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Reference is made to the mid-term report. In addition, the simulation
study I has been completed by a more general model in simulation study II.
A detailed report of 115 pages is added to this summary.

The new analysis of geodetic applications of inertfal navigation systems started
from the basic equation

"observed acceleration =
inertial acceleration minus gravitation"

which can be solved for inertial acceleration if we know gravitation, e.g. from
integrated gravity gradient measurements. The naive approach is as following:
Measure the coordinates of the apparent acceleration vector, e.g. Ax, Ay, Az,

and the coordinates of the tensor of gravity gradients, e.g. Gxx, Gxy, Gxz,
Gyy, Gyz, Gzz. Then compute at point one

Ax) + Gxy + Gxxy (X1 - Xo) + Gxy, (Y1 - Yo) + Gxzo (Z1 = Z0) =
A:‘z(xz - 2X] + Xp)

Ay, Az; analogous

where At indicates the time interval of measurements; the right side approxi-
mates inertial acceleration by Stirling's formula.

What we have done at point one can be done at any point such that
- ha
X141 = Bt [Axi gy + Oxxy Xy = Xqop) + Gy, (Vg = ¥4 )
+ Gxzy_,(24 - 21_1ﬂ + quantization errors

Y$+1s» Z44] analogous
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are the unknown coordinates of points with respect to inertial space we
like to know. The set-up is in terms of an initial value problem since
we have to know (X,, Y,, Z,) (X3, Yj, Z;), the coordinates of the initial

position vectors, and (Gxo’ G o® GZOI, the coordinates of the initial 5 ;
gravity vector. In addition, the Laplacean

Gxx + Gyy + Gzz = 0

is a physical condition i1f we measure outside the masses (surfaces in-
cluded). Finally, a transformation of inertial coordinates into terres-
trial ones has to be performed.

Simulation I is an error budget study by 19 parameters of an inertial
system:

(1) time interval

(11) initial positions

(1i1) initial gravity

(iv) varying acceleration

) varying gravity gradients

The input-output results are given on pages 46 - 56 of the detailed report.
Pages 61 - 67 are a study of the influence of quantization errors. This is

a summary:

The gradiometer accuracy of existing systems is by far sufficient for inertial
navigation applications; the main error budget is due to the accelerometer
accuracy.

Simulation II is an error budget study by 36 parameters of an inertial
system:

(1) time interval
(11) initial positions
(1i1) initial gravity

(iv) varying acceleration
(v) varying gravity gradients
(vi) accelerometer bias

(vii) accelerometer random uncertainty
(viii) accelerometer non-orthogonality

(ix) initial misalignment angles

(x) accelerometer scale factor uncertainty

The input-output results are given on pages 96 - 108 of the detailed report.

March 26, 1979
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Abstract

A gradiometer-aided inertial navigation system is theoretically and statistically analysed tc
estimate its abilities to monitore geocentric cartesian coordinates. Having discussed the inertial
instrumental units used on the moving platform and several reference coordinate frames applicable
in all navigation systems, studies on the severe problem of the separability of the gravity
gralients from the inertial disturbances are carried out. Simulation I presents how weil ths
aided navigation system can produce inertial coordinates and how the newcomers of the inertial in-
strumentation, the gradiometers, perform on-board the moving vehicle. Quartization error stucies
are also analysad and presented for such a system. Simulation II includes besides the detailed
analysis of the accelerometer and gradiometer error models used, tlie abilities of the syster 10
estimate geocentric coordinates. Multipoint statistical znalysis for the approximated inertizi
acceleration compenents shows that the navigation system under consideration behaves petter as
Closer the reality is approached.

<usarmenfassurg

tin gradiometer-unterstiitztes inertiales Navigationssystem wird theoretisch und statistisc analy-
siert, um seine Moglichkeiten abzuschiitzen, geozentrische cartesische Koocrdinaten zu emmitteln.
Nach einer Diskussion der inertialen Instrumenten-Einheiten au‘ der bewagten Plattiorm und eirni-
Ber Bezugssysteme, die in allen Navigationssystemen angewandt werden, wird das Problem der Trean-
barkeit der Schweregradienten von den Inertialstérungen untersucht. Simuiation I zeigt, mit wel-
cher Gite das unterstiitzte \avigationssystem inertiale Kocrdinaten licfern hanmn und wie die Neu-
linge unter den Inertialgerdten, die Gradiometer, sich an Bord des bewegter. Fanrzeuges verhzlten.
Auch der Einflul von Quantisierungsfehlera wird untersucht und fur solch ein Syster. prisentiert.
Simulation II enthalt neben einer detaillierten Analvse der benutzten Fehlermodelle fii- Accelerc-
meter und Gradiometer auch die Moglichkeiten des Systems zur Schatzung geozertrischer Keordinaten.
Fine statistische Mehrpunkt-Analyse der niherungsweise inertialen Beschleunigungskemponen®en
zeigt, dafl das betrachtetc Navigationssystem sich umso besser verh#it, je niher man der Real:tiit
komnt.
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0. Introduction

Paris, May 1914. Lawrence Sperry is one of the entrants for a prize of fifty
thousand francs, the object of the competition being what one judge sees and
describes:''the airplane is already in flight and the mechanic rises, leaves
his seat and without fear goes from the cabin to the wings and returns back.
At the same moment the pilot, Lawrence Sperry, lifts his amms and leaves the
airpiane to continue its flight without guidance with speed of about 90km/n".
He finally won and the first stahilized platform was already introduced for

airplane stabilization.

-

Navigation is perhaps connected with the first human activities oo the eartn
because it is the "art' of obtaining with measurements velocity and position
of a moving object. Guidance has to be aluzys distinguiched irom navigetion,
for it is the process of generating motion correction commands te & LViTg
object such as it succeeds in its mission. it is understood tnat guidance

includes navigation but not vice-versz.

Guidance techniques could be considercd as an extension of humen oeinz’s natu-
ral serses of seeing, smelling, hearing, fecling, memory and deductiovn. In ca-
ses where the guidance problem is no® inside the man’s abilities, then a 'de-
vice'" could upgrade one or more of his natuval senses. For example, man’s mea-
suring abilities could be augmented by using electrcnic measuring devices or
computers wnich can increase his accuracy and speed of deduction. Going a lit-
tle further where the guidance problem is very complex or the human presence

is impossible (e.g. mission leading to destructive ter.ination), then automatic
guidance is to be introduced.

Newton’s law of mechanical inertia is by far the basic law governing all desi-
red properties of guidance systems. Under this law all particles with mass will
exert reaction to the applied acceleration, whicii ic equal in magnitude and cp-
posite in direction, the reaction not being depenucr.t on contacts with the eava-
ronment ., Constructing self-contained instruments dependent upon inertial eif:cts,
it is therefore natural to refer to them as inertial guidance systems and in ca-
se of navigation as inertial navigation systems.

An inertial navigation system generally cantains four basic elements:a)an accele-
rometer b)an attitude refsrencec)a computer and d}a clock. An accelerometer is a

§imvm g




device which measures the non-gravitational acceleration experienced upon

its case. But, since the case is hard-mounted on the moving vehicle, the
measured acceleration is also the acceleration of the vehicle. It is under-
stood that since a vector quantity has three components, then three accelero-
meters, orthogonally mounted, measure the non-gravitational acceleration re-
solved in their sensitive or input axes. The orientation of these axes is in
a manner best-suited to meet the system’s requirements.

The attitude reference is that part of the inertial navigation instrumenhta-
tion which either stabilizes or commands the platform frame relative to an
inertial or rotating frame respectively. Gyroscopes are always called to
instrument the attitude reference and considered to be the most indispensablie
and critical unit on-board.

P

The computer solves the fundamental equation of inertial navigation to give

the velocity and position estimates of the vehicle being navigated. The ma-
thematical procedure to be followed depends on the system requirements as well as
the on-board instrumentation. If, for example, the accelerometers used are

of the integrated type, then the computer does not perform integrations as

far as the accelerometer signal is concerned.

o —————

e ——————_

The clock generally gives the time instant of the measurements performed on-
board. In cases the navigation takes place relative to an earth rotating fra-
me, then the clock establishes the location or orientation of that frame.

An inertial navigation system may be abstractly considered as a black box.
The input to this box is apparent acceleration which contains relative ve-
hicle acceleration, gravitational acceleration and accelerations due to the
rotation of the frame of the black box relative to the inertial space. In-
side the black box manipulations are carried out and the output is finally
the instantaneous velocity and position of the moving vehicle or better of
the black box. Needless to say, that‘the manipulations contain errors and
therefore the output is incorrectly indicated. The differences between the
actual velocity and position and their output counterparts are then stati-

stically analysed to yield the error budget of the navigation system(black
box) .

It could be supposed that inertial navigation is accomplished by measuring
the apparent acceleration of the moving vehicle and then integrating it

L . o e AR NP ST TR TS R Y ——— ‘
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doubly in time to estimate position. But due to Einstein’s principle of
equivalence, the gravitational acceleration and the non-gravitational one
are manifestations of the same basic physical phenomenon. Consequently,
gravitational information is certainly needed on-board in order to solve
the navigation equation and there is no way out of it.

Tracing the historical developgments of inertial navigation, we see how the
scientists treated the above postulation due to the lack of actual gravita-
tionai information. A reference field was selected, the gravitational acce-
leration was computed (grossly approximated)at the instantaneous vehicle lo-
cation and then substructed from the apparent acceleration measurements to
go to the solution of the final equation used. Unfortunately, the same pro-
cedure is still in use nowadays.

As early as in 1950, Lundberg comnscructed and tested the first gravity gra-
diometer. The instrument was corposed of two vertically suspended masses and
had the ability to sense the sign of the first vertical derivative of gravi-
ty. The gradiometer was heavily tested in North America,Europe and West Afii-
ca, but nowadavs is completely forgotten for not known reasons.

During 1959-62, the Lockwood Compary in Toronto introduced its first prototy-
pe gradiometer sensing the vertical gradient of gravity with an accuracy of

100EStvos (1821077
dynamic environment.

-2 p e P
sec “), but the device was very sensitive to the airbomme

After these first attempts came the era of the first generation of gravity
gradiometers. The Hughes, the M.I1.T, the Bell Aerospace gradiometers are a
sample of very refined and tested gradiometers designed to be used in air-
borne gradiometry. The feasibility studies have proved so far trat an accu-
racy of 1E or better 1s to be expected in the very near future and especial-
ly for the Hughes gradiometer for which five cays of continuous gath:ring
data of the earth’s gravity field would be enough to map it completely.

Savet in one of his papers writes:''altogether, it appears that there is noc .
clear-cut advantage in using an existing or feasible gradiometer or, for

that matter, a pair of accelerometers''(Savet, 1970). Eight years iater, we
read something breathtaking:'in the University town of Nancy in France
George Delamare declares:<<the key to my operation is a tiny electrode imp-
lanted in each of the leg muscles which transmits a computerized electro-
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stimulation in response to a peripheral data system based upon micro acce-
lerometers and inclinometers to appreciate the patient (paraplegic)space
mission. Experiments carried out in the NASA space programme could be ap-
plied te the problem of controlling the balance of the patient when mo-
bile>>'""(Time magazine, March 1978).

It seems that sometimes non-geodesists appreciate the geodetic tools better.

in view of the era which the gradiometers promise and the fact that there
is not such a gross exaggeration as to assume a spherical earth gravity
field(!), we motivate the present analysis to put on-board the moving ve-
hicle a number of gradiometers to measure the earth’s gravity field. One
could immediately assert that the accuracy of the inertial navigation sy-
stems is slightly better than one mile/hour flight and it might be consi-
dered as satisfactory. But, again, we do not lay the problem on the desi-
red or obtainable accuracy. Perhaps we do not think so much of the opera-
tional point of view, at least, in the very beginning. The navigation sy-
stems need, as we believe, a theoretical injection which inevitably comes
from the gradiometer implementation.

Consequently, we start the whole analysis fresh from the beginning. We avoid
one of the current techniques, that is, first make the assumptions(so bias
the system) and then obtain what it might be expected:good results like the
assumptions. We go the other way round. Lay the fundaments rigorously and
the time for the assumptions will come in order to present some indicated
mumbers of how well the system behaves. Perhaps, there is a reconciliationm
between the two approaches.

The newcomers in the inertial navigation instrumentation technology, the gra-
diometers, promise many applications. As we all know, one of the prime goals
in geodesy is the determination of the earth’s gravity field. This can be
straightforwardly accomplished by employing a moving gravity gradiometer
which could furnish even in a very short period the desired gravity data.
Other applications of a gradiometer-aided inertial navigation system are:
a)vertical indicdtion

b)vertical deflection indication

c)geoid height indication

just to mention only a few of them. It is therefore concluded that gravity
gradiometers offer valuable applications in geodetic science.
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The inertial navigation system we analyse is a gradiometer-aided system.
Whatever comes as an input into the black box is actually measured on-board.
Certain mathematical manipulation takes place inside the box and the output,
what we are particularly interested in, is instantaneous vehicle coordinates
with respect to a frame rotating with the earth.

Section 1 deals with the inertial navigation instrumental units. Our plat-
form is enriched by three spherical gradiometers developed and tested in
the M.I.T. Three gyros command the platform to rotate with the earth’s rate
and the system has the capability to actually measure and then fecd the he
on-board computer with all what it needs:apparent acceleration corponents
and the whole gravity gradient tensor.

In section 2, the fundamental equatioa of inertial navigation for an earth-
bound region is derived. Since we are only interested in examining the capa-
bilities of a gradiometer-aided inertial navigation system for terrestrial
navigation, the gravitational fields of all attracting masses but the earth’s
are excluded.

The description of all common coordinate frames used in inertial navigation
systems is presented in section 3. As scon as the notion of these frames is
completely understood, then one could really have the {lexibility to intro-
duce the most general distortions a coordinate frame can undergo. Since our
navigation system estimates geocentric coordinates of the mass centre of

tne platform and it is impossible to ''curve in" all on-board frames on that
point, due to the actual dimensions of the units, it is assumed that the re-
sulted centrifugal accelerations(each for each instrumental unit mass centre)
are negligible small quantities.

Thinking in terms of Einstein’s principle of equivalence, it seems to be ho-
peless to separate gravitational from inertial offects. Studies on this se-
parability are carried out in section 4. 1t is c¢c~ncluded that gradiomete::
can measure in a dynamic environment only gravity gradients if and only if
they are inertially stabilised. Since our platform is inertially rotating,
a second platform is introduced to accommodate only the gradiometer measu-
rement unit stabilized with respect to an inertial frame. 3
An extensive literature exists on simulation studies of inertial navigation
systems. Depending on the system used and the assumptions set, different re-
sults have been drawn so far. The performance of the inertial instrumentation

i
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is considered,nowadays, .to be satisfactory, but the systems still gather an
appreciable error budget. Updating the system from time to time , the errors
are reduced but they are too far from being eliminated. Since there is not
any actyal in flight gradiometer, it is assumed and sometimes believed that
the approximation of the earth’s gravity field has the worst contribution
into the system’s accuracy. For that reason, we try to identify with a
simple example the function which drives the errors in an inertial naviga-
tion system. Section 5 contains a simulation to this direction not inclu-
ding error models for the instrumental units. Finally, a space traverse is
computed to see the behaviour of such an aided system.

Section 6 examines the quantization of errors for the accelerometers and

gradiometers. Assuming that each time the instruments are read a quantiza-
tion error is present, a general formula is given to estimate the position
error due to the instrumental truncations treated as stochastic quantities.

A general error model is analysed in section 7. We go to the far end of

each measurement unit taking into account what they actually measure and
considering the possible types on instrumental misalignment and non-ortho-
gonality. The errors which contribute more than 90% of the whole errcr budget
are paid attention and included in the general model. On the final navigation
equation suitably approximated, the second simulation studies are performed
to test the capabilities of a gradiometer-aided inertial navigation system.




1. Inertial measurement units
1.1 Accelerometers
1.1.1 General considerations |

Just a glance at the fundamental equation of inertial navigation(eq.(2.11))
shows how critical is the acceleration contribution to the navigation pro-
blem. As a matter of fact, inertial navigation can be principally accom-
plished by measuring only the apparent acceleration on-board 2 moving ve-
hicle. The gravity field compensation could be computed by employing a re-
ference fieid, such as an ellipsoidal one, and using approximate rposition
values, so as the gravity components at the instrumentation location are
then to be estimated.

The number of the un-board accelerometers depends on the particular pro-
blem considered. Generaily speaking, when we navigate in the three dimen-
sional space, three accelerometers are used in order to sense all taree
apparent acceleration components. In case of a cruise aircraft, the verti-
cal accelerometer could be substituted by a barometer or an altimeter re-
ducing the number to two.

The accelerometers provide their measurements in a frame which they are
constrained to follow and it is furnished by the gyros. In our analvsis,
three accelerometers are set at the platform’s mass centre such as to con-
struct an orthogonal frame and measure the apparent acceleration vector
resolved in their rotating(with earth’s rate) axes.

1.1.2 Operational principles

Let us now sec how an ideal accelerometer operates and in order to moti-
vate our discussion, consider an ideal spring-mass accelerometer shown in
Fig.(i). The instrument consists of:

a) the case
b) the proof mass and

c) the damping spring

As the accelerometer follows the motion of the vehicle, the apparent acce-
leration acts on the proof mass as well as the case. The proof mass extends
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Motion

Spring- Scale

R, ?

> 4

Proof mass

& Input axis

Fig.(1): An ideal spring-mass accelerometer

the spring and the displacement X is measured against a properly divided
scale. Generally, the equation governing the spring-mass accelerometer
operation reads

(1.1.1) A = miedrekx

where A the apparent acceleration, x the scale reading, m the proof mass,

d the damping factor and k the spring constant. Having got the x scale rea-
ding and known the mentioned constants, the apparent acceleration can be
then computed using eq.(1.1.1). Needless tc say, that the apparent accele-
ration is sensed along the input accelerometer axis and therefore three
such accelerometers orthogonally mounted can fully estimate the apparent
acceleration vector.

Finally, we remark that an ideal accelerometer is nothing else but an ideal
gravimeter and since a moving gravimeter cannot discriminate between gravi-
tational and non-gravitational forces, the accelerometer output is a mix-
ture of these two force fields and as such it must be gravimetrically com-
pensated .

1.1.3 Error model

As we said bLefore, three accelerometers can measure the apparent acceleration
vector and their output contributes to the estimation of the inertially re-
ferenced acceleration. But, since it is impossible to construct an orthogonal
accelerometer frame, the apparent acceleration is sensed along a quasi-ortho-
gonal frame and care should be taken to compensate for accelerometer non-
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orthogonality. The transformation of the apparent acceleration vector
from the quasi-orthogonal to the ideal orthogonal accelerometer frame
is a small angle transformation and it is considered in full detail in
section 7.1, Furthermore, each accelerometer has its own bias and scale
factor uncertainty which falsify the sensed acceleration. Taking all
these errors into account, the accelerometer signal is corrected and
refers to the ideal accelerometer frame ready to be transformed to any
desired coordinate frame in which we like to solve the fundamental equ-

ation of inertial navigation.

