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I. Introduction

A. Th. Unified Problsas

“ Th. ’ problem considered is where n samples of data are to be

analysed and classified. A particular sample of the data i., in

general, two dimensional. For example, a sample may consist of d

digit ised time functions, each wavefora the output from a hydzo—

phone transducer. If the hydrophonee are arranged along a

straight line which i. called the space dimension, then a sonar

sample may be considered a discretized space-t ime waveform.

Our objective is to use the n samples to construct a

mapping from the data observation space (the digitised data

is aseuaed to consist of K5 1 data points where a indicates

asmple s) to what will be called the class space. There are

K classes in the class space and K may be an un1a~o~c~ quantity.

)4ath~~aticaUy, the K classes may be considered as points on

the real line .

Historically , statist ical learning theory and pattern

recognition have produced certain operations from which the

above mapping from the observation space to the real line is

constructed. Before considering these oper ations , lets try

to construct a single mapping from the raw data space to the

class space. Suppose there are n samples and -sash osmaist s of

K data point~~N7~r example, let K—3 as shoisi in Pig. 1. In

this ~ map1. ws f~ ’t~er ass~~~ the n samples form 3 clusters

— - - —---—----~ A
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in the observat .on space. If these three clusters could

be identified and a mapping constructed which would classify any

subsequent sample as belonging to one of these three classes,

our problen is solved. Unfortunately this ii not so easy,

especiall y when ~~~~
One imy to identify the cluster s is to construct a mapping

as follows: map point 1 in class onto the real in. at

position 1 as shown in Fig. 2. Next l.t the height of the line

at position 2 corres pond to the distance between point 1 and

its nearest neighbor, point 2. Continue this procedure and

note that the nearest - neighbor to point 9 in class is point

10 in class thus there is an abrupt “j imip” in the amplitude

plotted in Fig. 2. The jump at point 10 tn Pig. 2 represents

a separating boundary between class and class

‘3
U
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~~~ . 1. Three Clust ers in the ~~ss~~~ticn Space
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Class Class

Pig. 2. N~o,~14,~.ar Cluster Napping Onto Real Line

The above mapping is a - clustering algorithm which makes it

possible to identify clusters. For example, if Fig. 2 appeared

as a computer output display, then the samples to the left of

the jump can be identified as class .~; this is called interactive

id~~tificat1on.

A general family of cluster maps from VI’ to V1 is described

as follows: assume

(a) there is one distinct mode for each class, or the

- 
classes &re “nearly” separable .

(b) The dlmensicnal ity is much greater than the nuth r

of samples . Let D~ be the distance in VI’ between

the ith pair of samples and D~ the distance in

V1 sftsr some transfo rma tion of the samples. Thin

we wish the transformation to b. such that

_ _ _ _  - - --
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is minimum. It may then be possible to display

the classes as clusters * in £ dimensions, say

on a computer output display screen if j~2. If

there are two -clusters , then we have identified

two classes; we might, for example, replace each

class by its mean vector and covariance matrix.

B. Dimensionality Reduction

If there is one or more relatively noisy dimensions compared

with other dimensions , cluster algorithms as described in the

last section may not work . 
- 

Mathe matically, the reason is that

the distance criteria used by the clustering mapping must fit

the data. Such a shaping of the distance criteri a is funda-

mental to all estimation /recognit ion algorithms includ ing the

tolerance region approach or Kth nearest neighbor.

Shaping the distance metric is a general description of

the operation of dimensiona lity reduction and feature selection .

There is anot her operation , different~~ from that of

feature selection or simple dimensionality reduction, which

involves the interpolation of a waveform or sequence of data

*There are cases , such as the case of a noisy dimension, where distance
preserving, cluster mappings will not correct ly display clusters unless

~~distance is defined to include certain structure of th. data . -

The difference ii in terms of aprio ri knowledge.

_ _ _ _ _ _  —- - — ___ - —-—-~~ - - - - ~~~~~~~~~~~~~~~~ - - -
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points. This operation is called feature extraction.

C. Feature ~ctraction

The feature extraction operation requires apriori knowledge

to get started. Because waveforms are continuous in time and

space (when an array of transducers provides the signals),

there are an uncountable number of sets of aprior i knowledge

that can be used for feature extraction. In order to reduce

the number of sets and the size of the sets, certain “fuzzy”

structure of the wavefor ms can be ut ilized ; for example, Dart itions

can be used to isolate modes of the waveforms . Then the waveform

in each partition can be expanded with a “few,” relative ly

simple basis funct ions. Approximating wavefor ms by partiti oning

and expansion is not a new approach; in fact there are mathematical

functions called epline functions which follow this approach.

