AD=AD6T 249

UNCLASSIFIED

| o |

WHARTON SCHOOL PHILADELPHIA PA DEPT OF DECISION SCIENCES F/6 9/2
EXPLORING THE CONCEPT OF A CODASYL DATABASE MACHINE.(U)

JAN 79 R D HACKATHORN
78=12=04

NOOO14=75=C=0440
NL

l““l__?_ u"ﬂ‘f “;:u_gz

=

liL :_' 2

N é«m——

HE

University of
Pennsylvania
Philadelphia PA 19104

EXPLORING THE CONCEPT OF
A CODASYL DATABASE MACHINE

Richard D. Hackathorn

Working Paper T78-12-04
January. 1979 -- Draft #2

Department of Decision Sciences
The Wharton School
University of Pennsylvania

[This research was sponsored in part by the Office of Naval
Research Grant Number NOOO14-75-C-0440.]

9 0Ane

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) . '

REPORT DOCUMENTATION PAGE i

1. REPORT NUMBER 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

78-12-04 ‘/ : 1

' 4. TITLE (and Subtitle) €0
pRsRE e S SO AR Technical Kepoxt.
EXPLORING THE CONCEPT OF A CODAS Jan @998 -Dec wild78
ATABASE mcnmr. .

78-12—g4 z

7. AUTHOR(e) B ONTRA! OR GRANT NUMBER(e)
& /
. Richard D. /Hackathorn! /¢[NQOQ14-75-C p44¢7 i

PROGRAN ELEMENT PIOJ!CT TASK

3’7

9. PERFORMING ORGANIZATION NAME AND ADDRESS

. Department of Decision Sciences
University of Pennsylvania
Philadelphia, PA 19104

11. CONTROLLING OFFICE NAME AND ADDRESS
Office of Naval Research
Department of the Navy

‘u _w—-———f
rJanq 979 /

T?F1ﬂﬂﬂﬂﬂ’ﬂﬂk o

@\\GA

800 N. Quincy St., Arlington, VA 22217 31
T4, MONITORING AGENCY NAME & ADORESS(/! different from Controlling Office) | 18. SECURITY CLASS. (of this report)
! Udclassified
L X ; ' 1ﬁ?3ﬁ$7§ﬁﬁ?ﬁﬁﬂﬁﬁﬁﬁﬁﬁ?f“
$ SCHEDULE _ . .-

:

16. DISTRIBUTION STATEMENT fof thie Report)

Approved for public release; distribution unlimited.

]
.
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, il different from Report)
+
18. SUPPLEMENTARY NOTES
’ 19. KEY WORDS (Continue on reverse side Il necessary and Identily by block mumber)
. 20. ABSTRACT (Continue on reveree side If necessary and identily by block number)
/____’——-" - —
: _} @see next‘EEE}.
1 (\4____,___,,—
p
b
ﬁ DD . on'ss 1473 coimion oF 1 wov e8 18 ossoLETE

S$/N 0102-014- 6601 |

SECURITY CLASSIFICATION O

Yo& 75"

ABSTRACT

This paper explores the concept of a "G:;abase machine”kz’

using the approach of the CODASYL data model. A database
machine is defined as an integration of hardware and
software for providirg generalized database management
capability in a physically separate device. The advantages
of a database machine, along with functional specifications,
are presented. Next, an illustration of using a database
machine is given through an example of invoice processing
using the SEED database management system on a DECsystem-10
computer. Finally, the implications of several design alter-
natives arising from the illustration are discussed.

L H

|

|

AGCESSION for

s Ehite Secties

808 Rl Sactien
PRANADUECED a

PR A 1T I

S—

QISTRIT 27108 /4T ATLARILITY CO03S

TUREL T 2N ent a SPERIAE

CODASYL DATABASE MACHINE Page 2
Richard D. Hackathorn

ABSTRACT

This paper explores the concept of a "database machine"
using the approach of the CODASYL data model. A database
machine 1is defined as an integration of hardware and
software for providing generalized database management
capability in a physically separate device. The advantages
of a database machine. along with functional specifications.
are presented. Next. an illustration of using a database
machine is given through an example of 1invoice processing
using the SEED database management system on a DECsystem-10
computer. Finally. the 1implications of several design
alternatives arising from the illustration are discussed.

