
AO—A067 2~e9 WHARTON SCHOOL PHILADELPHIA PA DEPT OF DECISION SCIENCES FIG 9/a
-
‘

EXPLORING THE CONCEPT OF A CODASYL DATABASE MACHIVC.(U)
JAN 79 R D HACKATHORN N0001U 75 C—OkleO

UNCLASSIFIED 76—12—Ok NL

ADA U ________________ _________
06724 9

— — _

END
D A T E

ë 79
Dot

1’ 0
~ iiii~

________ ~o 111315 2 2

4 2 01.1
~~~~ 

—=_

— 
i~ IIIII.!!

1111 F25



I
I 

_ _  

I
_ D D C  

I

I 
_ _ _  _ _ _ _ _ _ _ _  

IAPR 121919 

1
I k1~~~ uU 

I
—



EXPLORING THE CONCEPT OF
A CODAS Y L DATA BASE MACHINE

Richar d D. ~ackat horn

Work ing Paper 78~~12~ O1~
January. 1979 —— Draft 12

Department of Decision Sciences
The Wharton School

Un iversity of Pennsylvania

(This research was sponsored in part by the Office of Naval
Researc h Grant Number NOOO 1l$~~75~ C—OUlO .]

H ~9 O 4 O ~
~~~~~TTI


_ -

~~

--

st c~~~ I r v CLASSI FICATION OF THIS PAGE (VI..., 0.4. E.,4.,. ~~ __________________________________

b~~~ r~DT IIU~~ L I T A T If~IJ D A I C READ INSTRUCTIOMI
I~~~~U~J1~~I &1’J~ ..VM~~~I~ I ~~ I ~~~~ ~~~~~‘J’ BEFORE COMPLETING FORM

I. REPORT NUMSER 2. GOVT ACCESSIO N NO 3. REC$PIENT S CATALOG NUMSEN

78—12—04 .
4. TITLE (aid SubUti.) / g~~ £ ranri e,ujQ bATABASE ~~ACBI~ F ~~~~~ Jan~~D~~~D:Lk3~~~~~

7. AUINORftJ L CONTRACT OR GRANT NUMSER(.J

R ic h a r d D./Hackathorn
(

; N~~~~l4-75_c-,e44~~7

S. PERFORMING ORGANIZATION NAM E AND ADDRESS JO. PROGRAM ELEMENT. PROJECT . TASK
..- \ AII~~ * WORK UNIT NUMSERS

Depar tmen t of Dec ision Sc iences (,&)
Un ivers ity of P e n n s y l v ania \~-.__..
Philadelp hia , PA 19104 .,

~~~~~~~ 7f ~-~-1
II. CONTROLLING OFFICE NAME AND ADDRESS /
O f f ice of Nava l  R e s e a r c h  ( // Jan ~~~~~r ~~79 /
Depar tmen t of the Navy ~1—wuMuER oTwAGU - -

800 N. Quincy St., Arl ing ton , VA 22217 31
14. MONITORING AGENCY NAME S ADORESS(U dStI.r.nf ft... C.ntroIIInd OIfIc.) II. SECURITY CLASS. (.1 tAt. r. oe1)

Uflclassified
4 • IS.. OECI.ASSIFICATION/DOWNGRAOINS

SCHEDULE - .  -

IS. ~~STRISUTION STATEM ENT .1 41.4. k.~..l) -

Approved for pu blic release; distribution unliBited.

17. OISTRI•UTION STATEMENT (of 11.. .b.tr.et .nI.,.d hi Stock 20. II deft.,. .. ft.., R.p.M)

IS. SUPPLEMENTARY NOTES

P iS. KEY WORDS (Cai4MV. ai r.v.u. .t~~ U .,ic •..ay aid I *.,f tty by bt..k ._ ib ,)

IS. ASSTRACT (C.ØH_i. a, .. v.,. • it~~ U i,.c.••av aid ~~~~~~~ by 5 1 5  a_ iS or)

pag .

DO i JAN ?) 1473 £011100 OP I NOV SI IS OSIOI I t I
l,s Il•2 S14 ISII 

______•*CU01YV ci aS PiCAYI00 0P tHIS 0*01 (~~~ai bS4• ~~ t—.-I

~~~~~~ 
_

. ..~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~~~~~~~~~

ABSTRACT

Th is paper exp lores the concep t of a “~~ tabase machine”~~
using the approach of the CODASYL data model. A database
machine is defined as an integration of hardware and
software for providi flg generalized database management
capability in a physicall y separate device. The advantages
of a da taba se m ach ine , along with functional specifications ,
are presented. Next , an illustration of using a database
machine is given through an example of invoice processing
using the SEED database management system on a DECsystem—lO
computer. Finally , the implications of several design alter-
natives arising from the illustration are discussed.

