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Ihe purposé¢ of this paper is to clarify the relationship
between three different criteria for optimization of acoustic

-4

signal detection. Specifically, the maximization of
array gain , the minimization of signal distortion, and thc AN
evaluation of the Neyman-fearson likelihood ratio are shown to

yleld equivalent results at a single frcquency.
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There are several criteria for optimization of a processor for an

array-df>sensors. J.J. Faran and R. Hills,Jr. have used the criterion

of maximization of array gain to design real weightings for

3 . . 1 .o . . s, . . : . 0
individual sensors.” N. .wiener used the critericon of minimizing sigial

distoi:tion to design filters.2 Other authors, notably F. Brynm, have

used evaluation of the Ncyﬁan—Pearson likelihood ratio to minimize risk.3
This paper cxamines the relationship, at a single frequency, betweeﬁ these
threc criteria. The filters required by each of the three developments |

are shown to be exactly the same for single frequency considerations.

lj Jo. Faran and R. hills, "wide-Band Directivity of keceiving Arrays,"
Harvard Univ. Acoust. Res. Lab. Tech. Mem., 31 (1 May 1933)

2N, wiener, Extrapolation, Interpolation, and smoothing of dtationary
Time Scries, (MIT Press ¢ oiley, varch 1949)

"Ontimum 3ignal Processing of Three-Dimensional Arrays Uperating
on Caussian Signals and Noise," J. Acoust. Soc. Am. 343 239-297 \19b2)
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2. FCiM OF G.'\In\‘ EQUATION
Let us assuuc that we have K hydrophones in a sonar array. These
hydrophones have output waveforms Ai(t), i= 1,2,...,K, Since we may be
interested in .. - spectral _ components, we shall allow these waveforms
to be complex. Let Z;, i= 1,2,...,K denote the (complex) weight functions
which the £;'s are to> le rultiplied by before sumuing and squaring. The
average power output over a time interval between -T and T is

W (1/21-)f{z,z ,&(c)} {% Zj4; \t)} dt

)=l

K K
= (1/21;./[2 2 =1 ~-1~ kt)l(t)3 dt
1=

T A .
e 5.5, 3z (/20 Sy (v gLy de
isl j=1 g

Let si(t) denote the signal component of li\t'), and ni\t) denote the

noi_se ‘component of ,li(t). Thus ,Qi(t) b nilt)-t-si(t) . The output signal- °

to-noise ratio of the array is defined to de the limit of the ratio of

the difference between the average power output wien sigeal is preseat

and when signal is absent to the average power output when signal is absent,

l.C. x g : . :
= lin [ig',l 51 2"z, u/m:[ [s;0trn (02" [s 5 tpnge)] de
A R e .
» §1 j£'|1 g 2 (1/271;4. n; (t) nj(t) dtJ /o
g :«"'...'7." T
[ ;_,' ‘\2 :i*:.i (1/21)_} *(t) nj(t.)dt) 3 ..... .
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K . 3, L 3* #*, . #
AT lim gz.' = iy L (1/2’1')f[si (t)s-(t)+ s; (t)nj(t)fni.(t)sj(t)]dt /

-

i1 j-
K K T

oo
{Z é'.. 22 (1/21‘)_{ ng" (t)n (t)dt} }

i-1 j+=l

K
= 52 > lia (1/27){ *(t) s (t)dt 4 11m (1/21) fs (t)n (t)d
lv

1 J zl 1-Peo

. . T *
*n (/20 ) ny (t)sj(t)dt3 3 /

K K . T *
% 2 <, & %5 lim (1/2'1‘) n, (t)nj(t)dt}

is]l j"l Twvee
Assunption #1: The signal and noise wavcforms are uncorrelated, i.e.,

: T T -
0= lim (1/27) S s:"(t)n.(t)dt = lim (1/21) [ n.¥(t)s.(t)dt for all
1200 -‘Tf - J d :If i e

