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Reference is made to the mid—term report. In addition, the simulation
study I has been completed by a more general model in simulation study II.
A detailed report of 115 pages is added to this su~~ary .

The new analysis of geodeti.c applications of inertial navigation systems started
from the basic equation

“observed acceleration
inertial acceleration minus gravitation”

which can be solved for inertial acceleration if we know gravitation, e.g. from
integrated gravity gradient measurements. The naive approach is as following:
Measure the coordinates of the apparent acceleration vector, e.g. A~, Ay~ Az,
and the coordinates of the tensor of gravity gradients , e.g. G~~ , G~y , Gxz,
Gy~r, Gyz, Gzz. Then compute at point one

+ + Gx~~~ (Xi - lo) + Gxy~, (Yi - Y0) + Gxz0 (Zi - Zo)

At 2(X2 — 2Xi + L~)

Ayj, A~j analogous

where At indicates the time interval of measurements; the right side approxi-
mates inertial acceleration by Stirling’s formula.

What we have done at point one can be done at any point such that

Xj+i — At 2[~~~~~ 
~~~~~~~ 

+ G~~~~~ (X.1 — Xi_i) + G~~~_1 (Y~ — Yj_1)

+ Gxz~_ 1(Zj  — Zi_i )] + quantization errors

Yj~.1, Zj+i analogous

~~~~~~~ .~~~ —~~~~~ - .  —
~~~
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are the unknown coordinates of points with respect to inertial space we
like to know. The set—up i~ in terms of an initial value problem since
we have to know (L,~, Y0, Z~ ) (X1, Y1, Z1), the coordinates of the initial
position vectors, ~~~ ~~~~~~~ Gy0 G~0}, the coordinates of the initial
gravity vector. In addition, the Laplacean

+ Gyy + Gzz 0

is a physical condition if we measure outside the masses (surfaces in-
cluded) . Finally, a transformation of inertial coordinates into terres-
trial ones has to be performed .

Simulation I is an error budget study by 19 parameters of an inertial
system:

(1) time interval
(ii) initial positions
(iii) initial gravity
(iv) varying acceleration
(v) varying gravity gradients

The input—output results are given on pages 46 — 56 of the detailed report.
Pages 61 — 67 are a study of the influence of quantization errors. This is
a summary:
The gradiometer accuracy of existing systems is by far sufficient for Inertial
navigation applications; the main error budget is due to the accelerometer
accuracy.

Simulation II is an error budget study by 36 parameters of an inertial
system:

(i) time interval
(ii) initial positions
(iii) initial gravity
(iv) varying acceleration
(v) varying gravity gradients
(vi) accelerometer bias
(vii) accelerometer random uncertainty
(viii) accelerometer non—orthogonality
(ix) initial misalignment angles
(x) accelerometer scale factor uncertainty

The Input—output results are given on pages 96 — 108 of the detailed report.

March 26 , 1979
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Abstract

A gradianeter-aided inertial navigation syst~n is theoretically and statistically analysed tc.
estimate its abilities to moni tore geocentric cartesian coordinates. Having discussed the inertial
instrumental units used on the moving platform and several reference coordinate frames appl i car’le
in all navigation systems, studies on the severe problem of the separability of thc gravity
gradients fr~~ the inertial disturbances are carried out. Simulation I presents how weil th~
aided navigation system can produce inertial coordinates and how the newc~~ers of the inertial jt~-

strunentation, the gradicmieters, perform on-board the moving vchicle. ~~ar.ti:ation error studies
are also analysed and presented for such a system. Siimalation 11 includes besidcs the detailed
analysis of the acceler~~eter and gradicmeter error mo3els used, ti’e abilities of the s~’ste~. to
estimate geocentric coordinates. ?t~tipoint statistical cna~ysis for the approxisiateC incrt:~ i
acceleration ccsnpcnents shows that the navigation system under considerati.on behaves tetter as
closer ti~ reaL.ty is approached.

usar~enfa~sun.~

i1 n ~radiomcte~—unterstUt:tes ir~ertialeth vigationssy~ter w~ rd theoretisc ’i u!~d statistisc~ ana~y-
siert , um seine Moglichkeiten abzuschftz~en, geozentrische cartesische Koordinaten zu ermit:eln.
Nach ciner Disk ssiur~ der inertialen Instrunenter.-Einheiten au± der bewegrer Plattfor~r un~! eir.’-
gcr Bezugssysteme . oi~ ir~ alien Navigationssystcnen angewnndz werden, wird das Problem der Treiui-
barkcit JeT Sch%beregradientcn von den Inertialsthrungen untersucht. Simu~atton I z~igt , nit ~el-
cher C’itc das unterstüt:te ~avigationssystem inertiale Kocrdin~ten Jicfern ~arn und wie die Neu-
lln3e unter den lnertialger~ten, the Gradianeter, sich an Bord des bewegter. Fai~.r~euges verh:iten.
s¼~h der Einulu~ von ~aantisier~ngsfehler~ wird untersucht und für solc~ em Syster. pr~se:t~e~t .
Stimulation IT enth*lt neben einer detaillierten Analyse der benutzten Fehiermodelle f~.ir frccelero-
meter und Gradi~netcr auch die Mbglichkeiten des Systems zur Schätzung geozer.trischer Kc.~rdinaten.
F ine statistische .~Iehrpunkt-Ana1yse

’der n.~herungsweise inertialen l eschleunigungskomponen e’i
zeigt , dali das betrachtete Navigationssystee sich unso besser ver~Ut , jC n~.her man der Reai~tit
koisut.
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0. Introduction

Paris, ~~
y 1914. Lawrence Sperry is one of the entrants for a prize of fifty

thousand francs, the object of the competition being what one judge sees and

describes:”the airplane is already in flight and the mechanic rises, leaves

his seat and without fear goes from the cabin to the wings and returns back.
At the same moment the pilot, Lawrence Sperry, lifts his arms and leaves the
airplane to contiiiie its flight without guidance with speed of about 9Okm/h ’.

I
, 

He finally ~..on and the first stabilized platform was al ready introduced for
airplane stabilization.

Navigatior. is perhaps connected with the first human activities cit the earth
becF..;se it is the “art ’ of obtair.ing with rneasuremcr1ts velocity a~d position

of a moving object. G~.idance has to be a
1.i;~.vs disti.rg~~ hc~ frc’~ navigation ,

for it is ti~e process of generating motion correctio~i Lit itflaflds to a ~~.‘i~g

object such as it succeeds in its ru.ssion. ~t is understood tnat guidanc e
includes navigation but ~~t vice-versa .

Guidance techniques could be consider~d as art extension of human bein; ’s r.atu-

ral senses of seeing, smelling, hearing, feeling, memory and deduct~.~ . in ca-
ses where the guidance problem is not inside the man’s abilities, then a “de-

vice” could upgrade one or morc of his nat~ al senses. For example, mart’s mea-
suring abilities could be augmanted by using electronic measuring devices or

computers wnicn can increase his accuracy and speed of deduction. Going a lit-
tle further where the guidance problem is very complex or the h~.ni~rt presence
is impossible (e.g. mission leading to destructive ten..iriatior), then automatic

guidance is to be introduced .

Newton’s law of nechanica1 inertia is by far the basic Law governing all desi-
red properties of guidance systems. Under this la\\ all particles wi:~ mass will
exert react ion to the applied acceleration, whicit i~. equal in rr4gnitu&’ and cp-
posite in direction, the reaction not being depenu~r.t on contacts with the cnvi-
rorsnent.Gonstructing self-contained instruments dependent upon iaertirJ eI::ct s ,
it is therefore natural to refer to them as inertial guidance systems and in Ca-
se of navigation as inertial navigation systems .

An inertial navigation system generally cu~tains four basic element~ :a)an accele-
rometer b)ai attitude referencec)a computer and d)a clock. An accelerometer is a

~

. .., 
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- 
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device which measures the non-gravitational acceleration experienced upon
its case. But, since the case is hard-mounted on the moving vehicle, the
measured acceleration is also the acceleration of the vehicle. It is under-
stood that since a vector quantity has three components , then three accelero-
meters, orthogonally mounted, measure the non-gravitational acceleration re-
solved in their sensitive or input axes . The orientation of these axes is in
a manner best-suited to meet the system’s requirements .

The attitude reference is that part of the inertial navigation instrumetita-
tion which either stabilizes or coi~nands the platform frame relative to an

inertial or rotating frame respectively. Gyroscopes are always called to
instnm~nt the attitude reference and considered to be the most indispensable
and critical unit on-board.

The computer solves the fundamental equation of inertial navigation to give
the velocity and position estimates of the vehicle being navigated . The ma-
thematical procedure to be fol lowed depends on the system requirements as well as
the on-board instrumentation. If, for example, the accelerometers used are
of the integrated type, then the computer does not perform integrations as
far as the accelerometer signal is concerned.

The clock generally gives the time instant of the measurements performed on-
board. In cases the navigation takes place relative to an earth rotating fra-
me, then the clock establishes the location or orientation of that frame.

An inertial navigation system may be abstractly considered as a black box.
The input to this box is apparent acceleration which contains relative ve-
hicle acceleration, gravitational acceleration and accelerations due to the
rotation of the frame of the black box relative to the inertial space . In-
side the black box manipulations are carried out and the output is finally
the instantaneous velocity and position of the moving vehicle or better of
the black box. Needless to say , that the manipulations contain errors and
therefore the output is incorrectly indicated. The differences between the
actual velocity and position and their output counterparts are then stati-
stically analysed to yield the error Ixidget of the navigation system(black
box).

It could be supposed that inertial navigation is accomplished by measuring
the apparent acceleration of the moving vehicle and then integrating it

L - -~~~~~ . .
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doubly in time to estimate position. &it due to Einstein’s principle of
equivalence, the gravitational acceleration and the non-gravitational one
are manifestations of the same basic physical phenomenon. Consequently,
gravitational information is certainly needed on-board in order to solve
the navigation equation and there is no way out of it.

Tracing the historical developlments of inertial navigation, we see how the
scientists treated the above postulation due to the lack of actual gravita-

tionai. information. A reference field was selected, the gravitational acce-

leration was computed (grossly approximated)at the instantaneous vehicle lo-
cation and then substructed from the apparent acceleration measurements to
go to the solution of the final equation used . Unfortunately, the same pro-
cedure is still in use nowadays.

As early as in ~95O , Lundberg conscructed and tested the first gravity gra-
diometer . The instrument was composed of two vertically suspended masses and
had the ability to sense the sign of the first vertical derivative of ~ravi-
ty. The gradiometer was heavil y tested in ~brth Mierica ,Europe and West ~at~~
ca , but nowadays is completel y forgotten for not known reasons .

IXiring 1959-62 , the Lockwood Cotnpar.y in ‘fox-onto introduced its first prototy-

pe gradiometer sensing the vertical gradient of gravity with an accuracy of
l00Ebtvös( =10 9sec 2) ,  but the device was very sensitive to the ai rborne

dynamic environment.

Mter these first attempts came the era of the fir st  generation of gravity
gradiometers. The Hughes, the M.I.T, the Bell Aerospace gradiometers are a
sample of very refined and tested gradiometers designed to be used in air-
borne gradiometry . The feasibility studies have proved so far tr~t an accu-
racy of 1E or better is to be expected in the very near future and especial-
ly for the Hughes gradiometer for which five d3ys of Continuous gathering

data of the earth’s gravity field ~~uld be enoug~- to map it completely.

Savet in one of his papers writes:”altogether , it appears that there is n~
clear-cut advantage in using an existing or feasible gradiometer or , for
that matter , a pair of accelerometers ”(Savet , 1970) . Ei ght years later , we

read something breathtaking : “in the University town of Nancy in France
George Delamere declares:<<the key to my operation is a tiny electrode imp-

lanted in each of the leg imiscles which transmits a computerized electro- 

-~=~~~~ - - .
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stinulation in response to a peripheral data system based upon micro acce-
lerometers and inclinometers to appreciate the patient (paraplegic) space
mission. Experiments carried out in the NASA space progranne could be ap-
plied te the problem of controlling the balance of the patient when me-
bile’>” (Time magazine, 1~brch 1978).

It seems that sometimes non-geodesists appreciate the geodetic tools better.

in view of the era which the gradiometers promise and the fact that there
is not such a gross exaggeration as to assume a spherical earth gravi ty
field(!), we motivate the present analysis to put on-board the moving ve-
hicle a number of gradiometers to measure the earth’s gravity field. One
could izm~diately assert tha t the accuracy of the inertial navigation sy-
stems is slightly better than one mile/hour flight and it might be consi-
dered as satisfactory. But, again, we do not lay the problem on the desi-

red or obtainable accuracy. Perhaps we do not think so nuch of the opera-

tional point of view, at least, in the very beginning. The navigation sy-
stems need, as we believe, a theoretical injection which inevitably comes
from the gradiometer implementation.

Consequently, we start the whole analysis fresh from the beginning. We avoid

one of the current techniques, that is , first make the assuinptions(so bias
the system) and then obtain what it might be expected:good results like the
assumptions. We go the other way round. Lay the fundaments rigorously arid
the time for the assumptions will come in order to present some indicated
numbers of how well the system behaves. Perhaps, there is a reconciliation
between the two approaches.

The newcomers in the inertial navigation instrumentation technology, the gra-
diometers, promise many applications. As we all know, one of the prime goals
in geodesy is the determination of the earth’s gravity field. This can be
straightforwardly accomplished by employing a moving gravity gradiometer
which could furnish even in a very short period the desired gravity data.
Other applications of a gradiometer-aided inertial navigation system are:
a)vertical indication
b)vertical defl ection indication
c)geoid height indication

just to mention only a few of them. It is therefore concluded that gravity
gradiometers offer valuable applications in geodetic science.

— .- — - ‘
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The inertial navigation system ~~ analyse is a gradiometer-aided system.
Whatever comes as an input into the black box is actually measured on-board .
Certain mathema~-ical manipulation takes place inside the box and the output,
what we are particularly interested in, is instantaneous vehicle coordinates
with respect to a frame rotating with the earth.

Section 1 deals with the inertial navigation instrumental units. Our plat-
form is enriched by three spherical gradiorneters developed and tested in

F the M. I .T.  Three gyros comand the platform to rotate with the earth’s rate
and the system has the capability to actually measure and then feed the he
on-board computer with all what it needs:apparent acceleration components

and the whole gravity gradient tensor.

In section 2 , the fundamental eqJatio~-i of inertial navi gation for an earth-
bound reg ion is derived. Since we are giay interested in examining the capa-
bilities of a gradiometer-aided inertial navigation system for terrestrial
navigation , the gravitational fields of all attracting masses but the earth ’s
are excluded.

The descri ption of all cor~non coordinate frames used in inertial navi gation
systems is presented in section 3. As soon as the notion of these frames is
completely understood , then one could really have the fl exibility to intro-
duce the most general distortions a coordinate frame can undergo. Since our
navigation system estimates geocentric coordinates of the mass centre of
tne platform and it is impossible to “curve in” all on-board frames on that
point , due to the actual dimensions of the units , it is assumed that the re-
suited centrifugal accelerations (each for each instrumental unit mass centre)
are negligible small quantities .

Thinking in terms of Einstein’s principle of equivalence, it seei~s to be ho-
peless to separate gravitational from inertial effects. Studies on this se-

parability are carried out in section 4. it is c”ncluded that gradioir~ te~-:
can measure in a dynamic environment onl y gravity gradients if and only f

they are inertially stabilised . Since our platform is inertially rotating,
a second platform is introduced to acconmodate only the gradiometer measu-
rement unit stabilized with respect to an inertial frame .

An extensive literature exists on simulation studies of inertial navigation
systems. Depending on the system used and the assumptions set , different re-
sults have been drawn so far. The performamee of the inertial instrumentation

- .-- .- , - - .



-~~~~ - --—~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- .~~~~~~~~~~~~

12

is considered,nowadays, to be satisfactory, but the systems still gather ~~i

appreciable error budget. Updating the system from time to time , the errors
are reduced but they are too far from being eliminated. Since there is not
any actual in flight gradiometer, it is assumed and sometimes believed that
the approximation of the earth’s gravity field has the ~~rst contribution
into the system’s accuracy. For that reason, we try to identify with a
simple exaiçle the function which drives the errors in an inertial naviga-
tion system. Section 5 contains a simulation to this direction not inclu-
ding error models for the instrumental units . Final ly , a space traverse is
coq uted to see the behaviour of such an aided system.

Section 6 examines the quantization of errors for the accelerometers and
gradiometers . Assuming that each time the instruments are read a quan~iza-
tion error is present, a general formula is given to estimate the position
error due to the ins trumental truncations treated as stochastic quantities.

A general error model is analysed in section 7. We go to the far end of
each measurement unit taking into account what they actually measure and
considering the possible types on instrumental misalignment and non-ortho-
gonality. The errors which contribute more than 90q0 of the whole errcr budget
are paid attention and included in the general model. On the final navigatict~
equation suitably approximated , the second simulation studies are performed
to test the capabilities of a gradiometer-aided inertial navigation system.



1. Inertial measurement units
1 .1 Accelerome ters

1.1.1 General considerations

Just a glance at the fundamental equation of inertial navigation (eq . (2 .11))
shows how critical is the acceleration contribution to the navigation pro-
blem. As a matter of fact, inertial navigation can be principally accom-
plished by measuring only the apparent acceleration on-board a moving ve-
hicle. The gravity field compensation could be computed by employing a re-
ference field, such as an ellipsoidal one, and using approximate position
values, so as the gravity components at the inst rumentation location are
then to be estij 1iated .

The iutther of the on-board accelerometers depend s on the particular pro-
bleir. considered. Generally speaking , when we navigate in the three dimen-
sional space, three accelerometers are used in order to sense all three
apparent acceleration components . in case of a cruise aircraft , the verti-
cal accelerometer could be substituted b> a barometer or an altimeter re-
ducing the number to two.

The accelerometers provide their measurements in a frame which they are
constrained to follow and it is furn ished by the gyros . In our analysis,
three accelerometers are set at the platform’s mass centre such as to con-
struct an orthogonal frame and measure the appare nt acceleration vectDr
resolved in their rotating(with earth’s rate) axes.

1. 1.2 ~~erational principles

Let us no~ see how an i deal accelerometer operates and in order to moti-
vate our discussion , consider an ideal spring-mass accelerometer shown in
Fig.(i). The instrument consists of:

a) the case
b) the proof mass and

C) the damping spring

As the accelerometer follows the motion of the vehicle, the appare~nt acce-
leration acts on the proof mass as well as the case. The proof mass extends

S - - - - -~~ - 5 .
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A ~btion
Spring~~ 

Scale 7 3
Case

rroof mass

~~ 
input axis

Fig.(1): An ideal spr ing-mass accelerometer

the spring and the &~~lacement x is measured against a properly divided
scale. Generally, the equation governing the spring-mass accelerometer
operation reads

(1.1.1) A a m i~+dkt+kx

where A the apparent acceleration, x the scale reading, m the proof mass ,
d the damping factor and k the spring constant. Having got the x scale rea-
ding and known the mentioned constants, the apparent acceleration can be
then computed using eq. (1 .1 .1). Needless to say, that the apparent accele-

ration is sensed along the input accelerometer axis and therefore three
such accelerometers orthogonally mounted can fully estimate the apparent
acceleration vector.

Finally, we remark that an ideal accelerometer is nothing else but an ideal
gravimeter and since a moving gravimeter cannot discriminate between gravi-
tational and non-gravitational forces , the accelerometer output is a mix-
ture of these t~~ force fields and as such it must be gravimetricallv com-
pensated .

1.1.3 Error model

As we said before , thre e accelerometers can measure the apparent acceleration

vector and their output contributes to the estimation of the inertially re-
ferenced acceleration. But , since it is impossible to construct an orthogonal
accelerometer frame, the apparent acceleration is sensed along a quasi-ort ho-
gonal frame and care should be tak en to compensate for accelerometer non-

S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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or thogona lity . The trans formation of the apparent acceleration vector
from the quasi -orthogonal to the idea l orthogonal accelerometer frame
is a small angle trans formation and it is considered in full detail in
section 7.1.Furthermore, each accelerometer has its own bias and scale
factor uncertainty which falsify the sensed acceleration. Taking all
these errors into account , the accelerometer signal is corrected and
refers to the ideal accelerometer frame ready to be transformed to any
desired coordinate frame in which we like to solve the fundamental equ-
ation of inertial navigation.

1 .2 Gradiometers

~.2J General considerations

Right f ren the begir~i;ig of the apr~ii cation of the inertial navigation
systems , it was fully urderstoo~ that a serious contributing factcr ia
their error budget was the gravity field compensation in the accelero-
meters measureme nts. At that time , there was no space for envisioning
an instrument mounted on--buath a Ixving vehicle and having the capal i-
lity of directly measuring the gravity field. As the years went by ar~
the inertial instrumentation and guidance syster.s reached such a tre-
mendous qualification and performance , it was quite evident that a re-
search for the first generation of moving gravity inst rumentation was
inevitable. Sc far , the earth’s gravity field was approximated by the
gravity field of an ellipsoid of revolution. Given approximate position
values, the gravity fi el d is coriputed at the vehicle ’s instantaneous
location using well-xno~-n closed formulas. Having granted by the gra-
dioneter instrumentation, we feel a little disturbed to continue appro-
ximating the reality as far as the gra~ity field is concerned. Of course,
the motivation for studying and constructing gradiometers was .,a~.
least primarily, to aid inertial navigation sy~t~’ms . But since gravity
is a critical inertial parameter , we think that j t  is reaiiy a good d
chance to have on-board a gradiometer , or a number of then , in an effu~~
to actually measure the gravity field in which the navigation takes pla-
ce.

?bwadays, the gradio meter s are still in the feasibility study phase except
some on-board tests (see P.Hood and H.Wa rd ,1969,p.98), but thei r performance
promises very quick on-board implementation (Trageser ,1975).Consequently,

it is reasonable to ass~me that under the assertions of the mechanical

5 - S . - -- - ---  5
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engineers, gradiometer applicability is warranted in a serious effort to
aid autonomous inertial navigation systems.

1 .2.2 C~erational principles

A gradiometer measures the changes of the gravi ty components with respect ta
‘the displacement,that is ,grav i ty gradients . The advantage s of a gradio meter

arer eally a lot . ?~bvi ng base capability , no Eötvös correction , no terrain
correction, just to mention a few of them. Among the most interesting ones
are :
a)the Bell Aerospace gradiometer
b) the Hughes gradiometer and
c)the M.I.T. gradiometer

For a description see (Williams , 1975) . In 1915 , the inte].ligency of Rolan
von Eötvös created the torsion balance bearing his name and measuring cer-
tain gravity gradients. Without exceptior~, its principles apply to the up-
to-date grad iometers . Consider two equal proof masses connected with an
axle and supported at a fl exure point between them. When that primi tive
instrtnent passes over a mass anomaly, different(in the differential sense)
attraction forces are exerted upon the proof masses due to the diffe rence
in the distance between them and the mass anomaly. Consequently, the instru-
ment changes its position about the flexure point and if this change (ro-
tation) is appropriately sensed, then gravity gradients could be measured.
Of course, the measurement of a gradient is very complicated due to the
advanced electronics involved .
In what follows , we shall try to explain briefly the spherical gradiometer
developed in the ~~ssac}iisetts Institute of Technology(M.I.T.) which is
used as our on-board gradiometer. Since all the known gradiometers are uhder
laboratory tests,there is not any immediate justification why we prefer that
instrument to the others . But we believe , at least from the given accuracies
(Trageser,1975 , Forward, 1974 , Williams , 1975) , that the M.I.T. spherical
gradiometer possesses certain advantages in comparison with the others e.g.
structural stability, inmiunity to platform jitter rectification effects etc.

Let us therefore study the operational principles of the spherical gradiome-
ter. The instrument consists of (see Fig.(2)):
a) the float and
b) the housing of the float.

S . - . ~~~~~~~~~ .T —
~~~~~~ 

