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ased on 1- and 2-pole approximations of the displacement power spectrum.
Closed-form expressions are maintained throughout the development. The results
of the study show that the predicted array displacements are sensitive to the
power spectral approximation, and that large errors in the displacement
predictions can occur in relatively short periods of time.
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A STATE VARIABLE APPROACH TO STATIONARY TIME SERIES
WITH APPLI CATION FOR PREDI CTING DISPLACEMENT

IN A LARGE UNDE RWATER SUSPENDED ARI1AY

INT RODUCTION

The ori gina l extensive treatment of stationary time series analysis was
developed by Wiener ( 1949) in his classical work “Ext rapolat i on , Interpola-
tion and Smoothing of Stationary Time Series,” reference 1. Wiener ’s results
were expressed in the frequency domain and could not readil y be ex tended to
nonstationai-’r problems. In 1960 Kalman , reference 2 , extended Wiener ’ s work
to nonstationary time domain problems. Although the real power of the Kalman
filter theory lies in its ability to handle the nonstationary case, computa-
tional advantages of the Kalman filter make it worth considering for many
stationary problems.

The background information necessary to understand the Kalman filter
computational techniques has been included in this report. In most cases,
equations are stated without proof, since lengthy derivations are usually
required for their developnent. Several texts (references 3, 4, and 5),
which treat this subject with much more rigor and detail , are available.
However, most of the develojxnent and notation used here is consistent with
that used by Sage and Melsa, reference 4.

• As an example of the application of Kaiman filter theory to prediction ,
the displacement fluctuations of a large underwater suspended array are

* 
investigated . Both the 1— and 2—pole prediction estimates along with the
associated error variance , are determined.

Prediction of the array displacement is motivated by a desire both to
reduce the corruptive effects of sampling the array position and to decrease
the number of active transmissions in the vicinity of the array.

BACKGROUND

Some of the notations used in this report may not be familiar to all the
individuals interested in this subject. Therefore , this section has been
included as an aid to understanding the material that is to follow. The
information is admittedly br ief , and those desiring more detail should refer
to Sage and Melsa, reference 4.

STATE VARIABLE NOTATION

Linear systems can be represented in a vector form known as the state
vector d i f fe ren t ia l  equation ,

1
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k
1(t) F(t) x(t) + G(t) w(t),

where the state vector x(t )  is related to the system dependent variable and
its derivatives.

The solution of the state equation is given by

x (t )  = 4~(t , t0
) x (t 0

) + .f~ •(t , t) G( r) w(T) dt, -

•

where •(t ,t0) (called the state transition matrix) is given by the solution
of

d [~(t, t)] = ~‘(t , t )  = F(t) c1(t, t),

with the initial condition •(t0, t .~) I.

If, in addition, F(t) is time invariant, the state transition matrix is
given by

$(t , t )  = eF 
( t — t 0

) 
~o’ + ct1F + ... + %—i F’~~~;

when the eigenvalues of F ar e distinct, the aj  are given by solving the
following sets of equations:

X ( t—t )
a0 + cx1X 1 + •.. + %—i X

n i  
e ~ 0

X ( t — t )
n—i 2 o

a 0 + c L1X2 + ... + %_1 X2 e

X ( t—t  )
n—i n oa~ + a 1 X~~+ ... +a 1 X 

= e

KALMAN FILTER THEORY

Suppose we have a system whose behavior can be described by the state
equation

1(t) F (t )  x (t )  G(t )  w(t )  (message model) ,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—

~~~~~~ 
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where v(t) is a zero—mean white noise process with covarianc~

coy lw(t), w(T)} V
~
(t , r) = ‘V~ (t )  6 (t—t )

and the initi~ .. mean and variance of the state x(t) is known

iJ~(°) = E 
~~ 

(o) } Vx (o) var

Further suppose that some measurements are made which are re lated to the
state x (t )  as

z (t )  = H( t)  x (t )  + v(t) (observation model),

where v(t) is zero-mean white noise with

coy iv(t), v(T)} = V~ (t , T) = ‘f’
~
(t) 6(t— T)

and w and ! are uncorrelated:

coy {~ (t ) , v (t)} = V
~~~

(t, t) 0.

Bas ed on the foregoing model , the Kalm an filter desires to make an
estimate of the state x (t ) .  In addition , the est imat or must meet the
following requirements:

(1) The form of the estimator is linear ,

~~(t )  = ~~(t) + j
~ A(t, t) z(T) dT

(2) The bias error of the estimator is zero,

E {x(t) — fit) } = E {!e(t) 
} = 0.

(3) The trace of the variance of the error is a minimum,

tr [var {x(t) — £(t) }I minimum.

The estimator whi ch can be developed to meet the foregoing requirements
is the “optimum linear ininimum—error—vaiiance sequential state estimator,”
or more conin only, the “Kalman f i l te r .” A comp lete suninary of the Kalman
f i l te r  al gorithm is shown in table 1 and diagrainr”ed in figure 1.