T2«
i and j.
Thcn if we let
ei_;‘ 1;3 (1/2T).fs (t)s 5L8) dt S
and Q7 lim Q1) :{ ny (6) ny(e) de, Wk

we can write A as 2
P

e fxs'l ,,21 . 'Jeij.; 4! 1% .f%i 53

Let 5 denote the signal power présent in a standard hydrophone and

N denote the noise power prescnt in the same hydrophone. The array gain
is defined to be the signal-to-noise ratio of the array divided by the

signal-to-noise ratio of the standard hydrophone, ice.,

¢ = a/L8/N) :{[:Si é 3% i i.i]/[ & 1-1 =" Jﬂjlg (V/3)
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*that pii: Q.. 1. This assunption is not nceded, however, in the present

. |
b 4
Let p; =E§ij/a and qij=92j/N . Thus
' £E T
G < Z.%2.p. I e 2% Bt .
§01 jo = T 5D SR A
To simplify this notation further, let
< Pll P2 +++ Pig : .
] e | 4 12 1K S 3 My e q
Z= L) > P = 'p21 1)22 see sz ’ and Q = q;l q22 29 5‘&
Zh. plﬂ p.\z eee DNK qu qKZ vee QKK

Note that P and Q are corrclation matrices and thus are positive definite
hermitian. We can now write
AT, %T .,
ea 2R 2 e .

Frequently the noise and signal fields are assuned to be homogencous,

i.e., the same noise power and signaf pover are observed by all hydrophones.
Then if the standard hydrophone is an element of the array, this implies

ii

development. :
3. MAXIMIZATION OF GAIN
? To"optimize" our system, we shall choose the ¢§ctor Z which, for
given P and R, will maxinize C.
ao={(z*Taz)az sy - (FTezpaz )3/ @Ta)?
= §(2*Tqz) [2"Teaz+ @z)"Tpz] -(2*Tez) [ 2¥Twd: + \dz)’TQZJ }/ (2%TQz)2
C will have an extremal value only where dC = 0 for all choices of dZ,'
hence the nunerator must be zero for all choices of dZ.
§(2*Ta2)2"Te -(*Tp2)2* 1Y dz + (a2)*T (2" Tazsiz - (2" Tezjz} = 0.
(a2)T § Ty 0" Tz ~(2*Te2) "z 3™ 4 (d:')"{\z"qzw: - (Z*Te) = 0.
Since P and Q are henmaitian

(@2)7§ ez - (2*Te2) e} = (dz)"iu"l‘q:w: . (z"w.)qz) ;
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The only way this can be true for all possible choices of dZ is for
| the quantity in braces “to be the zero vector, i.c.,
‘ . (T = Z¥Tez)az ,

’ . or Pz = {(Z*TPZ) f (z*qu% QZ .

Asswaption #2: The matrix Q is nonsingular.

Lo ol = (7T /() 2

‘ Let Gy = (2 1PZ)/(Z TQZ ). Then Q‘lP Z = G4z, i.e., the optinum gain,
Gys is the largest eigenvalue of the matrix Q"IP and the sct of filter
weights which produce this gain form the corresponding eigenvector.

Clearly, for large K, a precise investigation of the general nature

; : of Gy is not possible. However, by proper choice of P we can simplify

i the problem considerably.
; : Assumption #3: The signal field is produced by a monochromatic wave-
\ - o front moving across the hydrophone array.
F{. ’ : Then slkt) = st eJ s , where 4‘; is the time for the wave-
# * ] front to reach the gh hydrophone from some arbitrary point in space.
So

. . .
P, .= lim (Siés.é/z'[;-)‘[ e-j‘b(t-"{)ejw(t-fj) dt

v Toc0

' hm (s% '5/21'3)‘/‘ J=75) g,

(34 ia ’5/:,) ej“’m -%) %m (1/21) _[ dt
(bi é/a) ejwub fj) .
Let ¢; = (s, i/a#) Define VvV = clejwﬁ e Then P= V¥ V".

cZej }2
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This implies that P is of fgnk 1, and hence Q-lP is of rank 1,

Thus Q1P has only one nonzero eigenvalue which must be Cye Further,

! 4. R’-a‘, 7(7{.1:4’\;
we can sce thagLZ = RV and G, = v¥liy , for

ez = Col
(RP) (V) z (VFThv) (i) : :
o VT Ry 2 (v Thv) aw
VV*TnV 2 (v*ihv) v
v liy & wlh : -

|
In this way we can arrive at the transfer functions of a sect

of filters which will give the greatest possible array gain at each
frequency under the four asswubtions given above. This will be done
by repeating the process for eacli frequency of concern, to get a
vector Z(fj, where I(f) = iyif) .

