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NOTATION

Constant coefficient in hydrodynamic loading function;
cf Equation (6)

Coefficient of cos n¢ terms in hydrodynamic loading function;
cf Equation (6)

Coefficient of sin n¢ terms in hydrodynamic loading function;
¢f Equation (6)

Cable fairing drag coefficient; cf Equations (1) and (3)

General hydrodynamic loading function for either the normal
or tangential direction

Integer index; cf Equation (6)

Drag per unit length of fairing when the fairing is normal to
the free stream

Reynolds number based on maximum fairing thickness; cf g7

Equation (2) . wn Witte Section 3R,
D0C Buff Sectiom [ ¢
Fairing model submergence (wetted length) WUARKOUNCED '

JusTiFicATION 2897 B4
Maximum fairing thickness . ’
” 1

EREE Crew Tl A

Normal hydrodynamic force Bl AVAIL and/or SPECIAL
Lateral hydrodynamic force H ) i
Tangential hydrodynamic force

Tangential hydrodynamic loading function; cf Equations (5)
and (11)

Normal hydrodynamic loading function; cf Equations (4) and (10)
Kinematic viscosity of fluid




NOTATION (cont)

Mass density of fluid

Cable angle (acute angle between Z force direction and direction
of motion; cf Figure 4)
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INTROBUCTION 1
The Naval Ship Research and Development Center (NSRDC) established |
a research project under the Submarine Towed Communications Program
directed toward the development of fundamental design information for
future submarine towed systems. This work is in accordance with a

continuing effort at the Center to improve techniques for predicting

T L W T T e

the steady-state and dynamic characteristics of cable-towed systems.

The differential equations describing the two-dimensional steady-
state configuration and forces of a cable-body system are well defined
within the 1imits of certain simplifying assumptions.!* Solutions to
these equations can be obtained nﬁmer1ca11y through digital computation
provided the body characteristics, cable loading functions, and cable
drag coefficients gre specified.2 An expression representing the
general form of the cable loading function has been developed at the
Center.3 However, to obtain the loading functions for a specific faired
cable, the coefficients for the aforementioned expression must at

present be determined experimentally. To date, experiments to determine

*References are 1isted on page 23.




cable loading have been conducted on numerous faired-cable designs

(References 4, 5, 6, 7, 8, 9, and 10). The experimental approach
consists of towing a rigid faired-cable model in the David Taylor

Model Basin at various speeds, cable angles, and model submergences

and measuring the hydrodynamic forces using the DTMB Cable-Fairing
Dynamometer. Data obtained from these experiments are non-dimensionally

normalized and processed with a curve-fitting computer program to obtain

mathematical expressions for the loading functions and drag coefficients.

\23 This report is concerned with similar”experiments on the TMB
Number 7 Fairing Shape including experiments for a cable angle of zero
degrees to obtain the lower boundary value of the tangential loading
function. This report describes the subject fairing model, the cable
fairing and towing girder dynamometers, the instrumentation, the
experimentai procedure and method; gives sample plots used to obtain
the loading expressions of normal and tangential forces versus model
submergence for various speeds; presents graphically, fairing drag
coefficient versus Reynolds number and normal and tangential loading
functions; and provides the mathematical expressions, with coefficients,
for the loading functions and drag coefficients.k.

\
DESCRIPTION OF FAIRING MODEL
The basic model consists of a five-segment aluminum strut having

a TMB Number 7 Fairing section shape as described in Reference 11.

:
3
3
e
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Details are shown in Figure 1. Additional physical characteristics of

the fairing model are given in Table 1.

TABLE 1
PHYSICAL CHARACTERISTICS OF FAIRING MODEL
Section shape TMB No. 7
Chord, inches 12.00
Maximum thickness, inches 2.00
Section fineness ratio 6
Ratio of wetted surface area to projected
frontal area 12.78
Model length (cable fairing dynamometer), inches 89.25
Model length (towing girder), inches 113.25

The model was designed to be configured for both the cable fairing
and towing girder dynamometers. The configuration for the cable fairing
dynamometer consisted of the long 7-1/2-foot model segment with the
strut plate and is shown attached to the dynamometer in Figure 2. The
configuration for the towing girder dynamometer consisted of the long
model segment suspended, leading edge up, below the girder by two
standard 4-1/2-foot ogive struts. The length of the model was variable
by the addition of the short segments. The "full length" configuration
is depicted in Figure 3. Nose and tail fairings were added for stream-

1ining and fillets were also added at the model/strut interfaces.