-- .-
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Fig. (2) : Spherical gradiometer float

Between the float and the hou~i~~ , a small gap exists which is filled by
a special fluid supporting the ficat inside the stabilized housing. W~cn
the instrument passes ovcr a mass ano~-.iiy , the float is constrained tc ro-
tate inside the housing. The moment about a defined axis is mea~u:ed by
the electronics of the housing and is applied back as a restoration torque
in order to bring the float to its original position. For example, the mo-
ment measured about the X axis (Fig.(~)) gives the gyi gravity gradient

and the moment about the Y axis the g~~ one . Theref~-’re , each instrument
measures two gradients (another great advantage ) and three of them ~mounted
on a platform can provide u~ the whole gravity gradient tensor.

Feasibility studies on the spherical gradiometer support the e�ç~ertaticr.
that ~E or better could be attained in th : ne3r f~iture (Trageser , 1975)

1.2.3 Error model

In trying to construct a general gradiometer error model, three reference
frames are ~iployed in conjuction with the gradiometer float :
a) the electronic frame , which senses the small floa t rotations (t6rques)
b) the float or misaligned gradiomete r measurem ent uni t fra me , which
is fixed with respect to the float principal moments of inertia axes and 

— — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -—
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c) the ideal gradiometer measurement unit frame to which the gravity gra-
dients refer .
In a general error model, the first two reference fra mes should be consi-
der~ed as a quasi-orthogonal ones and the gravity gradients signal must be
accordingly corrected using the involved misaligment angles . Furthe i,’~ re ,
gradiometers are instrument s which inertial ly measure gravity gradients.
Since our gradiometer measurement unit frame is designed to have the same
orientation as an earth centered quasi-inertial frame, a general misalign-
ment of the former frame with respect to the latter one should be taken
into account . When all these misaligmnents induced gravity gradients errors
are considered, then the gravity gradients signal can be transformed to
the desired coordinate frame in which we like to solve the fundamental equa-
tion of inertial navigation .

1 .3. gyroscopes

1 .3.1. General considerations

It is well-known that inertial navi gation reaches its aim in determining
velocity and position with respect to a reference frame by the implementa-

tion of three mutually perpendicular mounted accelerometers which measure
the component s of the apparent acceleration vector resolved in their input
or sensitive axes . It is noting by passing , that these measurements must be

gravitationally compensated. Let us now suppose that we like to measure the

apparent acceleration in a moving vehicle in order to determine, say, posi-

tion. For that purpose, three accelerometers are n~unted on-board the mo-
ving vehicle having their sensitive axes to a 1Q~oWfl orientation relative

to a re ference frame with respect to which we navigate. As soon as the ye-

h.icle starts moving and begins pitching, rolling and yawing , then it is
absolutely impossible for the accelerometer axes to preserve their original
orientation. Consequently, their output cannot be used as an input for sol-
ving the fuzxIamenta~l equation of inertial navigation. A special device must
be impl emented in order to “dump out” the time-iik~ accelerometer frame miso-

rientations . This device should have the capability of either to coninand the
accelerometer frame (or for that matter the platform f rame) to rotate ,in case
the navigation frame rotates or to stabilize it to a desired orienta tion ,

+ in case of an inertia l ly non-rotating refere nce frame . This can be acconip-.
lished , as we will see, by employing three single-degree-of freedom gyros
or ~io two-degree-of freedom which can cover the three possible degrees of

— --~~~ 
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freedom in space.

In what follows, we shall try to give briefly the gyro functional chara-
cteristics and their error model which is included in the simulation stu- .

dies .

1.3.2 ~~erationa l prin:iples

Let us suppose tha t a solit ~oc.y rotates with angular velocity ~ along
an axis of syni~etry (Fig. (5a)). Newton’s second law in rotational fori~
states that in an inertial frame of reference :

~~~~~~~~~~~~ :~~~~~~~~~

where ~ represe nt ~ the appli~~ tcrquc , ~ the angu a~’ mozer.turn and : the
moment of inertia of the rotatin2 solid n~ ss. Now , let mount thi s simp] e
device on a case with a sir~ie axis gim~al as in (Fi g. (3b)) .  This over-
simplified mechanization depicts the princ iple of the single—degree-of-
freedon~ gyro(SLF) owing its name ~.o the single gimh2l suspension. A SJF
gyro is composed of:

-.-
.
-~~~~~~ 

_ _ _spifl axIS 
~~~~~~ 1

rotating mass
output axis

gimbal

~i~na~ ger,crator
float

gy ro case +

Fig. (3): Single-degree-of-freedom gyro.
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a) the gyro case or heusing
b) the gyro float and
C) the gyro rotor
From eq.+(1+.3.1), it is understood that in absence of applied torques, its
integration gives

— constant

and this mani fests the most funda mental prop erty of a gyro :when no externa l
torque is present , then the direction of the angular momentum vector pre-
serves its Orientation in space.

In order to practically utilize the property of the constancy of the angu-
lar momentum orientation , the H vector ought to be in the direction of one
axis of the rotating body symmetry. If it is not the case, then the angula r
momentum could be resolved in three components as:

(1.3.2)

where the rotation along the axis of synmetry and 1’~ 2 the rotations
along two (any) perpendicular axes. Denoting the angle between I~ and the
axis of symmetry by , we note that this is a constant angle, s~ ice it

depends on the L’s and u’s which are constant quantities for a solid body
rotating with constant speed. But due to the principle that the angular
momentum vector preserves its orientation in space, then it is concluded
that the axis of symmetry must move otherwise it would coincide with 1~.
Consequently, the axis of symmetry generates a cone around H with apex
angle 2,u and we refer to it as the (free)gyroscopic nutation phenomenon.

Suppose now that a torque is applied perpendicular to the angw.ar momentum
vector H. In this case, H rotates with angular velocity ~ transverse to
both torque and ~ vectors arLd it is such that the applied torque is ~q~:il
to the cross product of ~l and the rotation vector ~~~. This rotation of the
angular momentum vector, being influenced by torques, is called preces3ion.
In case in which the torques come from the friction of tie gimbal bearings ,
then the angular momentum vector again precesses and thus its initial orien-
tation is contimiously changing. In this case, we speak of gyro drift which
is one of the most critical errors in inertial navigation.

~~~~~~~~~~~~~~~~~~~ - - -
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Let us r~w examine how three gyros can either stabilize or comand a me-
ving platform to a desired rate. Consider the SDF-gyro of (Fig. (3b)) mounted
on a platform which generally rotates as the vehicle moves. Along the output

axis of the gyro two special devices are set, the signal. generator(SG) and 
+

the torque generator(TG). The former has the ability to sense torques due to
the rotation of the gimbal and to apply them as restoration ~orques. Th~
latter can generate torques according to the rate of rotation of the navi-
gatiorA frame . For example, if we navigate relative to an earth rotating
frame , then the torque generator is mechanized to provide torques of , app re-
xiir&ately, l5deg/h and the signal generator senses the rotation of its gimbal
due to the irregular motion of the vehicle and restores it in order to i so-
late the platform from bei ng affected by vehicle manoeuvrc~ . In case we n~-
vigate relative to an inertiallv non-rotating reference frair? , then only
the signal generator cperate~ providec~ that the gyro frair.e has ~~ready ocer.
+~utLa.Lly aligned.

Since. in the 3D-space , we have three degrees of freedom , it is understood
tiizit three gimbsls provide coii~ lete isolation of the platforn ’ s rotat .or.
with respect to the turbulent motior1 of the moving object. Consequently,
when we speak of three on-board gy-ros ,we mean that three gimbals preservc
the gyro frame to change its attitude as the vehicle is pitching, rolling
and yawing.

1.5.3~~rror nodel

Various gyro error medels have been suggested in an effort to include all
possible error sources in a gyro performance (e.g. Britting , 1971 , p. 7 4 ) .
The use of a specific model depends on the particular problem whic~i one

faces. i~s we have al ready explained, our gyros command the plitforn to
the earth’s rate and thus, the error model should be sel ected s.~ch as to
includ~ the instnm~ental misfunctions in generating the earth’s rc1.~tion .

Let us suppose that we have on-board the moving vehicle three SD} -gy”c -.

which materi].ize the gyro frame generati ng the earth ’ s rate . Since it is
technically impossible to cons t ruc t a pure orthogonal gyro frame , then tht. +

resulting frame is a non-orthogonal or quasi-orthogona l f ram e. Consequently,
the torques are applied through a non-orthogonal frame and this should be
taken into account . Fur thermore , the torques are experienced through the
torque generator which have scale factor uncertainty. Therefore, the signal
for the earth’s rotation comes erron~~us and sieuld anyway be adjusted be-

-- . -~~~ ~~~~~~~~~~~~~~ *-.
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fore it is applied, taking into consideration tl~ t~~ error sources just
mentioned. The analysis on the gyro error model is given in section 7.1.

-~ — —~~ -~~~~~~ -~~-r.~—~~ ~ -r n5 _
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2. The fundamental equation of inertial navigation

By the term fundamental equation of inertial navigation , we mean that

equation whose solution estimates the running values of the moving

object . In our analysis, geocentric coordinates are the desired output
of its solution. Consider the one dimensiona l navigation example of a
train. Its fundamental navigation equation is distance equals velocity +

(considered as constant ) multiplied by time . Measuring time by an on-
board clock , we can estimate the instantaneous position of t:~e train

+ 

with respect to a convèiuent initial poi nt .

The fina l expression of the fundamental equation depends on th~ coorctinato
fra—.~ in which it is coordinatized as well as the motion of the pla fc~~.
frame relative to th~ navigation frame used . For example , if the navi gation
takes place ir. an inertial coordina te frame an~ the platio:n is inei’t~ally
stabilized, then the naviga’.-ion equation assumes its simplest form. in. ca-
se in which the platforn is constra~..ned to rotate, then the navigation

equation includes mere terms such as accelerations of Coriolis arid centri-
petal type.

~e shall try to derive the fundamer.tal equation of inertial navigation in
the general case in which the navigaticn frame rotates inertial ly and the
platform fra~~ does also the same . Then , it is easy to specialize it to
any desired sin~ lification. 1~e finally remark that the navigation equation
is valid in any coordinate system, since it is nothing else than a vector
equation. It comes straightf orward from the total derivative of a vector
quantity. Consider two coordinate frames, a fixed one L i and a moving E~.
The transformation between them can be represented

= R

Differentiating, we get

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

since ‘~O being fixed and ~ is known as the Cartan matrix. Now , consider
a vector which can be expressed in the two coordinate frames E1 and E2 as

~ 
a~~ = b1 ~~

where a. and b . the coordinates of the vector A and a
~
E
~ , b1~~ its conpo- 

~ + : 
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nents in E1 and E2 frames re spectivel y. Differentiati ng again we get:

cI& a.~~ + a
~
d
~ 

= db1 T~ + b1 di~ or
(2.1)

~~~~~~~~~~~~~~~~~~~~~

Eq .(2 .1) can be interpreted in the following way . The derivative of a
vector with respect to an inertial frame is equal to its derivative with +

respect to a moving frame (such as one fixed at the earth ’s centre) plus
the rotation of the moving frame with respect to the inertial one multi-
plied by the vector itself. The last term is called the velocity of fo l-
lowing. We~ state again this important conclusion using notation valid in
what follows as:

(2 2) ~ _ d1~

where I stands for the inertial frame and N for the navigation one.Now
let us derive the fundamental equation of inertial navigation using eq. (2 .2) .
Consider a moving vehicle 0 connected by a vector to the navigation fra-
me N and by r to the inertial frame I (Fig.4) .  We remind again that ~ term.i-
nates at the platfo rm ’s mass centre and when we speak of a moving vehicle,
we mean only a point, its platform’s mass centre . From the vectors definition,
we get

(2.3) -~~~~ .

N

Fig. (4) : Inertial navigation geometry.
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where ‘ the separation of the ori gins of the inertial and navigati on
frames. Differentiating with respect to the inertial frame we get :

(2.4) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(2.5) ~~~~~~~~~~~~~~~ 

+

(2.6) 
~~ = (

~~~~
J i ~~~~~~~ 

(~~~~
+
~~~ ~~~) ~~~~~

(2.7) ;1~ z1 +~~~~~~~~~~~ (~~ç~~ +~~~~~~~~~~~~)

Ec.(2.?~ expre sses the inertial acce eration of the platform’s ~~~
centre as a function cf the acceleration and velocity oi the vehicic-
with respect to th.+~ i nertial one. For furtho~ reference. c.~ ~~.7. is

written in tL~- form:

(2.8) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

It is worth noting that the incrtiai acceleration is the sum of the
gravitational and non-gravitational acceleration. Consequently

(2.9) ~~~~~~~~~~~~~~

and eq. ~2.8) assumes now the form

(2.10) ~~~~~~~~~~~~~~~~~~~~~~~~~~~

If we want to estimate geocentric coordinates, in case in wiich the na-
vigation frame is linked to the earth , then we have to integrate eq. f2 . 10~
doubly with respect to time , But ,as one could foresee , there e~ ists some
difficulties in performing the integration, n.rTiely:
a) the angular velocity of the navigati on frai~ reffe r ed tc the ine:ti~
space must be krvwn . Consequently, it is intuitively understood that t~~’

navigation frame should be linked to a body, with respect to which we lik~
to navigate, which has known angular motion characteristics with respect
to the inertial frame of reference. Linki ng the navigation frame to the
earth ’s centre, then its inertially referenced angular velocity is a priori
known quantity and it is undoubtedly a very good choice . As a matter of

j ¶
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+ 
fact, this is conii~n practice in inertial navigation, when the ‘avigation
takes place near the earth ’s space .
b) the inertially referenced angular acceleration of the navi gation frame
must be known . But , in view of the obtained accuracies of the up-to-date
navi gation systems , thi s quantity is very small and could be neglected .
c) the acceleration of the navigation frame with respec t to the inertial
one is involved in eq. (2.10) . This really a pr obl~ natic quantity as far as
its measurements can be acconplished. To motivate our discussion, consider
the centre of mass of the universe . This point satisfies the requirement
for constant speed rectilinear motion, that is, it is an inertial point.
Now, centering three axes at that point with known space directions , we
get an inertial frame of reference. But how to measure the acceleration
of the navigation frame fixed , say, at the earth’s centre of mass with
respect to the inertial frame? And even if we continuously approximate
the inertial frame with other quasi-inertial ones coming closer and clo-
ser to the navigation frame, certain difficulties in measuring the i~~r-
tial acceleration exist again. To overcome this cumbersome situation, let
us divide the universe into two regions , an internal region and an exter-
nal one. Thus , the gravitational acceleration acting on the moving object
is the sum of the gravitational acceleration of the internal and e.~ternal
regions or

~~~~~~~~ 
+

~~~~~~
.

cxl m t

If we consider now that the external gravitational field Gext is uni fo rm,
that is to say, it has the same direction and magnitude everywhere in the
external region , then every body moving in the external region will get
the same gravitational acceleration coming from the externa l reg ion. Since +

+

in this region the non-gravitational forces on the moving body are zero,
then we can state

~ext~~~ I

In view of this result , eq.(2.lO) read s

Now, a very reasonable question arises :with what criteria one could divide
the universe into these two regions? where aL e the boundaries of them? The
answer becomes si.’nple in case we know in what kind of navigation we are
involved . In our studies , the navigation takes plac e near the earth’ s sur - +

_ _ _ _ _  
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face, that is to say , we are interested in terrestrial navigation. Con-
sequently, the boundary between the external and interna’ regions is so -
me kilometers above the earth’s surface and as such the gravitational f ield
of the internal region represents only the earth’ s gravity field. The next
to the mentioned one strong gravity fields, namely the moon’s and sun’s
fields, are neglected being quantities up to the order of 10~~ the earth’s
gravity field intensity. Finally, the fundamental equation of inertial na-
vigation , in case of terrestrial navigation , reads :

-. -. —I • J -
~ I + -.