1.2 Gradiometers

i.2.1 General conziderations

Right from the begirning of the appiication of the inertial navigation
systems, it was fully understooc¢ that a serious contributing factcr in
their error budget was the gravit)y field compensation in the accelerc-
meters measurements. At that time, there was no space for envisioning

an instrument mounted on-bvara a moving vehicie and having the capali-
lity of directly measuring the gravity field. As the years went by an.
the inertial instrumentation and guidance systems reached such a tre-

mendous qualification and performance, it was quite evident that a re-

search for the first generaticn of moving gravity instrumentation was
inevitable. Sc far, the eartn’s gravity field was approximated by the
gravity field of an ellipsoid of revolution. Given approximate positicn
values, the gravity field is corputed at the vehicle’s instantaneous

1 location using well-known closed formulas. Having granted by the gra- |
diometer instrumentation, we feel a little disturbed to continue apnro-
ximating the reality as far as the gravity field is concerneda. Of course,

the motivation for studying and constructing gradiometers was noi,at

leacst primarily, to aid inertial navigation systems. But since gravity
is a critical inertial parameter, we thirk that it is reaily a good)d
chance to have on-board a gradiometer, or a number of thei, in an efiurt

to actually measure the gravity field in which the navigation takes pla- :
ce. - |

Nowadays, the gradiometers are still in the feasibility study phasé except
some on-board tests(see P.Hood and H.Ward,1969,p.98), but their performance
promises very quick on-board implementation(Trageser,1975).Consequently,

it is reasonable to assume that under the assertions of the mechanical
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engineers, gradiometer applicabilityis warranted in a serious effort to
aid autonomous inertial navigation systems.

1.2.2 Operational principles

-~ A gradiometer measures the changes of the gravity components with respect to
‘the displacement,that is,gravity gradients. The advantages of a gradiometer

arereally a lot, Moving base capability, no Edtvds correction, no terrain
correction, just to mention a few of them. Among the most interesting ones
are:
a)the Bell Aerospace gradiometer
b) the Hughes gradiometer and
c)the M.I.T. gradiometer
For a description see(Williams,1975). In 1915, the intelligency of Rolan
von E6tvds created the torsion balance bearing his name and measuring cer-
tain gravity gradients. Without exception, its principles apply to the up-
to-date gradiometers. Consider two equal proof masses connected with an
axle and supported at a flexure point between them. When that primitive
instrument passes over a mass anomaly, different(in the differential sense)
attraction forces are exerted upon the proof masses due to the difference
in the distance between them and the mass anomaly. Consequently, the instru-
ment changes its position about the flexure point and if this change (ro-
tation) is appropriately sensed, then gravity gradients could be measured.
Of course, the measurement of a gradient is very complicated due to the
advanced electronics involved.
In what follows, we shall try to explain briefly the spherical graciometer
developed in the Massachusetts Institute of Technology(M.I.T.) which is
used as our on-board gradiometer. Since all the known gradiometers are under
laboratory tests,there is not any irmediate justification why we prefer that
instrument to the others. But we believe, at least from the given accuracies
(Trageser,1975, Forward, 1974, Williams, 1975), that the M.I.T. spherical
gradiometer possesses certain advantages in comparison with the others e.g.
structural stability, immunity to platform jitter rectification effects ctc.

Let us therefore study the operational principles of the spherical gradiome-
ter. The instrument consists of (see Fig.(2)):

a) the float and

b) the housing of the float.

. i
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Fig.(2): Spherical gradiometer float

Between the float and the housing, a small gep exists which is filled by
a special fluid supporting the ficat incide the stabilized housing. When
the instrument passes over a mass anomaly, the float is constrained tc ro-
tate inside the housing. The moment about a defined axis is measured by
the electronics of the housing and is applied back as a restoration torque
in order to bring the float to its original position. For example, the mo-
ment measured about the X axis (Fig.(2)) gives tne 8y7 gravity gradient
and the moment about the Y axis the gy, one. Therefrre, each instrument
measures two gradients(another great advantage) and three of them mounted
on a platform can provide us the whole gravity gradient tensor.

Feasibility studies on the spherical gradiometer support the expectaticr
that iE or better could be attainec in th: near future(Trageser, '375)

1.2.3 Error model

In trying to construct a general gradiometer error model, three reference
frames are employed in conjuction with the gradiometer float:

a) the electronic frame, which senses the small float rotations (tdrques)

b) the float or misaligned gradiometer measurement unit frame, which

is fixed with respect to the float principal moments of inertia axes and

-~
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c) the ideal gradiometer measurement unit frame to which the gravity gra-
dients refer.

In a general error model, the first two reference frames should be consi-
dered as a quasi-orthogonal ones and the gravity gradients signal must be
accordingly corrected using the involved misalignment angles. Furthermore,
gradiometers are instruments which inertially measure gravity gradients.
Since our gradiometer measurement unit frame is designed to have the same
orientation as an earth centered quasi-inertial frame, a general misalign-
ment of the former frame with respect to the latter one should be taken
into account. When all these misalignments induced gravity gradients errors
] are considered, then the gravity gradients signal can be transformed to
the desired coordinate frame in which we like to solve the fundamental equa-
tion of inertial navigation.

1.3. Gyroscopes

1.3.1. General considerations

It is well-known that inertial navigation reaches its aim in determining
velocity and position with respect tc a reference frame by the implementa-
tion of three mutually perpendicular mounted accelerometers which measure
the components of the apparent acceleration vector resolved in their input
or sensitive axes. It is noting by passing, that these measurements must be
gravitationally compensated. Let us now suppose that we like to measure the
apparent acceleration in a moving vehicle in order to determine, say, posi-
tion. For that purpose, three accelerometers are mounted on-board the mo-
ving vehicle having their sensitive axes to a known orientation relative

to a reference frame with respect to which we navigate. As soon as the ve-
hicle starts moving and begins pitching, rolling and yawing, then it is
absolutely impossible for the accelerometer axes to preserve their original
orientation. Consequently, their output cannot be used as an input for sol-
ving the fundamental equation of inertial navigation. A special device must
be implemented in order to '‘dump out' the time-i1ik: accelerometer frame miso-
rientations. This device should have the capability of either to command the
accelerometer frame(or for that matter the platform frame) to rotate,in case
the navigation frame rotates or to stabilize it to a desired orientation,

in case of an inertially non-rotating reference frame. This can be accomp-
lished, as we will see, by employing three single-degree-of freedom gyros
or two two-degree-of freedom which can cover the three possible degrees of
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freedom in space. i
In what follows, we shall try to give briefly the gyro functional chara-
cteristics and their error model which is included in the simulation stu-.

dies.

1.3.2 Operational principles

Let us suppose that a solid bocy rotates with angular velocity w alcng
an axis of symmetry (Fig.(3a)). Newton’s second law in rotational form
states that in an inertial frame of reference:

A
(P8

&
nl=TiJ;;
1 > 2

where T represents the applica torque, H the angular momentum and I the
moment of inertiz of the rotating soi:d mass. Now, let mount this simple
device cn a case with a2 singie axis gimtal as in (Fig.(3b)). This over-
simplifizd mechanization depicts the principle of the single-degree-of-
freedom gyro(SLF) owing its name (o0 the single gimb2l suspension. A SDF
gyro is composed of:

7 b
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rotating mass

output axis 4
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!

signal gencrator

!
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’ s input axis
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e 4 torque generator
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Fig.(3): Single-degree-of -freedom gyro.




a) the gyro case or housing

b) the gyro float and

c) the gyro rotor

From eq.(1.3.1), it is understood that in absence of applied torques, its
integration gives

ﬁ = constant

and this manifests the most fundamental property of a gyro:when no external
torque is present, then the direction of the angular momentum vector pre-
serves its orientation in space.

In order to practically utilize the property of the constancy of the angu-
lar momentum orientation, the H vector ought to be in the direction of one
axis of the rotating body symmetry. If it is not the case, then the angular
momentum could be resolved in three components as:

Ae1,.3,
(1.3.2) ﬁt‘-ft-f‘

ﬁtz-Tt'wz
where :’s the rotation along the axis of symmetry and 31,32 the rotations
along two(any) perpendicular axes. Denoting the angle between H and the
axis of symmetry by -u:, we note that this is a constant angle, siace it
depends on the I’s and w’s which are constant quantities for a solid bocy
rotating with constant speed. But due to the principle that the angular
momentum vector preserves its orientation in space, then it is concluded
that the axis of symmetry must move otherwise it would coincide with B.
Consequently, the axis of symmetry generates a cone around H with apex
angle 2y and we refer to it as the (free)gyroscopic nutation phenomenon.

Suppose now that a torque is applied perpendicular to the angu.ar momentum
vector H. In this case, H rotates with angular velocity % transverse to
both torque and i vectors ard it is such that the appiied torque is 2qgual
to the cross product of fi and the rotation vector b. This rotation of the
angular momentum vector, being influenced by torques, is called precession.
In case in which the torques come from the friction of the gimbal bearings,
then the angular momentum vector again precesses and thus its initial orien-
tation is contimuously changing. In this case, we speak of gyro drift which
is one of the most critical errors in inertial navigation.

T e S R S s
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Let us now examine how three gyros can either stabilize or command a mo-
ving platform to a desired rate. Consider the SDF-gyro of (Fig.(3b)) mounted
on a piatform which generally rotates as the vehicle moves. Along the output
axis of the gyro two special devices are set, the signal generator(SG) and
the torque generator(TG). The former has the ability to sense torques due to
the rotation of the gimbal and to apply them as restoration coroues. Thz
latter can generate torques according to the rate of rotation of the navi-
gation frame. For example, if we navigate relative to an earth rotating
frame, then the torque generator is mechanized to provide torques of, appro-
ximately, 15deg/h and the signal generator senses the rotaticn of its gimbal
due to the irregular motion of the vehicle and restores it in orcder to iso-
late the platform from being affected by vehicle manoeuvres. In case we ne-
vigate relative to an inertially non-rotating reference frame, then only

the sigrnal generator operate: provided that the gyro frame has slready peen
initially aligmed. '

Since in the 3D-space, we have three degrees of freedom, it 1s understood
that three gimbals provide complete isoiation of the platform’s rotation
with respect to the turbulent metion of the moving object. Consequentiy,
wher we speak of three on-board gvros,we mean that three gimbals preserve
the gyro frame to change its attitude as the vehicle is pitching, rolliing
and yawing.

1.53.3 Error medel

Various gyroe error :models have been suggested in an effort to include all
pessible error sources in a gyro performance(e.g. Britting, 1971, p.74;.
The use of 2 specific model depends on the particular problem which one
faces. As we have already explained, our gyros command the platform to
the earth’s rate and thus, the error model should be selected such as to
includ> the instrumental misfunctions in generating the earth’s rctatiom.

Let us suppose that we have on-board the moving vehicle three SDi--gvvcs
which materilize the gyro frame generating the earth’ s rate. Since it is
technically impossible to construct a pure orthogonal gyro frame, then thc
resulting frame is a non-orthogonal or quasi-orthogonal frame. Consequently,
the torques are applied through a non-orthogonal frame and this should be
taken into account. Furthermore, the torques are experienced through the
torgue generator which have scale factor uncertainty. Therefore, the signal
for the earth’s rotation comes erroneous and should anyway be adjusted be-

M-;ﬁ_ A s e b i S T
i

I ——




I 22

fore it is applied, taking into consideration the two error sources just
mentioned. The analysis on the gyro error model is given in section 7.1.




2. The fundamental equation of inertial navigation

By the term fundamental equation of inertial navigation, we mean that
equation whose solution estimates the running values of the moving
object. In our analysis, geocentric coordinates are the desired output
of its solution. Consider the one dimensional navigation example of a
train. Its fundamental navigation equation is distance equals velocity
(considered as constant) multiplied by time. Measuring time by an on-
board clock, we can estimate the instantaneous position of the train
with respect to a convenient initial point.

The firal expression of the fundamental equation depends on the coordinate
framz in which it is coordinztized as well as the motion of the platfocru
frame relative to the navigation frame used. For example. if the navigation
takes place ir an inertial coordinate frame anc¢ the platioim is irertially
stabilized, then the navigation equation assumes its simplest form. in ca-
se in which the platfornm is constrained to rotate, then the navigation
equation includes more terms such as accelerations of Coriolis and centri-
petal type.

We shall try to derive the fundameital equation of inertial navigation in
the general case in which the navigaticn frame rotates inertialiy and the
platforn frame does also the same. Then, it is easy to specialize it to
any desired simplification. We finally remark that the navigation equation
is valid in any coordinate system, since it is nothing else than a vector
equation. It comes straightforward from the total cerivative of a vector
quantity. Consider two coordinate frames, a fixed one E] and a moving EZ.
The transformation between them can be represented

§2=RE]

Differentiating, we get

2

-

dE, = dRE+ RdE =dRE, =dRR'E, =k

since d51 =0 being fixed and o is known as the Cartan matrix. Now, consider
a vector which can be expressed in the two coordinate frames E],and EZ as

. aiE1 by EZ

where a, and b, the coordinates of the vector A and aiﬁ} . biE; its compo-
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nents in E, and E, frames respectively. Differentiating again we get:

%1 i i a1
dA = daE] + a,dE] = db; E) + b, dE) or
(2.1)
. i i *i >
dA = da.E} = db; E; + b; 0 E,

Eq.(2.1) can be interpreted in the following way. The derivative of a
vector with respect to an inertial frame is equal to its derivative with
respect to a moving frame(such as one fixed at the earth’s centre) plus
the rotation of the moving frame with respect to the inertial one multi-
plied by the vector itself. The last term is called the velocity of fol-
lowing. We state again this important conclusion using notation valid in

what follows as:

->

X d.r
¥ . PSR X
where I stands for the inertial frame and N for the navigation one.Now
let us derive the fundamental equation of inertial navigation using eq.(2.2).
Consider a moving vehicle O connected by a vector R to the navigation fra-
me N and by r to the inertial frame I (Fig.4). We remind again that R termi-
nates at the platform’s mass centre and when we speak of a moving vehicls,
we mean only a point, its platform’s mass centre. From the vectors definition,

we get

(2.3) F«B+3

—
el

o¢
%

Fig.(4): Inertial navigation geometry.
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where p the separation of the origins of the inertial and navigation
frames. Differentiating with respect to the inertial frame we get:

: d
4 B 1
RI“’I'*N’-‘:I*EN Ry == '

(2.4)
e
@2.5) Roed R =g R

‘ (2.6)

-~

y f
Ry el o= (B A ReB - (R B ARy - - (B0 R |

(2.7)

AR TR R R R R LR

Ec.(2.7, expresses the inertial acce.eration of the platform’s mass
centre as a function cf the acceleration and velocity of the vehiclc
with respect to the inertial one. For further rererence, €3 (9.7 is

written in trke form:
SR % T X Tk I
(2.8) F;=Dpgp+ ﬁN + 2§N ix R~ ﬁ& AN

It is worth noting that the incrtial acceleration is the sum of the
gravitational and non-gravitational acceleration. Consequently

(2.9) T =K+

and eq.(2.8) assumes now the form

I LI D S AL I

If we want to estimate geocentric coordinates, in case in which the na-
vigation frame is linked to the earth, then we have to integrate eq.(2.10;
doubly with respect tc time. But,as one could foresee, there e.ists some
difficulties in performing the integration, namely:

a) the angular velocity of the navigation frai. reffered ¢ the inc.tiaa
space must be known. Consequently, it is intuitively understood that tre
navigation frame should be linked to a body, with respect to which we like
to navigate, which has known angular motion characteristics with respect
to the inertial frame of reference. Linking the navigation frame to the
earth’s centre, then its inertially referenced angular velocity is a priori
ﬁ known quantity and it is undoubtedly a very good choice. As a matter of
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fact, this is common practice in inertial navigation, when the navigation
takes place near the earth’s space.
b) the inertially referenced angular acceleration of the navigation frame
must be known. But, in view of the obtained accuracies of the up-to-date
navigation systems, this quantity is very small and could be neglected.
c) the acceleration of the navigation frame with respect to the inertial
one is involved in eq.(2.10). This really a problematic quantity as far as
its measurements can be accomplished. To motivate our discussion, consider
the centre of mass of the universe. This point satisfies the requirement
for constant speed rectilinear motion, that is, it is an inertial point.
Now, centering three axes at that point with known space directions, we
get an inertial frame of reference. But how to measure the acceleration

£ the navigation frame fixed, say, at the earth’s centre of mass with
respect to the inertial frame? And even if we continuously approximate
the irertial frame with other quasi-inertial ones coming closer and clo-
ser to the navigation frame, certain difficulties in measuring the iner-
tial acceleration exist again. To overcome this cumbersome situation, let
us divide the universe into two regions, an internal region and an exter-
nal one. Thus, the gravitational acceleration acting on the moving object
is the sum of the gravitational acceieration of the internal and external
regions or

G = acxt * G

int

If we consider now that the external gravitational field Gext is uniform,
that is to say, it has the same direction and magnitude everywhere in the
external region, then every body moving in the external region will "get"
the same gravitational acceleration coming from the external region. Since
in this region the non-gravitational forces on the moving body are zero,

then we can state
ext ~ °1
In view of this result, eq.(2.10) reads
". L IA AT
R e - (A Rye i Ko~ (8~ 2
Now, a very reasonable question arises:with what criteria one could divide
the universe into these two regions? where aie the boundaries of them? The

answer becomes simple in case we know in what kind of navigation we are
involved. In our studies, the navigation takes place near the earth’s sur-

E ~ae - S = .- -~ — - -
e e i
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face, that is to say, we are interested in terrestrial navigation. Con-
sequently, the boundary between the external and internal regions is so-
me kilometers above the earth’s surface and as such the gravitational field
of the internal region represents only the earth’s gravity field. The next
to the mentioned one strong gravity fields, namely the moon’s and sun’s
fields, are neglected being quantities up to the order of 10'7 the earth’s
gravity field intensity. Finally, the fundamental equation of inertial na-
vigation, in case of terrestrial navigation, reads:

‘ --._“-. ','I.'; .I -+ I » e
(2.11) i‘__ A LvE-Z»LE RE-nEAR'ﬁgh(ﬁE’_‘R)

where A: the apparent acceleraticn of the moving vehicle

C.: the earth’s gravity field
Zﬁé‘ﬁg : the Coriolis acceleration
3% ~ (@ é ‘R): the centripetal acceleration

and the navigation frame is ceatered at the earth’s centre of mass.

Eq.(2.11) stands for what we are after. It represents the fundamental equ-
ation of inertial(terrestrial) navigation being investigated to visuali:ze
the capabilities of a gracicmeter-aidcd inertial navigation system io esti-
mate instantaneous geocentric coordinates of a moving vehicle inside the
earth’s space.

