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SUMMARY

In this report spectral estimation, using Poisson distributed time samples which have
been time quantized, is considered. An expression for the probability density function for
the time quantized Poisson samples is derived. For a large class of nonbandlimited spectral
density functions the bias of the spectral estimates is determined and an asymptotic bound
on the variance is also derived. Numerical analysis of the bias and variance bound is per-
formed and graphs of the bias as a function of frequency are presented. Finally, examples
of spectral estimates are given with varying degrees of time quantization. Results show
small amount of bias introduced into estimates and variance remains almost unaffected.
The chief advantage of Poisson sampling theory is that it eliminates spectral aliasing on
nonbandlimited and undersampled time series data. Time quantized Poisson data results
from sampling constraints due to hardware implementation.
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1. INTRODUCTION

Spectral estimation is a widely used method in the analysis of ocean data. Typically,
continuous time-data are sampled with equally spaced data points and the spectral density
function is then estimated via the discrete Fourier transform (DFT). A new approach has
been proposed for certain applications which use sample points that are Poisson distributed
in time [1, 2]. The chief advantage of this approach is that it has been shown to be alias
free both by theoretical means [3] and by simulation [2].

In this report we consider Poisson distributed samples of a continuous time signal
which have been time quantized. Time quantization for the Poisson case can be explained as
follows. The random nature of the Poisson distributed sample points provides a probability
that two data points may be spaced arbitrarily close in time. If one were attempting to sam-
ple real world data with Poisson distributed data points the sampling device would most likely
be limited in the speed it could extract data samples. Thus, whenever the Poisson distribution
required two events or sample points to come some small epsilon (€) apart, the sampling device
would be unable to respond in time to collect both samples. This epsilon will be referred to
as the “‘quantization.”

There are several cases of time quantization which could be developed, some of
which are listed below.

1. If an event occurs during the quantization time interval of the processor, it has
no effect whatsoever.

2. If an event occurs during the quantization time, it starts quantization time over
again.

3. If an event occurs during the quantization time, it starts the quantization time
over again with probability p.

4. The value of the quantization time (¢) is added to the interval after each event
whether the event occurs during the quantization time or not.

The first three cases are very difficult problems to investigate analytically because
the time intervals between events would not be independent. The fourth case is the simplest
and is the focus of the work reported here,

In the following section the probability density function for the sampling times is
derived. In addition, using the spectral estimator proposed in [1] and assuming time quan-
tized sample times, an exact expression for the bias of the estimator is derived for a large
class of spectral density functions. Finally, for the same class of spectral density functions,
an upper bound on the variance of the spectral estimator of [1] is derived and its properties
examined.

Section III demonstrates the behavior of time quantized data in performing spectral
estimation with examples of estimation of a first order Gauss-Markov spectral density using
data with various degrees of time quantization. In addition, the behavior of the bias expres-
sion is examined numerically with graphs describing bias as a function of frequency for sev-
eral different situations. Finally, in this section the behavior of the variance bound is exam-

ined. Conclusions and a discussion of the time quantization problem are included in
section IV.




II. THEORY

In this section a derivation of the probability density function for the time quantized
sampling times is presented. Also determined are the bias and a bound for the variance of the
spectral estimator of [1] for time quantized Poisson sampled data.

Let X = {X(t), -9 <t <oo} be a continuous parameter zero mean, second order,
stationary random process with correlation function C(t) € L and spectral density function
@(N) given by

5 -int dt
o(N) / Ct) M = (1)

The time quantized sampling instants are driven by a Poisson point process and are
given by

t0=0

th=th_y tap e T P O

n
where the {ap } are independent identically distributed random variables with a common
exponential distribution F(x) = 1 — e BX_ [t is assumed that the sampling instants {tp };°=0
are independent of the process X. Note that § is the average sampling rate and as shown
in [ 1], almost every realization of a Poisson point process has a density of points 8. The
effect of the quantization (e) on the sequence {tp } is to enlarge each interval by € and there-
fore shift the nth sample time tp by ne.

Given the observation {X(lk)}}ZLI we will consider the estimate pp(A) of the spec-
tral density ¢(A) as proposed in [1]:

MN N-n

A |
N = DD Xty Xty €05 Mty = ty). )
n=1 k=1l

where MN > 0 is such that MN = o and MN/N = 0 as N = oo,
The following Lemma will be needed in the proof of the bias and variance of the
time quantized spectral estimate (2).

Lemma 1: Consider the probability density function for the distribution of the intervals of
a Poisson process.

f(s) =B ePS U(s)

where U(*) is the unit step function. If the probability density function for intervals of a
Poisson process that have been quantized or time expanded by an amount € is

fy(s) =8 eBG-6) ys-¢) ,

then the probability density function for the time quantized Poisson distributed sampling
times {tpn} is given by

_en)n-l

ftn(t)=l3n(t(n_ 0 eP(t=€n y(t - en). (3)




Proof: Since the intervals {sj} of a Poisson process are independent, the sampling times {tp }
can be represented by a sum of independent, identically distributed random variables. If
each interval is quantized by an epsilon, we then have

t =Sl+€
t2=51+82+2€

t3=Sl+52+S3+3€

S: + ne .

1

n
th =

i=1

Now the characteristic function of the time quantized intervals can be expressed as:

pp(w) = / U(s-€)B e B(s—€) oiws 4q

'—00

=( B )eiew
B-iw )

The characteristic function of the nth sample time gt (w) will then be:

- n— B £ i€wn
Ptn(w) = [pr(w)] el B ;

-i

Finally, the density function ft (t) is the inverse Fourier transform of Ptp(w)

[T fs " —iw(t-en)
ftn(t)—/ (B-iw) e dw

(t - en)-1

T eP(t-en) U(t - en). €e=0

= 6!1
Q.E.D.

It is easily seen that ft (t) satisfies the properties of a probability density function
[4] namely

fi ()= 0Vt

(=]
]ﬁ fin(t) dt = 1

. - ———
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Figure 1 is a graph representing the probability density function ft (t) as a function
of time for several values of n.

STATISTICS OF THE SPECTRAL ESTIMATOR FOR THE TIME QUANTIZED CASE

Here we assume that the process X is a stationary, Gaussian process. For a large class
of spectral densities we will present an expression for the bias and a bound for the variance
of the spectral estimator (2) for time quantized sample points.

Let the covariance function C(t) have the following form

C(r) = A el 4)

with corresponding spectral density function

o
o(A) =— (5)
(az + }\2>

where A and « are fixed positive constant parameters, and define the bias of the estimate (2)
to be

bIGNM)] = E[ZNA)] = ().