~2. 11) &~ - A . - 2ç~ 
- R

E 
- 

~E 
R C - R )

where A: the apparent acceleratien of the moving vehic .e
the earth ’s gravity field

~~~~~ the ~oriolis acceleration

~ ‘fl) : the centripetci acceleration

and the navigation frante is centered a: the earth ’s centre of rna s~..

Eq. (2.11 ) stands for wha t we are after .  It represents the furidasn~nta~ eq~-
ation of inertial (terrestiiai) navigation being investigated to viFua~i:e

the capabilities of a gradicmeter-aidcd inertial navigation system ~o esti-
mate instantaneous geocentric coordinates o a moving vehicle inside the
earth’s space.

It is practically worthwhile to give some indicating numbers ccn~erriing the
magnitude of the Cor iolis and cer~tripetal acceleration. Consider a in
eq. (2.11) to represent the earth’s angular velocity and an aircraft whi ch
moves with velocity of 500 km/h. Then , the Coriolis acceler~ti?n accounts
for

2:.~ .R E 2 (7,29~(1O~~)radjsec SOO~n/h= 4’10 3g

where g the earth’s gravity field intensity. It  is understood , that the Co- ! +

riolis acceleration magni tude depends upon the velocity of the movzn; -

hid e. The centripetal acceleration for an earth boun... region accounts for
almost the same magnitude given above .
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3. I~ ference frames used in inertial navigation

The discussion about any inertial navigation configuration intuitively
include s the introducti on of some coordinate frame s which are either
i1~strumented on-board the moving vehicle or used as reference frames
and as such the system output is related to them. The inclusion and
orientation of these frame s depend upon the particular purpose of the
navigation system, but there are some of them which have to be anyway
in~lemented, since they play fundamental role in the whole mathematical
analysis .

The coordinate frames used in inertial navigation could be classified

into two distinct categories :
3.1:the external coordinate frames ,which are linked to bodies other than

the moving vehicle and
3.2:the internal or on-board coordinate frames, which are linked to the

+ 

object being navigated .
In the first category two particular classes can be defined:
3.1.1:the inertial fraine,where the term stands for a number of quasi-iner-
tial frames approximating the absolute one. Concerning the accuracy of the
up-to-date inertial navigation sys tems , it is not reasonable to desperately
include the use of the one real inertial system. Any of the first approxi-
mations can be undoubtedly considered as satisfac tory . One could adopt a +

reference system with ori gin at the earth’s centre of mass(includ ed its
ati~ sphere) and with the following axes orientation:

3-axis: towards the instantaneous rotation axis of the earth
1 -axis: towards the vernal equinox
2-axis: completes the right-handed orthogonal system

Such a quasi-inertial frame is a coim~n choice in inertial navigation ap-
plications, since its angular velocity with r.~sDect to the fixed snr3 ~s
a negligible smal l quantity, if it is compared to the short period of ope-
ration of a navigation system . The fra me discussed plays the role of the
inertial frame in the present work, the inertial property being under-
stood in the given reasoning . +
3 . 1 . 2  : the navigation fr ame.It is defined as that frame in which the final +
output of . the navigation system is coordinatized . A lot of choices could
bring a lot of navigation frames into picture , the particular choice depen-

+ ted upon the purpose of the navigation system under consideration. In our 

~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~ ~T + ++ .
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analysis , we like to estimate geocentric coordinates and therefore the
navigation frame must be linked to the earth. The orientation of that franc
is as follows :

3-axis: towards the rotation axis of the earth considered as a solid
body . The axis is fixed at the time instant at which the navigati-
on starts . If we like to refer to the instantaneous rotation axis
of the earth , then polar motion must be taken into account .

1 -axis: towards the intersection of the equator fixed when the riviga-
tion begins and the Greenwich meridian defined by a set of

world-wide ,well-distributed astronomical statior.s.
2-axis: completes the right-handed orthogonal frame 

+

The orizin of the navigation frai~e is at the earth’s mass centre included
its atmosphere .

Now , let us discuss the interna l or on-board frames. The descri pt i~~ i u -
c~ s all or at least most of the or~-board francs, but this does not meai~ t!-.at
they have to be anyway implemented .
3 .2 . 1  the conputation frame .It exists only in the on-board co~~ :ter memo-

ry and it serves a~’ that franie in which the fina l manipulation of the navi-
gation sy stem equations is carried out Havi ng decided to estimate geocen-
tric coordinates , then the coi~~utation frame is set to the same orientation
as the navigation frame and remains paral l el to it everafter.
3 .2 .2  the mechani:ed or ideal platform frame.It is the frame vith respect
to which the gyro and accelerometer frames are held constant . As the word
I,
ideal explains , that frame is practically distorted due to various i rist ru-

mental reasons e.g. gyro drift , initi al misali gnment etc . The ideal pla tform
frame , in some applications , may diffcr  from tne navig~iti on frame , the flX~ti-

vation for that being what we like to take out of the system. n our analy-
sis , the ideal platfo rm frame is identical wi -n the comoutation f~ame , be-
cause there is no reason to assume the opposi..e.
3.2.3 the ~~tua l platform frame. The initial platform misalignment cc~’sc’s the +

first effect and as the time passes the gyro drift drives the ideal plat-
form frame away from its desired orientation. The resulting frame is the
actual platform one. The dri fting platfo rm affects , final ly , the orientation
of the gyro and accelerometer frames which lose their ability to stabilize
the platform and sense correctly the apparent acceleration components respec-
tively . 

- - 
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+ 3.2.4 the gyro frame.It is by far the most important configuration in
any navigation system. As a matter of fact, without gyros there is no

+ 
way to navigate a moving vehicle(at least with the up-to-date technolo-
gy) . The three orthogonal. output axes of the on-board gyros construct
the so ,called gyro frame which possesses the fundamental principle to
preserve its orientation regardless the turbulent motion of the carrier.

Consequently, every distortion of the platform’s desired orientation can
be sensed by the gyros and applied as restoration torque to correct the
platform to its proper attitude . Unfortunately, the gyro frame drifts with
time and this complicates the navigation analysis.
3.2.5 the accelerometer frame.The three ir~ut axes of the on-board acce-

lerometers inst rument the accelerometer frame along which the apparent
acceleration is sensed. The frame is affected by its non-orthogonality
as well as the drifting platform.

+ 

3.2.6 the gradiometer frame.As in the gyros’ and accelerometers ’ case,
the axes of the three gradiometers construct the gradiometer frame. It is

worth noting, that this frame comes into picture only when one likes to
actually measure gravity gradients. Besides, gradiometers measure pure
gravity gradients(without inertial disturbances) if and only if they fol-
low an inertial orientation. Consequently, the gradiometer frame must be
inertially stabilized .

Regarding the definitions of the above frames, the following coments +
might offer clari ty and understanding in what follows:
a) The aim of our navigation system is to compute the instantaneous geo-
centric coordinates of the moving vehicle. In order to be exact, we must +

declare that when we speak of a moving vehicle , it must be understood as
only the centre of mass of the moving platform. All the mathematical rela-

tionships as well as the estimated geocentric coordinates refer to this

point. But, there are two arguments against this:
I: The on-board instrumentation cannot, of ccurse, be concentrated on the
the mass centre of the platform and it is actLally distributed arOufd ~~~
point in a radious of a few meters.
II: The gradiometers are tremendously sensitive instruments. Thus, it is 

+

strongly recomended that they ought to operate in the tail of an airc raft ,
in case of aircraft navigation, so as to avoid influence of the movements
of the personnel etc.

The above two arguments cause no trouble because the centrifugal acce]era-
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tions created from the distribution of the instr~.mentation around the
platform’s centre of mass (which should be otherwise inc luded)are now +

dropped of the navigation system’s equations as negligible small quan-
tities .

b) It is , finally, worth rep eating that the orientation of the navigation,
computation and ideal platform frame is the same. This gives simplicity, ~+ +

to some extent, on the derivation of the system’s navigation equation ar.d

is by no means an assumption.

.

~
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-
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4. Separability of gravity gradients and inertial disturbances

The subject of this analysis is of principal importance in case in which

gradiometers are used onTboard a moving vehicle to measure gravity gra-
drents. The central question arisen is whether we can measure pure gra-
vity gradients while we are moving or not. In other words, we have to
find out what is the output of a gradiometer being affected by the tur-

bulent motion of the carrie r .

It is more than seventy years that all of us have been benefited by the

Einstein’s principle of equivalence according to which the acceleration
field is equivalent to the gravitational field. It is worth noting here,

that this principle holds only approximately and locally and only in
that sense we cannot separate gravitational from acceleration effects
(Fock,1964) . Let us therefore examine in what mode a gradiometer measu-
res the gravity gradients of the gravitational field in which it operates.

Consider again two frames, an inertial one denoted by X and an accelerated

with respect to the inertial denoted by x . The relationship between then
reads

• •

where ~~ represents the relative orientation of the two frames and D, the
displacement of the origin of the moving frame with respec t to the inertial
origin. Performing in exactly the same mode as in the derivation of the
fundamental equation of inertial naviga tion and representing the force per

unit mass by F , then we get

d2xk dA . .  dx. d2A . .  d2D.
(4.1) . 

dt 2 • AjkFj~
ZAj k dt~ ~~~~~~~~ ~Ajk 

~~~ 
X)~

Aj k 4t2

Let us now determine the terms involved in eq. (4 . 1 ) .  Using the Kr~necke r
+ delta definition for the rotation matrix we oota in

Aj k A13 6kj

and by differentiation

‘4 z’ ~~~ik ~~j i
~~~ 

A~~~+ A ~~ ~~‘ — - O

or

(4.3) • 

~-~~~~-



33

with the obvious substitution representing the instantaneous inertially
referenced angular velocity of the moving frame. Differentiating
with respect to time we get

_•

~~~~

•

~~ 

dA~ 
~~~~~~~~ 

•A Jk

and according to eqs (4.2) and (4.3), we wri te

dA dA .
(4 .5) 

~1j~kj ~~ 3~~

Consequer.tly, ec~.(4.1) is no~ ~ritten as

d~x dx d f l .  d 2D
(4 .ôa) 

dt 2 
fi~

2E
~ij_at

2 ~~~~~~ ‘~‘ik~j k~ ~ T

wh~re 
~ 

represents t.~c coor aina:es of the gravity vector . ~~~~~4 .o.i i~ doe.~.
not assume the Newto~iai~ form and 1 it is stiotche d to do so , ~~~ . c:t~ur.

d2x . d~ . d~~+ .
(4.ob) • A • f~~x ~ •:. - : . . -

dt’ 1 1 j t 1P~~J~ dt

where the tern dx~/dt has betm ~‘ copped out , sinc e the moving instr ~anert~
are mounted on the platform and ~. herefore, there is rio relative moticn.La.
(4.bo) i~ solved witn rL spect tr ~V/ urJ then, successi~’o space dif-

ferentiation yields the gravity gradients aiid the third gravi:ational tie-

rivatives respectively. Consequently ,

4 - ‘  d’D,C + i  A1— x (  ~~ . _

1 dt

(4 8) 
.0 —v èA 1S _

~~~~~

_ -( ____
~~-.~ 4~~~~~~~ ) )  +

(4 9) 
_______

X j~~X~~~X~ aX
J~~

X
k

From eqs(4.7),(4.8) and(4.9) the following conclusions can be drawn:
a) The structural difference betweeri the gravitational ar~ accelera tion
field allows the third derivative of the gravitational field to be free
from inertial disturbances. If an instrument could be designed to measure +

the third deriva t ives, then its measurements would be pure quantities of I 
+

_ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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the gravitational field , the motion of the vehicle having no effect on

them whatsoever.
b) The gravity components are always affected by inertial disturbances .
This explains the fact why a gravimeter cannot perform gravity measure-
rients while it is moving .
c) When the platform rotates and translates in space , then gravity gra-

+ 

dients are mixed with inertial disturbances . The way out is to inertially
stabilize the gradioneter frame and then the second term in eq. (4 .8) re-
presenting the inertial disturbances is cancelled. But as we have designed
our platform , it trucks an earth fixed geocentric frame and therefore , it

rotates with earth’ s rate . To reconcile the constraints posed on the gra-
diometers, a second platform is set on the moving vehicle which is iner-

tially non-rotating and on this platform the gradiometers perfo rm the pu-
re gravity gradients measurements .

The above discussion was motivated by the following two very important
reasons:
1) If one is keen on asking what a gradiometer measures, then eqs(4.7),

(4.8) and (4.9) give the straightforward answer. It measures what one ii-
Ices as well as what one dislikes. It is in one ’s cFioice ,merely, to exclude
inertial effects by posing the constraints which come so clearly from
these equations.
2) In our work, we like to estimate geocentric coordinates referred to
an earth-fixed, non-inertial frame . But our discussion has proved that
gradiometers mi.ist measure only relative to an ir:ertial frame and as soon
as pure gravity gradients have been obtained, then they can be trans fc rrne~
to any other referenc e frame such as , say , to the ear th-fixed one . ~ny
under these lines, it is well understood that the separability of gravi-
tational and inertial effects is of great importance, when g~adiometers
are called to measure only pure gravi ty gradients on-board a moving ve-
hicle . 

— - + -  + J
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5. The system’s driving error function 
+

5.1 Genera l considerations

It is well-known that inertial navigation systems are burdened with a

large am unt of errors which , in some cases , turns on to be intolerable.
For example , the vertical channel of an autonomous navigation system i~-
so unstable that the system is practically out of its reasonable operation
as far as this channel is concerned , after a short time of operation. m e

general instability o~ an autonomous inertial navigation system can be
faced :
a) w t ~i ~tn external a~.d: vari ous instruments have been sug ested an~ us.~

s~’ fcr in an effort to furnish adaitional on-board measure~rents ~itF.
the aim of reduci.i; a specific channei or a whole navigatio:~ syst~~’s
ins~ahility. For the vertical :harnel a barozret.~r or an altinwter
could accomplish it quite succer uilv (Winter , 1974). For a i~~~~e sy-

stem , a velocit meter or a las.~r equipment which measures distances or
a gradiometer or a canera taking photographs while i t  is moving, are
some of the external aids which can effectivc-lv reduce the navigatior.
system ’s errors down to ve~ reasonable values . +

b) with a periodic upiating: in ~r~anv inertial navi gation appu ir a~ions , the
system becomes rather quickly very unstable due to the preseric~ of bi g 

+

errors. The remedy for that is the application of certain mather~ tical
methods , i.e. Kalman filtering, to update the system at a desired cbscrr ~-
tior point and to “start” it fresh henceforth. It is understood, thnt

t the svstert’s updating takes place rather often, its periodicity being
depended upon hoi. quick the errors propagate , the sai~ l ing interval ~~~

Our anlysis deals with t~o first method described above . Sc far the earth’s
gravity field is approximated by the gravity field of a sphei~ or an elli~
soid of revolution. This is , of course , oai~; vi approximation of the reai±-
ty which in its turn contributes errors to ~~~ ‘t rvigati on system pcri 1m~.~~.

In each science special assumptions are always set in an effort tc .ç~.roa~~
the reality as closer as possible. &~t , in view of the hopeful results co~
nung from the gra~iometer feasibility studies and tests, we could take ±u.l
advantage of them. ?~ w , we have an instrument which has the ability to mea- +

sure the gravity field. Thus , why to make such a vital assumption? Finally,
we enrich our platfo rm ins t ru mentation by setting a number of gradiometers 
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to measure the earth’s gravity field . Certain assimçtions have of cource
to be made concerning gradioineter accuracy, values of the gravity gradi-
ents in space, location of the platf orm ’s instrumentation etc .

5.2 The simulated navigation equation

Our study examines one of the simple cases of an inertial navigation sy-
stem, trying to find the function which drives the error budget of the
systen under considerati on. In order to bring the fundamental equation
of inertial navigation into an easily simulated form, certain assumptions
have to be made, e.g.  absence of instrumental errors . We believe that ma-
king these assumptions, we do not overshadow problems, but we present a

simplified example to draw a very interesting conclusion, namely, which
is the i~ rst contributed factor in an inertial navigation system.

Let us , now, examine in detail our navigation system. The moving inertial
platform is on-board an aircraft and is composed of the following instru-
mentation:
a) three orthogonally mounted single-axis accelerometers in order to mea-

sure the components of the apparent acceleration vector resolved into
their axes.

b) three orthogonally mounted gyroscopes which can isolate the platfo rm
from the turbulent motion of the aircraft and preserve the crientation
of the platform frames with respect to the inertial frame.

c) three orthogonally mounted spherical gradiometers which fu rnish the mea-
surements of the entire gravity gradient tensor.

Taking into account that the moving platfo rm does not rotate with respect
to the inertial frame, which is in this case the navigation frame , then
all terms in the general navigation equation(eq.(2.11)) containing the
angular velocity term, are simply dropped out . Consequently, tne riavigat~on
equation covering our system assumes the simple form +

(5 . 2 .1)  R
1—A” G1

where R denotes the instantaneous inertial position of the aircraft, sub-
script I shows the inertial reference , A is the apparent acceleration and
G the gravity components . For simplicity, the inertial subscript is dropped
henceforth. Eq. (5.2 1) can be written in component form as

+ 
-

-- -- - - -~ -~~- -  ~~- +
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XBP
~(+S(

( 5.2 .2)  Y—A,~,+G

2—A •G
2 2

where X ,Y and Z the inertial coordinates of the aircraft . Sinc c~ we do not
measure gravity components but gravity gradient s and the inertial accele-
ration terms call for undesired integration, eqs(S.2.2) are approximated
in the following reasoning:
a) the inertial acceleration components could be substituted by the inertial

coordinates , using the well-known Stirling ’s approximation forn~la appli-
_~ ed for three successive points(Scheid , 1968)

(5.2. 3~ 1.’.1 Lt 2

b) the gravity component s are to be approximated by the gravity gradient s
using a coordinate-free derivation which is valid (as the name explains )
in any coordinate frane :

(S. .4) C1 • ~~~~~~~~~~~~~~~~~~~ 
hi gher order term S

where the higher order terms are neglected.

Consequently, eq .(~ .2 .2 )  in view of the approximations made could be re-
written in the form:

(X~~1 -2X1+X~~1)~t
2 •A~~+C~~+G~~~~ (Xi~

X l )+GA . (Yj Yi T )+Gx, (ij j ? )+ 
+

qua~ltizaticn error

(5.2 .5~ (Y~+1—2Y~.Y _ 1 )Lt
2 .Ay +Gy +Gyx ~~~C1~1)+G.1~.~1 1 

(Yi i_ l~~~Yz . - 
(:i _

1 1 )

+ Suantization error +

(l~,1 z~4~z~_ 1 )At 2 _Az +Gz 4G~~~~ (Xi Xi_ i )4
~Gzy (Yi

_Y i_ l )
~~zz. i

(Z i _ t i.~
)

quanti :atidn error

(~ antization error studies are perfo rmed in sect ion 6. Eqs (5 .2 .6)  show
a rather peculiar phenomenon. When the ii~ving platform is at the point i

6t2 (Ax +G~~
$G

~~~~
(Xj Xj _ i )4Gxy~~1 

(Y~—Y~_ 1).G~~ (Z~—Z~_1))+2X1—X~..1 q.e.

(5.2.6) Y~ .1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
q.e.
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~t
Z(Az +Gz.4G~ . 1 (Xj_Xj.l)4Gzy 1

CYj_Yj_l)~~zz. 1
(2j_zi_l ))+2Zj_Zj_,+ q.e.

and the on-board instr umentation measures apparent acceleration and gra-

vity gradients (as a matter of fact the measurements are performed oetween
the points (i-i) and i) ,  then the system estimates the inertial coordina-
tes of the (i+1)-point . Therefore, the platform behaves like a “moving win-
dow” and there are two general ways one could face this situation :
a) the Boundary Value Problem of Inertial Navigation:given the inertial
coordinates of the first and the final point s , then the system can esti-
mate all other points, but only off-flight, that is, post mission. In so-

me applications, this has certain advantages. For example , consider a pho-

+ tograninetric airplane taking photographs of an ar ~n. During the flight , the
instantaneous coordinates of the moving vehicle are not of direct interest.
But, after the mission has been accomplished , the desired photo -manipulation
needs the coordinates of the camera from where all pho tographs have been
taken. Thus , application of eqs(5 .2 .6) simultaneously for all in flight
points gives the required values .
b) the Initial Value Problem of Inertial Navi gation:when the first  two
points of the navigation path have known coordinates, then eqs(5.2.6)
estimate the inertial coordinates of all other points to come in flight .
in many practical inertial navigation applications , as in terrestrial na-
vigation, we are most interested in knowing at any time instant where we
are and therefore this case Suits to our analysis. Schematically , our na-
vigation problem is illustrated in Fig. (5).

C. + C A. C. - A - -
— 1 ~-h2 

h 1 2 ~ 23 123 ~ 1J 34 134 4 navigatiOn path -

initial Point 
(X 1~Y11 Z1) X3 (X2,Y2,Z2)~~~ ~~~

— —

~~~

— ——————— +
C1 Yi+1

23 Z4 2i+1

Fig.(S) : The initial value problem inertial navi gation.

In Fig.(5) , quantities above the navigation path ar be measured and
under it are known. The quantities inside the brackets unde~~thEmavig~-
tion path indicate what is estimated when the platform is at that point.

Before we compute the matrices involved in the variance-covariance expres-
sions for the estimated inertial coordinates, it is worthwhile to examine
the impact of the Laplace condition on the variances of the measure d gra-

- + — - .~~~~~~~~~~ - ~~~~-
. - . +

-~
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+

vity gradients. It is well-knoi~i that the in-line gravity gradients are
connected with the following condition:

(5 .2.7 ) G~, 
—

kixwn as the Laplace condition. For instructive purposes, we rewrite the
gravity gradient tensor

r~~~~i

~~ ~~~~~

[~zx C~. G1~j
and note the solenoid.al and i rrotational structure of the gravity field
(G~~=C~~) .  What is above the dotted line is observed and certain accura- +

cies are later to be assumed for them . But , the vertical In-line gravity
gradient (G17) which enters ec~.(5 .2 . 7) has to get a variance depondent on

the other two gravity grad±en~..s variances. Consequently, trying to f±~~
the relationship between the in-line gravity gradients variances , we wr ite

br in matrix form
-

(5. 2 .8) o 1

L~zi L-~
If eq .( S .2 .8)  is abstractl y written as Y=AX and the law of p ~opagation of
errors is applied , then we obtain

1;
~

x 0~~~~~~ ° °~~~~~~ ~~ °

~
aGriGxx ~~~ 

a
~~~ZZ~~

O i 
L~

YY
~~~ 

~~~~~~ 

J 
12 1 -.il

~~ 
0

G~~~Cyy 
0

G
22J [~ 

-1 -

L 
_ _ _ _ _ _ _  - + + +- --- .-+- .- - + - - - -  - -

-+ -—-—— — —+--+ - -.
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~~ xx °
~~~yy~~~~~

+ 

(5.2.9) — o~ 0~~~

~~~~~~~ ry~
3xx ~~~~~~~~ 

6
~xx

+O
~rY

+ ec
~~~:J

Equating the respective matrix elements , we get besides the obvious iden-

tities the following interesting expressions:

°G11G G ~~~°G~~Gyy 
-

( 5 . 2 . 1 0 )  °G~~G y °G y’~°G~~Gyy

G12

The above equations are of value for our analysis because
a)when we consider the observables to be uncorrelated, then we cannot as-

sume the same for the vertical gravity gradient and thus its correlation

with respect to the other two in-line gradients ought to be considered.

b)when we simulate the navigation system, certain variances have to be

chosen for the G~~, G~ gradients. G11 will then get a variance as eq.