DESCRIPTION OF DYNAMOMETER AND INSTRUMENTATION
The DTMB Cable Fairing Dynamometer is shown in Figure 2 with the
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fairing model attached. The normal force, X, lateral force, Y, and
tangential force, Z, on the model, as depicted in Figure 4, are sensed
by separate 4-inch-cube modular force gages of the type described in
Reference 12. Interchangeable gages with czpacities ranging from 50

to 1000 pounds are available so that high accuracy can be maintained
over a range of speeds. However, the dynamometer structure 1imits each
of the three component forces to 500 pounds.

The dynamometer tilt-table angle is adjustable so that the model
cable angle, ¢, relative to the free stream may be varied from 30 degrees
to 90 degrees in 5-degree increments. The vertical position of the
model and tilt table also is adjustable by means of an electric hoist
so that model submergence may be varied from zero to approximately
7 feet. A weight-pan system provides a means of counterbalancing the
model weight on the gages at each submergence and cable angle. Model
yaw angle also is adjustable to provide proper alignment with the flow.

Instrumentation used with the cable fairing dynamometer included
a 50-pound-capacity gage for the X force, a 1000-pound-capacity gage
for the Y force, and a 50-pound-capacity gage for the Z force; a three-
channel modular-force-gage control unit, two integrating digital
voltmeters for readout of the X and Z forces and a strip-chart re-
corder for monitoring the Y force. A magnetic pickup and digital counter
were used to indicate towing carriage speed and a digital printer was
used to record the X force and Z force. The instrumentation console

used is shown in Figure S.

o o s e < - AT
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Figure 4 - Force Coordinate System

pLe———




PSD 338499

Figure 5 - Instrumentation Console for Cable Fairing Dynamometer




The estimated accuracy of the force measurement system is +0.25

pound for the X and Z forces and +5 pounds for the Y force. The

accuracy of the speed measurement is +0.05 knot.
The towing girder dynamometer is of the floating-frame weighing
type and is illustrated diagrammatically in Figure 6. The dynamometer

girder carries a long horizontal floating beam in pendulum fashion

on two pairs of vertical arms terminating in flexible springs. A
counterweight at the upper end of a vertical swinging arm mounted on
the girder and attached to the floating beam maintains the beam in
equilibrium at any position between the 1imit stops. The model resis-
tance is transmitted as a horizontal force through the upper flexible
link to the T-shaped balance, where it is balanced by weight, W. When
the model resistance is not equal exactly to a unit weight, W, the
difference is taken up by the resiliency of the flexible spring supports;
the exact amount being recorded on the drum through the lower 1ink and
recording arm shown. A variable strength electro-magnetic dampener is
incorporated to minimize model surge motions. The drag measurement is

estimated to be accurate to +1.5 percent.

EXPERIMENTAL PROCEDURE
The model was first towed with the cable-fairing dynamometer in
the high-speed basin at various cable angles ranging from 30 degrees
to 90 degrees in approximately 10 degree increments. At each cable

angle, the model submergence was varied from 24 inches to 84 inches

10
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in multiples of 6 inches for towing speeds of 5 and 8 knots. Additional

speeds of 2, 3, 4, 6, 10, and 13 knots also were run at a cable angle
of 90 degrees over the aforementioned submergence range. The X, Y,
and Z forces and towing speed were measured for each run condition.
The Y force reading was used mainly as a basis for aligning the model
with the flow to minimize the Y force. It also provided a means of
monitoring model lateral oscillations at each run configuration.

The model also was towed from the floating girder dynamometer in
the deep-water basin to obtain zero degree cable angle data. The
procedure consisted of first towing the long model segment at speeds
of 5, 8, and 13 knots and measuring the total drag force at each speed.
Subsequent runs were conducted adding each of the four 6-inch segments

in turn and measuring the total drag force at each speed.

HYDRODYNAMIC FORCES
The measured hydrodynamic forces were generated by a three-
dimensional surface-piercing model. Therefore, the data contain

both end effects and surface effects. The desired two-dimensional

hydrodynamic forces were derived from these data by the following method.

The X and Z forces were plotted as a function of model submergence
(wetted length) for each angle and speed. As model submergence is
increased, a length is reached after which both the X and Z forces
became 1inearly dependent on submergence for a constant speed and

angle, i.e., end and surface effects became essentially constant.

12




s LR e o

S - o v S

Slopes of the linear portion of the force-submergence curves were
determined by the method of least squares for each angle and speed.

