified and a determination of its tightness be made.
It is not clear that for € = 0 the bias and variance results reported here are bounded by or
equal to the results of I l l .  This should be determined. The effects of using different
covariance weighting functions should be examined for the time quantized case. Finally,
other more complicated spectral densities , such as a narrowband signal modulated by a
carrier signal , could be examined for results comparable to those reported here .
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V. APPENDIX
Here we present proofs of Lemmata 2, 3, and 4 which , when combined , make up a

bound for the second moment of the spectral estimator (2) for the Gaussian case, with zero mean.
As was previously mentioned in section II , the expectation with respect to t n in (8)

cannot be evaluated unless it is examined over regions involving the different permutations
of {k , k ’, k + n , k ’ + n’ }. These nonintersecting regions R~ are defined in [1 1 and are :

R 1 ‘~ ( k < k + n ~~~k ’ < k ’ + n ’ I k ,k ’ E R )

R 2 “ ( k < k ’ < k + n < k ’ + n ’ I k ,k ’ E R )

R 3 ~ ( k k ’ < k + n < k ’ + n ’ I k ,k’ ER)

R4 0 ( k < k ’ < k + n r k ’ + n ’ I k ,k’ E R )

R5 ~‘(k k’<k+ n k ’ + n ’ Ik ,k’ ER)
(A-I)

R 6 ( k < k ’ < k ’ + n ’ < k + n l k ,k ’ E R)

R 7 ( k k ’ < k ’ + n ’ < k + n  t k ,k ’ ER)

R 8 0 ( k ’ < k ’ + n ’~~~k < k + n I k ,k ’ E R )

R 9 ~~(k ’ < k < k ’ + n ’ < k + n I k ,k ’ E R )

R 10 (k ’ < k < k ’ + n ’ k + n  I k ,k ’ E R )

R 11 (k ’ < k < k + n < k ’ + n ’ I k ,k ’ ER)

or 
The union of these regions is equivalent to summing over the indices k and k ’ of (8)

11
R =  U R~.

i=I

There is considerable symmetry between pairs of the regions defined in (A- 1) which
can be used in evaluating (9), (10), and ( 1 1) .  Let Uk (A ), k = I , 2, 3 be the sum of U~(X) over
the regions R~, specifically:

Uk (A ) = >  U~(X) . (A-2)

Then by the symmetry of the regions:

U~(A) U~

U~(A) = U~(A)

U~(A) = U~(X )

27
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U~(A) = U~~ (A)

and we can write (A-2) as

Uk ( A ) = U ~ ( A ) + 2 ~~~ U~(A). (A-3)

i*5

In order to prove Lemma 3 we will need the following relationships which are shown
in [ 1 1 .

Let

r i..,L uI1 f —n— 0
and

{cn }~~~

be two sequences of complex numbers which are absolutely summable and let d be a com-
plex number such that 0< dl ~ I .  We then define

MN MN N—n N—n ’
= b~ ’~~ 

d n — ( k ’— k ) Ck ’_k+n I _n (A-4 )
n l  n 1  (k ,k ’ER ~) 

• =

M N M N N-n N-n ’
Q6 =_ J~ > ~~ bk~_k d 0 C fl .,,n s + k’-k. (A-5 )

n I  n ’ l (k ,k ’ER6)

As N — we have the following asymptotic behavior:

0( 1/N)
00 IdI<I

Q2 ~~~~

[

~~~~b

r][
~~~ C

s] 
d I ( A-6)

0( 1 /N )

~J I<l  
(A-7)

0( 1/N)
00 Id t <I

= 

~~~~~~ 
b
r] d - I 

(A-8 )
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0( 1/N)

= b~C~ 
—~~~~ d = 1 (A-9)

0( 1 /N)

Q6 
~~~ b

r][~~
C
S] 

~d t < 1  
(A-b )

Proof of Lemma 2:
We have from (A-3 )

U 1 (A) U~(A) + 2 
6

i*5

where
MN M N N-n N-n ’