' Z(f)

Z L)

Then the desired systenm is
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This analysis, however, says nothing about the relative weighting
of the frequencies, since any multiple of these filters will produce
the same signal-to-noise ratio in the output. Thus, a frequency weighting

filter is also desired at the output,
4

.
. 3

F. Bryn indicates that a desirable filter is the Eckax;tf.,fl‘_':-:-r.
. - \ The transfer
function of this filter i_sjé(f)/ﬂ\f), where J(f) and J\f) are the
signal and noise power, respectively, at the sumnmed output of the Z‘s .
Note that
S0 = i) 27N pe) z(1)
sen{sen) V(T e eV

s(f) V¥Iie) ki) Vi) VEI(E) if) V(£

= 5(f) 6 %),
and JAf) = N(f) Z¥T(£) af) z(f)
' NEERUEIVIED T QO Ef)VIE)}

ME) VET(E) R(f) af) R(E) YAf)

= Nf) V¥T(f) k(£) Vi)
= N(f) Go(f) .
Thus (JO/R0) ) = (621) s(6)/ 6 X(0) NAE) ) = S\D/N2(E)
However, as will be seen later, it appears that a better system for

detection nay be J%Qf)/fﬂ"}'.(f)(.l\f)+7hf) )53 . Note that this

could also be written as

SAO/S e u+{.f\r)/z'u').])5} e s*\f)/{ NUE) (14 IS(f)/N(f)ch;)*}-

4c. Eckart, SIO Ref. 52-11, University of California, Marige Physical
Laboratory, Scripps Institution of Uceanography(1952).
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et '8
. The system could then_be‘ represented as
. 9—'_ zol }"‘
{a'_"_—"’ zo = ; . 15 1
2 Y 1 1
2 B2/ 0§ RSy u/T)?f (- )2 dtl~.
— 7 | : :
Y o

4. F. BRYN'S \APPROACH
F. Bryn views the basic problem as deciding the answer to the question,

"were. these £4's produced by random variation in a neise field, or by the
g \ .
sum of a signal and random variations in the noise field?"

To answer this question, Bryn considers each frequency separately. ‘e
shall ‘use the notation in the previous sectious to abridge Bryn's derivation
and avoid a small signal assumption. Let us assuue that the 4's arc observed

over a time interval O to T and have no frequency components above fu. Then

we can represent }i as

o

7 :
; : j2tat/T
£2.(t) = x.(n) e .
o n= ..&f_b-‘l‘ = ;
Then all of _the available infornation is contained in a set of vectors
X(n) = |x;(n) .
xzkn)

x{n)
Assumption la: The. components of the ;Ci" at different frequencies are
statistically independent. g
This means that the probability of a particular X(n) is not aft‘ectea
by any X(n), n #tm. ;
Let si\t) dencte a hypothetical sxgnal component of the output t‘rom

the it hydrophone. we shall decompose s; as
B S
s;(t) = é yi(n) S0/ b
n=- ur

AT i o et o 7321




and define Y(n) =r.y1(n) « The ¥(n)"s will bec assumed statisticallf

" Assumption 3a: The xi(n)'s indicate an equal distribution of power

Yz(n)

y (n)
independent also.

We must now choose between two hypotieses:

A) The vcctorg X(n), n = -fyT,...,fI were produced by the random
noise field.