I t
I

I. _ _ _
_ _ _

5Th ~1II t4 k~?iIS

$I~ ~ac~I4S

~~~~~~~ ~~~ 0
J~ _ j ! ~ L’.’ J 

IT .

,~::~ : ~~~~~~~ ~~~- - ~RIt ~!

-- .~c . 
-

L~I
~~ ~~~~~~~~~~

-— - -
-

~~~~
- — ~~~~-- ~~~~~~~~~~~~~~~~~~~ -- ~~~ ---~~~~~ ~~~~~~~~~~~~~~~

F — - -
~

-- ---
~- —-—-~

—- .—‘-— -- .- -
~
. . -----.-—--- -—— . - -- -----—.—---- ---- , — - . .- - - - -- --.- —.- — .-——--- -

~-

CODASYL DATABASE MACHINE Page 2
R ichard D. Hackathorn

ABSTRACT

Th is paper explores the concept of a ‘ database machine ”
3 using the approach of the CODASYL data model. A database

mach ine is defined as an integration of hardware and
software for providing generalized database management
ca pability in a physically separate device. The advantages
of a data base machine , along with functional specifications.
are presented. Next , an illustration of using a database
mac hine is given through an example of invoice processing
using the SEED database management system on a DECsystem—1 O
com puter . Finally , the implications of several design
alternat ives arising from the illustration are discussed .

OUTLINE

1 .0 INTRODUCTION
1.1 ADVANTAGES
1.2 FUNCTIONA. . SPECIFICATIONS

2.0 AN ILLUSTRATION: INVOICE PROCESSING
3.0 DESIGN ALTERNATIVES

3. 1 LEVEL OF DATA MANIPULATION LANGUAGE
3.2 HOST PROGRAM INTERFACE
3 .3 USER WORKING AREA
3.~$ COMMUNICATIONS INTERFACE
3.5 NON— DML OPERATIONS

~4 .O CONCLUSIONS
5.0 REFERENCES

c

$

_ _ _ _ _ — .~~~~ .- . - - - - -- . -

L

CODASY L DATABASE MACHINE Page 3
R ichard D. Hackathorn

L 1.0 INTRODUCTION

Database mana gement systems (DBMS) have emerged in

recent years as an important component of all large— scale

information systems. This trend stems from a shift in

perspective of data as simply the input/output of programs

to data as a central focus of information processing .

Increasing portions of the resources devoted to information

systems are be ing allocated to the database mana gement

f u n c t io n .

Data base management is distinguished from other simpler

forms of mana ging data by the extent to which complex data

structures are su pported . File mana gement systems provided

simpler ways of accessing data through various access

methods . such as index sequential. Although database

I , mana gement systems may use these access methods internally.

the emphasis is on separating the definition of the data

structures from the manipulation of the data. down to the

level of each data item .

W ith the increased resources being devoted to database

mana gement systems, var ious approaches to satisfying the
4-

funct ions or a database mana gement system have been tried .

Numerous commerc ial DBMS packages h ave been developed and

are in wide use (e.g.. INS . TOTAL. IDS. System/2000. IDMS.

SEED. ADA BAS. DBMS— b) . An effort to standardize a uniform

interface between the appliostion program and the DBMS by

$

_ - -— - . ~~~~~~~~~~~~~~ - -

- ~—— -

CODASYL DATABASE MACHINE Page ~
Richard D. Hackathorn

the CODASYL Data Base Task Grou p (DBTG) has made significant

advances and has influenced many of the above commercial

packages [CODASYL, 1971).

Th is paper will concentrate on database mana gement from

a slightly different standpoint. The focus of this paper

is: Is it possible to build a machine that performs all the

funct ions of a database mana gement system using small— scale

com puter technology and the CODASYL data model?

Suc h a machine is referred to in this paper as a

“data base machi ne ” , although ,~the l i t e r a t u r e o f t e n uses

similiar terms, s u c h as “back—end processor ” . or “database

com pu t e r . ”

Cons ider the following definition for a database

mach ine: A database machine (DBM) is an integration of

hardware and software components to provide a generalized

database management capabilit y in a physica lly separate

device. The hardware components consist of a large capacity

stora ge device , based on a hard disk. and a processor. The

software com ponents consist of a database mana gement system,

operating system, and language translators. In the

literature there is considerable debate on what should be

implemented in hardware and what in software. To the

author, th is balance should be based solely on performance

considerations and capabilities of ex 1s ti n~ technology. The

intent or functions of’ the database machine remain the same.

‘II

—~~- -. . - - --~~~~~~~~~ - . .~~~~~~~~—- . --- -~~~~ . ---.- -~

CODASYL DATABASE MAC HI~4E Page 5
Richard D. Hackathorn

The conventional approach to supporting a DBMS is by a
4’

large software package running on the host processor under

its operating system and performing operations on some

large—scale disk storage unit connected to the host

processor as a peripheral . This case is referred to as a

“host resident DBMS” . The shift to a database machine

implies that a separate processor is added and is dedicated

to support only the database management function. When

compared with the functions performed by the host processor .

a database mach ine is. in effect. “off— loading ” or

distributing the processing functions with a special purpose

peripheral. The contrast between a conventional DBMS and a

DBM is shown in Figure 1.

The concept of a database machine is not new. The first

paper on the subject appeared four years ago [Canaday et .al.

197
~

$]. This paper was a report on an experimental database

machine implemented by R . H. Canaday and others at the Bell

Telephone Laboratories. Within the last year, excitement on

the topic has risen considerably. All of the major

conferences on database mana gement have presented topics

directly concerned with database machines . This excitement

has been caused by dramatic decreases in the cost of

computer hardware , along with advances in associative memory

techniques based on magnetic bubbl es or LSI technology.

