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NOTATION

Term of element matri x

b~ Constant term associated with element matri x

u~, v~, w~ See Equations (3.4.5); also Tables 2 and 3

x, y Co-ordinates in physical plane

xg, yi Co-ordinates of nodal points in physical plane

A, B, C See Equations (3.4.3)

G Shear modulus
• 

• I Minimisation integral for cross-section

I: Minimisation integral for element
• J Jacobian of mapping function

K Torsion constant for cross-section

TCj Torsion constant for element

Interpolation function for four-node element

Interpolation function for eight-node element
• Co-ordinates in transformed plane

l’x, l~V Shear stresses in plane of cross-section

~~ ~
) Torsion function in transformed plane

‘F (x , y) Torsion function in physical plane

• ‘Ft Nodal values of torsion function
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1. INTRODUCTION
Almost all aircraft structural anal ysis these days is carried out using computer programs

based on the finite element method of analysis. However, at least for the novice user of such
programs, there is sometimes an uncertainty about the properties of the various types of elements
incorporated in the program libraries. This seems to apply particularl y to the so-called
“isoparametric elements” even though these were developed around a decade ago”2 and have
received some attention in the text book literature . 3

Perhaps one of the reasons why uncertainties exist in the case of isoparametric elements is
that even simple problems involving them can lead to formidable calculations and in few places
can one find illustrative examples worked in detail. It is with these thoughts in mind that the
following expository account of isoparametric elements has been prepared. Here, after a review
of the basic princi ples, two ill ustrative examples are presented at length. In order to keep the
calculations of reasonable size both examples relate to the torsion of bars, this being one of the
simplest , but still non-trivial , problem types for which isoparametric elements can be usefull y
employed . (The torsion problem is, for example, simpler than the plane stress problem
associated with sheet structures.) Again, to keep the calculations sufficiently concise so that they
can be displayed at length, only crude finite element subdivisions are employed and no pretence
is made about the precision of the answers for the illustrative examples. Finally, an outline is
given of other applications of isoparametric elements, including thei r use for determining the
stress intensity factor in fracture mechanics problems.

2. PRINCIPLES OF ISOPARAMETRIC ELEMENTS
• 2.1 General

The broad approach in any finite element analysis is to consider the parti cular region of
interest (which , in the illustrative examples to be discussed later, will be the cross-section of a
bar in torsion) as subdivided into a finite number of smaller regions, or “elements”, these
elements being deemed connected at certain points or “nodes”. In order to determine how some
function of interest (which in the illustrative examples will be the Prandtl torsion function)
varies throughout the complete region, a relatively simple form of variation is assumed over
each of the elements. The representation thus constructed contains in it , as parameters, the nodal
values of the function which is being sought. To this stage then , the problem is basically one of
interpolation, and the “interpolation functions ” over each element are chosen so that appropriate
continuity properties exist at the boundaries of adjacent elements.

The problem now has been reduced to the determination of the nodal values of the sought
function. This is achieved by the application of the relevant physical principles which , for
elastic problems at least, generally involves the use of a “minimum energy” theorem. Since the
strain energy in an elastic body is simpl y the su m of the strain energy in its constituent parts ,
the minimisation of the energy can be carried out over the individual elements. Incorporating
the results for all elements, a set of simultaneous equations is obtained for the nodal values of
the function of interest. After the application of any boundary conditions, these equations can
be solved and the problem is then essentially completed.

• 1. Ergatoudis , I., Irons , B. M., and Zienkiewicz , 0. C., Curved lsoparametri c Quadrilateral
Elements for Finite Element Analysis . Inter. J. Solids and Structures, vol. 4, pp. 31—42 , 1968.

2. Zienkj cwj cz, 0. C., el 0/., lsoparametri c and Associated Element Families fot Two- and
• Three-Dimensional Analysis, pp. 383—432 of “Finite Element Methods in Stress Analysis”,

edited by I. Holand and K. Bell , Tapir Forlag, Trondheim , 1970.
3. Gallagher , R. H., Finite Element Analysis Fundamentals , Prentice-Hall , Englewood Cliffs ,

1975.



The above remarks apply to any finite element problem and , in principle, elements of any
shape can be used. However, the practical difficulties associated with the choice of the interpo-
lation functions and with the energy minimisation , which generally involves an integration over
the volume of each element, are much reduced when the elements have simple shapes ; for example,
in two-dimensional problems rectangular or triangular elements are commonly used. The
difficulty here is that it may sometimes be necessary to use a large number of such elements in
order to give an adequate geometrical representation of the actual region ; this is particularly so
when the region has curved boundaries . It is under these circumstances that the use of isopara-
metric elements can be an advantage .

The first , and major , concept with regard to isoparametric elements is that an element of
more or less arbitrary shape can be conveniently utilised by “mapping” it on to a simpler shaped
region (most commonly, a square); all subsequent calculations are then carried out for this
simple region.

The second concept is that the same functional form that is used to effect the mapping can
also be used as the interpolation funci,on f or the element. It is this use of the same function
for the mapping and the interpolation , which gives rise to the name “isoparametric”. Although
there is no fundamental reason why the same functional form need be used for both purposes,
nevertheless it is often the most convenient arrangement in practice; see, for instance , p. 410
of Reference 2.

2.2 Interpolation Functions for Square Elements

The following discussion relates to two-dimensional problems which are to be treated using
general “quadrilateral elements”. (The sides of the elements may be straight or curved.) For
the present purposes, any quadrilateral element in the actual xy plane will be mapped on to the
square region defined by

— l~~~e~~~I
• 

~ (2.2.1)

in the transformed eu plane ; see Figure 1. However, before discussing details of the mapping
• it will be useful to consider interpolation functions for the transformed region.

2.2.1 Interpolation Functions for Four-Node Square

Suppose the square region in the transformed plane has nodes at each of its corners , identi-
fled by the Roman numerals I to IV in Figure 2. Let 44C~ i~) be some function which is to be
expressed throughout this region in terms of its values ‘F~ (i = I to IV) at the nodes. It can be
readily verified that this is achieved by the expression

w

~~ ,,~
) — E P~(C, ~)W~ (2.2.2)

i I

where
P i (e, u) = (I f C)( I + 17)/4

Pii(C, u
~
) = (I — CX I + i )/4 (2.2.3)

Pj, i(C, i
~) 

= (I —• C~ I — ~) J 4
• P iv(C, n) == (l  4- ~)(l —~~)/4

At node I, P1 = I whilst all the other Ps are zero. For example , at node I, ~ = = I and so
Pi = I whilst P11 Pit, = P,v 0; hence Equation (2.2.2) returns the result ~ — ‘I’s as
required. Actually, Equation (2.2.2) is simply the standard formula for linear interpolation
over a square region 4 ; it implies a linear variation of the function ~i along any straight line
parallel to a side of the square .

4. McCormick , I. M., and Salvadori , M. G., Numerical Methods in Fortran, p. 119 , Prentice-
Hall , Englewood Cliffs, 1964.
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At a later stage, the partial derivatives of ~ with respect to C and i~ will be required :

(( I + ‘iX’~i — ‘F11) — (1 — 17X’FIII — ‘F j v) ) / 4
(2.2.4)

= ((1 + ~X’Fi — ‘F1y) + (1 — CX’Fi’ — ‘F110}/4 I
(Note that here and throughout , partial derivatives with respect to C and i~ will be written using

• 
. the subscript notation.)