• U~(A ) = 

N 2 
Etn IC(tk+n — t k ) C(t k l+n ’ — tk l)

n l  n ’ l k ,k ’ER~

cos [A(tk÷fl — t k ) I cos [A(t k l ÷n ’ — tk’)J. (A-I I)

In the sequel , U~(A) will be considered separately for each region R 1 and we will use the nota-
tion f~(t )  as a shortened version of 

~t ( t).• n

Region R 1 :
Since the intervals t k+n — t k and tk ’~ ‘

1 — t k ’ are stationary and indepen dent then we
can write:

M N MN N-n N-n ’

N 2 
Z n Z n

, (A 12)
n l  n’ l k ,k ’ER 1

where

coo

z,1 / C(t) cos (At ) f 0( t ) d t .
J O

Evaluating the double sum over (k,k’) in the region R 1 we have
M N M N

U~(A ) = 

(irN 13)2 
~

“i n ’~~I 
z,,z~ . [(N_ n)(N_n ’_ n +l)  — ~~(N— n)(N— n + I )  1 (N—n —n ’— l) ]

fl (A-l 3)
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where I( is the indicator function, i.e.,

I (N—n—n’—! )= I if N— n—n ’—! ~~O
I (N -n — n ’- l )  0, otherwise.

As an example of evaluating multiple sums over regions we will go through the steps
in evaluating the double sum in (A- I 2) over R 1.

N—n N—n ’ N—n N—n ’

I = I (k<k+n<k ’<k’+ n ’)
k ,k’eR 1 k= I  k ’=l

N-n N
= I (k ’ ~ N - n’) 1(1 ~ n) !(n <k’ - k) 1(1 ~ n ’).
k=l k=l

Now let s = k ’ — k and we have

N-n N

~~ ~~~1 (s <N - n ’ - k ) l ( l  ~~n ) l ( n ~~~s) I( l ~~n ’)
k 1  s 1

N—n—n N—n ’—k N—n

~~ l = ~~~ N - n ’ - n +  I - k

( N - n ) ( N - n ’ - n +  l ) - ~~ ( N - n ) ( N - n +  I) .

Now we solve the integrals Z n and Zn ’ using Lemma I and (4) .
coo

Z n C(t) cos (At)  fn(t) dt
0

A f e ~~ I t l cos(At) 13~ ~~~ e~~(t~~~~ U(t -en)  dt

(t en) n l  + e t I (~~~P)~~~ I (t - en)~~~ dt

~~~~~ 
{[(a + 13) - iAl-n e~~~L(~~ 13) -iA] r (n)

+ [(a + 13) + iAI-n e~~~1
~~~

13
~~~

] F(n) j

30

- •.—.------- •-- - - . -



- — -

Aj3~ l /e a - i A ] \~÷ / e~ 1 IA J \
fl

— 

2 
[~
[(a+13)

_ iA J) \ [(a +~~ +iA J)

Aj~’~ ~~~~~~~~ \
~ i

(A- l4 )

Similarly we have for Zn?:

~~~~~~~~ 
~

z fl ’ — ~-- R~(~ +13) . (A-IS)