(5.2. b c) indicates.

What we intend to exami ne now is the contribution of each observable of
the navigation system to its error budget. The simulation takes place
when the platform is at the 2-point and so , the equations can analytically

be presented as: +

x3~ t2 +~~~~~ 2
(x2

_x 1 )+ 12
CYz

_Y t) xz 12
dl2 2l 2x2

_x l

(5.2 . 11) Y3~~t 2 (~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

z3”~t
2 (A2 +G2 4G2x (X 2 X 1)+Gzy (Y 2 Y1 )+Gzz (2 2 1 ))+222 21

In the system of eqs ( 5 . 2 . 1 1 )  we have 19 parameters, namely

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
+
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a) ~t :the time interval between two successive observations(1)
b) A1:the components of the apparent accelerat ion(3)
c) G1:the gravity conçonents(3)
d) G11 :thre e in-line and three off-line gravi ty grad ients (6)
e) ( X Y ,Z) 1 ,(X ,Y,Z) 2:the inertial coordinates of the first two points(6)
Generally, the variance-covariance matrix of the estimated inertial coor-
dinates can be written

(5 .2 . 12) a~. — GT2XG

where indicates the variance -covariance matrix of the coordinates ,
the variance-covariazxe matrix of the 19 parameters , C the matrix of

~~ derivatives of eqs(S.2.11)with respect to the 19 parameters and T
denotes the transpose matrix. In view of eqs(5.2.11), the simulated sy-

sten is given in table (fl. The derivatives of eqs(5.2.11) with respect
to the parameters involved read:

ax3
~~~~ 

2At (Ax ~
6

~(~~
0X)( (x~~X 1 )+G~ , ( Y 2 —Y 1)+G~~~~(i 2 —Z 1 ))

At 2

ax~. At 2

ax
•~q—~~~ t2(X -x )
~~~12

ax
~-t:~;~

-—-• ~.t
2 (Y2 Y1)

12

a

~~~ 12

ax
1~~t G~~~ )

a

-
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az 2
+ ~ At

aZ 3 2At
212

323 2At

______ 
2At (X2-X 1)

12

_______ 
2•At (Y,—Y 1)

_______ 
2—At (Z 2~ Z 1 )

12

323 2
-- At

27

~3 2—-A t

323
~~
-
~~— — - ( 1+At G )

O~. k~.

d..
3 2At Gzx

2
— At

31
~~~~“At C •2

2 2Z 12

5.3 Results

Eq.(5.2. 13) is our siniilated navigation equation coi~bined with eqs (5.2.14~.
In order to obtain the desired results , certain accuracies have been assu-
med for the 19 parameters of the system. The simulation covers the case in
which the obsewables are not correlated . When an observable assumes a ran- + 

. - - - + —- —
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ge of values, the rest 18 are held constant so as the influence of the

observable under consideration on the variai~~es of the inertial coordi-

nates could be deduced. The used ground values for the 19 parameters of
the system are listed in Tab]e(2).

‘arameter Valt~ Vari aA e

At 0.lsec 0.OOlsec 2

Ax O.lm/sec 2 O.01m 2/sec4

A~ 0.1 0.01

A2 0.1 0.01

Gx 0.5 0.01

0.5 0.01

9.0 0.01

-1500.E i .E

-0.2 1 .

—1 5. 1.

— 15x . 1.

+O.OS 1.

0,2 +30~D. 1.

62~~O00m 1 .in2

6~~*XiO 1.

zi 6500~~0 1.

620~XD3O 1.

6000030 1.

22 6500030 1.

Table (2) : Ground values for the parameters used in the simulation.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _  - — -
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As far as these values are conoerned the following remarks are indi-
spensable:
a) the operation of the platform ’s instrumentation every At~0.1sec .

could be generally considered as rapid, but actual tests on aided in-
ertial navigation systems reconmeixI that ~‘alue (Denhard , 1977) .

b) the values for the initial inertial coordinates are selecte~.~ to he out-
side the earth’s surface having 30m dis tance apar t . An aircraft velo-
city of 1000km/h is assumed for the moving platform. But, generally

speaking , the given coordinate values have not any special meaning
whatsoever.

c)the ground values for the gravity grad ients have been taker. fro~ (Tra-

geser , 1~ 71 ) and compared to those given by (Reed , 1973 ) .  it is wort~.
noting here that for our simulation studies only indiczst~d v~~u~s for
the gravity gradients fulf i l l  the requi rements of the analysis , since

~e do not derive coordinates , but the influence of each obsen~ab1e on
the variances of the coordinates .

For the computationa l ac~alysis , a special progra~me was written in
sense of eqs (5 .Z . 12)  and compiled in the Siemens Computer at the Univer-
sity FAF !~ nich. The results of the carried out simulation are given
below .

var. —cov . (in 2
) 

[ G., (m 2
/~ec

4 v~r . —ccv . (in ’

5.0340 0.0040 0.0400 5.0240 0.(040 0.C4U3
0.02 5.0240 0.0400 0.02 5 .0240 0.0400

5.4201 5.4301

5.0640 0.0040 0.0400~ 15.0240 0.0C4C~ 0.0403
0.05 5.0240 0.0400 0.05 5.0~4C 0.04(X)

5.4201 1 5. 4601

5.11 40 0.0040 0.043.) 1~ O240 C.C) C 0.04(K)
0.10 5.0240 0.0400 0. 10 5 . 3 . . )  0.0400

5.420 1 I 5.5 101

5.2 104 0.0040 0.0400 5.0240 0.~~~ s )  0.04.A~
0.20 5.0240 0.0403 0.20 5.0240 0.0400

5.4201 5.6101

5.5140 0.0040 0.0400 5.0240 0.0040 0.0400
0.50 5 .0240 0.0403 0.50 5.0240 0.0400

5.4201 5.9101

_ _ _ _ _

___________________ 
- - - - — -~ 

- -
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2 1
a~~— 

~~ Yar.-cov.: (p2) “X2 (in2
) v~r.-Cov.: (2)

4.0340 0.0040 0.0400 1 .0640 0.0040 0.0400
0.01 5.0240 O.04.X1 0.01 5.0240 0.0400

5.4201 5.4201

4.0740 0.0040 0.0400 1.2240 0.0040 0.0400
0.05 5 .0240 0.0400 0.05 5.0240 0.04 (X)

5.4201 5.4201

4 .1240 0.0040 0.0400 1 .4240 0.0040 0.0400
0.10 5.0240 0.0400 0.10 5.0240 0.0400

5.4201 5. 42 01

4 .5240 0.0040 0.0400 3.0240 0.0040 0.0400
0.50 5.0240 0.0400 0.50 5.0240 0.04 (X)

5.4201 5. 4 201

6.0240 0.0040 0.040) 9.0240 0.0040 0.0400
2.00 5.0240 0.0400 2 .00 5.0240 0.04 00

$ 5.4201 5.4201

9.0240 0.0040 0.0400 1 2 1.02 -~) 0.0040 0.0400
5.00 5.0240 0.0400 5.0) 5.0240 0.0400

5.4201 5.4201

(E) var. — cov . : (in2) ~At (sec2 var.-ccw:

5.0241 0.0040 0.0400 5.0240 0.0040 0.0400
10 5.0241 0.0400 0.001 5.0240 0.0400

5.4202 5.4201

5.0240 0.0040 0.0400 5.2200 0.2000 1.99~~~~
50 5.0245 0.0402 0.05 5.2200 1.9998

5.4 207 25.02 13

5.0240 0.0040 0.0400 5.4 199 0.3999 3.9995
100 5.0250 0.0405 0.1 5.4200 3.9998

5.4213 45.0225

5.0240 0.0040 0.0400 7 .0194 1.9996 19.9976
1003 5.0340 0.0450 0.5 7.0197 19.9991

5.4326 20S .0321

_ _ _ _  ___________ ________ —
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2
~
2i (in2

) var.-cov.: (in2) Z2 (~J var.-cov .: (in2 )

5.0240 0.0040 0.0400 5. 0240 0.0040 0.04 00
0.01 5.0240 0.0400 0.01 5.0240

4.4301 1 .4601

5.0240 0.0040 0.0400 5.0240 0.0)40 0.0403

0.05 5.0240 0.0400 0.05 5.0240 0.040)

4 .4701 1 . (2 01

5.0240 0.~~~0 0.040) 5.0240 0.~~ 0 0.0430
0.10 5.0240 0.0400 0.10 5.0240 0.0400 :

4 .5201 1 .820 1 
-

_ _ _  

I

5.0240 0.0040 0.040) 5.0240 0.0040 0.04 (X)

0.50 5.0240 0.04(X) 0.50 5.0230 0.04 (X)

4.9201 3.420~

5.0240 0.0040 0.0400 5.0240 0.0040 0.0400
.00 5.0240 0.0400 2.00 5.0240 0.0400~

6.4201 - 9.4201

5.0240 0.0040 0.0400 5.0240 0.0390 0.0403~
5.00 5.0240 0.0430 5.0240 0.0400 1

9.4201 21 .4201

‘~X (1t~
2/sec~) 

var .-cov.: (in2) ~~~~~~~~~~~~~~~~~~~~~~ 
~m
2
~ 

va- .-cov.: 
(in

2
)

5.021 1 0.0)20 0.0204 0.0740 3.0040 C.0400~
3.01 5.0240 0.0400 0.01 0.07 ;o

5.4201 0.47011

5 .0211 0.002 1 O.C238 0.5240 0.0040 0. 340)’

0.02 5.0240 0.040) 0.10 0.5243 0.34cQ

5.420 1

5 .0212 0.0022 0.0220 2 . 5240 0.0040 0.0403i
0.05 5.0240 0.0400 0.50 2.5240 0.04(X)1

5.4201 2 .9201

- 
5.0215 0.0024 0.0240 10.0240 0.0040 244.004

0.10 5.0240 0.0400 2.00 10.0240 244 .0225
5.420? 4882.5418

~1

_______

— ~~T L i f l .. J 
~~~~~~~~~~~~~~~~ 

- - 
~~~~~ 

- - 

-
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From the obtained values the following conclusions can be drawn:
a)as the accuracy of the clock-timer, which signals the time interval

~t and alerts the platform instn.mentation to operate, decreases, then
the variance of the i-coordinate gets very big values. Generally spea-
king, it is reasonable to assume that the clock-timer possesses no error
in determining ~t(observe also the increasing values of the covariances!).
b)the accuracy with which the inertial coordinates of the secorki point
are known causes horse instability than that of the first point . The va-
riance of the X -coorcIinate has no effect on the derived Z-coordinate va-
riance and the deviations in 2 cause bigger instability to i-variance

than that due to X or Y variations .
c)the accuracy of the gravity gradients has almest no effect on the es~ i-
mation of the inertial coordinates . This is really something surprising
and not known so far. It can be explained as fo].lows:if one performs the
tedious manipulation on the simulated navigation eq.(5.2.13), one could
see that all terms containing gravity gradients are -rtultiplied by the
fourth power of the time interval t~t and by other small quantities. Thus,
their influence is strongly reduced.
d) the variance of the gravity components of the first poi nt has alr~ st no
influence on the variance of the coordinates of the third point . Even if
the variance is equal to the value of the gravity component(!), then the
variance of the third point is burdened by half a meter mere .
e)acceleration seems to have no great influence on the der ived accuracy
of the third point . But, as we shall see later , acceleration variation
creates the biggest errors in the system ai~~ng the 10 observables.

So far the analysis has given the first results , namely , the behaviour
of the navigation system with respect to the parameters . Next we try to
investigate how the system performs going from point to pcint. During
that process the observables are undergone small changes exce?t for the
variances of the coordinates of the first twc’ roints which are assumed
to be zero . The same computer procedure is ~s~d and applied for son~
first points due to reasons which will be explained later on. ihe space
traverse gives the following results:(see next page)

5.4 Discussion

First , it has to be noted that the statistical analysis up to now has not
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2 2 2 2
Point o

~ ~ 
) °

~
‘ 

___________

3 0.000016 0.000016 0.0)3314

4 0.000080 0.000080 0.016570
- 5 0.000352 0.000352 0.072908

6 0.001504 0.0)1504 0.3 115

7 O.0(X384 0.006384 1.3222

8 0.02706 0.02706 5.6036

9 0.1146 0.1146 23. 399

10 0.4855 0.4855 100.5665

11 2.0566 2.0566 426.0092

12 8. 709 5 8.709 5 18~4.6066

13 ~36.89C~6 36.8965 7644 .4 1 3

Table(3) : A space traverse of a gradiometer-aided inertial navi gation
system.

included any error model of the platform instrumentation. But, certain

errors do exist which som’2time~ turn to be important . Gyro dr i f t , in-
tial platform misalignment , gyro non-orthogonality etc . are some errors
which in a rigorous statistical analysis have to be modelled and taker.
into consideration. All these probl ems are thoroughly examined ir. simu-

lation I I .

The performed simulation studies did have the oDjective to be simple and
as such the fol low ing conclusions can be drawn :
a) first of all it is clear that the gradiometer—aided inertial navi gation
system we analyse does not perform we ll as far as the accuracy of the de-
rived coordinates is concerned. The first few points, say up to the tenth,

could be reached with satisfac~ory precisiori(see Table(3)). Then the accu-
mulation of the system ’s errors becomes so high tha t the performa- c’ of it

can be considered as unreasonable.
b)manipulating the expressions of the variances-covariances of the si~-
lated equations(Table(1)), we find that besides all other terms, there

are two of great interest
1)the variance of the (i-1)-point multiplied by four and
2)the variance of the (i-2)-point

in case the inertial instninentation is at the i-point. It is worth noting
that both terms have positive sign.

— — -- —
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c)the answer to the bad behaviour of the system lies on the conclusion
b) . If we assi~m~ that the first two sets of the inertial coordinates
have zero variances, then all other terms of the variance-covariance
expressions are stuaned to give the variances of the coordinates of
the third point. Four tUnes this variance plus the variance of the se-
cond point (plus other small terms ) will give us the variance for the
fourth point . The same procedure is applied through all other points.

It is therefore clearly understood that the following approximate law

i-point variance = 4~ (i-1)-point variance÷(i-2) -point variance

is valid for the space traverse under consideration.Consequently, an

appreciable percentage of the navigation system’s error budget comes

from the approximation used .
d)next we try to see the error contribution of the acceleration and

gravity gradients measurements into the-system. To that objective two

additional space traverses are performed . In the first one all other
quantities except the apparent acceleration components assume zero
variances throughout the navigation path, Thus, the error contribution

of the function under consideration can be deduced and compared to

the system’s error budget at a selected point. The same procedure is
followed for the gravity gradients case. The results are listed below:

________ 
Acce1er~ neter Gradio~,ete r
2 2  7

~~T ‘ 2 ’point CfO Y*o Z .~m ) a~=o~-c :(m~)

3 0.10 10~~ 2 .~ O

4 0.50 10~~ 1.35 10~~
S 0.22 10~ 5.94 1O~
6 0.94 1O~~ 2. 53 10 8

7 0. 40 ~~~~~~ 1 .07

8 0. 17 10~~ 4 .56 t 0~~
9 0.72 ~o

2 1 .93

TO 0.31 7Q 1 8 . 79 70~~

From the listed results it is evident that

1)the accelerometer error contribution into the system’-~ error budget is

about 7% of the total and
2)the gradiometers work perfectly well in such a navigation system. Their

-- —-—--—----——.-———————~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
____________________________ . 

_
— I
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error contribution is really minimal.

In the next pages we give some representative r~ nographs which illu-

strate the behaviour of the parameters of the system relevant to the
obtained accuracy of the inertial coordinates .

In section 7 we will come again to discuss the same topic but thi s time
detailed error models for the accelerometer and gravity gradients functions

will be included to see if the sYstem’s resul ts could be improved .

Exp~~via_tc-~.y viu~te: The ~oUo~&Ln ~ ~yr~.bc~’U~rn £~ u..ô~d -Lvi .thc a-tt~.che.d ‘ic-
mO3tO~p h4 

~~~~~~~
. c~~(A~ ). U rneaii~ .tha~t c~ uiide~~oc~’

.tke. ch~in~c~ pic dt~d12 by ~thc ‘L e4p ectL~e Line cu~~
Ax a~~~ Lfl1 C~t )tavige O~ V~iLLLCA .

12

I
- —  —— - ~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~ 

-
~~~~~

.-
~~~~~~— ~~~~~~~~~~~~~~

-
-~~~~

- 

~~~~~~~ -~~~~~~~ - - — -~~~~-.
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6. Inertial measurement unit ai~antization error analysis

6.1 The general equation

~ .iantization errors constitute a special error category in every instru-
mental package and must be clearl y distinguished from rourxl -off errors ,
con~nutation errors etc. Q..iantization errors arise from the fac t that the
inertial measurement units measure continuous physical quantities such
as, say, the apparent acceleration vector components. Assuming tha t at
each observation point at which the inertial instruments are read a quan-
tization error exists, then its additive net effect will burden the de-
sired output of the navigation system with an additional error . In our
analysis, the system computes geocentric coordinates mak ing use of acce-
lerometer and gradiometer measurements. Expressing position with respect
to the measurables and attaching to them di fferent quantizat ion errors ,
then the position error could be computed treating the quanti. :ataon
errors as stochastic quantities . ~egarding the up-to-date accuracy of
the inertial navigation systems, ~t will be seen that the quantization-

induced position error is not of great inpc’rtance(due to its small mag-
nitude). &~t , there is one case in which that error could be of great inte-
rest. As we have already seen , all inerti3l navigation systems ~~thout
exception must be initially aligned to a desirable coordinate system
prior to their mission. In some cases, the initial alignment procedure
can consume an appreciable long time (especially in con~nercial flights)
and during tha t time the inertial instrumentation is continuously ope-
rating and, of course, gathering quantization errors . These errors cou .d
cause an ir.itial misali gnment error which is carried through the entire
m ission .

Consequently, it is our belief that quantization errors must be always
considered to preestimnate how badly they bu:iien the system ’s output. In
what follows, we present the first unique gr.~ iometer-aided inertial na-

vigation systems quantization error analysis using the fumdamefltai cqua-
tion of inertial navigation used in the preceding simulation.

