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SPECTRAL REPRESENTATION OF TRANSIENT WAVEFORMS
by

Charles R. Arnold
• Honeywell Radiation Center

ABSTRACT

For steady-state waveform analysis , the classical (possibly smoothed)

periodogram of the sampled waveform gives one an adequate spectral

representation. For transient waveforms of unknown duration in noise,
however , the periodogram generally fails in that it is tied to a fixed

time interval. As an alternative, a digital computer program has been

• - developed which will do time-varying spectral estimation.

• Briefly, the program may be described as a digital equivalent of a con-

stant Q comb filter bank wherein one can vary the frequency range covered

and the frequency resolution (i. e. the Q). For a given specified frequency

range, as one increases the frequency resolution, the program automatic -

- 
ally selects more filters and spaces them so as to cover the specified

I. frequency range ; the various contiguous filters being overlapped at the

-3 dB points. The instantaneous energy contained in each filter is used to

I modulate the z-axis of a CRT display and hence provide a time-frequency-

intensity plot of the time varying spectrum.

- 
Results obtained from the computer program upon real data are given.
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I. INTRODUCTION

Consider the following problem: Given sample functions of various tran-

sient waveforms embedded in noise, how may one determine whether

there is any natural grouping of the transient s into classes causally

related to the mechanism which generated the transients. From past

• 
work in steady-state system evaluation, one knows that often the power

spectrum of the data is a much more consistent basis for classification

than the raw noise corrupted waveform. Thus, one is motivated to

determine a spectral representation (or signature) of the transients.
As to practical realization of the above problem , one may think in terms

of:

1. The classification of passing vehicular traffic in a
noisy acoustic background

• 2. The classification of both man-made and biologically
generated transients in an ocean background

• - 3. The discrimination between seismic events (earth-
quake/blast) in a noisy background

Although motivated by these classification problems, this paper is

addressed only to the problem of obtaining a spectra representative of

the transient waveforms. Additional details on the classification problem

may be found in the accompanying paper by Swanlund. 1

j If the transient waveforms presented for classification are well above the

noise to the extent that their epoch and duration are easily determined,

then any of the methods summarized in the recent paper “Burst

Measurement s in the Frequency Domain ” by Cochran et al2 , may be used

to generate a spectra] pattern. However , the transient waveforms are

1
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usually so far down into the noise that their initial epoch and duration are
not readily discernible. Moreover , one is often faced with multipath
problems and multiple arrival s of the transient .

To illustrate these problems. consider an example from the seismic area.
Figure 1 presents a record of approximately four minutes of the output of
a single seismometer . To a trained eye, the t race does contain a seismic

- .  
event which happens to be a moderately strong earthquake. The initial
epoch of this seismic transient is only approximately di scernible and its
duration is obscurred by mult iple arrivals. There are many other seismic
event s of Interest which are even much further down into the noise and even
their occurrence is not di scernible from a single trace.

L 
~~~~

Figure 1 SEISMOGRAM CONTAINING EARTHQUAKE EVENT

j All of the methods of Cochran et al , 2 as presented fail when the transient’s

epoch and duration are not known. With the duration of the transient un-

known , one may conceivably choose some upper bound Tm~~ 
as the duration

- of any transient of interest and then segment one s data into intervals of

length Tmax and apply any one of the techniques of relet ence 2 to each data

segment .

~ 1.
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-- This is not satisfactory, in that this arbitrary segmentation of the dat a
may cut some occurrences in half and thu s distort and/or lose the true

- - spectral pattern. Next . one may appl y the methods of reference 2 to
overlapping t ime intervals of the data but this leads to excessive equip-
ment requirements in he case of analogue signals and excessive compu-
tational requirements in the case of sampled data.

- 
As an alternative, this paper presents a technique which has been im-
plemented upon a digital computer and which provides a time- varying
spectral estimate. Briefly, the program may be described as a digital

• - 
equivalent of a constant Q comb filter bank wherein one can vary the Ire-
quency range covered and the frequency resolution (i. e., the Q). This
program has been found to be most effective against transients in that
it is not tied to a fixed interval or initial epoch. Moreover , from re-
suits to be developed below , the program does not require the detectors
and integrators (low-pass filters) usually associated with filter banks (cf.

- Figure 2 of Reference 2) and hence does not require the additional response

i .  time which degrades transient analysis. A complete description of the
program is, however , postponed until after the algorithm it uses has been
motivated and mathematically justified. This is not because of the corn-

plexity of the algorithm but just the opposite, in that. its simplicity is best

• appreciated only after having gone through its motivation.

• Thus , in the next section begins a sequence of definitions. results and
related discussions most of which are well known and well worn. Some

I ~ are hopefull y new , but if not , their collection here may be ju sti fied in
that they represent the pat h down which this aut hor~s thinking has evolved.

I’ . The end result being the computer program which has been found to be a
very eft ective tool in many ar eas of application.

I T
3
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II. THE PERIODOGRAM

Given a sample of continuous time data X(t) of duration 1’, the classical
Schuster periodogram (or sample spectral density function) is defined by

‘T (w) = 

T 

X(t ) eJ Wt dt 

2 

(2 .1)

Similarly, for sampled data where the sample consists of N values X~
equally spaced in time , one uses

N 2