Theorem 1: Let the covariance function C(t) be given by (4), then the bias of the estimate
(2) for the time quantization € is equal to:

My

= -n/2
bIENM)] =;r% > (1 -%)me*’“)" (@+@?+a2™

n=|

it A A«
cos[()\en)*-ntan (a+6):| ﬂ(a_—2+7\2)' (6)

Proof: Let EX and E (¢, } represent expectation with respect to X and {tp}. Then

MN N-n
ble(x)] = E{tn} EX BN Z Z X(tk+n) X(tk) cos A “k+n‘tk) -p(N)
n=1 k=1
M oo
AY C D) fr (1) dt - = ~(+—
=7rﬁ—N-zl(N—n) 5 (t) cos )tn 2+)\
n:

where ft,(t) is given by (3). Substituting for C(t) and ftn(t) we then have

- oot t-em"! o Bit-en)
Nz (N - n)/ cos (\) S g e dt

- - -
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MN =
s g Ben —~(uten)f+ ) .. nol
TN z (N -n) € e cos A(u + en) u"™! du

(n-1)!
A «
™ a2+)\2

by a change of variable u = t - ne. Next expand the cosine function to give

A X L
1rB—N21(N—n)(n-l)
n=

a1 du —sin (Aen)/ e~UB+) Gin (\u) " du l— é(#)
B TN i
0 ' o=+ X

' ePen e'en(ﬁ+a)l cos (Aen)/ e~UB+) o5 (Au)
' 0

/2

M
A ! -n
=—N z (N - n) l)'e"? ‘Los()\en)l(n)l(a+[3) +22]

: 3 o o P02
* cos |n tan”™ -sin (Aén) I'(n) [(a + B)= + A“]

Tra2+}\2
-ﬁEN(' 1) e (@ + g2 + 2212
- % Be

=]
st A
COoS €n n tan™ a—'f'ﬁ- T az+)\2

where the integrals were evaluated using [5].
ED.

An examination of (6) reveals that since the first few terms in the summation are
dominant there is not a high dependence on N and MN. We see also that the bias decreases
as A\ increases at a rate of at least 1/A.

Next we consider the variance of the estimate (2). We assume that the process X is
stationary to order four and has covariance and spectral density functions as given in (4) and
(5), respectively.

In the derivation of the variance bound we begin with the same procedure asin [1].
Consider the fourth order cumulant function defined by

Q(1y, 79, 73) = E[X(t) X(t +77) X(t + 79) X(t +73)]
—C(Tl ) C(T3 -T2) —C(Tz) C(T] —73) —C(T3) C(T2 - Tl) (7)

where X and C(7) are as previously defined.




If we assume the process X to be Gaussian, then (7) becomes
E[X(t) X(t + 7)) X(t +79) X(t +73)] =C(7)) C(r3 - 79) + C(75) C(7| -73)
+ C('r3) C(12 ot ).
Now, we look at the second moment of the estimate (2)

MN MN N-n N-n'

2 1
E[32 V)] = Z Z Cthe o+ S B 1t
[wN( ) (nﬁN)znZl z it }l k+n ~ ) Cltg'4n’ - tg")

n=1k=1k

+ Ot = tye) Cltyean = tien”) + Cltyen’ = b)) Cltgr = typ)
* COS }‘(tk+n - tk) cos Mtk'+n' - tk'). (8)

The expectation with respect to t,, in (8) makes its solution very difficult to obtain. In order
to solve the expectation in (8) and bound the variance of (2) we will break the summations
up and evaluate them in eleven disjoint regions corresponding to the different permutations of

(k.k'k+nk'+n'}.

Let E[‘?’N()‘)] 2 pe divided into the following three expressions

ElgnM)12 = z U0
i=1

where
: MN MN N-n N-n’
U]O‘) = 2 Z Etn lc(tk+n - ty) C(tk'+n' -t
(mN)* (=1 n'=1 k=1 K'=1
* COS )\(tk+n - tk) cos A(tk’_'_n' - tk')l 9)
MN MN N-n N-n’
U= ——5 > Z pi] Etn[c(tk' - ti) Cllti4n = ti'4n?)
(@BN)” 121 n'=1 k=1 K'=1
* COS Mtk+n - tk) cos )\(tk'+nl - tk') ’ (10)
MN MN N-n N-n’
Vgta) = Z 2 Z Etn | Cltk'4n’ = t) Clt’ = typ)
‘"ﬁN’2n1n= - = %
* €08 Mty = ty) COSA(tyry v = tkf)l ‘ (rn
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Lemma 2: If the process X is Gaussian and has a covariance function given by (4} then an
upper bound on Uj(A) is given by:

My

2
E(N pywan ¢ 2A
(nBN)2

My M ;

N My e S
% n+n’ e~€la-ir] e—€la-i\]
4nZln’§-—;1ﬁ RQ(“"‘*")'N lerm-n

-
(N—n)(N-n'—n+l)-;—(N—n)(N-n+l)] IN-n-n'-1)

UM <YQ)=
1 1 76N )2

L

My MN[MN  N-n  N-n'-k
+Z (N—n')Wn(n'—l)+Z Z Z z wS+n

n=1 n'=1|n=1+n' k=N-n'-n s=n-n’

MN 4l

& 2 z (N-n'-n-1)wstn’

n=1+n' s=n-n’

g s [F02-30] |

where

Proof: See appendix.

Lemma 3: If the process X is Gaussian and has a covariance function given by (4) then an
asymptotic bound of U,(A) as N > oo s given by:

2 M
A< MN |1 2(a+p)
Us(A) S YH(\) = [ RO [(a+8-in)" ‘(—
2T g2 N |2 [ (a+ )2 +22
MN MN N-n'-1

MNNZ Z Z (N-n'-s) WS [(N-n'-n-1)

n=l n'=l s=n

P (a+B-iN) 2[(a+B)2 +A2] -Be~€¥[ 2(a+B) cos(eN) - 2\ sin(eN)]
(octB-in) -Be€(@-iN)

10

l(Ol+B)2+>\2] -Be €[ 2(a+B) cos(eN)-2Asin (e}\)]ﬂize’ze“
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. 2(a + B) - 2P~ cos (ex)
[+ B)2 + 2] - 28e™€%[(a + B) cos (eA) - A sin (e)] + ple—2€

a+B- i 2a + ) L1/ 2a+p)
+Re — +Re [(a+p-iny T (—=22F
[(a+ﬁ—i)\)-Be’e(a'm):,[(a+ﬂ)2+)\2] [(a g ((a+[3)2+}\2 )]

500 a+f-id 2
(a+B - iA) - ge~€(@=i}) ;

Proof: See appendix.