- 
- STATIONARY PROCESSES

Many problems can be considered stationary or almost stationary. This
fact , together with the knowledge that the Kalman filter has many
computational advantages over the Wiener filter , makes it worth considering
the Kalman fil ter for the solution of stationary problems.

3
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Table 1. Continuous Kalman Filter Algorithm

Models A l gori thms

Message’ Fi l ter

= F(t~ x (t) + G(t) w(t) ~~( t )  F(t) ~(t) + K (t) [z (t) — }Ut ’
~ ~( t )~

Observa tion Gain

= H(t) x (t) + v (t) K (t) = V (t) H
T(t) ‘I’ ’(t)

Error Variance

= F(t) v
e
(t) + Vp ( t ) FT(t)

— V ( t) H
T
(t~ ~~~~ ( t )  H(t) V ( t ~

+ G(t) W ( t ~~

Prior Statist ics

E ~w~t)~ = E {v(t)} = 0 E {x (O~} = ~i

- 
- coy {w t , w(t )} = 

~
l’
~ 

( t )  6 ( t — r )

coy {~~ (ti . v(T)} = coy ~x(O), w(t)} = coy {x(o~ , v(t)} = 0

va r { x ( o ) F  = Vx ~~~

coy {v (t~~. v (t ~~} 
~
‘,, ( t )  ~~( t —t )

Ini t ial Cond it ions

x~0) = E {x(O~} ~~ 
(0)

• V (0) = var j x  (o)} = v (0)

4
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For the stationary case, the following assumptions must be satisfied :

(1) The message and observation models are time invariant,

1(t) = Fx(t )  + G w(t)

z (t )  = Hx(t )  +

(2 )  The inpu t and measurement noise are at least wide sense stationary,

V~ (t, 
t) = R~~(T) 

= ‘
~~~ 6(t)

V
~ (t , t) = R~

(T) = ‘I~ 6( t) .

(3) The observation interval began at t =

Since x(t) is stationary, Ve ( t) Vex(0) 
= Vex 

= constant
and the er ror var iance equat ion ~ ecomes — —

0= F V  +V  F
T _ H T iY 

~~~RV + G W  G
T
,e e V- e w

where the Kalman gain is given by

K v e HTci

and the Kalm an filter becomes

= F~(t) + K [z(t) - H ~(t)] ~~(_ c ~) =

The main difficulty with this stationary algorithm is in the solution of
the error variance equation known as the matrix Riccati equation. This
difficulty arises because the equation is quadratic and many solutions are

H possible. The usual method of solution involves solving the nonstationary
error variance equation until the solution reaches a steady state value.
Because the solution represents variance quantities, the solution must also
be positive definite.

The stationary estimation problem was first solved by Wiener, and is
represented by the following diagram .

v(t) Noise

+ I c-Observation . F
~~~~age ~~~~~~~~ 

- 

~
{

~~o
(a

~~
_ 

~ ~(t)

Wiener showed that the optimum linear minimum error variance filter
W0( s) ,  when 1(t) and !(t) are uncorrelated , is given by

6 

W (g) 
[i~~

s ~
_T
(9)~j ~~~~~~

J~~
. - - 

- -  —~~ --.~~~.- ~- —~-———-——— -
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where

PR corresponds to physically realizable,

R (s) = message spectral density = 
~31R~~

(T) 1
hh a1v~ 

(t + t , t)~, and A (s)

is given by

Ri( s ) = R
i

(s)  + R
!

( 5 )  = A (s) AT(_8).

The ma trix A(s) is such that the rational function det [A(s)] has all its
poles and zeros in the left half of the s—plane.

The equivalence of the Kalm an and Wiener filters can be shown by letting

1(t) = H x(t).

In thi8 case, it can be shown that the message spectral density becomes

(s)  = H(SI—F)~~ 
GY W G(_SI_FTY~

l
~H
T,

and the optimum Wiener filter is given by

W0(s) = H(SI—F + KH) ’K.

For the particular case of scalar observations, the spectral factoriza—
tion becomes

Ry(S) = [R~ (s)] + [R~(s)) 
—

where the + and — represent left—half and right—half plane poles and zeros ,
respectively.

In particular , if we write the spectrum as a function of rational poly—
H nomials

~~~~~~~~ ~~~~~~~~~~~~~~~
r ,+ 1 m
LR (s)J = m < n,y

then the coefficient matrices in the Kalman model become

O i O . . . O  ~aO

H o o i . . . o
• F =  : : : : : : : HT =

0 0 . . . . O
• 0 0 . . . .1  0

~o~~l 
. B~_.[ 0 

-

7
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o O . . . o
O O . . . 0

G = I .