2.2.2 Interpolation Functions for Eight-Node Square

Now consider the case where the square in the transformed plane has nodes at the mid-
points of each of its sides, as well as at its corners ; the midpoint nodes are numbered V to VIII
as shown in Figure 3. In this case, the value of~ at any interior point can be expressed in terms
of its nodal values ‘V1 (1 = I to VIII) by the relation

viu
~‘(E ~ u) = i: Ql(C, ~)‘Fg (2.2.5)

1 = 1

where

Qi(C~ ‘~) = (I + CX! + nX— l + C + ~)/4
Q’i(C~ 17) = (1 — CX! + nX—l — C + 17)/4

Qi”(C~ u) = (1 — C)( I — u iX—l — C — 17)/4

Qjv(C, ~ = (1 + CXI — nX — I + C — ~)/4 (2.2.6)

• I Qv(C,~ ) = ( l + uX 1 —~~)/2

Qvt(C, u) = (1 — CX! —

Qvi’(C, ~ = (1 — uXI —
• Qvni(C, u) = (~ + CXI —

Again, it is readily established that , at node i, Q~ 1 whilst all the other Qs are zero, e.g. at
node VI, C = —1 and ,

~ 
= 0 so Qvt I , with all other Qs zero. Equation (2.2.5) implies a

quadratic variation of# along any straight line parallel to a side of the square. However, it should

• be pointed out that Equation (2.2.5) is not the standard quadratic interpolation formula for a
• square region, since this last also requires incorporation of a nodal value at the centre of a

• 
• • ( square (Reference 4).

Analogously to Equation (2.2.4), the partial derivatives of Equation (2.2.5) are

~1s~ = [(I + 17){(2C + ‘l)’~’I + (2C — 17)’F11) + (I — 17){(2C + 17)’F111 + (2C —

— 4C{(l + 17)’F~ + (I -— 17)’Fvxt } — 2(1 — 172X’FvI — ‘Fvui)J/4 (2.2.7)
= [(1 + CX(( + 2~)’1’j + (—C + 217)’Fjy} + (I — s9{(—C + 2~)’Itii +(C+2 u)’Fjj i}

+ 2(1 — f2)(’Fy — ‘I’vxi) — 4i~((l — C)’Fyi + (1 + C)’Fvi”)1/4

2.3 Mapping Functions

Any pair of functional relations of the form
• • x = x(C, ~ (2.3.1)

can be interpreted as a mapping of some region in the xy plane on to some other region in the
C’ plane. The properties of such mappings are discussed at length in many mathematical texts,
e.g. that by Courant. 6 Before going on to consider specific mapping functions , some of the general
results that will be required throughout will be set down.

5. Courant, R., Differential and Integral Calculus, vol. II, pp. 133 et seq., Blackie, London,
1936.
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t• If ‘F(x, y) is a function defined over some region R of the xy plane, then on substituting for
• x and y from Equation (2.3.1), there is obtained a function ~&(C, 17) defined over some other region

r of the Cl? plane. The following formulae relate the values of integrals and derivatives in the
actual plane to those in the transformed plane. For integrals,

fif ‘F(x, y) dx dy = JJ~1 ’(C, u)J (C, u)dCdi7 (2.3.2)
r

where J(C, u~) is the Jacobian of the mapping and is given by

= x~y, — x,yt (2.3.3)
For derivatives,

= #~C~ + #q’7x

‘F,, = #~C,, + ~ 17y (2.3.4)

In their present form , the evaluation of the right hand sides of Equations (2.3.4) requires a
knowledge of the inverse mapping, i.e. requires the relations

C = C(x, y) (2.3.5)

17 = ~(x, y)

However, the need for inverting Equations (2.3.1) to obtain Equations (2.3.5)—which is often
not convenient in practice—.-can be obviated by the use of the relations

Cx = y,/J C,, = —x,/J (2.3.6)

17x = —Yj /J ‘71/ = x~/J
where J is, as before, the Jacobian. Hence, substituting from (2.3.6) into (2.3.4) gives

= (4 ’tY, — 4i,y~) / J (2.3.7)

‘F,, = (—~~x, + #,xc)/ J

The evaluation of the right hand sides of Equations (2.3.7) only requires a knowledge of the
original mapping (2.3.1).

• Now attention will be turned to specific mapping functions that are utilised in the case of
isoparametric quadrilateral elements.

2.3.1 Mapping of Straight-Sided Quadrilateral on to Square

Consider an arbitrary straight-sided quadrilateral in the xy plane and let x,, y, (i = I to IV)
denote the co-ordinates of the corners (Fig. 4). Define a mapping by

Iv
x = ~~ P,(C, ‘7)X,

(2.3.8)
= E P~(C, ‘7) Y(

where the P1 are given by Equations (2.2.3). This mapping transforms exactly the quadrilateral
into the square region of Figure 2 in the transformed plane. This can be seen as follows. Each
corner of the quadrilateral certainly maps into the corresponding corner of the square since

• • F1 = I at the corner “i” of the square and all the other Ps are zero, so Equations (2.3.8) simply
return the result x = x,, y = y~. Further , a side of the quadrilateral maps exactly into a side of
the square. For example, the line Joining corners I and II of the square corresponds to 17= 1
in the transformed plane. On substituting this value into Equations (2.3.8), these last reduce to

x = {( I + ~ xj + (I — C)xzz}/2 (2.3.9)

y {(l + C)y i + ( I —

On eliminating ~ between these equations the result is
— x~) = .~ yn — yt) + XIIYI — xiyu (2.3.10)

