

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The use of trade name(s) and/or manufacturer(s) does not constitute an official indorsement or approval.

DISPOSITION

Destroy this report when it is no longer needed. Do not return it to the originator.

	PAGE	BEFORE COMPLETING FORM
REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
ARICB-TR-78026		
TITLE (and Subtitle)	-	5. TYPE OF REPORT & PERIOD COVERED
SINGULAR PLASTIC ELEMENT:	NASTRAN	
IMPLEMENTATION AND APPLICA	TION	6. PERFORMING ORG. REPORT NUMBER
AUTHORA		8. CONTRACT OR GRANT NUMBER(A)
M A Huccain		
S. I. Pu		
W. E. Lorensen		
PERFORMING ORGANIZATION NAME AND ADDRES	5	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
enet Weapons Laboratory		AMCMS No. 611102.11-H4500.30
atervliet Arsenal, Watervliet, N.	Y. 12189	DA Proj No. 1L161102AH45
RDAR-LCB-TL		PRON No. EJ-7-Y0011-EJ
IC Army Armamont Decearch and Dave	looment Command	December 1978
arge Caliber Weapon Systems Labor	atory	13. NUMBER OF PAGES
over. New Jersey 07801		26
4. MONITORING AGENCY NAME & ADDRESS(If different	ant from Controlling Office)	15. SECURITY CLASS. (of this report)
		150. DECLASSIFICATION DOWN GRADING
		SCHEDULE
approved for public release; distr	ibution unlimited	
Approved for public release; distr 7. DISTRIBUTION STATEMENT (of the abatract onlere	ibution unlimited d In Block 20, 11 different fro	n Report)
Approved for public release; distr 7. DISTRIBUTION STATEMENT (of the abatract entere 8. SUPPLEMENTARY NOTES	ibution unlimited d In Block 20, 11 different fro	n Report)
Approved for public release; distr 7. DISTRIBUTION STATEMENT (of the obstract entere 8. SUPPLEMENTARY NOTES	ibution unlimited d in Block 20, 11 different fro	m Report)
Approved for public release; distr 7. DISTRIBUTION STATEMENT (of the abatract entere 8. SUPPLEMENTARY NOTES	ibution unlimited d In Block 20, 11 different fro	m Report)
Approved for public release; distr 7. DISTRIBUTION STATEMENT (of the abatract entere 8. SUPPLEMENTARY NOTES	ibution unlimited d In Block 20, if different feo	m Report)
Approved for public release; distr 7. DISTRIBUTION STATEMENT (of the obstract entere 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if necessary)	ibution unlimited d in Block 20, 11 different fro and identify by block number)	m Report)
Approved for public release; distr 7. DISTRIBUTION STATEMENT (of the ebetract entere 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse eide II necessary - Sinite Elements	ibution unlimited d in Block 20, 11 different fro and identify by block number)	m Report)
Approved for public release; distr 7. DISTRIBUTION STATEMENT (of the obstract entere 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if necessary Finite Elements MASTRAN	ibution unlimited d In Block 20, if different fro and identify by block number)	m Report)
Approved for public release; distr 7. DISTRIBUTION STATEMENT (of the abatract entere 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse eide ff necessary Finite Elements WASTRAN Singular Elements	ibution unlimited d in Block 20, 11 different fro and identify by block number)	m Report)
Approved for public release; distr 7. DISTRIBUTION STATEMENT (of the obstract entere 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if necessary Finite Elements MASTRAN Singular Elements	ibution unlimited d in Block 20, if different fro and identify by block number)	m Report)
Approved for public release; distr 7. DISTRIBUTION STATEMENT (of the ebetract entere 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse eide If necesseny Finite Elements WASTRAN Singular Elements	ibution unlimited d in Block 20, 11 different fro and identify by block number)	m Report)
Approved for public release; distr 7. DISTRIBUTION STATEMENT (of the obstract entere 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if necessary Finite Elements NASTRAN Singular Elements 5. ABSTRACT (Continue on reverse side if necessary of The elements	ibution unlimited d In Block 20, if different fro and identify by block number) f mail identify by block number) larities near a c	m Report)
Approved for public release; distr 7. DISTRIBUTION STATEMENT (of the ebetract entere 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse eide If necessary - Finite Elements WASTRAN Singular Elements 4. ABSTRACT (Continue on reverse eide If necessary - The elastic and plastic singu- nigher order isoparametric element the quadrilateral element into a t adjacent mid-side nodes.	ibution unlimited d in Block 20, if different fro and identify by block number) f ind identify by block number) larities near a c s. This is simpl riangular element	rack tip are obtained from y accomplished by collapsing and by judicious choice of
Approved for public release; distr 7. DISTRIBUTION STATEMENT (of the obstract entere 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if necessary Finite Elements NASTRAN Singular Elements 0. ABSTRACT (Continue on reverse side if necessary The elastic and plastic singu- nigher order isoparametric element the quadrilateral element into a t- adjacent mid-side nodes. Specifically for the cubic el	ibution unlimited d in Block 20, if different fro and identify by block number) f ind identify by block number) larities near a c s. This is simpl riangular element ement, the elasti	<pre>m Report) rack tip are obtained from y accomplished by collapsing and by judicious choice of c singularity is obtained by</pre>
Approved for public release; distr 7. DISTRIBUTION STATEMENT (of the obstract entere 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if necessary of Finite Elements IASTRAN Singular Elements 1. ABSTRACT (Continue on reverse side if necessary of The elastic and plastic singu- tigher order isoparametric element the quadrilateral element into a t idjacent mid-side nodes. Specifically for the cubic el Continued on next page.	ibution unlimited d in Block 20, if different fro and identify by block number) f ind identify by block number) larities near a c s. This is simpl riangular element ement, the elasti	<pre>m Report) rack tip are obtained from y accomplished by collapsing and by judicious choice of c singularity is obtained by</pre>
Approved for public release; distr 7. DISTRIBUTION STATEMENT (of the obstract entere 8. SUPPLEMENTARY NOTES 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if necessary Sinite Elements MASTRAN Singular Elements 1. ABSTRACT (Continue on reverse side if necessary The elastic and plastic singu- nigher order isoparametric element the quadrilateral element into a the djacent mid-side nodes. Specifically for the cubic element Continued on next page.	ibution unlimited d In Block 20, if different fro and identify by block number) f ind identify by block number) larities near a c s. This is simpl riangular element ement, the elasti SLETE	rack tip are obtained from y accomplished by collapsing and by judicious choice of c singularity is obtained by

