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A STATE VARIABLE APPROACH TO STATIONARY TIME SERIES
WITH APPLICATION FOR PREDICTING DISPLACEMENT
IN A LARGE UNDERWATER SUSPENDED ARRAY

INTRODUCTION

The original extensive treatment of stationary time series analysis was
developed by Wiener (1949) in his classical work "Extrapolation, Interpola-
tion and Smoothing of Stationary Time Series," reference 1. Wiener's results
were expressed in the frequency domain and could not readily be extended to
nonstationarv problems. In 1960 Kalman, reference 2, extended Wiener's work
to nonstationary time domain problems. Although the real power of the Kalman
filter theory lies in its ability to handle the nonstationary case, computa-
tional advantages of the Kalman filter make it worth considering for many
stationary problems.

The background information necessary to understand the Kalman filter
computational techniques has been included in this report. In most cases,
equations are stated without proof, since lengthy derivations are usually
required for their development. Several texts (references 3, 4, and 5),
which treat this subject with much more rigor and detail, are available.
However, most of the development and notation used here is consistent with
that used by Sage and Melsa, reference 4.

As an example of the application of Kalman filter theory to predictionm,
the displacement fluctuations of a large underwater suspended array are
investigated. Both the 1- and 2-pole prediction estimates along with the
associated error variance, are determined.

Prediction of the array displacement is motivated by a desire both to
reduce the corruptive effects of sampling the array position and to decrease
the number of active transmissions in the vicinity of the array.

BACKGROUND

Some of the notations used in this report may not be familiar to all the
individuals interested in this subject. Therefore, this section has been
included as an aid to understanding the material that is to follow. The
information is admittedly brief, and those desiring more detail should refer
to Sage and Melsa, reference 4.

STATE VARIABLE NOTATION

Linear systems can be represented in a vector form known as the state
vector differential equation,
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x(t) = F(t) x(t) + 6(r) w(t),
where the state vector x(t) is related to the system dependent variable and
its derivatives.

The solution of the state equation is given by

x(t) = o(t, ¢ ) x(t ) + IE o(e, 1) 6(1) wlt) dT,
(o]

where ®(t,t,) (called the state transition matrix) is given by the solution
of

4 [®t, £)] = ¥r, ) = Fe) o, ¢ ),
dt

with the initial condition &(tg, tgy) = I.

I1f, in addition, F(t) is time invariant, the state transition matrix is
given by

F (t—to) n-1,

o(t, to) =e =ol+oF+ ..o+ F- 3

when the eigenvalues of F are distinct, the aj are given by solving the
following sets of equations:

A (e-t )
n-1_ 1 o
A, (t=t )
n=1l = 2 o
NrEM et S F
A (-t )
n-1 n o
oy * Xn Tene * Wy An = e .

KALMAN FILTER THEORY

Suppose we have a system whose behavior can be described by the state
equation

x(t) = F(t) x (t) G(t) w(t) (message model),
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where w(t) is a zero-mean white noise process with covariance
cov {w(t), w(D} = vy(t, D = ¥(£) 8(t-1

and the initia. mean and variance of the state x(t) is known
uz(o) =E {_15 (o) } Vz(o) = var {§(°)}'

Further suppose that some measurements are made which are related to the
state x (t) as

z(t) = H(t) x(t) + v(t) (observation model),
i where v(t) is zero-mean white noise with
cov {v(t), v(D} = vy(t, T = %(t) -1

and w and v are uncorrelated: J

cov {w (£), v (D} = v, (t, D = 0.

Based on the foregoing model, the Kalman filter desires to make an
| estimate of the state x(t). In addition, the estimator must meet the
following requirements:

(1) The form of the estimator is linear, !

£(t) = a (6) + [T ACt, D 2(D dt

(2) The bias error of the estimator is zero,

E {x(t) - ()} =€ {xo(6)} = o.

?

(3) The trace of the variance of the error is a minimum,

tr [var {_’S(t) - x(t) H ninimum.

» The estimator which can be developed to meet the foregoing requirements
is the "optimum linear minimum-error-variance sequential state estimator,"

} or more commonly, the "Kalman filter." A complete summary of the Kalman

" filter algorithm is shown in table 1 and diagrammed in figure 1.