As we have already seen, the formula which estimates the imtrtial coord i-
nates is written in the form:

_ 
_ _ _  

1 -

— - 
- - - .4
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(6.1.1)

where A and G the rx n-gravitational and gravitational acceleration re-
spectively P indicates position(in eq. (5.2.1) R is used instead of P)
and n represents the nth_observation point . Stirling ’s formula approxi-

mates the inertial acceleration as:

(6.1 .2) P~ —A t 2 (P~~1 -2P~+ P 1 )

Eq.(6.1.2) solved for the nth_inertiai coordinate gives

(6. 1 .3) ~~~~~~~~~~~~~~~~~~~

Our policy is r~ w to express the above equation as a function of the
first two inertial coordinates which are then to be considered as error-

less quantities. In order to find the general formula which give s the
coordinates of the nth_point, we write2 A 2

— ~ ~~A t  ~~~,+ At  ~.,(6.1.4) — —

P4~3P2 2P 1 +~t 2 (ZA 2.A3) +~t 2 (2G 2 +G3)

Consequently , we get

P -(n- 1)P ,- (n-2)P 1.~ t ((n- 2)A 2 + (fl- 3)A34~ 
. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(6 .1 . S)

and in surrmation form

n-I
(6. 1 .6) P..~ (n—1)P2- (n—2)p 1.E (n—m) (A~

.G
~
’;
~
t2

m 2

sow, employing the free-coordinate approxim~.ation for the gravity gradi-

ents we write

(6 .1 . 7 )  G~ G~~14gradG 1 (P~ P 1)

Expressing the above equation in terms of the gravity components of the
first point plus other gravi ty gradients, we get
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(6.1.8) G~ G1+EgradG~_1 ~
‘k~~k-1~

Consequently, eq. (6 .1.6) is now written

(6.1.9) Pn (n•
~
1)P2-(n_2)Pi+E (n-m)(Am+ G1+ adG,~ 1 1~k~ k-1~ 

At

Assuming now that each time the accelerometers and gradiometers are read
a quantization error is committed , we express

(6.1.10) Pn+6Pn~
(fl_1)P2_ (n_2)P~

+E (n—rn) (Am+ q
1

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

where óPn :quanti atiori-induced position error

q1~ :acceleroneter quantization error

q~_1 :gradiometer quantization error

Taking into consideration onl y the impact of the quantization errors ,
then the position error assumes the forn

~~n—1 , ri-l rn
( 6 . 1 . 1 1 )  -~P =~~~ ~ (n -n)~~ ’ .~t ~; (n—wi Lq~ -

~ in~2 m— 2 k~2

We shall derive now the genera l relation for the variance~~cvariance of
the position erroi~ 6P~ . Generally, we can write

(6.1 .12) cov 5P ) _ _ F(6 Pn) } 1.tfPw
_ E I :&P

mj }

~~ich yields

cov (oP~)—E{

~ (s-r) ~ At
2(q~ 1 -E{q~ 

))
(6.1.13) r 2  ~~~~~ ~‘ 

-p-i

n—I s— i n—i s-i m r
• (n-m)(s-r)At 4D(q ,q~). E (n~m)(s~r )At 4D(q~ ,q~ ).
m•2 r~2 

~— 2 r 2 k~2 p 2
n—i s-I r

.2 : L ~ (n-m) (s-r)At 4D(q~ ,q~m-2 r~2 p-2 ~-1)

- -— .. —
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where D( ) represents the dispersion of the enclosed quantities . 8ut ,
as we have already discussed, the gradiometer measurement unit is com-
pletely separated from the accelerometers and gyros units ’ platform .
Consequently, it is reasonable to declare that the gradiometer and
accelerometer quantization errors are not correlated and therefore,
the last term of eq .(6. 1.13) is dropped . For the dispersion of the
quantization errors an exponentially decreasing correlation function
is assumed of type(see Denhard, 1977)

—

(6.1.14) D(a~.a3
)’.o2 e

where ~2 the variance of each measurable, t~-t~ the saii~ling interval
and r the correlation coefficient. Therefore, taking into account that
we have different correlation coefficient between accelerometer unit(t )
and gradiometer Uflit(t

g
)~ then the variance-covariance expressions are

given:

4 2 n-i s-i — ~ n-i S- i
var( âP ~)a 6t Ca (n-m) (s-n)e •~~~~~~- 

= (n-m) (s-n) .
n~2 n~2 g m~2 ~~~

m — 

tk _ l ’t p l I

2
k— 2 p—2

(6 .1 . 15)

n-i s-i — 

trn t r i 
. n-i s-i

COV(t $P p
~
$Pr )••At 4t7

~ ~ ~ (n—m) (s— r)e ~a (n-m) (s-r) .
m 2  r 2  m 2  r=2

m r — 
tk i tp..l J

2
k~ 2 r~ 2

where a~, a~ the accelerometer and gradiometer variances respectively.
Eqs (6.1 .15) are our simulation equations to find the order of magnitude
of the quantization-induced position error. 

--~~~~~~~-~~~~~



—— -.--. -—---—~~ -~ --

61

6.2 Results

Two computer progranines have been written and compiled in the Sieme ns
Computer, the first to examine the variance case and the second the co-

variance one. These two progranmes are listed in Appendix A. The ground

values for the five parameters of the above equations have been chosen

to be:
At .0.1 sec .

0.01 m2/sec4

o~~-1. E.

Ta •0.CO1 sec .

T
g 

-0.001 sec.

The same statistical technique used in simulation I , is followed again

for the quantization error simulation studies. Four of the five parane-
ters have been kept constant and at the sane time the f i f th  one assL~ned

a range of possible values. The computer results are given below:

~2c iJ  505 100E 5005 10’JG~
_ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _  , I
[~lrne ____________ Error (n ~ _______ ______[ lsec 0.6400 io

_6 
~~~ 

-

2 0.324C i0~~ 4
3 0. 7840 10 

_______ ________ _______

S 0.2304 i0~~ ______ 

1 
________ ______

10 1 0.9604 1O~ 
‘I I 9 ’

20 0.3920 10~~ “ 1 
________ _______

30 0.8880 10~~ “ “ I “
40 0. 1 584 10~~ “ ‘ 9

50 0.2430 10—i 1

60 0.3576 i0~~ ~~~~~~~~~~~ “ 
_______ J

_____ 

L0~~~m , 1 2,~ 4J 0.(U5m 2/se.~
4 O .0)m 2/se~~ O 0 , n 2 / ~ t9c 4 0 05n 2

’set 4 o. i1~2/sec4 j

_____ ____________ —_______ Jrror (r~ ) -

lsec1 0.6400 I0~~ 0. 16(X) i0
_6 

0.6400 0. 2560_1~~~~~ O .16W _io~ ’ I  0.6400 io 4J

2 0.3240 10~~ 0.8100 1O~~ 0.3240 10~~ ~‘. 1296 10 0.8100 10’
~ 0.3240

3 0.7840 1O~~ 0.1960 1O~~ 0. 7840 1O~~ 0.3136 10’
~~ 0.1960 10

’
~ 0.7~ 40

5 0.2304 10’
~ 0.5760 i0~~ 0.2304 i0’

~ 0.9216 i0~~ 0.5760 10’
~ 0.2304

10 0.9604 io 6 0.2401 10~~ 0.9604 10~~ 0.3842 10~~ 0.2401 io 2 0.9604 lO~~

20 0.3920 10’s 0.9801 10
_p 

0.3920 0.1568 i0~~ 0.9301 10~~ 0.3920 10
_ i

30 0.8880 10’
~ 0.2220 1O~~ 0.8880 10~~ 0.3552 10-2 0.2220 10

_ i  
0.8880 1O~~

40 0.1584 10— p 0.3960 10~~ 0.1584 io 2 0.6336 1O~~ 0.3960 10
_i 

0.158 4

SO 0.2480 J0 ~~ 0.6200 10~~ 0.2480 I0~~ 0.9920 i0~~ 0.6200 10~~ 0.2480

60 0.3576 I0~~ 0.8940 ~~ 0.3576 1O~~ 0.1430 10
_ i 

0.8940 10
_i 

0.3576

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 

~~~~~~~~~~~~~~~~~~~~~~~~
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0.10 10~ 0.20 i0~ 0.30 i0~ 0.40 iO~ 0.50 i0~ 0.60 i0’
~ 0. 70 10~~ 0.80 i0’

~
0.10 10_s 

0.20 10~~ 0.30 1O~~ 0.40 10~~ 0.50 I0~~ 0.60 10~~ 0.70 10~’~ 0.80 10~~

0.50 1O~~ 0.80 i0~~ 0.11 0.14 io 8 0.17 io 8 0.20 io
_8 

0.23 1o~8

I~~~~~0~~~
0.80 10~~ 0.11 10~~ 0.14 10~~ 0. 17 ~~~ 0.20 I0~~ 0.23

10 .14 io-8 0.20 io 8 0.26 io 8 0.32 10
_8 

0.38 10
_s 

0.44 1o 8

0.20 i0~ 0.26 0.32 10~~ 0.38 10~~ 0.44 i0~~

1 0.30 io-8 0.40 io 8 0.50 io 8 0.60 ~~~~~~~ 0.70 10
_s

0.30 i0~~ 0.40 10~~ 0.50 I0~~ 0.60 10 ’
~ 0. 70 ,~~ 4

0.55 10~~ o.70 io 8 0.85 i0~~ 0.10 i0~
0.~ 0 10~~ 0.85 i0~~ 3.10

Acceleration-induced quantization 0.91 1O~~ 0 . 1 1  iC~~ 0. 3 ~O

error.The first rows represent ~0.91 10~ 0.i~ ~0 0.13 10~~

a =0.001 and the second ones oa~
_O.1in2 /sec4 0.14 0.17 ‘0

(Covariance case) [0.14 ~~~ o.i~ 10~

0.20
0.20

__________________ _________ 1~t=a)0.01sec b)0.i sec 2 1c 0.Ssec ~i)~ sec
ii~ir9c~~~ Erro (’n ) _________________

a)0.l sec b) isec c )Ssec d)lOsec lO.6400 iO~~°I0.64o0 1o
6 b.4oco 10 3

~ D.~ 4cX) 10~
9 -5~~~ 

_ 2 t
0.2 2 10 20 ~ .3240 10 0.3240 10 F.2025 10 .3240 10

0.3 3 iS 30 0.~840 io
-
~ 10. 7840 10 b.4900 10~ F’

784°

0.5 5 25 50 0.23 04 io 8 
10.2304 l0~

’
~ 0.1440 10

_i 
0.2304

1 10 50 1(X) ~0.9604 10
_i 

0.9604 10~~ ~0.6003 10~ 0.9604

2 20 100 200 10.3920 10 ” 0.3920 0.2450 13 .9200

3 30 150 300 0.888C 10~ 0.8880 10~ 0.5550 ~8.8 800

4 40 200 400 ~O .1584 1O~~~ 0.1 584 10~ 0.9900

5 50 250 50) .0.2480 10— 6 0.2480 10~~ 1 .5500 24.80) 1
-___________________________________ - 

‘

I

6 60 300 600 0.3576 10”~ 0.3576 10 .122.3500 35.760
_________________________ I

0.10 10’
~ 0.20 10 ’ 0.30 10~~ 0.40 10

_i 
0.50 i0~~ 0.60 1O~~ 0.70 10

_ I 
0.80 10~~1 0.50 10 ’ 0.80 io~ 0. 11 io 6 0.14 10~~ 0.17 i0~~ 0.20 10~~ 0.23

0.14 io 6 0.20 10~~ 0.26 i0~~ 0.3 2 10~~ 0.38 io 6 0.44 10 _6

0.30 io 6 0.40 10
_b 

0.50 io 6 0.60 10
_b 

0. 70 1o~~
0.55 io 6 

~:;~ ~g: 
~~~~ ~~~ ~!~

i

Gravity gradients-induced quantiza tion error (the same output matrix
from 1E -1000E) . The same results for t

g~ (Covariance case) 
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0.10 10~~ 0.20 10
_i 

0.30 10
_ i 

0.40 10~~ 0.50 10
_ i 

0.60 10~~ 0.70 10~ 0.80 10~
0.10 io~ 0.29 10

_i 
0.56 10~~ 0.91 1O~~ 0.13 iO b 0. 1 8 io.6 0.23 i0’

~ 0.29 10-s

0.50 10
_ i 

0.80 10
_i 

0.11 10~~ 0.14 i0 6 0. 17 10
_b 

0.20 10~~ 0.23 io~
10.86 10~~ 0.17 10~~ 0.27 10

_b 
0.40 io b 0. 55 10~~ 0. 7 1 1C~~ 0.?9

0. 14 i0~~ 0.20 1O 6 0.26 io
_6 

0.32 10~~ 0.38 i0~ 0.44

0.33 i0~~ 0.55 io 6 0.80 10~’ 0.11 10’
~ 0.14 10’s 0.8

~0.30 1o
_6 

0.40 io-6 o.so io~~ 0.60 ~~~ 0.70 1C~~
_ o~~,

o.i~ io~ O.~ 8 10~~ 0.24 10~ 0.30

0.55 i0~~ 0.~ 0 10~~ C. 85 10~~ UJ O iC~~
0.2 7 1 O~~ 0.3~ 10~ 0.45 ~~~

Correlation coefficient-induced quan- 10.91 10~ 0.11 i 2~ 0. 12

tization error. The first rows repre- ~~~~~~~ io~~ 0.S0 iC~ 0.63

sent r =0.002 and the second ones 
-

~~a o.L~ 10• O.’7 ~¶ =1 sec. (~ovar1ance case)a ~~ s ~o o.& i~

10.20 10~

6.3 Discussion

For the given results the following coITr~ nts si’mmarize their ~cani~g:
a)conçaring the errors con~iiited by the gradiometer-aided navigation
system wi th t}X)se coming from the quantization studies, it can be cle-
arly seen that the latter errors constitute a very small auantitv. The
results can be generally considered as satisfactory in viei~ of the fac t
that the approximation formula used for the inertial acceleration compo-
nents approximates grossly the reality us~’.g only three points. If i~ i~
terms in the Stirling’s formul a are taken into account, then tl~ qu~’nti-
zation error studies’ results would be effectively reduced.
b)the sampling interval ~t is the worst contributing error factor in
the quantization error . Decreasing the operation of the system to the
order of 1O( ten) , then the quantization errors ir~ rease up to the 1O3.
c) for the rest four parameters of the system only the accelerometer va-
riance causes changes in the quantization error budget . For exa~ le ,

- - - - - - - a.
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decreasing the variance of the measured acceleration 10 times , then

the quantization errors ir~ rease up to the io2 .

d)when the parameters °g’ ~a’ 
tg undergo their range of changes , the qu-

antization errors remain unaffected. For that reason we have listed
only the ag contribution with the understanding that the rest two pa-
rameters give identical results
e) conui~nts b) and c) are also val id for the covariance case which is
included herein for instructive purposes.

In the next pages we give some representative nonographs to picture
briefly the quantization error studies results.
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7. Sinulation II: The General Error Ibdel

7.1 Accelerometer Error Studies

It is well-known that the accelerometer frame is materialized by the
three input axes of the on-board accelerometers . Since it is instrumen-
tally impossible to direct three axes so as to constructan orthogonal
frame, the accelerometer frame is finally a non-orthogonal or quasi-
orthogonal frame. Consequently, the fact of measuring the apparent
acceleration components along a non-orthogonal frame should be seriou-
sly taken into account. Having corrected the sensed acceleration for
accelerometer non-orthogonality, then it refers to the actual platform
frame. A transformation which takes the acceleration signal from the
actual platform frame to the ideal one , is the next step to be accom-
plished. All gyro m.isfunctions are included in the aforementioned trans-
formation . As soon as the apparent acceleration refers to the ideal
platform frame , which in our case coincides with the navigation frame ,
then its components can enter the general equation of inertial naviga-
tion.

Taking into consideration what is discussed above, the apparent acce-
leration signal transformation could he illustrated by the general re-

presentation

(7 .1.1) AN _ O P CP Aa

where AN Aa represent the acceleration signal coordinatized in the na-
vigation and accelerometer frames respectively and C represents the di-
rection cosine matrix(from where the notation comes) which transforms
the frame indicated by the subscript to that indicated by the super-
script. ~a and P’ denote the actual and ideal platform frames respe-
ctively.

Since we are using very often transformations of type aff ine and simila-
rity ones , it would be helpful to define them from the beginning
a)the group of the affine transformations can be represented by a ro-
tation matrix H plus a transformation vector t , that is

(7 .1.2) T(u)Hu’t



-- 

~~~~~~~~~~

- -

~~~~~~~~~~~~

- - -

~~~~~~~~~~~~

- - —

69

(see Grafarend and Schaffrin, 1976) . The af fine transformation preserves
Euclidean parallelism, straight lines are transformed into straight li-
nes arid planes into planes.
b)when the t~v relations

H — XR
(7.1 .3)

R 1 R 1

hold , then the af fine transformation group is called similari ty transfor-
mation group and under that ratios of distances and angles are preserved.

In our analysi s, skew-s~~~etric matrices, denoted by R~, are ve ry cft~~
used to transform two misaligned orthogonal coordinate frames into ea~ .

other in case the misalignment angles are considered srna~l. It helps ia
the understanding of what. follows to note that skew—sy ~iunetric matrices
are always transformed ‘inder the similarity group .

~bw, we shall try to determine the t~’o transformation matrices nvo v~~
in eq. (7.1.1) taking into account the error sources which cause them
to depart from the identity matrix.

1. Ca - transformation

The ~~~sformation between the quasi-orthogonal accelerometer fra.’r.t a and
the orthogonal actual platform frame pa is a “small angle” transformatior,
parametarized by the small angle rotations cor.ne. ting the two frames. This
transformatio” is treated in many textbooks in detail and it will n~t be

further considered herein(for a discussion see Britting , 1971 , p .3~). Ta-

king into account the angles definition depicted in Fig. (9), we write

(7 . 1.4) - Aa 1 
~~~~~~~

CZX 1 _~I .

I



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -~~~~~~~
_____

70

A

A Z

C fl~
CZY -

£

p
a

- Y

£

cry

x
Ax 

£XZ

Fi g. (9) : Actual platfo rm , accelerometer frames geomet ry .

The only problem on which we like to draw atten~ion concerning the above
transformation is that the angles ins id e the C~ matrix are very sma ll as
well as the off diagonal terms are not equal , e .g . € ~~.. ~ ~~~~~

_ . The justi-
fication for that comes from the non-orthogonality of the ac.elerometer
frame. Consequentl y, a small rotation about , say , the ak -axis f i rs t  ar.d
then about ay and aZ will not be sufficient to bring the accelero nete r

frame in coincidence with the actual p latfc ~ . We note , finally , t~ut the

six angles depicted in eq. (.1.4) can be measured by well-known alignment
techniques .

p1
2. C - transformation

p1
As we said before , the c a -transformation is by far the most critical
operational procedure in~the whole navigation systems analysis. Deeply
thinking, what is written in the literature known to the writer could

be considered as a mess as far as thi s transformation is concerned . Con-
sequently, we feel that it is our turn to put things into an order by
making from the very beginning the following statements:

—- 
— - -
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a) When the ui ving vehicle is at the starting point we have to decide
which will be the computation-navigation-ideal platform frame . In
our analysis , the decision was taken in favour of the Greenwich
orthogonal frame and it was inscribed on the moving platform ever-
after .

b) In order to have at any ti~~ instant the ideal platform frame paral-
- lel to the navigation frame , the fon~ r is conmanded to the earth’ s

rotation.
c) The following statement has no impact on the mathematical analysis

of the problem under consideration , but it has to be made in order
to give rigor and clarity to the general concept: an inertial coor-
dinate frame is somehow and somewhere inscribed on the movi.i-~, plat-
form and we refer to it when we postulate that the platform rotates .
The first idea to be accompl ished is to materialize such an i nertial
frame by a set of three single-degree-of -freedom comoving bi~. ~nert ially
stabilized gyros . Otherwise , who can insist on saying that th~ mo-
ving platform is inertially rotating?

d) The couinand for pla tform rotation equals to the earti. ’s rotation
is injected to the gyros which drive then the pla tform accord ingly.
But since the gyros , like all other instrianental units , are bu:~ ene~
w~.th a variety of s~rious errors e.g. gyro drift , they have to be
plugged into the C

~a 
- transformation.

e) At the starting point, the platform frame is set to be parallel to
the navigation frame . Of course, this is by no means true and thus
an initial misalignment is everafter present.

Let us now proceed in determining the discussed transformation. As it
is shown in Fig. (10), at the starting point(t=O) the actual platform
frame Pa has a small initial uiisalignrnent with respect to the ideal
platform frame P’ due to the errors in the alignment procedure. These
two frames seen at another time instant t havc already changed their
respective attitude due only to the inabilitics of the gyros. The actu-
al platform frame , besides its initial misalignment, nas already got
another small angle distortion , time dependent one , denoted by the
angles 6i (i=X ,Y ,Z) .  At any time instant t , the actual platfo rm frame
can be linked to the ideal platform frame (or for that matter Xo the
navigation frame) with the general transformation : 
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(7.1.S)

where the R~~°- transformation relates the actual platform frame at t ime
instant t “t to that actual platform frame at the starting point and

P1
the R - transformation is the initial misalignment transformation .

p~
.
0

i a

!UZ

~

~~m1
at

/ ~~~~ / o
p
1 ~~~ ~~~~~~~ / N 1’~~ ~ a

1 /  X a r\ ,~~
\
\ / ~~~~ 

~~~~j p O

I !  x ’~
( ~~~~~~~~

I! /
I! a , ../

X

p
ao 

fl~.y 0

Fig. (10) : Platform frames variations .

p1The R a - transformation is a constant matrix trans formation and pre-
sents~t0 no dificulties. According to the given angles definition, we

could write(see Fig. (10)):

A
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(7.1.6) R~ — 1 —m
p

~~0 ~~~

- X
I

t
Let us now abstractly denote the R a

0 - transformation by
Pt

(7.1.7) R a
0 

= 1 6.. 1 1
~x 1

Pt I

where the elements of the rnatri~ represent small angles or rotations

due to gyro errors. Let us therefore analyse them :

a) the gyro frame is const ructed by the three spin axes of three on-

board mounted gyros. They, generally, instnnrtent a non-orthogonsi or

quasi-orthogonal frame . Consequently, the transformation between the

quasi-orthogonal gyro f rame and the actual platform frame reads :

(7.1.8) — 0 
~ zx

oJ

where the s’ s represent small misalignment angles and the same corn-

ments as in the accelerometer case apply to the gyro non-orthogonality.

b)now, we demand from the gyros to conm~and the platform wi th the earth’ s

rotation, but since the three gyros have generally different scale

factor uncertainty, then the signal for the respective rotation is ta~-

sified. The gyro scale factor uncertainty matrix is expressed as

(7. 1.9) U.}o Uy 0

L ° ~~ J

—



74

where ~~~~ and U2 represent the X,Y and Z gyro scale factor uncertainty
respectively
c)taking into account eqs(7.1.7), (7.1.8) and(7.1.9), we find the error
angle ~ to be expressed as:

6~ r~
- yz

~z j  ~(7.1.10) 6y — 
~~~~~~~~ U~y

6Z { z X Y ~ ’Yx W Z

where 
~~~~~~~~ 

the earth’s rotation components. From the last equation,
it is clearly seen that the gyros channel a signal for the earth’ s ro-
tation to the actual platfo rm frame plus an error rotation due to the
gyro non-orthogonality and scale fac tor uncertainty. This error signa l
is proportional to tkle applied rotation, in our case the earth’s rotation.