~~~(w) = X~ e~~~ (2 .2)

In either case , if one chooses a discrete set of frequencies, say

= 
2ir k or “k = 

27r k (2 .3)

and expands the complex exponential , one finds, for example, that

‘T ~~~ 
= 

~~ 

{ T 

X(t) cos ( 2 ~~k t )  dt 

2 

+

(2. 4)
T 

X (t) sin ( 2 7r k t )  dt 

~2 }
I.

4
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from which one can recognize that

‘T (wk) = T (a~ + b~) (2. 5)

where the ak and bk are the usual Fourier coefficients. Thus it is quite
natural to expect that when the data consists of a truly periodic signal
well above the noise , as is often the case for steady-state phenomena,
the periodogram provides a completely effective analytical tool.

When one is interested in X (t) as a stochastic process, one naturally turns
to consideration of the sample auto-covariance function as a vehicle for
spectral estimation since theoretically th° spectral density P(w) is nothing
more than the cosine transform of the auto-correlation function of the pro-

cess. Specifically for discrete-time data, one introduces the sample auto-

covariance sequence.

N-i.’

C = —  X X (2 . 6)
p N n n+v

from which it follows that

1N ~~~ 
= C0 ÷ 2 C~ cos (nw k) (2. 7)

The validity of (2. 7) is a direct consequence of algebraic identities and is
independent of any assumptions about the nature of the process X. This

fact is often lost by some people to the extent that they will produce two
different computer programs. The first program employing the direct

1. approach (2 .. 2) to be used on deterministic data and a second program using

1.
1
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(2. 6) and (2 . 7) to be used upon random or noisy data. The truth of the
matter is, given N data samples X~, both programs (at best) can give
N independent values of the sample spectral density ‘N (W k) and these
estimated values will be the same outside of minor variations introduced
by different rounding errors in the two programs.

However , as is well known, when one desires a random process as the
underlying model , the periodogram has its problems. It is true that
the periodogram is an asymptotically unbiased estimate of the true
spectral density function P(w), i. e.,

Lim E 
~ 

IT (w) . . . ~~~~~ . P (w) . (2 .8)
T-. oO

The difficulty with the periodogram is that when used against a random
process , it is not a consistent estimator in that

Lim Var 
{‘T (w)} ~~ P2 (w).  (2. 9)

This lack of consistency is reflected in the high degree of variability
between the spectral estimates from successive samples of the same
noise process.

k
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III. THE SMOOTHED PERIODOGRAM

In 1946, Daniell3 suggested how the per iodogram could be made into a
consistent estimator of the spectral density. His solution was in effect
to average the periodogram over neighboring frequencies. Since then ,

there has evolved the general concept of smoothing the periodogram with
some spectral window WT ~~~