STATIONARY PROCESSES

Many problems can be considered stationary or almost stationary. This
fact, together with the knowledge that the Kalman filter has many
computational advantages over the Wiener filter, makes it worth considering

| the Kalman filter for the solution of stationary problems.
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Mess age

%(t) =

Observation

zle) =

Table 1. Continuous Kalman Filter Algorithm

F(t) x(t) + G(t) w(t)

H(E) x(t) + v(t)

" Models Algorithms

Fil ter -

R(t) = F(e) R(e) + K(e) [z (£) - BOE) X(t)]
Gain
R(e) = v () H (&) ¥ Lee)
e v
2 v
Error Variance

REE) v e} + ¥ (e FT(t)
e [

v (&) =
e
x

x x

=Y
e

() ®B(e) ey mee) v (e
X ‘l &

X

+ G(t) “’w(t\ GT(t)

Prior Statistics

E {E’t)}

E{x(0} =uy (O

- e{vo) =0

cov {!(t), !(T)} =“yw () 6(e-T)

;- cov {g (208 X(T)} =

cov {_)5(0), _g(t)} = cov {3(_(0), l(t)} =0

k| var {3(0)} = Vy (0)

sf cov {!(t\. !(t)} =¥, Ce)dle=x)

Initial Conditions

1(0) -

v (0}
{ -
X

E{x(0)} =u (0

= vyay {5 (0} = VE(O)

3 s H

*
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A. Message Model
+
2 G(t) > > > 1 Hit)
s 3
“A ;
! |
F(t) |- %
] |
1
{1
t. E :
i
B. Filter |
4 ;
! I o7 S Y U SRR 5 RN e e £ g !
- A ¢ A |
A {
{ Z
F(t) - t B
e ] i
!
H(‘) —— |
’] Figure 1. Kalman Filter
-
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For the stationary case, the following assumptions must be satisfied:

(1) The message and observation models are time invariant,

x(t)
z(t)

Fx(t) + G w(t)
Hx(t) + v(t).

(2) The input and measurement noise are at least wide sense stationary,

Vu(t, T) = Ry(1) = ¥, &(1)
Vylt, T = Ry(D) = ¥ 8(1).
é (3) The observation interval began at t = -%,

Since x(t) is statiomary, Vex(t) = Vex(O) = Vg, = constant

A and the error variance equation Becomes

v

0=FV +V F -H HV +G‘l’GT,
e e e E

' : W = x

where the Kalman gain is given by

K = Vo H' ¥l

3 and the Kalman filter becomes

R(t) = FR(H) + K [z(t) < H &(v)] £(-=) = 0.

The main difficulty with this stationary algorithm is in the solution of
the error variance equation known as the matrix Riccati equation. This
difficulty arises because the equation is quadratic and many solutions are
possible. The usual method of solution involves solving the nonstationary
error variance equation until the solution reaches a steady state value.
Because the solution represents variance quantities, the solution must also
be positive definite.

The stationary estimation problem was first solved by Wiener, and is
represented by the following diagram.

! v(t) Noise [

Observation
z(t)

y(t)

Wo (8 ) ————§(t) |
Message Signal :

Wiener showed that the optimum linear minimum error variance filter
Wo(s), when y(t) and v(t) are uncorrelated, is given by

W () = [RZ(S) L\—T(s)]PR a~l(s),

e Y
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where
PR corresponds to physically realizable,

R (s) = message spectral density = Q!R (T)I‘ 3|V1 (it & T, t)l and A(s)
is given by £

Ry(s) = Ry(s) + Ry(s) = A(s) AT(-s).

The matrix A(s) is such that the rational function det [A(s)] has all its
poles and zeros in the left half of the s-plane.

The equivalence of the Kalman and Wiener filters can be shown by letting
y(t) = H x(t).
In this case, it can be shown that the message spectral density becomes
Ry (s) = H(SI-F)~1 c¥y G(-s1-FT)~ 14T,
and the optimum Wiener filter is given by
Wo(s) = H(SI-F + KH)™IK.

For the particular case of scalar observations, the spectral factoriza-
tion becomes

Ry(8) = [Ry(s)] * [Ry(s)) ~

where the + and - represent left-half and right-half plane poles and zeros,
respectively.

In particular, if we write the spectrum as a function of rational poly-
nomials

Sy el e g

R (s) * = .. m< n
[ y ] Bo+ B S+ ...+ s® :

then the coefficient matrices in the Kalman model become

o1 0. i .0 (0]
TE S A al
B W HT =
G Om
S 'S 0
\.BO_BI 3 'Bn-l LO
P -
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EXTENSION TO PREDICTION

Based on measurements to time tj, there are three classes of state
estimation. Consider the following diagram, depicting one component of the
state vector x(t).

lx(f)
”W\ ‘

3

%
é

If we define %(t | t.) = E {x(t) | z(t)} ,
e 1 = =1
the classifications are:

(1) Filtering (t = t}),
Re | o£) =%y, | £ = &e),

(2) Smoothing (t < t7),
(3) Predicting (t > ty).