It is practically worthwhile to give some indicating numbers ccncerning the
magnitude of the Coriolis and centripetal acceleration. Consider i in
eq.(2.11) to represent the earth’s angular veiocity and an aircralt which
meves with velocity of 500 km/h. Then, the Coriolis accelerction accounts
for

268 R = 2 (7,28} (10" *)rad/sec 500ikm/h= 4-10"7g

where g the earth’s gravity field intensity. It is understood, tat the Co-

riolis acceleration magnitude depends upon the velociiy of the moving “<-
hicle. The centripetal acceleration for an earth bowi. region acccunts for
almost the same magnitude given above.
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3. Reference frames used in inertial navigation

The discussion about any inertial navigation configuration intuitively
includes the introduction of some coordinate frames which are either
ihstrumented on-board the moving vehicle or used as reference frames
and as such the system output is related to them. The inclusion and
orientation of these frames depend upon the particular purpose of the
navigation system, but there are some of them which have to be anyway
implemented, since they play fundamental role in the whole mathematical
analysis.

The coordinate frames used in inertial navigation could be classified

into two distinct categories:

3.1:the external coordinate frames,which are linked to bodies other than
the moving vehicle and

3.2:the internal or on-board coordinate frames, which are linked to the
object being navigated.

In the first category two particular classes can be defined:

3.1.1:the inertial frame,where the term stands for a number of quasi-inei-

tial frames approximating the absolute one. Concerning the accuracy of the
up-to-date inertial navigation systems, it is not reasonable to desperately
include the use of the one real inertial system. Any of the first approxi-
mations can be undoubtedly considered as satisfactory. One could adopt a
reference system with origin at the earth’s centre of mass(included its
atmosphere) and with the following axes orientation:

3-axis: towards the instantaneous rotation axis of the earth
1-axis: towards the vernal equinox
2-axis: completes the right-handed orthogonal system

Such a quasi-inertial frame is a common choice in inertial navigation ap-
plications, since its angular velocity with respect to the fixed stars is

a negligible small quantity, if it is compared to the short period of ope-
ration of a navigation system. The frame discussed plays the role of the
inertial frame in the present work, the inertial property being under-
stood in the given reasoning.

3.1.2 : the navigation frame.It is defined as that frame in which the final
output of the navigation system is coordinatized. A lot of choices could
bring a lot of navigation frames into picture, the particular choice depen-
ted upon the purpose of the navigation system under consideration. In our
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analysis, we like to estimate geocentric coordinates and therefore the
navigation frame must be linked to the earth. The orientation of that frame |
is as follows:

3-axis: towards the rotation axis of the earth considered as a solid
body. The axis is fixed at the time instant at which the navigati-
on starts. If we like to refer to the instantaneous rotation axis
of the earth, then polar motion must be taken into account.

1-axis: towards the intersection of the equator fixed when the naviga-
tion begins and the Greenwich meridian defined by a set of

world-wice ,well-distributed astronomical stations.
2-axis: comrletes the right-handed orthogonal frame

The orizin of the navigation frame is at the earth’s mass centre included

its atmosphere.

Now, let us discuss the internal or on-board frames. The descriptiorn inciu-
des all or at least most of the on-board frames, but this does not mean trat
they have to be anyway implemented.

3.2.1 the corputation frame.It exists only in the on-board computier memo-
ry and 1t serves as that frame in which the final manipulation of the mnavi-

gation system equations is carried outr. Having decided to estimate geocen-
tric coorcinates, then the computation frame is set to the same orientaticn
as the navigation frame and remains parallel to it everafter.

3.2.2 the mechanized or ideal platform frame.I* is the frame with respect
to which the gyrco and accelerometer frames are held constant. As the word
“idealn explains, that frame is practically distorted due to various instru-
mental reascns e.g. gyro drift, initial misalignment etc. The iceal platform
frame, in some applications, may diffcr from the navigation frame, the motli-
vation for that being what we like to take out of the system. :in our analy-
sis, the ideal platform frame is identical with the computation frame, be-

3.2.3 the actual platform frame, The initial platform misalignmen' ccuses the
first effect and as the time passes the gyro drift drives the ideai plat-
form frame away from its desired orientation. The resulting frame is the
actual platform one. The drifting platform affects, finally, the orientation
of the gyro and accelerometer frames which lose their ability to ‘stabilize
the platform and sense correctly the apparent acceleration components respec-
tively.

cause there is no reason to assume the opposi.c. L’




—

30

3.2.4 the gyro frame.It is by far the most important configuration in
any navigation system. As a matter of fact, without gyros there is no
way to navigate a moving vehicle(at least with the up-to-date technolo-
gy) . The three orthogonal output axes of the on-board gyros construct
the so-called gyro frame which possesses the fundamental principle to
preserve its orientation regardless the turbulent motion of the carrier.
Consequently, every distortion of the platform’s desired orientation can

be sensed by the gyros and applied as.restoration torque to correct the
platform to its proper attitude. Unfortunately, the gyro frame drifts with
time and this complicates the navigation analysis.

3.2.5 the accelerometer frame.The three imput axes of the on-board acce-

lerometers instrument the accelerometer frame along which the apparent
acceleration is sensed. The frame is affected by its non-orthogonality
as well as the drifting platform. 1
3.2.6 the gradiometer frame.As in the gyros’ and accelerometers’ case,

the axes of the three gradiometers construct the gradiometer frame. It is
worth noting, that this frame comes into picture only when one likes to
actually measure gravity gradients. Besides, gradiometers measure pure
gravity gradients (without inertial disturbances) if and only if they fol-

low an inertial orientation. Consequently, the gradiometer frame must be
inertially stabilized.

Regarding the definitions of the above frames, the following comments
might offer clarity and understanding in what follows:

a) The aim of our navigation system is to compute the instantaneous geo-
centric coordinates of the moving vehicle. In order to be exact, we must
declare that when we speak of a moving vehicle , it must be understood as
only the centre of mass of the moving platform. All the mathematical rela-
tionships as well as the estimated geocentric coordinates refer to this
point. But, there are two arguments against this:

I: The on-board instrumentation cannot, of ccurse, be concentrated on the
the mass centre of the platform and it is actually distributed around tiis
point in a radious of a few meters.

II: The gradiometers are tremendously sensitive instruments. Thus, it is
strongly recommended that they ought to operate in the tail of an aircraft,
in case of aircraft navigation, so as to avoid influence of the movements
of the personnel etc.

The above two arguments cause no trouble because the centrifugal accelera-
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tions created from the distribution of the instrumentation arounc tne
platform’s centre of mass(which should be otherwise included)are now
dropped of the navigation system’s equations as negligible small quan-
tities.

b) It is, finally, worth repeating that the orientation of the navigation,
computation and ideal platform frame is the same. This gives simplicity,
to some extent, on the derivation of the system’s navigation equation and
is by no means an assumption.
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4. Separability of gravity gradients and inertial disturbances

The subject of this analysis is of principal importance in case in which
gradiometers are used onrboard a moving vehicle to measure gravity gra-
dtents. The central question arisen is whether we can measure pure gra-
vity gradients while we are moving or not. In other words, we have to
find out what is the output of a gradiometer being affected by the tur-
bulent motion of the carrier.

It is more than seventy years that all of us have been benefited by the
Einstein’s principle of equivalence according to which the acceleration
field is equivalent to the gravitational field. It is worth noting here,
that this principle holds only approximately and locally and only in

that sense we cannot separate gravitational from acceleration effects
(Fock,1964) . Let us therefore examine in what mode a gradiometer measu-
res the gravity gradients of the gravitational field in which it operates.

Consider again two frames, an inertial one denoted by X and an accelerated
with respect to the inertial denoted by x. The relationship between then
reads

Xi = Aijxj + D.1

where Aij represents the relative orientation of the two frames and Di the
displacement of the origin of the moving frame with respect to the inertial
origin. Performing in exactly the same mode as in the derivation of tke
fundamental equation of inertial navigation and representing the force per
unit mass by F, then we get

2 2
d!)i

2
d™x, dA. . dx. d®A; .
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Let us now determine the terms involved in eq.{4.1). Using the Kronecker
delta definition for the rotation matrix we octain

Ak” Agy = &

and by differentiation

dA dA,
(4.2) —-a:—kAij ’Aik_'d'tu—'o
or
(4.3) ﬂkj’ﬂjk =0
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with the obvious substitution representing the instantaneous inertially
referenced angular velocity of the moving frame. Differentiating ﬂjk
with respect to time we get

TP B TR

and according to eqs(4.2) and (4.3), we write

4.5) Q.0 = Sy S
g 15°k] '1?)‘—5?‘

Consequently, eg.(4.1) is now written as
5 y
d“x dx . do. . d™D
(4.6 ) -~ ’ iJ - 1
e r o8y g Saf- —7

here f represents tae coordinates of the gravity vector. Ei.:4.6a) 3
not assume the Newtorian form and iZ it is stretched to do so, we cblain

2 -
dx. an. . 4°D.
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where the temm dxj/dt has been (ropped out, since the moving instrumen:s
are mounted on the platform and therefore, there is no relative moticn.ka.
(4.00) is solved witn rcspect to Eu ™ sV/ ax, ard then, successive space dif-
ferentiation yields the gravity gradients and the third gravitational de-
rivatives respectively. Consequently,

av. 1 d D
4.7 g e i
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5 aA ..
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2
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From eqs(4.7),(4.8) and(4.9) the following conclusions can be drawn:

a) The structural difference between the gravitational and acceleration
fieid allows the third derivative of the gravitational field to be free
from inertial disturbances. If an instrument could be designed to measure
the third derivatives, then its measurements would be pure quantities of

s ———— —————————————




the gravitational field, the motion of the vehicle having no effect on
them whatsoever.

b) The gravity components are always affected by inertial disturbances.
This explains the fact why a gravimeter cannot perform gravity measure-
ments while it is moving. 2

c) When the platform rotates and translates in space, then gravity gra-
dients are mixed with inertial disturbances. The way out is to inertially
stabilize the gradiometer frame and then the second term in eq.(4.8) re-
presenting the inertial disturbances is cancelled. But as we have designed
our platform, it trucks an earth fixed geocentric frame and therefore, it
rotates with earth’s rate. To reconcile the constraints posed on the gra-
diometers, a second platform is set on the moving vehicle which is iner-
tially non-rotating and on this platform the gradiometers perform the pu-
re gravity gradients measurements.

The above discussion was motivated by the following two very important
reasons:

1) If one is keen on asking what a gradiometer measures, then eqs(4.7),
(4.8) and (4.9) give the straightforward answer. It measures what one li-
kes as well as what one dislikes. It is in one’s choice,merely, to exclude
inertial effects by posing the constraints which come so clearly from
these equations.

2) In our work, we like to estimate geocentric coordinates referred to

an earth-fixed, non-inertial frame. But our discussion has proved that
gradiometers must measure only relative to an inertial frame and as soon
as pure gravity gradients have been obtained, then they can be transformed
to any other reference frame such as, say, to the earth-fixed one. Inly
under these lines, it is well understood that the separability of gravi-
tational and inertial effects is of great importance, when gradiometers
are called to measure only pure gravity gradients on-board a moving ve-
hicle.
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5. The system’s driving error function

5.1 General considerations
\

It is well-known that inertial navigation systems are burdened with 2
large ammount of errors which, in some cases, turns on to be intolerable.
For example, the vertical channel of an autonomous navigation system is

so unstable that the system is practically out of its reasonable cperation
as far as this channel is concerned, after a short time of operation. The
general instability of an autonomous inertial navigation system can be
faced:

a) with an external aid: various instruments have been suggested an< us=C
sc far in an effort to furnish adaitional on-board measuremrer:ts with

a specific channeir or 2 whole navigation sys:am’s

the 2im of recucing
instavility. For tne vertical charnel a barometer or an altimeter

could accomplish it quite succe:s{uliv (Winter, 1974). For a whole sy-
stem, a velocitvmeter or a laser equipment which measures distances or

a gradiometer or a camera taking photographs while it is moving, are

some of the externzl aids which can effectively reduce the navigation
system’s errors down to verv reasonabie values,

b) with a periodic updating: in manv inertial navigation appiications, the
systen becomes rather quickly very unstable cdue to the presence of big
errors. The remedy for that is the application of certain mathemsticai
methods,i.e. Kalman filtering, to update the system at a desired cbseivi~
tior point and to "start" it fresh henceforth. It is understood, that

the system’s updating takes place rather often, its periodicity being
depended upon how quick the errors propagate, the sampling intervai eti.

Our anlysis deals with the first method described above. Sc far the earth’s
gravity field is approximated by the gravity fieid of a spheic or an ellip-
soid of revolution. This is, of course, ocily an approximation or the reaii-
ty which in its turn contributes errors to L. Mevigation System porrcideiis.
In each science special assumptions are always set in an effort tc approach
the reality as closer as possible. But, in view of the hopeful results cou-
ming from the gradiometer feasibility studies and tests, we could take full
advantage of them. Now, we have an instrument which has the ability to mes-
sure the gravity field. Thus, why to make such a vital assumptioﬁ? Finally,
we enrich our platform instrumentation by setting a number of gradiometers
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to measure the earth’s gravity field. Certain assumptions have of cource
to be made concerning gradiometer accuracy, values of the gravity gradi-

ents in space, location of the platform’s instrumentation etc.

5.2 The simulated navigation equation

Our study examines one of the simple cases of an inertial navigation sy-
stem, trying to find the function which drives the error budget of the
system under consideration. In order to bring the fundamental equation
of inertial navigation into an easily simulated form, certain assumptions
| have to be made, e.g. absence of instrumental errors. We believe that ma-

king these assumptions, we do not overshadow problems, but we present a
simplified example to draw a very interesting conclusion, namely, which
is the worst contributed factor in an inertial navigation system.

Let us, now, examine in detail our navigation system. The moving inertial
platform is on-board an aircraft and is composed of the following instiu-
mentation:

a) three orthogonally mounted single-axis accelerometers in order to mea-
sure the components of the apparent acceleration vector resolved into
their axes.

b) three orthogonally mounted gyroscopes which can isolate the platform
from the turbulent motion of the aircraft and preserve the crientation
of the platform frames with respect to the inertial frame.

c) three orthogonally mounted spherical gradiometers which furnish the mea-
surements of the entire gravity gradient tensor.

Taking into account that the moving platform does not rotate with respect
to the inertial frame, which is in this case the navigation f{rame, then
all terms in the general navigation equation(eq.(2.11)) containing the
angular velocity term, are simply dropped cut. Consequently, the navigation
equation covering our system assumes the simple form

v

(5.2.1) RI'A’GI

where R denotes the instantaneous inertial position of the aircraft, sub-
script I shows the inertial reference, A is the apparent acceleration and
G the gravity components. For simplicity, the inertial subscript is dropped
henceforth. Eq.(5.2.1) can be written in component form as
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i-&#&
(5.2.2)  YeApG,
oA _+G
2 2
where X,Y and Z the inertial coordinates of the aircraft. Since we do not
measure gravity components but gravity gradients and the inertial accele-
ration terms call for undesired integration, eqs(5.2.2) are approximated
in the following reasoning:
a) the inertial acceleration components could be substitutced by the inertial
coordinates, using the well-known Stirling’s approximation formula appii-
__ed for three successive points(Scheid, 1968)

X

i+

P =2X;+X;

X.=
—_—
A At

(5.2.3)

b) the gravity components are to be approximated by the gravity gradients
using a coordinate-free derivation which is valid(as the name explains)
in any coordinate frame:

5.2.4) (;i = Gi_,!.gradc,l_}(Ri-Riq)* higher order terms

.where the higher order terms are neglecCted.

Consequently, eq.(5.2.2) in view of the approximations made could be re-
written in the form:

: =2 g o
LT Ry B e T T AR Yl G

quantizaticn error °

8 -2 . v * P -
(5-2.5[ (Yi’,"zYl*Yl.-])Lt -H,iﬁqii-%i-](\-&_1)‘%11-1 (Y: ‘i_«‘) G"Zi_-‘-i 4--1_1]‘

. quantization erros

IR R A T R L T L LA A L G L
i i i-1 i-1 i-1
quantization error’
Quantization error studies are performed in section 6. Eqs(5.2.6) show
a rather peculiar phenomenon. When the moving platform is at the point i

2 ” “ ..
Rior ® 870 By O, ®i X2y, (Y300, LI A L T

(5.2.6) Yy, = Atztﬁi‘ﬂyi'ﬁﬂi_l(&'xi-1)‘°ni_,(”1"’1-1)‘%“‘Zi'zi-i))’“i"'l-i’ e
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2y * mz(Azi«;zi«;z_xi_1 Xy ¥gy Oy )*Cgp By D)4223-2; o g
and the on-board instrumentation measures apparent acceleration and gra-
vity gradients(as a matter of fact the measurements are performed between
the points (i-1) and i), then the system estimates the inertial coordina-
tes of the (i+1)-point. Therefore, the platform behaves like a "moving win-
dow" and there are two general ways one could face this situation:

a) the Boundary Value Problem of Inertial Navigation:given the inertial
coordinates of the first and the final points, then the system can esti-

mate all other points, but only off-flight, that is, post mission. In so-

me applications, this has certain advantages. For example, consider a pho-
togrammetric airplane taking photographs of an arez. During the flight, the
instantaneous coordinates of the moving vehicle are not of direct interest.
But, after the mission has been accomplished, the desired photo-manipulation
needs the coordinates of the camera from where all photographs have been
taken. Thus, application of eqs(5.2.6) simultaneously for all in flight
points gives the required values.

b) the Initial Value Problem of Inertial Navigation:when the first two

points of the navigation path have known coordinates, then eqs(5.2.6)
estimate the inertial coordinates of all other points to come in flight.
In many practical inertial navigation applications, as in terrestrial na-
vigation, we are most interested in knowing at any time instant where we
are and therefore this case suits to our analysis. Schematically, our na-
vigation problem is illustrated in Fig.(5).

Sk Ga s R G.: A ol
11, 11211)23 123};”“ 134 4 navigation rnt.hi

» X e iy S
Xp¥ps2p) Xy 05,%,2)) X, »
M o )8 2 Yin
1\5 24 “i9

Fig.(5): The initial value problem inertial navigation.

be measured anc
iga-
tion path indicate what is estimated when the platform is at that point.