The smoothed periodogram is given by the convolution ,

~~~~~~~ f WT (w -A) ‘T (A) dx , (3. 1)

of the raw periodogram with the spectral window.

In the last 20 years, a multitude of smoothing windows have made their
appearance. Some of the more popular ones are associated with the names
Bartlett , Hamming, Hanning, Parzen , etc. There is still a good deal of
controversy over the choice of any specific window to insure an optimal es-

I timate , let alone any initial agreement over a criterion of optimality. This
paper does not hope to explore this facet of the problem (the interested rea-
der may consult references 4-9) but only to make the point that , generally,
some smoothing is required when the periodogram is used against a random
process.

The mechaniz ation of (3. 1) for discrete-time data is often quite simple and
clearly illustrates Daniell’s original suggestion of averaging the periodogram
over neighboring values. A particular case being the discrete-time Hanning

H smoothed periodogram whic h is given by

7
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(9~

) 
~ 

1N (W k~1) + 
~ ‘N ~ ‘k~ 

+ 
~ ‘N ~ ‘K+1~ 

(3.2)

Over the years , this author has found this smoothing algorithm to be as ef-

fective as any for run-of-the-mill problems. Its acceptance by this autho r

being its simplicity, especiall y for implementation on a binary computer.

The smoothed periodogram is also a reasonable choice as an estimator of

the spectral density function of noise-free transient waveforms. This is

because the smoothing process tends to remove round-off and discretiza-

tion errors introduced by the computation and yet does not degrade the es-

timate since the theoretical spectrum is continuou s and not subject to sharp

jumps or spikes. As an example , Figure 2 presents the smoothed periodo-

gram estimate of the transfer gain characteristic H (jw)~ 
2 derived from

the sampled impulse response of the system ,
2

H(s) = 2 
W 

2 
(3.3)

s

where

H = 6ir , = 0.05 , At = 0. 005. (3.4)

Figure 3 presents the Hanning smoothed periodogram for the complete four-

minute seismogram of Figure 1. The earthquake event is indicated by the

double spike of energy about 1.0 Hz and by the single spike at 2. 0 Hz. The

major portion of the energy centered about 0. 2 Hz is due to the micro- seis-

mic noise. Additional discussion is postponed until Section IX. Specific

details of the program , which were used to determine the estimates of Fig-

ures 2 and 3, may be found in reference 10.

8
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W. THE FORCED HAR MONIC OSCILLATOR

A. The Continuous-Time Case

Consider the forced harmonic oscillator given in state-vector form by

0 Wk 
x1k (t)

~ 
0

= Ak xk (t) + b u(t) = I + u(t). (4 . 1)
0 . x2k (t)J L 1J

The fu ndamental matrix for this system is readily found to be

Akt cos (w kt) -sin (wkt) -

= e = (4. 2)
- . _sin (wkt) cos (~ kt)_

and the general solution of (4. 1) for Xk (0) 0 is given by

rT A (T-t) A T  ,-T 
. - -

~~ (T) 
=J 

e k b u(t)dt = e k cos (w~t) sin (wkt) 
u(t)dt (4. 3)

0 0 :sin (wkt) C05 (w kt) ~.1_

Now consider the norm of the system (4. 1) or more specifically , the quantity

1 1 2
H ~~~

‘ 
~~~

A T
By inspection of (4 .2), one can see that e k is an orthogonal matrix and

A T
is thus norm-preserving (i. e., e k is a pure rotation). Hence , from (4. 3)

one has T
2 f u(t) sin (w t) cit

1 k
T :- k ~ ~

‘ 
- T T

u(t) cos (w kt) dt

Li- _ _ _ _  
_ _ _ _  
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or ,
~ ~~~(T) I ! 2 

= 
1 ~

1

T 
u(t) cos (wkt) dt 

2 ~~T 
u(t) sin (w k

t) 4 (4 4)

A comparison of (4. 4) with (2.4) now yields a principal result for this paper ,

namely,

“ 2

~ 
X~ (T) = Lr (wk) (4. 5)

which shows that the classical per iodogram for a discrete set of fr equencies

can be determined by driving a set of undamped harmonic os cillators (initially

quiescent) with the input data sample and then measuring times the square

of the norms of the oscillator ’s state-vector.