Feat ur e extraction for statistical waveforms is not , however ,

only a matter of approximation or waveform representation .

Each waveform in a class of wavefo~~~ must be approximated.

The method of partitioning and expansion must provide for

sufficiently adequate representation of each waveform so that

any waveform in the class can be distinguished from any waveform

in another class. That is, partition ing and expansion should

result in extracting intraclass oroi~ertiea from each class as

well as extracting interciase cror~ertiea . which provid , for

dist inguish ing between members of different classes.

L ______ -.



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
___

6

Partitioning and expansion is a nonlinear mapping from

an infinite (or high) dimensional, waveform observation space

to a finite dimensional aubspace. The nonlinear mapping should

be such that waveforms from a class are mapped “close” together

in the subspace while waveforms from different classes are

mapped far apart . Reasons for a feature extraction mapping

are discussed in the f ollowing subsection.

WHY USE A FEkTURE E CTRACTION MAPPING

Theoretically, estimation and decision making can be

performed in the original, high dimensional space. For ixample,

a Kth nearest neighbor rule or elliptical tolerance region

decision rule can be directly applied without feature extraction.

However, there are good reasons f or determining a feature

extraction mapping which are summarized below.

1. A feature extraction mapping allows decision making

to be accomplished in a lower dimensional space than the original

waveform observation space; thus decision making can be extremely

much faster using the feature extraction mapping.

2. ~ cperimentation can take an unacceptably long amount

of time without a feature extraction mapping . Since the ob~ectiv.

is to evalu&te the performance of an automatic classification

system, it must be possible to process unclassified samples in

a reasonable length of time .

L



I- -

3. Total system performance can be improved by feature

extraction (it also can be improved by feature selection).

This is a result of the fact that eventually the probability

density function of each class must be estimated; this estimation

can be deteriorated by noisy dimensions having little classification

information.

4. Before estimation and recognition can begin, an observation

space must be defined. Theoretically, this observ ation apace

must be fixed. lack of exact knowledge of synchronization give.

rise to a non—fixed observation space unless synch—free

features are extracted. In practice, a “fuzzy” observation

space is acceptable and provides a means of obtain ing a fixed

observation space. Partit ioning is one way to concentrate

attention on “local” properties of waveforms; then, in a given

partition, “fuzzy” prop erties of waveforms in that partition

can be extracted.

D. Clustering and Estimatior~/Recognition

Feature extraction is not a stand -alone operat ion . It

must be accomplished with the objective of following it with

an est imation and recognition operation. Eventually, we must

estimate or erimentafl,y determine the shai,e oi toleranq~
refions used to measure the probability density for each class,
in the vicinity of an unclassified test sample (candidate

sample). The geometrical shape of the tolerance region is
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partly determined by feature select ion. Feature extraction

