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Application of Satellite Gradiometry Measurements to Local Geoid Determination

J. Krynsld, K. Schwarz *

1. Introduction

The problem of satellite ~ ‘adionietry up to this time has been usually

examined in a global aspect. With such an approach it is convenient to use

interference potential , presented as a developm ent into a series of spherical

harmonics. Keeping in mind the decrease of the interaction of indi vidual har-

monica coefficients of the potential together with its absence from the Earth ’s

surface and the sensitivity of the measurement device , measurements of a model

of the Earth’s field of gravitation can be gauged which can be obtained with a

specifi c measuring accuracy. A designated model of a field of gravitation was

taken to show the characteristic development into a series of spherical harmonics

across the upper borders of the degree and order. In this case it is necessary to

establish a global and uniform observational coverage.

Simulated tests conducted by Chovitz (2), (3) conclud e that at a nominal

measuring accuracy of ~ 0. 01 E (E~ tv8s) and a satellite altitude of 300 km the

coefficients of the harmonics of the gravitational potential can be defined up to

the degree and order of 70 , with the limitation that serious complications will

accompany the determination of a complete collection of harmonic coefficients

.1
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The tests recently conducted by Rurnmel in which the author engages a good deal

of attention to “downward continuation” in relation to satellite gradiometry lead

to the conclusion that , based on the analysis of spectral correlation, it is pos-

sible to use satellite gradionietry in local aspect. Reed (11) devoted his wo rk

to the local use of satellite gradiometry. The autho r defined average anomalies

for areas 20 x 20 on the basis of simulated gradiometric tests. He showed that

for this purpose it is sufficient to use limited observational material and that the

results obt ained accurately full the model of potential to the degree and order of

90.

The subject of this pape r is the testing of the possibility of using satellite

gradiometry to define the local geoid course. Taking advantage of the fact th at

much attention is given in the bibliography to the analysis of spectrum frequency

of representatives of interference potential , this paper is limited to the testing of

gravitational fields. From the viewpoint of practical applications it is of use to

know that in local applications global cove ring by observations on satellite altitude

is not required. Moreover, very modest observational material can be used.

Besides this, there is no need to define the influence of individual gradients;

thei r combined influence can be determined and the sum reaction of the combina-

tion of the heterogeneous data can be tested. Satellite gradiometry can be used

not only for areas covered by land observations but also for areas completely

devoid of them. n this instance the altitude of a geoid calculated from one of the

2 
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global solutions will be considered together with gradiometric measurements.

In this way a geoid can be corrected locally until a satisfactory amount of info r-

mation can be achieved to obtain a better global solution.

Instrumental problems were not a subject for discussion in this paper. A

description of the instruments and their operating principles can be learned by

studying numero u( publications, e. g., (1), (4), (5), (16). So far , however, it is

difficult to foretell what accuracy of gradiometric testing can be achieved from

the SSZ layer. Hence , for the purpose of a~~ iding the draw ing of too optimistic

conclusions, various measuring accuracies are suggested in the paper.

The collocation method was shown to be unusually useful to solve the

problem posed. The m ethod m akes it possible to estimate the expected accuracy

on the basis of covariance function and the accuracy of observational data. Using

collocation it is also possible in an elegant and efficient manne r, to handle

heterogeneous data together , such as: geoid undulation, gravimetric anomalies,

and second orde r gradients.

2. Adjustment Process Plan

Assuming that observations are not laden with systematic errors a simple

calculative model is used

_ _ _ _ _ _  ~~~~~~~~~~~~



: — C~~~*x. (I)

where —C.. C,,+C,~. (2)

The s vector , often called the “signal, ” contains elements which we plan to

determine in the course of the calculations. In the case described the y will be

geoid undulations and vector s will have only one component. Vector x Is the

observation vector. Its components will be gradiometric measurements obtained

fro m the satellite layer and on-ground observations of gravimetric anom alies and

geoid undulation. The connection between the s signals and x observations is

expressed by the covariance matrix C5,~ and C .  To distinguish the covari ance

from among the various quantities the proper indexes are used. Thus through

C~~ and ~~~ the prope r autocovariant matrix of the x observation is denoted and

of measurement errors n , while C8,~ denotes the covariation matrix between the

a signal and x observations. Covariance matrixes contain all information on the

structure of the gravitational field and on the accuracies of observation, hence

the definition of the proper covariance function becomes an integral part of the

task and as such, is subject to separate discussion.