SECURITY CLASSIFICATION OF THIS PAGE(Hinan Data Entered)

Continued from Block 20.

placing the mid-side nodes adjacent to the crack tip at 1/9th and 4/9th locations. The plastic singularity is constructed using the sliding node concept. These elements have been implemented in NASTRAN as user dummy elements.

NTIS	White Section
000	Suff Section
5.1	
·····	
97	
DISTR	SAVALABILITY COSES
Dist.	or SPECIAL
1	
H	

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

TABLE OF CONTENTS

SYME	BOLS		ii
INTR	ODUC	CTION	1
CRAC	K TI	IP SINGULARITIES	3
SINC	SULAI	RITIES OF CUBIC ELEMENTS	5
NAST	RAN	IMPLEMENTATION	10
NUME	RICA	AL EXAMPLE	11
CONC	LUS	LON	13
REFE	RENO	CES	14
		ILLUSTRATIONS	
1.	(a)	12-NODE CUBIC ELEMENT COLLAPSED TO FORM A SINGULAR ELEMENT; (b) THE PARENT ELEMENT.	16
2.	(a) (b)	SMALL-SCALE YIELDING NEAR A SEMI-INFINITE CRACK: PERFECTLY PLASTIC, PLANE STRAIN, SLIP-LINE FIELD AT THE CRACK TIP.	17
3.	FIN	TE ELEMENT IDEALIZATION OF THE CRACK TIP NEAR FIELD.	18
4.	(a)	SHEARING STRESS DISTRIBUTION FOR THE SINGULAR ELEMENTS COMPARED TO REF. (11) AND A SLIP-LINE SOLUTION (PRELIMINARY RESULTS).	19
4.	(b)	TANGENTIAL STRESS DISTRIBUTION FOR THE SINGULAR ELEMENTS COMPARED TO REF. (11) AND A SLIP-LINE SOLUTION (PRELIMINARY RESULTS).	20
4.	(c)	EFFECTIVE STRESS DISTRIBUTION FOR THE SINGULAR ELEMENTS COMPARED TO REF. (11) AND A SLIP-LINE SOLUTION (PRELIMINARY RESULTS).	21

21

Page

i

SYMBOLS

(x,y),(r,θ)	cartesian and cylindrical coordinates
(ξ , η)	curvilinear coordinates
x_i, y_i, ξ_i, n_i	grid point coordinates
Ni	shape function at grid point i
u , v	cartesian displacements
ε _{ij}	strain tensor
σ _{ij}	stress tensor
S _{ij} , e _{ij}	deviatoric stress and strain tensors
w	strain energy density
J	path independent integral
{J}	Jacobian matrix
n	strain hardening exponent

ii

THIS PAGE IS BEST QUALITY PRACTICABLE

INTRODUCTION

In recent years there has been a wide acceptance of linear iracture mechanics resulting in the development of new structural alloys having high fracture toughness and maintaining yield strength close to previous levels.

However, plasticity plays a major role in the application of these materials either in thin cross sections or under mixed mode conditions. Also in some cases, to meet the ASTM requirement for plane strain fracture toughness testing, the specimens required are too large for economical testing. To alleviate some of these problems a number of methods have been proposed, e.g., Irwin's equivalent 'Elastic Crack Length'¹, Well's Crack Opening Displacement², Rice's Path Independent J-Integral² and Non-linear Energy Methods proposed by Liebowitz and his coworkers⁴, the last two being quite promising. Hence it is necessary to model the plastic condition near the crack tip as accurately as possible.