makes the featur e select ion operat ion manageable. Aft er suc-

cessfully accomplishing feature extraction, feature selection,

and estimation/r ecognition, we can be concerned with the furt her

complextty reduction technique of stor ing only the decision

boundary in the observation space rather than the mapping and

~~~ the mapped samples.

The operations of feature 8election and estimation /recognition

can be more complicat ed when the data for any class is multimodal

than when it is unimodal . Therefore it can be very helpful

and instructive to locate modes or clusters in data. A clustering

algorit}mt can be used to m ap multidimensional data onto a two

dimensional c~ nput er output display (Calccmp plott er or storage

screen). Such clustering mapping is not in general feature

select ion . Rather , it is used to identify modes. After

identifying a mode, the samples constituting the mode can be

replaced by a mean vector and covariance matrix (corresponding

to the unimodal assumption). Also, significant directions

between modes can be found, which is a simple form of featu re

selection . The vector corresponding to such a significant

direction is then a dimensionality reduc ing filter .

E. Networking

Even with successful feature extraction , the dimeneionality

of the data may be too high for feature selection or estimation
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and recognition to be simply accomplished. In this case,

subsets of the featur es are processed individually. The decision

made using one particular subset is then used as an input feature

to be used in another subset . A decision is then made using

the latter subset and the decision f rom the previous subset.

Mor e complicated methods of networking can be used.

In the following section, an example of feature extraction

based on partitioning and expansion technique is described.

Because the method of partitioning can be determined by an

operator observing sona r ~avefor ms on a computer output display,

it is called int eractive feature extraction.

II. Automatic Feature Extraction From Two Dimensional (Space Time) Data

There has been considerable recent interest in interpolation

functions for irregularly—spaced dat a tl,2,3,4]. Work has been

primarily concerned with displaying data in some type of contour

map with the objective of being able to compare the display

with a display obtained using other data. Such work has emphasized

the use of two-dimensional interpo lation function s which smoot h

the data displayed. The literature cites such reasons for display

as to analyze the data for extremes, gradients, etc.

This section is concerned with the problem of mapping two

dimensional, supervised data set s to one dimension for subsequent

classification of candidate data. There are M classes , a two

dimensional data sample consists of IC data points, and each

_ _ _  _ _ _  —~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~ — - - - . — - -- - -~~~~~~~ --
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class contains N sample8. The jt h data point , coxmnon to all

M classes , is characterized by the coordinates D~ = (xj ,yj ).

If the value of the jt h data point for the ith class is

then the triplet s (Xj~Yj~ z~)~ ~ = l,2, . . . .K  describe one

sample from the ith class. Since the ith class contains N

samples, we define { .~(x~,y~,z~5 )}K }N as the N set s of dat a
j=l~~~1

point s (N samples) for the ith class.

A~~OMPITIC PARTITIONING

Let De be the first data point examined, as seen in Fig. 3.

Select the g nearest data point s to D .  Using these g data

points and an apr iori set of basis functions

calculate Fourier serics coefficient s for the ith class for

One sample: ‘5+!

a0 ~ 
z~ ~~(D~)

j =e—g
2

e-i-g

at .. ~~ Z~~~1(D~ )
j =e—g

e+g

i v~~i /a2 = ,~ 
Z~ ~2 t D~

j e — g

j=ef-g

4 ~ Z~ ~3(n~)
j=e-g

2

~~~~~ - - ~~~~~~~
.
~~~~~~~—--~~~~~~‘- - . . - ~~~~~~— - —-- ~~ - — — --- - ---“
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Form the vector
i i i i  ia [a0, a1, a2, a3]

which is for the specific data point De using g neighboring

data points to De• Since there are N~ ~~~~~~ for the ith

class, the preceeding can be accomplis hed for all N samples

to obtain

~~~~ s l,2, . .. N. .

An e~~mple using the spanning set l,x,x2,x3 ia sho~nz in

Fig. 4 • In this e,~mmple a simple feature selection technique

is utilized to map the four dimensional vector space containing

to the one dimensional vector between the class means.

Using a definition of s~mfl~rity supplied by the operator , it

is determined if De is s~r1l l~ir , with respect to the features

of each class associated with it , to D~~1. If it is, De and

De_i are said to be in the same partition ; otherwise a new

partit ion is created.

After all K data points are examined, the output is the

partitiun locations and the corresponding ~~~~~, i— 1,2, for the

partitions. Thus feature extraction has taken place with the -

operator supplying g, the spanning set, and the definition

of similarity.

- - -4
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FIGURE 4. AUTOMATIC FEATURE EXTRACTION.

z~~s__ 
~~~~~~~~~~~~~ - — ~~~~~~~~~~~~~~~~~~~~ -—



14

III. Experimental Results

The automatic feature extraction technique described in

the previous section has been implemented as a Fortran IV

- •
~~~. softwave program. The program is written for operation in a

CX 6500 Computer with CX 252 Computer Output, light pen,

display screen.

In an initial experiment, five waveforms from each of two

classes were drawn by the experimenter using a light pen. These

waveforms simulated five sonar echoes from subs and five sonar

echoes from non—subs. The algorithm automatically placed two

partitions along the time aids. The basic functions utilized

in each partition are lagender Polynomials.

On. of the waveforms from the simulat ed S class is shown

in Fig. 6 and one of the waveforms from the simulated N class

is shown in Fig. 8 Without using partitioning, a conyential

method of signal representation gave the approxim ation s shown

in Pig. 5 and Fig. 7(for a fixed number of coefficients).

Using the automatic partitioning technique , the approximation

for the waveforms concerned is as shown in Fig. 6 and Fig. 8

It should be emphasized that the new techniaue accomplishes

feature extraction using both interciass ~a.nd intraclass properties

of the data.