The Kalman filter, which estimates the current state, has been covered in
the previous section. The smoothing problem is of interest when improved
estimates are required for previous values based on the collection of more
data. The prediction problem arises when some future value must be estimated
from present measurements.

The smoothing problem would amount to a fairly large extension of this
material and will not be covered here. The prediction problem, however,
amounts to a simple extension of the Kalman filter and a treatment of this
problem follows.

The state at time t is given by

x(t) = o(t, t)) x(t)) + [ o, 1) 6(1) wlt) dr.
1

Taking the conditional mean of both sides, we obtain

il e s
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xe | e) =€ {x(e) | 2ep} = e, £)) % (e))
>
+ Jo %, © 6 B{w(D | 2} at.
- . &

Since w(T) is a white noise process,

E {w( | zep) = e {w(n} =0 for T 2 t),
the predictor equatio& becomes

x(e | €)= O, ) x () for t 2 t,.

Other forms of the predictor equation can be obtained, depending on how t
varies with respect to t]. However, all forms are the same for stationary
processes.

The prediction error is given by
( = - x
x, (t | £,) = x(¢t) - x(¢ | )

and the variance of the prediction error is

v (¢ | t,) = var {-’5e (¢ | tl)} :
—e

=0 o7
vx (¢ | tl) (t, tl) Vx (tl) (t, tl)
—e —e

. It e, T G(M ¥ (D) ¢ty (e, T) 4T
1 s

The Kalman filter can be extended to handle other classes of problems.
For instance, the problem of nomwhite noise can be handled by augmenting the
state vector with additional states. Also, the Kalman filter can be used in
the solution of nonlinear estimation problems, provided that certain justifi-
able assumptions can be made. These extensions of the Kalman filter will not
be covered here, since they are not applicable to the problems under consid-
eration.

EXPERI MENT

The preceding sections have still not made it clear as to how the Kalman
filter techniques can be applied to a practical problem. The author thought
that the best way to demonstrate these techniques would be through the use of
an example. The example selected arose from some measurements made on a
large underwater suspended array, reference 6. The end result of the signal

—r
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processing will be an estimate of the variance of the error associated with
predicting future array displacements based on current measured displace-
ments .

DATA ACQUISITION

Three transponder assemblies, figure 2, were installed by the ALCOA R/V
SEA PROBE on the horizontal portion of the underwater suspended array. Other
trans ponders were installed on the ocean bottom both inline and normal to the
array. A diagram of the resulting experimental configuration is shown in
figure 3.

The procedure for data collection was to interrogate an array transponder
(Pl) with a shipboard transponder (P0). The array transponder would, in
turn, interrogate the bottom transponders (P7 and P8), which would reactivate
the array transponder. From the sequence of arrivals received onboard the
ship, it was possible to determine the slant range between array and bottom
transponders. The slant range could, in turn, be converted to Cartesian
coordinates.

The array, having a large mass, was assumed not to move during the
sampling sequence, which lasted approximately 10 seconds. Further, the
travel time variability due to ship drift was found to be predictable, and
thus could be removed from the computations. The array position was sampled
once each minute, which was more than sufficient to prevent aliasing.

DATA PROCESSING

A sample of the raw data is shown in figure 4. The different symbols
represent data collected from different transponder units. In order that a
complete data set could be obtained, the raw data were smoothed to eliminate
bad data points and to fill in missing data points. The smoothed data were
then sampled at 6 minute intervals to form the time series from which further
processing would be accomplished.

A time series plot of the resulting smoothed data is shown in figure 5.
The length of the sample is 262 hours, and both the relative displacement
fluctuations inline with (Ax) and orthogonal to (Ay) the array are
shown. The significant low frequency periods appearing in the time series
are motions due to inertial effects of ocean currents in the vicinity of the
array. This is perhaps better illustrated through the use of the autocorre-
lation function, figure 6, where the principal period of the displacement
fluctuations is 22.5 hours. This period corresponds exactly to the inertial
period at the latitude of the array.

