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SYMBOLS
(x,y),(r,8) cartesian and cylindrical coordinates
i (&,n) curvilinear coordinates
L P Ei,ni grid point coordinates
Ny shape function at grid point i
u,v cartesian displacements
' Lij strain tensor
14 stress tensor
Sij’ e-lj deviatoric stress and strain tensors
W strain energy density
J path independent integral
;
{J] Jacobian matrix
n strain hardening exponent
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INTROLUCT LUN

In recent years there has been a wide acceptance of linear
tracture nechdarics resulting in the developrnent ¢f new structural
alloys having Ligh tracture toughness and paimtaining yield strength
close to previuvus levels,

Hewever, plusticity plavs a major role in the application of
these materials cither in thin cress sections or under mixed mode
conditiors. Also in sone cases, te meet the ASTM reyuirement for

plane strain fracture toughness testing, the specirmens required are

teoo large for ccoronical testing. ‘e alleviate some of these problems

a number of retlads have bheen proposed, e.g., ITwin's equivalent 'Elastic
Crack Lvnsrl'x, Well's Crack Opening hisy]ucemcnt:, Rice's Path
Independent J-irtegral’ &rd Non-linear Energy Methods proposed by
liehowitz and his \wh“llvrbd, the last twe heing guite promising.

frence 1t is recessary to modcl the plastic condition near the crack tip
ax accuratel)

russible.
i

- \
Irwin, G. R., Fracture Testing of high-Strengt!l: Sheet Materials Under

Conditions Apjropriate for Stress ‘nalysis, Naval Research Laboratory, ;
Rpt. 5486, July 1060,

1

“Wells, A. A., lnctable Crack Propegaticn ir Metal ., Proc. Conf. Crack i

: ) 2
Propagatien, (rartield, England, 1960, p. 120, ¥
3 o ' : : : 4
“Rice, J. F., A Poth Indcpendent Integral and the .pproximate Analysis 1
of Strair Corcontraticon by Notches and Crucks, Trars. Am, Soc. Mech. o
Ingrs., Jouwrnal of Applied Mechanics, 1962, p. 379 3

Jt:t:~, Joy Jores, I, L., and Liehowitz, H., On Fracture Toughness in
the Nonlinear kange, Pngr. Fract., Mech., Vol. 7, 197§, p. 491.
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In this paper, we implement higher order isoparametric elements
(quadratic and cubic) in NASTRAN's piecewise linear (plasticity)
module. By judicious choice of intermediate grid points, and using
proper constraints, we develop elastic and elastic-plastic singular
elements.

Specifically, the elastic singular cubic element embodying the
square root (1/«?3 singularity is constructed by placing the midside
nodes, adjacent to the crack tip, at 1/9th and 4/9th locations. The
plastic singular element is constructed for the Ramberg-Osgood type of
material with zero hardening exponent (ideally plastic material) using
the 'Sliding Node Concept' of Barsoum.5

'Sliding Nodes' are simply achieved by collapsing one side of an
element and surrounding the crack tip with these elements, so that the
crack tip has multiple independent nodes at one physical location
which slide with respecf to each other during deformation, due to
loading. The proper order for plastic singularity (i.e., 1/r) is
achieved by locating the adjacent midside nodes at 1/9th and 4/9th
of the length of the side of the element, as done for the elastic
element.

After a brief review of the theory proving the existence of crack
tip singularities, we discuss the implementation of these elements in
NASTRAN as user dummy elements. The results of the analysis are

compared to a Prandtl slip-line field solution.

SBarsoum, R. S., Triangular Quarter-Point Elements as Elastic and
Perfectly-Plastic Crack Tip Element, Int. J. Num. Meth. Engrg., Vol. 11,
1877, p. 85.
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Many general purpose finite element codes as well as advanced z
versions of NASTRAN may have thesc elements. Hence, the method may be
quite accessible te many users.

CRACK TIP SINCULARITIES i

3

z
Consider the path integral J developed by Rice’ 6,

-

4 et
J-Ir (#dy - T - == ds) ¢h)

where W is the strain energy density, T and u traction and displacement

vectors on the path I'. Using a circular path of radius r surrounding

a crack tip (1) reduces to,
= B -
Jer [ {WcosO - 1 - g;&d@ 2)
=7
The terms in {...} in above are of the form:
(stress) (strain),

hence for the nonvanishing contributicn to J (which is identical to

energy release rate for the elastic case), we have

1
= 0 3
Oij Eij O(r)as r >0 . (3)

Fquation (3) is quite familiar for the elastic case for which stress and

strain each have a singularity of the order of one half at the crack tip.