OUTLINE

1.0 INTRODUCTION
1.1 ADVANTAGES
1.2 FUNCTIONAL SPECIFICATIONS
.0 AN ILLUSTRATION: INVOICE PROCESSING
DESIGN ALTERNATIVES
.1 LEVEL OF DATA MANIPULATION LANGUAGE
.2 HOST PROGRAM INTERFACE
.3 USER WORKING AREA
.4 COMMUNICATIONS INTERFACE
3.5 NON-DML OPERATIONS
CONCLUSIONS
5.0 REFERENCES

w N
o

3
3
3
3

&=
o

CODASYL DATABASE MACHINE Page 3
Richard D. Hackathorn

1.0 INTRODUCTION

Database management systems (DBMS) have emerged in
recent years as an important component of all large-scale
information systems. This ¢trend stems from a shift in
perspective of data as simply the input/output of programs
to data as a central focus of information processing.
Increasing portions of the resources devoted to information
systems are being allocated to the database management

function.

Database management is distinguished from other simpler
forms of managing data by the extent to which complex data
structures are supported. File management systems provided
simpler ways of accessing data through various access
methods. such as index sequential. Although database
managemenrt systems may use these access methods internally.
the emphasis 1is on separating the definition of the data
structures from the manipulation of the data. down to the

level of each data item.

With the increased resources being devoted to database
management systems, various approaches to satisfying the
functions of a database management system have been tried.
Numerous commercial DBMS packages have been developed and
are in wide use (e.g.., IMS, TOTAL. 1IDS, System/2000. IDMS.
SEED., ADABAS, DBMS-10). An effort to standardize a uniform

interface between the application program and the DBMS by

SE———
.

CODASYL DATABASE MACHINE Page 4
Richard D. Hackathorn

the CODASYL Data Base Task Group (DBTG) has made significant
advances and has influenced many of the above commercial

packages [CODASYL, 1971].

This paper will concentrate on database management from
a slightly different standpoint. The focus of this paper
is: Is it possible to build a machine that performs all the
functions of a database management system using small-scale

computer technology and the CODASYL data model?

Such a machine is referred to in this paper as a
"database machine"., although)the literature often uses
similiar terms, such as "baﬁ:-end processor", or "database

computer."

Consider the foilowinz definition for a database
machine: A database machine (DBM) is an integration of
hardware and software components to provide a generalized
database management capability in a physically separate
device. The hardware components consist of a large capacity
storage device, based on a hard disk. and a processor. The
software components consist of a database management system,
operating system, and language translators. In the
literature there is considerable debate on what should be
implemented in hardware and what in software. To the
author, this balance should be based solely on performance
considerations and capabilities of existing technology. The

intent or functions of the database machine remain the same.

CODASYL DATABASE MACHINWNE
Richard D. Hackathorn

The conventional approach to supporting a DBMS 1is by a
large software package running on the host processor undjr
its operating system and performing operations on some
large-scale disk storage unit connected to the host
processor as a peripheral. This case 1is referred to as a
"host resident DBMS". The shift ¢to a database machine
implies that a separate processor 1is added and is dedicated
to support only the database management function. When
compared with the functions performed by the host processor,
a database machine 1is. in effect, "off-loading" or
distributing the processing functions with a special purpose

peripheral. The contrast between a conventional DBMS and a

DBM is shown in Figure 1.

The concept of a database machine is not new. The first
paper on the subject appeared four years ago [Canaday et.al,
1974)]. This paper was a report on an experimental database
machine implemented by R. H. Canaday and others at the Bell
Telephone Laboratories. Within the last year, excitement on
the topic has risen considerably. All of the major
conferences on database management have presented topics
directly concerned with database machines. This excitement
has been caused by dramatic decreases in the cost of
computer hardware., along with advances in associative memory
techniques based on magnetic bubbles or LSI technology.
Good literature reviews are given in Baum [1976). Berra

(1977). Hsiao [1977), Lowenthal [1977). and Mohan [1978].

CODASYL DATABASE MACHINE Page 6
Richard D. Hackathorn

Recent articles in Datamation [Champine, 1978; Bray &
Thurber. 1979] provide good overviews of the approaches and

major efforts related to database machines.

1.1 ADVANTACES

This secticon presents some of the advantages to the
database machine approach over conventional approaches. 1t

relies on the initial work by Canaday et. al. [1974].

The first advantage to the DBM approach is on the
economy of a device that specializes in supporting the
database management function. The host processor must be
sufficiently generalized to process a wide variety of
programs. Much of the overhead in the operating system and
access methods can be trimmed in this fashion. The
underlying assumption is that the savings resulting from the
economy of specialization are greater than the economics of
scale inherent in the host processor. With the trend
towards decreasing hardware costs, this assumption will be

increasingly valid through time.