0 0 . . O 0
o O . . O i

EXTENSION TO PREDICTI ON

Based on measurements to time t1, there are three classes of state
estimation. Consider the following diagram, depicting one component of the
state vector x(t).

If we define ~c(t I t~~) = E {x(t )  z (t 1)}
the classifications are:

(1) Filtering (t 4),

~(t t1
) = 

~(t 1 t1
) =

(2) Smoothing (t < t1),

(3) Predicting (t > t 1 ) .

The Kalman filter , which estimates the current state, has been covered in
the previous section. The innoothing problem is of interest when improved

- - estimates are required for previous values based on the collection of more
data. The prediction problem arises when some future value must be estimated
from present measurements.

The smoothing problem would amount to a fairly large extension of this
material and will not be covered here. The prediction problem, however ,
amounts to a simple extension of the Kalman filter and a treatment of this
problem follows .

The state at time t is given by

x( t) — ‘~(t , t1
) x(t

1
) + f t O(t, r) G(i) w(t )  dt.ti

Taking the cond itional mean of both sides, we obtain

8
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,~(t I t
1
) — E x(t) I z(t1)I = ‘1’(t , t1

) ~ (t 1
)

+ 1 •(t, 1) C(t) E 1w (T) I z(t )} dr .
1 1

Since !( t)  is a white noise process,

E {~~(t) I z(t1)} = E {wtrt} = o for •t 
•~~~ t 1,

the predictor equation becomes

~(t I t~) ~ •(t, t1
) ~ (t 1

) for t ~ t1.

Other forms of the predictor equation can be obtained, depending on how t
varies with respect to 4. However , all forms are the same for stationary
processes.

The prediction error is given by

x (t I t
1

) — x(t) — x(t I t1 ) ,

and the variance of the prediction error is

V (t I t ) — var ix (t I t )
x 1 I—e 1 ,
-e

v ( t  I t~) = •(t, t1
) v ( t 1) •T(t , t1)

+ .f~ •(t, T) G(T) ‘~‘ (1) GT
(t) ~

T
(t 1) d T .

The Kalman filter can be extended to handle other classes of problems.
For instance , the problem of nonwhite noise can be handled by au~nenting the
state vector with additional states. Also, the Kalman filter can be used in
the solution of nonlinear estimation problems, provided that certain justifi—
able assumptions can be made. TJ~ese extensions of the Kalman filter will not
be covered here, since they are not applicable to the problems under consid—
eration.

EXPERI MENT

The preceding sections have still not made it clear as to how the Kalman
filter techniques can be applied to a practical problem The author thought
that the best way to demonstrate these techniques would be through the use of
an example. The example selected arose from some measurements made on a

• large underwater suspended array, reference 6. The end result of the signal

9
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processing will be an estimate of the variai~ce of the error associated with
predicting future array displacements based on current measured displace—

• ments.

DATA ACQUISITION

Three trans ponder assemblies , fi gure 2, were installed by the ALQ~A R/V
SEA PROBE on the horizontal portion of the underwater suspended array . Other
transponders were installed on the ocean bottom both inline and normal to the
array . A diagram of the resul ting experimental configuration is shown in
f i gure 3.

The procedure for data collection was to interrogate an array transponder
(P1) with a shi pboard transponder (P0). The array transponder would , in
turn , interrogate the bottom transponders (P7 and PS), which would reactivate
the array transponder . From the sequence of arrivals received onboard the
ship, it was possible to determine the slan t range between array and bottom
transponders . The slant range could , in turn , be converted to Cartesian
coordinates.

The ar ray , having a large mass , was assumed not to move during the
sampling sequence , which lasted approximately 10 seconds. Further , the
trave l time variability due to ship drift was found to be predictable , and
thus could be removed f rom the computations . The array position was sampled
once each minute , which was more than sufficient to prevent aliasing .

DATA PROCESSING

A sample of the raw data is shown in figure 4. The different symbols
represent data collected from different transponder units . In order that a
complete data set could be obtained , the raw data were smoothed to eliminate
bad data points and to fill in missing data points . The smoothed data were
then sampled at 6 minute intervals to form the time series from which further
processing would be accomplished .

A time series plot of the resul ting smoothed data is shown in figure 5.
The length of the sam ple is 262 hours , and both the relative displacement
fluc tuations inline with (Ax) and orthogonal to (Ay ) the array are
shown. The significant low frequency periods appearing in the time series
are motions due to inertial effects of ocean currents in the vicinity of the
array . This is perhaps better illustrated through the use of the autocorre—
lation function , f i gure 6, where the principal period of the displacement
fluctuations is 22.5 hours. This period corresponds exactly to the inertial
period at the latitude of the array .

The spatial characteristics of the array can be observed from the cross—
correlation function , fi gure 7, between transponder units 1 and 2 at the ends
of the array . Here the uniformity of motion across the array is demonstrated
by the high value of the crosscorrelation coefficient at zero lag. The
crosscorrelation plot also shows clear evidence of the inertial period in the
displacement fluctuations .