N O W using (A - l 4 )  and ( A - I S )  in (A - l 3 )  we have

MK I M~.TI’ I ~A “ Au X ) A _~~~~~ 13n+n ’ RQ (.
e 

) 
R

~ (-~
_

~~~ ) .A ] )

[(N_ fl)(N_ fl’ _ fl + I)-~~(N-n)(N-n+ l)]I (N_ n_ n ’ _ 1 ).

In each of the regIons 2—6 we have a dependence between {C(t k+n — tk )
~O5 A l  t k+n — t k ) )  and t~ 

( t k
l 

+ ~~
‘ — tk ’) cos A (tk ’+n ’ — tk ’)} which makes the expectation in

• \ I I ver ~ di fficult  to solve . We will deal with this dependency by choosing appropriate
h o u n d s  b r  t he intervals ( tk +n — t k )  and (tk ’+n ’ — tk ’) which will make them independent.
Ihe  hound s selected ( I )  a rc as follows.

~ 
t k+n — t k. then we have

t k ’.,k i = 2
t k+n _ t k i 3

‘Y~~ ~~~~~~ i = 4
t k+fl _ t k i = 5
(t k ’ — t k ) + (t k+fl — t k ’+n ’) i = 6

and if 6 tk’÷fl’ — t k ’ then

tk’+fl~~
tk÷fl i 2

t k ? +n ? t k+n i = 3
6~~~ t k ’+fl i _ t k i i = 4

t k ?+n I — t k ? = 5
t k ? ÷fl ? ’_ t k ? i 6 .

We also will use the bound

IC(r) cos An ‘~~ IC(r)I
in evaluating (A- I I )  for these regions.
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Using these hounds we have the following :

M N M N N-n N-n ’ 0o

Uj’(A~~ 
1 

2 > > > ~~ 
f IC(t)l fk’_k(t)dtJ

” 
IC(r)1 10’(r)dr

(ir13N) ri= l n ’ l R ,k’ER, 0 0 (A-16)

M N M N N-n N-n ’ 0o 0O

I 
2 

~~ 
f I CU )I f n ( t ) d t f  IC(T) l fn’ .n(T) dT

t ir13N ) n = l  n 1  k ,k ’ ER 3 0 0

MN MN N-n N-n’ 0o 00

U~(A )  ~ I 
2 

~~ 

f (‘f t  H t k ’_k ( t )  dt 
f 

I(’ ( r ) I f n ’ ( T )  dr
(i r13N ) n I  n ’ I k ,k’ER4 0 JO

M N M N N f l N _ f l’r 0O

(~ 13N )  n 1  n ’ I k ,k’ER 5 0 1U~ ( A ) ~~ 
1 

2 

~~ 
LI IC(t ) I fn( t ) d t

M N M N N n N n ’ 00 00

U?(A)
~~ 

1 
2 

~~ 
f C(t)l tn_n ’(t)cItf IC(r)I f~’(r)di’(irl3N) n 1  n l k ,k ’ ER 6 0 0

Region R-2
From (A- 16), Lemma I and ( 5 )  we have

MN M N N-n N-n ’
_____ ____ (3e( k ’_kJ e_t(a+ 13) i t - e ( k ’-k ) l  k ’-k-l dtU~(A) ~ A2 

2 (k ’-k-I ) e(ir I3N ) n l  n =1 k ,k ’ER , e(k ’—k )

0O

j3fl

(n ’— l ) ’  e13~~~
J 

~—t (a +13) ( t  — en ’)n ’ i  dt

en ’

M N M N N-n N-n ’
_____ wk ’ — k

= 
A 

~~( ir(3N ) n l  n ’ l k ,k ’ER 2

13n ’ e13~ 1 
e~~’~

’
~~”Th f ln ’)

(n ’ — n ) !  a + 1 3

MN MN N-n N-n’
= 

A 2 
W k -k+n

( ,rj3N)2 
n l  n ’ l k ,k ’ ER 2
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Now let s = k ’ — k and we have

MN MN N-n N-n’-k
= - 

A2 
W~~~

’ 1(s ~ n - I)  I(n - n ’ <s) l(s ~ 1).( ii’$3N) 2
~~... 1 nti k l  s l

Consider the four situations:

(I) n — n ’< l and N — n ’—k ~~n— 1

M N M N N-n N-n ’-k

~~~~~~~~~~~~~~~~~~~~(
~~ ~ n l  n l  k N—n ’— n +l s I

( 2 )  n — n ’ < l a n d  N — n ’ — k > n — I

M N M N N-n ’-n n-l
Ws~~

’ l(n -n ’ < 1 )  I(n - 1< N - n ’ -k )  (A-18)
~~ n l  n ’ l k 1  s I

(3) n — n ’~~~l a n d N — n ’ — k ~~~n — l

M N M N N-n N-n ’-k

N 2~~~ ~~ ~~ W~~~
’ I ( n - n ’~~~1 ) I ( N _ f l ’ _ k ~~~n I) ( A l 9 )

~~ n 1  n ’ l k N—n ’—n+l s=n—n ’