1_ • . •• — •
~~~~~~~~

•--
~~ 

. • •  • - • •
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FIG. 4 NODAL COORDINATES FOR STRAIGHT-SIDED QUADRILATERAL
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FIG. 5 NODAL COORDINATES FOR CURVILINEAR QUADRILATERAL



This is the equation of the straight line joining the corners I and II of the quadrilateral. Similar
resul t s hold fo r all sides and, hence, Equations (2.3.8) map the sides of the quadrilateral exactl;
into the sides of the square .

The various derivatives needed for evaluating the Jacobian (2.3.3) and which are also needed
in Equations (2.3.7) can be readil y obtained from Equation (2.3.8):

x~ = {(I + i7)(Xi — xii) — (1 — 17)(X,ii — x,v)}/4

x 1 = {(I + C)(xi — xiv) + (I — C)(xtt — xiu)}/4 (2.3.11)
= {(l + ‘~)(Y’ — yu) — (1 — ‘7)(Yn’ — yiv)}/4

~( I + C)(yx — ylv) + (I — CXy ’i — yni)} 14

2.3.2 Mapping of Curvilinear Quadrilateral on to Square

Now consider a cu rvil i near quadrilate ral i n the xy plane and let x~, yj (i = I to IV) denote
the co-ordinates of the corners and xj , yi (1 = V to VIII) denote the co-ordinates of intc rmediate
poi nts on the sides of the quadrilate ral , ordered as shown in Figure 5. No sti pulat ior~ is made
about particular locations for the intermediate nodes V to VIII . Define a mapping by

V I I I
x = 

~~ Qi(C, 17)Xi
= I (2.3.12)

VIII

Y = Z Qi(C, ‘7)Yi
j~~ ~

where the Qs are given by Equations (2.2.6). This mapp ing tra nsform s approximatel y the curvi-
linear quadrilateral in the xy plane into the square of Figure 3 in the Cli plane. By virtue of the
properties of the Qs, Equations (2.3.12) will map the eight “nodal” points in the xy plane
exactly into the corresponding eight nodal points in the C~ plane. However, in distinctio n to the

• situation for a straight-sided quadrilateral , for non-nodal points on the boundary of the square
in the En plane, the values of x and y as computed from Equations (2.3 12) will not in general lie

• on the boundary of the curvilinear quadrilateral , i.e. the mapping is not an exact one. (Of cou rse,
th is cou ld not be expected since the quadrilate ral has only been specified to the extent of its eight
nodes. Whi lst these nodes have uni quely specified the mapp ing function (2.3. 12), they certainly

• have not uniquely specified the quadrilateral.)
The general nature of the quadrilateral that is being mapped by (2.3. 12) can be established

by exa mining what happens as one traverses a side of the square in the C17 plane. For example,
referring to Figure 3 it can be seen thtit the side I— V— lI corresponds to ’7 I and , on substituting
this into (2.3. 12) the result is

x CU + E)xj /2 — CU — C)xii/2 + (1 — E2)xv (2.3.13)

y = C(l + C) y i/ 2 — C(l — C)yii/2 + (I —

When C is eliminated from these two equations , a result of the form

• cix 2 + c 2 x y + c 3y l + c 4x + c 5y + d = 0  (2.3.14)

is obtai ned , where t he coefficients cj are rather cumbersome functions of the co-ordinates
xi, y~ (i = 1, 11, V). Equation (2.3. 14), which represents a second degree curve , defi nes the
boundary curve in the xy plane which is actually being mapped. So far , node V has not been
specified in the xy plane beyond the requirement that it lie somewhere along the side I— I l. If
the choice

= (x~ + xii)/2 (2.3.15)

be made, then the first of Equatio n s (2.3.13) si mpli fies to
• x = {E(x i — xli) + (xx + xri)}/2 (2.3. 16)

On eliminating C between (2.3.16) and the second of (2.3.13) the result is of the form

y = r dix 2 + d 2 x + d 3  (2.3.17)7



where the coefficients d, are functions of the x~ and yj . Here, then , the boundary curve in the xy
plane is simply the (u ni que) parabola throug h the three nodal poi nts. In this case the accuracy
of the mapping is governed by the closeness with which the act ual boundary curve can be
approximated by a parabola.

However, it is not necessary to make the choice (2 .3 . J5)  and, in any given case, the map-
• • ping actually being achieved by Equatio ns (2.3.12) can be established by a direct evaluation. As

an example, consider the quadrant of a circle of unit radius shown in Figure 6. Later on, the
torsion problem for a bar of this cross-section will be worked out in detail using the (coarse)
fi nite element subdivision shown. For the moment attention is restricted to element “b” . The
nodal numbering along with the nodal co-crdinates for this element are shown in Figure 7.
The co-ordinates of the corner nodes are , of cou rse, determined by the finite element subdivision.
The intermediate nodes have been selected so as to occur half way along the sides. (In particular ,

• since the arc IV—I subtends an ang le of ~r/4 at the ori gin , the arc I V— V III subtends an ang le of
ir/8; the relation analogo us to (2.3.15) does not app ly here.) On substituting the values of x~ and
y, as given on Figure 7 into Equations (2.3.12) the mapping function for element “b” is defined.
In order to assess the accuracy of the mapping, values of x and y will be calculated from (2 3. 12)
for various values of C and 17 corresponding to points on the boundary of the square of ~gure 3.
Attention can be restricted to the curved side IV— V lll =l because the mapping is exact for an~
strai ght side, as can easily be proven. The side IV—V II I=I corresponds to

E =  1 , —I  
~ ~ ~ 1 (2.3.18)

• in the tr ansformed plane. On substituting C = I into (2.3.12) and inserting there the values of
x, and y~ as obtained from Figure 7, the mapping function reduces to

x = 0~707l~ (l + ~)/2 — I .0000~(I — ~)/ 2 + 0~9239(1 — ~ 2) (2.3.19)

Ø.7Ø7~~(~ + ~)/2 + 0 + 0~3827(l ~ 2)

The result of evaluating (2.3.19) for various values of ‘~ 
is shown in Table 1 below. As a measure

of the error in the mapping, the diff erence , e, between the radius vector from the origin to the
mapped point and the radius of the circular boundary (unity) has also been tabulated. Here ,

= (x2 + y2)~ 
— 1 (2.3.20)

It can be seen that the error is everywhere small desp ite the relatively large length of arc
involved. (The error , of course, is zero at the nodal points.)

TABLE 1
Evaluation of Mapping Function for Circular Arc

‘7 X 1 C

—l ~00 l~0000 0•O~~’~ 0.~~ JO
0•75 0~9942 0101 1 —•0~0007

—0~50 0~9795 01986
• —0~25 0~956I 0~2925 —0~0002

0~00 Ø.9~39 0~3827 0 0000
0~25 0~8829 0 4693 —0 0002
O~5O 0~833I 0~5522 —0~0005
0~75 0~7745 0~63l5 0•0007
I~00 O•707l 0~7O7l 0~0O00

Finally, the various derivatives needed for use in Equations (2.3.3) and (2.3.7) will be set
down: 

8
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FIG. 6 FINITE ELEMENT SUBDIVISION OF QUADRANT OF CIRCLE OF UNIT RADIUS
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FIG. 7 NODAL COORDINATES FOR ELEMENT ‘b’



= [(1 + 17)((2C + ~)xz + (2E — ~)xi,} + (I — ~){(2C + 7?)Xil[ + (2E — l))xiV)

— 4C{(1 + ~)Xv + (I — 17)XyjI) — 2(1 — I72XXVI — xvxj i)]/4
(2.3.2 1)

x~ = [(I + CX(C + 2~)xi + (— C + 2i~)xxv} + ( I — E){( — C + 2~)xi r + (C + 2~)xiii)

+ 2(1 — E~Xxv — xvii) — 4~{(l — C)xvi + (I + C)xvixi}]/4
The formulae for Yt and y~ are obtained simpl y by replacing x, by y, (i = I to VIII) in the above.

3. FORMULATION OF TORSION PROBLEM USING ISOPARAMETRIC
ELEMENTS

3.1 General

In the next two Sections the use of isoparametric elements will be demonstrated by examples
involving the torsion of bars and it is convenient to set down here the basic equations governing
the torsion problem. Consider, therefore, a bar of (constant) cross-section , R, and let c denote
the boundary curve of the cross-section. It is shown in standard texts on elasticity, e.g. that by
Soko1nikoff ,~ that the solution of the torsion problem can be reduced to finding a function
‘F(x, y)  such that

‘V~ + ‘F,,,, = —2 over R (3.1.1)

‘Y=O onc  (3.1.2)

where x and y are the co-ordinates in the plane of the cross-section and the suffixes again denote
partial differentiation. Once ‘F is determined the torsion constant , K, is given by

K = 2 J 5 ’F (x , y)dxdy (3.1.3)
R

• and the shear stresses r~ and i~, by

• rx/T = ‘F,,/K, ry/T = ‘F r/ K (3.1.4)
• where T denotes the applied torque. The angle of twist per unit length , 0, is related to the torque
• according to

T= GKO (3.1.5)

• where G is the shear modulus.

3.2 Integral Formulation
• For finite element work, the differential equation formulation embodied in Equation (3.1.1)

is not suitable. Instead , use is made of the fact that the function ‘F which satisfies (3.1.1) also
makes the integral

• 
• J( ’F’) = (1/2) 55 (‘Fx2 + ‘F,,2 — 4V)dxdy (3.2 .1)

• .J a minimum. This equivalence can be established either purely mathematically using the
Calculus of Variations or, physically, by using the principle of Minimum omplementary Energy
(see p. 416 of Ref. 6). The boundary condition (3.1.2), of course, stil l it vt be satisfied.

The minimisat ion required in (3.2.1) is generally carried out as follows. It is assumed that
‘F can be written in the form

• W(x,y) = ~ Jk(x,y)’I’k (3.2.2)

where the 1k are known functions, and are such that the boundary condition (3.1.2) is satisfied,
whilst the 5Fk are presently unknown parameters. (As will soon transpire , the ‘F~ will be identi-

6. Sokolnikoff , I. S., Mathematical Theory of Elasticity, 2nd edition, p. 116, McGraw-Hill ,
New York , 1956.
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fled with the nodal values of ‘F in a finite element subdivision of the region IL) On substituting
from (3.2.2) into (3.2.1) it can be seen that the integral I becomes a function of the ‘f’*, i.e.

1(W) = J ( ’F j , . .  . ‘4’s) (3.2.3)

The minimisation of I is achieved by solving the n simultaneous equations

• 
• 

= 0 k = I,.. ., it (3.2.4)

• for the ‘Fk. Once these have been determined the problem is basically solved. (Note that partial
differentiation with respect to the ‘Fk will always be denoted by the “a” symbol, rather than a
suffix; however, the suffix notation will continue to be used for partial differentiation with
respect to x, y, C and ,1.)The above procedure is basically an approximate one, but , in genera l,
the approximation can be rendered adequate by taking a sufficient number of ‘Fk.

3.3 Finite Element Formulation

In the finite element approach to the torsion of a bar, the cross-section R is considered as
being subdivided into a number of elements R,. (A simple example has already been shown
in Fig. 6.) Because of the addit ive nat u re of integrals it is possible to write, in place of Equation
(3.2.1)

(3.3.1)

where
I, = (l/2)ff (’F~ + W,,2 — 4’F)dxdy (3.3.2)

• 

. 
Then Equations (3.2.4) become

~ -~~-=0 k= I n (3.3.3)

• Hence, attention is concentrated initially on evaluating the derivatives ~J Z/ ~ffk for each element;
then the fin al set of equatio ns is obta ined by carry ing out the summation (3.3.3). From Equation
(3.3.2)

= 

~ 
(‘
~ ~~~ 

+ ‘F,, — 2 -) dxd.Y (3.3.4)

In a direct application of the finite element method , some form of variation of ‘F over each
element is now assumed, and the integral (3.3.4) is evaluated. However, as already mentioned,
the re are practical difficulties for any but the simplest shaped elements, firstl y, in choosing an
appropriate form for ‘F and, secondly, in actually evaluating the integral.

Before passing on it mi ght be noted that the torsion constant K can be written in the form

~ K, (3.3.5)

where

K, = 2 5f  ‘I ’(x, y) dxdy (3.3.6)

• 3.4 Isoparametrlc Element Formulation
• Suppose that the subdivision of the cross-section R is made using either the four-node

elements of Figure 4 or the eight-node elements of Figure 5. Then , in order to obviate the
difficulties just mentioned , each element R, in the xy plane is, in turn, mapped on to the square
region in the En plane either by Equation (2.3.8) or by Equation (2.3.12) as appropriate. In this
case the function W(x, y) will transform to a function ~1’(C, ,) and , using the relations (2.3.2)
and (2.3.7), Equation (3.3.4) becomes

I I
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• ~Ii C’ C’ III ~~~ s,
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#i)
~ 

—

I ~ \) I
+ (~—#Lx, + + ~~~

-X
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‘

• 
— ,.j~~~]

ded~ (3.4.1)

Note that , since attention is at present being confined to a single element (the “!th”), a local
nodal numbering system can be used temporarily. Hence, ‘F~ has been written in (3.4.1) in place
of ‘F~ in (3.3.4) where I takes the values I to IV for a four-node element and I to VIII for an
eight-node element. (Of course, at a later stage the local numbering must be replaced by a global
numbering.)

Equation (3.4.1) can be written in the form