Next we give an example of clustering using computer graphics.

Three classes of data were generated . The data samples were

two dimensional and appeared as shown in Fig. 10. The actual

- - - _ _ _ _ _  _ _  _ _
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class label. of the data was ae shown in Fig. 9,  with A •

B’s, and C’ s being the respective data sampl. labels. The

computer did not Imow the data sample labels; is the three c.Laesss

were unsupervised. The objective of the cluster algoriti~i was

to determ ine how many classes there are and separate thea.

After one application of a cluster algorithm, the data appeared

as in Fig. 11. After seven applications of the algorithm, th .

data appears as Sn Fig . 12. Thus the three classes were uniquely

separated. Such cluster algorithm s are useful when used in

conjunct ion with such algorithms as the automat ic feature extraction

algorithm.

IV. Target Signatures and Array Processing

We have previously discussed (Final Report on Cont ract . N00024-67-C-1162)

the spacial (array ) steady state resp onse of a target using the

method of geometrical acoustics. A more complet e descript ion

would be the space/time impulse response , which i. discussed

in this section. Space/time impulse response studies are

helpful in determining how to apply auto matic space/time feature

extraction .

REVIFW OF PREVIOUS WQRK

This section will be primarily devoted to a discussion

of th . previous report by Purdue [TR-EE68—21] on the geometr ical

acoustics approach to scatter ing. The work contained in that

r.port. is based on th . method of geometrical acoustics for 
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calculat ing th. acoustic pressure field returning from a target

to the eleaents of a receiving array. This is a simple and

useful method as long as the wavelength of the signal is ~~~l1

compared to the radius of curvature of the target . The resu lts

of the report point out the possibility of determining target

bearing and shape* from the received signal along a linear array.

The S patial Nyqu lat rate and spatial Fourier transform which

was used in that report , are interesting ways of expressing well

Imown result s from antenna array theory and it may prove useful

to mention these alt ernat e interpretations.

The operation of taking the spatial Fourier transform

of the pressure distribution along the array is simular to adding

up the outputs of the individual element s of the array and

plotting this sum as the beam is scanned, with respect to the

lin, of the array, by shift ing the phase of each of the eleaants.

An important result f rom array theo ry i. applicable here , namely

the use of an amplitud e tap er across the aperture of the array

to reduce the sidelobe level of the beam thus formed. This

would b. of particular importance in a reverberation environment

to improve the signal-to-noise ratio by reducing the response

due to reverberation from unwanted directions. This amplitude

taper would also be of benefit when attempting to resolve closely

particular attention was given to the target aspect angle and length.

-

~ 

_  
-
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spaced and multiple targets , since there would be lees clutter

due to the sidelobes of adjacent targets.

The use of a spatial Nyq~~st rate for locating elements

along the array corresponds to spacing of array elements to

avoid brin ging additional main lobes of the arr ay factor into

the visible range. This spacing can be larger than the half—

wavelength distance, but caut ion is then necessa ry to avoid

scanning an additional main lobe of the array factor into the

visible range when trying to locate targets by tak ing a spatial

Fourier transform.

There are a few areas where some caution is required in

interpreting and extending the results of that report . The

first of these is the fact that geometrical acoustics is not

suitable for predicting the target response for the range of

waveleng ths coinparible to the size of the target. It is in

this range of wavelengths that some of the features of a target ~5

response are to be found. This can easily be seen by examin ing

the approximate impulse responses computed by the method of

Bennett and Weeks which are presented in the next section.

A second point that should be not ed is that the results obtained

for locating targets by taking the spatial Fourier transform

are very sensitive to the phase of the signal at each of the

hydrophones*. In many cases the phase front arriving at an

array might be greatly distort ed by variations in th . media

*Th.r.for. analysis should provid, for noise added to the pha s. at
each hydrophone.
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across the aperture of the array .

R~~~Q~~ D~TICNS BASED ON TP,~RGEF IMPULSE R~~PCNSE CALCUI~TIONS:

To make use of impulse response calculations for perfectly

conducting electromagnetic scatterers, the acoustic wave equation

and boundry conditions were compared to the wave equation for

electromagnetic waves and a correspondence was established for

the case of two dimensional (cylindrical ) scatterers • Transverse

Electric (TE) scattering from a conductor is simular to acoustic

scattering from a hard boundry. Transverse Magnetic scatt ering

(TM) is aimular to acoustic scattering from a soft bound ry.