(4) n — n ’~~ l and N — n ’ — k > n — l

MN MN N-n’-n n— I

~~ W~~° I ( n - n ’~~~I ) I ( n _ l < N _ n ’ k).  (A-20)
~~ n l  n 1 k 1  s n—n ’

Summing expressions (A-I 7), (A-I 8), (A-I 9), and (A-20) and simplifying we have :
M N n ’ N—n N—n ’—k

LJ~(A)~~ 
A-

2 
~~ ws+n’

~~ n’ l n 1  k N—n -n+l s l

n’ n—I MN N—n N—n’—k
+ (N - n ’ - n) Ws+n ’ 

+ ~~~~~~~

n l  s=l n n ’+l k=N—n ’—n + l s n—n ’
M N n-I

+ ~~~~ ( N - n ’ -~~) W ~~~
’

n n ’+l s n—n ’
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The procedure for evaluating U j (A )  over regions R-3 through R-6 is very similar to
its evaluation over R-2. Therefore , we only state the results.

Region R-3

M

U3(A) < 
A- 

~~ (N - n ’) W~~(n ’ - I )
~ n’ l

Region R-4

M N M N N-n N-n ’-k
A’- > { ~ 

Ws+n’
(~~ ~ n ’ l n l+n ’ k N’-n ’—n s=n—n ’

MN n+ l
+ ~~~ ~~~~~~~~~~~~~~~
n 1+n ’ s=n—n’

Region R-5

M N
U~ (A) ~~ 

A2 > (N-n)W2~(11~1Th1) 2
n l

Region R-6

M N
Ui( A)

~~ 
A 2 

~~ (N~~ n) wn E-!.L÷ 2 _ .
~n] .(1r 13N)2~~~1 

2 2

Finally, using (A-3) and the results for each region we have:

M N
U 1 ( A ) ~~~~ ”

2~~~~ ( N _ n ) W 2h1

1A 2 I 
N N 

e~~I~~~1~I ~ e~~~~~ A I

(ir 13N)2 ~~ ~~~ 13n+n RQ
(1 ~~

___
) 

R~( 1 )  [(
N_ n )(N _ n ’_ n + l )

M N
-

~~~~ 
( N _ n ) ( N _ n + l )

] 
I ( N - n - n ’ - I ~~ 

n~~I 
(N -n ’) W ~~(n ’ - I )
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MN I M N N-n N-n ’-k MN n+l
+ ws+n + (N - n ’ - n - I )  ~~~~

n ’ l Ln 1+n ’ k N—n ’—n s=n—n ’ n l+n ’ s=n—n ’

Proof of Lemma 3
As in the proof of Lemma 2 we will use (A-3) and consider each region separately.

Region R- l
We begin here usin g (10) and noting that:

U~ (A) ~ I 1.4(A) I

M N M N N-n N-n ’

N 2 Etn IC(tk’ — t k ) C(t k+n — t k ? 
+

~~ n~ 1 n’ l k ,k’ER 1

and usin g the bound tk ’ — t k ~~~ 
t k+n — t k, which is independent of t k+fl — tk ’+n ’, we have:

MN MN N-n N-ri’

N 2 
Et n IC(t k+n — t k )I E t fl K ( t k+n — tk l+n ? ) I .

~~ n = I  n = 1 k ,k ’ER 1

Substituting for fn ( t) ,  the value of C(t) and performing the integration results in:

M N M N N-n N-n ’
U~(X) 