Lemma 4: If the process X is Gaussian and has covariance function (4) then an upper bound
on U3(A) is given by:

My | My :
2A2 wN+1 N+n+ ' wn+n .
U3()\)<Y3(}\)= 22 z 2(1—W' ““)—W_I(N—n-n)
(”BN) n:l n':l (W-l) /
M M
N N-n N ' ]
; n (wn +n-1 _
+ z Z l(WN—k_wn)_'_ z (N_nl_n+l)w (W - 1)
; 4 w-l ; wh o
n'=n k=N-n'-n+2 n=n
9 2 703 32n 9
+WN3n04N - 6nN + 6n b thaie +(N-n)W<"+ [4N-2] WD
MN [MN ,
2 ,cwn'+n-1_
Anes . z z v AR R | s
(mBN)* 2721 | n=n’ ¥ -1
MN N-n W
+ Z Z W_-_I(WN-k+l_wn)+(N_nf)(n1_l)wn

n=n' k=N-n-n"+2
Note that Y3(°) does not depend on A.
Proof: See appendix.
Theorem 2: If X is a continuous parameter zero mean, fourth order, stationary, and Gaussian

random process with covariance function given by (4), then an asymptotic bound on the
variance of the estimator in (2) is given by

11




Var [3y0)] = U0 + Uy + Uz ~ E2 (0]
<IY 01+ Y501+ Y3001 - [E2[Zy0)] ] (12)
aSN—"°°,MN"’°°, MN/N—’O
Proof: The proof follows from Lemmata 2, 3, and 4.

The forms of Y((A), Y2(A) and Y3(A) are unfortunately very awkward and as a
result, it is not easy to see how these equations behave. The summationsin Y (A) and Y3(A)
may be eliminated through the long and tedious procedure of using geometric expansion
type identities. This is presently being performed and when accomplished will greatly sim-

plify the variance expression and provide an insight to the behavior of the variance. In addi-
tion, if the bounds Y (A) and Y 3(A) can be shown to be maximized at € = 0, then they can

be bounded by the resultsin [1]:
U ) - E2[gN()] = O(1/N)
U3\ = O(1/N)

uniformly in X as N = oo,

12




III. NUMERICAL AND SIMULATION RESULTS

Since the theoretical analysis, in Section II, showing the bias and variance of the time
quantized spectral estimator, is somewhat involved and not easily interpreted, this section
will provide insight into their behavior. Here we will present graphs of the bias as a function
of frequency for several €/f ratios, a numerical evaluation of the variance, and examples of
time-quantized spectral estimates using simulated time series data.

Figure 2 is a graph of the spectral density for the process X where covariance function
parameters o and A have been set equal to 1. This is representative of a nonbandlimited,
low-pass spectrum. The peak of this spectrum is at A = 0, the half power point at A = 1, and
the spectrum decreases at a rate proportional to 1/A2. By adjusting the parameters o and A,
the shape of the spectrum can be changed to broaden or narrow the peak. This spectral
density will be used in the following numerical analysis of the bias and variance. The
basic form of the covariance function C(t) used here which results from the solution of a
first order homogeneous differential system can be combined [6] by addition to form the
solution to a homogeneous differential system of arbitrary order.

BIAS:
Let the bias of the spectral estimator (2) be given by (6). We then define the per-
cent bias as:
blonM)]
o(\)

Figures 3 through 8 are graphs of both the bias and percent bias as a function of fre-
quency A for several values of the average sampling rate g and time quantization e. Three average
sampling rates were used for the calculations of the bias. Figures 3 and 4 were generated with
B=1 rad/sec, Figures 5 and 6 were generated with §=5 rad/sec and Figures 7 and 8 were generated

% bIPNN)] =

@A)
0

0.0 2.0 1.0 6.0 8.0 10.0 12.0 14.0
LAMBDA

Figure 2. Spectral density function simulated for numerical analysis.

13




————

RO e i

“L = N pue 0001 = N *99s/pei | = ¢ 10§ Aouanbaiy jo uonduNj € sE 2jEUNIS [enoads uossiog pazijuenb-awn jo serg ‘¢ 2181y

YAswv
0°o0t 0°08 0°08 0°0s 0°09 0°0S o°o% 0°0g (1174 o°ot 0°o0

L 1 1 i L 1 1 L 4 1 0.

@

{

(-]

e

~

!

B

8

1

74

8

1

=

B=)

a

o

8

S

00010 =NOTISd3 = + «
00100 =NOVISd3 = V
0L000 =NOTISd3 = O
10000 = NOTISd3 = O

anN3o31 ﬁ

e

90°0

svia

14




vagwv
0°0S 0°0%
L 3.

0°0¢-

0°ot 0°0t- o°ot- 0°0s-

0°0¢

0°0s

0001°0 = NOISd3
00L0°0 = NOISd3
0100°0 = NOTISd3
1000'0 = NO1ISd3
anN3931

nwwon
004 +

r
0°0s

15

SV18 LN3DH3d




‘9 = Ny pue 0001 = N 995/pes § = ¢ 10) uopisda pue Aduanbaiy jo uonouny e se a1ewmsa [endads uossiog paziiuenb-awn jo selg - andig

Vvaswv
0°001 0°08 0°08 0°0L 009 0°0S 0°0b 0°0¢ o'oe 0°ot 00
[ . s - 1 i 1 1 ' i 1 0.
r ]
1
S
~
\
L&
&
'
1% 5
£
1
B
a
e
8
(=]
E
000S0 = NOISd3 = +
00S00 = NO1ISd3 = ©
08000 = NO1ISd3 =
S0000 = NOTISd3 = O
aN3931 L

svig

16




9= Z_z Pue 0Q01 = N ‘03s/pe1 g = ¢ 10§ uofisda pue Aouanbaiy jo uonouny e se ajewnsa [exoads paziyuenb-awn jo seiq yuadiag 9 iy

VYAaswv
0°oo0t 0°08 0°o8 0°0L 0°09 0°0S 0°0% 0°og 0°02 o°ot 0°o
L 1 ! 1 " i 1 1 1 1 l.u
e
o
1
wn
-5
o
1
]
&
o
1
5
o
5
o
8
o
8
00050 = NO1ISd3 = + s
00S00 = NOTISd3 = ©
0S000 = NOTISd3 =
S0000 = NOISd3 =

anN3937 .\

0°0¢

SVI8 LN30H3d

17




9= ZZ Pue 0001 = N ‘93s/peI O] = ¢ 10j uopisdo pue Aouanbaiy jo uonounj e se ajewWs? [e1jdads pazryuenb-awin jo serg °/ 213

vaswvi
0°001 0°06 0°08 0°0s 0°09 0°0S 0°ov 0°0¢ (174 oot ofo

L 1 1 1 | 4 1 1 1 1 mV

@

1

-

)

1

3=

8

1

e

&

\

=

a

3

o

o

&2

0000°'L = NOTISd3 = + W
000L0 = NOTISd3 = ©
00100 = NOTISd3 = ©
01000 = NOTISd3 = O

aN3937 =

90°0

Svig

18




—_—

=E P

Q= ZZ PU® 0001 = N “93s/pei O = ¢ 10§ uoisda pue Aduanbaiy jo uonouny e se ajeun;sa [enoads paznuenb-awm jo seiq juasiag g a3y