B. The Discrete-Time Case

• . Rather than star t from a difference equation, this paper will first derive it

from the continuous time case in order to motivate the results of this section

plus other results below. Thus, returning to an equivalent form of (4. 3) for

the continuous-time case, one can write

(T A t
• 

~k (T) = J e k b u (T-t)dt . (4. 6)

Now introduce the usual simple minded discrete-time approximation

j  (t — n A t , T -~N~ t , u(t) ~ u(n), etc.),

11
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F U

I ~~~

i ‘Jk~~~ 
= B~ bu(N-n)  (4. 7a)

where

• Ak~ t
Bk = e (4.7b)

From (4. 7a) , one can write
N

• 

. . .  

xk
(N + 1) = ~ t B~ b u(N + 1 - n)

- 

‘ii~0

N
- 

= ~ t ‘ B~ b u(N + 1 - n) + ~ t b u(N + 1)

= ~ t / B~~’ b u(N - A ) ÷ i ~t b u ( N + 1)

L = Bk ~ t 
~~~ 

B~ b u(N - A) + ~ t b u(N + 1)

‘l
~k ( N + l ) = Bk~~k

(N) + At b u(N + l) (4.8a)

EquatIon (4. Ba) which can be written in greater detail as

Xlk (N + 1) cos (w k~
t) -sin (wk~

t) 
~ 1k~~ ~~

= + At u ( N + 1) (4.8b)

X2k (N + 1) sin (wk At) cos (w k~
t) X2k(N) 1

yields an algorithm for discrete filters of a comb tilter program .

- 
- 

12



Now returning to the equivalence of the discrete-time forced harmonic
• oscillator (4.8) and the discrete-time periodogram, consider again for

27rk 2~kWk T ~ NAt ’

2irk . 2irk
Ak~ t cos (—N_ ) -sln (-.W )

B~, = e  = (4.9)
2irk 2~k j

- -  sln (-_N_) cos (—~ -) I ,

By induction, one can readily show that

cos ( 2lTkfl ) -sin ( 2lTkfl )
- 

B’~ (4. 10)
- 

k 
. 2irkn 2irknsin ~ N cos ~ N

From (4. 9) and (4. 10), it follows that

B ’ = 
~ k’ B~ = I , ~~~~~ = B;n = B~ (4.11)

and
[ cOs ( 2

~~~
i ) sin ( 2

~~~ ) I
H =

~~ I (4.12)
- - L_smn 2r cos ( 2

~~
n1
)]

13
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• 1

~ 
-I 
~• - SInce (4. 7a) can also be written as

x~(N) = At  

~~~ 
~~~~ b u(n) (4.13)

= At b u(n)

N . 2irkn -,
~~~~~~~ r sin ( )

x1 (N) = ~ t \ I I u(n) (4.14)
I ,2irkn Jn=1 L COS~~~~ N

one has again the result

4 lk~ 11
2 

= u(n) sin (2r) 2 
u(n)cos (2~kfl )~2}

1 ’ • = IN (!.~~ ) (4.15)

1.
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- V. DISCUSSION

At this point let us re-examine the total problem of spectral estimation.

~ 1. This may be summar ized by the following chart:

- Process Spectrum Estimator

Periodic Discrete Perlodogram
• - Stochastic Continuous Smoothed Periodogram

Transient Continuous Smoothed Periodogram

- For most real-world problems, however, one does not have isolated proces-
ses, but usually a combination, such as periodic and transient waveforms in

- a noise background. Yet, one Is interested In determining a single estimator
to work against the combined process. From what has been offered to date,

- one is reasonably ju stified in using a smoothed perlodogram in all cases, ar~i
realizing that discrete spectral lines are spread somewhat by the estimator.
The smoothed periodogram Is a distinct possibility for the case of Interest

I .  in this paper, namely for transient In a noise background. So far , this paper
- has offered three computation techniques for determining the periodogram

• - which may be summarized briefly as:

T-1. The direct method via (2. 2).

I T-2. The correlation method via (2.6) and (2. 7).

T-3. The bank of forced harmonic oscillators given by
(4. 8) with (4. 15).