Good literature reviews are given in Baum [1976], Berra

(1977). Hsiao [b977], Lowenthal (1977]. and Mohan (1978).

—— — - - . ~~~~~~~ —---- ._ _ _ : . —~~~

- - - I

CODASYL DATABASE MACHINE Page 6
Richard D. Hackathorn

Recent articles in Datamation (Champine. 1978; Bray &

Thurber. 1979) provide good overviews of the approaches and

major efforts related to database machines.

1. 1 AD VAN TAC ES

This section presents some of the advantages to the

database machine approach over conventional approaches. It

relies on the initial work by Canaday et. al. [19711].

The first advantage to the DBM approach is on the

economy of a device that specializes in supportin g the

database mana gement function . The host processor must be

sufficiently generalized to process a wide variety of

programs. Much of the overhead in the operating system and

access methods can be trimmed in this fashion. The

underlyin g assumption is that the savings resulting from the

economy of specialization are greater than the economics of

scale inherent in the host processor. With the trend

towards decreasin g hardware costs, this assumption will be

increasingly valid through time.

The second advantage is enhanced transfer of databases.

A continuing problem has been the transfer of data from one

computer system to another, especially if such systems are

from different vendors. This transfer is usua lly

accomplished by an “unload/load ” operation (i.e., taking a

structured database , flattening the hierarchies into

.. --- - .— -~~~~~~~

CODASYL DATABASE MACHINE Page 7
Richard D. Hackathorn

sequential records., writing the data onto a magnetic tape .

and finally reversing the pro cedure on the second comput *~r).

A database machine . hoMever , can effect the transfer of data

by its commonalit y of its database interface. As shown in

Figure 2, the first host processor can construct a database

on its database machine. That database can be transferred .

as is, to a second compatible database machine so that the

database is now available to the second host processor. No

reformatting of’ the data is necessary.

A third advanta ge is data sharing. As shown in Figure

3, several host processors can share a common database

machine. The host processors can be physically separated

and may be from different vendors. A extension of data

sharing is shown in Figure 11 , in which one or more of the

hosts are physically remote and communicate with the

database machine via telecommunications lines. A further

extension , as shown in Figure 5. is for several database

machines to be interconnected with several processors

through some kind of network facility. In this situation.

there is a functional differentiation between nodes that are

concerned with the proces sing of data for a certain

application (i.e.. processor nodes) and nodes that mana ge a

specific collection of data (i.e.. data nodes).

As will be shown below , these advantages are contingent

on certain internal design alternatives in unobvious ways.

I-

~

___ _ _ __ __ _ ___ _
_ _ _ - — — —- -- ---- --- - . -- -

__ - - -~~---- .—-- . .-~~~ . .- - --.-.-~~-- - - . -
~~~~

----
~

CODASYL DATABASE M.- .CHINE Page 8
R ichard D. Hackathorn

1.2 FUNCTIONAL SPECIFICATIONS

To have the database machine provide all the functions

of current DBMS packages on large mainframe computers, the

d a t a base mach ine h a s  to pe r f o r m  m ore f u n c t ions  t h a n  simp l y

man ip u l a t ing t h e c o n t e n t s  of a d a ta b ase .  Shown i n F ig u r e  6

is a diagram of the typical processing flow with

convent ional database management systems. Roughly , the

initial phases of the development of a database application

deal with the definition of’ th e da ta b ase s t r u c t u r e .  Thi s is

followe d by the compilation of the application program and

finally by the execution of the application program with the

data manipulation routines of the DBMS. Throughout the

development and operation of the database application , there

is a need to perform various utility functions , such as

calculat ing statistics on database growth.

Figure 7 constrasts with Figure 6 by showing the

development flow using a database machine. Various

funct ions, such as composing the schema definition and

editin g, compi lin g . and executing the application program

rema in as part of the host processor. However, other

funct ions , such as the actual processing o ” the schema

definition, are handled within the database machine. The

various functions performed by the database machine can be

categorized as follows :

0



---- —.__ 
- ,- -~~~~~~~~~~~~

CODASYL DATABASE MACHINE Page 9
R ichard D. Hackathorn

1. Data Definition Facilities permit the structural

d ef in i t ion of t he d a ta  to b e p rocesse d se pa ra te f r o m

the manipulation of the data. In a CODASYL DBMS.

processors should be present for the schema and

sub— schema data definition language (DDL).

2. Data Mani pulation Facilit ies permit the usual

man ipulation of the data, such as storing rIe l record

occurrence s. modif ying/deletin g record occurrences.

retr ieving records based on sequential position, key

values , and set membership, and establishing

cu rrency of records or sets.

3. Sequential File Mana gement is a secondary facility

to create sequential files as input to DDL

processors, transaction processors . e t c .  or as

out put from query and report generation facilities.

14, Database Maintenance Utilities are other utilities

that initialize a new database. dump contents of

sc hema or data , analyze statistics of the database.

query and report generation , unloa d/load facilities.

e t c .  

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , _ _ _ _ _ _ _ _ _



CODA SYL DATABASE MACHINE Page 10
R ichard D. Hackathorn

2.0 AN ILLUSTRATION: INVOICE PROCESSING

To illustrate the conce p t of a d ata base mach ine w ith a

concrete exam ple , an application program dealing with

invoice processing in a small business is given. The

initial version of this program was written by Rob Gerritsen

us ing the SEED (and Micro—S EED) database management system

[Gerr itsen, 1978].

The INVOICE package deals with a data structure (shown

in Figure 8) composed of’ customers, parts . and invoices.

Customers submit one or more invoices. Each invoice has one

or more l ine i tems on it. Eac h lin e item refers to a

certa in part in the inventory. The schem a d efin ition is

given in Figure 9.

The part icular funct ion that w ill be illustrate d is the

printin g of an invoice statement. A sample printout is

given in Figure 10.

Th is exa mp le is useful since it exh ibi ts m any of’ the

interfaces to the DBMS. A stylized version of the FORTRAN

source code is given in Figure 11 . The steps of’ the program

are:

1. Open database for retrieval
2. Select specified invoice
3. Obtain customer data for invoice
II, Process each line item
5. Pr int tot, 1. price
6. Close database 

:__ ‘___ U ~~~~~~~~~~~~ - ..— .————.—~~ ‘-~~-— —-—- -  ---———— -- -— — —.- -



— ~~~~~~~~~~~~~~ 
-

~~
-
~~~~~~~- - . .