10
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Histograms of the displacements orthogonal to and inline with the array
are shown in figures 8 and 9, respectively. The disp lacements inline with
the array are relatively small , and will therefore not be considered in
further analysis. The standard deviation of the orthogonal fluctuations is
34.6 ft, and will play an important role in the Kalman filter analysis of
these data.

Additional information , which is necessary before analysis of these data
can proceed , is contained in the disp lacement fluctuation power spectrum,
figure 10. This power spectrum was obtained as a Fourier transformation of
the displacement autocorrelation function. A peak exists near the inertial
frequency, but is not prominent for two reasons. First , the peak is sup-
pressed by the logarithmic scale , which was used to enhance any energy at the
higher frequencies. Second , the spectral resolution at the inertial fre-
q uency is poor ; a longer sample record would yield higher resolution.

KALMAN FILTER ANALYSIS

Before the Kalman f i l ter can be app lied to the problem under considera-
tion, two issues have to be considered . First , since the version of the
Kalman filter developed in this report was a continuous model, the discre te
power spec trum will have to be converted to an equivalent continudus power
spec trum. Second , the continuous -power spec trum will have to be approximated
by some form of rational function.

The details of converting the spectrum are shown in appendix A. The
initial spectrum is the discrete one—sided spec trum of figure 10. The result
of the spectral conversion is shown in figure 11 and represents one half of a
two—sided continuous spectrum.

Fitting the power spectrum with a rational function involves fitting the
power spec trum with a function having the form

2 2ma + a s  + ... a S
o 2 2m m < n .R (s,m ,n) =

b + b 5
L 

+o 2

It is not an easy task to fit the spectrum with functions having hi gh
orders. One method is described by Sanathanan and Koerner , reference 7. It
was decided to limit the form of approximations in order to keep the results
simple enough to obtain closed—form expressions. The approximations were
therefore restricted to a class referred to as lowpass Butterworth spectral - •

approximations . The lowpass Butterworth family is described by functions of
the following form

P ,R ( s , n) = 2y i _ I _ L _ _  n
(tu)

16
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where n is the number of poles in either half of the s—p lane. Only the 1—
and 2—pole approximations are considered here, since obtaining closed— form
expressions for higher orders is time consuming .

The details of the lowpass Butterworth spectral approximation are covered
in appendix B. Briefly, for a given n, the two parameters to estimate are

W
~ and P. The two conditions to be satisfied were selected to be:

(1) Total spectral energy = measured data variance ,
(2) The frequency approximation error is minimized at the inertial

frequency .

Meeting these considerations determines the parameters W~ and P. The
resulting 1— and 2—pole spectral approximations are shown on. figure 11 , where
they are superimposed on the continuous measured spectrum .

All information is now available for the app lication of the Kalman filter
al gorithm. The details of these computations are carried out in appendix C
(1 pole) and appendix D (2 pole). In both cases (1 and 2 pole) , the esti-
mator and the variance of the error of the estimator are determined for the
Kalman fil ter and the Kalman predictor .

In the example under considera tion , the noise !(t) is very small. Thus,
the variance of the error associated with the Kalman filter is nearly zero
and almost perfec t current estimates of array position can be made. Predict-
ing the position of the array at some time in the future , however , is subjec t
to substantial error . This can be observed in figure 12 , where the standa rd
deviation of the error is plotted as a function of time for both predic tors .
Note that the prediction error starts off near zero for the filtered estimate
and approaches the standard deviation of the measured data (34.6 ft) as time

• increases.

• - If we arbitraril y define predic tion time as

Predic tion t ime = t ) Iv ( t  I t ~
Ih/ 2 = I

P [ey 1] ~~~ 
e

the prediction t imes for the 1—pole and 2—pole predictions are 16 and 109
minutes , respec t ively. Thus it can be seen that the prediction time is very
sensi tive to the spectral approximation . The results should not be surpris-
ing, however , since the 2—pole spectrum has less high frequency fluctuation
than the 1—pole spectrum . Since the slope of the true spectrum lies between
the slope of the 1— and 2—pole approximations , it is likel y that the true
pr edi ct ion t ime is bounded by the two prediction t ime estimates. The true
prediction time , howeve r , ca n he approached onl y by making hi gher order
approximations to the power spectrum .



TR 5893

SUMMARY AND CONCLUSIONS

The app lication of the techniques used in this report might seem
unnecessarily cumbersome for the treatment of a problem of this nature.
However , th is example was used ~.il y to demou stt a te  the use of the Kalman
method in filtering and predicting stationary time series data. In actual
p:act ice , a discre te version of the Kalm an filter would probably be used , and
numerical results (rather than closed—form expressions) would be desired.
Used in this manner , the Kalman filter is simple to imp lement on a digital
computer , and is computationally efficient.

