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I.

Introduction
A. The Unified Problem
2 The problem considered is where n samples of data are to be

analyzed and classified. A particular sample of the data is, in
general, two dimensional.- For example, a sample may consist of d
digitized time functions, each waveform the output from a hydro-
phone transducer. If the hydrophones are arranged along a
straight line which is called the space dimension, then a sonar
sample may be considered a discretized space-time waveform.

Our objective is to use the n samples to construct a
mapping from the data obse/x_-_’vation space (the digitized data
is assumed to consist of Ks data points where s indicates
sample s) to what will be called the class space. There are
M classes in the class space and M may be an unknown quantity.
Mathematically, the M classes may be considered as points on
the real line.

Historically, statistical learning theory and pattern
recognition have produced certain operations from which the
above mapping from the observation space to the real line is
constructed. Before considering these operations, lets try
to construct a single mapping from the raw data space to the
class space. Suppose there are n samples and -each .consists of
K data points. “For example, let K=3 as shown in Fig. 1. In
this example we her assume the n samples form 3 clusters

\
\
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(M=3) in the observat.on space. If these three clusters could
be identified and a mapping constructed which would classify any
subsequent sample as belonging to one of these three classes,
our problem is solved, Unfortunately this is not so easy,
especially when K>>3.

One way to identify the clusters is to construct a mapping
as follows: map point 1 in class wy onto the real line at
position 1 as shown in Fig. 2. Next let the height of the line
at position 2 correspond to the distance between point 1 and
its nearest neighbor, point 2. Continue this procedure and
note that the nearest neighbor to point 9 in class ®y is point
10 in class w,5 thus there is an abrupt "jump" in the amplitude
plotted in Fig. 2. The jump at point 10 in Fig. 2 represents

a separating boundary between class o) and class wye

1
A ? «8 10:013
3 5060 o7 '.' i
; 2 d o'
- "2 ‘.o. 2
- xl

Fig. 1. Three Clusters in the Observation Space
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A Nearest Neighbor Distance

Fig. 2. Nonlinear Cluster Mapping Onto Real Line

The above mapping is a clustering algorithm which makes it
poasible to identify clusters. For example, if Fig; 2 appeared
as a computer output diephy, then the samples to the left of
the jump can be identified as class ®) 3 this is called jinteractive
ddentification.

A general family of cluster maps from V‘L to V2 1s described
as follows: assume

(a) there is one distinct mode for each class, or the
classes cre "nearly" separable.

(b) The dimensionality is much greater than the number
of samples. Let D:Il. be the distance in V'L between
the ith pair of samples and D: the distance in
V% after some transformation of the samples. Then

we wish the transformation to be such that




5 (hot)

All 1
is ‘minimun. It may then be possible to display
the classes as clusters* in ¢ dimensions, say
on a computer output display screen if g=2. If

there are two clusters, then we have identified
two classes; we might, for example, replace each

class by its mean vector and covariance matrix.

B. Dimensionality Reduction

If there is one or more relatively noisy dimensions compared
with other dimensions, cluster algorithms as described in the
last section may not work. Mathematically, the reason is that
the distance criteria used by the clustering mapping must fit
the data. Such a shaping of the distance criteria is funda- J
mental to all estimation/recognition algorithms including the
tolerance region approach or Kth nearest neighbor.

Shaping the distance metric is a general description of

the operation of dimensicnality reduction and feature selection.

There is another operation, di.fferent“ from that of
feature selection or simple dimensionality reduction, which

involves the interpolation of a waveform or sequence of data

*There are cases, such as the case of a noisy dimension, where distance
preserving, cluster mappings will not correctly display clusters unless
sndistance is defined to include certain structure of the dat&.