The second advantage is enhanced transfer of databases.
A continuing problem has been the transfer of data from one
computer system to another, especially if such systems are
from different vendors. This transfer is usually
accomplished by an "unload/load" operation (i.e., taking a

structured database, flattening the hierarchies 1into

CODASYL DATABASE MACHINE Page 7
Richard D. Hackathorn

sequential records, writing the data onto a magnetic tape,
and finally reversing the procedure on the second computer).
A database machine, however, can effect the transfer of data
by its commonality of its database interface. As shown in
Figure 2, the first host processor can construct a database
on its database machine. That database can be transferred.
as is, to a second compatible database machine so that the
database is now available to the second host processor. No

reformatting of the data is necessary.

A third advantage 1is data sharing. As shown in Figure
3. several host processors can share a common database
machine. The host processors can be physically separated
and may be from different vendors. A extension éf data
sharing is shown in Figure 4, in which one or more of the
hosts are physically remote and communicate with the
database machine via telecommunications 1lines. A further
extension, as shown in Figure 5, 1is for several database
machines to be interconnected with several processors
through some kind of network facility. 1In this situation.
there is a functional differentiation between nodes that are
concerned with the processing of data for a certain
application (i.e.. processor nodes) and nodes that manage a

specific collection of data (i.e., data nodes).

As will be shown below. these advantages are contingent

on certain internal design alternatives in unobvious ways.

CODASYL DATABASE M:CHINE Page 8
Richard D. Hackathorn

1.2 FUNCTIONAL SPECIFICATIONS

To have the database machine provide all the functions
of current DBMS packages on large mainframe computers., the
database machine has to perform more functions than simply
manipulating the contents of a database. Shown in Figure 6
is & diagram of the typical processing flow with
conventional database management systems. Roughly. the
initial phases of the development of a database application
deal witn the definition of the database structure. This is
followed by the compilation of the application program and
finally by the execution of the application program with the
data manipulation routines of the DBMS. Throughout the
development and operation of the database application., there
is a need to perform various utility functions. such as

calculating statistics on database growth.

Figure 7 —constrasts with Figure 6 by showing the
development flow using a database machine. Various
functions. such as composing the schema definition and
editing, compiling. and executing the application program
remain as part of the host processor. However, other
functions, such as the actual processing of the schema
definition, are handled within the database machine. The
various functions performed by the database machine can be

categorized as follows:

CODASYL DATABASE MACHINE Page 9
Richard D. Hackathorn

1. Data Definition Facilities permit the structural
definition of the data to be processed separate from
the manipulation of the data. In a CODASYL DBMS.
processors should be present for the schema and
sub-schema data definition language (DDL).

2. Data Manipulation Facilities permit the usual
manipulation of the data, such as storing new record
occurrences, modifying/deleting record occurrences,
retrieving records based on sequential position, key
values. and set membership. and establishing
currency of records or sets.

3. Sequential File Management is a secondary facility
to create sequential files as input to DDL
processors., transaction processors, etc. or as
output from query and report generation facilities.

4, Database Maintenance Utilities are other utilities
that initialize a new database, dump contents of
schema or data, analyze statistics of the database.

query and report generation, unload/load facilities.

etc.

CODASYL DATABASE MACHINE Page 10
Richard D. Hackathorn

2.0 AN ILLUSTRATION: INVOICE PROCESSING

To illustrate the concept of a database machine with a
concrete example, an application program dealing with
invoice processing in a small business 1is given. The
initial version of this program was written by Rob Gerritsen
using the SEED (and Micro-SEED) database management system

[Gerritsen. 1978].

The INVOICE package deals with a data structure (shown
in Figure 8) composed of customers, parts. and invoices.
Customers submit one or more invoices. Each invoice has one
or more line items on it. Each 1line item refers to a
certain part in the inventory. The schema definition is

given in Figure 9.

The particular function that will be illustrated is the
printing of an invoice statement. A sample printout is

given in Figure 10.

This example 1is useful since it exhibits many of the
interfaces to the DBMS. A stylized version of the FORTRAN
source code is given in Figure 11. The steps of the program

are:

Open database for retrieval
Select specified invoice

Obtain customer data for invoice
Process each line item

3 Print tot. 1l price

Close database

OO FWN =

CODASYL DATABASE MACHINE Page 11
Richard D. Hackathorn

Although the program does not actually update the
database (and hence may not be representative). it does have
to update the value of the invoice number for the FINDC
operation. Values., therefore., have to be communicated from
the application program to the DBMS., as is done in updating

programs.

The ways that this application program interface to the

DBMS can be summarized as follows:

Invoke operations

Refer to record and set types

Set values for data items.