VJgnvY1
Q.D_IVMY 0°06 0°08 0°0s 0°09 QHW 0°0% o°og 0°02 0°01 (1 1)

1 1 1 I

wn
4
0000t = NOTISd3 = + ©
00010 = NOTISd3 = ¢
00100 = NOTISd3 = O
01000 = NOTISd3 = O

an3o3n LS
o

SV18 LN30H3d

19

NN



with 8 = 10 rad/sec. Each of the graphs contains 4 curves. These curves represent time quan-
tization epsilons of 0.01, 0.1, 1.0 and 10.0 percent of the average sampling rate 8. The hori-
zontal axis of each graph represents frequency and the bias and percent bias are computed

at frequency increments of 1. The value of My used is 6 for 8 =5, 10 rad/sec and M\ =7
for 8 = 1 rad/sec.

The behavior of the bias for the larger values of epsilon is oscillatory and increases
with sampling rate. The values of the bias, although larger for A < 10, are overall fairly small
but as expected, increase as € becomes larger. This is probably due to spectral aliasing of high
frequency components.

In order to show the relationship of the bias to the spectral density, Figures 4, 6,
and 8 represent percent bias. The percent bias is the percent of the amplitude of the spectral
density which is offset due to bias. The parameter values in these three graphs are the same
as for the bias graphs. Each of Figures 4, 6 and 8 shows a percent bias which increases with
epsilon. The graphs also show a divergence of percent bias as frequency increases. This can
be misleading unless interpreted correctly. It should be clear that the spectral density becomes
smaller as frequency becomes larger which means that a constant value of bias becomes a
larger percent of the spectral density as frequency increases. These graphs also show that the
amplitude of the spectral density decreases at a rate greater than the bias.

VARIANCE

The asymptotic variance bound for the time-quantized spectral estimates given in
(12) is very cumbersome. There is little that can be said about it in its present form. There-
fore, in order to provide some insight to its behavior, it has been evaluated numerically for
several sets of parameters. Two values of epsilon and two sampling rates were chosen in the
numerical evaluation with N = 1000 and My; = 6. Table 1 shows the bound on the variance
of $N(7\) along with Y (N), Yq()\) Y 3(N) forg =1 and €/8=0.0001. The values of the inter-
mediary functions Y j(N), Ya()\) Y ()\) are shown in order to give the reader a feeling for their
relative contributions to the bound of the variance (12). Note that the major contribution
to the variance comes from Yz()\) as predicted in [1]. In addition, the variance is almost
invariant with X except at A = 0. Tables 2, 3, and 4 provide numerical results for § = 1 rad/sec,
€=0.01;8=10 rad/sec, e = 0.001;and 8 = 10 rad/sec, € = 0.1, respectively.

Table 1. Numerical results showing second moment component bounds of spectral estimator
$N()\) and the asymptotic variance bound of estimator for =1 rad/sec, e=0.0001.

A Y () Y, (N Y3 Var (PN(A)) bound

0 2.401 X 1072 0.243 4.065 X 1073 1733 x 107!
10 5313 x 1074 4952% 1072 4.065 X 1073 5411 X 1072
20 5.326 x 1074 2 545X 1072 4.065 X 1073 5.305 X 1072
30 5.331x 1074 4.825 X 1072 4.065 X 1073 5.285 X 1072
40 5.333x 1074 4.818 X 1072 4.065 X 1073 5.278 X 1072
50 5.333x 1074 4.815 X 1072 4.065 X 1073 5.275 X 1072
60 5333 x 1074 4.813 X 1072 4.065 X 1073 5.273 X 1072
70 5.333x 1074 4.812% 1072 4.065 X 1073 5.272X 1072
80 5.332x 1074 4.811 X 1072 4.065 X 1073 5.271 X 1072
90 5.331 X 1074 4.811 X 1072 4.065 X 1073 5.271 X 1072
100 5.330% 1074 4.810X 1072 4.065 X 1073 5.270 X 1072
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Table 2. Numerical results showing second moment component bounds
of spectral estimator (bN(A) and the asymptotic variance bound
of estimator for § = 1 rad/sec, e = 0.01.

A Y1\ Y () Y3(A) Var ($n(2)) bound
0 2,400 X 1072 0.239 3.942 X 1073 1.728 x 107!
10 5313 x 107 4.857X 1072 3.942% 1073 5.304 X 1072
20 5326 X 107 4.752 X 1072 3.942% 1073 5.199 X 1072
30 5331 x 1074 4.733 X 1072 3.942X 1073 5.180 X 1072
40 5.333x 1074 4.727% 1072 3.942X 107 5.174 X 1072
50 5.333%x 1074 4.725 X 1072 3.942X 1073 5.172% 1072
60 5.333x 1074 4.725 X 1072 3.942 %X 1073 5.172X 1072
70 5.333x 1074 4.726 X 1072 3.942X 1073 5.173 X 1072
80 5.332x 1074 4.727 % 1072 3.942 % 1073 5.174 X 1072
90 5331 X 107 4.729 X 1072 3.942X 1073 5.176 X 1072
100 5.329 X 107 4.732X 1072 3.942 X 1073 5.179 X 1072
Table 3. Numerical resulti showing second moment component bounds
of spectral estimator pN(A) and the asymptotic variance bound
of estimator for 8= 10 rad/sec, € = 0.001.

A Y1(N) YD) Y3(\) Var (gN(N)

0 4779 % 1073 5.741 7.626 X 107 5.765
10 6.187X 107 3.553 X 1072 7.626 X 107 4.506 X 1072
20 6.193 X 107 4.435x 1072 7.626 X 107 4.467 X 1072
30 6.187 X 107 4.598 X 1072 7.626 X 107 4.680 X 1072
40 6.187 X 107 4.654 X 1072 7.626 X 107 4.736 X 1072
50 6.187X 107 4.680 X 1072 7.626 X 107 4.762% 1072
60 6.188 % 107 4.693 X 1072 7.626 X 1074 4.775 X 1072
70 6.188 X 107 4.702 X 1072 7.626 X 1074 4.784 X 1072
80 6.188 X 107 4.707 X 1072 7.626 X 1074 4.789 X 1072
90 6.188 X 107 4711 X 1072 7.626 X 1074 4.793 X 1072
100 6.188 X 107 4.714% 1072 7626 X 1074 4.796 X 1072
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Table 4. Numerical results showing second moment component bounds
of spectral estim .or $N0\) and the asymptotic variance bound
of estimator for = 10 rad/sec, e = 0.1.