~ 
‘ 

Wk + n -k when W

Now letting s = k ’ - k and simplifying we have

M N M N N-n ’-l
U~(A )~~ 

A 2
~~~~~~~ ~~ ( N _ n ’ _ s ) WS+fl l ( N _ n h _ n _ l )

(ir 13N) n l  n’ I s n

Next we consider regions R-2 through R-5 and beginning with (10) we have:

M N M N N-n N-n ’
U~(A ) =  ~ Et C(t k~ — t k ) C(t k÷fl — t k~+fl~)

n 1  n 1  k ,k ’ ER~

• cos [A (t k+fl — t k )Icos [A(t k ’+n ’ t k ? ) I .  (A 2 1 )
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Using the substi tuti ons:  0 = t k ’ — t k ,  ~ 
= t k+n — t k ,  ~ 

= tk ’+n ’ — t k ’ yields

• M N M N N-n N-n ’
= ~~ fffC(0)C(~ ) cos [X ( 0 + ? l ) ]  cos IX(ii +~~ )J (A-22)

n I  n ’ l k ,k ’ER i

• 
~k ’-k~~ 

t n_k ’+k~~ ~n ’-n+k ’-k~~~ 
do dt3 d~~.

Expressing the cosines as exponentials , regrouping terms , and using ( I )  we can express
( A-22) as:

•, M N M N N_ n N_n ’ 00 00

= 
A 

2 ~~ RQ
{f  

e~~~(~~~ X) 
~k

’-k~
0
~ dO[f 

e~~
(
~~~

) f
fl

?_fl+kl_k(~~
)d
~

‘~~~~~
‘
~~ ~ n -l n ’ l k ,k’ER

~ 
0 0

• ~~
-k’+k(2A ) +f e~~~(~~~1A) f ’ ’ ( ~~)d~ ~~_k ? +k

(o] j  
( A-23)

This is ftc same form as (A-4 ) which ~~ll enable us to use (A-6 ) throug h (A-9) and
hence determine the asymptotic behavior of U~ (X) .

Reg ion R-2
Using (A-6) we can express (A-23 ) for region R-2 as:

2(~ 13)2 ~~~~ RQ J [~~~
f 

e_O(
~~~

1A) fk
._k ( 0)  do] [~J oo 

t fl~_,l÷k ’_ k (
~~

)d
~~

[ f  e~~
(
~~

X) 
~k

’-k 0 dOl
I

~~~~~~~~

f 

~~~~~~~~ ~n ’-n+k ’-k~~~ 
d~l}.

L r I  0 J Ls= I 0 J (A-24 )

Now , by using Lemma I , evaluating the integrals , and then simplifying,  we have for A-2 4

A 2 M N R~ 
~ ( ~ e~~~~

’
~~
) ‘S.’ ( ~ \S e~~~~~ ’1’~2(ir(3) 2 N L.~ \a+j3_iA/ L~ \a+(3-iA/

+ 

~ (.~ 
.J e~~~

(
~~’~~ ~~ (a+~~~ )~ 

e ’5e(~ +i1~)j  (A-2 5)
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Finally,  summing (A-2 5) and rearranging terms yields

U2(A) = -~~~~— ~ R~? I (c~ + j3 - iA)
2 (~ (3)2 2 N  

~( a + ( 3 _ i A ) _ (3e~~
(
~~ 1l~)

F 2 1(~ +~~~ + A 2] -(3e~~~[2(a+(3) cos (cA) - 2A sin ( eX ) 1
+ A 2 ] -(3e~~~[ 2(a+(3) cos (cA) - 2A sin ( e A ) ]  + 132 e 2

~~
as N —‘ 00

Equation (A-23) is solved in a very similar manner in regions R-3 , R-4 , and R-5 and
here we will only state the results.

Region R-3

U3 A — 
A 2 

~ 
2(a+(3) - 2(3e~~~ cos (ea)

- 

2(~~ ) 2 N ~L(a +13)2 +X 2 1 2(3e
_
~~ [( ~ +(3) cos( A ) X i ( A ) j  + (32 e 2

~~
N-~ oo.

Region R-4

A 2 
—~~RQ F ~+(3-iX 2(a+(3)

2 2(ir~~
2 N L ÷ _ i ~-13e ’~ L~ •

N-~ oo

Region R-5

U~~~) = 
A 2 N 

R~ (a+(3-iX)~~ ~ 
2(a +(3)

2(irj3) 2 N L(a+ø) +A 2
N-~ oo.

For region R-6 we use the sub st i tut ions:  0 = t k ’ — tk, i~ = tkI+n~ 
— t k ’ a nd

= ~~~ — t~~? ..fl ? in equation (A- 2 l )  which gives us:

M N M N N-n N-n ’

• U~(A) = 
A

2 