The chief problems in using these methods with stationary time series
data are (1) solving the matrix Riccati equation , and (2) fitting the
power spectrum with a rational function of high enough order to be a true
representation of the real spectrum.

In the particular example used here , the prediction of array position was
shown to be highly sensitive to the spectral approximation. Even in the best
case considered (2—pole approximation), the prediction time (109 minutes) was
relatively short. Higher—order spectral approximations would improve the
accuracy or the prediction time estimate but would not increase the predic—
tion time. Thus the possibility of predicting array positions for a long
time in the future based on past measurements seems doubtful , unless some
deterministic behavior can be established .

k 1 8  
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APPENDIX A

CONVERS ION OF THE D ISCRE TE POWE R SPE CTRUM
TO AN EQU IVALE NT CONTIN UOUS POWE R SPECTRUM

The theory developed in this report is based on a continuous f i lt e r ir ~gmodel. Thus it was necessary to convert the discrete power spectrum to a
continuous power spectrum in order to apply the results.

The l ength of the sample was

L • 262 hr.

The sampling rate was

f5 = 10 satnples/hr,
which corresponds to a sampling interval of

S

The total number of samples are

LN = = 2620 samples.

The power spectrum shown in f i gure 10 was obta ined by taking the Fourier
transform of the autocorrelation function shown in fi gure 6. The number of
correlation lag values was selected to be

m 0.1 N,

which would make the standard error of the spectral estimates

c =

The length of the two—sided autocorrelation function was then

T 
2(0.1 N) 

= 52 4 hr

A discrete Fourier transform of a record of length T results in an equiva lent
bandwidth of

t
~
f 

52.4 0.0191 cycle/hr .

Each value plotted in f igure 10 represents 10 times the log of the one—
sided spec tral es timate, i.e.,

A-i

_ _ _ _ _  
- - -- -~~~~~~~~~~
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= 10 log X(k).

The sum of all spectral estimates is equal to the variance of the data.

= x (k~ = (34.6) 2

wi th 
~k 

= k ~f.

To convert the one—sided discrete spectrum to a two—sided equivalent
continuous spec trum, a bandwidth correction must be made:

10 log fp l = 10 log [
~ (~ 

~~~~~~ )]
The continuous spectrum which results is that of figure 11 , where the

spectral units are db/ft2//Hz/2.

(

A-2 

-_ _ _ _
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APPENDIX B

LOWPASS BUTTERWORTH SPECT RAL APPROXIMATION

Assume that the power spectrum of the message process can be approximated
by a rational function of the form

P P
R (s,n) = or R (W ,n) =

y 1+f u~ 
2n

\ w J
c c

R( ~ )

Urn Q 4
~ ’m

• Functions of this type are known as the Butterworth famil y, where Wc is
the 3 dB down point and n is the number of poles in either half plane of the
approximation .

• The message spectrum and the measured spectrum are related

v (t )

_ I 
_ _y (t )  -~~ z ( t )  and z( t ) = y(t) + v (t),

-
• 

where y ( t )  and v (t )  are uncorrelated , and v (t) is assumed to be white noise
with

coy {v(t), v ( T ) }  = ‘
~v 

6 ( t — t ) .

Then for all s or CA) ,

R i( s)  = R~(s) + or R~
(W) R~(CA)) + ‘1’.,,.

If we integrate both sides over the frequency range for wh ich the
measured power spectrum was computed , we have

B— I 

-
~~- • - ----~~~~~~~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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= —.~ = 21 (10/3600) = 1 tad
m 2 2 360 s

f~~ m R
~

(w)d u) = = ~~ 
2n ~~~ + ~~ f_  “V dw

m m 1~ /w \ 
m

‘C

Since 
~m >> 

~ c’ we can wr i t e

Pw w2 .  C + ‘y ~~~~z 2n sin (iT/2n) v it

The above expression relates P and ~~ since all other parameters are
known.

The other criterion used to fit the Butterworth spectrum to the measured
power spectrum was to minimize the error of the spectra at the peak value of
the measured spectrum. Since we are using only one value, this is the same
as minimizing the squared error.

Thus with

~ 
. 21T 

211 ( i\ ( i \  - it rad
peak p T \22.5) ~ 3600J 40500 sec

R (w) known ,
mea S

— and

R (w ) = P = P , a known constant.
Zmeas p peak 

~

Defi ne

(w~~~- R ( w )
z p z pmeas

P~~~ 
~~~~~~~~~~~~~~~~~~~

where

“ 
- [2n sin .~!_] ~.i_ .

B—2

~ 

-
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To minimize the error at w = ~~~

Solving for w~ in terms of Wp results in the following value for EIJC :

w (2n_l)~~
2T
~ wC p

Evaluation of the spec tral  approximation for the 1— and 2— pole But te r—
worth spectra results in the following parameter values.