SRice, J. R., A Path Independent Integral and the Approximate Analysis
- of Strain Ccrncentration by Notches and Cracks, Trans. Am. Soc. Mech.

fngrs., Journal of Applied Mechanics, 1968, p. 379.

®Rice, J. R. and Rosengren, G. F., Plane Strain Deformation Near a

Crack Tip in a Fcwer-law Mardening Material, J. Mech. Phys. folids,

\Vol, 16, P. 1.
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Now consider the Ramberg-Osgood type of material given by

T

T=0r=—vy, foryc«< 4
T Y ¥ 2 i (4)
- n
TATER L ey 2, (5)
)
where T = Vl/ZSijSij s X = /2eijeij » and T, Y, are yield stress and

strain in shear and n is the hardening exponent. From (4), (5) and

(3), outside the elastic range, we have
-n
n+l

0fr - )

Q
n

(6)

= e
J+n
O(r )

™
I

From (6) we have the familiar elastic case for n = 1. However when
n = 0, which is the case of ideally plastic material, we have from (6)

0

gij = 0(r")
(7)

-1
Elj = O(r )

indicating a singularity of order one for the strains.
The existence of such singularities for quadratic elements have

been given in ref. 5,7 . In the next section we briefly outline the

case of the cubic elements.

sBarsoum, R. S., Triangular Quarter-Point Elements as Flastic and
Perfectly-Plastic Crack Tip Element, Int. J. Num. Meth. Engrg.,

Vol. 11, 1977, p. 85

7Hussain, M. A., Lorensen, W. E., and Pflegl, G., The Quarter-Point
Quadratic Isoparametric Element as a Singular Element for Crack
Problems, NASTRAN Users' Lxperiences, NASA TM-X-3428, Oct. 1976, p. 419.
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SINGULARITIES OF CUBIC ELEMENTS

Following the notation of ref. 8 , the geometry of a 12-point cubic
element is mapped into a normalized square in (§,n) plane (-1 sE=1,

-1 £ n < 1) through the transformation

12
X = 2 Ni(i,n)xi >
i=1

(8)
12
y =1 Ny(E,nmy;
i=1
where the shape function is given by
Nj = 5= (1+ EE)(1 + i) [-10 + 9(E% + n®)][-10 + 9(E2 + nd)]
i~ 256 5 b i i
B e ya s o)A - nda - n?)
256 il il i
+ 2 aemoa « a0 - 29 - g2 ) |
256 i i iy ¥ i '
(xj, yi and &;, n; are the grid points.)
1
Collapsing the quadrilateral element as shown in Figure 1 and
placing the midside nodes at 1/9th and 4/9th location, we have
= = = = (0 = = Q = =
X) X0 = X1 X5 o, X, = X h/9, Xz = Xg 4h/9 ,
I Xy = X & X, = %, 5 h
BTN T T N T T Wy g & e
y4 = -)7 = -Q, )'5 = -y6 = -2/3 (10)

8Zienkiewicz, C.0., The Finite Element Method in Engineering Science,
McGraw Hill, London, 1971.




Substituting (10) into equation (8) we have

X = E.(1 + £)2
4

y=%l(1 + £)? (11)

- : - 2 !
Any point at a radial distance, r = (x* + yz)l/ , from the crack tip

is given by
] -
: - % 1+ 6)2[(%)2 + n2p'?

or

(1+6) =+ 1 (12)

The Jacobian [J] is given by

o - Es =
h L

1 +§& 50 +§)

[J1 = = (13)
%(1 + 8)2

[o%]
'aa: ko
;L

@
3|
e

o

and the determinant is
9,
det |J| = hs- (1+8)° (14)

For the inverse functions, we have

9E an 2 ~4n
-1 X ox B{t #»£F B(L ¢ 1"
[J] = = (15)
3% 3n i)
3y 7y . TT + 87




The displacement components of the point (£,n) for an isoparametric trans-

formation are,

12
u= ] N;j(E,n)uy
i=1
(16)
12
ve ] N(Emyy
i=1
The derivatives of u, v with respect to £, n are
12 12
.Bl = 3N1 us du = z a_Nlu‘
& . i X AL Em e TRE
i=1 i=1
(17)
12 5
w B oy My
€ ;21 9 1 am =7 M
where

5 "3 4 nn,) (-10 + 9(E] + n)1(-108; + 9£.0? + 18E + 27¢.E%)

81 e
& (1 -n)E (L + 9n)H( - n2)
+ ;:2 (1 + nni)(l - gi)(ggi % e 27£i£2) o

aN;

. _l_ o2 2 2 2 2 2
an 756 (L + EE[-10 + 9(&; + nj)](-10n, + 9n €% + 18n + 27n.n%)

. ;Z; (1+€6)(1 - n3)(on, - 20 - 27n.n?)
+ 3L g ehna s 9E)Q - £2)
256 L i

: : . 9
Substituting for nodal values and collecting terms, using MACSYMA,

equations (17) become

SMACSYMA: Math Lab Group, MIT Laboratory for Computer Science (Symbolic
Manipulation System), November 1975.