~.,ODASYL DATABASE MACHINE Page 1 1
R ichard D. Hackathorn

Althou gh the program does not actually update the

data base (and hence may not be representative) , it does have

to u pdate the value of the invoice number for the FINDC

operation . Values . therefore, have to be communicated from

the application program to the DBMS , as is done in updatin g

programs.

The ways that this application program interface to the

DBMS can b e summar ized as follows:

1 . Invo ke operat ions
2. Refer to record an d set types
3. Set v a l ues f o r d a t a i t e m s .
14, Obtain values of data items
5. Check error status (and other system variables)
6. Reset error status

3.0 DESIGN ALTERNATIVES

Given the INVOICE example using the SEED DBMS as the

illustration , var ious alternatives for the important design

aspects of the database machine as examined .

3. 1 LEVEL OF DATA MANIPULATION LANGUAGE

The first design alternative is the level of the

language used to manipulate the data . The usual CODASYL DML

is highly procedural. nagivation oriented . and tightly

cou pled with the application program. To illustrate these

points, cons ider the processing of the following problem:

“F ind all the parts on invoice X that have been


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

CODASYL DATABASE MACHINE Page 12
R ichard D. Hackathorn

backordered .” To analyze the processing necessary for this

problem , assume the following facts: (1) 10% of parts have

been backordered ; and (2) 20 line— items per invoice on the

average.

For the case of using usual CODASYL DML , t h e  host

program will first invoke a FIND CALC for invoice X. then 20

FIND NEXT followe d by FIND OWNER for each line— item in the

invoice , and a final FIND NEXT to get the end-of—set

con dition . This totals to 42 FIND operations. Further, the

data for the invoice and the 20 line—items will need to be

transferre d Into the IJWA . Therefore. the CODASYL DML will

need 42 FIND and 21 GET operat ions for the processing.

In contrast . a high— level DML that was similar to a

query language would need considerably less operations.

Specifically , the operations needed would be: FIND CALC for

invoice X . FIND conditional on line— item with backorder

status, a GET for the invoice data, and two GETs for the

parts backordered , Therefore, a high— level DML will need 2

FIND and 3 GET operations.

In summary , the reduction in data transfer between a

hi gh— level DIlL and a CODASYL DIlL would be 1/21 on data to

the DBM and 3/21 on data from the DBM —— a considerable

savin~ sl This example illustrates the fact that the CODASYL

DIlL was designed with the assumption of tight coupling

between the DBM and the host program -— an assumption that

L A ~~~~~~~~~~~~~~~~~~~~



_ _ _  _ _ _ _ _  _ _ _  —~~~ -~ ,-~~~- —-.- . - - - .-~~~-__

CODASYL DATABASE MACHINE Page 13
Richard D. Hackathorn

makes the normal DM1. unsuitable as the primary DM1. for a

DBM.

3.2 HOST PROGRAM INTERFACE

The second design alternative is how to embed the DIlL

for the DBM in the host application program —— a point that

current literature on databa se machines has ignored . This

section will explore three ways of handlin g the DIlL: (1)

DML subroutine library; (2) subroutine CALL format; and (3)

READ/WRITE format.

The first case would be to construct a DIlL subroutine

library on the host processor for the particular language

translator (e.g.. FORTRAN) used by the appl ication program .

When compared to a resident DBMS, the source code should not

have to be chan ged . Depending on the particular DIlL

operation , the subroutine will handle communications with

the DBM so that it is transparent to the application

program.

The advanta ges of this case are: (1) no change in the

source code of the application programs; (2) any changes in

DBM conventions are hidden from the application program.

The disadvanta ge is that over thirty subroutines have to be

written for each combination of host processor and language

translator connected to the DBM , thus makin g the DBM

difficult to connect to new computer systems.



CODASYL DATABASE MACHINE Paue 114
Richard D. Hackathorn

The second case would be to have a single common

subroutine that would handle the commun icat ions to the DBM.

The only argument to the DBM subroutine would be a character

string that is to be sent to the database machine. The

INVOICE program would require some changes, as is shown in

Figure 12. Note that the syntax of the string can be

condensed greatly, as was done in DBLOOK (Gerritsen. 1978].