‘l'ho difference is in terms of apriori knowledge.
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points. This operation is called feature extraction.
Feature Extraction

The feature extraction operation requires apriori knowledge
to get started. Because waveforms are continuous in time and
space (when an array of transducers provides the signals),
there are an uncountable number of sets of apriori knowledge
that can be used for feature extraction. In order to reduce
the number of sets and the size of the sets, certain "fuzzy"
structure of the waveforms can be utilized; for example, partitions
can be used to isolate modes of the waveforms. Then the waveform
in each partition can be expanded with a "few," relatively
simple basis functions. Approximating waveforms by partitioning
and expansion is not a new approach; in fact there are mathematical
functions called spline functions which follow this approach.
Feature extraction for statistical waveforms is not, however,
only a matter of approximation or waveform representation.
Each waveform in a glass of waveforms must be approximated.
The method of partitioning and expansion must provide for
sufficiently adequate representation of each waveform so that
any waveform in the class can be distinguished from any waveform
in another class. That is, partitioning and expansion should

result in extracting jntraclass properties from each class as

well as extracting interclass properties, which provide for
distinguishing between members of different classes.

—



_Partitioning and expansion is a nonlinear mapping from
an infinite (or high) dimensional, waveform observation space
to a finite dimensional subspace. The nonlinear mapping should
be such that waveforms from a class are mapped "close" together
in the subspace while waveforms from different classes are
mapped far apart. Reasons for a feature extraction mapping
are discussed in the following subsection.
WHY USE A FFATURE EXTRACTION MAPPING

Theoretically, estimation and decision making can be
performed in the original, high dimensional space. For example,
a Kth nearest neighbor rule or elliptical tolerance region
decision rule can be Adirectly applied without feature extraction.
However, there are good reasons for determining a feature
extraction mapping which are summarized below.

1. A feature extraction mapping allows decision making
to be accomplished in a lower dimensional space than the original
waveform observation space; thus decision making can be extremely
much faster using the feature extraction mapping.

2, Experimentation can take an unacceptably long amount
of time without a feature extraction mapping. Since the objective
is to evaluate the performance of an automatic classification
system, it must be possible to process unclassified samples in
& reasonable length of time.




D.

3. Total system performance can be improved by feature
extraction (it also can be improved by feature selection).
This is a result of the fact that eventually the probability
density function of each class must be estimated; this estimation
can be deteriorated by noisy dimensions having little classification
information.

4. Before estimation and recognition can begin, an observation
space must be defined. Theoretically, this observation space
must be fixed. Lack of exact knowledge of synchronization gives
rise to a non-fixed observation space unless synch-free
features are extracted. In practice, a "fuzzy" observation
space is acceptable and provides a means of obtaining a fixed
observation space. Partitioning is one way to conceitrate
attention on "local" properties of waveforms; then, in a given
partition, "fuzzy" properties of waveforms in that partition
can be extracted.
Clustering and Estimation/Recognition

Feature extraction is not a stand-alone operation. It
must be accomplished with the objective of following it with
an estimation and recognition operation. Eventually, we must

regions used to measure the probability density for each class,
in the vicinity of an unclassified test sample (candidate
sample). The geametrical shape of the tolerance region is
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partly determined by feature selection. Feature extraction
makes the feature selection operation manageable. After suc-
cessfully accomplishing feature extraction, feature selection,
and estimation/recognition, we can be concerned with the further
complexity reduction technique of storing only the decision
boundary in the observation space rather than the mapping and
all the mapped samples.

The operations of feature selection and estimation/recognition
can be more camplicated when the data for any class is multimodal
than when it is unimodal. Therefore it can be very helpful
and instructive to locate modes or clusters in data. A clustering
algorithm can be used to map multidimensional data onto a two
dimensional computer output display (Calcomp plotter or storage
screen). Such clustering mapping is not in general feature
selection. Rather, it is used to identify modes. After
identifying a mode, the samples constituting the mode can be
replaced by a mean vector and covariance matrix (corresponding
to the unimodal assumption). Also, significant directions
between modes can be found, which is a simple form of feature
selection. The vector corresponding to such a significant
direction is then a dimensionality reducing filter.

.Networking

Even with successful feature extraction, the dimensionality

of the data may be too high for feature selection or estimation

e,



and recognition to be simply accomplished. In this case,

subsets of the features are processed individually. The decision
made using one particular subset is then used as an input feature
to be used in another subset. A decision is then made using

the latter subset and the decision from the previous subset.