Consequently, the R~to-transformation can be analytically written asp8~

• I I

~~~~~~~~~~~~~~~~~~~~~
pa~

(7.1 .11) — (tJ
1

— $~~y~~~~y~~)w ~~ 1 - ~~~~~~~~~~~~~~~~~~~~~~~~~~~

(u x~ yf~zy )
~~ 1

The off-diagonal terms of the above matrix are time dependent quantities
and describe tha t as the gyro frame drifts changing its angles of non-
orthogonality, then the attitude of the actual platform f rame is affe-
cted . In case in which the gyro frame is orthogonal, it is not drifting ,
has no scale factor uncertainty and in absence of initial misalignment ,
then the actual platform frame is nothing else but the ideal platform
frame . It is therefore seen that the time increasing gyro drift causes
the above off-diagonal terms (those inside the parentheses) to edst.

Taking into account eqs (7.1.5), (7.1.6) and (7 .1 .11) ,  we find the ge-
neral transformation taking the accelerometer signal from the misaligned,
non-orthogonal accelerometer frame to the navigation earth-linked frame
to read:

_ _ _ _ _ _ _  
- _______________ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — —
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?bw, since the apparent acceleration components are measured by three

actual accelerometers, it is logical to assune an overal l accelerome-
ter error n~del. Taking into account that each. accelerometer has
its own scale factor uncertainty, bias and random uncertainty, a gene-
ral accelerometer error medel could be expressed as (Bri tt ing ,1971 ,

Denhard, 1977) :

a 
— — 

in aAx 1’~~~ 0 0 Ax bx UX

(7.1.13) 4 • 0 I+a~ 
+ +

Aa 0 0 1+a ba u~Z 

- 

Z Z 
L

where A~ (i=X ,Y ,Z) indicates the apparent acceleration output signal
of the quasi-orthogonal accelerometer frame
A~

’1( i X ,Y , Z) indicates the apparent acceleration as an input ~n
the accelerometer frame
a1 (i=X ,Y,Z) the accelerometer scale factor uncertainty
b~ (i=X,Y,Z) the acceleror.eter bias and
u~ (i=X,Y,Z) the accelerometer random uncertainty.

As it is easily seen, eq.(7.l.13) is an affine transformation. Needless
to say that the left hand side of thi s equation is the acceleration
signal to be trans formed to the navigation frame, as per eq. (7 .1. 1 1),
in order to be used for the simulation studies.

7.2 Gradiometer error studies

In our inertial navigation platfo rm , the s~herical gradiometer e1ipioyed
has been developed and tested in M.I.T. Each instrunent has the capabi-
lity of measuring two independent gravity gradients and therefore, thre ..
of them could furnish the whole gravity gradient tensor plus a redundant
gradient indicating accuracy. As it is intuitively understood , the mea-
suring process is quite complicated due to the inherent electronics,
but in principle the following fundamental ideas are very helpful :

- -
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a)(~ing into the very beginning of the gradiometer unit, what is really
sensed and measured is nothing else but rotations of the float with re-
spect to the stabilised housing. These rotations are sensed by a set of
electronic axes and applied back to restore the initial float attitude .
The measurements of these rotations represent measurements of gravi ty
gradients. Taking into account the most general case in which the elec-

tronic frame is non-orthogonal and is slightly misaligned with respect
to the float frame , then these effects have an error influence on the
measurements of the gravity gradients which must be anyway compensated .

b)The f loat frame has a certain prescribed orientation with respect to

the axes of principal moments of inertia. But due to various reasons,
e.g. inability in locating for perfect the axes of princ ipal moments
of inertia, the floa t frame is thus considered to be slightly misalig—
ned with respect to the ideal float fraii~e.

c)As all ins:nr.ental packages so the gradiometer one has its ow~ ir1strc-
mental axes along of which the gravity gradients are measured. Our grt-
diometer package frame is the ideal float frame into WhiCh gravity gra-

dients measured by a non—orthogonal electronic frame must be finally
transformed .
it is now clear that on each float four different sets of coordinate
frames exist. These frames are :

1. Principal moments of inertia coordinate frame(P.)
2. Gradiometer measurement unit coordinate frame(G

~
)

3. Actual float frame (F~ ) and
4. Electronic frame (E1)

We have to ren~ rk that the and G1 frames arc invariant fr om tri e gra-

diometer configuration , but the frames F1 and E1 do deper~i on tha t as

per Fig. (11 ) .

In order to get the expressions of the gr~~itv gradients referre.~ .o
the G1-frame, we proceed as follows :
a) from the general gradiometer torques equations find their respectivL

ones expressed in the G~, F1, Ei-frames , for the torque equations are
given in the P1-frame .
b) fi rxl the relations between torques in the electronic f rame and gra-
vity gradients expressed in the gradiometer measurement uni t frame as

- — -~~ ---- — -- -  - -- - - —
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Fig.(11): spherical gradiometer geometry and reference svster~s
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well as instnmiental non-orthogonalities and misalignment angles .

c)find the expressions for the gravity gradients in the P1-frame with re-
spect to the torques in the s-.me frame .
d)get the final relationship between gravity gradients in the electronic

frame and those referred to the gradiometer measurement uni t frame.

As soon as the steps a)-d) ha’~e been carri ed out and the gravi ty gra-

dients in the G1-frame have been got, 
then we have to consider a gene-

ral mise-rientatior. of that frame with respect to the inertial one to

~-.~ach the gravity gradients f inal ly  refer . Then , the gradient tensor

after this very leng thy procedure could be used in the final equation

of inertial navigation if an~ only if a special coordinate 
transformu-

t~ un is applied to “switch” the grad~ents from the inertial frame- iro

the operational earth-fixed nav~gat !on frame.

Strictly speaking , the mentioned navi gation frame cannot be used sinc e-

the coordinate differences referrod to it cannot be integrated. The re~-

son for that is tha t such a f rame is a fccted by time-like niisclosures

due to polar motion. These m~sc1csures have been computed , but in terre-

strial navigation applications ~i-e to be safely neglected (Doukakis ,~9?~ ;.

As it is seen fret.. Fig. (11), the moments or torques measured along P 1 and

~2 
princ ipal moments of inertia axes are given(Trageser ,197S):

M1 
— -

(7~~.1) M,

~1 ~~~~~~~~~~
Eqs ~7 .2 .1 )  will now be t ransfo rmed into the gradiometer measurement uni t

axes. Let us first consider the XY-float configuration and particularly

the (P2P3)-plane(the 
same analysis is applied in all configurations by a

simple permutation on the indices). The axes .‘re depicted in Fig. (1 ) .

From elementary plane vector calculus we get

(1.2.2 ) X 42cos4~ 43sj n4s’

&~ --~2sin45+P3cos4s
9

Represent ing the gravity gradient field by r , we could write

(7.2.3) 
- 

r 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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p
3

-- 
.

Fig. (12) : Axes configuration in the (P 2P3) -plane of the XY-float .

where the g ’s represent gravity gradients , \~w , each gradient can be

written as

(7 .2 .4) 
~~~

. .  — (:.3~)

and thus we get

——(~~.ç.g~~) ~-4-(~ (F ~~~ )-~~~(‘  &~) ~ — ~~~~~~~~~~~~~~~~~~~~~~~ -g~~~ sin2 45

(7.2.5) -gp p

where the letter over the gravity gradients indicates the frame which they

refer to.

In view of eqs ( 7 . 2 . 1)  and (7.2.5) as well as the XY-float configuration

schematic, we get
- 

G
- .-

~~~— 
~~~~~~~

where it is understood that the gravity gradients refer to the same coor-

dinate frame as the measured moments , then the gravi ty gradient super-

script is dropped for simplicity , If eq(’.2.4) is applied to the other
planes , then we can get:

C
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G
(7 .2.6) M~ ..-ç(g2~+g2~) XY-float

C A lMz —~
(gyy g~~)

By a simple permutation of the indices, we obtain for the YZ and ZX —

float configurations the following :

C
—

C
( 7 . 2 .7) = ~~(g~ +g~~) Y -float

C

— 

M~

C -

~
C
M~ * - g y2 \~~ ZX-fioat

C

Eqs( .2.’j express the nor~er.t s cocrd ina t~ :ed in the gradioneter rP.€-a -~n-~-
ment uni t frame and hold as th -j v stand for t r ie actual float franc- ~~~

. ~s

well as the electronic frame E~ changing cnlv the superscript G by F an~
~ respec tively .

We have now to fi r~i the relation between the torques measured in the
electronic frame , being the gradiometer sensor for gravity grad~e-ns,

~r1d the gravity gradients coordinatized in the gradiometer measurement
unit frame taking into accour.t instrumental non-orth~gonality ~~ rni~-
ali gnment. First , let us consider Lhe case in which the elec t ronic fra-
me is a non-orthogona l one and also misaligned with respect to the actuai
float frame (sec FAg. (13)). As we have already explained in the acCelero-
meter studies , the n’.atri which trans forms the momer,ts of the € - ~ctronic
franw to those of the float frame is exactly a~; per eq. (7 . 1 . 4 ) .  Thercfor~- ,
we write -

F E E
Mx — Mx eyzMy

1.ezyMz

F E E E
(1 2 8) ~~~ ~ xz Mx +My _e zx Mz

E E L
~L2 --e i4~~ 8~~ M~,4t-.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ 
- .~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Ex 

unit sphere

Fig .( 13) : Relation between actual float and electronic frames.

Solution of eqs(7 .2 . a )  wi th  respec t to the electronic torque s , disregar-

ding produc ts of small angles , gives

E F F F

Mx
E F F  F

C’ .2.9) 
~~
F F F
M_ 

~~~~~~ ~~~~~

and since the electronic torques are equal in magni tude and opposite in
sign to the torques caused by the gravity field, we get

E F F F
Mx
E F F  F

(7.2.10) ~ -e~~~-R~,-e,~~t,

E F F F
M2

where the bar over the torques indicates tha t these torques come from the
physical entity of gravity.

N~w, let us trans form the gravity gradients which refer to the gradiome-
ter measurement uni t frame into those referred to the actual float frame . 

-
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Taking into account that the float frame is misaligned with

‘h misalignment angle about the G
~
_axis

:
then , the gravity gradients sensed by the XY-float configuration read

F C C G
g~~-2g~~.qi,+2g~~qi3

F C C C
- g~~ 2g12~1 -2g>~~3

( 7 2 . 11) F C C C C Cg7> -g1~I~I~
F C C C C C

- g 2\~~~ (g 22 &~~ y
) ,1

g ç~,A 2 ~~~~~~~~~~~

We rewrite nc-.~ tne fir~-t three- e~uat:ons from e~ s(7 .2.7) An the actua l

float frame as

F ~~~F F

F F F
(7 .2 .1 2a )  My 

— —

A’ F
M —

Solution of the above eq iations wit~ recpect to the gravity gr~
.dicnts

gives
F i A 1 F

Mx
F F

(7. 2 .1 2b) ~~~F F

Combining eqs~7 ..lO) , (..1H andC7 .2 . l~~ , we see tha t th~ X-channe l

electronic torque ass~nnes the form

F .
~~ 

( ‘ C  C G C C C u  C C C

Mx
C G C C C  C C C C  C C C C

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ 
.- 2A~~ y. ~~

After some manipulation , we obtain the electronic torques for all three

float configurations to read : 

~~~~~~~~~~—- -~~~~~~~~- 
- 

-~~~ ~~~~--~~~ - -~~~~~~-
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— 

EY V M  G C C C C  C C C C C  C C
= -r ~ (Zzf&zy) 

~ ~~~~~~~~~~~~ ~ ~~~~~~~~~~ ~~~~~~~ ~~ (g~ .g~ ) 9~ +

C G
+ (g~~~~-g~~~~) e~ )

E Al C C  C C C  C C C  C C  C C
r ~~~~~~~~ 

(g22-gyy-&y~~) ‘P1 + 

~~~~zZ~& ‘Pf (g2y-g1~) 1p3
+ (&2~-g2~)e~1-

C C
- (&yy~~~

) 
~~)

E Al C C  C C C C C  C C

r ~ (g~~-g~~ -2g12~1 ~~~~~~~~~~~~~~~~ 
(g1~

+g2y) 
~~~~~

- (g~~+g~~) e~ )

C C C C G C C C

Mx - 
~~~~~~ 

(g.~-g 2)+4g
12 ~ -2

g~~~- 2g~~~- (g~ +g~2) exz- (g~y+g~-) °~y~
F_y~ C C  C C  C C  G C C C  C C

~~~ -1.L( (g ~~~~~~~ (g~~~~-g~~2
) ‘P~ 

+ (g 21-g~~~~~ g21) ’P2~~ ~~~-g~~gy,) 
~

i

~~

+ (g, -g~~~ ) e~
_+

(7.2.13) C C
+ (g~~~~~~~~~ i)  ~~~

E.~. C C C C C C C  C C C  C C
~~~ ~ (g\y+~2) + (g~ -gx~

) ‘P 1 + (g~~~(
-gy2 g21) ‘P2k (gyy-g~~-gy2) ‘P3W ~~~~~~~

G C
+ (g~.y +g~.) °-

~~

C C  C G C C C  C G C C C
~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

C C
+ (g,~~,+g~~~~) en,)

E_ .~, C C C G C C C C C
~~X 

~~ 
(g 22 g~~) -2g~~p 1 

+4g2~~~-Zg~~’P3- (gy~
+gy~) e12- (g~~.y+gy_ )  9’(X1

E -  C C  C C C  C C C G C G C

~~~~~~~ 

+ (g,~_g, 1~g7~)’P1 + (gy1-g.~)’P2+ (g~-g~+g~_ ) ‘Ps. ~~~~~~~~~~~~~~~~

C C

Now, eqs(7.2.7) are written in the electronic frame as follo~ss:

‘5~ ~x ~Zx~~l1

2 ~.XY E E
ET~ Y ~~ zx~~zi

2 E~ ~ £—

2 EMx ~zz~~n~
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2 Liz E E
(7.2 .14) 

~ T 
M~, —

2 L i Z~~~~~
- ~~~~~~ 

P4

2 E~x ~
3T “x ~yx~ yz

2 ~ZX -- 

~xx ~zz

2 E..x ~
~~~ 

P12 
— 

~‘x ~yz

Having excludecL eqs ( 7 . 2 . 1 4b , f , i~~, the rest six equations are then solved
in view of the Laplace condition

(7 .2.15) &~fg~.+g_ . ~—4~~~; + 2 .~

where w the earth’s rotation with respect to the inertial space,k the uni-
versal gravitational constant and e the density of the rnedi~.u” in ~iich
the navigation takes place. The solution gives:

E 4 2 2 2 - ~~ZX ‘i~~— -  ~~k~+~- L + ~~~~~~~~~~~~~ 
-.-k ,~ ~

E 1 E - F ,E_
=-.

F 1~~
- - ~~ 

-

(7.~.16)
£ 

‘ 2 ‘ Fix L~~
_

• - T~~ 
+ZMj)

F .

~~~~ X~g~., ~~~~~~ _iç ,

E 4 2 1 
2

~~~~~

If the electronic torques involved in the above equations are substitu-
ted by those given in eqs(7.2.13), then a ter a tedious manipul~~ icn we
get the relations between gravity gradients in tn~ electronic fr ~ it and
gradiometer uni t frame to read :

- F 2 2 1 C G C C C C -G
+

C

- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~
- 

- -- I
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F G G  C C C C C C

~ y=— (2g~~+2g p2-2g12’P2 -2g~~*3+2g~~ip3- (B~~+9~2)g~~+ 
~~~~~~~~~~~~ 

(e12.e~~g,~.2—

C
—

E C C C C C C C C

~ ~~~~~~~~~~~~~~~~~~ -2g~~
p2- (e~ +$~2)g~

+ (6~ +8~~)g~ + ~~~~~~~~~~~~~~

C C
(7 .2. 17)

F 2 2 1 G C C C C C C
g~~.- ~ rkp+ u~ -

C
— 

~~~~~~~~~~
E 1 C C C C C C G C C
gy’= 7( 2 g 2~+ 2g\..~i 1 -2g z’P 1+2g~2’P1 

+2g1~4i3~2g1.~P3— ~°yx °xz~ 
g~- (e~~.e~~) ~xy ~6C 6Y)v~ ~~~

C C C
+ (O~..+8~~) ~~~~~ (e~~1

-e~~~)g~~2
+ (e~~~

_ R
11)g 12)

E 2 , . C  C C  C G C C
+ ~~

C

Eqs(7.2.17) can be written in the concise matrix form of eq. (7.2.18).

Now , the G-frame is conside red to be misaligned with respect to the i~zer-

tial frame. Denoting by superscript I those gravity gradients referr~
to the inertial frame , then we wri te

1 3 3  C
(‘.Z.19) ~~ 

. a ~~a)1~~1

where i ,j =X ,Y , and the a’s represent the element of the t ransformation
matrix between the two frames. .Analytically, the gradients are writthi:

I
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ g1.+a~ ..a ~~~~~~~~ :Y

+a~~ay2g22

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(7.2.20) +a~2a11g22

L 
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ zi4-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ zy

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2a21g2~+

+a22a11g22 
-

where all gravity gradients at the right hand side refer to the G-frame

and the superscript G has been dropped for simplicity . Since the misalign-
ment between the G-frame and the inertial one is in the “small angle”
sense, then we can make the approximations:

a~~=1 ~~~~~ 
a21=~1

(.2.21) a~~—~1 ar~
’
~
l a:Y=—~X

~~~~~~ ~yZ~ X a1~~l

where the ~~~~~ represent smal l rotation angles about the Gx, Gy and
Gz gradiometer axes respectively. Combining eqs(7.2.20) and (7.2.21),
we get :

I C  C C

I C  C G C C
~~~~ ~~ ~ ~~~~~~~~~~~~~ 

(gy.y-g~~)
I C  C C C  C

(7.2.22a) C

I G C C C C

2 C C C

Eqs(7 .2.22a ) will now be written in matrix form for further reference as:

__________________ .1
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g~ 1 2 ~ -2F 0 0 0 g~~I.

~~ 
~ z 

- 1 
~x ~z 

-.E 0

-
~~ 1 Q ~ —

~
(7.2.22b) I X 2 1 

I

0 -2~ 0 1 2~ 0 gyy~

. g y2 0 ~ -~ —
~~ 1 ~1 Z X X -i

-o 0 2~ C —2~, 1

- L . .  -
~

- X _JL~ J

Now, the gravity gradients refer to the inert~a~ franc , ‘
~ - :~ in order tc be

used as those enterin~ the fur ii7~enta equation of inertial navi~.i~~-on ,

they have to be transforme d into the navigaticn frame . The trans~orr.~tion

matrix between the selected inertial frame and the earth-linked navigation

frame is parametarized by the true sidereal time e and the c~x’reinai~.~
of the polar im-~tion x and v referred to a 

specified epoch. This transfc~r--

mation is given(Veis ,19t2):

sifl’ x

[N] — cosi, — y l  UJ
[

~~~CO~~~~_ V S I~ ,.  —X Sifle-~-vcOS~

and accorflng tc stardard l i teraturt  tI~e gravity gradients are transformed

as follows:

~~ 
[c~~~ ~~.iii€ -xcose-y~T~~

1 

~~ 
~~~~

~~ r~. gy2~~~1ne COS9 
~~~

[~~x ~~ ~~~ -y 1 
_j ~~ ~

sine ---ii —

cose

[~~~~se_ysine -xsine+ycos6 _jj

__
_____ 4114
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where the index over the gravity gradients again indicates the referer~e

frame in which they are coordinatized. The manipulation of the above matrix
equation gives for the six gravity gradients of interest the following:

2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _g sin26_2g~2xcos28_g~ ysin2O+g~ xsin29.

+g22xysinO~2g~~ys in 2O

g~~—g~~os8sinB+g~~( 1- Zsin2O) +g~ (y—2ysin
2$—xcososin8 -xcos ~O) -g~~sinOcosO+

.g~..(xsinecos6-ysin28-xcos
2e)+g22 (x 2cos2O-xycos2e-~xysin8cosO-y

2sinBcos8)

I 2g~~=g~~xcos 6_ g~~ (xs in6+ycos8) _g~2(x cosO—c os S+xy s ine)sg ,~~ysi n8—g 21(xcos O~sin 8)+

+g.~ (xycose+xys in S—sin6)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—xysinO)

I 1 2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ cose+cose)+

+g 22 (ycosO—xsin e)

g22 g x 2-2g~ ’xy+ 2g~~x+g~~y
2_ 2g~2y+g~-,

where all gravi ty gradients in the right hand side refer to the navigation
frame. Eqs(7.2. 3a) written in matrix form read(see next page) .

As ~e have already discussed, the first procedure to be followed in trying
to simulate the fundamental equation of inertial navi gation is to express
all vector quantities to the same coordinate frame and particularly to the
navigation frame in order the results to be referred to the earth-linked
frame . As far as gravi ty gradients are concerned , the following tran sforma-
tions must be made to “channel” the signal as it is sensed by the electronic
float axes to that referred to the navigation frame :

flrewrite eqs(7.2. 18),  (7 .2 .2 2 b )  and (7.2.23b) absractly as

(7.2.18)’ — [A] +
~~j 

~~~

. .