⁴Eftis, J., Jones, D. L., and Liebowitz, H., On Fracture Toughness in the Nonlinear Range, Engr. Fract. Mech., Vol. 7, 1975, p. 491.

¹Irwin, G. R., Fracture Testing of High-Strength Sheet Materials Under Conditions Appropriate for Stress Analysis, Naval Research Laboratory, Rpt. 5486, July 1960.

²Wells, A. A., Unstable Crack Propagation in Metals, Proc. Conf. Crack Propagation, Cranfield, England, 1960, p. 120.

³Rice, J. R., A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks, Trans. Am. Soc. Mech. Engrs., Journal of Applied Mechanics, 1968, p. 379.

In this paper, we implement higher order isoparametric elements (quadratic and cubic) in NASTRAN's piecewise linear (plasticity) module. By judicious choice of intermediate grid points, and using proper constraints, we develop elastic and elastic-plastic singular elements.

Specifically, the elastic singular cubic element embodying the square root $(1/\sqrt{r})$ singularity is constructed by placing the midside nodes, adjacent to the crack tip, at 1/9th and 4/9th locations. The plastic singular element is constructed for the Ramberg-Osgood type of material with zero hardening exponent (ideally plastic material) using the 'Sliding Node Concept' of Barsoum.⁵

'Sliding Nodes' are simply achieved by collapsing one side of an element and surrounding the crack tip with these elements, so that the crack tip has multiple independent nodes at one physical location which slide with respect to each other during deformation, due to loading. The proper order for plastic singularity (i.e., 1/r) is achieved by locating the adjacent midside nodes at 1/9th and 4/9th of the length of the side of the element, as done for the elastic element.

After a brief review of the theory proving the existence of crack tip singularities, we discuss the implementation of these elements in NASTRAN as user dummy elements. The results of the analysis are compared to a Prandtl slip-line field solution.

2

⁵Barsoum, R. S., Triangular Quarter-Point Elements as Elastic and Perfectly-Plastic Crack Tip Element, Int. J. Num. Meth. Engrg., Vol. 11, 1977, p. 85.

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURMISHED TO DDC

Many general purpose finite element codes as well as advanced versions of NASTRAN may have these elements. Hence, the method may be quite accessible to many users.

CRACK TIP SINCULARITIES

Consider the path integral J developed by Rice^{3,6},

$$J = \int_{\Gamma} (Wdy - \bar{\tau} \cdot \frac{\partial \bar{u}}{\partial x} ds)$$
(1)

where W is the strain energy density, τ and u traction and displacement vectors on the path Γ . Using a circular path of radius r surrounding a crack tip (1) reduces to,

$$J = r \int_{-\pi}^{\pi} \{W \cos \Theta - \bar{\tau} \cdot \frac{\partial \bar{u}}{\partial x}\} d\Theta$$
 (2)

The terms in $\{\ldots\}$ in above are of the form:

(stress) (strain),

hence for the nonvanishing contribution to J (which is identical to energy release rate for the elastic case), we have

$$\sigma_{ij} \varepsilon_{ij} = 0(\frac{1}{r}) \text{ as } r \neq 0 .$$
 (3)

Equation (3) is quite familiar for the elastic case for which stress and strain each have a singularity of the order of one half at the crack tip.

³Rice, J. R., A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks, Trans. Am. Soc. Mech. Engrs., Journal of Applied Mechanics, 1968, p. 379.

⁶Rice, J. R. and Rosengren, G. F., Plane Strain Deformation Near a Crack Tip in a Fower-Law Hardening Material, J. Mech. Phys. Solids, Vol. 16, p. 1.

Now consider the Ramberg-Osgood type of material given by

$$\tau = G\gamma = \frac{\tau_o}{\gamma_o}\gamma$$
, for $\gamma \leq \gamma_o$ (4)

$$T = T_0 \left(\frac{\gamma}{\gamma_0}\right)^n$$
, for $\gamma \ge \gamma_0$ (5)

where $\tau = \sqrt{1/2S_{ij}S_{ij}}$, $\gamma = \sqrt{2e_{ij}e_{ij}}$, and τ_0 , γ_0 are yield stress and strain in shear and n is the hardening exponent. From (4), (5) and (3), outside the elastic range, we have

$$\sigma_{ij} = 0(r) - \frac{1}{1+n}$$

$$\varepsilon_{ij} = 0(r)$$
(6)

From (6) we have the familiar elastic case for n = 1. However when n = 0, which is the case of ideally plastic material, we have from (6)

$$\sigma_{ij} = O(r^0) \tag{7}$$

 $\varepsilon_{ij} = 0(r^{-1})$

indicating a singularity of order one for the strains.

The existence of such singularities for quadratic elements have been given in ref. 5,7 . In the next section we briefly outline the case of the cubic elements.

⁵Barsoum, R. S., Triangular Quarter-Point Elements as Elastic and Perfectly-Plastic Crack Tip Element, Int. J. Num. Meth. Engrg., Vol. 11, 1977, p. 85.