I




™ s 2 (1 £ E) ¢ o, (L« B

aE B
)
s = Po * bp(l+ &) + by(1+ E)% + byl + )’ (19)
where
e 5 i = - 3
8y = 37 (9030, + 3upy - Uyt uy - S & Sug = u U
o o . 2
G UTE TR TR R T P
+ (27u12 - 27u11 - 35u10 + 9u9 - 9u8 - u,
+ 27u6 - 27u5 + u4 + 9u3 - 9u2 + 35u1)n
+ (—Qu12 - 9u11 - SSu10 + 9ug - 9u8 -u, ¥ 9u6
+ 9u5 =W, = 9u3 + 9u2 - 35u1)] (20)
9
a, = 5 [(2u10 - Su9 + 4u8 - u7)(1 +n) - (u4 - 4u3 + 5u2 - 2u1)(1 -n)]
a, = = 2L [(u,. - Bu. + Bu, - 6 )0l % 0) = (0, ~ Su, + 30, - w)d - §]
2 32 10 9 5 7 4 3 2 1
Lo AB 5 3 z A 2
b0 £ s [27(3u12 3u11 + U, ul)n 18(u12 * Ut Yy ul)n
3 + u1 - 27u12 + 27u11 - ulO] (21)
b, = 4 27 3 3 3 »
1 * - 37 (27(30y, = Suyy # U4 - Uy * Sug = Sug * U - ugn

- 18(ujp + uy) - ujg * U7 - Ug - Ug * ug = upn’

+ (-27u12 + 27u11 + 35u10 - 72u9 + 36u8 + u7

- - - - 2
27u6 + 27u5 u, 36u3 + 72u2 35u1)] (22)




9
2 16

=
n

(2u10 - Su9 + 4u8 - Uy oy, - 4u3 + 5u2 - 2u1)
b, = - ji (u - 3ug + 3ug - us *+ uy - 3uz + 3u, - uy)
3 32 10 9 8 7 4 23 ) 1

The derivatives 3v/9&, dv/on are the same except for replacing u; by vj.

The derivatives of u with respect to x,y are obtained from

3x _ 9E dx ' Bn ax

4nbo 2ap - 4nby ] :

SR + + — (2a, - 4nb - (1 + 2 - anb
el # B¢ Bl e Ey B (2a) - dnby) + i+ (1 + £)(2ay - 4nb3)
(23)

dy ~ 9 dy  an dy

4b 4b 4b 4b-

= 0 1 24. R (1 +¢) (24) p

L(1 + &) i (1 + &) i % %
Cinilar expressicns are obtained for 9v/3x and av/agy with u, replaced
Ly vj in a's and b's.

The stresses and strains are singular when the Jacobian determinant

vanishes at £ = -1. From (23), (24) and (12), the singularity is 0(1/r)

if by # 0 and is 0(1//r) if by = 0. A careful study of (21) indicates that
b, depends on the displacements of nodal points at the crack tip. If
the nodal points at the crack tip are tied together, i.e.,

Up = Uy = U = U, and Vi B s BV e (25)

1 10 11 12

then b, = 0 and the strain field has the inverse square root of r
singularity, the correct singularity of linear fracture mechanics. On
the other hand if the nodal points at the crack tip are allowed to move
? | independently to one another, the strain field has the (1/r) singularity,

a characteristic of perfect plasticity.

9




NASTRAN IMPLEMENTATION

The NASTRAN implementation for the quadratic element follows the
steps outlined in section 6.8.3.12 of reference 12. The following
routines require modification: PLAl, which creates the ECPT's and
EST's for the linear and non-linear elements; PLA31 and PLA32, which
recover stresses for the non-linear elements; and PLAYBD, PLA41 and
PLA42 which control generation of the updated stiffness matrix. The
following new routines are required: PSDUM1, a driver for stress data
recovery in PLA3; PSDM11 and PSDM12, phase I and II stress recovery
routines; PKDUMl, a driver for stiffness generation for the non-linear
elements; PKDM11 and PKDM12, stress recovery routines which generate
stresses for the computation of the non-linear material matrix; and
PKDM1S, the stiffness matrix generation routine for non-linear elements.
The two driver routines, PSDUM1 and PKDUM1 can be modelled after the
corresponding routines for the QUAD1 element. The remaining routines

are modifications of the stiffness and stress recovery routines7

required
for rigid format 1, statics. The major modifications to switch from
statics to piecewise linear include changing the labelled common areas,

o L ; .10 4 .
building the non-linear material matrix  and calculating incremental

stress rather than total stresses.