The spatial characteristics of the array can be observed from the cross-
correlation function, figure 7, between transponder units 1 and 2 at the ends
of the array. Here the uniformity of motion across the array is demonstrated
by the high value of the crosscorrelation coefficient at zero lag. The
crosscorrelation plot also shows clear evidence of the inertial period in the
displacement fluctuations.

10

SURSPIVNOYORS




&’

T

Figure 2.

Transponder Assembly
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Figure 3. Experimental Configuration
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Histograms of the displacements orthogonal to and inline with the array
are shown in figures 8 and 9, respectively. The displacements inline with
the array are relatively small, and will therefore not be considered in
further analysis. The standard deviation of the orthogonal fluctuations is
34.6 ft, and will play an important role in the Kalman filter analysis of
these data.

Additional information, which is necessary before analysis of these data
can proceed, is contained in the displacement fluctuation power spectrum,
figure 10. This power spectrum was obtained as a Fourier transformation of
the displacement autocorrelation function. A peak exists near the inertial
frequency, but is not prominent for two reasons. First, the peak is sup-
pressed by the logarithmic scale, which was used to enhance any energy at the
higher frequencies. Second, the spectral resolution at the inertial fre-
quency is poor; a longer sample record would yield higher resolution.

KALMAN FILTER ANALYSIS

Before the Kalman filter can be applied to the problem under considera-
tion, two issues have to be considered. First, since the version of the
Kalman filter developed in this report was a continuous model, the discrete
power spectrum will have to be converted to an equivalent continuous power
spectrum. Second, the continuous 'power spectrum will have to be approximated
by some form of rational function.

The details of converting the spectrum are shown in appendix A. The
initial spectrum is the discrete one-sided spectrum of figure 10. The result
of the spectral conversion is shown in figure 11 and represents one half of a
two-sided continuous spectrum.

Fitting the power spectrum with a rational function involves fitting the
power spectrum with a function having the form

2 2m
ao + azs + oo ast ey
b +b s2 oo S2n
o 2

Ry (s,m,n) =

It is not an easy task to fit the spectrum with functions having high
orders. One method is described by Sanathanan and Koerner, reference 7. It
was decided to limit the form of approximations in order to keep the results
simple enough to obtain closed-form expressions. The approximations were
therefore restricted to a class referred to as lowpass Butterworth spectral
approximations. The lowpass Butterworth family is described by functions of
the following form

Ry(s, n) =
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where n is the number of poles in either half of the s-plame. Only the 1-
and 2-pole approximations are considered here, since obtaining closed-form
expressions for higher orders is time consuming.

. The details of the lowpass Butterworth spectral approximation are covered
in appendix B. Briefly, for a given n, the two parameters to estimate are
We and P. The two conditions to be satisfied were selected to be:

(1) Total spectral energy = measured data variance,
(2) The frequency approximation error is minimized at the inertial
frequency.

| Meeting these considerations determines the parameters w. and P. The
I resulting 1- and 2-pole spectral approximations are shown on figure 11, where
' they are superimposed on the continuous measured spectrum.

All information is now available for the application of the Kalman filter
algorithm. The details of these computations are carried out in appendix C
(1 pole) and appendix D (2 pole). 1In both cases (1 and 2 pole), the esti-
mator and the variance of the error of the estimator are determined for the
Kalman filter and the Kalman predictor.

) In the example under consideration, the noise v(t) is very small. Thus,
the variance of the error associated with the Kalman filter is nearly zero
5 and almost perfect current estimates of array position can be made. Predict-
3 ing the position of the array at some time in the future, however, is subject
to substantial error. This can be observed in figure 12, where the standard
deviation of the error is plotted as a function of time for both predictors.
Note that the prediction error starts off near zero for the filtered estimate
and approaches the standard deviation of the measured data (34.6 ft) as time
increases.

—

' g 1f we arbitrarily define prediction time as

Prediction time = t =) [V ke | & T/z R o
P e 1 i
¥ t = tp

the prediction times for the l-pole and 2-pole predictions are 16 and 109
minutes, respectively. Thus it can be seen that the prediction time is very
sensitive to the spectral approximation. The results should not be surpris-—
ing, however, since the 2-pole spectrum has less high frequency fluctuation
than the 1-pole spectrum. Since the slope of the true spectrum lies between
the slope of the 1- and 2-pole approximations, it is likely that the true
prediction time is bounded by the two prediction time estimates. The true
prediction time, however, can be approached only by making higher order ‘
approximations to the power spectrum.

b s
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SUMMARY AND CONCLUSIONS

The application of the techniques used in this report might seem
unnecessarily cumbersome for the treatment of a problem of this nature. -
However, this example was used suly to demoustrate the use of the Kalman
method in filtering and predicting stationary time series data. In actual
practice, a discrete version of the Kalman filter would probably be used, and .
numerical results (rather than closed-form expressions) would be desired.
Used in this manner, the Kalman filter is simple to implement on a digital
computer, and is computationally efficient.