The DBM subroutine would not only communicate with the

database machine , but also perform the following functions:

(1) updating error status indicator after each operation;

(2) transmittin g value changes in d a t a  i t e m s ;  (3) abortin g

operations if error status is nonzero; and (II ) updating data

items after GET operation.

The advanta ges would be: (1) only minor changes to

existin g applicat ion programs; and (2) single subroutine

interface to the DBM. The disadvantages would be: (1) a

new subroutine needs to be written for each host processor

an d language translator; (2) a special operation is required

when critical data items are changed ; and (3) error status

has to be updated after each operation.

The third case for interfacing an application program to

a DBM is directly through the standard READ/WRITE

statements. All communication would be through the

READ/WRITE statements as if the DBM was a reader/pun ch

device. No additional subroutines would be nece ssary.



CODASYL DATABASE MACHINE Page 15
Richard D. Hackathorn

Further. there would be no need for a user working area

(UWA).

The INVOICE source code with the READ/WRITE statements

is shown in Figure 13. Note that the program appears longer

than in the prior case. However , the total length of the

program is shorter because no UWA is included. The

operating system needs to define a logical I/O device that

is connected to the DBM . The value for each data item must

be sent to/from the program, as is shown in statements 101

and 202. Note that the program can be streamlined

considerably if FORTRAN allowed the construction:

WRITE (DBM) ‘FINDC INVCE~

The advantages of the READ/WRITE statement case would

be: (1) nothin g is hidden in subroutine calls or user

working areas; (2) the sub— schema capability is retained ;

and (3) the total program length is shorter. The

disad vantages are: (1) program needs to know the exact

formats of data items contained in the sub— schema; (2) more

statements are required to perform the DML operation ; (3)

the READ/WRITE routines must be interrupt— driven and

buffered ; (11) the error status has to be explicitly reset to

zero; and (5) explicit operation is required to obtain the

error status and other DBMS system variables.

.

~ .



_________________________ _____ -

CODASYL DATABASE MACHINE Page 16
Richard D. Hackathorn

3.3 USER WORKING AREA

An important design alternative to the previous three

cases for DML operations is the placement of the user

working area (UWA). In the first two cases, the UWA was

actually maintained in two places —— one in the application

program and one in the database machine. Depending on the

database operation , one or the other UWA would be changed ;

hence. any discrepancies between the two UWA s had to be

rectified by the subroutine in the host processor. In

contrast , the third case using simple a READ/WRITE statement

has no explicit UWA in the host processor; however, values

of data items are stored in the host program space. Any

change in values of error status. currencies. etc. will have

to be explicitly performed by the host program.

3,4 COMMUNICATIONS INTERFACE

Another design consideration is the actual communication

interface between the host processor and the DBM . This

interface has to be considered both from the logical

“hand— shakin g ” protocol and from the electrical

specifications. The alternatives for this interface are

numerous. The simplest alternative would be an asynchronous

RS— 232 300—baud ASCI I full duplex line with a simple

stimulus /response hand— shaking and with no error detection

or correction . As networkin g protocols are standardized and



r ~~~~~~~
— - ------ -

~~~~
-- --- - ------- — -- --

~~~~~
— — - 

~~~~~~~~~~~~~~~~ ~~
.

CODASYL. DATABASE MACHINE Page 17
Richard D. Hackathorn

accepted ,’ the DBM will have to accommodate them .

Another aspect of the communications interface is the

data conversion problem. How will the data items be stored

internall y to the DBM? If it is a binary representation. it

will be dependent on the architecture of the DBM or host

computer . If it is strictly character representation . then

significant conversion overhead will be incurred for

processing numerical quantities.

3.5 NON— DIlL OPERATIONS

Prior to executin g the application program for a

database , other operations must be performed in preparation.

For instance , the schema and sub— schema needs to be

processed . and the database initialized . The design

alternatives related to how these functions are provided are

Important. Further . there seems to be ~ tra d eoff in

processing effeciency between providin g DM1~ operations and

non— DML operations. Since the functions of the database

administrator are separate from the functions of the

application programmer , a separation of DM1. operations

(which are associated with the applicati on program) and

non— DML operations (which are associated with the

adm inistration of the database) is warranted .
IT

r

- ~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~~~
_ -

CODASYL DATABASE MACHINE Page 18
Richard D. Hackathorn

14.0 CONCLUSIONS

Through the invoice processing example , several design

alternatives were discussed in terms of their subtle

implications to function and performance of a database

machine. In particular , noted were the important design

alternatives of DIlL language level , User Working Area

location , and non— DIlL operations. The compatibility of DML

operations with DDL structuring (and other database

ma intenance functions) were concluded to be weak; hence. a

separation of these functions is warranted .

In general , the implementation of a database machine

using a normal CODASYL database mana gemen t system (e.g..

SEED) and current implementation techni ques (e.g.. pointers

and chains, rather than associative memory) does not seem to

offer sufficient performance benefits. By extending the

CODASYL DM1. (such as was proposed by Germano & Thakur (1978)

and others), performance could be significantly increased .

In any case. the use of a database machine may be more than

adequately justified based on other benefits, such as: (1)

independence of data between the application program and the

database; and (2) convenience of perform ing database

administration functions.

r - - --
~~~ 

— -.- .,-—- ,--

~~~~

-

~~

--- ..- --- —-

~~

--

~~~~~~~~

---  -

~

- -

~

-- -- - - . . — —  - .