⁷Hussain, M. A., Lorensen, W. E., and Pflegl, G., The Quarter-Point Quadratic Isoparametric Element as a Singular Element for Crack Problems, NASTRAN Users' Experiences, NASA TM-X-3428, Oct. 1976, p. 419.

SINGULARITIES OF CUBIC ELEMENTS

Following the notation of ref. 8, the geometry of a 12-point cubic element is mapped into a normalized square in (ξ,η) plane $(-1 \le \xi \le 1, -1 \le \eta \le 1)$ through the transformation

$$x = \sum_{i=1}^{12} N_{i}(\xi, \eta) x_{i} ,$$

$$y = \sum_{i=1}^{12} N_{i}(\xi, \eta) y_{i} ,$$
(8)

where the shape function is given by

$$N_{i} = \frac{1}{256} (1 + \xi\xi_{i}) (1 + \eta\eta_{i}) [-10 + 9(\xi^{2} + \eta^{2})] [-10 + 9(\xi^{2}_{i} + \eta^{2}_{i})] + \frac{81}{256} (1 + \xi\xi_{i}) (1 + 9\eta\eta_{i}) (1 - \eta^{2}) (1 - \eta^{2}_{i}) + \frac{81}{256} (1 + \eta\eta_{i}) (1 + 9\xi\xi_{i}) (1 - \xi^{2}) (1 - \xi^{2}_{i}) , \qquad (9)$$

(x_i, y_i and ξ_i , n_i are the grid points.)

Collapsing the quadrilateral element as shown in Figure 1 and placing the midside nodes at 1/9th and 4/9th location, we have

 $x_1 = x_{10} = x_{11} = x_{12} = 0$, $x_2 = x_9 = h/9$, $x_3 = x_8 = 4h/9$,

 $x_4 = x_5 = x_6 = x_7 = h$,

 $y_1 = y_{10} = y_{11} = y_{12} = 0, \quad y_2 = -y_9 = -\ell/9, \quad y_3 = -y_8 = -4\ell/9$ $y_4 = -y_7 = -\ell, \quad y_5 = -y_6 = -\ell/3$ (10)

⁸Zienkiewicz, C.O., The Finite Element Method in Engineering Science, McGraw Hill, London, 1971.

Substituting (10) into equation (8) we have

$$x = \frac{h}{4} (1 + \xi)^{2}$$

$$y = \frac{k\eta}{4} (1 + \xi)^{2}$$
(11)

Any point at a radial distance, $r = (x^2 + y^2)^{1/2}$, from the crack tip is given by

$$\mathbf{r} = \frac{\ell}{4} \left(1 + \xi \right)^2 \left[\left(\frac{h}{\ell} \right)^2 + \eta^2 \right]^{1/2}$$

or

$$(1 + \xi) = \sqrt{r} \frac{1}{\left\{\frac{k}{4}\left[\left(\frac{h}{k}\right)^2 + \eta^2\right]^{1/2}\right\}^{1/2}}$$
(12)

The Jacobian [J] is given by

$$[\mathbf{J}] = \begin{bmatrix} \frac{\partial \mathbf{x}}{\partial \xi} & \frac{\partial \mathbf{y}}{\partial \xi} \\ \frac{\partial \mathbf{x}}{\partial \eta} & \frac{\partial \mathbf{y}}{\partial \eta} \end{bmatrix} = \begin{bmatrix} \frac{h}{2}(1+\xi) & \frac{\ell}{2}\eta(1+\xi) \\ 0 & \frac{\ell}{4}(1+\xi)^2 \end{bmatrix}$$
(13)

and the determinant is

det
$$|J| = \frac{h\ell}{8} (1 + \xi)^3$$
 (14)

For the inverse functions, we have

$$\begin{bmatrix} \mathbf{J} \end{bmatrix}^{-1} = \begin{bmatrix} \frac{\partial \xi}{\partial \mathbf{x}} & \frac{\partial \mathbf{n}}{\partial \mathbf{x}} \\ \frac{\partial \xi}{\partial \mathbf{y}} & \frac{\partial \mathbf{n}}{\partial \mathbf{y}} \end{bmatrix} = \begin{bmatrix} \frac{2}{\mathbf{h}(1+\xi)} & \frac{-4\mathbf{n}}{\mathbf{h}(1+\xi)^2} \\ 0 & \frac{4}{\mathbf{l}(1+\xi)^2} \end{bmatrix}$$
(15)

6

The displacement components of the point (ξ,η) for an isoparametric transformation are,

$$u = \sum_{i=1}^{12} N_{i}(\xi,\eta)u_{i}$$

$$v = \sum_{i=1}^{12} N_{i}(\xi,\eta)v_{i}$$
(16)