~~~ ~~~~~ 
fff( ( O) (

~~~)cos (Art ) cos (A(~ + + 01 )

• 
~k

’—k~
0
~ 

t’k ’+n ’—k ’~ ?) 
~k+n—k ’—n ’1~~ 

d OdM ? 1.

Again , as in (A-22 )  we express the cosines as exponentials and regroup which yiel ds
M N M N N-n N—n ’

U~( X )  
2 N 2 ~~ R~ {

fC(o)e~~
0 f •

k ’_k (O ) dO (A - 26 )
~~ k =l  k ’= l  k ,k ’€ R 6
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fc(~) e~~~ tk+n-k’-n’(
~~
) d~ [~~(2A ) ]~ +f

C(0) e~~~
0 

~k’-k~
0
~ 

dO (A-26)

iA~.f c (~) 
C k+n-k ’-n ’~~

) d~ j .
We note that (A-26 ) is of the same form as (A - 5) ,  thus using (A- l U )  we have

1 0 0

U~(A) = 
I 

-I-R~] ~~ 
ciAO 

~~~ 
dO 

s 1  
f c~ ei

~~ f5(~~) d~2(1r13) 2 rrr i

+ 

~~ J
C ( 0 )  ~~~~ f ( 0 )  dO 

~~ 
fc~~ e~~~ f ( s )  d~~.

Using Lemma I , solving the integrals and simplif ying yields

U6( A )  A 2 M N I (o~+(3-iA)
= —— — RQ I2 (~~ ) 2 N [(a+(3-iX) -

N

Finally , using (A-3) we have the asymptotic result
r 1/ 2 ( a + ( 3 )  \]

(~~ )2 ~~~ 
1
~~RQ 

L(~~
+ (3 - i Ar  

~~(a+~~ 2 + A 2)j

M N M N N—n ’— l

~~ ( N _ n ’ _ s ) W 5+1 l ( N _ n ~ _ n _ l )
n l  s=n

+ R~ 
(a+(3— IA ) -II 2 ( (~ +I3 )~ + ~2 1 — (3e~~

x t 2(o~+(3) cos (eX) — 2X sin (eX)] 11
I i Li (a+(3)2 + A 2 1 -(3e~~~ [ 2(a+(3) cos( eA)-2 A sin ( eA) I +132e_2ea] f

+ 
I 2(a+(3) — 2(3e~~~ ~~ (~~ )

L ~(~ ÷13)2 + A 2] - 2(3c~~~l (~ +(3) cos (eX) - A sin (eA) J + (32 e_2]
~~~

+ RQ [ ( r+j3 -iA) 1 1 2(a+j3 ) 1 + RQ [(a÷ 13_iArl ( 2(a+j3 )
(a+(3-iA) _ ( 3e~~~~~ j  [(a+~~2 + A2] (a+~~

2 + X 2)]

+ 2 RQ [ (a+j3— iA) 
-

- ~~~ (a_ iA)] }
as N —~~
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Proof of Lemma 4:
The proof of this Lemma is similar to that of Lemma 2. From ( 11)  we have

M N M N N-n N-n ’

2 Etn C(tki+n 1_ t
k)C(tk~

_ t
k+n)

~~ n 1  n’ l k=l k’ l

cos [ A ( t k+fl -t k ) J c o s [A ( t k ’+fl ’_ t k ’) ] } .

As before we will use (A-3 ) and consider the regions R-l through R-6. Following the proce-
dure used in the proof of Lemma 2 we define bounds on (tk ’+n ’ — tk ) and (tk ’ — tk+~ ) which
will make them independe nt in each of the six regions considered. We have from [ I ] ,  the
following sets of bounds.