CODASYL DATABASE MACHINE Page 19
Richard D. Hackathorn

5.0 REFERENCES

Barierjee, J ., Hsiao. D.K. . Baum . R.I. Concepts and
capabilities of a database computer. ACM Transactions
on Database Systems, 3(14), December 1978 , 347~ 381$ ,

Baum. R.I., and Hsiao , D ,K. Database computers: A step
towards data utilities. IEEE Transaction on Computers
C—25, 12, December 1976 , 125~$— 1 259,

Benbasat , I., and Goldstein. R .C . Data base systems for
small business: Miracle or Mirage? Database. 9(1),
Summer 1977, 5—8.

Berra , P.R. Data Base Machines. ACM SIGIR Forum , Winter
1977.

Bray , 0., and Thurber . K. .J. What ’s ha ppening with data base
processors? Datamation , Janu ary 1979. 146— 156.

Canaday , R .H. et .al. A back—end computer for data base
management. Communications of the ACM, 17(10), October
1974 , 575—582.

Champine , G A .  Four approaches to a data base computer.
Datamation , December 1978, 101— 106.

CODASYL. Data Base Task Group Report. ACM. October 1969
and April 1971.

Gerritsen. R . SEED Reference Manual. International Data
Base Systems. July 1978.

Gerritsen. R., and Hackathorn , R .D . Micro— SEED and its
ap plication . Proceedings of Electro 79, April 1979.

Cermano. F., and Thakur . M . SEEDFE: A FOR EACH data
language for SEED. Working Paper 78-12—08. Department
of Decision Science, The Wharton School. University of
Pennsylvania , 1978.

Hsiao. D.K., and Madni ok, S.E. Data base machine
architecture in the context of information technology.
Proceedings of the Third International Conference on
Ver y Lar ge Da ta Bases , October 1977.

Lowe nthal . E.I. A survey : The application of data base
management computers in distributed systems.
Proceedings of the Thir Conference on Very Large Data
Bases , Oc tober 1977. 

-- —-----.



r -

~~~~

~~~~~~~~~~

-

~~~~~~~~~~~~~~~~

- - -—- - -
~~~~ 

----

~~~~ 

—

~~~

--- - - - ----- - - --- -- -

~~~~~~ 

~~~

- -
~~~~~

--_ - - - ,

CODASYL DATABASE MACHINE Page 20
Richard D. Hacka thorn

Mohan , C. An overview of recent data base research.
Database, 10(2). Fall 1978, 3— 24.

Ozkanakhan , E .A . et .al . RAP: An associative processor for
relational data bases. Proceedings of the 1 975 National
Computer Conference , Anaheim CA , May 1975.

Rosenthal , R .S. The data management machine: A
classification. Third Workshop on Computer Architecture
for Non—Numeric Processing, May 1977. 35—39.

Stonebraker , M. A distributed database management system .
Memorandum M78/23. UCB Electronics Research Laboratory,
May 1978.

Yao. S.B. et .al. The Oregon Report: Data—base systems.
IEEE Computer. 11(9). September 1978. 46—60.

Zornes. J .A. Data base management systems on
mini— computers. Database , 9(1). Summer 1977. 9—13 .

r

0

~~~~~ - - — t._z_ ~~~ rrfla s,~—~- .. . ~- _______ - - -



Page 21 

“1

Hod Res .6#i’ Dg/i.~ yc. 3~%,6a.s’e /‘7~cA,~e

IC

~

fD 

_ _ _ _ _ _ _ _ _ _ _ _



-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -—— ~~~~~~~ -.-~~~~ - - - ~~~~~~

Page 22

_ _ _ _ _

r

I 

“ V7,
,1

pd-e~ 7?~?~?deP-

,/.s1~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

1.2

C

Pa,c 5<s~”~~
F/~ L.’re .3

z

~- -----_1___ :
-— 

— - — — -~ -~~~~



— - .  — - - -‘-- 
—.-_- —- .~~~

--------
~~~~~~~ -‘ 

--=— - ----- - - —----—-- -;~~~
-- — - . ----- — -—

Page 23

‘I

//cS

~~.2.

A~’mde 1~ep?~, Sh.,,n~
V

r~~i I ’

~~~~~~~~~~~~~~ 
p8~~ I

[
L ]

- -.