The covariance matrix of errors E85 represents the accuracy of designated

altitudes

(3)

4
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Using pattern (3) the accuracy of determination of a local geoid course was defined

fro m a different measurement accuracy of satelli~’e gradiometry. It should be

noted that the results obtained in this m anner have a fully overall pattern. They

represent the limitless number of possible examples in practice contrary to the

results of simulated testing, which characterize only the properties of singular

examples. On the other hand , however, it proved the support of similar tests

since with a proper selection of examples the results of simulated tests vary very

insignificantly from the estimated accuracy using the method described.

3. Selection of Covariance Function
J

The covariance function , as already mentioned , Include, information on the

stru cture of the gravitational field. It must have the following ppoperties :

- - representation of the statistical character of the gravitational field;

- - a simple analytical fo rm guaranteeing simplicity in calculating

derivatives;

- - isotropy and homogeneity (stability with respect to two linear

transformations: rotation and displacement).

Moritz(9) proved that covariance functions can be described using three basic

parameters. These parameters are related to the overall rotation-symetrical

form and harmonic covari ance function

A(P,Q) — A ’ki(~~~~ )’~ ’Pi(c0~~). (4)

5
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where P and Q are two points in a space having geocentric radii r,and r
R. V is

the angle between the radii r~~and r~~ Rb is the right sphere radius usually called

Bjerhammar’s sphere, submerged completely in the middle in the terrestrial

globe having the radius Rx  637 1 km PA1
(cos p )  are the Legendre polynomials,

while k,~~desi~ nates certain coefficients having positive values. By defining k11
coefficients in a different way various models of covariance functions can be ob-

tained.

Known to be fundamental in the composition of parameters of the covariance

function C(s) are:

C0 - - variance

- - correlated distance of covariance function

X - - curvature parameter

The geometric interpretation of these parameters has been presented in Figu re 1.

The C0 variance is the value of the covariance function C(5) for the operand s~~ 0

C0 C(O). (5)

The correlated distanc~~~ \ answers such a value for the operand of the covar-

iance function C(s), for which there is the equation

(6)

The curvature pararn eter5~ is a dimensionless quantity. It can be expressed as a

function of the curvature of the ,.x covariance angle at the point s — 0  by the model:

(7)
Co

6 
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C(~

~ Covariance function
Co~ 

______________________________

Fig. 1. Geometric interpretation of fundamental parameters
of covariance function

The collection of parameters C0, ~ and characterizes the properties of

covariance functions for small and medium distances. Thi s does not signif y, how-

ever , th at two covariance functions whose fundamental parameters are correspond-

ingly equal are equivalent. A similarity in properties in relation to interpolation

will calibrate such functions , i. e .,  errors in interpolation in both instances will

be about the same. The C0 variance defines scales of interpolatior. errors , the

curvature parameter X characterizes the properties of the covariance function in

the case of small distances, but the correlated distance ~ is a measure of aver-

age distance and for such distances it describes the prope rties of covariance

functions. Hence , this results in the fact that the shape of the covariance angle for

the s operand s exceeding the quantity 1. 5 ~ does not play a more essential role ,

however the actual selection of the ,X curvature parameter is very important since

its size has considerable significance in the interpolation on small a distances.