Obtain values of data items

Check error status (and other system variables)
Reset error status

O EW N =

3.0 DESIGN ALTERNATIVES

Given the INVOICE example wusing the SEED DBMS as the
illustration, various alternatives for the important design

aspects of the database machine as examined.

3.1 LEVEL OF DATA MANIPULATION LANGUAGE

The first design alternative 1is the 1level of the
language used to manipulate the data. The usual CODASYL DML
is highly procedural, nagivation oriented. and tightly
coupled with the application program. To illustrate these
points, consider the processing of the following problem:

"Find all the parts on invoice X that have been

CODASYL DATABASE MACHINE ‘Page 12
Richard D. Hackathorn

backordered." To analyze the processing necessary for this

problem, assume the following facts: (1) 10% of parts have

been backordered; and (2) 20 line-items per invoice on the

average.

|
|
|

For the <case of using usual CODASYL DML, the host

program will first invoke a FIND CALC for invoice X. then 20
FIND NEXT followed by FIND OWNER for each line-item in the
invoice. and a final FIND NEXT to get the end-of-set
condition. This totals to 42 FIND operations. Further. the
data for the invoice and the 20 line-items will need to be
transferred into the UWA. Therefore. the CODASYL DML will

need 42 FIND and 21 GET operations for the processing.

In contrast. a high-level DML that was similar to a

query language would need considerably 1less operations.
Specifically. the operations needed would be: FIND CALC for

invoice X. FIND conditional on line-item with backorder

status, a GET for the invoice data, and two GETs for the

parts backordered. Therefore. a high-level DML will need 2

FIND and 3 GET operations.

In summary, the reduction in data transfer between a
high-level DML and a CODASYL DML would be 1/21 on data to
the DBM and 3/21 on data from the DBM -- a considerable
savings! This example illustrates the fact that the CODASYL
DML was designed with the assumption of tight coupling

between the DBM and the host program -- an assumption that

CODASYL DATABASE MACHINE Page 13
Richard D. Hackathorn
makes the normal DML unsuitable as the primary DML for a

DBM.

3.2 HOST PROGRAM INTERFACE

The second design alternative is how to embed the DML
for the DBM in the host application program -- a point that
current literature on database machines has ignored. This
section will explore three ways of handling the DML: (1)
DML subroutine library; (2) subroutine CALL format; and (3)

READ/WRITE format.

The first case would be to construct a DML subroutine
library on the host processor for the particular language
translator (e.g.. FORTRAN) used by the application program.
When compared to a resident DBMS., the source code should not
have to be changed. Depending on the particular DML
operation, the subroutine will handle communications with
the DBM so that it 1is transparent to the application

program.

The advantages of this case are: (1) no change in the
source code of the application programs; (2) any changes in
DBM conventions are hidden from the application program.
The disadvantage is that over thirty subroutines have to be
written for each combination of host processor and language
translator connected to the DBM. thus making the DBM

difficult to connect to new computer systems.

CODASYL DATABASE MACHINE Page 14
Richard D. Hackathorn

The second case would be to have a single common
subroutine that would handle the communications to the DBM.
The only argument to the DBM subroutine would be a character
string that is to be sent to the database machine. The
INVOICE program would require some changes, as is shown in

Figure 12. Note that the syntax of the string can be

condensed greatly., as was done in DBLOOK ([(Gerritsen. 1978].

The DBM subroutine would not only communicate with the

database machine, but also perform the following functions:

(1) updating error status indicator after each operation;

(2) transmitting value changes in data items; (3) aborting

\ operations if error status is nonzero; and (4) updating data

items after GET operation.

The advantages would be: (1) only minor changes to
existing application programs; and (2) single subroutine
interface to the DBM. The disadvantages would be: (1) a
new subroutine needs to be written for each host processor
and language translator; (2) a special operation is required
when critical data items are changed; and (3) error status

has to be updated after each operation.

The third case for interfacing an application program to
a DBM is directly through the standard READ/WRITE
statements. All communication would be through the
READ/WRITE statements as if the DBM was a reader/punch

device. WNo additional subroutines would be necessary.

B R R

5‘_
g
;

CODASYL DATABASE MACHINE Page 15
Richard D. Hackathorn
Further. there would be no need for a user working area

(UwWA).