A YV Yo\ Y3\ Var (gN(V)
0 2,604 X 1073 1.550 3.403 x 1074 1.543
10 6.441 X 107 2.109 X 1072 3.403 X 1074 2.139X 1072
20 5.810X 107 2.509 X 1072 3.403 X 1074 2.541 X 1072
30 5.427X 107 3.344 X 1072 3.403 x 1074 3381 X 1072
40 4.002 % 107 5.624 X 1072 3.403 X 107 5.661 X 1072
50 4.942X 107 7.090 X 1072 3.403 X 107 7.124 X 1072
60 4.853 X 107 5.252 % 1072 3.403 X 107 5.291 X 1072
70 3.925X 107 4.113% 1072 3.403 x 107 4.150 X 1072
80 4.046 X 107 3.890 X 1072 3.403 x 1074 3.927x 1072
90 3.867 X 107 4.276 X 1072 3.403 X 107 4.314x 1072
100 3.820X 107 5.130 X 1072 3.403 x 107 5.168 X 1072

For the sake of illustration we generated time series data as in [ 2] for the spectral
density of (5) with A =a = 1, sampled it using several values of epsilon and, using the esti-
mator (2), computed spectral estimates. The results are shown in Figures 9, 10, and 11 for
B=1,5,and 10 rad/sec, respectively. Here the epsilons used are the same as those used in
computing the bias and percent bias. In these graphs the true spectral density ¢()) is repre-
sented by a solid curve without symbols. The vertical axis represents amplitude, while
frequency is along the horizontal axis. Any negative estimates generated are set equal to
zero since the spectral density by definition is everywhere positive. The number of data
points used was N = 1000 and MN was chosen by generating spectral estimates using several
values of MN and selecting the MN which provided the best estimate (based on mean squared
error).

In Figure 9 where the lowest average sampling rate was used (8 = I rad/sec), the peak
of the spectral density is generally estimated quite well. As the average sampling rate is
increased (Figures 10 and 11), the values for the estimates of the peak become biased. This
bias is predicted in Figures 3, S, and 7 where bias near the origin increases both as a function
of ¢ and as a function of §. It also appears in Figures 9, 10, and 11 that spectral estimates
for A > 5 improve with increasing the value of 8. There is no periodic type structure in any
of the estimates that would suggest spectral aliasing as one might expect, especially for the
larger epsilons.

Spectral estimates for the case when € = 0 were computed and observed to be almost
identical for the case €/f = 0.01%. For this reason, spectral estimates for € = 0 are not
shown on the graphs.
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1V. CONCLUSIONS

This report has shown results of an examination of the spectral estimator proposed
in [ 1] for time-quantized Poisson distributed sampling intervals. The probability density
function for the time-quantized Poisson samples as well as the bias and a bound for the
variance of the spectral estimator for a large class of spectra have been derived.

On performing a numerical analysis, the bias of the spectral estimator was seen to
increase with increasing average sample rate § and decrease with frequency A at a rate be-
tween A and A2. In all cases examined the bias appeared to be largest in the region around
A = 0 and increased with epsilon.

The bound for the variance of the spectral estimator, which was derived through a
complicated procedure, resulted in a cumbersome asymptotic expression. With useful
information difficult to extract from this bound, it was evaluated numerically and found
to be small with respect to the spectral density except near the origin. In addition, except
near the origin, it was found to have small dependence on the value of the average sampling
rate.

It was shown, using synthetically-generated data, that the behavior of the time
quantized spectral estimator was similar to that predicted by the theoretical bias particularly
near the origin and not adverse to that of the variance bound. This simulation also showed
that degradation of the spectral estimates was small for €/f ratios of less than 0.1%, but for
larger €/B ratios the effect was quite pronounced. The measure of degradation used was
integrated mean squared error over the range of the graphs. It is not clear if mean squared
error is the best measure of degradation since other measures were available, but it was used
in order to be consistent with [2]. Another measure of degradation which could be used is
the quality of estimates of the peak of the spectrum. For this measure the results are the
same; larger epsilon yields more degradation.

The results in this report indicate that for the class of spectral densities examined, a
time quantization of the Poisson sample point of up to 0.1% of the average sampling rate
may perhaps be tolerated.

There are several questions which remain unanswered concerning this time quantized
Poisson sampling problem and should be pursued. First of all, the asymptotic bound for the
variance of the estimator should be simplified and a determination of its tightness be made.
It is not clear that for € = O the bias and variance results reported here are bounded by or
equal to the results of [1]. This should be determined. The effects of using different
covariance weighting functions should be examined for the time quantized case. Finally,
other more complicated spectral densities, such as a narrowband signal modulated by a
carrier signal, could be examined for results comparable to those reported here.

25




V. APPENDIX

Here we present proofs of Lemmata 2, 3, and 4 which, when combined, make up a
bound for the second moment of the spectral estimator (2) for the Gaussian case, with zero mean.
As was previously mentioned in section II, the expectation with respect to t;, in (8)
cannot be evaluated unless it is examined over regions involving the different permutations
of {k,k’,k +n, k" +n'}. These nonintersecting regions R; are defined in [1] and are:

R; =(k<k+n<k'<k'+n'|kk'€R)

Ry =(k<k'<k+n<k'+n'|kk'€R)

Ry =(k=k'<k+n<k'+n'|kk' €R)

Ry =(k<k'<k+n=k'+n'|kk'€R)

Rs =(k=k'<k+n=k'+n'|kk' €R)
(A-1)

Rg =(k<k'<k'+n'<k+n|kk'€R)

R; =(k=k'<k'+n'<k+n|kk' €R)

Rg =(k'<k'+n'<k<k+n|kk' €R)

Rg =(k'<k<k'+n'<k+n|kk'€R)

Rig=(k'<k<k'+n'=k+n|kk' €R)

Rjj=(kk'<k<k+n<k'+n'|kk' €R)

The union of these regions is equivalent to summing over the indices k and k' of (8)
or

There is considerable symmetry between pairs of the regions defined in (A-1) which
can be used in evaluating (9), (10), and (11). Let Ug(), k=1, 2, 3 be the sum of Ui(()\) over
the regions R;, specifically:

11
U ) = z U ). (A-2)

i=1
Then by the symmetry of the regions:

8

1y =
Uk()\) =Up

Lon s 719
Uk(?\) = Uk()\)

< T
Uk()\) = Uk(7\)
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4 10
Uk(r\)— Uk (A)

6.\ il
Uk()\) = Uk )

and we can write (A-2) as

5 :
Uk = 500 +2 > Uk ). (A-3)
i=1
i#5
In order to prove Lemma 3 we will need the following relationships which are shown
in[1].
Let
b oo
by }n=0
and
oo
{en} n=0

be two sequences of complex numbers which are absolutely summable and let d be a com-
plex number such that 0 < |d| < 1. We then define