For this reason a description of the covariance function C(5) using only the two

parameters C0 and t is not satisfactory and can lead to erroneous results. It

7
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appears that the variance c0 of the horizontal gradient of the gravimetric anomaly

is more convenient for statistical estimation rather than the curvature parameter

Changes in the quantity G0 depending on the model chosen are very insignifi-

cant and do not exceed 3%. The quantity G0, which is treated in this paper as the

third basic parameter of the covari ance function in place of the param eter of the
X

curvature , is expressed as a function of.~~in the following pattern:

C0 = 
0 (8)

In practical applications it is usually accepted that C0 signifies variances of

gravimetric anomaly.

The three basic parameters of the covariance function are defined statis-

tically in support of the observational material. Accessible observational material

is still far from ideal . It does however , allow for the elimination of erroneous

assumptions in relation to the param eters mentioned.

As a rule , we assume th at we dispose of the field of reference of the degree

and order L determined from satellite observations, hence the re is no need to

execute a global estimate of the three basic parameters, Removing the influence of

the first L coefficients in equation (4) we get a covari ance function having a re-

gional character in the form

K(P,Q) = A ~~‘ k,s1
~ ’P,(cos~.), (9)

I— L+l

w h e r eS=4~- an d R = r p =r g.

B

_ _ _  
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This draws to attention the fact th at the effect of subtracting a certain

number of coefficient s of a lower order from a representation of a covariance

function is absolutely not equivalent to the acceptance of another type of covariance

function. In the case of a geoid undulation , variance and correlated distance under-

go considerable changes while for gradients of the second order the covariance

function is nearly constant, but for the gravimetric anomaly very mild changes can

be observed. As a result of a penetrating study of published material , the following

numerical values of the parameters of the regional covariance function have been

chosen:
= 1600 mgal2 , = 75 km . G, = 300 E2 .

An adjustment of the covariance function (9) to the above parameters

requires a definition of the quantity of A , s, and L. Further on we can effect a

selection of the kX coefficient fro m among a series of known models . Among the

parameters of both collections only C0 and A are linearly dependent. The remain-

ing parameters can generally be obtained solely by way of sequential approxi rn a-

tions. One of the methods of moving one collection of parameters into another was

described by Schwarz (14) .

For the purpose of collecting a covariance function suitable for the problem

posed a series of experiments on various models was conducted. The best model

appeared to be the logarythmic type with a ~ 1
coefficient , expressed by the following :

— .__ _ .±. ---
(I—1)(I—2)(I+B) (10)

9 
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The numerical value of constant B appearing in pattern (10) was drawn fo rm

Tscherning and Rappa ’s report (18). It was not changed along with changes in

the size of A and s, since in the case discussed strict adjustment to empi rical

variances of lower degrees does not play an essential role. Considerably more

essential is a good appro ximation of the G0 parameter , whose size remains in a

very strong connection with the sizes of gradients of the second order. Finally,

the following numerical quantities have been accepted f I r  A , s, and L:

A~ 607. 57 mgal2, s= 0. 998444 , L . 7 ,

Mh ere A agrees with the definition given by Tschernir ig and ,Rapp a (1 8) and presents

a constant value for the covariance function of a gravimetric anomaly. The accu-

racy of a statistical estimate of these quantities fall within the limits of units

of suitable values.