15 
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Some notable difficulties with the perlodogram for the problem at hand are,
however, summarized as follows:

• Dl. The per todogram must be smoothed In order to obtain a con-
tinuous spectra for transients and a consistent estimator against
noise.

D2. The periodogram Is tied to a fixed time Interval hence, both the
- 

epoch and duration of any transient must be known.

- 
D3. The perlodogram requires overlapping estimate to be made upon

evolutionary processes in order to determine the time-varying
spectrum.

- 
The next section presents a variation on technique T-3 above, which meets
all the stated objectives to the perlodogram and, moreover , the new techni-

- 
que also circumvents a maj or difficulty of other techniques as offered by
Cochran et al, 2 namely,

D4. Other techniques require detection and Integration with subsequent
loss In response time crucial to transient analysis.

I
1. ~

16
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VI. THE FORCED DAMPED HAR MONIC OSCILLATOR

This section presents the modifications resulting from the Introduction of
some damping Into the harmonic oscillators of Section IV and then goes on
to consider how this modification to the technique T-3 yields a very effi-

- 
• d ent algorithm for spectral estimation free of all the objectIons raised in

the previous section.

In order to add some damping to the formulation for the forced harmonic

L oscillator of Section IV, one can make the foflow ing change In th~ tr ansi-
tion •~~~: ~.rlx of the system.

10 
~~k1 r° ~~k 1

A = (  I ~ ~~~~~ 1 (6.1)
0 J Lw k - 

~~ki

Another choice and the one used by the author Is:
.

, - -

~~~~~~~
,

-a -
~~~~ r-Cw

_____ ~~‘k l i- C
Ak = 

L 
w~ ~a ]  

= 
Lw~~1-~ -C~~ 

(6.2)

For this particular choice, the new fundamental matrix for the k-th filter
Is readily found to be

= e~~(
t 

= 
~~ cos (wet) -e~~ sin (w0t) 

(6.3)
e~~

t sin (w0t) e
_
~ t cos (w 0t)

where as usual (~ is called the damping ratio)

a = 
~~‘k and = ‘~‘k \ f 1  (6. 4)

- 

— 
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The discrete-time algorithm is the same as (4. 8a),

xk (n+l) = Bk xk (n) + Atbu(n+l) ,  (6. 5)

except now the matrix Bk is derived from (6. 3) with again

A ,At
= e k (6.6)

As an estimator of the spectral density function , this author proposes that
one employ a bank of filters (damped oscillators) covering the frequency
range of interest and using the algorithm (6. 5). By analogy with the un-
damped case, the square of the norms of the recursion algorithm’s state
vector is again taken as a spectral measure (see Figure 4).

- 

A 1 
Nor m _____ 2 P(~~)

® 
_ _ _  

Nor
mj ‘II~~~

2 11 2 P(~~)