MN MN Nop Nen’

B -(k'k
Qi= " bk dCH i nrn (A4)
n=1 n'=1 (k.k'éRi) (o0 5
il DN
: MN MN N-n N-n’
6~ %2 z z b’k 4" Cpop’ + K'—k. (A-5)
n=1 n'=1 (k,k' €Rg)

As N — oo we have the following asymptotic behavior:

{O(I/N)
M [ oo [di <1
- -rg zbr zcs a= 1y (A-6)
r=| s=1
O(1/N)
[ oo d <1
Q3={ MN z - (A7)
bO CS d:
s=1
O(I/N)r
e ldi <1
Q4= 'ﬁ‘c Zb (A-8)
N 0  § d:
r=1
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e L e e

O(1/N) dl < 1
MN
= bl . d= (A-g)
7 1 bgCo
o 1<
Q6= | MN ib ic 2=l (A-10)
N Y $
r=1 s=1

Proof of Lemma 2:
We have from (A-3)

6
U0 =Uj00+2 > Ui
i=1

#S5
where
MN MN N-n N-n’
Ui = ‘—]"2‘ z z z Etn (Clten = ti) Cltyerg’ = ty)
(MNB” 1=1 n'=1 kk'€R;
* COS [)\(tk+n - tk)] cos [Mtk'+n’ - tk')]. (A-11)

In the sequel, v (M) will be considered separately for each region R; and we will use the nota-
tion f, (t) as a shortened version of fy (0.
: n

Region Rl:
Since the intervals tg 4, -ty and ty’, .’ - ty’ are stationary and independent then we
can write:
1 | My My N-n N-n'
U, )= Z Zz Z.f (Al12)
| 2 n“n
aNB® 41 n'=1 kK’ €R)
where

i, =/ C(t) cos (At) f (1) dt.
0

Evaluating the double sum over (k k') in the region R, we have
MN My
- l \ ' ] '
Ui =——== D D zyzy [(N-n)(N-n'-n+1) - 3 (N-n)(N-n+1) I(N-n-n'-1)]
n=1 n=1 (A-13)
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where I(*) is the indicator function, i.e.,
I(IN-n-n"-1)=1 if N-n-n'-12>0
I(N-n-n"-1) =0, otherwise.

As an example of evaluating multiple sums over regions we will go through the steps
in evaluating the double sum in (A-12) over Rl

N-n N-n' N-n N-n'
z l—z Ik <k+n<k <k'+n')
KK'eR, k=1 k=1
N-n N
=z z I(k' <N-n")I(1 <n)I(n <K -k) (1 <n').
k=1 ¥

Now let s = k' - k and we have

N-n N
Zl(s N-n'-k)I(1 <n)I(n<s) (1 <n')
k=1 s=1
N-n-n N-n'-k N-n
= z z I-zN B e~k
k=1 =it

=(N—n)(N—n'—n+l)-%(N-n)(N-n+ 1).

Now we solve the integrals z, and z, " using Lemma | and (4).

Zy =/ C(t) cos (At) £ (t) dt
0

=A[ e~ cos(at) B"Tinl))'—e'ﬁ(‘ €N) Y(t - en) dt
0

i 2(n eﬁe)r: / Batis i —en)M=1 4 e=tl(@tB)+ir] (t -en)™1 gt
; " Wen
n .fen .

=-12\fn—_el)'~ [(a+B) —in] ™ e~€nl(a+p) -iA] I'(n)

+ [(cc+ B) + in] =N emen((@+BYHN] )
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A" e—€la—in] \" e~€la+in] \M
o (l(a’rﬂ)-i)\]) +(l(a+B)+i7\l)

: n
= AB" e—e[a—l)\] -
=M ((a+ﬁ)—i)\] (A-14)
Similarly we have for Z,"
’ . n'
. Ag" e—€la-ix] -
2y =5 RQ(((a vH-ini) W)

Now using (A-14) and (A-15) in (A-13) we have

My My . '
2 , [a=ix] \" —ela-in] "

s i nn’ go (LT L b

SHEY 44nNB)ZZ L RQ(i(u*rﬁ)—'xM) RQ([(mm—m)

n=]n'=]

. [(N—n)(N—n'—n+ I)--;(N—n)(N-n+l)]l(N—n—n'—l).

In each of the regions 2-6 we have a dependence between {Cltg4n - tg)
COS Mtk+n = tk) Jand {C(tpr 4 or = tg’) cos AM(tk'+n’ - tk’) } which makes the expectation in
(A-11) very difficult to solve. We will deal with this dependency by choosing appropriate

bounds for the intervals (tk+n - tk) and (tk’+n’ - tk’) which will make them independent.
T'he bounds selected [1] are as follows.

ify & Uk4n ~ k> then we have

rtk'_k i=2
lk+n —tk i=3

Y 2 4 tk’-lk i=4
tk+n - tk i=$§
h.(tk'-tk)"‘(tk.,_n—tk'.'.n’) i=6

and if & & tyry v =ty r then

rtk'+n" Yk+n 1%
%'+n’ ~ tk+n i=3

§ 24 tyryn =ty i=4
t+n’ =t i=5

| tyen’ -t i=6.

We also will use the bound
IC(7) cos A7| < |C(7)|

in evaluating (A-11) for these regions.
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Using these bounds we have the following:

MN MN N-n N-n'

.
R I
I
MN MN N-n N-n'
vl < z > > >

N 15 2 &R,

Region R-2
From (A-16), Lemma 1 and (5) we have

MN MN N-n N-n'  ,r_

e B &

n=1 n'=1 kkéRq

3
UT(A) <
| (ﬂﬁN)z (K—k-1) "

' 0o

2 z / IC(O)I fk'_k(t)dt/ IC(7)l f(7) d7
(mpN)? S = Rk'€R, 70 0 (A-16)

o0 [= 2]
IC(t)] (1) dt/ IC(1)] f,y1_y (1) d7
0 0

[s <} oo
f IC(t)] £y _k(t)dt/ IC(m)| fr(7) dT
0 0

: MN MN Nen N-n'[ foo
U< —— IC)] £,(0) dt
(‘NBN)“ 0

-
“

N-n' poo ol
IC(t)] £, (1) dt IC(r)| f.(7) dr
1 2 / n-n [ n
(mBN)* 11 n'=1 kk'€R, 40 0

ﬁ (k' k/ _t(a+6)lt°6(k,-k)|k’_k_l dt
e(k'-k)