~~~~~~ =f ’

f [{( 4j~ 

— B~~~)#~ + (c~~ — B~~~~~ }/ J _ 2 J ~~~] dCd17 (3.4.2)

where
A = x,2 + y,2

B = xtx,i + yty~ 
(3.4.3)

C = x~
2 + yg2

Whilst Equation (3.4.2) may appear more formidable than Equation (3.3.4) its evaluation is
straightforward, albeit tedious. Depending on the type of element being used, 

~
i is taken either

• in the form (2.2.2) or (2.2.5), with ~ and #, correspondingly being given by either (2.2.4) or
(2.2.7). In both cases one can write

j

= ~ vj ’F j (3.4.4)

¶1 s =~~~~W; ’F j

• where the us, vs and ws are functions of C and ~ whose explicit forms can be obtained from the
equations just cited ; these are listed in Tables 2 and 3 below. Clearly,

u~ = ~~~~~~ v, = 3~&,/~’F1, w~ = i~#/~’Fi (3.4.5)

In Equations (3.4.4) the summation goes from j  = I to IV for a four-node element and fro m
j  = I to VIII for an eight-node element. On substituting from (3.4.4) into (3.4.2) it follows that

= E a,, ’P i — b~ (3.4.6)

where
r i r i

= J J — i 
{(Au, — Bv~)uj + (Cv€ — Buj)v ,) /Jd td ’? (3.4.7)

• = 2 
f f ’  

w~JdCd,, (3.4.8)

The integrations (3.4.7) and (3.4.8) are virtually always done numerically using a Gaussian •
~ I

integration formula.7

7. Hildebrand, F. B., Introduction to Numerical Analysis, McGraw-Hill , New York, 1956.



TABLE 2
Formulae for u~, ~ g, W~ for Four-Node Element

j 14 W~

• . I (I + 17)/4 (I + C)/4 (I + CXI + 17)/4
• II —( I + i )/4 (I — C)14 (1 — CXI + ~)/4

111 — (I — ~)/4 —( 1 — C)/4 (1 — CXI —

• . IV (1 — i~)/4 —( 1 + C) 14 (1 + CXI —

TABLE 3
Formulae for u~, v~, w~ for Eight-Node Element

I 14 WE

I (I + i,X2C + 17)/4 (1 + CXE + 2~)/4 (I + CXI + ,~X — l  + ~ + i~)/4
H (I + ‘,x2C — ~)/4 (I — EX—~ + 2~)/4 (I — CXI + ‘,X—l — C + 17)/4

• III ( I — nX2C+i,)/4 (I — C X C + 2 n)/4 (1 — CX 1 — i,X— l — C— ’7) 14
• IV (I — nX2C — n)/4 (I + CX— C + 217)/4 i l  + exi — i,x— l + C .~~ )/4

• V — C(l + ‘,) (I — ~ )/2 (I + nXl —

• VI —(1 — 172)/2 —i~(l — C) (I — CXI —
VII — C(l — i~) —( 1 — C2)/2 (1 — ‘7X1 — C2) / 2
VIII (1 — i~’)/2 —17(1 + C) (I + fXl — 172)/2

When the quantities a~5 and bE have been determined for each element, the global equations
• (3.3.3) can be set up. The boundary condition (3.1.2) is then applied by setting Wft = 0 for

• • each boundary node. After solving the resulting set of equations for the remaining ‘F~ the
• problem is essentially complete. The torsion constant K can be computed from Equation (3.3.5)

where now, in place of Equation (3.3.6)

K, = 2 J’ f ’ #(C~ ‘7)J ( C, i7) df dr~ (3.4.9)

On substituting from the third of Equations (3.4.4) into Equation (3.4.9), and using Equation
(3.4.8), it follows that

(3.4.10)

the summation going either from I to IV or I to  VIII .
The stresses can be obtained by substituting from Equations (2.3.7) into Equations (3.1.4)

to get
rx/ T = (—#~x, + #,xj ) / (JK)  (3.4.11)

—(#g Y,

4. ILLUSTRATIVE EXAMPLE USING FOUR-NODE ELEME NTS—TORSION OF
BAR WHOSE SECTION IS A RIGHT ANGLE ISOSCELES TRIANGLE

4.1 General
As an example of the use of four-node isoparametric elements, the torsion of a bar having a

cross-section in the form of a right-angle isosceles triangle will be considered. The vertices of
the triangle are located at the points (I, 0), (0, 1), (—1 , 0) as shown in Figure 8. The (crude)
finite element subdivision adopted is shown in Figure 9, the elements being identified as “a”,
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“b” and “c”. Also shown in Figure 9 are the global node numbers (I to 7) and the local node
• numbers for each element (I to IV). These last must run sequentially in a counter-clockwise

sense within any one element; however, node 1 can be assigned arbitrarily. The co-ordinates of
• the nodes are as shown in Table 4 below.