The INVOICE source code with the READ/WRITE statements
is shown in Figure 13. Note that the program appears longer
than in the prior case. However, the total 1length of the
program is shorter because no UWA is 1included. The
operating system needs to define a logical I/0 device that
is connected to the DBM. The value for each data item must
be sent to/from the program, as is shown in statements 101
and 202. Note that the program can be streamlined

considerably if FORTRAN allowed the construction:

WRITE (DBM) "FINDC INVCE’

The advantages of the READ/WRITE statement case would
be: (1) nothing is hidden in subroutine calls or user
working areas; (2) the sub-schema capability is retained;
and (3) the total program length is shorter. The
disadvantages are: (1) program needs to know the exact
formats of data items contained in the sub-schema; (2) more
statements are required to perform the DML operation; (3)
the READ/WRITE routines must be interrupt-driven and
buffered; (4) the error status has to be explicitly reset to
zero; and (5) explicit operation is required to obtain the

error status and other DBMS system variables.

CODASYL DATABASE MACHINE Page 16
Richard D. Hackathorn

3.3 USER WORKING AREA

An important design alternative to the previous three
cases for DML operations is the placement of the user
working area (UWA). 1In the first two cases, the UWA was
actually maintained in two places -- one in the application
program and one in the database machine. Depending on the
database operation, one or the other UWA would be changed;
hence. any discrepancies between the two UWA's had to be
rectified by ¢the subroutine in the host processor. 1In
contrast, the third case using simple a READ/WRITE statement
has no explicit UWA in the host processor; however, values
of data items are stored in the host program space. Any
change in values of error status. currencies, etc. will have

to be explicitly performed by the host program.

3.4 COMMUNICATIONS INTERFACE

Another design consideration is the actual communication
interface between the host processor and the DBM. This
interface has to be considered both from the logical
“hand-shaking" protocol and from the electrical
specifications. The alternatives for this interface are
numerous. The simplest alternative would be an asynchronous
RS-232 300-baud ASCII full duplex 1line with a simple
stimulus/response hand-shaking and with no error detection

or correction. As networking protocols are standardized and

CODASYL DATABASE MACHINE Page 17
Richard D. Hackathorn

accepted, the DBM will have to accommodate them.

Another aspect of the communications interface is the
data conversion problem. How will the data items be stored
internally to the DBM? If it is a binary representation. it
will be dependent on the architecture of the DBM or host
computer. If it is strictly character representation. then
significant conversion overhead will Dbe incurred for

processing numerical quantities.

3.5 NON-DML OPERATIONS

Prior to executing the application program for a
database, other operations must be performed in preparation.
For instance. the schema and sub-schema needs to be
processed. and the database initialized. The design
alternatives related to how these functions are provided are
important. Further. there seems to be Aa tradeoff in
processing effeciency between providing DML operations and
non-DML operations. Since the functions of the database
administrator are separate from the functions of the
application programmer, a separation of DML operations
(which are associated with ¢the application program) and
non-DML operations (which are associated with the

administration of the database) is warranted.

N

CODASYL DATABASE MACHINE Page 18
Richard D. Hackathorn

4.0 CONCLUSIONS

Through the invoice processing example, several design
alternatives were discussed in terms of their subtle
implications to function and performance of a database
machine. In particular, noted were the important design
alternatives of DML language level, User Working Area
location, and non-DML operations. The compatibility of DML
operations with DDL structuring (and other database
maintenance functions) were concluded to be weak; hence. a

separation of these functions is warranted.

In general, the implementation of a database machine
using a normal CODASYL database management system (e.g..
SEED) and current implementation techniques (e.g.. pointers
and chains, rather than associative memory) does not seem to
offer sufficient performance benefits. By extending the
CODASYL DML (such as was proposed by Germano & Thakur [1978]
and others), performance could be significantly increased.
In any case, the use of a database machine may be more than
adequately justified based on other benefits, such as: (1)
independence of data between the application program and the
database; and (2) convenience of performing database

administration functions.

ke o

CODASYL DATABASE MACHINE Page 19
Richard D. Hackathorn

5.0 REFERENCES

Banerjee, J., Hsiao. D.K.. Baum. R.I. Concepts and
capabilities of a database computer. ACM Transactions
on Database Systems, 3(4), December 1978, 347-384.

Baum, R.I.., and Hsiao, D.K. Database computers: A step
towards data wutilities. IEEE Transaction on Computers
c-25, 12, December 1976, 1254-1259.

Benbasat, I., and Goldstein, R.C. Data base systems for
small business: Miracle or Mirage? Database, 9(1),
Summer 1977, 5-8.

Berra, P.B. Data Base Machines. ACM SIGIR Forum, Winter
1977.

Bray, 0., and Thurber, K.J. What’'s happening with data base
processors? Datamation, January 1979, 146-156.