( .2.22b) ’ — [C) g1~
I N

(7.2.23b)’ — [0] ~

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 

- .
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where the g’s represent the column matrices of the gravity gradients and
A,B,C,D the already defined transformation matrices .
2)derive these gravity gradients referred to the navigation frame using

- the following formula:
N E

(7.2.24) — [Dr 1 
~ J( [BJ 1 ( g•~ — [A])) -

where the superscript -1 indicates the inverse matrix operation. The last
equation, in view of the involved matrices, shows clearly tha t the sensed
gravi ty gradients should undergo a very tedious and lengthy manipulation
containing non-orthogonality effects, instrumental misalignment etc. in

order to be finally used in the simulated navigation equation to be pre-
sented next .

7.3 The simulated navigation equation

In vi ew of e q s ( 2 . 1 1 ) , ( 7 .1 .1 2 ) , ( 7 . 1 . 13 )  and (7.2.24) the complete r .avi~a—
tion equation which can estimate the instantaneous geocentric coordinates
of the n~ving object with respect to the earth-linked navigation frame,
is written in matrix fo rm :

(7.3.1) Rt 
- T(~~~+b+u)+D~ C(B~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

where the above symbologv has been already defined . Now, in order to get
out of the navigation system some indicated nimtbers or order of magnitude
of errors , certain ass~rntptions have to be made (of course, a rigorous sta-
tistical analysis should include the full matrices invo lved) :
a) Since the navigation system is simulated for its performance during a
very limited t ime span , or as a matter of fact for a few seconds , it is
reasonable to neglect all terms containing angular velocity or acceleration
of the earth coordinati:ed in the inertial space. consequently, the iast
three terms in eq. (7. 3 . 1)  are for our simulation studies dropped out .
b) The matrix T given in eq. (7.1 .12) contains p~~ducts of small angles
plus some single terms . Having decided to keep only first order terms, then
the matrix T -can be approximated by: 

- -- - - — - -~~~~~ -— - - - - -----— - ——-~~~~—
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r 
1 _ (CXZ +mZ) £xz

~~~1
(v .3.2) 7 - m~+c~-~ 1 -(cS~~1ii~) + higher order terms

Ccmt~ining eqs(7.1.l3) and (7 .1 . 2 ) ,  we get for the apparent accelera~ier.
co~ip:~ents to be used inside the navi gation equation the fcl~owing :

r i~~~ - -

I ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-

~~~ I = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + hig her orde r t~r - .~

~~~~~~~~~~~~~~~~~~~~~~ 
)A~~~b:+u:~ -

L j L
The above equati~n shows cl early th~tt the components of the appar~r.~ ac-ce-
leraticn j r  each channel are a ~iixtu:e c-f all three encountered a-:cc~ c ra-
tion con~ouents.As it can be also sec~, each channel ‘s signal s merely
composed of its counterpart acceleration and the other two signals multi-
pl icd by small quantities (due to the accelerometer nor1—orthogonality) are
present as well.
c) Let us now consider the case of the gravity gu dients. As eq.(7~~)

shows the determination of the gravIty çi-adier.t~ to cc useJ in the na--i-

gation equation requL-es the inversicn of two matrices, namely the
and B~~ . Since we have first to derive the final error matrix in front
of the gravity gradi ents referr ed to the electronic fram e an~ then to
make the assumptions , the mentioned invcr~ ion~ must he computed by ha nd .
B 1 presents no difficulties, but posse~ces cert0in problems d i e  tc-
its elements ’ complexit y .  ~~ing to this fact , eq. (7 .2 .3Th) ’is  considered

gG ..c_ l g] -

There fore

gE •‘A+BC 1~ 1 _A+BC~~DgN ~~N

- A
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and finally

(7 .3.4) gN _n IgE

The inversion of C 1 by the partitioning method gives the following

matrix approximated only up to the first order terms :

1 -2~ 2~ , 0 0 0

-
~~~~ 

0

(7 .3.5) C - 
- 1 0 - highe r order terz~

o a I -2~~ 0

o -

~~~~ 

I -~~~~

o o -
~~~~~~ o 1

-
: Therefore , the trans fo rmation( 7.3.4)  yields the following :

N E L  8 4 ’
g~~ ~~~~~~~~ :e -( ~~ 

- -
~~

N E L  E E 1 E 8 4
g~ , — ~~~~~ ~~~~ •y+g ,~ -

~~~÷ e~_ +~~~)g~~-( ~~ 
-

~~~~ 
- 

~~
-

N E L  E
~~~~~~~~~~~~ ~~~~~~~ 

4~3.~ -e~_ J )g 1_
(.3.6)

N E L  8 4
g~~ = ~~~~ 

. _ 9 (  ~~~~ -

N E E
— gy2~( ~~~~~~~ Z~

9x~ °YZ~ ~::
N E E 8 4 ’
g~~ ~~~~ ~~x+gy,  •2y-( ~

As we can see from the above expressions , the gravity gradients referred

to the navigation fiame are equal to their counterparts sensed and mea-

sured by the electronic frame plus products of gravity gradients ~~~~ th

small quantities e.g. polar rc~ tion components. -Ui these terms in vie’s-. ~f
1)the conclusions drawn in simulation I with regard to gravity gr~~ie:~~
2)the small magnitude of  all terms but the single gravity gradients and
3)the objective of our simulation studies, are final ly neglected. Con-
sequently, the grav ity gradients which enter the simulated navigatic:’.
equation are those which are measured by the electronic float fram ’ .

Recol1ectifl~ resul ts , the equations which we shall simulate assume the

- ~~~~~~ - 
- - 

-
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following forms:

x3 At2((1 .a~)A bxlu x. (Cxz *$z)A • (~~~~y)A~~Gx Gyjc (X2-X 1 ) 
~~~~~~~

•G~~~(Z2—2 1))+2X 2—X 1

((Ifl24Cy2)A~’~+ (1 +a~)A +b~+U~ (c~~+m~)A~~+G~ ~~ (X 2 X 1 ) 4Cyy 0’2 ’0

*Cy~1 
(Z 2 21)).2Y., Y 1

23 At’(_ (
~~
. y)A 4(m +c zx )A .(I.az )A~~

.bz4u..+GZ +G2~ ( X ~).G~~ (Y , Y 1)+

+G2., (Z_ —Z 1)).2Z 2—Z 1

The above equations contain 36 parameters , namely:

a) time span(1)
b) apparent acceleration components (3)
c) the geocentric coordinates of the first two points (6)
d) the gravity components (3)
e)the gravity gradients(6)
f)the accelerometer bias (3)
g) the accelerometer random uncertainty (3)
f) the accelerometer non-orthegonality (5)
i)the initial misalignment angles(3)
j)the accelerometer scale factor ui~ertainty(3)

The same procedure followed in simulation I will be repeated to see the

influence of these 36 parameters on the derived coordinates

7.3 Results

The same computer prograimne used for simulation I studies is employed

~.o acconitvdate the new simulated equations. Only the results for the
parameters which can contribute changes into the system’s error budget ~.-

are listed below.
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~X (in2) var.-cov.: (in2) 4. (,~Z ) var.-~ov.: (~2)

4.0029 0.0029 0.0437 1 .0000 0.0000 0.0002

5.0029 0.0437 0.00 5.0001 0.0002

5.6626 5.0034

4.0129 0.0029 0.0437 1 .0400 0.0000 ‘0.0002

0.01 5.0029 0.0437 0.01 5.0001 0.0002

5.6626 5.0034

4.0529 0.0029 0.0437 1.2000 0.0000 0.0002

0.05 5.0029 0.0437 0.05 5.0001 0.0002

5.6626 5.0034

4.1029 0.0029 0.0437 1.4000 0.0000 0.0002

0.10 5.0029 0.0437 0.10 5.0001 0.0002

5.6626 5.0034

4.2029 0.0029 0.0437 1.8000 0.0000 0.0002

0.20 5.0029 0.0437 0.20 5.0001 0.0002

5.6626 5.0034

4.5029 0.0029 0.0437 3.0000 0.0000 0.0002

0.50 5.0029 0.0437 0.50 5.0001 0.0002

5.6626 5.0034

6.0029 0.0029 0.0437 9.0000 0.0000 0.0002

2.00 5.0029 0.0437 2.00 5.0001 0.0002

5.6626 5.0034

9.0029 0.0029 0.0437 21.0000 0.0000 0.0002

5.00 5.0029 0.0437 5 .00 5.0001 0.0002

5.6626 5.0034

______ - - -.~~
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a
~ 1
.

. 
~~~~ var .—cov . : (in2) ~~~ (~ 2~ var . —cov. : 

(in
2
)

5.0000 0.0000 0.0002 5.0000 0.0000 0.0002

0.00 5.0001 0.0002 0.00 5.0001 0.0002

4.0034 1.0034

5.0000 0.0000 0.0002 5.0000 0.0000 0.0002

0.01 5.0001 0.0002 0.01 5.0001 0.0002

4 .01 34 1 .0434

5.0000 0.0000 0.000~
’ 5.0000 0.0000 0.CCO2

0.05 5.0001 0.0002 0.05 5.0001 0.0002

4 .0i3 1.2034

4 ’
5.0000 0.0000 0.0002 5.0000 0.0000 0.0002

0.10 5.0001 0.0002 0. 10 5.0001 0.0002

4.3S34~ 1 .4034

5.0000 0.0000 0. 000~ 5.0000 0.0000 0.0002

0.20 5.0001 0.0002 ’ 0.20 5.0001 0.C032

4. 1034 1.8034

s.0000 o.oooo v.0002 5.0000 0.0000 o.oc~~
0.50 5.0001 0.0002 0.50 5.000 1 0.0002

4.5034 3.0034

5.0000 0.0000 0.0002 5 .00(X~ 0.0001) 0.0002

2.00 5.000 1 0.0002 2.00 5.0001 0.0002

6.0034 9.0~~4

5.0000 0.0000 0.0002 5.OJX 0.(fl.%) 0.0002

5.00 5.0001 0.0002 5.00 5.0001 0.0002

9.0034 2 1 .003 *
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Ax ( _ / ..4 var.—cov.: (22) At (22/54) var. —cov.: (in2)

5.0000 0.0000 0.0002 5.0000 0.00(X) 0.0002

0.02-0.50 5.0001 0.0002 0.02-0.50 5.0001 0.0002

5.0034 5.0034

CX (m2/s4) 
var.-cov.: 

(in
2
) (m2/s4) 

var. -coy .: 
(in2)

• 5.0000 0.0000 0.0002 5.0000 0.0000 0.0002

0.005 5.0000 0.0002 0.005 5.0001 0.0002

5.0034 5.0033

5.0000 0.0001 0.0002 5.0000 0.0000 0.0003

0.02 5.0001 0.0002 0.02 5.0001 0.0002

5.0034 5.0033

5.0000 0.0002 0.0002 5.0000 0.0000 0.0004

0.05 5.0003 0.0002 0.05 5.000 1 0.0002

5.0034 5.0036

$ .0000 0.0003 0.0002 5.0000 0.0000 0.0005

0.10 5.0006 0.0002 0.10 5.0001 0.0002

5.0034 5.0039

S .0000 0.0006 0.0002 5.0000 C .0000 0.0008

0.20 5 .0012 0.0002 0.20 5.0001 0.0002

5.0034 5.0045

5 .0000 0.0009 0.0002 5.0000 0.0000 0.0011

0.30 5.0018 0.0002 0.30 5.0001 0.0002

5.0034 5.OO S1

5.0000 0.001 2 0.0002 5.0000 0.0000 0.0014

0.40 5.0024 0.0002 0.40 5.0001 0.0002

5.0034 5.0057

~~—•————-—-. ~~~—- - — • ——•— •—~ 
- .• — 
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~~~~~ (~2 var .—cov.: (in2)

5.0000 0.0000 0.0001 5.0007 0.0008 0.01 10

0.0001 5.0001 0.0000 0.05 5.0008 0.0109

5.0004 5.1657

5.0000 0.0000 0.0001 5.0014 0.0015 0.0219

0.0005 5.0001 0.~~~1 0.1 5.00 5 0.0218

5.00 7 5. 3313

1 5.0001 0.000 0.001 1 5.0029 0.0029 0.0437

0.005 5.0001 0.0011 0.2 5.0029 0.04 7

5.0~6f 5. ’~c2 (~

• 5.0001 0.0(02 0.0022

0.01 5.0002 0.0022

5.0332

5.0003 0.0003 0.0044

0.02 5.0003 0.0044

5.06~3

— 
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• 7.4 Discussion

Needless to ix te that the results of the new simulation are almost iden-
tical to those derived in simulation I and therefore the same con~nents
are also applicable here. But since we are not at all satisfied with the
systc~n’s behaviour , we try to investigate the aided navig:1tior~ system
deeper by making the following studies:

a) Investigation on th~ co~itribution o~ the sampling interval .~t:to mot~-
vate our discussion we remi~~ again that the inertial acceierat.on c~.rpo-
nents have been approxi~~te~ by th~ 5tirling’s formula(see eq. (5 .2.3)).
In approxi~~ tin~ derivatives a domi na~-i~ error source is th~ input errors
themselves. One could immediately see the explan~iti on tc~ tnu t locking
at the r.~ ntion~d c~~ation . The reci”rocai power :-i the s..niplin’~ interval

~t multiplies the true va~.ues a~ well as their errors and thus tne aige-

rit}i~ magni fies them enorrrusly . ~~r tha t reason we inveszigatL the c:se
in which .~t decreases in or:~er to s~e how space traverses cf such ~~
aided navigation system behave . !~~~~I’ tesui ts are listed in the next ~~~~

From the given results it is o~~i’:~.’s that:
1)The navigation system becomes a ‘ittle more tolerable as ~ de:reases
but again it behaves badl y 

-
•

2)If we call point 10 of the first traverse as the ~
rDrea~ pcir~t ’ of thc

navigation system, then it occurs at point 11 and 13 for the rest traver-

ses.

Consequently , by making t~t very small the system a -es i~ t behavt~ !‘etter

excepL some very smal l ir.lprovemer.ts.

b) Investigatioii or~ the contribution of the omitted covaria~. es:frcm the

given results of simula:i~r. stuz~ie~ I inc~ TI it is evident th~iv the sys-
ted is very sensitive to the variances of the i~ntiai coor.1inat~~ an~
e~)eciaily to the variances with ~~ich the geocen...-ir coordinates of the
second point are 1crr~m. Therefore , we try to see if the omi s~.i on of tu e
respective covariance s mai es any changes into the system ’s error budget.
The foru.~lation of the new investigation follows these brief lines :
1)rewrite the general simulateci equations as:

_ _  -.-—- --- .
~~~~~~~~~
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At 0. 1 sec. 1 At-O OSsec . At 0.01 sec .

POint 2

____  _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _

~~~

2)
- • 0.1549 10~~ 0.3365 0.1441 10~~

0.7540 ~~~ 0.5412 1O~~ 0.1446 l0~~

0.3373 1o 2 0.8299 10 0.3313 1o4

• 0.7745 10~~ 0.17 15 10~~ 0.7041

4 0.3370 0.2706 1O~ 0.7230 io
_6

0.1687 10
_ I 

0.4150 io 2 0.1656 10~
0.3408 10~ 0.7564 1O~ 0.3084 10~
0.1659 l0~ 0.1195 )Q 3 0.3181

0.7423 10
_i 

0.1826 10
_i 

0.7287 1O~
0.1456 10~’ 0.3234 i0~~ 0.1316 i0~

6 0.7089 io~~ o.sio~ io~ 0.1359

0.3172 0.7802 )Ø 1 0.3114 i0 2

0.6180 10 ’ 0.~3~3 10 ’ 0.5586 10~

0.3009 10
_ I 

0.2167 io
_2 

0.5769

1.3460 0.3312 0.1322 10
_ i

0.2619 10
_ i 

0.5819 lO~~ 0.2367 10~~

8 0.1275 0.9184 ~o
.2 

0.2445 10~~

5.7050 1.4041 0.5603 io
_ 1

0.1110 0.2465 10 ’ 0.1003 10 ’

9 0.5402 0.3891 10
_ i 

0.1036 10~~

24.1707 5.9481 0.2374

• 0.4702 0.1044 0.4249 10 ’

10 2.2886 0. 1648 0.4389 ~o
_2

102.4000 25.2002 1 .0060

0.4423 0.1800 10~~
0.6918 0.1859 10

_ i

106 .7000 4.2610

0.7623 10
_I

12 0.7875 10
_ i

18.0500

1 :
_ _ _ _ _ _ _ _ _ _  

_ _ _ _ _ _ _  • 

~~~~~~~~~~~~~~~~~~~~~ - • -•-~~~~~-- - -~~~~~~~ ____  
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Xj - ~t
2 ( A x 4 + G~~~2~~1 

(x~ 1 x~ 2)+ 
~~i-2 ,i-1 

CY1~1-Y~ 2 )+

Yl 
- ~t

2 
C 

~~~-2 , i-)  
+ 

~~i-2 
+ (x~~ 1

_x~_ 2 ). 
~~~i-2 , i~ 1 i~l i-2

~~
‘2 j _ ~~~ _ 1 

(Z 1 —~~ _ 1)) + 2Y , _ .1 —Y~ _ 1

- At ~ C~~~ , 
+ L:x1~~2 1 1  ~~ -~~~i-2~~ 2Y~~ 2~~~ i-1~~~i-2~~

(2 ,-::, ,‘))~ 2i1— ~~~~ _

2)call y the paraInetei~ ~f t he cl’c e equ~ eion except the coor dinates arid
C the desired coordinate’.;. U~e’~ for the first point one gets:

X Y - :~ ~1~\3 .~ ~

AT

since var (X 1, Y 1 , 1 , ~X 2 , i, , ,) C. 
~ ~n~icates the di spersion natrix of

the coordir iat€s at point. IS.

point 4

[c4]~ A 4y4 +34 C 3 [A4 B~]Z 1Y~l

L~
= ~ 

7 
- 

~~~ ~
1L31 ~3l.L 

~~

L
= 1A~ B

41 {~ 01 ~A4 B~

L C3J 
—

point S

[C5] - A~y5.B5C4.D5C3 [A~ B~ D
5J 

[~~~] 

— -k i- —~~~~~~~~
-
~~ =- -- _ _ _ _ _ _ _ _ _ _
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— T
- [A5 B5 D~J 

t y5 [A~ B~ D~
c4

r~

] 

- 

[5
~ 

E 

~ 

C3 

~~~~~ 

~4 

~t1
F~
y [A

4 B4 J z[ ] r A 4 
Bj

~~~ 
B5 D5] N’~ °1 [A5 B~ 

T

• o

L c~j

• It can be seen that from point S the first covariances between the coor-

dinates are involved.

point 6

[C6~~ A6y6+86c5+D6C4 = 
~6 

D~ 1~6
~c5LC4

T
= 

~6 D~~ Z [Y~ [A6 86 2~~

1 5 1LC4J

[C51 - 
[X~ B5 y5 [A5 B5 D

51
I O J C 4 L O  I 0_J

C3

• and so on.