~

-

~

-.- -



- -~~~~~~~~~~~~~ —~~~~~~~~~~~ ~~~~~~~~~~ - -- .
—~~~~~~~ ..- - - - —~~~~~~~~~~~~~~~~~~~ --

page 24

1-’



F- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - - -

~~~~~~~~~~~~~

—

() 
Page 25

~~~~~~~~


- - --~~~~~~~~~~~~ -~~~~—~~~~~--

1
- -

~~~ 

- -

Page 26

CSTMER
lcs trium
lcstnam
caddrl
Icad dr2

CSTINV

,PART I INVCE
prtnum invnum
prtnam invdat
color 1shpdat
price
wtpnds

\ /
\ /
\ /

PR TLIN \ INVLIN /
\ /
\ /
\ /
\ /
ILINITM
qty

INVOICE Data Structure

Figure 8

~~0



Page 27

INVOICE SCHEMA DEFINITION

Figure 9

SCHEMA NAME IS INVOICES
DATABASE SIZE IS 5 PAGES
PAGE SIZE IS 256.

RECORD NAME IS CSTMER
LOCATION MODE IS CALC USING CSTNUM DUPLICATES NOT ,

CSTNUM TYPE IS CHARACTER 10.
CSTNAM TYPE IS CHARACTER 20.
CSTAD 1 TYPE IS CHARACTER 20.
CSTAD2 TYPE IS CHARACTER 20.

RECORD NAME IS INVCE
LOCATION MODE IS CALC USING INYNUM DUPLICATES NOT.

INVNUM TYPE IS CHARACT ER 10.
INVDAT TYPE IS CHARACTER 8.
SHPDAT TYPE IS CHARACT ER 8.
SLSMAN TYPE IS CHARACTER 20.

RECORD NAME IS LINITM
LOCATION MODE IS VIA INVLIN SET.

QTY TYPE IS FIXE D.
RECORD NAME IS PART

LOCATION MODE IS CALC USING PRTNUM DUPLICATES NOT.
PRTNUM TYPE IS CHARACTER 10.
PRTNAM TYPE IS CHARACTER 20
PRICE TYPE IS REAL.
WTPNDS TYPE IS REAL.
COLOR TYPE IS CHARACTER 1.

SET NAME IS CSTINV
MODE IS CHAIN LINKED TO PRIOR

ORDER IS FIRST
OWNER IS CSTMER
MEMBER IS INV CE LINKED TO OWNE R

SET SELECTION IS LOCATION MODE OF OWNER.
SET NAME IS INVLIN

MODE IS CHAIN
ORDER IS LAST
OWNER IS INYCE
MEMBER IS LINITM

SET SELECTION IS LOCATION MODE OF OWNER.
SET NAME IS PRTLIN

MODE IS CHAIN LINKED TO PRIOR
ORDER I S  LAST
OWNER IS PART
MEMB ER IS LINIT M LINKED TO OWNER

SET SELECTION IS LOCATION MODE OF OWNER.



F——- - - - -

~~~

-- -

~~~~~~ 

- - - — —---- -- —----  --- - -

~~~~~~~~~ 

- -

Page 28

B>invoice

ENTER INVOICE NUMBER: 2005

CUSTOMER :2000 INVOICE : 2005
Wharton Novelty ORD DATE : 78—06—30
3600 Spruce SHIP DATE : 78—07—15
Philadelphia , PA SALESMAN : Jerry Lewi

PRTNUM PRTNAM C PRICE QTY XPRICE

A l Widget B 12.00 40 480.00
B3 Wire Harness Il 165.00 32 5279.99
A2 Thingamajig G 34.00 16 54~4.0O

3.99

ENTER INVOICE NUMBER:

B>

Sample Printout of’ INVOICE Program

Figure 10

(

C

_____ — —- --— -- -- - - - ~- ~~~~~~~ ~~~~~~

r

Page 29

INVOICE RETRIEVAL PROGRAM —— PRINT INVOICE STATEMENT
HOST RESIDENT DBMS FORMAT

FIGURE 11

[Insert User Work File Here)

IMPLICIT INTEGER (A-Z)
REAL XPR ICE .TPR ICE
DATA CRT I . . ./

C
C OPEN DATABASE FOR RETRIEVAL

CALL DBOPEN(’INVALL ,0,0)
C
C ASK FOR INVOICE NUMBER AND FIND INVOICE
100 [Write “Enter Invoice Num ber ”]

READ (C RT ,—— —) INVNUM [Read invoice number]
IF (INVNUM .E Q.0) GO TO 500 [Do more invoices?]
CALL FINDC(INVCE ,FIRST) [Find invoice]
IF (ERRSTA.E Q.0) GO TO 200 [Does invoice exist?]
ERRSTA = 0 (Reset error status]
[Wri te “invoice does not exist”]
GO TO 100

C
C GET CUSTOMER DATA AND PRINT INVOICE HEADER
200 CALL FINDO(CSTINV) [Find owning customer)

CALL GET (CSTMER) [Get customer data)
CALL GET(INVCE) [Get invoice data]
W RITE (C RT ,———)CSTt~iUM ,INVNUM .
TPRICE=O .0

C
C GET PART DATA AND PRINT EACH LINE ITEM
300 CALL FINDPO(NEXT ,INVLIN) [Find next line item]

IF(ERRSTA.NE.O) GO TO 1400 [Any more line items?)
CALL GET(LINITM) [Get line item data]
CALL FINDO(PRTLIN) [Find owning part)
CALL GET (PA RT) - [G e t par t d a t a]

XPRICE=PRICE’QTY
TPRICE:TPRICE+XPRICE
WRITE(C14T. — — —) PRTNUM ,PRTNAM .
GO TO 300

C
C PRINT TOTAL PRICE
400 ERRSTA = 0 (Reset error status]