The chief problems in using these methods with stationary time series
data are (1) solving the matrix Riccati equation, and (2) fitting the
power spectrum with a rational function of high enough order to be a true
representation of the real spectrum.

In the particular example used here, the prediction of array position was
shown to be highly sensitive to the spectral approximation. Even in the best
case considered (2-pole approximation), the prediction time (109 minutes) was
relatively short. Higher-order spectral approximations would improve the
accuracy or the prediction time estimate but would not increase the predic-
tion time. Thus the possibility of predicting array positions for a long
time in the future based on past measurements seems doubtful, unless some
deterministic behavior can be established.

18
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APPENDIX A

CONVERSION OF THE DISCRETE POWER SPECTRUM
TO AN EQUIVALENT CONTINUOUS POWER SPECTRUM

The theory developed in this report is based on a continuous filtering
model. Thus it was necessary to convert the discrete power spectrum to a
continuous power spectrum in order to apply the results.

The length of the sample was
L = 262 hr.
The sampling rate was
fs = 10 samples/hr,
which corresponds to a sampling interval of

1
At"f— 0.1 hr.

The total number of samples are
N = e 2620 samples
At g

The power spectrum shown in figure 10 was obtained by taking the Fourier
transform of the autocorrelation function shown in figure 6. The number of
correlation lag values was selected to be

m= 0.1 N,

which would make the standard error of the spectral estimates

The length of the two-sided autocorrelation function was then

2(0.1 N)

g At

= 52.4 hr.

A discrete Fourier transform of a record of length T results in an equivalent
bandwidth of
1 1 #
Af e gl 0.0191 cycle/hr.
Each value plotted in figure 10 represents 10 times the log of the one-
sided spectral estimate, i.e.,
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P = 10 log X(k).
The sum of all spectral estimates is equal to the variance of the data.

2 29762 2 x() = (34.6)°
2 Trm ;

with fi = k Af.

o

To convert the one-sided discrete spectrum to a two-sided equivalent
continuous spectrum, a bandwidth correction must be made:

P
10 log [p] = 10 log [2—k (A—é—((g—:;—ﬂ

The continuous spectrum which results is that of figure 11, where the
spectral units are ab/ £t2//Hz/2.

S S
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APPENDIX B

LOWPASS BUTTERWORTH SPECTRAL APPROXIMATION

Assume that the power spectrum of the message process can be approximated
by a rational function of the form

P P
R (sy,n) = ———— or R_ (W,n) =
y (8 2n y 1+(J£_ 2n
5—) 5
c c
R (w)
< —-P
! : ,
|
| |
| | | [
e - —+ — — 4+ — — = — 4|———\1’v
| ! ey
- W -we @ +twe i w

Functions of this type are known as the Butterworth family, where W, is
the 3 dB down point and n is the number of poles in either half plane of the
approximation.

The message spectrum and the measured spectrum are related

v(t)

y(t) O —=z(t) and z(t) = y(t) + v(t),
where y(t) and v(t) are uncorrelated, and v(t) is assumed to be white noise
with
cov {v(t), v(D)} =¥, 8(c-1).
Then for all s or w,
Ryls) = Ry(s) + ¥, or R (W) = Ry(w) 5 NN

I1f we integrate both sides over the frequency range for which the
measured power spectrum was computed, we have

B-1
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o =t = oy (10/3600) _ ®_ rad
m 2 2 360 s
+W +W
+W 2 1 m P 1 m
m = S e B S T
I-w Rz(w)dw %, = 7n I—m 2n o # 2w I-m wv o
m m ( W ) m
1+[(—
w
c
Since wp >> we, we can write
2 ch mm
= L
9 ° 7n sin (m/2n) # wv m™°

The above expression relates P and w., since all other parameters are
known.

The other criterion used to fit the Butterworth spectrum to the measured
power spectrum was to minimize the error of the spectra at the peak value of
the measured spectrum. Since we are using only one value, this is the same
as minimizing the squared error.