In Fig.(5), quantities above the navigation path ar
under it are known. The quantities inside the brackets under

Before we compute the matrices invoived in the variance-covariance expres-

sions for the estimated inertial coordinates, it is worthwhile to examine
the impact of the Laplace condition on the variances of the measured gra-

Q‘
g
.
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Qity gradients. It is well-known that the in-line gravity gradients are

~connected with the following condition:

(5.2.7)  Gyy = -Gyy~Gyy
known as the Laplace condition. For instructive purposes, we rewrite the
gravity gradient tensor

and note the solenoidal and irrotaticnal structure of the gravity field
G155 :
cies are later to be assumed for them. But, the vertica: in-line gravity

). What is above the dotted line is observed and certain accura-

gradient(GZ,) which enters eq.(5.2.7) has to get a variance dependent on
the other two gravity gracients variances. Consequently, trying to find
the relationship between the in-line gravity gradients variances, we write
Gyox™Cxx 5y
Gyy=Coxx* vy

Gz <GBy

or in matrix form

-

(5.2.8) Gy (=0 1 |loy

If eq.(5.2.8) i= abstractly written as Y=AX and the law cf propagation of
errors is applied, then we obtain

’_2_. o (O -

C A | | E R N L
%G G oéYY OGYYGZZ 0 1) Jog o % 0 1 :ﬂ

o c o2 =1 =1
G G G
72%x G228y Gy
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& ot Ga Sl
(5.2.9) = | "Gy . o 8%,

oo oo oodn oy oGy "o

Equating the respective matrix elements, we get besides the obvious iden-
tities the following interesting expressions:

o T :
Sufu e oo | |
(5.2.10) %6556y, Gy GGy

%" o vy Sy
The above equations are of value for our analysis because
a)when we consider the observables to be uncorrelated, then we cannot as-
sume the same for the vertical gravity gradient and thus its correlation
with respect to the other two in-line gradients ought to be considered.
b)when we simulate the navigation system, certain variances have to he
chosen for the GXX’ GYY gradients. GZZ will then get a variance as eq.
(5.2.10c) indicates.

What we intend to examine now is the contribution of each observable of
the navigation system to its error budget. The simulation takes place
when the platform is at the 2-point and so, the equations can analytically

be presented as:

2 3 y 3 & §

vl Z*C‘x‘ Gﬂ.z(xz X)*Gyy, , 2 Y|)’°lez(zz 2y))+ 27Xy

(5.2.11) gm#m“:QCQMJMJQmWnﬁfny@HJQJQyn[n
Zs'“z("‘z‘ e R L o i AL 2 L 2(22‘21”‘222‘21

In the system of eqs(5.2.11) we have 19 parameters, namely

e e
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a) At:the time interval between two successive observations(1)

b) Ai:the components of the apparent acceleration(3)

c) Gi:the gravity components (3)

d) Gij:three in-line and three off-line gravity gradients(6)

e) (X,Y,Z)1,(X,Y,Z)2:the inertial coordinates of the first two points(6)
Generally, the variance-covariance matrix of the estimated inertial coor-
dinates can be written

(5.2.12) g, = cszc

where Ty indicates the variance-covariance matrix of the coordinates,

Ly the variance-covariance matrix of the 19 parameters, G the matrix of

th: derivatives of eqs(5.2.11)with respect to the 19 parameters and T
denotes the transpose matrix. In view of eqs(5.2.11), the simulated sy-
ster. is given in table (1). The derivatives of eqs(5.2.11) with respect
to the parameters involved read:

X
SEE B Gy O, By K)oy 0 G (272)

o
w

-

2
s}:x—i— "t (xz-x1)
=

3 X
fﬁi‘y" 2 t2(Y,Y,)
12

X
3 2
0t (2,-Z,)
ﬂrx-z Z 1

12

3X3 2
X, =10t G)O(n) .

Wy L2
--dt
A
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5.3 Results

Eq.(5.2.13) is our simulated navigation equation combined with eqs(5.2.147.
In order to obtain the desired results, certain accuracies have been assu- .
med for the 19 parameters of the system. The simulation covers the case in
which the observables are not correlated. When an observable assumes a ran-
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ge of values, the rest 18 are held constant so as the influence of the
observable under consideration on the variances of the inertial coordi-
nates could be deduced. The used ground values for the 19 parameters of
_the system are listed in Table(2).

Parameter Value Variance
At O.1sec O.wlsecz
Ay 0.1m/sec? 0.01m%/sec’
1
A 0.1 0.0t
1
AZ] 0.1 0.01
!
' Gy 0.5 0.01
1
Gy 0.5 0.01
1
Gz' 9.0 0.01
Gy -1500.E 1.E
1
Gyy -0.2 1
1
, -15 (R
Sz,
Gyy -1500. 1
1
+0.05 1
Gyz,
Gyy +3000. ifi
Y
X, 6200000 m 1.m%
Y, 6000000 /|5
Z, 6500000 1.
| X, 6200030 1.
Y, 6000030 117
z, 6500030 1.
Table (2): Ground values for the parameters used in the simulation.
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As far as these values are concerned the following remarks are indi-

spensable:

a) the operation of the platform’s instrumentation every 4t=0.1sec.
could be generally considered as rapid, but actual tests on aided in-
ertial navigation systems recommend that value(Denhard, 1977).

b)the values for the initial inertial coordinates are selected to be out-
side the earth’s surface having 30m distance apart. An aircraft velo-
city of 1000km/h is assumed for the moving platform. But, generally
speaking, the given coordinate values have not any special meaning
whatsoever,

c)the ground values for the gravity gradients have been takern from (Tra-
geser, 1571; and compared to those given by (Reed, 19753). it 1s worth
noting here that for our simulation studies only indicuted vaiues for
the gravity gradients fulfill the requirements of the analysis, since
we do not derive coordinates, but the intluence of each observable on
the variances of the coordinates.

For the computational aralysis, a special programme was written in *h¢

sense of eqs(5.2.12) and compiled in the Siemens Computer at the Univer-

sity FAF Munich. The results of the carried out simulation arc given

below.

2 a0
o, = > C~ = - :
Gy (mzlsecd) var.-cov.: m?) 6 (n/sect) Var.=ccv.:  (mé
5.0340  0.0080  0.0400 5.024C  0.0040  0.0400
0.02 5,020  0.0400{ | 0.02 5.0240  0.0400
5.4201 5.4301
i
5.0040  0.0040  0.0400 5.0240 0.0MM0  0.0400
0.05 5.020  0.0600| | 0.05 5.0:4C  0.0400
5.4201 5.4601
5.1140  0.004C  0.0420 5.0240  0.C040  0.0400
0.10 5.0240  0.0400| [ 0.10 §.0240  0.0400
5.4201 5.5101
5.2106  0.0040  0.0400 5.0240  0.0040 0.0
0.20 5.0240  0.0400| | 0.20 5.0240  0.0400
5.4201 i 5.6101
5.5140  0.0040  0.0400 5.0240  0.0040  0.0400
0.50 5.0240  0.0400| { 0.50 5.0240  0.0400
§.4201 $.9101

ban 4
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ar- oz =
X, _(!3 N var.-cov.:  (p?) X, (mz) VAT.=COV.:  (p)
4.0340 0.0040 0.0400 1.0640 0.0040 0.0400
0.0t 5.0240 0.0400 0.01 5.0240 0.0400
5.4201 5.4201
4.0740 0.0040 0.0400 1.2240 0.0040 0.0400
0.05 5.0240 0.0400 0.05 5.0240 0.0400
5.4201 5.4201
41240  0.0040 0.0400 1.4240 0.0040 0.0400
0.10 5.0240 0.0400 0.10 5.0240 0.0400
5.4201 5.4201
l |
j 4.5240 0.0040 0.0400 3.0240 0.0040 0.040 |
0.50 5.0240  0.0400( | 0.50 5.0240 0.0400 |
5.4201 5.4201
6.0240 0.0040 0.0400 9.0240 0.0040 0.0400
2.00 5.0240 0.0400 | | 2.00 5.0240 0.0400
5.4201 5.4201
9.0240 0.0040 0.0400 21,0220  0.0040 0.0400
5.00 5.0240 0.0400 5.00 5.0240 0.0400
5.4201 5.4201
’ or'l OT- 2
Gyx (E) var.-cov.: (ml) At (sec var.-cov: szi
' 5.0241 0.0040 0.0400 5.0240 0.0040 0.0400
, 10 5.0241 0.0400 0.001 5.0240 0.0400
; 5.4202 e
| 5.0240 0.0040 0.0400 5.2200 0.2000 1.9938
“ 50 5.0245 0.0402 0.05 5.2200 1.9998
5.4207 25.0213
5.0240 0.0040 0.0400 5.4199 0.3999 3.9995
100 5.0250 0.0405 0.1 5.4200 3.9998
§.4213 45.0225
$.0240  0.0040 0.0400 7.0194 1.9996  19.9976
1000 5.0340 0.0450 0.5 7.0197  19.9991
5.4326 205.0321
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3 7
o, = d o, =
L 4 (mZ) var.-cov.:  (gf) ) (mZ) var.-cov.: _(m)
[ 5.0240  0.040  0.0400 5.0240  0.0040  0.0400
0.01 5.0240  0.0400 0.01 5.0240  0.0400
4.4301 1.4601
— |
’ 5.0240  0.0040  0.0400 5.0240  0.0040  0.0400
} 0.05 5.0240 0.0400 0.05 5.0240 0.0400 |
J 4.4701 | 1.6201 |
, |5.040  0.0040  0.0400 5.000  0.0040  0.0400|
; 0.10 5.0240 0.0400 0.10 5.0240 0.0400 '
4.5201 1.820"
|
: 5.040  0.0040  0.0400 5.0240  0.0040  0.0400
| o.50 5.0240  0.0400 0.50 5.0240  0.0800|
4.9201 3.4201 |
- L it
; 5.0240  0.040  0.0400 | l 5.0240  0.0040 o.oaool
k z.00 5.0240  0.0400| | 2.00 5.040  0.0400
! 6.4201 | | 9.4201 |
» | |
; 5.040  0.0040  0.0400 ' 5.0240  0.0040  0.04 1'
| 5.00 5.0240  0.0400 i 5.0240  0.0400
! 9.4201 ] | 21.4201J
L {
EE 2, 4 o “ |
Ax (m” /sec ) Var.-cov.: (m2) Xi'Yi'zi=1_,2 {mz) var.-cov.: jmz\
5.0211  0.0020 0.0204 0.0740  0.040  ©.0%00)
0.01 5.0240 0.0400 0.01 0.0°40 0.040¢!
5.4201 o.:vmi
5.0211  0.0021 0.C208 0.5240  0.004C o.mooi
0.02 5.0240 0.0400 0.10 0.5240 0. 2400/ i
5.4201 0.9:01, :
g .
§.0212 0.0022 0.0220 2.5240  0.0040 0.0400) &
0.05 5.0240 0.0400 0.50 2.5240 0.0400) i
5.4201 2.9201 t
_ 5.0215 0.0024 0.0240 10.0240 0.0040  244.0042
0.10 5.0240 0.0400 2.00 10.0240 2440225
5.4201 4882.5818
'
e iy i —_—— _i
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From the obtained values the following conclusions can be drawn:

a)as the accuracy of the clock-timer, which signals the time interval

At and alerts the platform instrumentation to operate, decreases, then
the variance of the Z-coordinate gets very big values. Generally spea-
king, it is reasonable to assume that the clock-timer possesses no error
in determining At(observe also the increasing values of the covariances!).
b)the accuracy with which the inertial coordinates of the second point
are known causes worse instability than that of the first point. The va-
riance of the X-coordinate has no effect on the derived Z-coordinate va-
riance and the deviations in Z cause bigger instability to Z-variance
than that due to X or Y variations.

c)the accuracy of the gravity gradients has almost no effect on the esti-
mation of the inertial coordinates. This is really something surprising
and not known so far. It can be explained as follows:if one performs the
tedious manipulation on the simulated navigation eq.(5.2.13), one couild
see that all terms containing gravity gradients are multiplied by the
fourth power of the time interval At and by other small quantities. Thus,
their influence is strongly reduced.

d)the variance of the gravity components of the first point has almost no

influence on the variance of the coordinates of the third point. Even if
the variance is equal to the value of the gravity component(!), then the
variance of the third point is burdened by half a meter more.
e)acceleration seems to have no great influence on the derived accuracy
of the third point. But, as we shall see later, acceleration variation
creates the biggest errors in the system among the 15 observables.

So far the analysis has given the first results, namely, the behaviour
of the navigation system with respect to the parameters. Next we try to
investigate how the system performs going from point to pcint. During
that process the observables are undergone small changes except for the
variances of the coordinates of the first twn points which are assumed
to be zero. The same computer procedure is used and applied for some
first points due to reasons which will be explained later on. The space
traverse gives the following results:(see next page)

5.4 Discussion

First, it has to be noted that the statistical analysis up to now has not




Point %% (mZ) 03 ?z

3 0.000016 0.000016 0.003314

4 0.000080 0.000080 0.016570
5 0.000352 0.000352 0.072908
6 0.001504 0.001504 0.3115
7 0.00¢€384 0.006384 1.3222
8 0.02706 0.02706 5.6036

9 0.1146 0.1146 23.7399
IQ 0.4855 0.4855 100.5665
il 2.0566 12.0566 426.0092
12 8.7095 8.7005 |1804.6066

13 36.89¢6 36.8965 }7644.4123

!
{
| !

Table(3): A space traverse of a gradiometer-aided inertizl navigation
system.

included any error mcdel of the platform instrumentation. But, certain
errors do exist which somstimes turn to be important. Gyro drift, ini-
tial platform misalignment, gyro ncn-crthogonality etc. are some €/Tors
which in a rigorous statistical analysis have to be modellec and taken
into consideration. All these problems are thoroughly examined ir simu-
lation 11.

The performed simulation studies did have the objective to be simple and
as such the following conclusions can be drawn:
a)first of all it is clear that the gradiometer-aided inertial navigation
system we analyse does not perrorm well as far as the accuracy of the de-
rived coordinates is concerned. The first few points, say wup to the tenth,
could be reached with satisfactory precision(see Table(3)). Then the accu-
mulation of the system’s errors becomes so high that the performar-e of it
can be considered as unreasonable.
b)manipulating the expressions of the variances-covariances of the simi-
lated equations(Table(1)), we find that besides all other terms, there
are two of great interest

1)the variance of the (i-1)-point multiplied by four and

2)the variance of the (i-2)-point
in case the inertial instrumentation is at the i-point. It is worth noting
that both terms have positive sign.

.
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c)the answer to the bad behaviour of the system lies on the conclusion
b). If we assume that the first two sets of the inertial coordinates
have zero variances, then all other terms of the variance-covariance
expressions are summed to give the variances of the coordinates of
the third point. Four times this variance plus the variance of the se-
cond point (plus other small terms) will give us the variance for the
fourth point. The same procedure is applied through all other points.
It is therefore clearly understood that the following approximate law

i-point variance = 4-(i-1)-point variance+(i-2)-point variance

is valid for the space traverse under consideration.Consequently, an
appreciable percentage of the navigation system’s error budget comes
from the approximation used.

d)next we try to see the error contribution of the acceleration and
gravity gradients measurements into the.system. To that objective two
additional space traverses are performed. In the first one all other
quantities except the apparent acceleration components assume zero
variances throughout the navigation path, Thus, the error contribution
of the function under consideration can be deduced and compared to
the system’s error budget at a selected point. The same procedure is
followed for the gravity gradients case. The results are listed below:

Accelerometer | Gradiometer
Point cixoito%: (mT) ogsoitc ;77_ 3 (mz)

3 e Wwe | e wv
4 0.50 107 ; 1.3 10~
5 0.22 10°* | 590 w0?
6 0.9¢ 107 2.53 1078
7 0.40 1073 1.07 1077
8 0.17 107 555 107
9 0.72 1072 1.93 107
10 0.31 107 8.19 107

From the listed results it is evident that

ey

1)the accelerometer error contribution into the system’s error budget is

about 7% of the total and

2)the gradiometers work perfectly well in such a navigation system. Their
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error contribution is really minimal.

In the next pages we give some representative nomographs which illu-
strate the behaviour of the parameters of the system relevant to the
obtained accuracy of the inertial coordinates.

In section 7 we will come again to discuss the same topic but this time
detailed error models for the accelerometer and gravity gradients functions
will be included to see if the system’s results could be improved.

Explanatony note: The following symbofism 4s used in the attached ne-
mogtaphs e.g. c)z(_(Ax ). 1t means that cQ- undetrgocs
the changes chtﬁnedley the nespective &lne only when

Ay

assuncs 2 range 04 values.
12
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6. Inertial measurement unit quantization error analysis

6.1 The general equation

Quantization errors constitute a special error category in every instru-
mental package and must be clearly distinguished from round-off errors,
commitation errors etc. Quantization errors arise from the fact that the
inertial measurement units measure continuous physical quantities such
as, say, the apparent acceleration vector components. Assuming that at
each observation point at which the inertial instruments are read a quan-
tization error exists, then its additive net effect will burden the de-
sired output of the navigation system with an additional error. In our
analysis, the system computes geocentric coordinates making use of acce-
lerometer and graciometer measurenents. Expressing position with respect
to the measurables and attaching to them different quantization errors,
then the position error could be computed treating the quantization
errors as stochastic quantities. Regarding the up-to-date accuracy of
the inertial navigation systems, it will be seen that tne quantization-
induced position error is not of great importance(due to its small mag-
nitude). But, there is one case in which that error could be of great inte-
rest. As we have already seen, all inertial navigation systems without
exception must be initially aligned to a desirable coordinate system
prior to their mission. In some cases, the initial alignment procedure
can consume an appreciable long time (especiaily in commercial flights)
and during that time the inertial instrumentation is continuously ope-
rating and, of course, gathering quantization e:;rors. These errors cculd
cause an initial misalignment error which is carried through the entire
missicn.

Consequently, it is our belief that quantization errors mus: be always
considered to preestimate how badly they Lurden the system’s output. In
what follows, we present the first unique gr.’iometer-aided inertiai na-
vigation systems quantization error analysis using the fundamentai cqua-
tion of inertial navigation used in the preceding simulation.

As we have already seen, the formula which estimates the inkrtial coordi-
nates is written in the form:

e e ———
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5.5.Y) ;h"h*ch

where A and G the non-gravitational and gravitational acceleration re-

spectively, P indicates position(in eq.(5.2.1) R is used instead of P)

and n represents the nth-observation point. Stirling’s formula approxi-
mates the inertial acceleration as:

6.1.2) P sat™3p .-
( ) Pp =8t %(Ppy=2P ¢ P )

Eq.(6.1.2) solved for the nth-inertial coordinate gives

2 2
(6.1.3) Pn'zpn-fpn-z’“ A rat G,

Our policy is now to express the above equation as a function of the
first two inertial coordinates which are then to be considered as error-

less quantities. In order to find the general formula which gives the
coordinates of the nth
R P 2

AzoAt GZ

-point, we write

Po=2P,-P +at
Giay = )

= 2 2
P4 SPz-ZP,mt (2A2¢A3)¢At (ZGZ¢GS)

Consequently, we get
Pn-(n-l )Pz- (n~2)P’¢AtZ((n-Z)AZ* (n-S)A,_s* e+ (n=-(n-1) )An-1 )ﬂ:t:((n-.‘.)G:& m-s)GS» ..