More complicated methods of networking can be used.

In the following section, an example of feature extraction
based on partitioning and expansion technique is described.
Because the method of partitioning can be determined by an
operator observing sonar waveforms on a computer output display,
it is called interactive feature extraction.

II. Automatic Feature Extraction From Two Dimensional (Space Time) Data

There has been considerable recent interest in interpolation
functions for irregularly-spaced data [1,2,3,4]. Work has been
primarily concerned with displaying data in some type of contour
map with the objective of being able to compare the display
with a display obtained using other data. Such work has emphasized
the use of two-dimensional interpolation functions which smooth

the data displayed. The literature cites such reasons for display
as to analyze the data for extremes, gradients, etc.

This section is concerned with the problem of mapping two
dimensional, supervised data sets to one dimension for subsequent
classification of candidate data. There are M classes, a two

dimensional data sample consists of K data points, and each




class contains N samples. The jth data point, common to all
M classes, is characterized by the coordinates D g (xj’yj)‘
If the value of the jth data point for the ith class is

3;, then the triplets (xj,yj,zi), j=1,2,....K describe one
sample from the ith class. Since the ith class contains N

1 o
samples, we define { {(xj,y:j,zjs)}K }N as the N sets of data
=1 s=1
points (N samples) for the ith class.

AUTOMATIC PARTITIONING

Let De be the first data point examined, as seen in Fig. 3.
Select the g nearest data points to De. Using these g data
points and an apriori set of basis functions {¢O(DJ),Ol(Dj),Qz(DJ),QB(DJ )}
calculate Fourier serics coefficients for the ith class for

one sample: ei-g
a.i = Z Zi oo(Dj)

Jme-g
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al = sz 0, (D)
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J=e-g
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J=etg
3 i
83 = Z ZJ gB(DJ)
J=e-g
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Form the vector

i R L (e
8= [305 3y, 8y, 33]

which is for the specific data point De using g neighboring

data points to D . Since there are Ni samples for the ith
class, the preceeding can be accomplished for all N samples
to obtain .
a® s= 1,2,...N.,

An example using the spanning set 1,x,x2,J? is shown in
Fig. 4. In this example a simple feature selection technique
is utilized to map the four dimensional vect.c_;r space containing
a_i to the one dimensional vector between the class means.
Using a definition of similarity supplied by the operator, it
is determined if De is similar, with respect to the features

of each class associated with it, to De If it is, De and

=
De-l are said to be in the same partition; otherwise a new
partition is created.

After all K data points are examined, the output is the
partition locations and the corresponding E‘i, i= 1,2, for the
partitions. Thus feature extraction has taken place with the.
operator supplying g, the spanning set, and_ the definition

of similarity.
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FIGURE 3
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FIGURE 4. AUTOMATIC FEATURE EXTRACTION.
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Experimental Results
The automatic feature extraction technique described in

the previous section has been implemented as a Fortran IV
softwave program. The program is written for operation in a
CDC 6500 Computer with CDC 252 Computer Output, light pen,
display screen.

In an initial experiment, five waveforms from each of two
classes were drawn by the experimenter using a light pen. These
waveforms simulated five sonar echoes from subs and five sonar
echoes from non-subs. The algorithm automatically placed two
partitions along the time axis. The basic functions utilized
in each partition are lLagender Polynomials.

One of the waveforms from the simulated S class is shown
in Fig. 6 and one of the waveforms from the simulated N class
is shown in Fig. 8 Without using partitioning, a convential
method of signal representation gave the approximations shown
in Fig. 5 and Fig. 7(for a fixed number of coefficients).
Using the automatic partitioning technique, the approximation

for the waveforms concerned is as shown in Fig. § and Fig. g

It _should be emphasized that the new technique accomplishes
feature extraction using both interclass and intraclass properties
of the data.