Now let s = k' - k and we have

MN MN N-n N-n'-k

2 zz z WS [s<n-1) In-n'<s) s> 1),
n=1 n=1k=1 s=1

(nﬁN)z
Consider the four situations:
(Dn-n"<landN-n'-k<n-1

MNMN  Nen N-n'—k

z z Z z W5+“'[(n_n'<l)l(N—n'—k<n-1)(A-]7)

n=1 n'=1 k=N-n"-n+1 s=1

(1r6N)2
(2) n-n"<land N-n'-k>n-1

MN MN N-n'-n n-1

Z Z Z ZWS+" In-n"<I)I(n-1<N-n'-k) (A-18)

n=1n'=l k=1

(1rBN)2
(3)n-n"Zland N-n'"-k<n-1

My My N-n  N-n'-k

Z Z Z Z WS [(n-n'> 1) I(N-n'-k<n-1) (A-19)
n=1 n'=1 k=N-n"-n+1 s=n-n'

(TrBN)z
(4 n-n"Zland N-n"-k>n-1

MN MN Non'-n n-1

2 z Z z WS In-n'> 1) In-1<N-n'-k).  (A-20)

n=1n'=1 k=1 s=p-n'

o

A
(1r6N)2

Summing expressions (A-17), (A-18), (A-19), and (A-20) and simplifying we have:

A2 MN 0 Nen Nk
Ufm < > l wstn
(mBN) n'=l ln=1 k=N-n"-n+1 s=1
n' n-1 My N-n N-n'-k
+ z (N=n"-n)wstn 4 Z z Z ke
n=1 s=1 n=n"+1 k=N-n'-n+1 s=n-n’
MN n-1
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The procedure for evaluating Uj(X) over regions R-3 through R-6 is very similar to
its evaluation over R-2. Therefore, we only state the results.

Region R-3
3 n'
UI(M (N n" )W (n'-
(TrBN)‘
Region R-4
A2 MN( MN  Non Nen'-k
U‘]*m< - z Z Z }: wstn’
N)< &
(@ n'=1 ‘\n=14+n' k=N-n'-n s=n-n'
MN n+l
+ z z (N-n'"-n-~1)wstn
n=1+n' s=n-n’
Region R-5

My

Ufo\) = z (N - n) w2n
(mBN)

Region R-6

My

2 e

U()\)< A z (N-n)wn[—zw én].
(TBN)? £ 2

Finally, using (A-3) and the results for each region we have:

Uy < 5 z (N-n)w2n
(mBN)

ey e-€lo=in] \" -ef{a~iA]
n+n’ "
(,,3N)2[ z nz_lﬁ (‘(Mm_ix]) R¢ ([(01"'{3) Al) [(N-n)(N-n n+1)

n=|]

MN
-%(N—n)(N-nH)] *I(N=n=n"-1)+ z (N—n')W"'(n'-I)
n'=1
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MN[ MN  N-n N-n'-k n+1
+ z Z z Z wstn' + Z z (N=n'-n-1)wstn’
n'=1 | n=1+n" k=N-n'-n s=n-n’ n=1+n' s=n-n’

z (N-n) w“[—+ 2-%n:”

Proof of Lemma 3
As in the proof of Lemma 2 we will use (A-3) and consider each region separately.

Region R-1
We begin here using (10) and noting that:

(?\) u! LM

Etp IC(ty = tg) Cltyqn =~ t' 4 o)l

N
n[\/]

(TrBN)

and using the bound ty’ -ty =ty 4 - t}, which is independent of ty ., - ty’, .+, we have:

My My N—n N-n

Et,. IC(t - t1.)|E¢t, IC(t =ty ).
3 Z Z n k+n " 'k n k+n ~ ‘k'+n
(”m‘“ n=1n=1 kkeR

Substituting for f, (t), the value of C(t) and performing the integration results in:

A2 MN MN N-n N-n’ 3
U <—= D H Y Y wkenk whenW=£e+B.
(mMBN)" 3=1 n'=1 KK’ €R|

Now letting s = k' ~ k and simplifying we have

MN MN N-n'-1
U]2(>\)< 22 Z Z (N=n'-s) WS [(N-n'-n-1)
(mBN)* 121 n'=1 s=n

Next we consider regions R-2 through R-5 and beginning with (10) we have:

MN MN N-n N-n’

i 2=
UQU\)-Z Z z z E¢ Cltr - ty) Cltgan = tk'+n")
n=1n'=1 kX €R;

* Cos [Mtk+n —tk)] Cos [A(tk',’_n' - tk')] . (A-2])
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Using the substitutions: 0 =ty =t n =t =t A=ty =t yields

MN MN N-n N-n’
Z z z Z ///C(G)C(A)ws [A(O +1)] cos [AM(n+ A)] (A-22)

n=1 n'=1 kk'€R;
P Ak (0) g4k () ik (A) 4O dn dA.

{ Expressing the cosines as exponentials, regrouping terms, and using (1) we can express

(A-22) as:
oo oo
RQ[ / e (@M 1 ,(0) do / e~Aa-Ng i (A)dA
0 0

-d“k'*k(z;\n/ AN ¢, o (M)A K HR(0) l (A-23)
0

&}
=
z
=
2
Z
I
=)
Z
:Is

A

ro

“(WBN) n=1 n'=1 kk'€R;

This is the same form as (A-4) which will enable us to use (A-6) through (A-9) and
hence determine the asymptotic behavior of Ulz()\).

Region R-2
Using (A-6) we can express (A-23) for region R-2 as:

) oo
A* &

< Z/ =010 £, (0) do Zf Ala=iN) £, v 1 (A)dA
2(7"5)h =170

Z/ e~0(a= 1)\)1k k() do Zf —A(a+1)\)f, n+k'-k(4) dA
=170

s Now, by using Lemma 1, evaluating the integrals, and then simplifying, we have for (A-24)

3 B 3 -re(a-iN) N 8 g —se(a-iA)
z]<a+6-i)\) g zl atp-in ) €
S=

r:

% g Y ~re(a=i\) 5 B Y (otid)
+Zl(a+ﬁ-i>\> 4 Zl oo Sl S e
r= =

(A-24)

A2 My
2np)? N
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'inally, summing (A-25) and rearranging terms yields

oy = A= N g -
f )'(”6)2 2N (@ + B - i\) - fe—€(@=iN)

: [ 20(@+8)? + A2] - Be~€¥[ 2a+B) cos (€A) - 2\ sin (eM)] ]}
[

(a+ﬁ)2 +22] -Be™€¥[ 2(a+B) cos (€N) - 2\ sin (eN)] +62 e—2€ex
as N — oo,

Equation (A-23) is solved in a very similar manner in regions R-3, R-4, and R-5 and
here we will only state the results.