Thus with
= =2—Tr-= .__l_ __1.-— = ——L E.a_d
Doesk ~ Y5 T 2% (22.5) (3600) %0500 sec °’
R (w) known,
meas
and
R (w ) =P ak - Ppr @ known constant.
Zmeas P pe 4
Define

A g R (w)-R (w)
z z p
meas

P
A Pp— ———2n+\l’v ;
W
c




To minimize the error at w = Wp s

dw

_= 0,

c

Solving for w, in terms of Wp results in the following value for wc:

: w, = (2n-1)1/20

Evaluation of the spectral approximation for the 1- and 2- pole Butter-

worth spectra results in the following parameter values.

1 Pole 2 Pole
n 1 2
we(rad/s) 7.76 x 1075 1.02 x 1074
f.(cycle/hr) 0.045 0.0584
10 log P (dB/ft2//Hz/2) 74.9 75.2
10 log Y,(dB/ft2//Hz/2) 20 20

e R T TR T
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APPENDIX C

1-POLE COMPUTATTONS

KALMAN 1-POLE FILTER

x(t) = Fx(t) + Gw(t) Message model
z(t) = Hx(t) + v(t) Observationr model
y(t) = Hx(t)

The power spectrum model is

P -
R (8) = ——— = [Ry(s)]+ LEEY e

The spectral factorization yields

P1/2mc + PI/ch -
Rv(s) 1 8 m - s t
- ( (o

vhich results in the following scalar quantities for the matrices:

F= - pl/2 C=1
(] €

cov {w(t), w(D} Y, 8(t-1) = 18(¢e-1)

Yv § (=1l

cov {v(t), v(T)}
The filter equation is
%(t) = [F-KH] %(t) + Kz(t) = AX(t) + Kz(t),

which has a solution given hy

() = 0, (t,~) & (~=) + [T 0,(t, 1) K(1) 2(1) dr,

where

x (~») = 0.

C-1
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,“pvw_vaw‘
|

The Kalman gain is given by

G |
K = vex(o) H ‘l’v 4

and the error variance is given by the solution of the matrix Riccati

equation
G (Y D E At L () se X 6, i
e e e v e w ]
X X X x
where V_ (o) = Ve (t) for stationary processes. : !
x x

Solving the equation, we find

wv P 1/2 |}
Ve (o) = o Vit 7 -1‘
X e v

1/2
1 3
K P172 [l”l’v—] 1 . ’

and

The solution of the transition matrix is given by

[t
® = A(t-T) & = a
A(t, T) e aoI o’
{ where
A(t-T
5 aa™® )’
(s}

and A is the eigenvalue of A given by solving
l AL - A l = 0,

where
P 1/2
‘ A=FKH=-0 |l +yg— "
v
Again by solving the equations, we find that
P |1/2
- -T
X--w 1+P 1/2 A =g c[l"v‘_,'] (t )
c 7: T .

and the resulting transition matrix is

; C-2

' A A 50 0 Fon - —
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P 1/2
-wc [1 + W:I (t-T)

By substituting the values determined into the solution for the state
equation, we find that the state estimate is

P J1/2
/2 -w |1+ (t-T)
x(t) = %2 [1 B v%}l -li | °[ ‘P;] z(T) dT.
P

Since

QA(t, T) =e

1/2

y(t) = H x(t) =P wcﬁ(t),

the estimated displacement is

b -w |1+ (t-1)
y(t) = u)c E + g__] 1/2_1 J‘Ew e C[

P ]1/2
¥y 2(T) dt.
3

Also, since

= L R
, (t) = v, (o) = L (o) H = P Ve(o),
y b | X X
the variance of the error in the estimated position is given by

1/2
[1+—§—] )
v

The predicted displacement is given by

Ve(t) = Ve(o) = wc Wv

KALMAN 1-POLE PREDICTION

§(:|:1) =H ﬁ(:ltl),
where

x(tltl) = 0.(t, £)) X(t)).

Since

%(t) = 50yt %

C’

we can write the predictor equation as
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9(t|t1) = ?(tl) ¢F(t, e, ).

The solution of the transition matrix is given by

F(e-t,) ¥
¢F (e, tl) e 1 al=a,
where
a = EE)
(o]

and A is the eigenvalue of F given by solving
Ix1 - F| =0
Solving the equations, we find

-w  (t-t.)
A=F=w,0 =e © it
Gl
and the resulting transition matrix is
—wc(t-tl)
¢F(t, tl) = e .

Substituting into the predictor equation, we find the predicted displacement
is given by

-w (t-t.)
eelep) =5e e © ’ for £2 ¢t .