The derivatives of u, v with respect to $\xi,\,\eta$ are

$$\frac{\partial u}{\partial \xi} = \sum_{i=1}^{12} \frac{\partial N_{i}}{\partial \xi} u_{i} , \quad \frac{\partial u}{\partial \eta} = \sum_{i=1}^{12} \frac{\partial N_{i}}{\partial \eta} u_{i}$$

$$\frac{\partial v}{\partial \xi} = \sum_{i=1}^{12} \frac{\partial N_{i}}{\partial \xi} v_{i} , \quad \frac{\partial v}{\partial \eta} = \sum_{i=1}^{12} \frac{\partial N_{i}}{\partial \eta} v_{i}$$
(17)

where

$$\begin{aligned} \frac{\partial N_{i}}{\partial \xi} &= \frac{1}{256} \left(1 + \eta \eta_{i}\right) \left[-10 + 9(\xi_{i}^{2} + \eta_{i}^{2})\right] \left(-10\xi_{i} + 9\xi_{i}\eta^{2} + 18\xi + 27\xi_{i}\xi^{2}\right) \\ &+ \frac{81}{256} \left(1 - \eta_{i}^{2}\right)\xi_{i}\left(1 + 9\eta \eta_{i}\right)\left(1 - \eta^{2}\right) \\ &+ \frac{81}{256} \left(1 + \eta \eta_{i}\right)\left(1 - \xi_{i}^{2}\right)\left(9\xi_{i} - 2\xi - 27\xi_{i}\xi^{2}\right) \end{aligned} \tag{18}$$

$$\frac{\partial N_{i}}{\partial \eta} &= \frac{1}{256} \left(1 + \xi\xi_{i}\right) \left[-10 + 9(\xi_{i}^{2} + \eta_{i}^{2})\right] \left(-10\eta_{i} + 9\eta_{i}\xi^{2} + 18\eta + 27\eta_{i}\eta^{2}\right) \\ &+ \frac{81}{256} \left(1 + \xi\xi_{i}\right)\left(1 - \eta_{i}^{2}\right)\left(9\eta_{i} - 2\eta - 27\eta_{i}\eta^{2}\right) \\ &+ \frac{81}{256} \left(1 - \xi_{i}^{2}\right)\eta_{i}\left(1 + 9\xi\xi_{i}\right)\left(1 - \xi^{2}\right) \end{aligned}$$

Substituting for nodal values and collecting terms, using MACSYMA,⁹ equations (17) become

⁹MACSYMA: Math Lab Group, MIT Laboratory for Computer Science (Symbolic Manipulation System), November 1975.

$$\frac{\partial u}{\partial \xi} = a_0 + a_1(1+\xi) + a_2(1+\xi)^2$$

$$\frac{\partial u}{\partial \eta} = b_0 + b_1(1+\xi) + b_2(1+\xi)^2 + b_3(1+\xi)^3$$
(19)

where

$$a_{0} = \frac{1}{32} \left[9 \left(-3u_{12} + 3u_{11} - u_{10} + u_{7} - 3u_{6} + 3u_{5} - u_{4} + u_{1} \right) n^{3} \right. \\ \left. + 9 \left(u_{12} + u_{11} - u_{10} + u_{7} - u_{6} - u_{5} + u_{4} - u_{1} \right) n^{2} \right. \\ \left. + \left(27u_{12} - 27u_{11} - 35u_{10} + 9u_{9} - 9u_{8} - u_{7} \right. \\ \left. + 27u_{6} - 27u_{5} + u_{4} + 9u_{3} - 9u_{2} + 35u_{1} \right) n \right. \\ \left. + \left(-9u_{12} - 9u_{11} - 35u_{10} + 9u_{9} - 9u_{8} - u_{7} + 9u_{6} \right. \\ \left. + 9u_{5} - u_{4} - 9u_{3} + 9u_{2} - 35u_{1} \right) \right]$$
(20)

$$a_{1} = \frac{9}{8} \left[(2u_{10} - 5u_{9} + 4u_{8} - u_{7})(1 + \eta) - (u_{4} - 4u_{3} + 5u_{2} - 2u_{1})(1 - \eta) \right]$$

$$a_{2} = -\frac{27}{32} [(u_{10} - 3u_{9} + 3u_{8} - u_{7})(1 + \eta) - (u_{4} - 3u_{3} + 3u_{2} - u_{1})(1 - \eta)]$$

$$b_{0} = \frac{1}{16} [27(3u_{12} - 3u_{11} + u_{10} - u_{1})\eta^{2} - 18(u_{12} + u_{11} - u_{10} - u_{1})\eta + u_{1} - 27u_{12} + 27u_{11} - u_{10}]$$
(21)

$$b_{1} = -\frac{1}{32} \left[27(3u_{12} - 3u_{11} + u_{10} - u_{7} + 3u_{6} - 3u_{5} + u_{4} - u_{1}) \eta^{3} - 18(u_{12} + u_{11} - u_{10} + u_{7} - u_{6} - u_{5} + u_{4} - u_{1}) \eta^{2} + (-27u_{12} + 27u_{11} + 35u_{10} - 72u_{9} + 36u_{8} + u_{7} - 27u_{6} + 27u_{5} - u_{4} - 36u_{3} + 72u_{2} - 35u_{1}) \right]$$
(22)

$$b_{2} = \frac{9}{16} (2u_{10} - 5u_{9} + 4u_{8} - u_{7} + u_{4} - 4u_{3} + 5u_{2} - 2u_{1})$$

$$b_{3} = -\frac{9}{32} (u_{10} - 3u_{9} + 3u_{8} - u_{7} + u_{4} - 3u_{3} + 3u_{2} - u_{1})$$