TABLE 4
• Nodal Co-ordinates for Triangle

Element a Element b Element c
• Elemen.

node Global Global Global
• no. node x~ y~ node XE yg node XE YE

no. no. no.

1 4 0 0~3333 4 0 0~3333 4 0 0~3333
II 1 0 0 5 —0~5 0~5 3 0.5 0 5
III 2 1 0 6 —1 0 7 0
IV 3 0~5 0~5 1 0 0 5 — 0 5  0~5

Table 4 contains all the data needed for the construction of the mapping functions and their
derivatives. However, before passing on to these, some reference should be made to the numerical
integration scheme which will be used throughout this Section and the next. The determination of
the a~; and bg which are defined by Equations (3.4.7) and (3.4.8) always requires the evaluation
of an integral of the form

F=f J’ f(e~’7)d~.Ihl (4 .1.1)

Here, the four-point Gaussian formula, namely,

F~~f (—l/~.,/3, —I/V 3) +f (l/’/3, — l / %/ 3 ) +f (—l/ V3, l/~/3)+f( l/~/3, l/V 3)
(4.1.2)

will always be used. In practice, a higher order formula , e.g. the nine-point formula , shou ld
generally be used but (4.1.2) will serve to illustrate the nature of the calculations.

4.2 Mapping Functions

Actually, the mapping functions for the various elements are not required anywhere in
the calculations; it is only the derivatives of the mapping functions which appear. However,
for completeness they will be included here. Each element will be considered in turn.

Element a
Substituting the values of X~ and y~ (i = I to IV) from Table 4 into Equations (2.3.8) gives

x = { ( I + E X I + n X O ) + ( 1 — C X I + n X O ) + ( l — C X I — n X l )
+ (I + CX I — nX0~5)}/4

y = ((I + CXI + nX0~3333) + (1 — EXI + nXO) + (I — CX 1 —
+ (1 + ex I — ~~~ 

. 5))/4

These simplify to

x = 0 ~37 5— 0~I 2 5 C — 0 ~375ii+0i25E~ (4.2.1)

y = 0~2083 + 0~2083C — 0~04l6’7 — 0 O4l6En
The derivatives of the mapping function as calculated from Equations (2.3.1 1) (or from (4.2.1))
are

xC = —0~l25( I — •,
~) 

= —0~l25(3 — C) (4.2.2)
= 0 0416(5 — 17) ),,~ 

= —0~04l6(l + C)

15
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(It might be observed that all calculations were done using more figures than will be displayed
here ; the displayed numbers here and throughout have been obtained by truncating, rather than
rounding, the actual numbers . This gives rise to some apparent discrepancies of a minor nature.)

ft is now necessary to evaluate the derivatives (4.2.2) for values of C and 17 corresponding to
the points utilised in the Gaussian integration. The results are shown in Table 5.

TABLE 5
Derivatives of Mapping Function for Element a

C~17 — l / V 3, —l ~/3 l/~/3, — l / %/3 — l ~ /3, l/~/3 l/V3, l f ~/3

—01971 —0~l97l —0-0528 —0-0528
x, —0-447 1 —0~3028 —0~447l —0-3028
yr 0-2323 0~2323 0-1842 0~l842

—0~0l76 —0~0657 —0~0l76 —0-0657

The values of Table 5 are, in turn , used to calculate the quantities I, from Equation (2.3.3),
• and A , B, C from Equations (3.4.3). The results are shown in Table 6.

TABLE 6
Values of J , A, B, C for Element a

17 --- lV 3, — l , ~ J3 l / ~~3, • — l ~’~ 3 — l / ~ 3, l/ ~/3 l/ ~/3, l/~/3

I 0~l073 0 0833 0~0833 O~0592
A 0~2002 0 0960 0~2002 0 0960
.8 0~0840 0~0445 0 0203 0~0038
C O~O928 0~0928 0~0367 0-0367

Element b
There is no need to carry out any calculations for element b, because the final result for it

can be determined fro m that for element a by appealing to symmetry .

Element c
Again the mapping function will be displayed. Using the values from Table 4, appropriate

to element c, this is found to be

x = 0 2 5 ( — C  ~~~ 17) (4.2.3)

y = 0 0833(7 — 2C — 217 ~ ~ 17)

• 
• The derivatives of the mapping function as calculated from Equation s (2.3. 1)) (or (4.2.3)) are

x g = — 0-25 = 0~25 (4.2.4)

= 0~0833(— 2 + ,~) = 0~0833(—2 + C)

The values of these derivatives at the points used in the Gaussian integration are shown in
Table 7 and the subsequently calculated values of the quantities I, A , B and C are shown in
Table 8.

16
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TABLE 7

Derivatives of Mapping Function for Element c

C~17 — 1/V3, —I /V 3 1/V3 , —l /V 3 —l / V3, l/V 3 ~/V3, 1/~/3

• 0 2500 0~2500 —0-2500 —0-2500
x~ 0~2500 0~2500 0-2500 0~2500
Yr —0 -2 147 —0~2l47 —0 1185 —0 1185

• —0~2147 —0~l185 —0~2l47 —0- 1185

TABLE 8
Values of J , A, B, C for Element c

e, 17 —l / ~/3, —l / ~~3 l/V3 , — l / ~/3 —I / V 3, l/V3 l/V 3, l/V 3

1 0- 1073 0~0833 0~0833 0~0592
A 0~lO86 0~0765 0-1086 0-0765
B —0-0163 —0~037O —0~0370 —0~0484
C 0~l086 01086 0~0765 0~0765

4.3 Element Matrices

The next stage of the calculation is the determination of the quantities a~5 and b~, as defined
• by Equations (3.4.7) and (3.4.8) for each element. The a($, of course, are the components of a

symmetric 4 x 4 matri x for each element. However, it is convenient to first evaluate the
• quantities u~, v~, and w~ (defined in Table 2) at the points used in the Gaussian integration , since

• these have the same values for all elements. The results are shown in Tables 9, 10 and 11 below.

TABLE 9

• Value of U~ at Integration Points

• C,~ —I /V 3, —l / V3 1/%/3, —l / ~/3 —l / ~/3, l/~/3 I/~/3, l/V 3

I 0 l056 0~I056 0~3943 0~3943
H —0~l056 —0~l056 —0~3943 —0 3943
Ill —0~3943 —0~3943 —0~l056 —0 .l056
IV 0~3943 0~3943 0~I056 0 1056

TABLE 10
Values of v~ at Integration Points

C, ’7 —l / ~/3, — l/ % /3 l/ % /3 , — l/V3 — l / % /3, l/~/3 l/V3 , l/V 3

I 0- 1056 0-3943 0~1056 0~3943
H 0 3943 0~l056 0~3943 0~l0S6
HI —0•3943 —0-1056 --0~3943 —0~l 056
IV —0-1056 —0~3943 —0-1056 —0~3943

17
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TABLE Ii
Values of w1 at Integration Points

Ce ’, — l/ V 3, lft/ 3 l/ % /3 , l/v 3 — l / ~/3 , l/V 3 l/v3 , 1/1/3

I 
• 

0~0446 0-1666 0-1666 0~6220
• II 01666 0 0446 0~6220 0~l 666

Ill 0~6220 0-1666 0-1666 0~0446
• IV 01666 0~6220 0~0446 0~l 666

For the remainder of the calculations it is necessary to consider each element individuall y.

Element a
As an intermediate step, the quantities (AUE — BYE) and (CVE — Bui) are calculated at the

integration points using the values given in Tables 6, 9 and 10. The results are shown in Tables
12 and 13 below.