Figure 2 shows three covariance functions founded on the chosen model for

altitude h~~0 km and h=300 km. The first of them , designated K (
~~~) shows a

covariance function of a geoid undulation , the second -- C (~~~~) -- of gravimetri c

anomalies , while the third G (
~i of the radial gradients of the ~ ~c )nd order. It

must be noted that for every case a different scale for the 1~ 
axis has been accepted

and that the K ( p )  function differs from the one used in equation (9) with a con-

stant coefficient.

The preliminary analysis of Figure 2 already leads to several interesting

conclusions. The geoid undulation variance obtained K(O)~ l OOm 2 seems to be
10 
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Fig. 2. Course of covariance function for geoid undulation K ( P1, gravi-
~ metri c anomaly C (

~~
) and gradient of the second order G (f l

relatively large. Its size , however , can be explained by the fact that a small num-

ber of variances of the lowe r orders have been removed. The reason for not using

a global solution of a higher order for the reference model of the gravitational field

is the fact that only the harmonic coefficients of the lower orders are not mutually

11



correlated. Hence , removing the influence of harmonics of lower orders which

create reference fields , a significant correlation in the data is not moved in. The

correlated distance unde rgoes a decrease during passage fro m geoid undulation

through gravimetric anom alies to 9radients of the second order indicating growth

of localabi lity in successive collections of data. On the other hand , attenuation of

the angle pattern occurring with the altitude increase is strongest for gradiometri c

observations and in this case , the correlated distance undergoes the greatest

changes along with the growth of h. In compliance with expectances the corre-

lation between geoid undulations and gradient s of the second order ri ses together

with the altitude. This indicates that not only the absolute size of the signal plays

a role , but also the mutual connection between the observations of various types

have essential meaning.

4. Results

Test results will be published in a separate report by Krynski and Schwarz

(6), thus discussion is limited only to several of the most impor tant  problems ,

namely :

1. Distribution of observations and selection of gradient s,

2. Optimal satellite altitude ,

3. Effect of measurement errors,

4. Combination of gradiometric observations with gravimetric anomalies.

12
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In local applications usually it suffices to be limited to observations which are

inside a certain circle , in the center of which there is a designated point. Meas-

urements on the exterior of this circle (critical circle ) will have an insignificant

effect on the estimated size. Actually the defined radius of a critical circle is

nothing more than the correlated distance ~ characteristic for a given covariance

function answering a given collection of observations. Accuracy in determining a

given size depends on the distribution of observations and also on the quantity of

measured gradients in the points lying on the interior of the cri tical circle. The

size of the matrix , which is subject to inversion , is just proportional to the num-

ber of observations, thus befo re systematic analysis takes place finding an optimal

configuration becomes necessary. In our case this task was formulated in the

following way: In the system of co-ordinates (r , , ’, ~.) the point on the surface of

the Earth is given (h 0 kin), in which the geoid undulation N is known from one of

the global solutions with a mean error of~~ 3 m. In the same system gradiometric

observations are also given having accuracy of t 0. 01 E executed at an altitude of

h~~300 km over a deliberate point. It is necessary to find such a configuration of

observations and such a combination of gradients of the second order , which in an

optimal way contribute to the adjustment of the accuracy of the N designation while

keeping in mind a limited number of observations.

From the analysis of a series of the considered examples conclusions have

been drawn which ch aracterize the sought after optimal solutions. Gradiometri c

13
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observations should be distributed on a sphere symetrically as regards

projection on it of a designated point with the co-ordinates 
~~~~~
, ~~. .  They should be

uniform ly distributed in an area measuring about 50 x 50 , The distance between

points should equal about 10. However , the question of distance between obser-

vations appears to be less essential than their uniform distribution in a 50 x 50

area. It should be noted that the correlated distance of the covariance function

depends on the altitude and for that reason area sizes as well as the distance be-

tween obsci~v ati’~ns are also functions of the altitude.

Figure 3 illustrates results of the calculations on the basis of which

selection of the proper gradients of the second order can be performed. From the

combinations Trr, Trp and Tr2 equally good results are obtained as fro m use of

all five mutually independent gradients , however , only the gradients including

a radial derivative influence the solution. Such a result could be foreseen from

the discussion in Rummel’s pape r (12). A certain surprise, however , is the

appearance of such a considerable difference between the best solution and the

solution regarding Trr solely, In the following ca lculations the optimal configur-

ation of 17 points is used , in which Trr , Trq , and Tra are taken as observations.

The principle, which was accepted for applications with a global character ,

is that the orbit of a satellite should be reasonably near the Earth. Thus , reflect-

ing upon the optimal altitude of a satellite, on which gradiometric observations are

14
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Measurements of 50 x 50 area , from which
gradiometric data comes.