The derivatives $\partial v/\partial \xi$, $\partial v/\partial \eta$ are the same except for replacing u_i by v_i . The derivatives of u with respect to x,y are obtained from

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial x}$$

$$= -\frac{4\eta b_0}{h(1+\xi)^2} + \frac{2a_0 - 4\eta b_1}{h(1+\xi)} + \frac{1}{h} (2a_1 - 4\eta b_2) + \frac{1}{h} (1+\xi) (2a_2 - 4\eta b_3)$$
(23)
$$\frac{\partial u}{\partial y} = \frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial y} + \frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial y}$$

$$= \frac{4b_0}{\ell(1+\xi)^2} + \frac{4b_1}{\ell(1+\xi)} + \frac{4b_2}{\ell} + \frac{4b_3}{\ell} (1+\xi)$$
(24)

Similar expressions are obtained for $\partial v/\partial x$ and $\partial v/\partial y$ with u replaced by v in a's and b's.

The stresses and strains are singular when the Jacobian determinant vanishes at $\xi = -1$. From (23), (24) and (12), the singularity is 0(1/r) if $b_0 \neq 0$ and is $0(1/\sqrt{r})$ if $b_0 = 0$. A careful study of (21) indicates that b_0 depends on the displacements of nodal points at the crack tip. If the nodal points at the crack tip are tied together, i.e.,

$$u_1 = u_{10} = u_{11} = u_{12}$$
 and $v_1 = v_{10} = v_{11} = v_{12}$ (25)

then $b_0 = 0$ and the strain field has the inverse square root of r singularity, the correct singularity of linear fracture mechanics. On the other hand if the nodal points at the crack tip are allowed to move independently to one another, the strain field has the (1/r) singularity, a characteristic of perfect plasticity.

NASTRAN IMPLEMENTATION

The NASTRAN implementation for the quadratic element follows the steps outlined in section 6.8.3.12 of reference 12. The following routines require modification: PLA1, which creates the ECPT's and EST's for the linear and non-linear elements; PLA31 and PLA32, which recover stresses for the non-linear elements; and PLAYBD, PLA41 and PLA42 which control generation of the updated stiffness matrix. The following new routines are required: PSDUM1, a driver for stress data recovery in PLA3; PSDM11 and PSDM12, phase I and II stress recovery routines; PKDUM1, a driver for stiffness generation for the non-linear elements; PKDM11 and PKDM12, stress recovery routines which generate stresses for the computation of the non-linear material matrix; and PKDMIS, the stiffness matrix generation routine for non-linear elements. The two driver routines, PSDUM1 and PKDUM1 can be modelled after the corresponding routines for the QUAD1 element. The remaining routines are modifications of the stiffness and stress recovery routines' required for rigid format 1, statics. The major modifications to switch from statics to piecewise linear include changing the labelled common areas, building the non-linear material matrix¹⁰ and calculating incremental stress rather than total stresses.

[']Hussain, M. A., Lorensen, W. E., and Pflegl, G., The Quarter-Point Quadratic Isoparametric Element as a Singular Element for Crack Problems, NASTRAN Users' Experiences, NASA TM-X-3428, Oct. 1976, p. 419.

¹²The NASTRAN Programmer's Manual, NASA SP-223(01), Sep. 1972.

¹⁰The NASTRAN Theoretical Manual, Editor, MacNeal, R. H., NASA SP-221, Sep. 1970, p. 104.

NUMERICAL EXAMPLE

Consider the problem of small scale yielding. The problem is governed by the elastic field at points far away from the crack tip and asymptotically has the elastic singular field. Near the crack tip we have the plastic zone. This is schematically represented in Figure 2. The plane strain slip line field is also shown.

The problem is modelled in a fashion similar to Barsoum's⁵. The geometry is shown in Figure 3. The crack tip elements, 1-12, are the singular elements which can either be quadratic or cubic elements. For the symmetric case the corner nodes of the elements are placed on concentric semi-circles, $0 \le \theta \le \pi$, at $\pi/12$ intervals, of radii, r = 0, .5, 1.0, 1.625, 1.5^2 , 2^2 , 2.5^2 , 3^2 , 4^2 , 5.5^2 .

The method of solution, for the plastic problem, is based on Swedlow's piece-wise linear analysis and is well documented in the NASTRAN theoretical manual. 10

The procedure for the present problem is accomplished via two rigid formats. The static rigid format is first used to obtain the stress distribution and the equivalent stresses at the integration point ($\xi = \eta = 0$) for the elastic increment. This solution is performed with all the collapsed nodes at the crack tip having the same displacement

⁵Barsoum, R. S., Triangular Quarter-Point Elements as Elastic and Perfectly-Plastic Crack Tip Element, Int. J. Num. Meth. Engrg., Vol. 11, 1977, p. 85.