Typical plots are given in Figures 7 and 8 for the X and Z forces,
ax and Al
AS AS
hydrodynamic forces per unit length acting on the fairing model and are

respectively. These slopes,

» represent the two-dimensional

tabulated as Table 2.

TABLE 2
TWO-DIMENSIONAL HYDRODYNAMIC FORCES
Cable Angle, Speed, Normal, Tangential,
_degrees knots pounds per foot
30.62 5 0.5266 0.5460
8 1.0267 1.2368
40.58 5 0.6842 0.4868
8 1.5344 1.0652
50.50 5 0.8641 0.4655
8 -1.8782 0.9044
60.12 5 1.1964 0.3630
8 2.4649 0.7266
70.10 5 1.4026 0.2255
8 No data, Targe lateral oscillations
79.82 5 1.3077 0.2071
8 2.8169 0.2715
13 6.8185 0.4742
79.92 5 1.2942 0.1997
8 2.8169 0.2715
13 6.8185 0.4742
90.00 5 1.2915 0.0152
8 2.8386 -0.0175
13 6.6157 0.0108

DRAG COEFFICIENT
The fairing drag coefficient, CR’ and corresponding Reynolds number,

R_, were determined for each speed using the following expressions:

n'

13
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C s——.—R——-
R (172)ptv2 (1)

and

R =St | (2)

<

The resulting Reynolds numbers and drag coefficients are given in Table 3.
Applying a least-squares fit to the data in Table 3 yields the following
expression for the variation of drag coefficient with Reynolds number:

€, = 3.7 Rn'°'295 (3)

R

The curve representing this expression is given in Figure 9.

TABLE 3
REYNOLDS NUMBERS AND DRAG COEFFICIENTS

Speed, knots R, X 107% * Cr

2 0.562 0.145

3 0.844 0.133

4 1.125 0.122

5 1.406 0.111

6 1.687 0.107

8 2.250 0.096

10 2.812 0.092

13 3.656 0.085
*NOTE: Basin water temperature was 74 degrees Farenheit |

16 | 3
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HYDRODYNAMIC LOADING FUNCTIONS

The hydrodynamic loading functions are defined as the ratios of
the steady-state, two-dimensional, hydrodynamic forces acting on an
element of fairing at angle ¢ to the drag per unit length of fairing
when the fairing is normal to the free stream, R (where R is the drag
at ¢ = 90 degrees). Therefore, the normal and tangential loading

functions at an angle ¢ are respectively

X(¢,R,) X(¢,Rp)
Ao) = = A (4)
X(90,R ) R(Rn)
and
Z(4,R,)
r(¢) = ———— (5)
R(Rn)

where, 0% < ¢ < 90°.

As expressed in Equations (4) and (5), these loading functions are
assumed to be dependent only on the cable angle for a given fairing
geometry. The loading functions variation with cable angle may be
represented analytically by selected combinations of the first few
terms of the infinite series,3

F(¢)= Ay + & A Cosng+ = B Sinns. (6)
n=1 n=1

The following method was used to generate the particular trigono-
metric expressions for both the normal and tangential loading functions.

The two-dimensional hydrodynamic forces per unit length given in Table 2

18
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were normalized by dividing by the corresponding R value at each
Reynolds number obtained from Equation (7).
pv2 1.704

R=1.8 —— R (7)
t n

This expression represents the values of R resulting from the least
squares fit of CR versus Rn’ Equation (3), and was derived by solving
Equation (2) for V; substituting this expression and Equation (3)
into Equation (1) for V and CR, respectively; and solving the resulting
expression for R.

A curve-fitting process using the method of least squares was
performed on the two sets of resulting loading values. The process

consisted of generating the coefficients for sélected combinations

of terms in Equation (6) for which the following loading boundary l
conditions were satisfied:

A(0°) = o, (8A)

A(90°) = 1, (8B)

da(90°) . 0, (8c)
dé

and

r(9o°) = 0. (9)

The expressions resulting for n < 2 are

e i




A(¢) = 0.2675 + 0.4650 Sin ¢ - 0.2675 Cos 2¢ (10)

and
r{¢) = -2.3034 + 2.4536 Cos ¢ + 2.4712 Sin ¢

+ 0.1678 Cos 2¢ - 0.8232 Sin 2¢ (11)

where A and T are the normal and tangential loading functions, respectively.

The foregoing expressions are plotted in Figures 10 and 11.
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