The three dimensional case for acoustic scattering could not

be handled readily by the method available for electromagnetic

ecatterers. However, the result s obtained from the two dimensional

case should be ade~ iate for reaching some basic conclusions.

These can be compared with classical results for a sphere to

relate them to three dimensional cases.

The following illustrations should be consulted at this

time: Pigures 13, 14, 15, 16, 17, 18, and 19. These figures

show th. approx imate impulse response in several directions.

The unite along the abscissa of each response are in “light—

meters” • For the electromagnetic case this is the time it takes

light to move one meter. For the acoustic case we could call

the units along this axis “speed-of—sound-m.t.rs”. The impulse

responses shoisi ar e in the far—field region and the large
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semicirci. indicates the tim. when an impulse reflected from

the origin of the coordinate syst em would arrive at the far—

field region .

The reader will note that in Fig . 13 (circular cylinder

of one meter radius , TE case) that the initial peak of the

impulse res ponse in the backscatter direct ion corresponds to

a specular reflection from the front edge and could be predicted

by geometrical optics or acoustics. The negat ive swine and

subsecuent ~,osit ive swin.g could not be ~redicted by this method.

It is interesting to note that this subsequent positiv swing

in the impulse resp onse corresp onds to a wave travel ing around

the backside of the cylinder and returning towards the sour ce.

This is known as a creeping wave. Simular interp reta tions can

be found for this wave in the other TE (hard boundry ) cases .

For the TM cases (soft boundry ) a creep ing wave does not occur.

Th. frequency response of the hard circular cylinder

(YE ) case is shown in Fig . 20. Not e that the response drops

off quite rapidly for k (actually k a+l , since a-’]) less than

one. We note t hat k~wr/v, or k’-2yrA where w is the radian

frequency, v is the velocity and A is the wavelength.

To carry these result s over to three diii~ensicns consult

Fig. 21 which shows the ratio of acoustic to geometrical cross

section of a fixed rigid sphere of radius a. It should be

noted at this time that in actual practice with acousti c targets ,

ideal hard and soft boundries are not available. Addition al
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complications of flexure waves in shells end other resonances

inside the object must be considered. These will result in

variations in the calculated target response for that shape

object . Another source of difficulty can be seen in Fig. 19.

which shows the TE (hard boundry) resp onse of a corner reflector .

Note that the impulse resp onse varies significantly in various

directions. In a prac tical situation fins and concave surfac es

on a scatterer would give simu].ar behavior.

In spit e of the limitation s and difficulties indicated

in the previous paragraph , the basic behavior of the impulse

and frequency responses of tar gets gives an indicat ion of several

general features that can be exploited for target identification.

For example , the target return from w11~ scatte rere such as

fish bladders could be reduc ed by selecting frequencies such

that the corresp onding wavelengt h is large compared to the

sise of these target s so as to place th em in the “Rayleigh

Region ” of the resp onse curve . ( see Fig. 21). Since the targets

of interest such as submarines are much larger, it should be

possible to exploit this variation in target behavior as a

feature for distinguishing these two types of targets. It

might also be possible to deter mine someth ing about target

shape fran a knowledge of the predicted impulse responses.

Since the impulse response of a target varies significantly

in several direct ions, additional infor mation for target

___  - - A



classification in a volume of interest could be obtained by

investigating the resp onse in several directions . The impulse

responses of simple shapes such as cylinders , strips , and the

sphere do not var y significantly in a small range of angles.

However, concave and other more complicated shapes do exhibit

considera ble variation as a function of angle and this might

be exploited as a feature for tar get identification .

To give an idea of the frequency ranges of interest for

utilizing the above recomznendat ions , we will consider cylinders

of one meter radius , and ten meters in radius. Since the speed

of sound is about 1500 meters per second in water , for a one

meter radius cylinder a ka value of one would corresp ond to

a frequency of 1500 radians per second or about 240 Hert,z*.

For a ten meter radius tar get a 1~~ of one would corresp ond

to a w of 150 rad ians per second or about 24 Hertz.

Figures 13 through 2]. are from “A Technique for Computing

the Approximate Eaectr omagnetic Impulse Resp onse of Conducting

Bodies” by C. L. Bennett and W. L. Weeks. June, 1968,

Purdue Technical Report , TR—EE6S-ll , NSF GK 2367.

‘This corresponds to the break freq uency in Fig. 20.
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