Next we give an example of clustering using computer graphics.
Three classes of data were generated. The data samples were
two dimensional and appeared as shown in Fig. 10. The actual




class labels of the data was as shown in Fig. 9, with A's,
B's, and C's being the respective data sample labels. The
computer did not know the data sample labels; ie the three cu?lu
were _ﬁuuporviaod. The objective of the cluster algorithm was
to determine how many classes there are and separate them.
After one application of a cluster algorithm, the data appeared
as in Fig. 11, After seven applications of the algorithm, the
data appears as in Fig. 12. Thus the three classes were uniquely
separated. Such cluster algorithms are useful when used in
conjunction with such algorithms as the automatic feature extraction
algorithm,
IV. Target Signatures and Array Processing
We have previously discussed (Final Report on Contract .NOOOZL-67-C.-1162)

the spacial (array) steady state response of a target using the
method of geometrical acoustics. A more complete description
would be the space/time impulse response, which is discussed

in this section. Space/time impulse response studies are
helpful in determining how to apply automatic space/time feature

extraction.
REVIEW OF PREVIOUS WORK

This section will be primarily devoted to a discussion
of the previous report by Purdue [TR-EE68-21) on the geometrical
acoustics approach to scattering. The work contained in that
report is based on the method of geometrical acoustics for




calculating the acoustic pressure field returning from a target :
to the elements of a receiving array. This is a simple and
useful method as long as the wavelength of the signal is small
compared to the radius of curvature of the target. The results
of the report point out the possibility of determining target
bearing and shape* from the received signal along a linear array.
The s patial Nyquist rate and spatial Fourier transform which
was used in that report, are interesting ways of expressing well
known results from antenna array theory and it may prove useful
to mention these alternate interpretations.

The operation of taking the spatial Fourier transform
of the pressure distribution along the array is simular to adding
up the outputs of the individual elements of the array and
plotting this sum as the beam is scanned, with respect to the
line of the array, by shifting the phase of each of the elements.
An important result from array theory is applicable here, namely
the use of an amplitude taper across the aperture of the array
to reduce the sidelobe level of the beam thus formed. This
would be of particular importance in a reverberation environment
to improve the signal-to-noise ratio by reducing the response
due to reverberation from unwanted directions. This amplitude
taper would also be of benefit when attempting to resolve closely

.lo particular attention was given to the target aspect angle and length.
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spaced and multiple targets, since there would be less clutter
due to the sidelobes of adjacent targets.

The use of a spatial Nyqujst rate for locating elements
m the array corresponds to spacing of array elements to
avoid bringing additional main lobes of the array factor into
the visible range. This spacing can be larger than the half=-
wavelength distance, but caution is then necessary to avoid
scanning an additional main lobe of the array factor into the
visible range when trying to locate targets by taking a spatial
Fourier transform.

There are a few areas where some caution is required in
interpreting and extending the results of that report. The
first of these is the fact that geometrical acoustics is not
suitable for predicting the target response for the range of
wavelengths comparible to the size of the target. It is in
this range of wavelengths that some of the features of a target's
response are to be found. This can easily be seen by examining
the approximate impulse responses computed by the method of
Bennett and Weeks which are presented in the next section.

A second point that should be noted is that the results obtained
for locating .target.s by taking the spatial Fourier transform
are very sensitive to the phase of the signal at each of the
lqdrophonel'. In many cases the phase front arriving at an
array might be greatly distorted by variations in the media

"rhoroforo analysis should provide for noise added to the phase at
each hydrophone.




across the aperture of the array.
RECOMMENDATIONS BASED ON TARGET IMPULSE RESPONSE CALCULATIONS:

To make use of impulse response calculations for perfectly
conducting electromagnetic scatterers, the acoustic wave equation
and boundry conditions were compared to the wave equation for
electromagnetic waves and a correspondence was established for
the case of two dimensional (cylindrical) scatterers. Transverse
Electric (TE) scattering from a conductor is simular to acoustie
scattering from a hard boundry. Transverse Magnetic scattering
(T™) is simular to acoustic scattering from a soft boundry.