Figure 3. Accuracy to determine geoid undulation in support of observations
of various gradients of the second order.

made may appear to be unimpo rtant. From Figure 4a however , it appears that

the problem of satellite altitude demands special deliberation from the view-

point of local applications. Figure 4/~resents the average erro r m~,in determin-

ing geoid undulation depending on the satellite altitude h . The average error

reaches minimum at a heigh t of about 400 km and accuracy lessens equally in the

case of smaller as well as greater altitudes. Confi rm ation of the result obtained

was achieved by using several other covariance functions. It appears th at the

optimal altitude is dependent upon the choice L, i. e., on the degree and order of

the accepted reference field. This connection is exhibited in Figure 4b. A decrease

of optimal altitude contributes to the growth of L. What is more, it decreases the

mean error of the result together with a decrease of optimal altitude. Both pheno-

mena equal out, however, when L gro~a while the altitude remains constant. This

15 
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a) b) C)
m,,, /7
[ml ~~~~~~

1.8 40

100
—~ —-0. I

200 3~ 400 500 h(*m] 6 12 18 24 L 6 12 18 24 1

Figure 4a. Optimal satellite altitude for field of reference L:7.

Figure 4b. Dependence of optimal altitude on degree and order of field of

reference .

Figure 4c. Accuracy of definition of geoid undulation from observation at an
altitude of 300 km and at optimal altitude in function of degree and
order of field of reference.

can be proven from Figure 4c , where the curve designated hopt represents the

mean error answering the optimal alti t ude , while the curve designated h 300

represents the mean error answering the altitude h = 300 km for the field of

reference of the L degree and order. The point of intersection of both curves

defines the minimal L size, which should be used to elaborate the observations

made at 300 km altitude. This is a field of the 12th degree and order , while the

accuracy of geoid designation is estimated at less than one m eter.

16
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From the point of view of applications, the physical interpretation of these

results is interesting. As it is known , the harmonic coefficients of the lower

degrees and orders effect the most significant geoid deformation , and moreover,

contribute to define the geoid und ulation N. Using the field of reference of a low

degree and orde r we reduce considerably the geoid v ariations. The geoid vari ations

reduced in this manner have a ch aracteristic equally global as well as local. These

variations can be designated solely fro m measurements made in limited areas.

Since effects having a global character have the greatest influence on the solution,

it is preferable to use observations which represent the global effects well. This

is connected however with the tolerancing of certain losses of info rmation of local

origin. Such a situation occurs when we consider the gradiornetri c measurements

made in high orbits. Such measurements represent considerably better global

effects than the local ones and for that reason give better results using reference

fields of a low degree and order in comparison with such same observations made

in lower orbits. The situation undergoes a change when it takes advantage of a

field of reference of a higher degree and order. Then effects of a global character

are represented through a field of reference and In such an instance in order to

obtain a good solution regarding local influences obse rvations~ iould be used which

are made in a low orbit.

Similar conclusions can be reached by analizing the covariance functions

presented in Figure 2. Local gradiometric measurements at the altitude h 0 km

17



have in effect on the global definition of the geoid undulation N. This is obvious

if the differences in correlated distances of both covariance curves are weighed.

Two values of ,,J can come close together in a twofold manner. In the first in—

stance the larger number of harmoni c coefficients can be subtracted , thro ugh

which variance and the correlated distance of the geoid undulation N undergo a

considerable reduction. This , however , does not influence in a considerable

fashion the covariance functions of gradient s of the second order. In this way

covariance functions for N are obtained which have an outstanding local character.

In the second instance , on the other hand , we can remain with the original covar-

iánoe function for geoid undulation instead of deliberating gradiometric observa-

tions at various altitudes. The correlated distance of the covariance function for

gradients of the second order will rise together with the increase in altitude

during the time when the variance will decrease very quickly. This effect is

caused by smoothing the coefficients of the higher degrees and orders by the

expression ~~~ 1 in formula (9) . In this way high frequencies , which represent

local qualities are entirely attenuated while low frequencies undergo onl y partial

attenuation. This is reflected in the size of numerical variance on the satellite

altitude , which size represents chiefly the effect of the harmonic coefficients of

the lower orders. Together with a growth in size , the relative influence of low

frequencies increases, which play a principal role in the determination of geoid

undulation.