(6.1.5) +(n=(n-1))G,_;)

and in sumation form
n-1 2
(6.1.6) Pn'(n‘1)PZ'(H'Z)P1;§;(n-m)(Am‘Gm}At
Now, employing the free-coordinate approxu.ation for the gravity gradi-
ents we write
6.1.7) G.'-Gm_ '¢grad(;m. 1 (pm_pm- ' )

Expressing the above equation in terms of the gravity components of the
first point plus other gravity gradients, we get
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m
+(6.1.8) Gm-GI;EEgrade_1(Pk-Pk_1)
Consequently, eq.(6.1.6) is now written
n-1 m
(6.1.9) P =(n-1 )Pz- (n-Z)PI;}-:’ (n-m) {I\n+ GI;'EZ gradG, _, (P, - L )} at?

Assuming now that each time the accelerometers and gradiometers are read
a quantization error is committed, we express

LB

(6.1.70)  Py*®Py=(n-1)P,=(n-2)P, ‘E (n-m) A+ @@ )at?ss +>: (n-m)T (gr radG, _, (P -F. _,)ect )t
k=2 K=

where 6Pn :quantization-induced position error

a . § :

A :accelerometer quantization error |
q§-1:gradiometer qQuantization error

Taking into consideration only the impact of the quantization errors,
then the position error assumes the form
n-

2 -l a n-1 m 2
(6.1.11) 6P =4+ [ (n-m) L (nm) ¥ qp_.
R g R L e

~)

-

We shall derive now the general relation for the variance-covariance of
the position error 6Pn . Generally, we can write g

(6.1.12) cov-.‘)P pagig -F(GP )I\CP -E(b? D

which yields

n- =1

1
cov (8P, )-E{ V (n-m)At (qm E(qm))* iy (n-m) T At (qk ,-E(qk (e \s-?'itz(q:'
r=2

E(q) T - at%(q8_ . -E(q8
Q1) z(s-r)pEEAt (@5 y~Elag_, 1)

(6.1.13) 2
n;1 . =ls-t m ¢ i
L r: (n-m) (s-r)at® D(qm.q )~ E Z Z p.:,2(n-m)(s-r)m D(q§_1.q§_1),
n-1s-1 r

’2;:2 rEé p§ (n-m) (s-r)At D(qm,qg_1)

———————
ST



e N T

where D( ) represents the dispersion of the enclosed quantities. But,
as we have already discussed, the gradiometer measurement unit is com-
pletely separated from the accelerometers and gyros units’ platform.
Consequently, it is reasonable to declare that the gradiometer and
accelerometer quantization errors are not correlated and therefore,
the last term of eq.(6.1.13) is dropped. For the dispersion of the
quantization errors an exponentially decreasing correlation function
is assumed of type(see Denhard, 1977)

It
) -
(6.1.14) D(ai,aj)-o e i

where 02 the variance of each measurable, ti'tj the sampling interval
and 1 the correlation coefficient. Therefore, taking into account that

we have different correlation coefficient between accelerometer unit(r a)

and gradiometer unit(rg) , then the variance-covariance expressions are

given:
ft -t
4 2 A=l s-1 — n! 4 2 A=l 5=l
var(6P )=at'c, T T (n-m)(s-n)e Ta  spt'et T T (n-m)(s-n)-
m=2 n=2 € m=2 n=2
1t
m n - e
f L e g
k=2 p=2
(6.1.15)
|t=t, |
42n15-1 - 42n-15-l
cov (&P ,8P )=at'0; T L (n-m)(s-r)e B et cg L. L (n=m)(s-r)-
me2 r=2 m=2 r=2

&y _ tyer %l

L. B s

k=2 r=2

where oi, 02 the accelerometer and gradiometer variances respectively.
Eqs(6.1.15) are our simulation equations to find the order of magnitude

of the quantization-induced position error.




6.2 Results

Two computer programmes have been written and compiled in the Siemens
Computer, the first to examine the variance case and the second the co-
variance one. These two programmes are listed in Appendix A. The ground
values for the five parameters of the above equations have been chosen
to be:

at =0.1 sec.
=0.01 mz/sec4
=1. E.
=0.001 sec.
7 =0.001 sec.

The same statistical technique used in simulation I, is followed again
for the quantization error simulation studies. Four of the five parame-
ters have been kept constant and at the same time the fifth one assumed
a range of possible values. The computer results are given below:

of=IE 20£ [ 50E | 100E | SO0E | 1000E
Time ; Eri’cr(mzj
1sec 10.680010° |« | » 1 v " "
0.324C 10'3 " " i " I "
0.7840 107> | " | R i
0.23“ ]0'4 " “ " [ " "
]0 0.96“ 10T " “ " r " "
20 ]0.392010°> [ [ v " " "
30 lo0.8880107> | | » | » " "
30 Jo0.1584 107¢ |+ | v, " “
50 10.248010°° (" | v " "
60 03576107 | [ v 1 " "
]
oz=().(l\hnz/scc4] (l.(l)smz/se\:4 O.OlmZ/sc:«.‘4 O.L)‘:mz/svc4 U.()Sn.Z/swd{ O.lmz/scc4 1 ﬁ
a L | 2 |
Time m: ) : ;
isec|  0.6400 10 | 0.1600 10° | 0.6400 1570 10.25€0 1071 0.1600 107* | 0.6400 10”
2 0.3240 10 | 0.8100 10°° | 0.3240 10°° 0.1296 10" | 0.8100 107 | 0.3240 10~
3 0.7840 10" | 0.1960 10~° | 0.7840 10™> |0.3136 10™° | 0.1960 10| 0.7630 107
5 0.2304 100 | 0.5760 10~° | 0.2304 10°% |0.9216 107 | 0.5760 107> | 0.2304 30 °
10 0.9604 1070 | 0.2401 10°% | 0.960¢ 10°% [0.3842 107> | 0.2401 107%| 0.9604 10°¢
20 0.3920 10> | 0.9801 10™" | 0.3920 107> [0.1568 10°%] 0.9801 10" 0.3920 10"
30 0.8880 10™° | 0.2220 10> | 0.8880 10™> |0.3552 10°%| 0.2220 10" ' | 0.8880 10
40 0.1584 10™ | 03960 10™ | 0.1584 1074 [0.6336 107%] 0.3960 10" ' | 0.1584
50 0.2480 10°7 | 0.6200 10™> | 0.2480 107 [0.9920 107%| 0.6200 10" | 0.2480
) 60 0.3576 10~ | 0.8940 10™> | 0.3576 107 |0.1430 10" '] 0.8940 10°' | 0.3576




0.10 10” 0.20 10”

9

9

0.50 107°

0.30 107 0.40 10 0.60 10°° 0.70
0.10 10°° 0.20 10™° 0.30 10~ 0.40 10°° 0.50 10> 0.60 10~° 0.70
0.50 10~ 0.80 107 0.1 10 0.14 10°® 0.17 107 o0.20
0.50 107 0.80 107° 0.1 10°* 0.14 107* 0.17 107 0.20
0.14 108 0.20 10°® 0.26 10°® 0.32 1078 0.38
0.14 107* 0.20 10 0.26 10°* 0.32 107 0.38
0.30 10'3 0.40 108 0.50 107 0.60
0.30 107 0.40 10 o0.50 107" 0.60
0.55 10 0.70 107 o0.85
0.55 107 0.70 107* o0.85
Acceleration-induced quantization 0.91 ‘0-§ 0.i1
error.The first rows represent 09110 7. 9.3
2
0,=0.001 and the second ones 0,=0.1m" /sec4 0.14
(Covariance case) 0.14
v!n:=a)0.0‘.sec |'b)0.'|sec 2 E)O.Ssec 'Ll)‘.sec J'
. — =y 3
[ime Error(m”) il
a)0.1sec b)1sec c)Ssec d)10sec 10.6400 107 '° 0.6400 1070 16.4000 107> 0.6400 107 |
0.2 2 10 20 10.3240 107 }0.324010™° 0.2025 10 10,3240 107" |
0.3 3 1S 30 [0.7840 10™° [0.7840 10" 0.4900 107¢ [0.7840 13‘73
| 0.5 5 25 50 0.2304 1070 {0.2304 1077 0.1440 107" 10.2304 |
d
1 10 50 100 [0.9604 10" [0.9604 10~ {0.6003 10”' [0.9604 |
| 2 20 100 200 [0.3920 1077 [0.3920 107 0.2450  (3.92 !
3 30 150 300 10.8880 10 [0.8880 107 0.5550  5.3800 |
4 40 200 400 [0.1584 107° [0.1584 107 ]0.9900 115,840 l
e |
5 50 250 500 10.2480 107° 10,2480 10°° |1.5500 124,800 !
3 |
6 60 30 600 [0.3576 1070 [0.3576 10'2.122.3500 i35.760 j
-7 - Sy a7 o7 -7 g
0.10 10" 0.20 107" 0.30 1077 0.40 10”7 0.50 10~/ 0.60 10~/ 0.70 10
0.50 10’ 0.80 10”7 0.1 10°® 0.14 107 0.17 1077 0.20 1077
0.14 107 0.20 10 0.26 10 0.32 107 0.38 107®
0.30 10°° 0.40 10 0.50 107 0.60 107®
0.55 10° 0.70 107 0.85 10°°
0.91 107 0.11 10°®

0.14

Gravity gradients-induced quantization error(the same output matrix
from 1E -1000E) . The same results for tg.(Covariance case)

7
-

0.80 10°
0.23 10°
0.44 1070
0.70 1070
0.10 107
0.13 107
0.17 107
0.20 10°°




T a=1 sec. (Covariance case)
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= 0 o =7 -
0.10 1077 0.20 10°7 0.30 10~7 0.40 10”7 0.50 107/ 0.60 107’ 0.70 10" 0.80 10

0.10 107 0.29 1077 0.56 10°7 0.91 107/ 0.13 10°° 0.18 10° 0.23 10
? 0.20 107 0.23 10
0.55 10°¢ 0.71 1c® 0.99 10

0.80 1077 0.11 10
6 0.27 10°

0.50 10°
0.86 1077 0.17 107

0.14 10
0.40 10

0.26 10" 0.32 10"
0.80 10~ 0.11 107

0.38 10~ 0.44 °
0.14 10~ 0.:8 10

0.14 10°® 0.20 10

0.33 10°° 0.55 10

—_

0.70 10~
0.30 "0

0.30 10°° 0.40 10°
0.90 0% 0.13 107 0.18 10

2 ©
N
o
o

0.70 10° C.85 107 .10 iC
0.3¢ 107 0.4% 0

0.55 1o‘_
0.20 107° 0.27 107

Correlation coefficient-induced quan- ,0_9, 0% o 13’? 81
tization error. The first rows repre- {0.38 10°° 0.50 10 0.63 10°°

sent ra=0.002 and the second ones

10,18 16 0,17 12
O

l0.65 10~ 0.5 107
——
{0.20 1078
. g
10.11 10

6.3 Discussion

For the given results the following coments summarize their meanirg:
a)comparing the errors commited by the gradiometer-zided ravigation
system with those coming from the quantization studies, it can be cle-
arly seen that the latter errors constitute a very small quantity. The
results can be generally considered as satisfactory in view of the fact
that the approximation formula used for the inertial acceleration compo-
nents approximates grossly the reality usi~g only three points. If mo1¢
terms in the Stirling’s formula are taken into accow:t, then the quanti-
zation error studies’ results would be effectively reduced. -
b)the sampling interval At is the worst contributing error factor in

the quantization error. Decreasing the operation of the system to the
order of 10(ten), then the quantization errors increase up to the 103.
c)for the rest four parameters of the system only the accelerometer va-
riance causes changes in the quantization error budget. For example,

LL
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decreasing the variance of the measured acceleration 10 times, then

the quantization errors increase up to the 102

d)when the parameters o g’ Ta " undergo their range of changes, the qu-
antization errors remain unaffected. For that reason we have listed
only the o g contribution with the understanding that the rest two pa-
rameters give identical results

e)comments b) and c) are also valid for the covariance case which is
included herein for instructive purposes.

In the next pages we give some representative nomographs to picture
briefly the quantization error studies results.

—-——-——-—-—-—.—_______________‘
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7. Simulation 1I: The General Error Model

7.1 Accelerometer Error Studies

-It is well-known that the accelerometer frame is materialized by the
three input axes of the on-board accelerometers. Since it is instrumen-
tally impossible to direct three axes so as to constructan orthogonal
frame, the accelerometer frame is finally a non-orthogonal or quasi-
orthogonal frame. Consequently, the fact of measuring the apparent
acceleration components along a non-orthogonal frame should be seriou-
sly taken into account. Having corrected the sensed acceleration for
accelerometer non-orthogonality, then it refers to the actual platform
frame. A transformation which takes the acceleration signal from the
actual platform frame to the ideal one, is the next step to be accom-
plished. All gyro misfunctions are included in the aforementioned trans-
formation. As soon as the apparent acceleration refers to the ideal
platform frame, which in our case coincides with the navigation frame,
then its components can enter the general equation of inertial naviga-
tion.

Taking into consideration what is discussed above, the apparent acce-
leration signal transformation could be illustrated by the general re-
presentation

1 a
(7.1.1) ANl & a8
p

a a

where AV : A? represent the acceleration signal coordinatized in the na-
vigation and accelerometer frames respectively and C represents the di-
rection cosine matrix(from where the notation comes) which transforms
the frame indicated by the subscript to that indicated by the super-
script. p? and Pi denote the actual and ideal platform frames respe-
ctively.

Since we are using very often transformations of type affine and simila-
rity ones, it would be helpful to define them from the beginning

a)the group of the affine transformations can be represented by a ro-
tation matrix H plus a transformation vector t, that is

71:2) T(u)=Hu+t
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(see Grafarend and Schaffrin, 1976). The affine transformation preserves
Euclidean parallelism, straight lines are transformed into straight li-
nes and planes into planes.

b)when the two relations

H =R
(7.1.3)

R'R =
hold, then the affine transformation group is called similarity transfor-
mation group and under that ratios of distances and angles are preservec.

' ! : b
In our analysis, skew-svmmetric matrices, denoted by Ra’ are very often |
used to transform two misaligned orthogonal coordinate frames into eac:
other in case the misalignment angles are considered small. It heips in

the understanding of what follows tc note that skew-symmetric matrices
are always transformed under the similarity group.

Now, we shall try to determine the two transformation matrices invclved
in eq.(7.1.1) taking into account the error sources which cause them
to depart from the identity matuix.

The transformation between the quasi-orthogonal accelerometer frame a and
the orthogonal actual platform frame P? is a "small angie' transformation

parametarized by the small angle rotations corne:ting the two frames. This
transformatior 1s treated in many textbooks in detail and it will not be
further considered herein(for a discussion see Britting, 1971, p.39). Ta-

1, C:a- transformation
I
|
E king into account the angles definition depicted in Fig. (9), we write

. E— —
' ; . Exy , i
a 1
cae . cﬁ‘ A2 . ey tyy [A !
!
7y  exx L : !
— i .

NS S—
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Fig. (9): Actual platform, accelerometer frames geometry.

The only problem on which we like to draw attenglon concerning the above
transformation is that the angles inside the C matrix are very small as
well as the off diagonal terms are not equal, e -8-€x7 # vz The justi-
fication for that comes from the non-orthogonality of the accelerometer
frame. Consequently, a small rotation about, say, the ax-axis first and
then about ay and a, will not be sufficient to bring the acceleroneter
frame in coincidence with the actual platfer... We note, finally, that the
six angles depicted in eq.(7.1.4) can be measured by well-known alignment
techniques.

pt

2. Cpa

- transformation

As we said before, the C Pt -transformation is by far the most criticail
operational procedure in the whole navigation systems analysis. Deeply
thinking, what is written in the literature known to the writer could
be considered as a mess as far as this transformation is concerned. Con-
sequently, we feel that it is our turn to put things into an order by
making from the very beginning the following statements:




n

a) When the moving vehicle is at the starting point we have to decide
which will be the computation-navigation-ideal platform frame. In
our analysis, the decision was taken in favour of the Greemwich
orthogonal frame and it was inscribed on the moving platform ever-
after.

b) In order to have at any time instant the ideal platform frame paral-
lel to the navigation frame, the former is commanded to the earth’s
rotation.

c) The following statement has no impact on the mathematical analysis
of the problem under consideration, but it has to be made in order
to give rigor and clarity to the general concept: an inertial coor-
dinate frame is somehow and somewhere inscribed on the moving plat-
form and we refer to it when we postulate that the platform rotates.
The first idea to be accomplished is to materialize such an inertial

i frame by a set of three single-degree-of-freedom comoving but inertially

stabilized gvros. Otherwise, who can insist on saying that the mo-

ving platform is inertially rotating?

d) The command for platform rotation equals to the earth’s rotation
k is injected to the gyros which darive then the platform accordingly.
But since the gyros, like all other instrumental units, are burdened

with a variety of sgrious errors e.g. gyro drift, they have to be
plugged into the Cpa - transformation.

e) At the starting pofnt, the platform frame is set to be parallel to
the navigation frame. Of course, this is by no means true and thus
an initial misalignment is everafter present.

[ Let us now procceed in determining the discussed transformation. As it

| is shown in Fig. (10), at the starting point(t=0) the actual platform

frame P? has a smal) initial misalignment with respect to the ideal

| platform frame P! due to the errors in the alignment procedure. These
two frames seen at another time instant t have already changed their
respective attitude due only to the inabilitics of the gyros. The actu-
al platform frame, besides its initial misalignment, nas al:ready got
another small angle distortion, time dependent one, denoted by the
angles Gi(i=X,Y,Z). At any time instant t, the actual platform frame
can be linked to the ideal platform frame (or for that matter to the
navigation frame) with the general transformation:
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where the R _°-transformation relates the actual platform frame at time
instant t to that actual platform frame at the starting point and

Y

i
the RY. - transformation is the initial misalignment transformation.

%

Fig. (10): Platform frames variations.

i
The RPa - transformation is a constant matrix transformation and pre-
senxspto no dificulties. According to the given angles definition, we

could write(see Fig.(10)):

V-
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© _ transformation by

(o]

where the elements of the matrix represent small angles or rotations
due to gyro errors. Let us therefore analyse them:

a)the gyro frame is constructed by the three spin axes of three on-

board mounted gyros. They, generally, instrument a non-orthogonal or
quasi-orthogonal frame. Consequently, the transformation between the
quasi-orthogonal gyro frame and the actual platform frame reads:

" “tyz b7y
P
t
(7.1.8) ¢ 0 -
*yx 0

where the ¢’s represent small misalignment angles and the vame com-
ments as in the accelerometer case apply to the gyro non-orthogonality.
b)now, we demand from the gyros to command the platform with the earth’s
rotation, but since the three gyros have generally different scale
factor uncertainty, then the signal for the respective rotation is tai-
sified. The gyro scale factor uncertainty matrix is expressed as

g o

Uy 0 0

-

(7.1.9) Uu=jo W o0
0

0
— —
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where U ,UY and Uz represent the X,Y and Z gyro scale factor uncertainty
respectively

c)taking into account eqs(7.1.7), (7.1.8) and(7.1.9), we find the error
angle § to be expressed as:

o
Sx| | Uxvz*0zy || 9x

(7.1.10) [ 8y | = | Upsory=0, || wy

§ Uy =¢ ot w
z 7% Oyx || ¥z

where Wy By s w7 the earth’s rotation components. From the last equation,

it is clearly seen that the gyros channel a signal for the earth’s ro-
tation to the actual platform frame plus an error rotation due to the
gyro non-orthogonality and scale factor uncertainty. This error signal

is proportional to tge applied rotation, in our case the earth’s rotation.
Consequently, the RPto-transformation can be analytically written as

t
— R
Pa H 1 . (U:'Qxy'on)wz (W’sz’@zx)w

t

[¢}
(7.1.11) RP§ = | Uty ony)e; 1 - Uy-tyz*ozy)ux ]
|~ Wyoygezuy Uy-dyz*ozy)ex : ‘
l s i

The off-diagonal terms of the above matrix are time dependent quantities
and describe that as the gyro frame drifts changing its angles of non-
orthogonality, then the attitude of the actual platform frame is affe-
cted. In case in which the gyro frame is orthogonal, it is not drifting,
has no scale factor uncertainty and in absence of_initial misalignment,
then the actual platform frame is nothing else but the ideal platform
frame. It is therefore seen that the time increasing gyro drift causes
the above off-diagonal terms(those inside the parentheses) to exist.