u(t) 
____ Norm 

~ ~II~kIl 2 
_

A

~~~ 

Norm j ‘I I 2~iI 2

Figure 4 DIGITA L COMB FILTER BANK ’

18
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Now consider how this proposed estimator meets the objections raised in
the previous section. First , as is well known, the introduction of damp-
Ing detunes the oscillator. This detuning of the harmonic oscillator has
the effect that it widens the bandwidth of the system when considered as
a bandpass filter. But this is just the desired effect for the smoothing of
the periodogram (Dl).

Secondly, the filter algorithms can be run “open-loop, ” since the damping
automatically thr ows away the oldest past input . Moreover , because of its
recursive nature, the algorithm is quite efficient numerically. This non-
reset capability, coupled with its high numerical efficiency, allows one to

• start the algorithms well ahead of the initial epoch of any transient. The
filter may then be stepped for any desired duration and numerous over-
lapping spectral estimates may be obtained at will by subsequently calcula-
ting the norms of the algorithms state vectors. Hence the second and third
objection (D2 and D3) are readily met. Finally, the use of the norms as a

spectral measure circumvents the loss of response time due to the usual

- - detection and integration of other techniques (D4).

ii !H

19
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VII. ADDITIONAL ALGORITHMS FOR THE COMPUTER PR OGRAM

A consideration of the input/output transfer functions for the two components
of the damped harmonic oscillator’s state-vector shows them to be a linear
combination of the following:

2w SW
H1(s) = 2 2 112(s) = 2 (7.1)

- - 
s + 2Cw k s + w k S + 2CW k S + W k

From Figure 2 , one can see that the first of these H1(s) has significant
gain at the low end of the spectrum. This response to d-c and other low

frequencies by the periodogram is well known and is usually circumvented

in other techniques by var ious mean-removal and detrending operations pr ior

to computation of the periodogram. As an alternat ive to a detrencling opera-

tion, the present program differentiates the input time series before applica-

tion to the various filter algorithms. For discrete-time data, this is nothing

mor e than using the first differences

u(n+l) = X - x (7.2)

L n+l n

to drive the filter algorithms (6. 5).

With the introduction of damping into the second order algorithms, one is

restricted to a finite bandwidth ~ f given by the usual relation’2

w f 1
( . )

Also, for many applications, a log frequency scale for the estimated spectrum

Is desired. This subsequently dictated that the bank of filters be derived on a

20
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basis of constant quality Q. The usual procedure Is to overlap the various

• - contiguous filters at their -3dB points as in Figure 5. For any given Q or
equivalently for any given damping ratio ~~, the discrete set of center fre-
quencies for the filter bank are r eadily derived from the algorithm

- f1 = (1+~) 
~base

• 
- (7 .4)

_ 1+C

— 3dF~

FIgure 5 TRANSFER GAIN CHARACTERISTIC S
OF COMB FILTER BANK



For a damping ratio of ~ = 0. 115 and a base frequency of 2. 5 Hz , this algo-
rithm produces a program which makes the computer look like a standard
1/3-octave analyzer with the set of center frequencies as given in Table 1.

- 
Table 1

- 
2. 79 28. 1 283
3.51 35.4 357
4. 43 44.6 449

• 

- - 
5. 58 56. 2 566
7. 02 70.8 713

- 
8.85 89.2 898

11. 15 112.3 1132
14. 05 141.5 1426
17. 70 178.3 1797
22 .30 224.7 2264

Although the proposed estimation scheme does not requir e any post-detection

- 
smoothing, some tim e smoothing of the state-vector norms has been found

• I beneficial, especially for display purposes . To date, two modes of smooth-

- 
ing have been implemented. The first smoothes (in time) each output vector
norm with a low-pass filter whose time constant is fixed, and the same for
all fr equency bands. The second mode smoothes each output norm by a low-
pass filter whose time constant is some fixed proportion of the respect ive
filter’s time constant. In either the fixed or proportionally smoothed case,
the low-pass filter algorithm is given by

~~~~~~ 
= bk ~~~~ 

+ ak ~
xk(n+1) 

2, (7.5)

• 22 •
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where in the fixed case,

ak = a0At , bk = exp (-o At) ; (7.6a)

— and in the proportional case

= /3 2~ fkN~t ~t , bk = exp (_a
k) (7. 6b)

-

. 

for som e choice of the parameter /3. (The fixed point algorithm of the pro-
gram requires that i3N~~ ~ 0. 3. )

I-

I f
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VIP. THE COMPUTER PROGRAM

The algorithms proposed in this paper have been implemented upon a
• Honeywell, Computer Control Division ’s DDP-24 general purpose com-

puter . The skeleton of the computer program is coded in FORTRAN ,
but all the plotting and repetitive calculations are coded as machine
language subroutines for greater speed and efficiency. Figure 6 pre-
sents a flow chart of the complete program. The program is presently
configured to accept the input data as records of 500 samples each from
magnetic tape. The input control parameters are:

1. NRCD: The number of input data records to be processed.
2. NDT: The plot (and print) increment.
3. DT: The basic time increment At of the data.
4. ZETA : The damping ratio ~~~.