1 Pole 2 Pole

n 1 2
wc(rad/s) 7.76 x 10~~ 1.02 x 10~~
f~(cyc1e/1~r) 0.045 0.0584
10 log P (dB/ f t2//Hz/2) 74.9 75.2
10 log ‘Yy (dB/ f t 2 / / H z / 2 )  20 20

B— 3/ B—4

— — - _____— — - 
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APPENDIX C

• 1—POLE COMPtTTAT IONS

• KALMAN 1-POLE FILTE R

= Fx (tl + Gw (t” ~oscage mode l

~~t) = H~ (t) + v(t) O’~servatiop model

= Hx (t ’
~

The power spectrum model is

R (s) = ____—

~~

--——— [R (s)]~ [R (sI]

~~~~~~~~
The spectral factorization yie ld s

• 1p11’2w 1 
+ 1P~~ l.$) —

R (s) I— C 1  I c
- ;  L~’~ 

+ 5i L~ 
—

~.“,ich results in the following scalar quantities for the matrices:

F = —ta 11T = w G = 1
-~~~~~~~ c C

{w t .  w(T)} = 
~ 

6(t -T ) = 16(t -T )

coy {v (t), v(T)} = ‘Yv tS ( t — i ) .

The filter equation is

~~( t )  [F—K B] ~c(t) + Kz(t) A~c(t) + Kz(t),

whi ch has a solution given by

~~( t )  — 
~~~~~~~~ ~ 

( —oo ) + 
I~~~~ ~A (t

~ T )  K(t) z(r) dit,

- 
where

_ _  - -
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The Kalman gain is given by

K = V
ex
(o) 11

T 
~~~

and the error variance is given by the solution of the matrix Riccati

equation

0 = FVe (O) + V (o) F
T - Ve

(O) H
T 
~V

l 

~
“e~~°~ 

+ G ‘V cT ,

where Ve (O) = V (t) for stationary processes.

Solving the equation, we find

V ( o) = k ~[I 
+ 
~~ ]1/

2 

_il

and

1 P 11 /2
-1

The solution of the transition matrix is given by

• (t , T) = e t
~~~ = i = ,A o o

where

X (t—T)
~~0

and X is the eigenvalue of A given by solving

I — A I = 0,

where

I ~~i1/2
A F-KH _ W

~ I 1 + ~
r_ . 

-

L “

Again by solving the equations, we find that

~~c[1 
+ 

1/2 = e~~~~[1 
+ 

1/2 (t-T)

and the resulting transition matrix is

C—2

—

~ 

- 

-~~~~~~~~~~~~~- _ _ _ _ _ _ _ _ _ _
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1/2

= e C [1 
+ 

~c] (t1)

By substituting the values determined into the solution for the state
equation, we find that the state estimate is

~~

(t)  = 
T72 

+ 
~~]I/

2~~ 
~~~ 

e 

_
~~~[l + 

P }l/2 (t-t ) 
z(T) dT.

Since

(t) = H ~~( t )  = ~ l/ 2  
~~~~ t)

the estimated displacement is

(t) = w
~ fti + 

~
_] 

i/2 .l~ f~ e 
-~ [~ + 

P ]1/2 (t T) 
z(T) dT.

Al so, since

V
e
(t) = V

e
(0) = 

~
‘ex~

°
~ 
H
T = PW2 Ve(0)~

the variance of the error in the estimated position is given by

1 11/2
V
e
(t) = V

e
(0) = W

c 
‘F
v 

+ 4—i —l
y y vj

KALMAN 1-POLE PREDICTION

The predicted displacement is given by

• 9 ( t l t 1) = H

where

ic(t l t 1) = 
~F

(t , t
1
) ~(t1

).

Since

~(t) = ~(t)/P
1
~
’2w ,

we can write the predictor equation as

L _ _  _ _ _ _-- - - 

C-3
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9(t lt 1) = ~(t1
) 
~F

(t , t
1

) .

The solution of the transition matrix is given by

F 
(t , t

1
) = e

F(t_ ti
’ 

= = 
~~~~

‘

where

X ( t — t )
ct e 1

0

and X is the eigenvalue of F given by solving

lx i  — Fl = 0

Solving the equations, we find

-w ( t-t )
c 1A = F = W , ct = e

C 0

and the resulting transition matrix is

—w (t—t )
c 1

4’~(t, t
1

) e

Substituting into the predictor equation, we find the predicted displacement
is given by

-w (t-t )

• 9 ( t I t 1) = 9(t 1) e C 1 for t > t
1
.