Taking into account eqs (7.1.5), (7.1.6) and (7.1.11), we find the ge-
neral transformation taking the accelerometer signal from the misaligned,

non-orthogonal accelerometer frame to the navigation earth-linked frame
to read:
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Now, since the apparent acceleration components are measured by three
actual accelerometers, it is logical to assume an overall accelerome-
ter error model. Taking into account that each accelerometer has

its own scale factor uncertainty, bias and random uncertainty, a gene-
ral accelerometer error model could be expressed as (Britting,1971,
Denhard, 1977):

a i a a
Ax l*ax 0 0 bX uy
a3 (a3l = | o 1vay 0 o R L8 LR
a in a a
AZ 0 0 1*az bZ u;

where Aai1 (i=X,Y,Z) indicates the apparent acceleration output signal
of the quasi-orthogonal accelerometer frame
A;n(i=X,Y,Z) indicates the apparent acceleration as an input in
the accelerometer frame
a; (i=X,Y_,Z) the accelerometer scale factor uncertainty
b*i1 (i=X,Y,Z) the accelercmeter bias and
ug (i=X,Y,Z) the accelerometer random uncertainty.

As it is easily seen, eq.(7.1.13) is an affine transformation. Needless
to say that the left hand side of this equation is the acceleration
signal to be transformed to the navigation frame, as per eq.(7.1.12),
in order to be used for the simulation studies.

7.2 Gradiometer error studies

In our inertial navigation platform, the s;herical gradiometer eapioyed
has been developed and tested in M.I.T. Each instrument has the capabi-
lity of measuring two independent gravity gradients and therefore, threc
of them could furnish the whole gravity gradient tensor plus a redundant
gradient indicating accuracy. As it is intuitively understood, the mea-
suring process is quite complicated due to the inherent electronics,

but in principle the following fundamental ideas are very helpful:




a)Going into the very beginning of the gradiometer unit, what is really
sensed and measured is nothing else but rotations of the float with re-
spect to the stabilised housing. These rotations are sensed by a set of
electronic axes and applied back to restore the initial float attitude.
The measurements of these rotations represent measurements of gravity
gradients. Taking into account the most general case in which the elec-
tronic frame is non-orthogonal and is slightly misaligned with respect
to the float frame, then these effects have an error influence on the
measurements of the gravity gradients which must be anyway corpensated.
b)The float frame has a certain prescribed orientation with respect to |
the axes of principal moments of inertia. But due to various reasons, |
e.g. inability in locating for perfect the axes of principal moments

of inertia, the float frame is thus considered to be slightly misalig~
ned with respect to the ideal float frame.

c)As all instrumental packages so the gradiometer one has its owi instru-
mental axes along of which the gravity gradients are measured. Our gra-
diometer package frame is the ideal float frame into which gravity gra-
dients measured by a non-orthogonal electronic frame must be finally
transformed.

It is now clear that on each float four different sets of coorcinate

frames exist. These frames are:

1. Principal moments of inertia coordinate frame(Pi)
2. Gradiometer measurement unit coordinate frame(Gi)
3. Actual float frame(Fi) and

4. Electronic frame(Ei)

| We have to remark that the Pi and Gi frames are invariant from the gra-
diometer configuration, but the frames Fi and Ei do depend on that as
per Fig.(11).

In order to get the expressions of the gre . ity gradients referred o
the Gi-frane, we proceed as follows:

a)from the general gradiometer torques equations find their respectivc
ones expressed in the Gi’ Fi, Ei—frames, for the torque equations are
given in the Pi-frame. b

b) find the relations between torques in the electronic frame and gra-
vity gradients expressed in the gradiometer measurement unit frame as




XY-float

Fig.(11): Spherical gradiometer geometry and reference systems
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well as instrumental non-orthogonalities and misalignment angles.

c)find the expressions for the gravity gradients in the Pi-frame with re-
spect to the torques in the same frame.

d)get the final relationship between gravity gradients in the electronic
frame and those referred to the gradiometer measurement unit frame.

As soon as the steps a)-d) have been carried out and the gravity gra-
dients in the Gi-frame have been got, then we have to consider a gene-
ral miscrientation of that frame with respect to the inertial one to
which the gravity gradients finally refer. Then, the gradient tensor
after this very lengthy procedure could be used in the final equation
of inertial navigation if and only if a special coordinate transforma-
tion is applied to "switch' thc gradients from the inertial frame irto i

the operational earth-fixed navigation frame.

}

Strictly speaking, the mentioned navigation frame cannot be used since !

the coordinate differences referrod to it cannot be integrated. The rea- i
son for that is that such a frame is alfected by time-like misclosures ‘

due to polar motion. These miscicsures have been computed, but in terre- i
trial navigation applications are to be safely neglected (Doukakis, 1973 .

As it is seen from Fig.(11), the moments or torques measured along P1 and

P2 principal moments of inertia axes are given(Trageser,1975):

Ny = gy p

(7.2.1) M, = AIgP'P
. o |

Al =1 1

PP, PyPy

Eqs‘7.2.1) will now be transformed into the gradiometer measurement unit i
axes. Let us first consider the XY-float configuration and particularly

the (PZPS)-plane(the same analysis is applied in all configurations by a

simpie permutation on the indices). The axes cre depicted in Fig.(12). |

From elementary plane vector calculus we get

(7.2.2) *“x"pzc°5“5°‘§351n45"
CY --ﬁzsin4§~§3cosdf

vy o - -

Representing the gravity gradient field by I, we could write

.23 T "z’slpzrz”3’3‘1‘>3P342§3‘92P3J3p28 53




= (242.59)

45° 45°

‘DPZ

Fig.(12): Axes configuration in the (PZPB)-plane of the XY-float.

where the g’s represent gravity gradients, Now, each gradient can be

written as

(7.2.4) g.. =D

ij
and thus we get

G G P P P
1 1 ‘ :
By g =7 Gy (rE -Gy (TG )= —%—(gpsps-gpzszcosz-ds “gp p,in2 45
P
=-g
ks

where the letter over the gravity gradients indicates the frame which they

refer to.

In view of eqs(7.2.1) and (7.2.5) as well as the XY-float configuration
schematic, we get
= H -
M« S Gyyag)
where it is understood that the gravity gradients refer to the same coor-
dinate frame as the measured moments, then the gravity gradient super-

script is dropped for simplicity. If eq(7.2.4) is applied to the other
planes, then we can get:

. a1
My = =208 x*ezy)
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' G

(7.2.6) M, .A;(gzx.gzy) XY-float
G
My = 83Eyy )

By a simple permutation of the indices, we obtain for the YZ and ZIX-
float configurations the following:

i = 7@z 8yy)
(23 W= Mg e ) ;
Lo, W 7 8xy gXZ YZ~flocat
G
1.
My =Saepey:)
R L Y

'—b—i(g\-:‘sﬁ) ZX-float

» 4

A
= E5(o

“2(ayz*eyy)

”’zo _{’ZC‘) x‘:ﬂ

Eqs(7.2.7) express themonents cocrdinatized in the gradiometer measure-
ment unit frame and hold as they stand for the actual float frame Fj as
well as the electronic frame E; changing only the superscript G by F anc
E respectively.

We have now to find the relation between the torques measured in the
electronic frame, being the gradiometer sensor for gravity gradients,

and the gravity gradients coordinatized in the gradiometer measurement
unit frame taking into accourt instrumental non-orthogonality and mis-
alignment. First, let us consider the case in which the electronic fra-
me is a non-orthogonal one and also misaligned with respect to the actual
float frame(see Fig.(13)). As we have already explained in the accelero-
meter studiecs, the matri: which transforms the moments of the elactronic
frame to those of the float frame is exactly as per eq.(7.1.4). Therefore,

we write
F E E E
My = My-8y Myt
. F E E E
028 My oy B Moyl

E E -

£ E
My ==yt Oty M

o= T - .




P

z
XY-float

i
G

unit sphere

Fig.(13): Relation between actual float and electronic frames.

Solution of eqs(7.2.3) with respect to the electronic torques, disregar-
ding products of small angles, gives
E F F F
My *Melxy-Onty
E F o F F
2- + A\
M =By M o
E e EF
My =3y -l M

and since the electronic torques are equal in magnitude and opposite in
sign to the torques caused by the gravity field, we get

T B See
My =-Fy-e Ny oxy™:
E FF F

(7.2.10) My =oy My Ry-onM,
E F E E
M, == Ftor By

where the bar over the torques indicates that these torques come from the
physical entity of gravity,

Now, let us transform the gravity gradients which refer to the gradiome-
ter measurement unit frame into those referred to the actual float frame.
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Taking into account that the float frame is misaligned with
¥y misalignment angle about the Gx-axis
wz " " " " =l

V3 z
then, the gravity gradients sensed by the XY-float configuration read

" " " " G

pte e G
Bxx = S Exy2toBxy¥s
6 & G

Byy = Byy*Z8yz¥y~28xy¥s

(7.2 g ¢ ¢ g 6 G
Bzx = 8o Byx¥)t 8xaBz2)VatBy s
OREE R T G G

82y = 82v* Bzz 8yy)vq*8xy¥2 "Bax¥3

ke rewrite now tne first three eguations from eqs(7.2.7) in the actuai
q q

float frame as
F F F
My = T78rx Ry

L E L
(7.2.12a) My = T3{8x*Bzy)

BB R
My = =7 @yy8xx/
Solution of the above equations with respect to the gravity gradients

gives

N SR
81x"82y" 7 &
£ B

(7.2.120)  Box*8-y™-

Combining eqs(7.2.10), (7.2.11) and{7.2.12), we sec that the X-charnel

electronic torque assumes the form

TR C G g %6 ¢ 6 @ C ¢
My = =20 @xByx¥y* (Bxx~8z2) %2 Bay¥3 By (B Ryy )y *Sxy¥y "8 o¥s ~¥xg (Box -yt
6 6 6 &0 & 6 6 6 & G G.

*(ByxxBzz)V2*ezy* (B2 Byy) ¥y *ByyV 2 B 2x V3 ~Vxy (Byy "Byx* 28y ¥y * Z8xy¥ ~28xy /3 * By vy !

.

After some manipulation, we obtain the electronic torques for all threc

float configurations to read: :
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:2‘0, G G G G G 6. 6 G G G G
T ¢ &zx"zy)‘@W"zz‘ﬂyx)h’(822"xx'3n)wz’(gzx'gzv)%’“zx"zf”xz
G
’(gyy'gxx)exy)

2 E G G G G G G G G G G
M= g ((3zx‘¥zy)’(lzz'ﬁw'lyx)W:’(S)O("zz'ng)*z‘(ﬂzy'gzx“'s 875 87y)8yz"

G
- By g

m

bir x4 8 G G G G G G
M= T (@yxByy) ~28yzu1~28xzv2* 48 xyvs ™ (87x*8zy) 67y~ (B7x*87y) 87x)

: G G G 6 G G G
” T((gw g*z)“‘gyzh‘zi‘zxwz‘zgyx% (8xy*8xz) Bxz~ (Bxy*Bx2) bxy)

6.8 e § ¢ &8 G 8 8/
ke (5xx Bx2) * @y Exz)¥1* Brz Bxx*Bzy)¥o* B Byy By2 Vst B2z Byl oy

(7.2.13)

CﬁN‘b

2 (gw‘gxw er)
Eyy o6 6 G G g & B 5.8 & 6 -6
MZ = (g\y"gxz) (gx‘_‘gxy)‘l’"\g\-x'gyb 322)‘”2*(3W'g)0( gyz)WS \S-n gYY)a
8
* (Bxy*exz) 820
Bl B R G R 8.6 & & %
N 21 ((Byz By * (B2 Byy 821 CyxBy2) Vot BryexxBxr s B 822
G B
+(8y2*8yy) 3xy)

N e G G G G G G
M= (85778500 " 28 2y¥ 4822 Bxy¥s ™ (Byx*Byz) 8y (Byy By ) Syy)

Exx a1, 6 G G G G G G GREGEG G G

Fé - St (gYX*gYZ) ¥ (EW‘Ezz’gzx)w1 i (3YZ'3YX)“’2’ (gxx'gyy’gx:) Wst (SYx‘EYZ)E:\{*
: 6 &

* (8xx822)%2%)

Now, eqs(7.2.7) are written in the electronic frame as follows:




Having excluded egs(7.2.14b,f,i), the rest six equations are then solved
in view of the Laplace condition

(7.2-15) gxx‘gw*gzz ==4iko + 2‘.)2

where w the earth’s rotation with respect to the inertial space,k the uni-
versal gravitaticnal constant and o the density of the mediur in waich

the navigation take:s place. The solution gives:
E Ex
8xx =" 5*ko*3 ule 'z?\-'\ 3',

E 4 B ~vz Eog

by = 0% IR
E
Y
g (L #\‘ +\f j]
(7.2.16) x Q
E 3 e By
Byy = 3keF w'- gyt +2)
E E.
8yz * ”? ~YL’§
E

5w Bao By
If the electronic torques involved in the above equations are substitu-
ted by those given in eqs(7.2.13), then after a tedious manipulé*ion we

get the relations between gravity gradients in tne electronic frame and
gradiometer unit frame to read:

E €& @ € B <
4 g 2 4
Bxx"" 3 kP 3 W 3Ry Ry~ 28y *OB XY 2 B8y V5 (28y* By *Byat 9'“’3x\ = (OO )8z

-(Byy*26y;)8y;)

e ety v e A s
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g G G G G ¢ G
Bxy™" 7 (Zxy*2RyyV2-28yz¥2~2Byx¥3* ZByy¥s~ (Bxy*Ox7)8xx* (Bxz-Oyx)8xz* (By7*OxylByz-

G
~(6xz*0y7)8;7)

R SR N R Ry

G G G 6
8xz™ 7 (~28x7*Z8xy¥1* 287792~ 28x 7Y 1~ 28V 2~ (Oxy*Ox7) 8xx* (Oxy* Sy ) 8xy* (Oxy* By yy*

G G
*(8xy*Oxz)8y2* (By;-0x7)8;7)

- (7.2.17)
R i o G B G G G
Byy™™ 3 Tke+ 3 0= 3(-ByyB77* 28y 08 7y¥ ) ~OBxy¥ 5~ (267 %Oy 7+ Byx* 20xy) B yy (Byy*dyy) 8y -
G
~ (2845420 )87)
e W G G G G G G G
Byz™ 7(-282y* 28yy¥1=2877¥ 1 * 28xz¥ 1 * 2873 287y¥ 3~ (Byx8x2) Bxx™ (Byy*®xy) Bxy* Bz ~Syy) 8x2*
G G G
*(Oyz*Oxy) 8yy* (Oxz-Oxy)Byz* (Bx2-Py7)877)
B y i B G G G
Bzz™ 3 kP * 3w 32877 Byx~Byy~68y¥ 1 *0Bx 24 2% (Oxz-fyx~Oyz*Oxy)xy* (xa By Bz
G
- (Byx*Syz)eyz)

Eqs(7.2.17) can be written in the concise matrix form of eq.(7.2.18).

Now, the G-frame is considered to be misaligned with respect to the imer-
tial frame. Denoting by superscript I those gravity gradients referred
to the inertial frame, then we write

I i3 G
! 7 A s P
(7.2.19) gij k‘:I 1:]amaﬂgkl

where i,j=X,Y,Z and the a’s represent the element of the transformatien
matrix between the two frames. Analytically, the gradients are written:

1
Bxx ™3y 08 00 A XYE XY A0 28Xz Ay 08y Axy A xy 8y Axy X 28y s Ak st B A oy

*ax2¥x2822
I
Bxy * A0y X A0 YYE XY 0y 28 X2 Ay AV B YX Xy YyB vy Faxy Y 28y T Ak Ay B A oy

*ay28y7827
I

Bxz a3 2x8 10 A0 2y 8xy 0@ 2 28x2 A xy P 2xBYX Axy2 2vByY Axyd 2 28y A xd aad xR yB oy

(7.2.20) *ay,a7:877

T e A
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By Ay 1 B NYYE XY AR Z8 Xz Yy AV Ay Ay B vy vy Ay 28y By 2B ax Ay vy oy

1 *ayz3yz822
By 2" 328 By 2y Xy A 228Xz Ay 1BYX Ay 2v8yy Py 2 18y By 22 ox8ox Ay P ovB oy
*ay22228:2
: I :

-~ 82778 2x8 28 xx 323 7yBxy B Pz 28Xz A YA 1B YX ATy vy A Rz 28y e r B o xBax Az B oy

*a77817812

where all gravity gradients at the right hand side refer to the G-frame
and the superscript G has been dropped for simplicity. Since the misalign-
ment between the G-frame and the inertial one is in the ''small angle'
sense, then we can ma_l_<_e the approximations:

R
(ed#l} Sty A oy iy

o L SR oL
where the Ex»6ysE7 Tepresent small rotation angles about the GX’GY and
GZ gradiometer axes respectively. Combining eqs(7.2.20) and (7.2.21),

we get:
o G G
By Bxx~ 26yBxz" % 8xy
i & ¢ @ ¢ @
By 8y S xBxz b8y e (Byy By
1§ & 6 & G
Bxz 8xz oxBxy* oy (Bxx 8220 *678yz
2.
LG SR G G
Byy“Byy " 26 x82y 26 28xy
} s e € @
Byz"8y2*Ex (822 8yy) *EyByx~E 8xz 4
1 G G G .‘
872787272 x8yz* 2Eyeyy

Eqs(7.2.22a) will now be written in matrix form for further reference as:
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-gx; | g 252 -zgY 0 0 o1 Exﬂ
8xy -Ez 1 Cx Ez -EY 0 |lexy

(7.2.225) i o & -t |lex
| e S R

1 i R T

ngzJ 0— 0 2£Y o} -zix l_J‘fZ.ZJ

Now, the gravity gradients refer to the inertial frame, but in order tc be
used as those enteriny the fundamentai equation of inertial navigation,
they have to be transformed into the navigaticn frame. The transformation
matrix between the selected inertial frame and the earth-linked navigstion
frame is paramstarized by the true sidereal time ¢ and the cocraimates

of the polar motion x and y referred to a specified epoch. This transfor-
mation is given(Veis,1962):

J

cost sinf

b3

| T

b

!
!
[N] = l=s1ng ‘ cosb -yl

~xsind+vcoss 1 |

and according t¢ standard literature the gravity gradients are transformed

-Xcosf-ysing

as follows:

rx

e

-siné

-xcosa-ysine ,E\.‘A Sn gv?

cos8  -xsinttrzosel |gyy &y  Byz!
‘ |
Y V] xSy 8y

cos6 sing 5
-s1ing cosé "
. -XCOsf-ysin®  -xsiné+ycoss 1
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where the index over the gravity gradients again indicates the reference
frame in which they are coordinatized. The manipulation of the above matrix
equation gives for the six gravity gradients of interest the following:

I
2 ; : ; ; !
Bxx=8 €08 e*gYYs1nze+gZZ(x2c05200yzs1n26)-gx§1n26-2gxzxcosZG-gxzys1nze¢gZYx51n29+
vgzzxysine¢ZgZszinze
I 2
gxy-gxxposesine~gxy(1-Zsinze)+gxz(y-2ysinze-xcosesin9 -xcos“e)-gYYsinecose¢
*gY:(xsinecose-ysinze-xcosze)*gzz(xzcosZe-xycosze*xysinecose-yzsinecose)

1
gxz=gxxxcose-gXY(xsine*ycose)-gxz(xzcose-cose¢xysin6)'gYszine—gzz(xcosG*sine)0

(7.2.25a) ogZY(xycosa*xysinB-sine)

I
. ! 3 : ) : 2
gYYtgxxsanB¢gXYs1n26¢gxz(y51n29-2x51n28)*gYY(Zycosze-xSLne)'gzz(x251nze+y2cos“e~
-Xysin®)
I : : : Z . 2
gyz-gxxxsxna*gxy(xcose-ys1ne)#gxz(sxne-x“51na*xycose)-gYchose+gYZ(xysine~y cosB+cosB)+
*gzz(ycose-xsins)

I
2 2
82278 xxX =28y * 28y X ByyY ~2By;Y*87;

where all gravity gradients in the right hand side refer to the navigation
frame. Eqs(7.2.23a) written in matrix form read(see next page).