~VR ITE (C RT ,———) TPRICE
GO TO 100

C
C CL OSE DATABASE
500 CALL DBCLOS

STOP
END

L.~. - - _.

~~~~~~~~~~~~~~~~~~~~



F 
- -  -

~~~~~~~~~~~~

-- -

~~~~~

-

~~~~~~~~

-

Page 30

INVOICE RETRIEVAL PROGRAM -- PRINT INVOICE STATEMENT
DBM SUBROUTINE CALL FORMAT

FIGURE 12

[Insert User W ork File Here]

IMPLICIT INTEGER (A—Z)
REAL X PRICE ,TPRICE
DATA CRT / . . ./

C
C OPEN DATABASE FOR RETRIEVAL

CALL DBM (‘DBOPEN INVALL ,O ,O’)
C
C ASK FOR INVOICE NUMBER AND FIND INVOICE
100 [Wri te “Enter invoice Num ber”)

READ(CRT ,———) INVNUM [Read invoice number)
IF (INVNUM.E Q.O) GO TO 500 [Do more invoices?]
CALL DBM (‘PUT INVNUM’) [set INVNUM value)
CALL DEM (‘FINDC INVCE’) [rind invoice]
IF (ERRSTA.E Q.O) GO TO 200 [Does invoice exist?]
EHHSTA = 0 [Reset error status)
[W rite “invoice does not exist”]
GO TO 100

C
C GET CUSTOMER DATA AND PRINT INVOICE HEADER
200 CALL DBM (‘FINDO CSTINV’) [Find owning customer]

CALL DBM (‘GET CSTMER’) [Get customer data]
CALL DBM (‘GET INVCE’) (Get invoice data]
nRITE(C HT,———)CSTNUM ,INVNUM ,
TPRICE:O .0

C
C GET PART DATA AND PRINT EACH LINE ITEM
300 CALL DBM (‘FI N~ PO NEXT INVLIN ’) [Find next line item]

IF(ERRSTA.NE .0) GO TO ~40O lAny more line items?]
CALL DEM (‘GET LINITM’) [Get line item data]
CALL DBM (‘FIi~DO PBTLIN’) [Find owning part]
CALL DBM (‘GET PART’) [Get part data]
XPR IC E: PR IC E’QTY
TPRICE:TPRICE+XPRICE
WRITE (CaT ,———) PRTNUM ,PRTNAM ,
GO TO 300

C
C PRI NT TOTAL PRICE
1400 EHRSTA 0 [Reset error status]

WRITE(CRT,———) TPRICE
GO TO 100

C
C CLOSE DATABAS E
500 CALL DBM (‘DBCLOS’)

STOP
END

/

_ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _

Page 3l

INVOICE RETRIEVAL PROGRAM PRINT INVOICt S’ATEMEN”
DBM READ/WRITE FORMA’T

FIGURE 13

[No User Work Area Needed !)
IMPLICIT INTEGER (A—Z)
REAL XPHICE .TPRICE
DATA CHT ,DBH I.. ./

C
C OPEN DATABASE FOR RETRIEVAL

WRITE (DBM ,11)
11 FORMAT (‘DEOPEN INVALL ,O ,0’)
C
C ASK FOR INVOICE NUMBER AND FIND INVOICE
100 [T ype “Enter Invoice Num ber ”]

READ (C RT .———) INVNUM [Ask for invoice number)
IF (INVNIJM .EO.O) GO TO 500 [Do more invoices?]
WRITE (DBM , 101) INVNUM [set INVNUM value)

101 FORMAT (‘INVNUM : ’.16)
WRITE (DBM , 102) [Find invoice)

102 FORMAT (‘FINDC INVCE’/ ’READ ERRSTA’)
READ (DBM , 103) ERRSTA [Get error status]

103 FORMAT (16)
IF (ERRSTA.E Q.0) GO TO 200 [Does invoice exist?]
WRITE (DBM . 10 14) [Reset error status]

1 014 FORMAT (‘ZERO ERRSTA’)
[Type “Invoic e does not exist”]
GO TO 100

C
C GET CUSTOMER DATA AND PRINT INVOICE HEADER
200 WRITE (DBM ,201) [Find owning customer)
201 FORMAT (‘FII9DO CSTINV’)

WRITE (DBM ,202) [Get cust omer data]
202 FORMAT (‘GET CSTMER’)

READ (DBM ,——-) CSTNUM,CSTNAM .
WRITE (DBM ,203) [Get invoice data]

203 FORMAT (~ GET INVCE’)HEAD (DBM ,—— —) INVNUM .INVDAT .
W RITE (C RT .———) CSTNUM .INVNUM ,
T P R I C E = O .0

C
C GET PART DATA AND PRINT EACH LINE ITEM
300 WRITE (DBM.301) [Find next line item)
301 FORMAT (‘FINDPO NEXT INVLIN’)

READ (DBM. ———) ERRSTA
IF(ERRSTA.NE .O) GO TO 400 [Any more line items?)
WRITE (DBM .302) (Get line item data]

302 FORMAT (‘GET LINITM’)
READ (DBM .———) QTY
WRITE (DBM ,303) (Find owning part]

303 FORMAT (‘FINDO PRTLIN’)
WRITE (DBM,3014) [Get part data]

3014 FORMAT (‘GET PART ’)
READ (DBM ,———) PRTNUM .PRTNAM .

[And so on...]

0