The variance of the error of the predicted estimate is given by solving

Vey
( t l t i ) = ~~~ ( t l t 1) HT,

where

V
e 

(t~~t 1
) = 

F
(t , t

1
) Ve 

(t
1
) • ( t , t

1
)

x x

÷ ~~ “F 
(t , T c(T) ‘1’ (T )  G

T
(T )  L~E

T(t, T) dt.
1

In the probl em under consi derat i on , th is reduces to

-
~~~ ( t - t  ) I —2w ( t — t  )1

V ( t I t 1 ) V ( t 1
) e ~ 1 

+ 2w Li 
— e 

c 
1],

C-’

-
~

_______________________________________________________ ~~~~~~~~~~~~~~~~~~~~
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and the resul ting variance of the error in the predicted disp lacement is
given by

—2W ( t — t  ‘1 —2w ( t — t  )
• Ve ( t l t i

) V
e
(t

i~ 
e 

C 1 
+ 

_
~f~i - e 

1 

]

f o r t >  t
1
.

I

C—5/C—6
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APPENDIX D

2-POLE COMPUTATIONS

KAL MA N 2—POLE FILTER

c(t) = Fx(t) + Gw(t) Message model

z( t ) Hx (t) + v(t) Observation model

y( t ) = H x ( t )

The power spectrum model is

R ( s)  = 
_______ 

= 
FR ( s)1~ FR (s) 1
L~’ J [ Y  J

the spectral factorization yields

r 1/2 ~ 2 -

~

+

~~~ 
p’’2 ~~ 

—

R (s) I C C

+ ~~ 
w~ + 2j [jj

2 
— + S

which r e su l t s  in the f o l l o w i n g  m a t r i c e s

0 1 1p1/2W 2

F = [(_~) (_
~~

7_2W
)] 

H
T ( c c =

coy {w (t), w(T)I = ~ ~(t-T) = 10 0l~( t _ T )
— — Lo ii

~~~~ {v(t), v ( T ) }  = ‘!‘
~~~
(t_T).

• The fil ter equation is

x ( t )  = [F — KH] x(t) + Kz(t) = Ax(t) + Kz(t),

which has a s o l u t i o n  g iven by

( t )  = 
A 

(t , ~~
) ( cO) + f~ A

(t , T) K(T) z(T) dT ,

D— 1

I • • ~~~~ —-~~~~~~~~~~ - - - •— 
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where

= 2.
The Kalman gain is given by

K = V ( o) HT ‘V~~HV (0)

and the error variance is given by the solution of the matrix Riccati
• equation

0 = F V ( o) + V
e
(O) F

T — V
e
(0) HT ‘V

i 
‘
~
“e~~°~ 

+ GW c
T
,

where V (t) = V (o) for stationary processes.

Define

s~~ )[
~

+ ~
pL] 

l/4 ...l~

Solving the equations, we find

S Mf~
V ( o) = pW3

~~ S 1 + S ÷ 8 2)
pCA)
c

and

~ 
l/2~ ~

K =
- -  1 2

1/2 
S

p

The sQiution of the transition matrix is given by

A( t—t )
~A
(t , t) = e = + a

1A

when the c~j  are the solution of the set of equation s

+ A
1 

e

D—2
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A 2
( t— it )

ct
0
+ a

1
A
2
= e

and the A~ are the eigenvalues of A which we obtain by solving

I XI — A l = 0,

• where

~fiwsA = F - KH = 

~~~ s2 -

Solving the equations , we find

—/2w ( 1 ÷ s) —J~w ( 1 + s)
c (1 + j) and A

2 
C ( 1 — j ) ,

2 2

also

—w (1 + s) ( t  —
C 

CA) (1 + S) (t — -r)
- H  ci

0
= e  .l/Y- 

[c

1w (i + s) (t — t )
+ sin[

C

—w (1 + 5) (t — -r)

a1 = 
w~~~~~~~+ s) e [w 

(1 + s)  (t  — 
I)]

H and the resulting transition matrix is

I~~A (t , ~~ 
~A 

(t , t)]

• 
~A (t , ~~ = 11 12

• 
L~~~~A 

(t , ~~ 
~A 

~t , T)j
21 22

whe re

—w (1 + S) (t  — T)
I 

~~ 
(i + S) (t  — T)2 I c

A 
(t , r ’~ e cos

11

(1_-_s\ - fw (1 + S) (t  -
+ s) ~~~ J

D-3
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-w (1 +S) ( t — i )
C 1w ( 1 + 5) ( t —

T )  = 
w (1 + s) e s in L C J

-
~~ 

( 1 + S) (t — T )
+ s~~ 

C 