The variance of the error of the predicted estimate is given by solving
v (t|le,)) =mv.  (t]|t) H
e 1 e | Ny
y x
where

b o
Vex(‘|‘1’ - .(t, t,) Vex(tl) e (¢, t))

+ jil o (¢, 1) 6(1) ¥ (1) 67() 07(e, T) dr.

In the problem under consideration, this reduces to

-z»c(t-tl) 1 [ -z»c(t-th
l=-e ’

2w

v (tle)=v (t,) e +
o 1 3 1
x x c
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and the resulting variance of the error in the predicted displacement is

given by

ve (tltl) = ve (tl) e o 1 - e

-2w  (t-t, ) Pw =20 (t-t_ )
c 1 c c ¥
¥ y

for t 2 t-

Cc-5/C-6
Reverse Blank
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APPENDIX D

2-POLE COMPUTATIONS

KALMAN 2-POLE FILTER

Fx(t) + Gw(t) Message model

REE) =
z(t) = Hx(t) + v(t) Observation model
y(t) = BHx(t)

The power spectrum model is

Ry(s) = ———Ps—4 = [Ry(s)]+ [Ry(s)]_ :

62

the spectral factorization yields

p 1/2,;2 + P1/2 w2 -
R sl n c c :
> w? W 2] w2 _ w
e S . V@f 55t

which results in the following matrices

0 I pl/2,2

£

cov {w(t), w(T)} =Y §(t-1) = [O 0]5(t—T)
3 = L4 0 1

cov {v(t), v(T)} = Wv5(t—T).
The filter equation is

x(t) = [F - k] x(t) + Kz(t) = Ax(t) + Rz(t),
which has a solution given by

x(6) =& (t, =) x(-==) + [T, 0 (¢, T) R(T) 2(T) 4T

A

o XA 500 I 2 A A LB
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where

2(-=) = 0,

The Kalman gain is given by

T ¢-1
K vex(o) BT uvngo) A .

and the error variance is given by the solution of the matrix Riccati j
equation

& T G | P
0= FVe (o) + 8 (o) F~ - v, (o) H Yv BV, (o) + GWW G,
b3 x b3 X =

where V_ (t) = LA (o) for stationary processes.
x X

Define

| s £ [1+ Wg‘] ANEY ;
v

Solving the equations, we find

BRYANER: Yy 2 i
V (o) = 3 2
e
x

and

1/2
P

The solution of the transition matrix is given by

- o B(E=T) _
°A(t’ T) = e Bt # alA

when the O; are the solution of the set of equations

R T AL AR TRy ey

Xl(t-T)
ao + al Xl = e

D-2
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Xz(t-r)

a0+a1x2=e s

and the A{ are the eigenvalues of A which we obtain by solving
| A1 - A|] =0,
where
V2w s

1
-m2 -w2 S2 —Véwc
[ c

A=F-KH-=

Solving the equations, we find

2w (1 +8) V2w (1 +8)
= < (1 + j) and AZ = £ (1~ 3,
2 2

i

also

-w (1+58) (-1
c

JT [w (1 +58) (t-'t)]
(o
a = e cos

vf?
w (1 +58) (t - 1)
+ sin £ J7

-w (1 +8) (t - 1)
C

w (1 +58) (¢t -1
o, = 2 e ;Zr si11[ = ]

7T

and the resulting transition matrix is

‘DA”(c, 1) @Alz(t, 1)
¢A(t, T) = ’

o G, T ¢ g, T
AZI A22

where

W, (1 +#8) (¢t - 1)
5 W €Y« 8) (= T)
d (t, T) = e cos £

1 Vi
+(1 i S) . [wc(l +8) (¢ - r)]
I +8 gt

D-3
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E W, €1 % B b~ 1)
’ J_' w (1 +598) (¢ -1)
i g 2 . 4 e
E ¢Al§t’T) T (1+8) . V2 s‘“[ g ]
;
E 9 -w (1 +8) (t~1)
: -~ (1% 8) < w (1+58) (¢t-1)
' ¢A (t, T) = i g e /7 sin|-<
; 21 V2
w, €L« 8) (e = 1)
w (1 +8) (t-1)
¢A (e, T) =« @ /7 cos[c }
22 v
+<s—1> Sin[wc(1+s) (t - 1)
S +1 ‘/2—

{ —

pl/%»

x(t) = ffm

{ L

Since y(t) = Hx(t) = p

V2 s

(o

— e i o w— e = — - —— — amn = — — —— —

Substituting the values determined into the solution for the state equation,
we find that the state estimate is