As we have already discussed, the first procedure to be followed in trying
to simulate the fundamental equation of inertial navigation is to express
all vector quantities to the same coordinate frame and particularly to the
navigation frame in order the results to be referred to the earth-linked
frame. As far as gravity gradients are concerned, the following transforma-
tions must be made to ''channel'' the signal as it is sensed by the electronic
float axes to that referred to the navigation frame:

1)rewrite eqs(7.2.18), (7.2.22b) and (7.2.23b) zbsractly as

£ G
(7.2.18)" gy; = [A] + [B] g5

I G
7.2.225)" 855 = [C] 85

I N
(7.2.23p)" 8y * (o] 85
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where the g’s represent the column matrices of the gravity gradients and
A,B,C,D the already defined transformation matrices.

2)derive those gravity gradients referred to the navigation frame using
-the following formula:

N E
(7.2.24) g, = (01" E)eB] ¢ g;; -[AIM

where the superscript -1 indicates the inverse matrix operation. The last
equation, in view of the involved matrices, shows clearly that the sensed
gravity gradients should undergo a very tedious and lengthy manipulation
containing non-orthogonality effects, instrumental misalignment etc. in
order to be finally used in the simulated navigation equation to be pre-
sented next.

7.3 The simulated navigation equation

In view of eqs(2.11),(7.1.12),(7.1.13) and (7.2.24) the complete navigza-
tion equation which can estimate the instantaneous geocentric coordinates
of the moving object with respect to the earth-linked navigation frame,
is written in matrix form:

(7.3.1) R = T(aAin+b¢u)¢D"C(B-1(ggj-A))—ZQéﬁE-fzéxR-néx(ﬂéxR)

where the above symbology has been already defined. Now, in order to get
out of the navigation system some indicated numbers or order of magnitude
of errors, certain assumptions have to be made(of course, a rigorous sta-
tistical analysis should include the full matrices involved):

a) Since the navigation system is simulated for its performance during a
very limited time span, or as a matter of fact for a few seconds, it 1is
reasonable to neglect all terms containing angular velocity or acceleration
of the earth coordinatized in the inertial space. Consequently, the last
three terms in eq.(7.3.1) are for our simulation studies dropped out.

b) The matrix T given in eq.(7.1.12) contains pioducts of small angies

plus some sjingle terms. Having decided to keep only first order terms, then

the matrix T .can be approximated by:
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4 sl Egw
(7:3.2) T =| m+eyo 1 “(eyymy) | * higher order terms
"yl  Byteny ¢

Combining eqs(7.1.13) and (7.1.2), we get for the apparent acceleraticn
components to be used inside the navigation equation the following:

Fra=) e b . .
a in . n
& (143, Ay by (eyomy JAS ™ (ey yomy) A2
-2 - a | At o AT E in 1
L i) A'! l = (mz ‘YZ)’\X *U*a\,)i\. *bY*u\‘#(ch*mT_\A;n * higher order termis
Ag‘ -(n\,‘-c.\.‘)A;(n*(mA*czx)r‘\l.nv('wa )Ain*bwu, ok
T I PR

The above equation shows clearly that the components of the apparert acce-
leration in each channel ave a mixtuce of all three encountered acceliera-
tion components.As it can be also seen, each channel’s signal Is merely
composed of its counterpart acceleration and the other two signals multi-
plicd by small quantities(due to the accelerometer non-orthogonality) are
present as well.

c) Let us now consider the case of the gravity gr:dients. As eq.(7.2Z)
shows the determination of the gravity gradients to te used in the navi-
gation equation requires the inversicn of two matrices, namely the D—l
and B—T. Since we have first to derive the final error matrix in front
of the gravity gradients referred to the electronic frame anu then to
make the assumptions, the mentioned inversions must be computed by hand.
B'1 presents no difficulties, but i possesses certain problems dre to
its elements’ complexity. Owing to this fact, eq.(7.2.22b)"is considered
as

G =1 1
g = g
Therefore

oF =asnc™ g =avBc”'ngV =ng"
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and finally

(7.3.4) g aglgE

The inversion of C'1 by the partitioning method gives the following
_ matrix approximated only up to the first order temms:

1 -2¢, 26, 0 0 0
2 L & & & =
(7.3.5) A g : = N by + higher order terms
0 2, 0 1 -2k
e B % fir i
0 0 —25,{ 0 25( 1

Therefore, the transformation(7.3.4) yields the fcllowing:

N E E 8 4 2
gx‘x'g_\x’gx\( -26 ‘(‘3“k3 '3'*‘)
N B B £ £ e g v
Bxy = Bxy'8xx ‘'8xz Yy O 7(8xy*Oy)eg (3 Ro - 3w
8 B : g
Bxz = Bxz*8yz "9*(U-&* 2(y;78y7))8y;
.38
S 8 4 2
Syy = Syy Bxy "28-( y ke - x W)

E E
, 1
8yz = 8yz* (&% 3(8y78y7))gy;

-

K & & E 4 i
B2z “ 8770y "yg -y e s xu)

As we can see from the above expressions, the gravity gradients referred
to the navigation frame are equal to their counterparts sensed and mea-
sured by the electronic frame plus products of gravity gradients with
small quantities e.g. polar motion components. All these terms in view of
1)the conclusions drawn in simulation I with regard to gravity gradients

2)the small magnitude of all terms but the single gravity gradients and
3)the objective of our simulation studies, are finally neglected. Con-
sequently, the gravity gradients which enter the simulated navigation

equation are those which are measured by the electronic float frame.

Recollecting resuits, the equations which we shall simulate assume the
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following forms:

2 i - ;
Xy = At ((10ax)A§:obxfux-(gxz¢n1)A¢?o(gxzomy)A;?.cx1¢Gxx1(xz_x1),cxy1(Yz_y‘)‘
g B2y,
= < - il’ll’ * i o i
1y 0 e O ey 5y 8

’c‘yzl (zz'z‘ ))‘ZYZ'Y.,

(7.3.7)

2 in in i
= AtT (- in ’
Zg ( (nY’EZY)AX1*(mX":ZX)AY"U"z)AZ“bz‘“z’Gzl‘GZXI ‘XZ'Xl)’GZY1 (¥,Y,)+ |

Gz (22y))022y02

The above equations contain 36 parameters, namely:

a)time span(1i)

b)apparent acceleration components(3)

c)the geocentric coordinates of the first two points (6)
d)the gravity components (3)

e)the gravity gradients(6)

f)the accelerometer bias(3)

g)the accelerometer random uncertainty(3)
f)the accelerometer non-orthogonality(5)

i)the initial misalignment angles(3)

j)the accelerometer scale factor uncertainty (3)

The same procedure followed in simulation I will be repeatec to see the
influence of these 36 parameters on the derived coordinates

7.3 Results

The same computer programme used for simulation I studies is employed

<0 accommodate the new simulated equations. Only the results for the
parameters which can contribute changes into the system’s error budget
are listed below.
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oz = 2 Var.=cov.: .2 oz = 2 Var.=cov.: nZ

X, (@) 2 ** (m) X, (%) (m")
; 4,0029 0.0029 0.0437 1.0000 0.0000 0.0002
0.00 5.0029  0.0437 0.00 5.0001  0.0002
5.6626 5.0034
4.0129 0.0029  0.0437 1.0400 0.0000 /0.0002
0.01 5.0029  0.0437 0.01 5.0001  0.0002
5.6626 5.0034
4.0529 0.0029  0.0437 1.2000 0.0000 0.0002
0.05 5.0029 0.0437 0.05 5.0001  0,0002
5.6626 5.0034
4.1029 0.0029 0.0437 1.4000 0.0000  0.0002
0.10 5.0029  0.0437 0.10 5.0001  0.0002
5.6626 5.0034
4.2029 0.0029  0.0437 1.8000 0.0000  0.0002
0.20 5.0029  0.0437 0.20 5.0001  0.0002
5.6626 5.0034
4.5029 0.0029 0.0437 3.0000 0.0000 0.0002
0.50 5.0029 0.0437 0.50 5.0001  0.0002
5.6626 5.0034
6.0029 0.0029  0.0437 9.0000 0.0000 0.0002
2.00 5.0029 0.0437 2,00 5.0001  0.0002
5.6626 5.0034
9.0029 0.0029  0.0437 21,0000 0,0000 0.0002
5.00 5.0029  0.0437 5.00 5.0001  0.0002
5.6626 5.0034
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2 ‘ 2
ozl- 1 var.-cov.: (mz) azzr (mz] var.-cov, : (mz)
T | s.000 0000 0.000 5.0000 0.0000  0.0002
0.00 5.0001 0.0002| | 0.00 5.0001 0,000
4.0034 i 1.0034
5.0000 0.0000  0.0002 5.0000 0.0000  0.0002
| o0 5.0001  0.0002 0.01 5.0001  0.0002
4.0134 l 1,0434
, e -
t 5.0000 0.0000 0.0007 | |soooo 0.0000  0.0002 |
0.05 | 5.0001 o.ooozé | 0s | 5.0000  0.0002 g
| ' 40030 | ; 1.2034 i
b i) 4 -—
, 5.0000 0.0000  0.0002 f fsoooo 0.0000  0.0002 '
0.10 j 5.0001  0.0002| | 0.10 ; 5.0001 0,002 |
! 0834 | | 1.403¢ |
- b @
; 5.000 0.0000 0.000 ! 5.0000 0.0000  0.0002 '
| 0.20 5.0001  0.0002 i 0.20 5.0001  0.0002 :
! 4.1034? ; 1,803
l 1 I i
! | s.000 0.0000 0.0002! 5.0000 0.0000 0.0002 |
| 0.50 s.0001 0.0002| | 0.50 : 5.0001  0.0002 |
| 4.503¢ | 3.00% |
} b t
E 5.0000 0.0000  0.0002 5.0000  0.0000 0.0002 :
; 2.00 $.0001  0.0002 2.00 §.0001  0.0002 '
‘ 6.0034 9.0074 ‘
$.0000 0.0000  0.0002 5.0000  0.0000 0,000 l
5.00 5.0000  0.0002 5.00 5.0001  0.0002 ;
9.0034 21,0031 J
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i

| e s 4 var.-cov : 2 o = 2.4 VAT.~COV.: (2

X_(w/s') R () M @?sh e (5
J$.0000 0.0000 0.0002 $.0000 0.0000) 0.0002
0.02-0.50 5.0001 0.0002 0.02-0.50 5.0001 0.0002
5.0034 5.0034

2 &
. " 2,8 var,-cov.: 2 ':’('.Y y 2. 4 var,-cov.: 2
m/s”) m) m/s™) (m")

; $.0000 0.0000 0.0002 5.0000 0.0000 0.0002
i 0.005 §.0000 0.0002 0.005 $.0001 0.0002
’ 5.0034 5.0033
| $.0000 0.0001 0.0002 5.0000 0.0000 0.0003
‘ 0.02 5.0001  0.0002 0.02 §.0001  0.0002
5.0034 5.0033
§.0000 0.0002 0.0002 5.0000 0.0000 0.0004
0.05 5.0003 0.0002 0.05 $.0001 0.0002
$.0034 5.0036
§.0000 0.0003 0.0002 5.0000 0.0000 0.0005
0.10 5.0006 0.0002 0.10 5.0001 0.0002
5.0034 5.0039
5.0000 0.0006 0.0002 5.0000 C.0000 0.00C8
0.20 5.0012 0.0002 0.20 $.0001 0.0002
5.0034 5.0045
$.0000 0.0009 0.0002 5.0000 0.0000 0.0011
0.30 5.0018 0.0002 0.30 5.0001 0.0002
5.0034 5.0081
$.0000 0.0012 0.0002 §.0000 0.0000 0.0014
0.40 $.0024 0.000Z 0.40 5.0001 0.0002
5.0034 5.0087

i St s———




e

o R O A S b s .5 s 0

—— |

99
oz- 2 Var,.-Cov. : 2
At (s 2 't (m)
§.0000 0.0000 0.0001 5.0007 0.0008 0.0110
0.0001 5.0001  0.0000 0.05 5.0008 0.0109
5.0004 5.1657
5.0000 0.0000  0.000% §.0014  0.0015  0.0219
0.0005 §.0001  0.0001 0.1 5,00i5  0.0218
" 5.00:7 5.3313
i
| 5.0001 0.000i  0.001 5.0029  0.0029  0.0437
0.005 5.0001  0.001i 0.2 5.002¢  0.0427 |
5.016¢ E | 5.6026
! { 1
| 5.0001 0.0002  0.0022
0.01 5.0002  0.0022 1
5.0332
5.0003  0.0003  0.0044 |
0.02 5.0003  0.0044
[ 5.0663
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7.4 Discussion

Needless to note that the results of the new simulation are almost iden-
tical to those derived in simulation I and therefore the same comments
are also applicable here. But since we are not at all satisfied witch the
system’s behaviour, we try to investigate the aided mavigation system
decper by making the following studies:

a) Investigation on the coatribution of the sampling interval At:to moti-

vate our discussion we remind again that the irertial acceieration como-
nents have been approximated by the Stirling’s formula(see eq.(5.2.3)).
In approximating derivatives a dominaia® error source is the input erross
thenselves. One could immediately see the explanztion to tnat locking

at the mentioned equation. The recirrocal power of the sampling interval
At multiplies the true vaiues as well as their errors and thus the aigo-
rithm magnifies them enormrusly. “or that reason we investigatce the cose
in which At decreases in order ro see how space traverses cf such an

e

aided navigation system behave. Th2 results are listed irn the next page.

From tre given results it is otvizus that:

1)The navigation svstem becomes a :ittle more tolerable as At decreases
but again it behaves badly

217 we call point 10 of the first traverse as the 'bresk pcint' of tne
navigation system, then it occurs at point 11 and 13 for the rest traver-
ses.

Consequently, by making At very small the system u-es nct behave hetter
except some very small improvements

b Investigation on the contribution of the omitted covariai-es:from the

given results of simulaticn studies I and II it is evident that the sys-
tem is very sensitive to the variances of the initial coordinates and
epecially to the variances with which the geocen..ic coordinates of the
second point are known. Therefore, we try to see if the omission of ine
respective covariances makes any changes into the system’s error budget.
The formulation of the new investigation follows these brief lines:
1)rewrite the general simulated equations as: i
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At=0.1sec. At=0.05sec. At=0.01sec.
of
Point ) 2
¥ 2
ai : (m™)
g 0.1549 10 ° | 0.3365 10° | 0.1441 10
3 0.7540 10°* | 0.541210°% | 0.1426 107°
0.3373 1072 | 0.8299 107> | 0.3313 107
0.7745 1007 | 0.1715 1077 |  0.7041 107
i s 0.3370 10> | 0.2706 1074 | 0.7230 107
| 0.1687 107! | 0.4150 1072 | 0.1656 107>
0.3408 107> | 0.7564 107" | 0.3084 10>
5 0.1659 1072 | 0.1195 1073 | 0.3181 10
} 0.7423 107" | 0.1826 107! | 0.7287 107
F 0.1456 10°% | 0.3234 107> |  0.1316 107
» 6 0.7089 107% | 0.5106 107 | 0.1359 1067
0.3172 0.7802 107" | 0.3114 107
| 0.6180 10°° | 0.1375107¢ [ 0.5586 107
E i - 0.3009 10~ | 0.2167 107 | 0.5769 107}
; . 1.3460 0.3312 0.1322 10"
‘ 0.2619 107" | 0.5819 107° | 0.2367 107>
8 0.1275 0.9184 1072 | 0.2445 107
i 5.7050 1.4081 0.5603 10~
0.1110 0.2465 10~ 0.1003 10°¢
o | o0.5002 0.3891 10" | 0.103 1072
24.1707 5.9481 0.2374
: 0.4702 0.1044 0.4249 10°°
10 | 2.2886 0.1648 0.4389 1072
f 102.4000 25.2002 1.0060
| ' 0.4423 0.1800 10"
i " 0.6918 0.1859 10”"
| 106..7000 4.2610
: 0.7623 10!
i | 12 0.7875 10~
' 18.0500
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2
)(i = At (Axi-z,i-l + C‘xi-z + "':0( \ ( 2) GXY (yi_l-yi_zy

i~2,i-1 i-2,i-1

zei_z.,._, R AL 2 T

4
Y, wat A + + Gy T S R o, Ny
1 A‘i-Z,i-! GYkl 243 i=1 7i=2 GYYi_:'i_1 i-1 "i-2
- W e DI P e e
GY“j-Z,i-I R R T s
7 2
2. = At™ (A, #E e © o S P (A T
1 ST e T R s B e R S
3o S gt SN2 =T
b:Li_:,l_, e W

2)call y the parameters of the alcve equation except the coordinites ang
C the desired cocordinates. 1hen for the first point cne gers:
X y_ 7"1'
[:3 JL

o1
2C3 = AL A
since var(X], 1,_1 0 \A,:2)=C. Lo ‘nlicates the dispersion nmatrix of

the coordinates at point 5.

point 4
[c] AgYa*8,C5 = [A Bazi'y;}
g
zc4 =E\4 54}5:4] {.. 34-‘}‘ ZEﬂ * r:,\", 0"!
e d o ycj
¥ & K
B df o] v F
i_ 0 I,
point :
[CQ * Agyy*BgCy*DgCs * E‘s By Ds] zs
2




e ————— = e

It can be seen that from point 5 the first covariances between the cocr-

dinates are involved.

point 6
] = %76"BeCs*6Ca = [%  Bs D] V6
5
Cq
e * % B D] IPel [ B .7
Cs
©
T
Cs.l.xs . Ds] (s [:As Bg Dﬂ
gl e oerleli e 18
C3
and so on.