TABLE 12
Values of (Auj—Bv~) at Integration Points

C , 17 —1/ 1/3, — 1/ 1/3 1/ 1/3, —1/ 1/ 3 — 1/ 1/3, 1/ 1/3 1/ 1/3, 1/ 1/3

I 0~0I22 —0~0074 
- 

0~0768 0~0363
II —0~0543 —0-0148 —0•0870 —0~0382
Ill —0•0458 —0-0331 —0-013 1 —0-0097
IV 0-0878 0.0554 0~0233 0~0l l 6

TABLE 13
Values of (Cv~—Bu~) at Integration Points

C , 17 — 1/1/3, —1 / 1/3 1/1/3, —1 /1/3 —1/ 1/3, 1/ 1/3 1/1/3, 1/ ~~’3
I

I 0 0009 0~03l9 —0-0041 0~0l29
H 0~0455 0.0 145 0~0225 0-0054
Ill —0 0034 0~0077 —0~0l23 —0~0034
IV —-0 0429 —0~0542 —0~0060 —0 0149
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Recalling Equation (4.1.2), the a~j  and b~ for element a can now be evaluated using
Equations (3.4.7) and (3.4.8) in conjunction with the numerical values given in Tables 6, 9, 10,
I I , 12 and 13. Three typical calculations are reproduced below.

ai~ = (0-0 122 x 0~l056 + 0-0009 / 0.1056)/(0.1073)

+ (—0~0074 x 0 1056 + 0 0319 x 0~3943)/(O~0833)

+ (0~0768 x 0-3943 — 0~004l x 0-I056)/(0~0833)

+ (0~O363 x 0-3943 + 0-0129 x 0~3943)/(0~0592)

= 0 8407

a54 = (—0 1)458 x 0~3943 + 0~0034 x 0~1056)/(0 - 1073)

+ (— 0 - 0331 x 0~3943 0-0077 x 0 3943)/(01)833)

+ (—0~0I3l x 0-1056 + 0~0l 23 x 0~ l056)/(0~0833)

+ (— 0 1)097 x 01056 + 0~0034 x 0~3943)/(0~O592)

= —0~3537

b2 = 2(0~l666 x 0.1073 + 0~0446 >< 01)833 + 0~6220 x 01)833

+ 0- 1666 x 01)592) = 0~ 1666

By proceeding in this way the full set of equations for element a is found to be

~)1a/~.)Wi O~8407 0~5605 —0~2l94 0 0607 ‘F1 0 1388
l1Ia/~)WII 

= 
0~5605 I ~Q44)4 0~ 1464 0~6263 ‘F11 

— 
01666 

(4.3. 1)
—0~2194 01464 0-4266 —O~3537 ‘1’~~ 01944

bla/bW iy —0-0607 —0~6263 _f).3537 l~0404 “iv 0~l 666

Using the correspondence between local nodes and global nodes given in Table 4 these last
equations can be written as

• ~)J~/~)W4 0~8407 —0~5605 —0~2l94 —01)607 ‘F4 10.1388

~
) Ia/ )’4ti O~5605 1 1)404 01464 0~6263 ‘F1 I 01666

= — l  (4.3.2)
~)f aiZ) Wz 0 2194 01464 0~4266 0~3537 W2 101944
3I a/~) ’F3 —0-0607 —O~6263 —0~3537 1~0404 ‘F3 [o.t~~

Element b

• As already remarked the results for element b can be written down by utilising symmetry.
• Referring to Figure 9 it can be seen that nodes 4, 1, 2 and 3 in element a correspond respectively

to nodes 4, 1, 6 and 5 in element b. Hence, on making the necessary changes in Equation (4.3.2),
the results for element b become

~7Ib/~W4 0~8407 —0-5605 —0~2l94 —01)607 ‘F4 0~l 388

—0~5605 I 0404 0-1464 —0-6263 ‘F1 
-— 

0~1666 
(4.3.3)

• ~
) Ib/ ~

)’F6 —0 -2 194 0~l 464 0~4266 —0 3537 ‘F~ 0~1944

~
)Ib/3’-’5 —01)607 —0-6263 —0~3537 l~0404 ‘F5 0~1666

Element c
The calculations for element c are quite analogous to those for element a. The quantities

(AUE — Bv~) and (Cvi — BUE) need to be recalculated using the values given in Tables 8, 9 and
10. The OEJ and b~ are then calcu lated as before . Only the final result will be cited here.
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~I~/Zl’F4 11818 —0~2878 O•~~~ —0 2878 ‘V4 01388
—0~2878 0~5252 —0~0959 —0~I4l4 

q 3 0~l666

z ’1~/ W7 
= 

—0~6060 —0~0959 0~7979 — 0 0959 ‘F? 
— 

01944 
(4.3.4)

Z~1cR) ’F5 0~2878 —0 1414 —01)959 0~5252 ‘F5 01666

4.4 Global Equations and Solution

It is now possible to set up th e global Equations (3.3.3) simply by the appropriate addition
of Equations (4.3.2), (4.3.3) and (4.3.4). Each global equation is of the form

~l! ~Ja ?~
)‘b ~Jc

k~~~~~ F k~~~~~’Fk ~~~~~ Yk 
(4.4. 1)

For example, the equation ~I/~’F1 = 0 is obtained by adding the second of Equation (4.3.2) to
the second of Equation (4.3.3), there being no contribution from Equation (4.3.4). The full set
of equations is shown below:

2~080 0~I46 —0-626 —l~ l 2l —0~626 0~l46 0 • 

~1f 1 ~Ø.333

0~l46 0~426 —0 -353 —0~2l9 0 0 0 0~l94
—0~626 —0~353 1-566 —0~348 —0~l 4l 0 —0~095 ‘F~ 0.333
—1~l2l —0~2l9 —0~348 2-863 —0~348 —0~2l9 ~~~~ ‘F~ = 0~4l6
—0~626 0 —0141 —0~348 l~566 —0-353 0~O95 ‘F5 0~333

0~146 0 0 —0~2l9 Q.353 0~426 0 ‘F6 0~194

0 0 0~095 ~~~~~ —0~095 0 O~797 ‘F7 0194
(4.4.2)

At this stage the boundary condition (3.1.2) is app lied. Because of the extreme simplicity
of the present example all nodes, save node 4, are boundary nodes and for each of these

= 0; also the corresponding equations Z J / ~’Fk = 0 are discarded. Hence (4.4.2) reduce to
the single equation

2~863T4 = 0~4l6 (4.4.3)

with the solutio n ‘F4 = 0145. (Incidentally, an anal ytical solution for the torsion function is
given in Reference 6 and , from this , the exact value ‘14 = 0 1l6 can be found.)

Since, over each element , ~‘(C, ~) is given by Equation (2.2.2) and since, from Table 4, global
node 4 corresponds to local node I in all three elements (coincidentall y), it follows that in each
element , on setting ‘F~ = 0145 with all other ‘F~ = 0,

~‘(C, ‘7) = 0. l45P~~, ,~) = 0~145( 1 + C)(l + 17)/4 (4.4.4)

The torsion constant K1 for each element can be obtained from Equation (3.4. 10). For
example

Ka b1’F1 + b11’1’11 + b111’!’111 + b~v’F~y (4.4.5)

which, on extracting the value for b1 from Equation (4.3.1), and bearing in mind that onl y ‘F~
is non-zero , reduces to

Aa 01388x0j45 O~0202 (4.4.6)

• The values of Kb and K~ turn out to be the same, so that the torsion constant for the complete
section obtained by carrying out the summation (3.3.5) is

K= 00606 (4.4.7)

• (The exact answer as given by Roark8 is Q• 1044.)