¹⁰The NASTRAN Theoretical Manual, Editor, MacNeal, R. H., NASA SP-221, Sept. 1970, p. 104.

vector (see equation 25). This is accomplished with multipoint constraints. The outermost nodes are subjected to the displacements governed by Westergaard's solution, with K = 1,

$$\begin{bmatrix} u \\ v \end{bmatrix} = \frac{K}{2G} \left(\frac{r}{2\pi}\right)^{1/2} \left(\frac{3-v}{1+v} - \cos \Theta\right) \begin{bmatrix} \cos \Theta/2 \\ \sin \Theta/2 \end{bmatrix}$$
(26)

where $E = 30 \times 10^6$ psi and v = .3. The value of $2K_0$ is established from the elastic solution based on the yield stress (σ_0) of 20×10^3 psi for the highest stressed element. For the plastic analysis the stress-strain curve is provided with the above constants and yield strain at .2% and hardening exponent $n \approx .3$ (this should be close to zero for perfect plasticity). The nodes at the crack tip are then released for sliding in order to obtain 1/r singularity at the crack tip. The load is incremented by $K_0/4$ till the plastic zone has reached the first layer of elements.

Preliminary results of the problem are indicated in Figures 4a-c and compared with those of ref. 11. From the static solution it was found that the inception of yielding occurs at $\Theta = 68^{\circ}$ compared to the theoretical value of $\Theta = 70^{\circ}$.

In Figures 4a-c we have also plotted the slip line (plane strain) solution for comparison. The plastic zone also corresponds well with ref. 11.

Hutchinson, J. W., Singular Behavior at the End of a Tensile Crack in a Hardening Material, J. Mech. Phys. Solids, 1968, Vol. 16, p. 13.

CONCLUSION

Higher order isoparametric elements can be effectively used for modelling singular elastic as well as plastic problems that arise in the field of fracture mechanics. The procedure in obtaining these do not require any special crack tip elements but are simply constructed by adjusting the adjacent nodes at proper locations and proper constraints. The locations of these nodes should be adhered to as closely as possible for stable answers. Since many general purpose finite elements may have these elements in their library the method, for crack problems, may be accessible to many users.

REFERENCES

- Irwin, G. R., Fracture Testing of High-Strength Sheet Materials Under Conditions Appropriate for Stress Analysis, Naval Research Laboratory Rpt. 5486, July 1960.
- Wells, A. A., Unstable Crack Propagation in Metals, Proc. Conf. Crack Propagation, Cranfield, England, 1960, p. 120.
- Rice, J. R., A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks, Trans. Am. Soc. Mech. Engrs., Journal of Applied Mechanics, 1968, p. 379.
- 4. Eftis, J., Jones, D. L., and Liebowitz, H., On Fracture Toughness in the Nonlinear Range, Engrg. Fract. Mech., Vol. 7, 1975, p. 491.
- Barsoum, R. S., Triangular Quarter-Point Elements as Elastic and Perfectly-Plastic Crack Tip Element, Int. J. Num. Meth. Engrg., Vol. 11, 1977, p. 85.
- Rice, J. R. and Rosengren, G. F., Plane Strain Deformation Near a Crack Tip in a Power-Law Hardening Material, J. Mech. Phys. Solids, Vol. 16, p. 1.
- Hussain, M. A., Lorensen, W. E., and Pflegl, G., The Quarter-Point Quadratic Isoparametric Element as a Singular Element for Crack Problems, NASTRAN Users' Experiences, NASA TM-X-3428, Oct. 1976, p. 419.
- Zienkiewicz, C. O., The Finite Element Method in Engineering Science, McGraw Hill, London, 1971.

14

- 9. MACSYMA: Math Lab Group, MIT Laboratory for Computer Science (Symbolic Manipulation System), Nov 1975.
- The NASTRAN Theoretical Manual, Editor, MacNeal, R. H., NASA SP-221, Sept. 1970, p. 104.
- Hutchinson, J. W., Singular Behavior at the End of a Tensile Crack in a Hardening Material, J. Mech. Phys. Solids, 1968, Vol. 16, p. 13.
- 12. The NASTRAN Programmer's Manual, NASA SP-223(01), Sept. 1972.

FIGURE 1. (a) 12-NODE CUBIC ELEMENT COLLAPSED TO FORM A SINGULAR ELEMENT; (b) THE PARENT ELEMENT.

16

WATERVLIET ARSENAL INTERNAL DISTRIBUTION LIST

NO. OF

	COPIES
COMMANDER	1
DIRECTOR, BENET WEAPONS LABORATORY	1
CHIEF, DEVELOPMENT ENGINEERING BRANCH ATTN: DRDAR-LCB-DA -DM -DP -DR -DS -DC	1 1 1 1 1 1 1
CHIEF, ENGINEERING SUPPORT BRANCH	1
CHIEF, RESEARCH BRANCH ATTN: DRDAR-LCB-RA -RC -RM -RP	2 1 1 1 1
TECHNICAL LIBRARY	5
TECHNICAL PUBLICATIONS & EDITING UNIT	2
DIRECTOR, OPERATIONS DIRECTORATE	1
DIRECTOR, PROCUREMENT DIRECTORATE	1
DIRECTOR, PRODUCT ASSURANCE DIRECTORATE	1

NOTE: PLEASE NOTIFY DIRECTOR, BENET WEAPONS LABORATORY, ATTN: DRDAR-LCB-TL, OF ANY REQUIRED CHANGES.