7ﬁussain, M. A., Lorensen, W. E., and Pflegl, G., The Quarter-Point Quad-
ratic Isoparametric Element as a Singular Element for Crack Problems,
NASTRAN Users' Experiences, NASA TM-X-3428, Oct. 1976, p. 419.

10The NASTRAN Theoretical Manual, Editor, MacNeal, R. H., NASA SP-221,
Sep. 1970, p. 104,

12The NASTRAN Programmer's Manual, NASA SP-223(01), Sep. 1972.




NUMERICAL EXAMPLE

Consider the problem of small scale yielding. The problem is
governed by the elastic field at points far away from the crack tip and
asymptotically has the elastic singular field. Near the crack tip we
have the plastic zone. This is schematically represented in lIigure 2. The
plane strain slip line field is also shown.

The problem is modelled in a fashion similar to Barsoum's>. The
geometry is shown in Figure 3. The crack tip elements, 1-12, are the
singular elements which can either be quadratic or cubic elements. For

the symmetric case the corner nodes of the elements are placed on

R ——

concentric semi-circles, 0 < © < m, at n/12 intervals, of radii, r = 0,
.5, 1.0, 1,625, 1.8%, 2%, 2.5%. 3, ., 5.5,

The method of solution, for the plastic problem, is based on

Swedlow's piece-wise linear analysis and is well documented in the
NASTRAN theoretical manual.10

The procedure for the present problem is accomplished via two
rigid formats. The static rigid format is first used to obtain the

stress distribution and the equivalent stresses at the integration

point (£ = n = 0) for the elastic increment. This solution is performed

with all the collapsed nodes at the crack tip having the same displacement

SBarsoum, R. S., Triangular Quarter-Point Elements as Elastic and

Perfectly-Plastic Crack Tip Element, Int. J. Num. Meth. Engrg.,
Vol. 11, 1977, p. 85.
10

The NASTRAN Theoretical Manual, Editor, MacNeal, R. H., NASA SP-221,
Sept. 1970, p. 104.
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vector (see equation 25). This is accomplished with multipoint
constraints. The outermost nodes are subjected to the displacements
governed by Westergaard's solution, with K = 1,

,] - X (2%)1/2 (-?;—“; - cos 0) C?S e (26)
v sin 0/2

where E = 30 x 10° psi and v = .3. The value of 2K, is established
trom the elastic solution based on the yield stress (00) of 20 x 103
psi for the highest stressed element. For the plastic analysis the

L stress-strain curve is provided with the above constants and yield strain

at .2% and hardening exponent n ~ .3 (this should be close to zero for

perfect plasticity). The nodes at the crack tip are then released for

sliding in order to obtain 1/r singularity at the crack tip. The load
1s incremented by K0/4 till the plastic zone has reached the first layer .
of elements.

Preliminary results of the problem are indicated in Figures 4a-c
and compared with those of ref. 11 . From the static solution it was
found that the inception of yielding occurs at O = 68° compared to the
theoretical value of 0 = 70°,

In Figures 4a-c we have also plotted the slip line (plane strain)

solution for comparison. The plastic zone also corresponds well with

ref. 11.

I
lHutchinson, J. W., Singular Behavior at the End of a Tensile Crack
in a Hardening Material, J. Mech. Phys. Solids, 1968, Vol. 16, p. 13.




CONCLUSION

Higher order isoparametric clements can be effectively used for
modelling singular elastic as well as plastic problems that arise in
the field of fracture mechanics. The procedure in obtaining these do
not require any special crack tip elements but are simply constructed
by adjusting the adjacent nodes at proper locations and proper
constraints. The locations of these nodes should be adhered to as
closely as possible for stable answers. Since many general purpose
finite elements may have these elements in their library the method,

for crack problems, may be accessible to many users.

13
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FIGURE 1. (a) 12-NODE CUBIC ELEMENT COLLAPSED TO FORM A SINGULAR ELEMENT;
(b) THE PARENT ELEMENT.
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(hoRE 20 (a) SMALL-SCALE YIELDING NEAR A SEMI-INFINITE CRACK;
(b) PERFECTLY PLASTIC, PLANE STRAIN, SLIP-LINE FIELD AT THE CRACK TIF.
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12-NODE QUADRILATERAL ,
ELEMENTS .

CRACK TIP COLLAPSED TRIANGULAR ELEMENTS

NODES 1-37 AROUND A CRACK TIP

FIGURE 3. FINITE ELEMENT IDEALIZATION OF THE CRACK TIP NEAR FIELD.
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