B) The vectors X(n), n = -fyT,...,fyT were produced by a combination
of signal field and noise field. :
Let F&(X,nQ\denote the probability density function of X when only noise
is present, and FS(X,n) the probability density function of X when signal
plus noise is present. Since X(n) = X*\-n), we shall use n= 1,2,...,fT
for our testing.

It can be shown from game theory that the best criterion to use on

X to decide whether a signal is present is the Neywan-Pearson likelihood

ratio,s :
£,-T : g
IR = ('n’; Fs&m) )/ g FylXon) ) .
ns ns

Assumnption 2a: The X(n)'s are sampled from a random process which is
stationary and ergodic.

between their real and imaginary components, i.e.,
; 2
pelx ()Y D = <Hmix () 32>,
where{ Y denotes an ensemble average, whether the ensemble is over

signal plus noise or over noise only.

Sy.8. Davenport and w.L. Root, An Introduction to the Theory of handom
Signals and Noise,(McCGraw-Hill 8oox vompany, [nc., New fork, 1938) Chap. 14.




Assuuption 4a: 1The X(n)'s have Gaussian distributions in either the
signal plus noisc case or in the noise only case. In other words, both
noisec and signal ficlds are assuued to be Caussian n‘oise sources.

Under the ergodic assumption the matrixQ in the third section is
related to this section by

) = Fay = (<X (> ¢ /N

1

s E ) PR PR
Fx(X,n) = const o~ (1/X) X" (n)2 " (n) X(n)

Under the signal assumptions in the third scction we can forw the
correlation matrix for t-he signal plus noise situation by using the
X(n)'s from the noise field and adding vectors Y(n).
<£X\n)+ Y(n)} {Mn)#—‘{(n)}*T)N :<.\(n').\'*1‘\n))N%l\n)Y*T(n)‘>N
= N(n) F(n)+3(n) P*(n)

Thus
o HT 3 : & i e
IR = {const 77‘ ™ (")i:‘\“m {n)+ 3(n)P (n)} X(n) 3 /
nrl ;
: fuT *‘1‘ = i =
{const"r‘ "l YR (3™ X(n) }
T * “ O f o wmay .
':{COnst il e.,\ \n){MnN (a)43(a)V (n)V (n)} X(n) 3 /
nl
{ £, e-.\*T.(n) £x(n)~!*(n)}’1 X(n) ;
ne*l

Recalling from matrix ‘algebra that
£ NOsv™ VI3 e (0" o i_(o/\ J I vy ‘lj/[l £ /M
we can simplify the expression for LR, (This equation is a special
case of (M»L‘VT)"l = a1 --{(A']'U) (VI‘\‘l) /(lo-VTA'IU)J', where & is a

Wy o .
square matrix, U and V are column vectors, and & and (A+UV") are




assuned nonsingular., This cquation is rcadily verified by

(awov] ) a=o(1/ae viarly) o) (via-d )3}

I+ uviadl o /aeviale) § oAl 4 (vTamdy) (uvial )}

I+ ovia-l o (1/x+v aluy guviatl Qeviacle )}

I ) VUsing this expression and assuming Q and NJ¥#sV V'l to be

nonsingular,

(s(n)/v () )2 =L in)v¥ mn)vT(n)Q -1(n))...;

" , el o 5 ? e
- wvialey et whcl oy i luyquovacle) viatly

onst 7'/

n=l
AL

T : g |
{ £i.1 -\ {n){tl/Mn))Q () = S ) ) Fanpsia)/5n) )3

fl,T x*Tm) &) X(n?

#-) )
fUT (S(n)/52(n) )+ 2 f(n)2 QYA 'l)V (nil (n)‘(n)
= const 7 ¢ : 1 *(a(n)/\\n))v (n)&~ kan (n)
n=1 £
|
or l% w(n)
p LI{ = CLR (] ’