Region R-3

U3()\) » A2 MN 2(atB) - 2Be X cos (ea)
‘ 2(716)2 N |(C¥+{3)2+7\ | - 28e™€%[(ar+B) cos (€N ) - A sin (eN)] + B2 e~ 2€
N = oo,
Region R-4
oo _AZ My v a+B-in 2a+B)
2 g N (atBin) - Be~€( @IV [ | (0452 422
N — oo
Region R-5
2 M "
oy =-2= —NN RO { (i) [
B 2AmpB)- (a+B)“ + A2
N = oo,

For region R-6 we use the substitutions: 6 = t' =t =
A=ty - tx'4+n’ in equation (A-21) which gives us:

N MN N—n N—n
UgW — Z Z C(0) C(A) cos (Aq) cos (N(A + 7 + 6))
2(mBN)

n=] n'=1 kk€R6

tk'+n' =t and

Mk 0) ') fygpog’—n(A) dOd Adn.

Again, as in (A-22) we express the cosines as exponentials and regroup which yields

MN MN N-n N-n
U9 = z Z Z z ReY fe@) ™ £, 0)do (A-26)
: 2(176N)2 :
=1 k=1 kk'€Rg
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. fC(A) Mg L () dA [p(20)]Y +jfcw) e Mg (0)d0  (A-26)

'fC(A) g AL o e AV EA

We note that (A-26) is of the same form as (A-5), thus using (A-10) we have
1 —RQ

% [C(un'“’rw)duZ/C(A)e'\Af(A)dA
2(mB) s=1
oo on
+Z/cw)e‘i“’ r‘,(a)daZ/C(A)e'iM f(A) dA.
r=1 R

Using Lemma 1, solving the integrals and simplifying yields

2 M ¥ 2
vy =2 —Zre Lt
& (7(6)2 N ((X'f‘ﬁ—i}\) - Be—e(a-n)\)

62y =
U,(\) =

N = oo,

Finally, using (A-3) we have the asymptotic result

2 M
U,(\) < A2 NN ;RQ (a+B-ir)! —-2%
(78) (@+B)2 + 2
MN MN N-n'-1

+ % z z z (N-n'-S)WH“'l(N—n'-n—])
MNN £ 4
n=l n=1 s=n

+ R¢

(tg-iN) [ 20+8)? + A2 - Be€X[2(atB) cos (€N) - 2\ sin (eN)]
(a+B-i) - 5c"‘°‘"“_] [(a#B)? + A2] - Be™€%[ 2(a+B) cos(eN) -2\ sin(eN) ] +B2e~2€X

F 2(a+B) - 2Be "€ cos (ea)
[(G'+B)2 1 ?\2] - 2Be€% [ (a+P) cos (eX) - A sin (eN)] + ﬁ2 e 2€q

(actB-iN) 2(atB) R 2(atp)
+Re : + Re | (atp-iny! (—£22)_
[(aﬂi—i)\) - e€(@-iA )] [(aﬂ;)z + )\2] [ ((a+6)2 + ;\2)]

i By
+2 RY o )
(cctB-in) - pe~€(@=iR)

as N — oo,
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Proof of Lemma 4:
The proof of this Lemma is similar to that of Lemma 2. From (11) we have
MN MN N-n N-n’

US(}\) = e 5 htn [C(tk'+n' - tk) C(tk' - tk+n)
@BN)® 2=1 n'=1 k=1 k=1

* €08 [M(ty 4y - ty)] cos [A(tyry - tk')], .

As before we will use (A-3) and consider the regicns R-1 through R-6. Following the proce-
dure used in the proof of Lemma 2 we define bounds on (tk'+pn’ - tk) and (tk’ - tk+n) which
will make them independent in each of the six regions considered. We have from [ 1], the
following sets of bounds. N

For § & ty'+n’ — tx We use the bounds

'(tk+n_tk)+(tk'+n'°tk’) i=1

(tg' = ) + (4’ = teen) i=2

5> 4 k' tiean) li3
t'+n’ ~ i=4
(k’+n' — tk i=5
Ltk,-tk i=6

and for y £ tg’ - tk+n we simply use (tk’ - tk+n) for all six regions.
Using these bounds and (A-3) we have the following expressions

MN MN N-n N-n’
Us\) < l 3 Z z z z /C('r) fn(r)dT/C(r) f(r) dr (A-27)
(MBN)" n=1 n'=1 kk' €Rg

MN MN N-n N-n’'

2 3OS [t oot

e
3
=
‘ZN
vN
= =z
AL z
-
ME
= A
= 4
m
INAZ
3\

C(T) fn+k_k'(T) dT/C(T) fZ(k'—k)+n'-n(7) dr

+ 2 3 /C(T) fy(r)dr /C(‘r) f'—pn(7) d7
BN)"n=1 =1 ik’ €R

3
MN MN N-n N-n’

> 2 5 /C(T) fn,(r) dr/C(r) fn_n'(-r) dr
(mBN)" =1 n'=1 kk'€Ry
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vrr

N-n N-n'

("ﬁN) 1 kk'€Rgq

My M
z 2 3 /C(‘r) o k'('r)d'rfC(T) formdr.  (A27)

To solve the integrals and evaluate {A-27) one follows the same procedure as in the
proof of Lemma 2. Since this procedure is quite lengthy we will state the results for each of

the six regions.
Region R-1

MN MN N-n-n’ N-n'-k

U3 < ("ﬁN)zz D R

Region R-2
. P MN My N-n N-n'-k
Ugm < - z z z Z wstn’
(mBN) n=1 n'=n k=N-n'-n+2 s=1
MN MN h- My My o
+ (N-n"-n+1) WSt 4+ z
n=1 n'=n s=1 n'=1 n=n"+1 s=1
My My N-n  N-n'-k+l
+ Z wstn'’ ]
n'=1 n=n'+1 k=N-n"-n+2  s=1
Region R-3
5
3 ' ' 4
Uz < 5 Z (N-n") (n'-1) WP
(mBN)
Region R-4
4 e 4n3 320
UB(A)< 22Wn[2n2N-3nN+3 L
(ﬂBN) n:]'
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(A-28)

(A-30)

(A-31)




Region R-5
i
Ug()\)< 'A_zz (N -n) w2n (A-32)
(mBN) n=1
Region R-6
MN
. 2
oy < Z W (N4 + n(n - 3)) + n(a@3 - n) - 2)} (A-33)
3 (nBN)2

Now, using (A-3) and (A-28) to (A-33) and simplifying we can express the bound for
U3()\) as:

My M

N N ’
2 N+1 ’ n+n
@BN)* = | 2y \ W - 1)2 et
M
-n N
n' wn'+n-1
+ z Z ———(WN'K w")+z o i =)
¢ o wh o
n'=n k=N-n'-n+2 n'=n

3
+Wn[3n2N - 6nN +6n2—7% -3—2—“] +(N=n) W21 + WN[4N - 2]

3
3 N o
/ n'+n-
2Azz E[Nn n+11w“(w 2
(mBN)
MN N-n

w ™ ' ; i '
+Z z o WNKH_wn'y o (N - 1y we

n=n" k=N-n-n'+2
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