According to the above equations, a new gradiometer-aided navigation
tem space traverse is carried out. The results are listed below.
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- FURKL

7ROR 0OPY, FURKISHED 70

5
Point var.-cov.: (m°)

-4 0.1438 1074

0.2182 10
0.2182 10
0.3314 10~

0.1638 10

3 0.1638 10

-4

0.8038 10" 0.7190 10" 0.1081 10°

4 0.8038 1074 0.1081 107°

)
0.3164 1C 0.4599 10 ©

0.3543 10
0.3543 10°° 0.4%01 107

w

- ——

Q.151% 10°° 10,1352 1015 9.1971 110

6 | 0.1514 1072 2.2¢51 107

0.6426 10°° 0.5737 1C

(@]
w
i .
1

7 Q.6420 10 0.870% 10

|

From the given results it is evident that the omitted covariances do not
play any critical role on the derived coordinate variances.

c) Investigation on a multipoint approximaticn:thc last hope to improve

the bad behavicur of the gradiometer-aided inertial navigation system
is to include more terms for the Stirling’s approximation formuila anc

Bq.(5.2.3)

includes only the first term of the mentioned formula, but mcnipulation

thus to approximate better the inertial acceleration compon<nts.

of the second term gives to the fundamenta. (rration c¢f inertias naviga-
tion to be simulated the following form:

5 .ZAt \Axx 2,i-1

g " g Kin ie2 1060y

i-2,i-1

’GXZ. ; (21-1

=2, 5 ))+aX.
i-2,i-1 i=2 i-2

X3 i ;

il
|
!
'
i
|
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2
Y, =2att(a, Gy Gy , N Gy e
(7.3.8) ; 1-2,4-1 Yi-2  Mi.2,i-1 %oy Kz * ‘i-2,i-1 Mpey Yy 0°

*Gyz

42,41 (244 =253 D)4 4Y; 5 *Y 4

2
z. =28’ (A +C, 4G X « =X o )+G Y. . Y.
i 2 AP TP Xi-1 X2 )*Ggy, (Yioq Vi )*

i-2,i-1 i-2,i-1

*Gyp.

gea gy e Tl T, A

i-3 *Z

i-4

The same procedure followed by the previous simulation studies is applied
again to the above equations. The space traverse for the multipoint appro-
ximation gives the following results:

Point var.-cov.: £!‘21
5 0.6560 10~ 0.6560 10 0.4177 1073
6 0.6560 10°* 0.6560 10°* 0.4177 1073
7 0.1152 107% 0.1152 1073 0.5186 1073
8 0.2165 107> 0.2165 107> 0.7100 1072
9 0.1961 1072 0.1961 1072 0.7105 1072
10 0.5320 1072 0.5320 1072 0.7518 1072
" 0.3197 107" 0.3497 10”' 0.3218 10”
12 0.1672 0.1672 0.1144
13 0.6466 0.6466 0.1273
14 2.4324 2.4324 0.1282
15 6.4771 6.4771 1.8289

From the above listed results it is evident that:

1)the navigation system’s behaviour is now better

2)the tremendous instability of the Z-channel las been already diminishea.
3)the system gathers less errors relative to the previous analysed tra-
verses but it still needs to be updated at a certain navigation time after
the initial observation point. This comes in confrontment with all up-to-
date aided navigation systems which should be filtered out continuously

as far as their committed errors are concerned. In the majority of inertial
navigation applications, Kalman filtering is continuously applied(say,eve-
ry some seconds of navigation time) to reduce the systems’ inclination to
gather errors which sometimes are intolerable.
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8. Conclusions and Recommendations

We live undoubtedly in the space age. Everything moves quickly and accura-
tely. Inertial navigation systems have been already introduced to accomp-
lish the latter but, for the time being, in a limited sense. Well-known

that systems which can guide a moving vehicle are burdened with errors(so-
metimes very big ones) and it is depending on the objective of the mission
that the guiding system can be considered to be successful or not. For exam-
ple, the strict requirements imposed on a satellite guidance system are not
applicable in a slow moving vehicle such as a submarine. Thus, the system’s
efficiency will be depending on the objective of the guidec orject. Under
that prism we aanalyvse an aided navigation system in case of terrcstrial no-
vigation and especially whei the meving vehicle is a cruise aircraflt. The
exterral aid is consisied of three matually perpendicular gradiometers, a
revoluntary equipment with the canability to measure the gravity gracient
field of the space in which tiie navigetion takes place. Several aids can

be introduced instead of the gradiometers but we have chosen them in order
to disperse possicle fears about their usefulness of operatic: in the inve-
stigated application.

The inertially referenced acceleration of a moving venicle can be obtained
by adding the gravitational and non-grav:tational (or apparent)acceleration
and neglecting certain smail terms which have been already discussed pre-
viously. Approximating the second inertial derivative with the Stirling’s
formula and then solving the resulting equations vith respect to the un-
known coordinates, the error propagation law can be applied through in
crder to get the expressions to be simulated. The analysis proves that a
gradiometer-aided inertial navigation system is very unstanle like all no-
vigation systems. Particularly, the Z-channel gathers the biggcst ammount
of errors relative to the rest two cnes and after some seconds the naviga-
tion system, as an instrumental package, collapses as far as its perfor-
mance is concerned. Aiding the system with a barc...*er or an altimecer

or generally with an instrument which can produce any kind of height iizor-
mation of the instantaneous position of the moving vehicle, then the insta-
bility of the discussed channel can be effectively reduced. Relevant to the
two parameters of great interest, namely the acceleration and gravity ones,
the former causes to the system an error up to the order of 7%(considering
its contribution for some first points) and the latter a very small percen-
tage of error. These results can justify the conclusion that gravity gradi-
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Considering detailed error models for acceleration and gravity gradient mea-
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ometers perform or rather behave excellent on-board a moving vehicle, such
as an aircraft, or that the gravity-induced position error is a negligible
small quantity.

surements, a new statistical analysis proves that the aided navigation
system under investigation remains unstable in almost the same fashion, acce-
lerometer measurements errors are reduced down to 10% with respect to the
previously derived mmbers and gradiometers continue to fit excellent on-
board. Trying to go out of this undesired 'cul-de-sac' three new investi-
gations are carried out:

a)Making the operation of the system as fine as possible, then the behaviour
of the navigation system does not change appreciably. It will break down
sooner or later.

b)In both simulation studies the initial value problem of inertial naviga-
tion is under consideration. The big influence of the two initial sets of
coordinates on the derived accuracy of the system’s output, justifies the
hope that something could lie inside the omitted covariances between the
coordinates of the two first points. The statistical analysis shows that
the navigation system is again dying out in exactly the same manner as
previously. .

c)Since the whole analysis is based upon the approximation made, namely
the Stirling’s formula, it is reasonable to investigate the case in which
more terms are taken into account. The simulated equations change format
including now more terms(or more initial points). The new statistical ana-
lysis justifies the hopes that the system cannot be only badly-behaved but
it possesses the ability to be more accurate or for that matter usable.
The Z-channel instability is decreased effectively, the system gathers
less errors than previously and it can now be seen with hope.

In spite of the not so accurate approximation for the second inertial de-
rivatives, the quantization error to be commit<ed is a very small quancity
relative to the total error budget. Trying to give an orcer of magnitude
for that error,I could simply mention that if the navigation system ope-
rates every O.1sec., then after 20 minutes of flight the quantization error |
is up to the order of 4cm.

Further studies on that subject are advisable according to the following
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general ideas:

1)Try to include more terms in approximating the second inertial derivati-
ves in deriving the simulated equations for the first two or three unimown
points. Simulate them and revise them for the next few points but include
now more terms as far as the Stirling’s formula is concerned. Apply this
procedure continuously until the system has gathered errors which cannot

be further tolerated. Then a filtering technique can''refresh' the systen
in order to begin again the above discussed procedure. In view of the obtai-
ned results of the multipoint approximation studies, I strongly believe
that the proposed analysis will turn out to be very fruitful.

2)Apply the well-known technique of Kalman filtering. Extensive literature
addresses this problem and therefore it will not be discussec herein.

Perhaps one might pe keen on asking why I insist so much on applying gravi-
ty gradiometer techniques fcr terrestrial navigation systems since the up-
to-date used systems can operate with better accuracy(one nautical mile per
hour flight, approximately). The detezil and accurate notion of the eartn’s
gravity field is mot of great importance for such applications. But tiw
answer being straightforward, comeswith the question:what these graliomctier-
unaided systems can do for space missions in cases of which the on-uoara
platform travels through different, successive and completely unknown gra-
vity fields? I believe, they can do nothing(strictly speaking).

A gradiometer-aided inertial navigation system turns out to be very profi-

table in many applications and it can surely upgrade the abilities of
Mankind to explore the mystery which is here to stay, the distant ccsmoes.

-~
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Appendix A:Computer Programmes Used

Simulation I unl Il

at

i1

FROGRAM [OOUJKAKN

DIMENSION A(1993) s B{19919)9C(I93)yZW(1591)
REAL#8 A»E»C

=19

N:== 3

M1

NN=19

cAlLL ALESENC(A»MsIN+O)

CALl. ALESEN RemMenNNy 2)

CALL MAMUL3CAsMoNs 1y EoMMoNNrsOvArMoaN2OrCoNsNvZWr L7 1)
CALL ANRUCK (CyNsN+O)

STOF

END

SUBRROUTINE MARMULI (AyMA»NAYNENNAs By ME s NEyKENNE»C»MC» NCy KENNC»
LRy MR oNRy ZWr MZW e SYM)

OIMENSION A(MAsNA) sB(MEByNE) yC(MCoNC) s R (MR NR) » ZW (MZW» 1)
FEALY¥S aelle s FAKLsFAR2sFARI Fe39ZW
INTEGER AZ»AS»LZrLSySYM

LOGICAL KENNAL + NENNEL » KENNCL s SYML
RENNAL=NENNA.NE. 1
NENNEL=NENNE.NE. 1
SNENNCL=RKENNC.NE. L

SYML-SYM.EQ. L

AZ=MA

AS=NA

IF (KENNAL) GOTO 41

AT=NA

AS=MA

CZ=mC

CS=NC

IF (NENNCL) 50TO 42

CZ=NC

D [

D01 K=19AZ

noY I=1.CZ

=0,

002 U=1,AS

IF (.NOT.KENNAL) FAK1=A(JsK)

IF (KEMNAL) FAK1=A(KNy 1)

IF (.NOT.KENNEL) FANZ=R(I»))

IF (KENNEL) FAK2=E(JyI)
S*SFAK1IRFAr2

ZW(1,1)=S

J=1

IF(SYML) J=K

001 L=JsCS

S$=0.

001 I=1,C2

IF C.NOT.KENNCL) FAK3=C(L+ D)
IF(\KENNCL) FAK3=C (IsL)

S=S+2W ([v1) #FAKI

QKoL) =S

IF(SYML) R<L'K)=S

RETURN

END

SURROUTINE AINVER (AsN)

SUBROUTINE MATRITZENINVERTIERUNG

DIMENSION AWNIN) ﬁﬂ&
IF «N.HE.1) GOTO 11 "h
Ally D) =1/A(1s1) ﬁa‘Q\s @9_9)‘
GOT0 12 15 R

D010 K=2sN “,;ﬁ

K1mK-1 v o34

D010 I=1,K1 »
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19 ANy [ =0
Ni=N-1
001 E=1sN1
T=AKNK)
AKIRI=1,
N==he i
[0 I=NDeN
FsAKe [0 /T
N0 Ji=1»KN
A(I»J1)=A(IrJ1)-SnA(K,J1)
mia J2=I+N
ATy J2)=A(Ty»J2)-SHA(N»J2)
CONTINUE
AKIK)=T
C INVERSE MATRIX
T=A(NsN)
ANyNI=1
N0OS A=" oN
ANt =EAINIK) /T
ot I1=1eN1
Y=n-11
T=AI 1)
A'lyI)21.
1'06 '\3171
S=A 1K)
I12=1+1
0?7 J=I12+N
7 S=S-A(ls D RA(JIN?
. ALIK)=S/T
o UMSFEICHERN
[OT N=IZeN
D ACTIR)I=AINS )
12 RETURN
END
SUBROUTINE ADNSUEK (KENN»AsMArNAYKENNA» By By NEYNENNEsCoMCoNC)
r, SUEBRNLTINE MATRITZENADDITION UND -SUBTRANTION
DIME ISION AMAsNA) EMEeNE) »C (MCoNC)
INTEGER AZ»AS
LOGICAL KENNL » KCNNAL s KENNEL
KENNL=AEN.EQR. 1
KENNAL=KENNA.NE. 1
KENNEL=KENNE.NE.1
AZ==MA
AS=NA 4
IF (KENNAL) GCTO a1}
AZ=NA
AS=MA
41 D01 N=1,AZ
'01 I=1,AC
IF (.NOT.KENNAL) FAN1=AC(I»N)
IF (KENnAL) FAK1=2A(K» )
IF (.NOT  KENNEL) FAK2=E(IyK)
IF (KENNEL) FaAr2=R(K»I)
C(Ne I asFAK] +FAKD2
| IF (KENNL) C(KyI)=FAK1-FAK2
| RETURN
END
SUBROUTINE ADRUCK (AvMsNsKENN)
C SUBROUTINE DRUCKEN EINER MATRIX

IIMENSION A(MsN) SCABLA

o

-1,

)

e

’”

FEAL»8 A

Ni=N
MinM P TS
1F (KENN.NE.1) GOTO 43 S Ty TurRRISHED
Mi=N ROl
N1=M
43 WFITE(6+101:M19N1
{ 101 FORMAT (21%5/)
. DO 1 I=1,M1
! § IF (RENN.NE. 1) WRITE(61102) (AcToJ) s JmisNI)
" TF (KENN.EQ. 1) WRITE(6+102) (ACJeI) s =i sN1)

T
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S1

102

v

98
r
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FORMAT C(LIH +SF14.4)
WRITE(6,102)
RETURN
END
SUBROUTINE A L E S EN  (ArMiNIKENN)
LESEN EINER UNTEREN DREIECKSMATRIX
DIMENSION A(M»N)
REAL®#SB Ay X
Mmi=mM
N1=N
IF(KENN.NE.1) GOTO S1
M1=N
N1=M
IF (KENN.GE.2)GOTO S2
00 1 I=1,mM1
IF(NENN.EQ.1) READ(S9102) (A(JrI) 9 J=19N1)
IF (KENN.EQ.O)READ(S»102) (A(Iy»J) »J=1,N1)
FORMAT (8F 10.4)
CONTINUE
REAN(S9102) X
RETURN
No 2 I=1,M
READ(S»102) (AT s ) vJ=191)
IF(NENN.EQ.3)50T03
0O 4 I=1M
o 4 J=1,1
Ay ) =A(I»N)
GOTO 3
END

ra1s PAE
YRO# 00PY

T R

QUABETT mcanﬂ-l
‘s,-\mxsm 08—~
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Programmes for the Quantization Error Studies

a.variance-case

FROGRAM TWINS1

REAL®#E ArEsC

REANC(1950) NN+sDOT+SA»TA»SG» TG
SA2=SAne

SGI=SGu#Y

CALL VAR (DT »SA2+SG2> TA» TGP NN)
FORMAT (IS»3F10.4+1F15.10,1F10.4)
STOF

END

SUBFROUTINE VAR (DT »SA2»SG2rTA» TGYNN)
[0 & IN=3.NN

X=0

00 6 IM=2sINM

0 & IR="9INM

¥=X+IFLOAT (CIN=-TIh) % (IN-IR)) #DEXF (~DAKS (DT #1F L™ TH-TIR)) /TA)
CONT INUE

Y=0

00 7 Im=2y TNM

) 7 IR=2«iNM

M 7 IN=Ds1IMm

M 7 IF=2IR

Y=Y+DFLOAT (CIN=IM) # (IN-IR) ) ®DEXF (-DARS (IT#LFLOAT C(IN=-IFY) /T06)
CONTINUE

CS=0THRELE (CADEX+S DY)

WRITE(6»100) IN.Z

WRITE(25100) IN»©

FORMAT (10XyF15. )

RETURN

ENT:
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b.Covariance case

Lo

A ]

ROGFAM TWING3

REAL #8 (OT»SA»TArSGr»TGrYSA2,5G2yS
NIMENSION S(20,20)

FERD] SO NNsDT-CArTA»SG» TG
SAl=SAanR?

GO0 v SG%RT

CALL COVANTSA2 3G »TA» TGrNN»S)
NNM2=NN--2

FORMAT (IS»3F10.451F15.10+1F10.4)
WRITE (L3, 200"

WRITE «&£+200)

WRITE -1« 200)

FORMAT (1H1,I2H VAR - COV =)

DO » [=1,NNM2

WRITE<13,100) «Sulrd) s Jd=19NNMD)
JRITE 293100 ToTe 1) e J=1sNNMD)
WRITE e 1O «Sele g2 e )=l g NNMZ)
FORMAT ¢ SX,12:010.2))

CONTTINUL

STGF

END

SHERQUTINE COVANIT+SAZ»SG2» TA» TGHYNNS)
OIMENSION €(20,20)

REAL #8 UT»3A, TAy 3G TGrSA29»SG29Se Xy Y
00 S IN=3/,NN

00 § IS=32sNN

Y=,

[NM=~TIN-1

ISM<1S6-1

D0 A& Ty INM

0 & IR=2y151

X=X+DFLOAT « (IN-TM) » (IS~ IR)) #DEXF (-DAKS (I'T#DFLOAT (IM=-IRY) /TA)
CONTINUE

Y=i),

00 7 IM=2.[NM

D) > IR=1.1ISM

DO 7 Ir=2,1IM

m) 7 IF=2,IR ‘
Y=Y+DOFLOAT ( (IN-IM) % (IS-IR)) #DEXF (-[AKS (DT=UFLUAT « IK-IF)) /TG
CONTINUE

SUIN=-2yIS-2) =T ean (SAZRX+SGINY)
CONTINUE

RETURN

END