The three dimensional case for acoustic scattering could not

be handled readily by the method available for electromagnetic
scatterers. However, the results obtained from the two dimensional
case should be adequate for reaching some basic conclusions.

These can be compared with classical results for a sphere to
relate them to three dimensional cases.

The following illustrations should be consulted at this
time: Ffigures 13, 14, 15, 16, 17, 18, and 19. These figures
show the approximate impulse response in several directions.

The units along the abscissa of each response are in "light-
meters", For the electromagnetic case this is the time it takes
light to move one meter. For the acoustic case we could call
the units along this axis "speed-of-sound-meters". The impulse
responses shown are in the far-field region and the large
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semicircle indicates the time when an impulse reflected from
the origin of the coordinate system would arrive at the far-
field region.

The reader will note that in Fig. 13 (circular cylinder
of one meter radius, TE case) that the initial peak of the
impulse response in the backscatter direction corresponds to
a specular reflection from the front edge and could be predicted
by geometrical optics or acoustics. The negative swing and

gubsequent. positive swing could not be predicted by this method.
It is interesting to note that this subsequent positive swing

in the impulse response corresponds to a wave traveling around |
the backside of the cylinder and returning towards the source.

This is known as a creeping wave. Simular interpretations can
be found for this wave in the other TE (hard boundry) cases.
For the TM cases (soft boundry) a creeping wave does not occur.
The frequency response of the hard circular cylinder
(TE) case is shown in Fig. 20, Note that the response drops
off quite rapidly for k (actually k a+l, since a=l1) less than
one, We note that k=w/v, or k=2n/A where w is the radian
frequency, v is the velocity and A is the wavelength.
To carry these results over to three dimensions consult ’
Pig. 21 which shows the ratio of acoustic to geometrical cross
section of a fixed rigid sphere of radius a. It should be
noted at this time that in actual practice with acoustic targets,
ideal hard and soft boundries are not available. Additional




complications of flexure waves in shells and other resonances
inside the object must be considered. These will result in
variations in the calculated target response for that shape
object. Another source of difficulty can be seen in Fig. 19
which lahowa the TE (hard boundry)_ response of a corner reflector.
Note that the impulse response varies significantly in various
directions. In a practical situation fins and concave surfaces
on a scatterer would give simular behavior,

In spite of the limitations and difficulties indicated
in the previous paragraph, the basic behavior of the impulse
and frequency responses of targets gives an indication of several
general features that can be exploited for target identification.
For example, the target return from small scatterers such as
fish bladders could be reduced by selecting frequencies such
that the corresponding wavelength is large compared to the
size of these targets so as to place them in the "Rayleigh
Region" of the response curve. (see Fig. 21), Since the targets
of interest such as submarines are much larger, it should be
possible to exploit this variation in target behavior as a
feature for distinguishing these two types of targets. It
might also be possible to determine something about target
shape from a knowledge of the predicted impulse responses.

Since the impulse response of a target varies significantly
in several directions, additional information for target
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classification in a volume of interest could be obtained by
investigating the response in several directions., The impulse
responses of simple shapes such as cylinders, strips, and the
sphere do not vary significantly in a small range of angles.
However, concave and other more complicated shapes do exhibit
considerable variation as a function of angle and this might
be exploited as a feature for target identification.

To give an idea of the frequency ranges of interest for
utilizing the above recommendations, we will consider cylinders
of one meter radius, and ten meters in radius. Since the speed
of sound is about 1500 meters per second in water, for a one
meter radius cylinder a ka value of one would correspond to
a frequency of 1500 radians per second or about 240 Hort.s*.
For a ten meter radius target a ka of one would correspond
to a w of 150 radians per second or about 24 Hertz.

Figures 13 through 21 are from "A Technique for Computing
the Approximate Electromagnetic Impulse Response of Conducting
Bodies" by C. L. Bennett and W. L. Weeks. June, 1968,

Purdue Technical Report, TR-EE48-11, NSF GK 2367.

»
This corresponds to the break frequency in Fig. 20.
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1.6

— Classical Frequency Response
coo Time Domain Approach
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