For 6 
~~ 

t k ’÷i) ’ — t k we use the bounds

(t k+n — t k ) + (tk’÷n’ — tk?) 1 =

(t k ’ t k ) 1 ( t k ? +n~~~t k+n ) i 2

~ 
(tk’+n’ — t k+n ) = 3

t k ’+n ’ — t k ’ 1 = 4
tk’+nh t k i 5

tk’.” tk i= 6

and for ‘y ~ tk ’ — tk+n we simply use (tk ’ — tk+n ) for all six regions.
Using these bounds and (A-3) we have the following expressions

M N M N N-n N-n ’
U3(A) ~ 2 ~~ 

J
C (r )  f ~(r )  d rf C (r )  f n ( T)  dr (A-27)

~~ n 1  n ’ l k ,k ’ ER 5

M N M N N-n N-n ’
+ 

2 
2 ~~ fC(r)  f k ? _ k_ n ( T)  drf C (r )  f n+n ’( T)  dr

(ir13N) n I  n ’ l k ,k ’ER 1

M N M N N-n N-n ’
+ 

N 2 ~~ f n+k_k ’(T) d rf C ( r )  f 2 (k ’_ k) + n ’_n ( T )  dr

~~~~~~ ~ n 1  n ’ l k ,k’ER 2

M N M N N-n N-n ’
+ 

2 
2 > J C ( r )  f ~( r )  dr [ C (r)  f ~’_~(r )  dr

(irj3 N) n 1  n ’~ 1 k ,k ’ ER 3
M MN N N-n N-n

+ 
2 

2 > fC(T) fn’(T) drf C(r) f~ _~’(r) dr
(iri3N) n l  n = 1 k ,k ’ER 4
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M N MN N-n N-n ’
+ 2 

~~ n~~I ~~~~~~ 

f n+k_ k ’( T)  d r fc (r)  fk ’_k( T) dr, (A-27)

To solve the integrals and evaluate (A-27) one follows the same procedure as in the
proof of Lemma 2. Since this procedure is quite length y we will state the results for each of
the six regions.

Region R I

M N M N N-n-n ’ N-n ’-k
A2 ~ ‘5’ 

~~~ 
W~~~ . (A-28)

(7rj3N)~ — — —n— I n—I k—I s—n

Region R-2

MN MN N-n N-n’-k
A f ~ 

~ys+n ’

~~~~~~ n l  n’ n k N—n ’—n+2 s 1

• M N M N n-I MN MN n-I
+ (N-n’-n+l) W~”~ + (N-n ’-n+l)  Ws+n

n 1  ii ’ n s 1  n ’ l n n ’+l s l

MN MN N-n N-n’-k+l

+ W~~~ (A-29 )
n ’ I n n ’+I k N—n ’—ni - 2 s 1

Region R-3

M N
U~ (A) < 

A 2 
~~ (N-n ’) (n ’-l ) W n (A-30)

(ir (3N)2 
n ’ I

Region R-4

M N
U4(A) ~~ 

A2 
~~~ W h 1 {2 n 2 N _ 3 n N + 3 n 2 _~~ — _ ~~~~ } (A-3 1)

(ir(3N)2 
— 

‘ 3 3
n — I
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Region R-5

M N
U~(A) < - 

A2 
~~ (N - n) W 2

~ (A-32)(ir(3N)2 
n= I

Region R-6

M N
U~(A) < 

A2 
~~ W~ {N(4 + n(n - 3)) + n(n(3 - n) - 2)} (A-33)(irj3N) 2

1

Now , using (A-3) and (A-28) to (A-33) and simplifying we can express the bound for
U3(A) as:

____ / wN+1
M N 

[M
N

U3(X ) <  2A 2 

~~ ~~~

— — ( 1  _ W_N+n+n ’)_ ;~~~~ ( N _ n _ n l
))(ir(3N)2

~~~1 n’ l \(W
_ 1)2

MN N-n MN
+ 

W -  1 (W N K  
— W11 ) + (N - - 

wn (w~ +n-l 
- 1)n n + 1) —

W ’1 —n n k N—n ’-n+2 n’=n

÷ W n[3n2N - 6nN + 6n 2 - ~~ 32n] +(N -n)W2~ +W~[4N _2J]

M N I M N
+ 

2A 2 

~~ 

[N - n ’ -n +  I ]  w~’~~~
’
~~

1 1)
(ir(3N — In l  n n

M N N-n ]
+ 

~~ W - l  (W N k ~~ -We ) +(N -n’) (n ’- l ) W nj
n n ~ k N—n—n ’+2
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