Canaday, R.H. et.al. A back-end computer for data base
management. Communications of the ACM, 17(10), October
1974, 575-582.

Champine, G.A. Four approaches to a data base computer.
Datamation, December 1978, 101-106.

CODASYL. Data Base Task Group Report. ACM, October 1969
and April 1971.

Gerritsen, R. SEED Reference Manual. International Data
Base Systems., July 1978.

Gerritsen, R.., and Hackathorn, R.D. Micro-SEED and its
application. Proceedings of Electro 79. April 1979.

Cermano, F., and Thakur, M. SEEDFE: A FOR EACH data
language for SEED. Working Paper 78-12-08. Department
of Decision Science. The Wharton School, University of
Pennsylvania. 1978.

Hsiao., D.K., and Madnick. S.E. Data base machine
architecture in the context of information technology.
Proceedings of the Third 1International Conference on
Very Large Data Bases, October 1977.

Lowenthal, E.I. A survey: The application of data base
management computers in distributed systems.
Proceedings of the Thir | Conference on Very Large Data
Bases, October 1977.

CODASYL DATABASE MACHINE
Richard D. Hackathorn

Mohan, C. An overview of recent data base research.
Database, 10(2), Fall 1978, 3-24.

Ozkanakhan, E.A. et.al. RAP: An associative processor for
relational data bases. Proceedings of the 1975 National
Computer Conference, Anaheim CA. May 1975.

Rosenthal, R.S. The data management machine: A
classification. Third Workshop on Computer Architecture
for Non-Numeric Processing, May 1977. 35-39.

Stonebraker, M. A distributed database management system.
Memorandum M78/23. UCB Electronics Research Laboratory,
May 1978.

Yao, S.B. et.al. The Oregon Report: Data-base systems.
IEEE Computer, 11(9), September 1978, 46-60.

Zornes, J.A. Data base management systems on
mini-computers. Database. 9(1). Summer 1977. 9-13.

Page 21
Host Rl
Pmcsurk_———ﬂ Sowye
B AT e e R e A
| |
' |
| | > :
Host | DB BR: ol |
M] | Precessor Stonnge :
: SRS
[
R o e et A . L o, i 8 J

Host Pesider¥ DEBMS ve. Lhabase [Tachrne
Fl'yure 4

Hest

£ vEnr
Hoct
3 Der?
Lzﬂﬁu ‘77%z";f2u—
Fl'gdre X
Host
g
Host
2
Host
Lt 1
Date S bf/n?

Fr'9 vre 3

D&

Page 22

Host

Heost

Hos

ey

Kenote Doka _SZAH'n,
F/'gurc ¥

Host

Common.ca¥ss ns

Host

e

Netuork Dgrs
,'—llyc’rc <

pary

Dary

page 24

asvevivda

9 F4NOIJ

SKEd

VAN RV¥90dd NOILVOIT1ddV

nvag

WILSAS ONILVIELO

40SSsdD0¥d LSOH

Page 25

\\l/

asveaviva

SAILITILA

¥40S8S8dD0dd
ONVHWKOD

/

SWEd

dNIHOVH dSVEVLIVA

L 2¥4NO014

d0VAYALNI

Waa
«—>

vMn RVEOO0¥d NOILVIOITddV

WALSAS ONILVYIdC

S¥Y0SSd00¥d ISOH

Page 26
|
|
{ CSTMER t '
lestnum H
lcstnam |
| caddrt i
lcaddr?2 i
| |
i "
CSTINV | i
i 1l
{ PART i { INVCE 1 H
i prtnum i {invnum | §
iprtnam | linvdat i H
jcolor i ishpdat i i
iprice ! ! ! i
iwtpnds i i | i
] | 1 |- |
[}] i H ‘i
\ / i
\ / |
b 7 c
PRTLIN \ INVLIN / g
\ /
\ / |
\ /
\ /
{LINITM i
iqty |
| i |
INVOICE Data Structure
Figure 8

INVOICE SCHEMA DEFINITION

Figure 9

SCHEMA NAME IS INVOICES

DATABASE SIZE IS 5 PAGES
PAGE SIZE IS 256.

LOCATION
CSTNUM TYPE
CSTNAM TYPE
CSTAD1 TYPE
CSTAD2 TYPE

LOCATION
INVNUM TYPE
INVDAT TYPE
SHPDAT TYPE
SLSMAN TYPE

RECORD NAME IS CSTMER

MODE IS CALC
IS CHARACTER
IS CHARACTER
IS CHARACTER
IS CHARACTER

RECORD NAME IS INVCE

MODE IS CALC
IS CHARACTER
IS CHARACTER
IS CHARACTER
IS CHARACTER

USING CSTNUM DUPLICATES NOT.
10.
20.
20.
20.