-—_

-w (1 +8) (t -1)
C

1+ 8) (£ - 1)
g =

w (1+8) (¢ -1)]
+ sin -

i g

z(t) dt.

w (1 +58) (t -1)
C

e J*

(1 +8) (¢ - T)]

W
S cos[ &
7z

(1 +8) (t—T)]

N

w
+ (2 - 8) sin £

i BB S
/ wc xl(t),

]

A A e s PRS2

|
|
!
|
|
s
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the estimated displacement is

- (1 +8) (£t - 1)
C
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[ ¢
y(t) =‘/2_wc S ffm e J2 cos[ s

w, (1 +8) (£ - 1)
+ sin z(1)dT

Jz

J2

Also, since

Vv (t) =V (o) = HV (o) HT = Pw4 V. Ca)
e e e C (-]
Y y X xll

the variance of the error in the estimated position is given by

p 1/4
v (£) =V, (o) =20 ¥ [1+ \y] -1} .
y ¥ '

KALMAN 2-POLE PREDICTION

The predicted displacement is given by
9(t|t1) =H % (tltl),
where
R (tltl) =0, (£, £) & ().
Since

o [il(t)} [9(c)/ P”zwz]
& (¢) = S :
5 g (©) §er/ o'/ %2

2

we can write the predictor equation as

9(t|tl) - ?(tl) ¢ll(t, tl) + ?(tl) ¢12(t, tl).

1 +8) (¢ - r)]

D-5
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The solution of the transition matrix is given by

F(t-tl)
¢F(t, tl) = e = QOI + alF,

where the o are the solution of the set of equations
W, | exl(t—tl)
Qg ~ 9%y
Az(t-tl)
a0+a1>\2=e ’
and the )\; are the eigenvalues of F which are obtained by solving
| AL = ¥ | s 0.

Solving the equations, we find that

W W
AI=J“—7£[1+j]and >\2=72-—°[1'J'];
also,
o
ch(t_tl) b5 25 Chat.) & (tet)
(10 = e sin 7§=— t-tl + cos ﬁ t—tl
-we
C (t-t.) W
2 75 1 s c
o, = e sin (t-t.)},
1 W, ﬁ 1 I

and the resulting transition matrix is

—

-w
c W

|
|
(t-t,) W w | S(t-t,) w
eJi I [sin ﬁ(t-tl) + cosﬁ (t-tl)] : 2 e; 1 {sin_c(t-tl)]
|

—

V[Z

BplEsty) =) ek e P o e e e

w w
{%ot7§ (t—tl) - si:7§ (t°t1{]

-
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Substituting into the predictor equation, we find the predicted value is
given by

-w

c
e (g )
o 1 W w
§(tlt1) =e 2 I:cos = (t—tl) + sin —=— (t-tl):l y

vz vz
w .
+[u—\’é—— sin — (t-tl)] y for t > €~

c 2

The variance of the error of the predicted estimate is given by solving

& T
v, (t|t1) = HV, (tltl) H,
y X

where

i T
vex(tltl) =0.Ce, £) ¥ (x) B Cx, &)

+ j'é o (t, T) G(T) ¥ (1) cT(t) 8T(e, 1) dr.
1 Pl

In the problem under consideration, these equations simplify to

il 4
v, (tltl) -V (t|t1)

y 11

and

v, (t‘tl) =9 (e, £ IW (6,3 8, (¢, £,) + ¥ (g)) &, (r, ¢,)
X 11 X1 11 Xy, 12

K2 Ll X 12

+ ¢F (t, t,) v (t)) ¢F (e, £)) + Vv, (t)) °F (e, tl)]
21 22

t 2
+ (RS < ) O
“/"1 Fia ?
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Substituting the values previously determined for these expressions, we have

=2 (E=F_) :
v, (tl';1)=ve (t) e V2o 1% ofa » l[l*rvp—]l/a—ll

ﬁ b j b § v

€

w
. e (o
2 SIn\72-— (t-tl) cos /T (t-tl)

1/4 2 , ©
; + [1 + —‘5—] ~ 1} -14 2 sin”® - (t-t,)
v

75 1

pw - Jw  (t-t.) ®
+ m? ‘1 + e % _ 2 sin2 ﬂ——c— (t—tl)
' . w w
3 + 2 sin - (t=¢.) cos -S- (t-t. ) + 1 for £ > t..
1 1 =
V2 J2
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