~4ccording to the above equations , a new gradiometer-aided navigation sys-
tern space traverse is carried out . The results are listed below.

ii
I

_ _ _ _ _ _ _ _ _ _ _ _ _ _  
I 

__•  

•
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TBIS PL~E IS 3ZSf

~i~D N D4)Q ~~~~~~~~~~
TR0~ oO?Y iUI~~J$

Point var . -C Ov . : (02 )

0.1638 ~~~ 0.1438 10~ 0.2182

3 0.1638 1O~~ 0.2182

0.3314 10~~

0.8038 10~ 0.7190 ‘0~ 0.1091 iO
_2

44 0.8038 10 0.i0~1 10

0.1~S~

0.3543 10~~ 0.3 164 1C~~ 0. 45~i~ 10

5 j 0.3 543 10~~ 0.~~~~ 1O~~
0.7345 i~

I _ , _ , —10 . 151~ iO ’ O. 1 ’22  ~) — .1~~~i ~

o.i~i~ o.:’cs~ io ’

2 2 

3 . 3 1~~ 
_

~~0.b42~ 10~ C.S_ 3 1 1C~ 0.~~ 64 
~~

7 ~~~~ io 2 u~~ o~
1 3 3 ~~5

From the given resultF it is evident that the omitted covariances do not

play any critical role on the derived coordinate variances.

c) investigation on a multipoint approxirnaticn:th. last hope to in~ rovc
the bad behaviour of the gradiometer-aided inertial navigation system
is to include more terms for the Stirling’s approximation formula ait~
thus to approximate better the inertial acceleration coi~çon r.ts. Eq. (5.2.3)
includes only the IL-st term of the mentioned formula , but mt.~.ipulation
of the second term gives to the fur~iamt~nta... iation of inerti~ii n~viga-
tion to be simulated the following form:

X~ B2~
t2 (Ax~_ 2 1 1

+G
x~~2 ~~~i-2 ,i-1 

(x~_~ X~_ 2 
~~~i-2 ,i-1 

(ri_i ~~~

~
zi 1  2i—2 )).4X1_2 —4X1_3 ~X 1_4

• 

•

- ~~~~~~~-•- --~~~~~‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • • .
~~~~

• • • •- • .
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(7.3.8) 
•2At2 (A~~ 2

+G~ 
~~

‘i~2 ,i~l 
cx1~~1 ~~~~ ~

‘
~~

‘
~i—2 , i— 1 ~~~~ ~~—2 ~

.

(Z~_ 1 -Z~_2 ))+4 Y~_2 ~~y~_3 .y.~~

Z

~ 

2
~
t2(A z~_2~~_ 1

+Gz~_2 
~ i-2,i-1 ~~~ ~~ -2 )+G~~• 2 • 1 

(
~~

_ i 
~~

_2 )~

i—i 
(Z1_ 1 —Z1_ 2 )).4Z1_ 2 —4Z1_ 3 +Z1~4

The same procedure followed by the previous sinulation studies is applied
again to the above equations . The space traverse for the multipoint appro-
ximation gives the following results :

Point var. -coy .: (2)

• 5 0.6560 10~ 0.6560 10~ 0.4177

6 0.6560 ~~ 0.6560 iO~ 0.4177 1O~
7 0.1152 iO~~ 0 . 1 1 5 2  0.5 186

8 0.2 165 10~~ 0.2165 10~~ 0.7100

9 0.1961 1o 2 0. 1961 io
_2 

0.7105 1o~~
10 0.5320 10

_2 
0.5320 1o 2 0.7518 io 2

11 0.3497 10
_ i 

0.3497 10~ 0.3218 10_i

12 O.t672 0.1672 0.1144

13 0.6466 0.6466 0.1273

14 2.43 24 2.4324 0. 1282

1 5 6 .4771 6.4771 1.8289

From the above listed results it is evident that :
1)the navigation system’s behaviour is ixw Dttter

2)the trememious instability of the Z-channe.L has been already diinir1isheo.
3)the syst~~ gathers less errors relative to the previous analysed tra-
verses but it still needs to be updated at a certain navigation time after
the initial observation point. This comes in confront rn ent with all up-to-
date aided navigation systems which should be filtered out continuously
as far as their anrn t ted errors are concerned . In the majority of inertial
navigation applications, Ka.lman filtering is continuously applied(say,eve-

ry some seconda of navigation t ime) to red~~e the systems ’ inclination to
gather errors which sometimes are intolerable.

. 1 
~~~~~~~~~~~~-- - .- -
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8. Conclusions and Reconinendations

We live undoubtedly in the space age. Everything moves quickly and accura-
tely. Inertial navigation systems have been already introduced to accomp-

lish the latter but , for the time being , in a limited sense . We]1-Iu~o~n

that systems which can guide a moving vehicle are burdened with errors(so-
metimes very big ones) and it is deper~ing on the objec tive of the mission
that the guiding system can be considered to be successful or not. For exam-
ple, the strict requirements imposed on a satelli te guidance system are r~ t
applicable in a slow moving vehicle such as a submarine. Thus, the syster~’s

efficiency will be depending on the objective of the gi;ided object. Under

that prism we aaa l~se an ai~i~d navigation syst eir in case of tcrr~striai n~-•

v~gat ion and especially whe~i the moviflg vehicle is a cruise airc raft . The
externa l aid is cons~s~ed of three ually perpendicular gra o~ezers, a

revoluntary equipment with the ca-abiiity to measure the gravi ty gradient
• field of the space in which t~e navi~~tion takes place. Several aids can

be introduced instead of the gradiumeters but we have chosen them in orde r

to ~~spcrse possible fears about thei r usefulness of operatic~ in the ~nve-

stigated application.

The inertiallv referenced acceleration of a moving vehicle can he obtained
by adding the gravitational and non-grav:tational (or apparent)acceleration
and neglecting certain smal l terms which haveS been already discussed pre-
viously . Approximating the second inertial derivative with the Stirl ing ’s
formula and then solving the resulting equations bith respect to the un-
ki~ wn coordinates , the error propagation law can be applied through in
order to get the expressions to be sijwulated. The analysis proves that a
gradiometer-aided inertial nav± gation system is very unstab ’~e like all n.~’-

vigation systems. Particularly, the Z-channel gathers the hig;cst a~r~ount

of errors relative to the rest t~~ cries and after some seconds th~ naviga-
tion system , as an instnnnental package, collapse3 as far as its pcr for-
mance is concerned . Aiding the system with a baru~.e ’er or an al t ime ct i

or generally with an instnmlent which can produce any kind of height in~ifcsr-
mation of the instantaneous position of the moving vehicle , then the insta-
bility of the discussed char.nel can be effectively reduced. Relevant to the
t~~ parameters of great interest , namely the acceleration and gravity ones ,
the former causes to the system an error up to the order or 7~ (considering
its contribution for some first points) and the latter a very small percen-
tage of error. These results can justify the conclusion that grav ity gradi-

-- 
_ _ _  - 

-



-

~~~~~~~~~

110

ometers perform or rather behave excellent on-board a moving vehicle , such
as an aircraft , or that the gravity-induced position error is a negligible
small quantity .

Considering detailed error model s for acceleration and gravity gradient mea-
surements , a new statistical analysis proves that the aided navigation
system unde r investigation remains unstable in almost the same fashion , acce-
lerometer measurement s errors are reduced down to 10% with respect to the
previously derived numbers and gradiometers continue to fit excellent on-
board. Trying to go out of this undesired “cul-de-sac” three new investi-
gations are carried out :
a)~~king the operation of the system as fine as possible , then the behaviour
of the navigation system does r~ t change appreciably. It will break down
sooner or later .
b)In both simulation studies the initial value problem of inertial naviga-

tion is under consideration . The big influence of the two initial sets of
coordinates on the derived accuracy of the system’s output, justifies the
hope that something could lie inside the omitted covariances between the

• coordinates of the two first points . The statistical analysis shows that
the navigation system is again dying out in exactly the same manner as
previously.
c)Since the whole analysis is based upon the approximation made, namely
the Stirling’s forimila , it is reasonable to investigate the case in which
more term s are taken into account . The simulated equations change format
including r~w more terms (or more initial points) . The new statistical ana-
lysis justifies the hopes that the system canrct be only badly-behaved but

• it possesses the ability to be more accurate or for tha t matter usable.
The Z -channel instability is decreased effectively, the system gathers
less errors than previously and it can r~ w be seen wi th hope .

In spite of the rxt so accurate approximation for the second inertial cie-
rivatives , the quantization error to be coninit~ed is a very small quantity
relative to the total error budget . Trying to give an orc~er of magnitude
for that err or , I could simply mention that if the navi gation system ope-
rates every 0.lsec . , then after 20 minutes of flight the quantization error
is up to the order of 4cm .

Further studies on that subject are advisable according to the following
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general ideas :
1)Try to include more terms in approx imating the second inertial derivati-
ves in deriving the simulated equations for the first t~~ or three un~aax wn
points. Sinijlate them and revise them for the next few point s but include
now more terms as far as the Stirling ’s formula is concerned . Apply this
proc edure azith iiously until the system has gathered errors which cannot

be further tolerated . Then a filtering technique can”ref r esh” the systmr.
in order to begin again the above discussed proc edure . In view of the obta i-
ned results of the multipo int approximation studies , I str onCly believe
that the proposed analysis will turn out to be very fruitful .
2)Appl y the well—known technique of Xalman filtering . Extens ive litera turt ’
addresses this problem and therefore it will not be discussed herein.

Perhaps one might ~e keen on aski ng why I insist so much on applying gravi-
ty gradiometer techni ques fcr terrestrial navi gation systems sinc e the up-
to-date used systems can operate with better accuracy(one nautica l mile per
hour flight, approximately). The detail and accurate notion of thf eirth’s
gravi ty field is not of great importance for such applicatior.5. But th~
answe r being straightforward , comeswith the question : wha t these gra~iom~ter-
unaided systems can do for space missions in cases of which the oi-~oaru
platform travels through different, successive and completely unknown gra-
vity fields? I believe , they can do nothing(strictly speaking).

A gradiometer-aided inertial navigation system turns out to be very profi -
table in many applications and it can surely upgr ade the abilities of

~~nkind to explore the mystery which is here to stay, the dista nt cesmes .
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Appendix A:Coupiter ProgranmeS Used

Sia~ation I uni II

~ ROGRA$ (iOIJI’ AP~£‘(MEN SION A ( l 9 ,3~~,L~~l9.l~~),C(~~,3),ZW (l9,l)
REALI8 A ,F’,C

~~~~~ 3
Wlr i ’~

MN~’19
~~LL ALE SEN (A, il~PI~O)
•:AL L ALESEPS .R.p*~.NN ,2)
CALL ~AMUL3 cA ,P~,p4, 1,B~~1M ,NN ,O ,A~M ,N ,O ,C ,N ,NiZW , 1’ p 1 )
CALL Ar ’RucW (c~N .N.o )
STOP

3UBP C)UTIpIE MArtJ L3cA ,MA,NA ,bENNA,s ,M8,~4B,p(ENNp,C,.it ,NC ,KE:Np4C ,
tR~MR.NR ,!W,MZW ,~ YM )

DI M E N SION ,~(MA .NA , . E~(MB,NB) ,C( Mc , NC) , P( KR , NR) ,Z W ( MZ U, l )
~E AL ~~3 ~ .( ‘ r 1 . f , ~~2 ,FA ~ 3 , p , 3 , Z U
IN TEGER AZ,,~S,LZ,LS,SYM
LOGICAL ~~~~~~~~~~~~~~~~~~~~~~~~~~
~(CNNAL~~ ENN A .NE .l
P~ENNBLLI~ENNB.NE. 1
~FNNCL~ P EMNC .NE.L
SYPtL’-S’rM.ECl . 1

AS”NA
IF~ KENNAL) GOTO 41
A2’~ NA
.~S*MA

~ 1 CZ~ PIC
cS&wC
IF (KENNCL ) ‘30T0 42
CZ~’NC
:c -tie

.2 1.01 P’~~l~ ’AZ
r~c)~’ I~ i,Cz

0.
(‘0’ J I p A S

IF (.N0T.l (ENNAL~ FAt(1=A~ J~ K)t F ( P ~CNNAi ) F 1 ~~ ,(P.~,_ ’)
IF .NO t .~~E NN1~L) FAI ~2 ”B( I . . J )
IF~~.ENNBL r A W 2 a W , J , I )
Si$,FA$(1*FAF 2

2 :wct ~~1)— s
,J a l
IF~~SYP!L) .J~ K
1.01 L~~J,CS

(‘01 I 1.CZ
IF(.N0T.KENt4CL) FAI. 3 —C (L ~~Z )
tF~ xE:NNCLJ FA~s3 —C ( I , L )
‘~~S+ZU( L ,1)~~~Af(3

I ~F rS ’rML ~ ~~L~lO~~
(ND
SL’I.RO’JTINE AINV ER(A.N )

‘ S (JB ~ O UTINE ~~TFITZENINVERTIERUNGDIMENSION A .N ,N)

A ’1 ,i) 1/A (l,1) 
11

GOTO 12 .(&ø’ ~~~~~~~~11 0010 ~.2,N
PC1WC-1 ØS~’~Ø0010 i.i~ ici 

-
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1.) A ’~~ p — . ’)
N 1’-N- I
(‘01 P~~1~ N 1
T—A ’ P~.K)
A (K,~ l .

£‘~l ’  I = P ? . N
~~~~~ I.. /T

r,o~ ji~~i~ t~3 A ( I  ,J1) A (I  ,J1)—S*A CK ,J1)
t~O4 .j 2 — I ,N

‘, A ( I  , .j2)—A(I,J2)—S*ACp ~,J2)
2 CONTINUE
1 A ( P ~’K ) T

C I NVERSE MATRIX
I~~A (tJ ,N)
A tJ , t~ 1

~
.

(.0? :1—1.N 1
r..r.I — I
T~

p
~(I ‘1)A I , I ) a 1 .

[‘06 P’ 1,i
S~ A ’ I ’ K )
i~~ (+ 1
r.07 J~ I2 ’N

~
‘ S S—A (I ,J).A (J~~~’A ( I , P ~) S/T

UMSF E CNFRN
EiC~~ P~= I2 ’N..

~ A (~ ,K) ACt ~,I)I~’ R E T ’*~ N

rwr

SUI~R~ UT INE AL’I.SLJB ENN,A,IIA ,NA,PENNA,S,r* , I4F , I\ENNb ,C,MC,NCJ
r SUE~.fl L1!N1 tiA TRIT7.ENA E’ L’ IT ION UNE’ -SUI TE’ A~ 1IU” 4

t .IPiE l~ iON A ( MA.nJA, .}~~P*,NE),C(PiC,NC )
INTEGER AZ ,AS
LOG I CAL P~ENNL , P~CNNAL , KENNBL
K ENNL P~E ’4N.E Q. I
~.ENNAL~~ ENN.~.NE . 1
KEP4NPLBKEP4P45.NE .1

AS&NA
IF(~ ENNAL ) 0010 ~1
AZ NA
A~ *MA

~‘ I [‘01 P z l , *Z
r’oi ~~~~~~IF(.N’) 1.kENNAL~ FAP,l*A ( I,N)
IF(KEN,w .,L ) FAPc1 A (kuI )
I F( .N 0~~.P’tN NIIL ) FAK2—I’(I,K)
ITCXEP4NBL.) FA~ 2—P ~ K~ I)
C P ~.I ‘—F AIcJ.FA’ 2

~ IF’KENP tL) C (K,I)—FAI~1—FN~2
RETURN

SUBROUTINE *I’RUC t~ (APM ,N. ~ tNN )
C SUIROUTIPIE Or UCKEN LINER MAT RI X

t.IMENSIO 4 A ( M ,P4 )
PEAL*8 A 

~~~~~~~~~~~~~~~~~~~~~~~
Ns aN

-
IF(KENN.NE.1) 0010 43 ~~~
M1 P4
NI PI

‘.3 idP lIE ~~~ 101 P11 .N1
101 ~0RMAT (2I~ i)

00 1 1.1,Ml
Ir(kENN.NE.2) ~~~I TL C~~,102) (AlI.J).J.IwNI )
IF(KENW .E0.1) WRITE(o ,102 ) (A~J ,I).J 1,N1)

L - - _______________  -~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~ 
_____ - _____________
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1o r OFaIATU H ,~~F 14. 4)
1 WRI T E (6 , 102)
RETURN
(NI’
S(LBROUTLP4~ A I.. E ~ E N (A~M.N,KENN )
LESEN FINER ‘JNTER(N DREIECKSMA TRIX
DIMENSION A(Si. N)
REAL’.~3 A’~— M 1 M
Ni N
IF(K ENN .P .IE.1 ) 0010 51
Mi~~NNi MM

51 t F(kENN.GE .2 )GO T O  52

DO 1 1 1.M1
IF (KENN.EQ.1) REAL ’ 5’102) (A (J , I) ,J a 1 ,N1)
IF (KEP4N.EQ .O)REAI’(5,102) (A(I,J) ,J=1 ,Nl)

102 FORPiAT18F10. ’.)
I CONTINUE

3 REAE’(5,102)X
R ETURN

52 (‘O 2 1 1,M
2 READ (5,102> (A(I,J),JL1 ,I)

IF(KENN.EO .3)GOTO 3
(‘0 4 I — 1 , M
(.0 4 J— 1 ,I

.4 A (J , I ) aA ( I , J )
0010 3
(NI’

xJ~.ttTtels *~ ‘ro D~~
YROI 0O~~

I

_ _ _ _ _ _ _  
_ _

~~~~~~~~~~~~~~~~~~ ~~~~
-

~~~~~~
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ProgranneS for the QiantizatiOn Error Studies

a .Variaflce - case

rRoGR,~1 T~ TN ~ 1
REAL*E A~ B.C
REAr’u.SO NN,L.T,SA,TA,SG~ TG
SA2~~ A*.2
SG2-SC~.’.~’.
CALL vAI~CDT ,SA7 .SG~~ r* ,Tt3 ~ NP1)

!~0 FORMAT(I5,3F10. 4 , IF1S. l0 ,1F i0 .4 )
ST OP
(NI’
SUBROUTINE VAR (t.T ,~~A2,S02,TA ,TG,NN)
[‘0 ! IN~ 3’NN
X :-.)
(‘O ~S
i’O ~. I R - .’~~1NM
V~ X+EcLOAT~ (IN— IM ’~* ‘IN--IR • (FXN—L ,A14 S 1,1.L.t L i.. . ‘ti— IFs ) )/TA)
C0NTINUE ~

(‘0 7 1M 2 ’T N M
t”) 7 IFs~-~~. INM
r.o ‘
(‘0 7 I~~~2’ IR
v~~y4r ,rL OA T (~~IN— In)e(IN—xR )) ’ .L.cXF- (— riABS(t .i.LIFLoA 1~~iI\—I F~~),1cj )
CONTINUE
e~~(,T..4* ~~~~~~~~~~~~~~~ 

‘~ V
WRITE’o ,100) IN .~(JRTT E ( 2 , i O O )  IN ~1) 0 FOPnA T ( 10X , F1 ~~. . ’
RETURN

ielS ~~~~
~~~~~~

-
~~~~~~~~~~ 
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b.GovariaflCe case

~~ROGR AM TW IN~33
REAL *8 Dr,sA ,TA~~G,To~sA2,so2,s

S 
tIMFNS ION E (2o,:o~
F E , i L ” J .~~0’ M w , r s r . .:A~ T A.st3 ~ TG

~~~* *2

CALL. co’JA c r’T,sA ’.~~~:,TA,TG ,NN ,s)
NNM2~ NN -- 2

50 FORhAT(I5~~F1~).4’1F15.1O,1F10.4)
WF~ITE ( L U” 200 ’
WF~I1T ~~.2OC))
wR IT~~- . .O0

.~ )•) F~0RtiAT i1NI,l H VAR - CDV =>

[‘0 ~ L~~1,N r~M.2
,JF~t T E . 13 , i 0 0 )  .~~~I~~J ) , . J — 1 ,N N M 2 )
.,~.J TE- , j O 0 ’ ‘ ! , i ) . J x . L ,NP4 M2 )

~c iic ~~~~~~~~~~~~~~~~ ~~~ r .  .~~ . J~~1PNNM2I
S ~~~~

COUT ItJU~ST0~(NI’
c” r F~OUTIN( ‘ Ov A i r i T . s A ,502,IA,Tt3 ,NN.5 i
£ s IMEt4~ ION t(20,20’
REAL. .t ~ t ’T ,~~~. ‘~~,3G. rG,sA2,s02,s,

-y .
rio s I N 3~ NN
t o ? IS~ 3.NN
~
tNti- IN-I
I sM —I S-  1~

r’o 6 ~ M • ,INM
(.0 e I~~~2 , 1~~i
*=x .E’ FLOAT . Ct N —TM ). ( IS- IR ) )* ( ’ (XP (— DA bS (t I i * [ ’ FLQAT~ IM— I R ) ) /TA )
C O NTINU E

(‘0 ‘ Ii1’~2 . ( N M
riD ‘ r~ -~ ‘.~~~ti(‘0 ~
(“3
c Y.DFLO4T IN...If1) .cIS-IR *D(xF c—E,ABs DT*L,FL0Ari .K—IF ~~ /T G)

• 0?411NUE

5 i IN - -2 , IS -2 )= ( l T ~~~ul~~S4 2*X+$G2ey)
CONT INUE
RETURN
END

—
.5—¶ ~

.,
- —
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