8. Roark , R. J., Formulas for Stress and Strain , 3rd ed., p. 179, McGraw-Hill , New York ,
1954.
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Finally, the stress , TX ,  at node I will  be calculated , treating node I as belonging to element
a. The general formula is given by (3 .4 .11) . Since global node I corresponds to local node II
in element a, for the present calculations E = — l , ’7  = I From Equation (4.2.2) the derivatives
of the mapping function at this point have the followit~.j  values:

0 = —0~500 (4.4.8)

• v~~ = O l 6 6

with the Jacobian J = 01)833, from Equation (2.3.3). Also , from Equation (4.4.4)

( — I , I)  = 0145( 1 -{• ~~ )/4 0~~ 0727 (4.4.9)

~~~~~ I) = 0 145( 1 + ~) I 4 = 0

Using these values in Equation (3.4. 11). with K having the value O~O’~~ from Equation (4.4.7),
gives the result

r % T= 7 ~ l9 (4.4. 10)

(The exact answer as given in Refere nce 8 is 6~38.)

5. ILLUSTRATIVE EXAMPLE USING EIGHT-NODE ELEMENTS—TORSION OF
BAR WHOSE SECTION IS A QUADR & NT OF A CIRCLE

5.1 General

As an examp le of the use of eig ht-node isoparametric elements , the torsion of a bar whose
cross-section comprises a quadrant of a circle of unit  rad ius will be considered (Fi g. 10). The
finite element subdivision adopted is shown in Fi gure I I , the elements again being identified as
“a”, “b” and “c”. Also shown in Figure 11 are the global node numbers ( 1— 16 ) and the local
node numbers (1— Vl l l )  for each element. These last must follow the sequence indicated in the
counter-clockwise sense, in each element. The co-ordinates of the nodes are as shown in Table
14 below. (As i ndicated earlier in Section 2.3.2 all the intermediate nodes have been located

• at the hal f-way points of the sides.)

TABLE 14
Nodal Co-ordinates for Quadrant

Element a Ele ment b Element c
Element

n ode Global Global Global
no. node Xj yt node xj i~ node Xj

no. no. no.

I II 05 05 13 0 707 O•707 13 0~707 0~707
II 9 0 05 II O•5 0•5 16 0 1-0
111 1 0 0 3 o•5 0 9 0
IV 3 0~5 0 5 11) 0 I I  0~5 0.5
V 10 0~25 0•5 12 0 603 O•603 15 0 382 0 923

• VI 6 0 0~25 7 0~5 0~25 14 0 0~75
VII 2 0~25 0 4 0•75 0 10 0~25 05
VIII 7 0.5 0~25 8 0~923 0 382 12 O•603 O~603

The calculations for the present case follow a very similar pattern to those described at
length in Section 4 and, again , all integrations will be carried out using the formula (4.1. 2).
The description here will be somewhat more concise.
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FOR ILLUSTRATIVE EXAMPLE OF SECTION 5
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5.2 MaDping Functions

The mapping functions for the elements are obtained by substituting the values of xE and
y~ from Table 14 into Equations (2.3.12). However, since these are not required in the calculation ,
they will not be displayed here. (In any case, the accuracy of the mapping for the curved boundary
has already been examined in Section (2.3.2). The derivatives of the mapping functions, which
are required at the integration points (± l/ ~/3, ± I/V3) are shown below for each element;
these are obtai ned by subst ituti ng from Table 14 into Equations (2.3.21). Also shown are the
quantities J, A , B, and C for each element as calculated from Equations (2.3.3) and (3.4.3).

Element a

TABLE 15
Derivatives of Mapping Function for Element a

• ~,17 —1/V 3, — l/V 3 l/V3, —l / ~/3 —l / ~/3. l/V 3 l/V3, l/V3

0~25 0~25 0~25 0~25
x, 0 0 0 0

0 0 0 0
0~25 0~25 0~25 0~25

TABLE 16
Values of J , A, B, C for Element a

~~~ l ’~ 3. I ~ 3 l’~ 3, -l ~ 3 —l/V3, l/%/3 l/~/3, l/~/3

1 006 25 01)625 0~0625 0~0625
• A 006 25 0~0625 0-0625 01)625

B 0 0 0 0
C 0 0625 00625 0~0625 0-0625

The simple form of these results is , of course, due to the fact that element a is a square so
that here the mapping is simply of one square onto another.

Element b

TABLE 17
Derivatives of Mapping Function for Element b

E,~ —l /V 3, — l / ~~3 I/ ~~3, —l / V 3 — l/V 3, l/~~3 l/V3, l/V3

x1 0~2424 0~2424 0-1579 0~~I579
x, —0•0137 —0~05l4 —0.0480 —0~~l795

• 0~03l5 0~0315 0~0913 01)913
0.2789 0~ 3581 0~2647 0-305 1
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TABLE 18
Values of J , A, B, C for Element b

e~’i —l/V3, —l/V3 l/V3, —l/V3 —1/V3, I/V3 I/V3, I/V3

I 0 0680 0~0884 0~0462 0 0646 
—

A 0~0780 0~l309 0~0724 0~ l253
• B 01)054 —0’OOll 0-0166 —0~0004

C 0~0598 0~0598 00332 0~O332

Element c
There is no need to do any calculat ions for element c since it is symmetric with respect to

element b.

5.3 Element Matrices

The values of the quantities u~, ~~~ 
and WE at the integration points , as computed from

Table 3, are shown in Tables 19, 20 and 21 below.

TABLE 19
Values of U( at Integration Points

• e,’7 — l/V3, —l/V3 I/V3, — l/V3 — l/~/3, 1/%/3 1/V3, I/V3

I —0~l8 30 0~06l0 —0~2276 0~6830
II —0~06l0 0~l830 —0~6830 0 2276
III —0-6830 0 2276 —0~0610 0-1830
IV —0~2276 0-6830 —0~l 830 01)610
V 0~2440 —0~2440 0~9I06 —0.9106j VI —0~3333 . o.3333 —O~3333 —0-3333