S3(n) X* (n)Q' (n)V"\n)V Ln)d \n)\kn}
N2(n) 1+ (3un)/Mn)) Vi) i n) Vi(n)

where w(n) =

To sce how a filter set can develop W(n), we can re-write this as

s(n) T (W lwva))® (YTin) & =1(n))X(n)
N2(n) 14-\s\n)/xtn;)V‘&n)u*’lxn;V*(n)

w(n) =

_ sy W) £ () X (0) (@ =1 n)Vin))
Nén) 1+ (3(n)/~(n)) V'(n, U=Ln)v*(n)

sn) Wy W w) Xin Wi
N2(n) 14 (3(n)/N(n)) Vi) tin) Vin)

Recall from the third section that G \n) V (n)q‘lkn)V(n), and

Zy(n) = CYn) Via), so
W(n) = (3(a)/¥%(n)) (1/1+ (3(n)/N(n))Cy(n) ) Zoﬂ(n)x“(n)xr(n)zokn)

¥
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This can also be written as
Wn) = (/220§ By )z T m)xT(n)z (n)

A detection is said to occur when the likelihood ratio exceeds a certain
f 7T

value, . This is equivalent to saying that :%f w(n) exceeds the log
y =1

of B/ C .- The desired filter systc: is

s Y e e |
e e P

2 Zog 5 2(n) ) u/T){) £ dtJ "

e- NN )k s AR ,

e P s

S. OBSERVATIONS
The reader will note the similarity between the transfer function
1 1 e 1
xf2kn)/772\n){71n)+dﬂn2}2 and the kckart filter J2(n)/2/(n) . This
development, however, did not require the use of a small signal approx-

imation. 1he filters ;o remain the same as those developed in the third
scction. Thus we have shown that at onc frejuency the problem of evaiuating
the Ncyman-Péarson likelihood ratio is equivalent to the problein of
maximizing the signal-to-noise ratio at the output of a set of linear filters.

A word of caution is in order concerning the assunption of an iufiunite _..!
integration time. This a$swnption is implicit in the asswuption that the
frequency components are statistiéally independent. Thus this development
must be used with caution unless long integration times are used.

6. N. WIENER'S APPROACH
The approach of wiener is to minimizc the distortion~of the signal.

We shall consider a single frequency first. More precisely, if the

s K
filter weights are Z;, and the output is Eg% Zi,li\t), and s(t) is the
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signal at some point in space, the distortion or error in the output

of the filters is dgfincd as
i

«
I = lin (l/?f)f{ s(t.) Zi’(‘i(t),} gs(t)-'ﬁli /e-\t)}* dt

T-ao
K T
= lim u/zr)f s(t)s” (t)dt -2 * lim \]/21)_}"3(‘;),@ (t)dt
Tes 1=1 T20
K
== 2-1 lin \l/ZF)fs (tLg (L) df
e T>oe

i % : :
+ 2’ Zi Z. lim (1/21')f ,li{(t)/(j(t) dt .
i=l j=1 I Tooo -T

The assunpuion that siginal and noise are uncorrelated implics that

g solte
lim (1/21) fs(u) £ (t)dt = 53277
=T

—) a0

dince signal is now present along with the noise,
T .

lim \1/21)I,Z U’-)ﬂ(t) dt ‘eij"' QJ .

T”ao
In the pr;vmus notation, then, we can write

E= lim (1/2r)f s(tia itide ~SE Tyagv® Iz ™
T2c0
In Viener's formulatxon, the optimum Z's are those which give the mininum

(O"NQ)2 o

E. To find then
di = -5(d:)*rv - SV*T(d:)-Hd")*T (SP+NQ) z+-* (ar"hw.)(d- =0 Ydz)
(dZ.)*T{(a‘N.\'.:):J - 5v}_+{z., (SPEN) = SV 3 dz) =9,
or Re'{ (d:)*r[\JPfNQ)zJ - 5{]} z Q.
The only way that this can be truc for all possible di is
(5P+.\'Q)Zw. = 5
Zy = (sPeaQ)~lsv

Recall that P = VV*T, 0

(N1 Sy |
€/t I/ (1/is/sv el v”:l} s

A

W
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"

or . 2= {Q/NR = (3/A2) (/1% (5/8) kv ) kv v} sy

o
L * SEEORION. U8 "
w 2:\' (N"') (1+\s/.x)v"luv) : :