USING INVNUM DUPLICATES NOT.
10.
8.
8.
20.

Page 27

RECORD NAME IS LINITM |
LOCATION MODE IS VIA INVLIN SET.
QTY TYPE IS FIXED.
RECORD NAME IS PART
LOCATION MODE IS CALC USING PRTNUM DUPLICATES NOT.
PRTNUM TYFE IS CHARACTER 10.
PRTNAM TYPE IS CHARACTER 20
PRICE TYPE IS REAL.
WTPNDS TYPE IS REAL.
COLOR TYPE IS CHARACTER 1.
NAME IS CSTINV
MODE IS CHAIN LINKED TO PRIOR
ORDER IS FIRST
OWNER IS CSTMER
MEMBER IS INVCE LINKED TO OWNER
SET SELECTION IS LOCATION MODE OF OWNER.
NAME IS INVLIN
MODE IS CHAIN
ORDER IS LAST
OWNER IS INVCE
MEMBER IS LINITM
SET SELECTION IS LOCATION MODE OF OWNER.
NAME IS PRTLIN
MODE IS CHAIN LINKED TO PRIOR
ORDER IS LAST
OWNER IS PART
MEMBER IS LINITM LINKED TO OWNER
SET SELECTION IS LOCATION MODE OF OWNER.

ha i s —
Page 28

B>invoice
ENTER INVOICE NUMBER: 2005
CUSTOMER :2000 INVOICE : 2005
Wharton Novelty ORD DATE : 78-06-30
3600 Spruce SHIP DATE: 78-07-15
Philadelphia, PA SALESMAN : Jerry Lewi
PRTNUM PRTNAM C PRICE QTY XPRICE
A1 Widget B 12.00 40 480.00
B3 Wire Harness M 165.00 32 5279.99
A2 Thingamajig G 34.00 16 544,00

6303.99

ENTER INVOICE NUMBER:
B>

Sample Printout of INVOICE Program

Figure 10

Page 29

INVOICE RETRIEVAL PROGRAM -~ PRINT INVOICE STATEMENT
HOST RESIDENT DBMS FORMAT

FIGURE 11

[Insert User Work File Here]

IMPLICIT INTEGER (A-Z)
REAL XPRICE.TPRICE
DATA CRT /.../

OPEN DATABASE FOR RETRIEVAL
CALL DBOPEN('INVALL ',0,0)

ASK FOR INVOICE NUMBER AND FIND INVOICE
00 [Write "Enter Invoice Number"]

-0 aon

TR R ST

READ(CRT,---) INVNUM

IF (INVNUM.EQ.Q0) GO TO 500

CALL FINDC(INVCE,FIRST)

IF (ERRSTA.EQ.0) GO TO 200

[Read invoice number]
[Do more invoices?]
[Find invoice]

[Does invoice exist?]

ERRSTA = 0 [Reset error status]
[Write "invoice does not exist"]
GO TO 100

C

C GET CUSTOMER DATA AND PRINT INVOICE HEADER

200 CALL FINDO(CSTINV) [Find owning customer]
CALL GET(CSTMER) {Get customer data]

| CALL GET(INVCE) [Get invoice data]

WRITE(CRT,=-==)CSTNUM, INVNUM,
TPRICE=0.0

C

C GET PART DATA AND PRINT EACH LINE ITEM

300 CALL FINDPO(NEXT,INVLIN) [Find next line item]
IF(ERRSTA.NE.O) GO TO 400 [Any more line items?]
CALL GET(LINITM) [Get line item data]
CALL FINDO(PRTLIN) (Find owning part]
CALL GET(PART) [Get part data])
XPRICE=PRICE*QTY
TPRICE=TPRICE+XPRICE
WRITE(CRT,---) PRTNUM,PRTNAM,
GO TO 300

C

C PRINT TOTAL PRICE

400 ERRSTA = 0 [Reset error status]
WRITE(CRT,=-==) TPRICE
GO TO 100

C

C CLOSE DATABASE

500 CALL DBCLOS

STOP
END

Page 30

INVOICE RETRIEVAL PROGRAM -- PRINT INVOICE STATEMENT
DBM SUBROUTINE CALL FORMAT

FIGURE 12

[Insert User work File Here]
IMPLICIT INTEGER (A-Z)
REAL XPRICE,TPRICE
DATA CRT /.../