EXTERNAL DISTRIBUTION LIST

:

.

	NO. OF COPIES		NO. OF COPIES
ASST SEC OF THE ARMY RESEARCH & DEVELOPMENT ATTN: DEP FOR SCI & TECH THE PENTAGON WASHINGTON, D.C. 20315	1	COMMANDER US ARMY TANK-AUTMV R&D COMD ATTN: TECH LIB - DRDTA-UL MAT LAB - DRDTA-RK WARREN, MICHIGAN 48090	1 1
COMMANDER US ARMY MAT DEV & READ. COMD ATTN: DRCDE 5001 EISENHOWER AVE ALEXANDRIA, VA 22333	1	COMMANDER US MILITARY ACADEMY ATTN: CHMN, MECH ENGR DEPT WEST POINT, NY 10996	1
COMMANDER US ARMY ARRADCOM ATTN: DRDAR-TSS DRDAR-LCA (PLASTICS TECH EVAL CEN)	2 1	REDSTONE ARSENAL ATTN: DRSMI-RB DRSMI-RRS DRSMI-RSM ALABAMA 35809	2 1 1
COMMANDER US ARMY ARRCOM ATTN: DRSAR-LEP-L ROCK ISLAND ARSENAL	1	COMMANDER ROCK ISLAND ARSENAL ATTN: SARRI-ENM (MAT SCI DIV) ROCK ISLAND, IL 61202) 1
ROCK ISLAND, IL 61299 DIRECTOR US Army Ballistic Research Laborat ATTN: DRDAR-TSB-S (STINFO) ABERDEEN PROVING GROUND, MD 21005	to ry 1	COMMANDER HQ, US ARMY AVN SCH ATTN: OFC OF THE LIBRARIAN FT RUCKER, ALABAMA 36362 COMMANDER	1
COMMANDER US ARMY ELECTRONICS COMD ATTN: TECH LIB FT MONMOUTH, NJ 07703	1	US ARMY FGN SCIENCE & TECH CEN ATTN: DRXST-SD 220 7TH STREET, N.E. CHARLOTTESVILLE, VA 22901	N 1
COMMANDER US ARMY MOBILITY EQUIP R&D COMD ATTN: TECH LIB FT BELVOIR, VA 22060	1	US ARMY MATERIALS & MECHANICS RESEARCH CENTER ATTN:, TECH LIB - DRXMR-PL WATERTOWN, MASS 02172	2

NOTE: PLEASE NOTIFY COMMANDER, ARRADCOM, ATTN: BENET WEAPONS LABORATORY, DRDAR-LCB-TL, WATERVLIET ARSENAL, WATERVLIET, N.Y. 12189, OF ANY REQUIRED CHANGES.

EXTERNAL DISTRIBUTION LIST (CONT)

	COPIES		COPIES
COMMANDER US ARMY RESEARCH OFFICE P.O. BOX 12211 RESEARCH TRIANGLE PARK, NC 27709	1	COMMANDER DEFENSE DOCU CEN ATTN: DDC-TCA CAMERON STATION ALEXANDRIA, VA 22314	12
COMMANDER US ARMY HARRY DIAMOND LAB ATTN: TECH LIB 2800 POWDER MILL ROAD ADELPHIA, MD 20783	1	METALS & CERAMICS INFO CEN BATTELLE COLUMBUS LAB 505 KING AVE COLUMBUS, OHIO 43201	1
DIRECTOR US ARMY INDUSTRIAL BASE ENG ACT ATTN: DRXPE-MT ROCK ISLAND, IL 61201	1	MPDC 13919 W. BAY SHORE DR. TRAVERSE CITY, MI 49684	1
CHIEF, MATERIALS BRANCH US ARMY R&S GROUP, EUR BOX 65, FPO N.Y. 09510	1		
COMMANDER NAVAL SURFACE WEAPONS CEN ATTN: CHIEF, MAT SCIENCE DIV DAHLGREN, VA 22448	1		
DIRECTOR US NAVAL RESEARCH LAB ATTN: DIR, MECH DIV CODE 26-27 (DOC LIB) WASHINGTON, D.C. 20375	1 1		
NASA SCIENTIFIC & TECH INFO FAC P.O. BOX 8757, ATTN: ACQ BR BALTIMORE/WASHINGTON INTL AIRPORT MARYLAND 21240	1		

NOTE: PLEASE NOTIFY COMMANDER, ARRADCOM, ATTN: BENET WEAPONS LABORATORY, DRDAR-LCB-TL; WATERVLIET ARSENAL, WATERVLIET, N.Y. 12189, OF ANY REQUIRED CHANGES.