*T

W

"~ Recall that Co =V

S 5 iyl
2= Wi (52) (‘1‘?6‘—';0' (-,7.\'))

RV, so

Since Z is a multiple of I, the array gain of the wicner filters is

Goh 2 )
B %
ot { N (Np\'f"mf&)‘ J
g. s\ 526 - 3%
= Zo [ TUNSCg)
= I, (3/N+5G)
- 2o(5/8)(1/14 (S/§)Go )
T2y (/6 I/ /144 )
, = 2o (1/59) (FL+N)
The system indicated by this development would be
2 | ,ﬁ_.j_é‘f
(1/65) Nindii)
9—- ; .‘.OK }—a ; - 4
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"APPENDIX 1. GAUSSIAN DISTEISUTION
OF COMPLEX VARIA\BLES

The purposc here is to develop the form which a multivariable
Gaussian distribution of complex variables must take. To do this,
consider a complex random variable x = a+ib, where a and b are real
numbers.  we shall assune that a and b are Caussian random variables
with zero mean, i.e., if <> denotes the ensemble average, <a) = ¢b> = 0,
The probability distribution functions for a and b, respectively, are

2,052
- 8 f20 12
Pa) = Qo dZi0 e - and  P(b) = (L4 TT) & /

wherc 0';2:'(&2) , and o’bz =2 .

2
29,
?

We shall make two norc assunptions about a and b:
1. a and b are statistically uncorrelated, i.e. {ab) = 0.
2. a and b have the same variance, i.e., {a2>= <b2) .
we shall define
O’xz= <vxy = s b2y = <32),<,2> & O"azf- 032 o
Under thesc asumptions we can write P\x) as
P = parnn) = (/o @RI = ypagy XNE
Now let x’l, Xgyeney Xy denote K independent complex variables,i.e.,

xgxf> = 0 Af i F j, and {xjxjy= 0 Vi,j. Let X=[x; |. Then we can

write P(X) as K 2
s ® ’?‘xt“"ibi)
PX) = O/ ;ﬁ:cfi ) e 171 ,
wh.arecpé2 =(xixi§> .

This can be simplified by defining the &xX matrices

ng 0’12 0 es e 0 ) lnd Rx = dx-l a 1512 o cee

J—




Then we can write P(X) as
K x¥T
LX) = (/R || ) X

Now consider a sccond sct of random variables, Y1s¥2s00s¥gs which

i X

i are lincar combinations of the Xj,Xj,...,x . We can define =1y "

s %)
A ;';‘

and write ¥ = AX, where A is a nonsingular matrix whose dimension is &xi.

To relate the ensemble averages ().'iyj*> to the x's, we shall form the

square matrix%[‘l*l) . Note that the enscmble averages in question are the

elcnents of{ ‘I‘{*B. sut <Y1i;'1>:<;\.\.\'*l‘A*}= A <.\X*T) A%z .\-.)x:\*r. Thus

-we can define Qy = <H*T) = Axix:\*r , and Yy will always be positive definite

heruitian,

we are now in a position to write the prodbability density function of

Y, for it is the probability density function of the corresponding X,i.e.,

% S I
P(¥) l.) E("\ 1) "Ry(a™71)

o/ 1,

s e P 2 37 =) 5T l_l
h\/ﬁ‘( l"lxl ) ef 0 (a1)FTRa=t x :
where N is a normalizing factor to assure that the integral of P(7) over
all y; equals 1.

Then we can define R = (.\‘1)"3 -1 noting that K = "1. we can now

' Xt 7 Yy ')y
write : ; i
: : i I Y
) = (VK R ) e Y. =, ‘
lhus we can expect that under assumptions 1 S.nd 2, the Caussian distribution
for conplex variables should take tie fori of a constant times e to a
‘quadratic form in ¥, and that the natrix in this quadratic form will be
*

the inverse of the positive definite hermitian matrix {17 T)- « Mote that

the argument is reversible since any hermitian matrix can be diagonalized.