5. BE TA: The output norm smoothing ratio /3 .

The present program is also configured to cover a three decade scale in
frequency from 

~base to the Nyquist (or folding) frequency 
~N~

• Since

1 8 1Ny = 2~~t

the program can thus determine via algorithm (7 . 4) with

~base = (0. 001) 1Ny 
(8. 2)

the number of the filters and their proper spacing so as to cover the specified

frequency range. With a damping ratio of ~ = 0. 115 (Q 4. 3), one obtains

thirty 1/3-octave filter as denoted in Section VIL For ~ = 0. 03846, ninety

1/9-octave filters are obtained.
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Except for the mode of output display, the program Is quite standard.
Fortunately, the Radiation Center has a CRT display with a 512 x 512
x-y resolution interfaced with the DDP-24. In aadition , the z-a.xis or
intensity of the display has 16 levels available under program control.
With this capability, the computer program is configured to display the

evolution of a time-varying spectrum. Starting from the top of the dis-

play, each line presents an instantaneous measure of the energy contained
in each of the algorithms comprising the filter bank, (increasing frequency

left to right). As time evolves (and more data is processed) the horizontal

trace is moved down the face of the CRT to provide a time axis to the

energy density spectrum (see the figures in the next section). The time

scale of the display is controlled by the parameter NDT which is the

multiple of the basic sample spacing At (DT) used as a display increment;

500 lines comprising one frame. The intensity of the display for any

given filter (frequency band) is actually the logarithm (base 2) of the

filter ’s energy and hence each grey scale of the display corresponds to

a 3 dB difference in energy.

j j 
- 

The entire evolution of the display (and thus the spectrum) is recorded by

a camera whose shutter is left open. After one frame has been generated,.

the computer pauses to allow the operator to remove and reload the camera
- • 

with a new Polaroid film rack. Restarting the computer provides for con-

tinued evolution of the data’s spectrum.
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JX. SOME RESULTS

The merits of the comb filter technique and the resulting computer pro-
gram are amply demonstrated by the results presented in this section.
The only input data sample considered is the seismogram of Figure 1.
The data sample consisted of sampled values (at 20 samples per second)
of approximately four minutes of the output of a single seismometer. The
estimated 1/9-octave time varying spectrum for the entire data sample by
the comb filter program is presented on the left side of Figure 7. On the
right side of Figure 7 is an expanded (in time) version of the 1/9 octave
spectrum of the central portion of the seismogram which contains an
earthquake. Two definite arrivals of the event which spectrally is a
double line about 1.0 Hz plus some 2. 0 Hz energy can clearly be seen.
Also, the after effect has considerable spectral detail. All of the time-
varying detail is lost by a conventional periodogram analysis. In fact, if
all the energy contained in each frequency band could be projected into one

• time plane, one would recover the periodogram estimate of the total sample
as given in Figure 3.

• 

- Figure 8 duplicates the signature on the right in Figure 7 plus presenting
an enhanced version obtained by simply restricting the CRT intensity to a
cruder quantification. In both Figure 7 and 8, no post-detection (post-
norm) smoothing has been applied. It is this minimal response time of

the computer program which allows all the time-varying spectral detail to

be seen.

Figures 9 and 10 present signatures comparable to those of Figure 7,
except in Figure 9, a uniform (across frequency) post-detection smooth-

ing has been applied, and in Figure 10, the post-detection smoothing

has been proportional with frequency. In both cases the post-detection
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smoothing tends to degrade the fine time structure of the spectrum.
However , for some other applications of the program wherein the
transients had narrow band signatures of longer duration, the post-
detection smoothing helped to mitigate the effect of the background
noise.

::
I

L
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X. STJMMARY AND CONCLUSION S

This paper has offered an alternative technique for the computation of the
classical per iodogram as the square of the norms of the state-vectors of
a set of undamped harmonic oscillators forced by the input data sample.
Then after consideration of some of the problems with the periodogram,
the paper has shown how the introduction of some damping into the pre-
vious formulation produces extremely efficient algorithms for the deter-
m ination of time-varying spectra.

These algorithms have been implemented into a digital computer program
which has subsequently been used to determine the spectral signature of
transient waveforms embedded in noise from many areas of application.
The high numerical efficiency of the computer program , plus the high
degree of detail in the resulting spectra implies that the technique pre-
sented In this paper should be considered In any future spectral estima-
tion program.

J 1 •
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