- ~~~ 
(1 + s) (t — U

c~ ( t , T )  = e sinsA21 1 -’- S L

—w (1 + S) (t — T )
C 

1w (1 + 5) (t — Ui
U e cosL C j

/ s  — 1 - I C  
( 1 + s) (t  — T )

~~~s + i )  Slfl [

Substituting the values determined into the solution for the state equation ,
we fi nd tha t the state es t ima te is

—w (1 + S) (t — - r)

e 
C 

‘~ + (t — 

U]

Iw (1 +S ) (t— -r)+ s i n L c

x(t) .f~~~,, z(T) dT.

—w ( 1 + s) (t — - r )
C 1w ( 1 + S) ( t  — T )

1/2 e S ~os 
C

w (1 + S) (t —
-~ (2 — S) [ ~ ]

Since y(t) Hx( t ) p
1/2 w2 x1(t),

D—4
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the estimated displacement is

—w (1 + S) (t — -r )
C 

~~ ( 1 + 5)  ( t  — t)

9(t) =J~~w S e ]
1w ( l + S) (t — T)l

+ sin L ~ ] ~(T)d1

lEl 
+ 

~~~~~~~~~~ ~l 1 .
Al so, since

V ( t ) = V
e 

( )  = 
~~~ 

(1~~ H~ = Pw4 Ve (°)
y y

the var iance of the error in the estimated posi tion is given by

Ve
(t) = V

e
(0) 

~~ 
w~ ‘V~ ft + 

~ 
] 1/4 

-

KALMAN 2-POLE PREDICTION

The predicted disp lacemen t is given by

9 (tlt 1) = H 
~

- •~ where

~ 
(t~ t~~) = 

~F 
(t , t

1
) ~ (t1

).

Since

I~~1
( t ) 1  19(t ) !  p

l/2 2
1

~ 
( t )  = L~2(t)J 

= L~(t)/ p1/2 2]

we can wri te the predictor equation as

9 (tIt 1) = 9(t1
) ~ 11 (t, t1 ) + ~ (t1

) ~ 12 (t, t1
).

D-5
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The solution of the transition matrix is given by

F ( t — t
1

)

~F
(t , t1

) = e = a0
1 + a1

F,

where the czj are the solution of the set of equations

x 1(t—t 1)a0 + a1A 1 
= e

x2(t—t 1
)

and the A 1 are the eigenva lues of F which are obtained by solving

XI — F = 0.

Solving the equations , we find that
-w

= [i + j] and X~ 
~~~~~~~ 

[i — j ]

also,

a0 = 
~~~~~~~~~~~ 

jsin ,ft— ( t — t
1

) + Cos ,~4’— (t_ t 1)j

a1 = ~~~ e~~~~~
t_t

1
) 

jsin~~~ 
(t _ t i )j

and the resulting transition matrix is

~~~~ (t- t
1
) 

fsin~~~(
t_t

l) + cos~~~ ( t_ t
l )I 

I 
~~~ ~~~~

(t_t
i)jw ~~~~~~

}

F(t ,tl)  
_

I 

~~~~~~~~~~~~~~~~~~~~~~~~ e~~~~~~
1 ~~ (t—t 1

) — sii~~~ ( t — t
1

)~
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Substituting into the predictor equation , we f ind  the predic ted val ue is
given by

-w

~r 
( t — t

l

~~
[ 

w
C ,y(t~ t1

) = e cos — ~t-t 1
) + sin —s—- ( t _ t i )j 9

~~~~~~• . C[ 
~
,

. - ‘]
~~1

+ 
~~~~~ 

sin — (t t

The variance of the error of the predicted estimate is given by solving

V ( t i t  ) = IIV (tit ) HT
,1 e 1e

y

where

V (tl t ) = t’ (t, t
1

) V
e 
(t

1
) cI~ (t, t

1
)

e 1 F
- I

+ f~ ‘
~F~~’ 

U G( T ) ‘Y (-r ) GT(T) ~
T
(t T) dT.

In the problem under consideration , these equations simpl i f y to

V (tIt 1) = V
e 

(tIt
1
)

ey x ll

and

x11 x 11 x 12 12 i)]
V (t~ t

1
) = 

~
‘F

(t , t ) 
EV 

(t
1

) 
~~~11 

(t , t
1
) + V (t

1
) 

~ F 
( t , t

1 ee

+ ~ (t , t
1

) Iv (t ) 
~F 

(t, t1
) + V (t

1
) 
~F

(t , ti)]F 12 e 1 x
22

t

~Jt 1 F
(t, - r )  di.

(
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Subs ti tuting the val ues previousl y determined for these expressions , we have

Ve (tlt 1) = V
e

(t
1

) e IC 

Iii +11 + + 

~
]1/4_1II

12 
sin~~~

_ (t-t
1

) :os 
~~~ 

(t_t
l)1 

w
+ 

~~ 

+ 
_

~

..

_] 
— 

ij 
— 1  2 sin2 

~~~~~ 

( t _ t ~~)~~

— Jiw (t—t
1)f 2

+ ~~~~~~~ 1 + e sin ~~=- ( t — t 1 )

- CA) W 1I 
+ 2 sin __E~

_ ( t—t  ) cos _E~_ ( t — t  ) + ii for t > t -1 
~~~ 

1 j — 1

— I

I —
-

t
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