C ’

C OPEN DATABASE FOR RETRIEVAL
CALL DBM ('DBOPEN INVALL,0,0')

Cc

C ASK FOR INVOICE NUMBER AND FIND INVOICE

100 [Write "Enter lnvoice Number"]
READ(CRT,=-=-) INVNUM [Read invoice number])
IF (INVNUM.EQ.O0) GO TO 500 [Do more invoices?]
CALL DBM ('PUT INVNUM') [set INVNUM value]
CALL DBM ('FINDC INVCE') [Find invoice]
IF (ERRSTA.EQ.0) GO TO 200 [Does invoice exist?]
ERRSTA = 0 [Reset error status]
[Write "invoice does not exist"]
GO TO 100

C

C GET CUSTOMER DATA AND PRINT INVOICE HEADER

200 CALL DBM ('FINDO CSTINV') {Find owning customer]
CALL DBM ('GET CSTMER') [Get customer data]
CALL DBM ('GET INVCE') [Get invoice data]
WRITE(CRT,===)CSTNUM, INVNUM,
TPRICE=0.0

5

C GET PART DATA AND PRINT EACH LINE ITEM

300 CALL DBM ('FINDPO NEXT INVLIN') [Find next line item]
IF(ERRSTA.NE.O) GO TO 400 [Any more line items?]
CALL DBM ('GET LINITM') [Get line item data]
CALL DBM ('FINDO PRTLIN') [Find owning part]
CALL DBM ('GET PART') (Get part data]
XPRICE=PRICE*QTY
TPRICE=TPRICE+XPRICE
WRITE(CKT,===) PRTNUM,PRTNAM,
GO TO 300

C

C PRINT TOTAL PRICE

400 ERRSTA = 0 [Reset error status]
WRITE(CRT,===) TPRICE
GO TO 100

C

C CLOSE DATABASE

500

CALL DBM ('DBCLOS')
STOP
END

Page 31

INVOICE RETRIEVAL PROGRAM -- PRINT INVOICE STATEMENT
DBM READ/WRITE FORMAT

FIGURE 13

[No User Work Area Needed!]
IMPLICIT INTEGER (A-Z)

REAL XPRICE,TPRICE

DATA CRT,DBM /.../

C
C OPEN DATABASE FOR RETRIEVAL

51

C

C ASK
100

101
102
103

104

C GET
200
201

202

203

C GET

300
301

302

303
304

WRITE (DBM,11)
FORMAT ('DBOPEN INVALL,0,0°')

FOR INVOICE NUMBER AND FIND INVOICE
[Type "Enter Invoice Number"]
READ(CRT,-=~) INVNUM

IF (INVNUM.EQ.0) GO TO 500
WRITE (DBM,101) INVNUM

FORMAT (*INVNUM='.16)

WRITE (DBM, 102) [Find invoice]
FORMAT ('FINDC INVCE'/'READ ERRSTA')

READ (DBM, 103) ERRSTA [Get error status]
FORMAT (I6)

IF (ERRSTA.EQ.0) GO TO 200
WRITE (DBM, 104)

FORMAT ('ZERO ERRSTA')

[Type "invoice does not exist"]
GO To 100

[Ask for invoice number]
[Do more invoices?]
[set INVNUM value]

[Does invoice exist?]
[Reset error status]

CUSTOMER DATA AND PRINT INVOICE HEADER

WRITE (DBM,201) [Find owning customer]
FORMAT ('FINDO CSTINV')

WRITE (DBM,202)

FORMAT (°'GET CSTMEK"')

READ (DBM,=--) CSTNUM,CSTNAM,
WRITE (DBM,203)

FORMAT ("GET INVCE"')

READ (DBM,=-=-=) INVNUM,INVDAT, ...
WRITE(CRT,===) CSTNUM,INVNUM, ..
TPRICE=0.0

[Get customer data]

.fGet invoice data]

PART DATA AND PRINT EACH LINE ITEM

WRITE (DBM,301) [Find next line item]

FORMAT ('FINDPO NEXT INVLIN')

READ (DBM,-=-) EKRSTA

IF(EKRSTA.NE.O) GO TO 400

WRITE (DBM,302)

FORMAT ('GET LINITM')

READ (DBM,--=) QTY

WRITE (DBM,303)

FORMAT ('FINDO PKTLIN')

WRITE (DBM,304)

FORMAT (°'GET PART')

READ (DBM,===) PRTNUM,PRTNAM. ...
: [And so on...]

[Any more line items?)
[Get line item data]

(Find owning part]
[Get part data]