18
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A problem of practical significance is the choice of a proper field of

refe rence. For a proposed altitude of h 300 km the optimal field of reference

hovers within limits of from 12 to 15 in degree and order. Formula (3) can be

used only then when all coefficients in the field of reference are satisfactorily

well defined and when significant correlations do not appear among them. How-

ever , the models of gravitational field of the Earth known up to now from satellite

observations do not make good this type of supposition. In connection with the

above consideration of reciprocal correlations become necessary and for that

reason in such instances other formulae (e. g. ,  Rao (10) ) should be used in the

calculative process.

Anothe r approach to the problem which makes it possible to avoid compli-

cations caused by mutual  correlation of harmonic coefficients is to be limited cn ly

to that part of the model of the field in which the correlations are small through

omission , or to harmonics of a lower order. In this case, however , we meet with

a considerable increase of mean error . The above observation plays a particularly

essential role in this discussion. Owing to it , it was possible to avoid a series of

mistakes depending on the drawin g of too optimistic conclusions.

In the calculative process the limited model of reference fe field making

L 7 was used. Supported by Schwarz ’s tests (13) it must be deemed that the

establishment of mutual independences of harmonic coefficients in such a matched
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model does not influence the results.

a) b)

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ :: 
_____________________

0.5 cC IT~99~~ 50

Figure 5a. Effect of mean errors of grad iometric observations on accuracy
in defining geoid undulation.

Figure 5b. Role of gradiometri c observations in adjusting determination of
geoid undulation.

On the basis of Figure 5 we can make conclusions on the influence of

measurement errors on the accuracy of defining the undulation of a geoid N. Cal-

culations were made using the previously mentioned configuration of gradiometric

observations executed at optimal altitude of h~~ 400 kin , whose mean errors vacil-

late within limits of from ± 0. 01 E to ± 1. 0 E. The differences in the accuracy

of designation N take on rn eaningfull sizes if the observation errors are less than

a level of 2 0. 05 E , while in cases of observations laden with errors exceeding

± 0. 05 E a very slow increase of in N can be noticed , which even then , when mgg

. ~~O. I E does not exceed a limit of ~ 3 in. This phenomenon occurs also when

output accuracy of the geoid undulation which is determined on the basis of one of

20 
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th~ global solutions is much worse fro m the previously accepted ~~3 m.

Figure ~~~resents the influence of changes of output accuracy of the in1

geoid undulation , which wavers in a boundary of 0 in to ~~10 in, on the accuracy

of the N determination when gradiometri c observations are used. The curves

appearing in the figure answer two different fields of reference : L~~7 and L~~I.7

and the satellite altitudes h 300 km. As is easy to notice , the m ean error mN

undergoes essential changes only in instances of very small sizes of m1. For

M1 > 3 m the accuracy of determining the geoid undulation can be taken as a con-

stant size. Consideration of gradiometric observations during geoid testing gives

rather more calculable results when we do not dispose of a good model of gravi-

tational field. Then even gradiom etric observations having mean errors which

exceed ~ 0. 05 E contribute in an essential way to the adjustment of results.

Considerations have been made to this time on the supposition that on-land

observations are inaccessible. Thus , conclusions obtained which concern expected

accuracy of geoid determination concern areas not covered by on—land observa-

tions. In cases where gravimetri c observations were made in a tested area , these

observations can be jointly elaborated with satellite observations. This estab-

lishes excellent possibilities of controlling systematic influences of each observa-

tion from the groups. The fundamental fe ature of the combined solution is the

clear stabilizing of the frequency range. Accuracy adjustments should also be

expected.
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Figure 6a. Optimal satellite altitude for field of refe rence L 7 (role of
gravimetric observations)

Figure 6b. Dependence of optimal altitude on degree and order of field of
reference (role of gravimetric observations)

Figure 6c. Accuracy in defining geoid undulation from observations at 300 km
altitude and at optimal altitud e in function of degree and order
of field of reference (role of gravimetric observations)

See page 22a for omission.