VII 0~9l06 —0~9l06 0~2440 —0~2440
VIII 0-3333 0~3333 0~3333 0~3333

TABLE 20
Values of Vj at Integration Points

‘4 
~~~~~~ —I/~/3, —I/V3 I/V3, —~IV3 —~/V3, l/V3 1/V3, 1/V3

H 
______ —_________ ____________  ____________  ____________

H I —0~l830 —0-2276 0-0610 0~6830
II —0~2276 —0~I830 0-6830 01)610
III —0~6830 —0~0610 0~2276 01830
IV —0~06I0 —0~6830 0~1830 0~2276
V 0~3333 0-3333 0•3333 0~3333
VI fl~9l06 0~2440 —0~9l06 —0~2440
VI I —0 -3333 —0~3333 —0~3333 —0~3333
VIII 0~2440 0~9l06 —0~2440 —0~9l06
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TABLE 21
Values of W~ at Integration Points

~~ —1/i/ 3, — 1/%/3 1/V3, —1/~/3 —1[~/3, l/~/3 1/~/3, 1/s ~3
i

I —0-0962 —0~l 666 — 0- 1666 0-0962
II —0-1666 —0-0962 0~0962 —0~1666
III 0~0962 —0~1666 —0-1666 —0-0962
IV —0-1666 0-0962 —0-0962 —0~1666
V 01408 01408 0~5257 0.5257
VI 0~5257 0-1408 0-5257 0~ l408
VII 0 5257 0-5257 0•1408 0~l408
VIII 0~ t408 0~5257 01408 0.5257

The quantities Q
~j  and b~ can now be calculated for each element using Equations (3.4.7)

and (3.4.8) in conjunction with the numerical values of Tables 16, 18, 19, 20 and 21. (The
integration formula (4.1.2) is, of course, used.) Now the a~5 comprise the elements of a symmetric
8 x 8 matrix. The results for each element , after the conversion from element nodes to global
nodes are shown in Equations (5.3.1), (5.3.2) and (5.3.3).

1
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5.4 Global Equations and Solution

The global equations as given by Equations (3.3.3) are obtained by the appropriate addition
of Equations (5.3.1), (5.3.2) and (5.3.3). (For example, the equation ~I[b’4’~1 = 0 is obtained by
adding the first of (5.3,1), the second of (5.3.2), and the second of (5.3.3).) This leads to 16
equations in 16 unknowns. In the interests of brevity these will not be writt en down. After the
application of the boundary conditions , which involves setting ‘F~ = 0 for all k save 7, 10, 11
and 12, and the discarding of the corresponding equations ~l/b’Fk = 0, the reduced set of

• equations for solution becomes
4-130 0 — l~445 0-528 ‘1~ 0~330
0 4~l3O — l~445 0~528 ‘I’to 0~330

= (5.4.1)— 1-44 5 — 1~445 4~358 — 3~054 ‘1’n —0~l46
0~528 0~528 —3~054 6~274 ‘F12 0~321

The solution of (5.4.1) is

‘F 7 = 0~l00, ‘F10 = 0~l00, ‘F~ = 0~086, ‘F12 = 0 076 (5.4.2)
Hence , on recalling the correspondence between global nodes and element nodes given in
Table 14, it follows that , in element a,

~/4e, 
i~) = 0 086Q~(f ,i~) + 0~ lOOQy(e, ,~

) + 0~ l00Qyiri(E, ,~) (5.4.3)

in element b,

s”(e, ‘~) o-o86Q~ (e,~ ) + 0~076Qy(e, ,
~
) + 0 lOOQyi(e, a,) (5.4.4)

and in element c,

= 0~086Qiv(e, ‘,) + 0~ I OOQvu(~, t~) + 0~076Qviii(E, i~) (5.4.5)
The torsion constant for each element is obtained using Equation (3.4.10). For example, for
element a,

• I • Ka = 01)86b1 + 0~ l0Oby + 0~ l00bvij i (5.4.6)
and , extracting the relevant values of b~ from Equation (5.3.1), gives

Ka 0’0298
Analogous calculations for the other elements give

K b = K ~=0’024 l
Summing the values for the elements gives the torsion constant for the complete section ; the
resul t is

K = 0~078I (5.4.7)
(The exact answer as given in Reference 8 is 0~0825.) Fhe stresses i’~ and i~~ at node 13 will be

• calculated, treating this node as belonging to element b. Since gh’bal node 13 corresponds to
local node I in element b, the following calculations are made with ~ = a ,  = I in Equations
(3.4.11). The derivatives of the mapping function , as obtained from Equations (2.3.21) take the
values

xt= ’ O 1035 x, = —0~2870 (5.4.8)

y~~~0~2952
with the Jacobian 1 01)603.

From Equation (3.4.4) and Table 3, it follows that
= 0 086(1 + a,X2~ — a,)/4 + 0~076(—eXl + a~) —0- 100( 1 —

Hence,

#~(l , 1)= —0~l09 (5.4.9)
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An analogous calculation gives

~~(l , 1) = 0 (5.4.10)

Substituting from (5.4.8), (5.4.9) and (5.4. 10) into Equations (3.4.11), with ‘C having the value
0~078l leads to the result

i~/ T=  —6~67 i’,,/T= +6~86 (5.4. 11)

From considerations of symmetry it would be expected that the two stresses would be equal.
Actually, if the calculation be repeated , now t reating node 13 as belonging to element c, the
resul ts are reversed , i.e.

r~/T= 6~86 ry/T +6~67 (5.4.12)

In general , there are discontinuities in the stresses at the boundaries of adjacent elements and ,
clearly, if mean val ues be ta ken here, the equality required by symmetry is restored .

6. OTHER APPLICATIONS OF ISOPA RAMET RI C ELEMENTS

The two types of isoparametric elements described above can be used for a wide variety
of two-dimensional problems in continuum mechanics. As well as problems in elasticity, prob-
lems in heat conduction , fl u id mechan ics, etc., can be solved . The discussion of Section 2 is
applicable in all cases but , naturall y, that of Section 3 must be replaced by the appropriate
physical formulation.

It is possible to extend the concept to three-dimensional elements. One can develop an
eight-n ode plane-sided cuboid which is the three-dimensional analogue of Figure 4 and a
twenty-node curved-sided cuboid which is the analogue of Figure 5. However , particularly in
the latt er case, th e analysis becomes formidable.

Reverting again to the two-dimensional situation , the application of the eight-node element
has received considerable attention for the determination of the stress intensity factor at the tip
of’ a crack in an elastic sheet.°.~° The procedures of References 9 and 10 differ somewhat and the
following discussion is based on the latter reference. A wedge-shaped element (Fig. 12) is used
and this is obtai ned by collapsing one side of an originally four-sided region into a single point,
which is located at the crack tip. An important detail is that the intermediate nodes V and VII
must be placed at one-quarter of the distance along each side fro m the crack tip. If the vertex
angle be denoted by 2, then the co-ordinates of the nodes are typicall y as shown in Table 22.

TABLE 22
Nodal Co-ordinates for Crack-T tp Element

Node x~

I cos 2
II 0 0

H III 0 0
‘1 IV 1 0

• V (cos 8)/4 (Sin 2)/4
• VI 0 0

VII 1/4 0
VIII (1 + cos e)/2 (sin oc)/2

9. Henshell , R. D., and Shaw, K. G., Crack Tip Finite Elements are Unnecessary, Inter. J.
• Numerical Methods in Engineering, vol. 9, pp. 495—507, 1975.

10. Hussain , M. A., Lorenson , W. E., and Pfiegl , G., The Quarter-Point Quadratic Element as a
Singular Element for Crack Problems , NASTRAN: Users’ Experiences , Fifth Colloquium ,
NASA TM X-3428 , pp. 419—38 , October 1976.
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The region of Figure 12 is mapped on to that of Pigure 3 using the standard transformation
(2.3. 12). On subst ituting the values of x~ and y~ from Ta ble 22 into (2.3 .12) it is found , after• some trigonometric manipulations , that

x = (I + E)2{cos2(8/2) — ‘7 sin2(2/2)}/4 (6.1)
y = (1 + e)2(1 + a,){sin (2/2) cos (6/2)}/4

The Jacobian of this transformation is given by

• . J=(l + e)3 sin 2/ 16 (6.2)
which, naturally, vanishes all along E = —1. Introducing polar co-ordinates r, 9 given by

x = r c os O , y =  r sin O (6.3)
it is possible to invert Equations (6.1) to obtain

e = {2r 4 cos4 (0 — 2J2)}/(cos4 (8/2)) — 1 (6.4)
a , —  {tan (0 — oc/2)}/tan 2/2

A displacement component , u, is taken to be given by the general formula analogous to Equation
• (2.2.3), i.e.

VIII

‘= E Q~~~~~, 
a,)u~ (6.5)

j = I

From this last , the formula for u(e, a,) can be obtained by setting ~~ = urn = UyI = 0.
If, in this formula—which will not be written down at length here—the substitutions (6.4) are
made, it will be found that in the vicinity of the crack tip, where r is small, u is proportional
to r 4. This is the characteristic behaviour required of a crack-tip element. For further details,
reference should be made to the papers cited previously.

.j V I I  IV

FIG. 12 ISOPARAMETRIC ELEMENT FOR DETERMINING STRESS INTENSITY FACTOR

7. CONCLUSIONS

The main point of the present work has been to exemplify ,by means of particular problems
treated it ’ some detail , the use of isoparametric finite elements. Such elements can be gainfully
employed in a wide variety of applications.
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