Figures 6a , 6b , 6c answer the Figures 4a , 4b , 4c after adding gravimetric

anomalies. Figure 6a discloses that the optimal altitude does not differentiate

itself as clearly as before. It is within limits of from 450 km to 1100 kin , in which

the accuracy hardl y differs from the accuracy for h0~ t 850 km. This means

that if we dispose of several gravimetric observations in the tested area and we

use a field of reference of low degree and order , then we can use the gradiometric

observations mad e in a sufficiently high orbit. For fields of reference of highe r

degrees and orders the range of fixed accuracy is not as wide , nonetheless the

22
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Omitted from page 22.

To the previously used model of gravimetric observations

was added a collection of gravimetric observations symmetrically

distributed with respect to a designated point and located

within a radius of 0°, ~4 around the designated point. The

gravimetric observation errors mG were assumed to be ±3 mgal.

It was demonstrated that adding a greater number of gravimetric

observations and changing their distance from the designated

point do not significantly change accuracy in determining

geoid undulation .
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fundamental character of t’ conclusions remains without change. It can be

noticed that the optimal altitudes on Figures 6b and 4b draw near each other with

the increase of L.

Figure 6c shows that a gain in accuracy as is reached by joining the cal-

culations of gravimetric observations wavers between 20% and 30%. By adding

gravimetric observations bet ter  accuracies are achieved and also the optimal

satellite altitude increases. If satellite altitude was established at h =  300 kin ,

then even 60% accuracy adjustment (at L~~24) is reached. Hence the result that

by elaborating jointly gravimetric and gradiometri c observat ions the su rface and

ref erence can be determined for an accurate satellite al t imeter.

5. Conclusions

Using gradiometric measurements and the collocation m ethod the determin-

ation of a local geoid can be effectively adjusted. The following conclusions result

from the analysis conducted:

1. Consideration of the observational material distributed in an area

50 x 50 at a satellite altitude of h 300 km is satisfactory.

2. The essential influence on the solution has only t~iree gradients of

the second order Trr , Tr9, and Tr~ .
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3. For each field of reference having a definite degree and order the re

exists an optimal altitude at which satellite gradiometric observations should be

made. For a field of reference of low degree and order this altitude considerably

exceeds 300 km.

4. For gradimetric measurements at 300 km altitude of degrees and

orde rs the fields of reference should waver within limits of fro m 12 to 15. When

the harmonic coefficient s are not correlat ed, then the accuracy in determining the

geoid will be of the order of 1 meter.

5. For an essential adjustment of local geoid accuracy of observations

better than ± 0. 05 E is required. If , however , an er ror of global solution of a

geoid exceeds ± 3 in , then a clear adjustment of the determination of the course of

the geoid can be achieved also from less accurate gradiometric observations .

6. The combination of satellite gradiometry with on-land gravimetric

measurements made in limited areas contributes to significant accuracy of the

results. Then the optimal altitude of the satellite increases and the accuracy of

determination of the geoid undulation raises as well. Adjustment of the accuracy

can in this case reach even 60% at a satellite altitude of h = 300 km. Moreover ,

the com bined elaboration of gradionietri c and gravimetric measurements creates

excellent possibilities for the control of systematic influences of each observation

from the groups.
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The above conclusions theoretically depend on the choice of covari ance

function. If , however , the ranges , in which the output parameters which are

obtained from the contemporary statistical estimates , are real , then the differ-

ences to which the use of various covariance functions leads , are very small.

* Jan Krynski- -Institute of Planetary Geodesy of Cosmic Testing Center in Warsaw

Privatdocent Dr . Klaus Peter Schwarz- -Institute of Physical Geodesy in Graz
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